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Abstract

This thesis primarily addresses the following problem: why can certain non-
convex optimization problems be solved efficiently? We focus on two important
problems in linear algebra and uncover a convexity-like structure that may
answer the aforementioned question. This convexity-like structure does not
hold in a Euclidean space but rather “geodesically” on a Riemannian manifold.
Thus, the main components of this thesis are linear algebra, optimization, and
differential geometry. Since it is challenging for a reader to be familiar with all
these prerequisites, we strive to present each topic as independently as possible.

The structure analyzed in this thesis facilitates numerous applications in
the field of numerical linear algebra. Consequently, a significant portion of the
thesis is dedicated to these applications. They include eigenvalue problems
in a distributed setting, a new analysis for preconditioned eigenvalue solvers,
as well as the development and analysis of new eigenvalue solvers for the
most elementary cases. This should certainly be of interest to readers with a
background in numerical linear algebra.

On the other hand, readers with an optimization background may view
this thesis as an illustration of the importance of the aforementioned structure
(weak-quasi-strong convexity). Insights into such structures have appeared not
only in linear algebra but also in deep learning. In the final section, we show
that this structure is indeed special for optimization in general, as it is in some
sense necessary for linear convergence of gradient descent with respect to the
error defined by the distances of iterates to the set of optima.

Readers interested in differential geometry may see this thesis as a good
example of the power of optimization on Riemannian manifolds. Although
differential geometry is not the central focus of this thesis, all the structures
discussed hold over curved spaces. This serves as an excellent example of
the primary goal of optimization on Riemannian manifolds: solving typically
non-convex problems within geometries where they satisfy a certain convexity
structure.



Résumé

Cette these traite principalement du probleme suivant: pourquoi certains
probléemes d’optimisation non-convexes peuvent étre résolus rapidement. Nous
nous concentrons sur deux problemes importants d’algebre linéaire et révélons
une structure de type convexité qui peut répondre a la question précédente.
Cette structure de type convexité n’est pas valable dans un espace euclidien,
mais plutot de maniere “géodésique” sur une variété riemannienne. Ainsi, les
principales composantes de cette these sont ’algebre linéaire, I'optimisation et la
géométrie différentielle. Comme il est difficile pour un lecteur de connaitre tous
ces prérequis, nous nous efforcons de présenter chaque sujet aussi indépendamment
que possible.

La structure analysée dans cette these permet de faciliter de nombreuses
applications dans le domaine de I’algebre linéaire numérique. Ainsi, une grande
partie de la these leur est consacrée. Elles incluent les problemes de valeurs
propres dans un régime distribué, une nouvelle analyse pour les solveurs de
valeurs propres préconditionnés, mais aussi le développement et ’analyse de
nouveaux solveurs de valeurs propres dans les cas les plus élémentaires. Ceci
devrait certainement intéresser le lecteur issu de l’algebre linéaire numérique.

D’un autre coté, le lecteur qui est plus proche de 'optimisation, peut voir
cette these comme une illustration de 'importance de la structure mentionnée
ci-dessus (weak-quasi-strong convexity). Des apercus de telles structures sont
apparus non seulement en algebre linéaire, mais aussi en apprentissage profond
(deep learning). Dans la derniére section, nous montrons que cette structure
est en effet spéciale pour I'optimisation en général, car elle est en quelque sorte
nécessaire pour la convergence linéaire de la descente de gradient en ce qui
concerne les distances des itérés a 1’ensemble des optima.

Le lecteur intéressé par la géométrie différentielle peut voir dans cette these
un bon exemple de la puissance de 'optimisation sur les variétés riemanniennes.
Bien que la géométrie différentielle ne soit pas le centre de cette these, toutes les
structures discutées sont valables sur des espaces courbes. C’est un bon exemple
de l'objectif principal de l'optimisation sur les variétés riemanniennes, c’est-a-
dire résoudre des problemes généralement non-convexes dans des géométries ou
ils satisfont une certaine structure de convexité.
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1 Introduction

Tractability in optimization has long been associated with convexity. The
field of convex optimization has systematically studied algorithms and their
convergence guarantees for convex optimization problems with excellent results
[80]. Unfortunately, convexity turns out to be an unrealistic scenario for many
problems of interest. This category includes problems from basic linear algebra
to advanced deep learning models. Moreover, many of these problems turn out
to be tractable, i.e. their non-convex structure is benign in some sense. Such a
phenomenon can be observed experimentally (for instance it has been repeatedly
observed that stochastic gradient descent optimizes over-parametrized deep
neural networks fast and accurately) or even theoretically as in the case of
certain linear algebra applications. An example for the latter is the symmetric
eigenvalue problem, which, while non-convex, it is long known to be solvable
easily by many algorithms that have been developed by the numerical linear
algebra community [96], the most popular of them being the power method.

In this thesis, we reveal a convexity-like structure for two of the most popular
problems in linear algebra, namely the symmetric eigenvalue problem and the
problem of polar decomposition. We also study numerous applications of this
theory to practical algorithmic design and analysis, improving the state-of-
the-art in numerical linear algebra using off-the-self techniques from convex
optimization. In Section 8, we study the importance of the aforementioned
convexity-like structures for optimization in general, with a few surprising
results.

One aspect that co-exists on the side of this work is the importance of
optimization over Riemannian manifolds. The problems that we deal with
can be naturally posed on Riemannian manifolds and there are good reasons
to do so. The convexity-like structures that we study do not hold over some
Euclidean space, but rather “geodesically” over some Riemannian manifold.
As Riemannian adaptations of popular Euclidean algorithms are well-studied
under certain function classes (see for instance [54, 112, 118, 119]), more effort
should be invested in identifying problems, where a change in geometry of the
search space can yield to the rise of such function classes. Our results show
that the symmetric eigenvalue problem and polar decomposition offer great
examples.

We continue our introduction by discussing basic concepts of the three
fields that intersect in this thesis: optimization, linear algebra and differential
geometry.

1.1 Basics from optimization

Optimization is one of the most vibrant fields in applied mathematics. Its
success can be largely explained by its importance in training machine learning



models. However, optimization problems can be found in many other fields of

mathematics and applied sciences, including linear algebra. Many excellent

textbooks exist for the interested reader, see for instance [22, 80, 87].
Considering the problem of minimizing a function f : R™ — R that attains

a minimum
min f(z), (1.1.0.1)

xeR”™

the most popular algorithm to deal with it is gradient descent, which dates
back to the work of Cauchy [68].

This extremely simple algorithm assumes that f is differentiable, thus its
gradient can be computed at any point. It takes the form:

T4l = T — an(It), (1102)

where x;y1 is a new guess for a minimizer of f starting from a previous guess
xy and n > 0 is a step size. The first important property which guarantees
that gradient descent behaves reasonably well is the Lipschitz continuity of the
gradient:

Definition 1.1 (L-smoothness) A function f:R™ — R is called L-smooth
if its gradient s L-Lipschitz continuous, i.e.

IVf(z) = VIl < Lz =yl
for all z,y € R™.
L-smoothness implies a number of interesting properties (see [120]):

Proposition 1.2 If f is L-smooth, then

e The largest eigenvalue of its Hessian is uniformly upper bounded by L in
absolute value.

e For all x,y € R", it holds
L
Fy) = f@) < (Vf(2)y — o) + S lly — 2l
e For all x € R", it holds

1
f@) = 1= g IV F@)IP
where f* is the minimum of f.

Under L-smoothness, gradient descent can be guaranteed to converge to
some critical point of f,i.e. a point z*, such that V f(z*) = 0.

Under extra convexity-like assumptions one can show stronger convergence
guarantees about gradient descent:

10



Proposition 1.3 If a function f is convex, then all local minima are global.
If in addition it is L-smooth, then gradient descent (1.1.0.2) with step size
n = 1/L converges to the global minimum f* with an algebraic convergence
rate: oL *“2
% To — X
flz) = f7 < P
where xg € R™ is the starting point of the iteration and x* € R™ some of the
global optima.

Y

Proof The proof that every local minimum is global can be found in Proposi-
tion 1.2 in [26] and the convergence rate in Theorem 3.3 in [26]. |

Proposition 1.4 If a function f is p-strongly convez, then the global minimizer
is unique. If, in addition, f is L-smooth, then gradient descent (1.1.0.2) with
step size n = 1/L converges to the global minimizer (let it be x*) with a linear
convergence rate:

t
oo =212 < (1= 2 o — 2|2
Proof See Theorem 3.10 in [26]. |

Notice that the previous convergence rate is with respect to the distances
of the iterates to the optimum. One can also show a convergence rate with
respect to the values of the function f to the minimum f*:

Proposition 1.5 For a p-strongly convex and L-smooth function f, the iterates
of gradient descent (1.1.0.2) with n = 1/L satisfy

fa) - 1< (1= ) (f) - 1)

Proof Given the simplicity and the instructive nature of this proof, we present
it in detail.
Since f is L-smooth, we have that (see [120], Lemma 4)

F(@) € F() + (VS (), s = 2 + 2 s — P

Since xpyq — x4 = %Vf(a:t), we have

1

f@er) — 7 < flo) = 7 = EHVJC(%)W-

Since f is p-strongly convex, we have that (see Lemma 3(i) in [120])

IV f(2)]]? > 2u(f(z) — f*), for all . (1.1.0.3)

11



Writing this inequality for x = z; and combining with the previous inequality,
we get that

Flavn) = 7 < fla) = = L) = 1) = (1= F) (Fla) = ).

Extending this inequality by induction, we get the desired result.

CONVEXITY AND SMOOTHNESS

FOXO SMOOTHNESS

\4
>
|
STRONG
cowsk

X

A

CONVEXITY

Figure 1.1: A joint illustration of the notions of (strong-)convexity and smoothness. Such
function cannot grow faster than any quadratic and cannot shrink faster than a line in the
convex case or a quadratic in the strongly convex one.

A close inspection in the proof of Proposition 1.5 reveals that one does
not need strong convexity, but only its weaker implication (1.1.0.3). This
was first observed by Boris Polyak [93] and, as Stanistaw Lojasiewicz was
simultaneously studying more general version of the condition, it took the name
Polyak-Lojasiewicz (PL) condition.

The PL condition is much more general than strong convexity as it includes
non-convex optimization problems. Interesting examples of problems that
satisfy a PL condition, but are not strongly convex, include logistic regression
(see [56], section 2.3) and certain architectures of (usually overparametrized)
deep neural networks (see [105], Lemma 7.12). An important result coming
from [56] shows that among all properties that the optimization community has
come up with (until that point) in order to guarantee a linear convergence rate
for gradient descent, PL is the weakest. Even deeper, [1] shows (Theorem 5)
that PL is a necessary condition for gradient descent to have linear convergence
with respect to function values to the minimum, when applied to a function
with Lipschitz continuous gradient.

12



Figure 1.2: A classic example of a function which satisfies a PL condition but is not convex.

While the PL condition is perhaps the most popular non-convexity property
studied in the realm of convex optimization, it will turn out to be insufficient
for our problems of interest. A stronger property than PL that facilitates our
future analysis is the following:

Definition 1.6 (Weak-quasi-strong convexity) A function f : R" — R
is called (a, p)-weak-quasi-strongly convex (WQSC) in a set E C R™, if it has a
unique optimum x* in E and for all x € E we have

f@) = £ < ~lgradf(2),a = 27) = Sz =2
for some constants a, u > 0.

Remark 1.1 WQSC is equivalent with the so-called weak-quasi convexity prop-
erty [40] and the more well-known quadratric growth property [33] holding
stmultaneously.

Note that (a, 1)-WQSC includes the class of p-strongly convex functions for
a = 1. Even when a # 1, it guarantees a PL condition:

Proposition 1.7 If f is (a,u)-WQSC in E, then it satisfies the PL condition

IVf(@)I* > 2a°u(f(z) — f),
forallz e F.

13



Proof The proof is simple and can be found in [25] (Lemma 3.2).
|

What makes weak-quasi-strong convexity interesting is that it guarantees
linear convergence of gradient descent (1.1.0.2) with respect to distances of the
iterates to the optimum, in contrast with the PL condition, which guarantees
convergence only with respect to function values.

Proposition 1.8 If f is L-smooth and (a,pn)-WQSC in R™, then gradient
descent with step size n = a/L produces iterates that satisfy

_ 2 < 1_2ﬂt |2
lze — 27" < a7 ) llzo — 27"

Proof The proof can be found in Lemma 4.2 of [25]. |

Remark 1.2 We make the choice to not bother too much with the proofs of
these results in our introduction as they have already appeared in related works.
Later in the text, we will need versions of these results in slightly different
settings, like in a Riemannian regime, or with a more general step size, or in a
more restrictive domain etc. In these cases, we will revisit the proofs of these
results in detail.

Similarly with PL, we will show that weak-quasi-strong convexity has a
special meaning in optimization, namely, except sufficient, it is also necessary
for linear convergence of gradient descent with respect to distances of the
iterates to the optimum. This is the content of Section 8.

Except gradient descent, another popular algorithm that will concern us is
an accelerated version of gradient descent with momentum in the style proposed
by Yurii Nesterov in his seminal work [79]. This algorithm can take the simple
form of Algorithm 1.1 presented in page 78 of [80].

Algorithm 1.1 Accelerated gradient descent with Nesterov momentum

1: Choose o € R™ and set vg = xg.
2: for t > 0 do
— (1_at)’7t+01t/“.

3: Compute o; > 0 such that o? = T
QYUY 41Tt
Yttatp :

4
5 Set Tyl = Tt — %vf(yt)

6: Set v11 = Til((l — )Y + iy — iV f ()
7: end for

Set y; =

Accelerated gradient descent is more complicated than gradient descent, but
still constructed by simple ideas. The original convergence analysis is made
for convex or strongly convex functions using a technique called “estimate

14



sequence”. In the strongly convex case (which is more of interest for us), such
algorithm produces iterates that satisfy

t
s = 1< (1-/4) Gl - 1)

The reader can refer to Theorem 2.2.3 in [80]. The “acceleration” is reflected
on the square root that appears around the inverse condition number pu/L.
Such number can be extremely small (close to 0) in many practical applications,
in which case its square root is substantially larger. This algorithm is not
the most practical, as there are certain hyperparameters that need to be set
accurately in order to achieve the desired convergence rate. It has though high
theoretical value as it is in some sense “optimal” among all first-order methods
(i.e. methods that access only function values and gradients).

In our case, we will not be dealing with strongly convex problems. However,
even weak-quasi-strong convexity is enough to design and analyse an estimate
sequence that gives rise to an algorithm with an accelerated convergence rate.
This will be important in Section 6.

1.2 Basics from linear algebra
1.2.1 The symmetric eigenvalue problem

One of the main problems presented in this thesis is the computation of some
eigenvalues and associated eigenvectors of some symmetric matrix A € R™*".
Together with the algorithmic solution of linear systems, eigenvalue problems
have been prototypical for the domain of numerical linear algebra. They have
been prototypical for the field of optimization over Riemannian manifolds as well.
For instance, it is the most standard problem treated in the popular textbook
[3], while it appears also in earlier efforts, see for instance [17]. The latter is
a good example of an effort from the Riemannian optimization community
to design more competitive (trust-region-style) methods for the symmetric
eigenvalue problem, using some novel machinery. These early attempts are
focused mostly on computational aspects of useful Riemannian quantities and
not so much on strong convergence guarantees.

In this section, we present some basics related to eigenvalues and eigenvectors
and refer the reader to classic textbooks [39, 96, 110] for more.

An eigenvalue A € R and an associated eigenvector v € R" \ {0} of a
symmetric matrix A € R™" is a pair such that

Az = A\z.

Eigenvalues and eigenvectors are well-defined for a larger class of matrices,
but we shall stick to the case of symmetric matrices, as then all eigenvalues
are guaranteed to be real numbers. One can write a symmetric eigenvalue

15



problem also in matrix form. To that end, we denote by A € R"*" a diagonal
matrix containing some eigenvalues of A in its diagonal entries, while V' € R™**
denotes a matrix featuring k-many eigenvectors in its columns. The desired
relationship now takes the form

AV = VA. (1.2.1.1)

From now on, we will usually be dealing with a multiple eigenvalue-eigenvector
problem in matrix form. One question that we tackle is computing the largest
k eigenvalues and associated eigenvectors of the matrix A. Let us denote the
eigenvalues of A in decreasing order as \y > Ao > ... > A\ > A1 > ... > A\,
The first k eigenvalues are the wanted ones, while the last n — k are unwanted.
We also denote by § = Ay — A1 the gap between the wanted and unwanted
eigenvalues. Depicting this situation in matrix form requires to store the wanted
and unwanted eigenvalues separately in the diagonal entries of two diagonal ma-
trices A, = diag(Aq, ..., ) and Ag = diag(Ag41, ..., An). We can also define

a matrix V,, = [vl Uk], such that VJVQ = I, that contains the eigen-
vectors corresponding to the eigenvalues A, ..., A\, and Vg = [ka e vn},
such that VﬁTVg = I,_; and VaTV/g = Opx(n—k), that contains the eigenvectors
corresponding to the eigenvalues Agi1, ..., Ap.

Figure 1.3: Illustration of some datasets and the eigenvectors of their covariance matrices.
These eigenvectors indicate directions of maximum or minimum covariance. Picture by Jesse
Johnsonl

The most popular algorithm for solving the problem (1.2.1.1) is the so-called
subspace iteration. Starting from an initial n x k matrix Xy, one updates as

Xip1 = QR(AX,). (1.2.1.2)

QR(-) means that the algorithm keeps the orthogonal factor of the QR decom-
position of AX;. This is done in order to prevent the columns of X; to converge
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to the same eigenvector corresponding to the largest eigenvalue.

This algorithm is very simple and comes with an extremely simple con-
vergence analysis. For phrasing a convergence result, we need the notion of
principal angles between subspaces.

Definition 1.9 (Principal angles) Given two subspaces Span(X), Span(Y) C
R™ of dimension k with X,Y € R™* orthonormal, the principal angles between
them are 01,0, ...,0, € [0,7/2], if the SVD of YT X can be written as

Y'X = Ujcosf V¥
where U; € Rk V) € RF*F gre orthogonal and cos 0 := diag(cos 0y, . .., cos ).

Notice that the definition of principal angles is independent of the specific
orthonormal matrices which represent the subspaces. This notion captures how
far away two subspaces are, similarly with the notion of the angle between two
vectors. Without loss of generality, we will treat the principal angles between
two subspaces as ordered 61 < 6y, < ... < b,.

We now state a simple convergence result about subspace iteration (Theorem
8.2.1 in [39]):

Proposition 1.10 Let Xy € R™* be an orthonormal matriz, such that X'V,
is non-singular. Let X, be the iterates of subspace iteration (1.2.1.2). Then,
the largest principal angle 0%, between X, and V,, satisfies

e |

tan 62 < ‘ tan 6.

kg1

Notice that if the spectral gap ¢ is strictly positive, then the previous result
gives a linear convergence rate. If the spectral gap is 0, then it just states that
the principal angles do not increase over the course of the algorithm.

Subspace iteration is a very handy algorithm, but it can suffer from poor
performance, especially in the case that the spectral gap is tiny (this happens a
lot in practical applications). The probably simplest idea on how to accelerate
subspace iteration is filtering the objective matrix using some polynomial. A
complete exposition of this process can be found in Chapter 7 of [96]. A general
version of such algorithm reads as:

Xiv1 = QR(p(A4)Xe), (1.2.1.3)

where p; is some polynomial of degree t. If p;(x) = x*, then we recover the case
of vanilla subspace iteration. QR(-) again keeps the orthogonal factor of the
QR decomposition of p;(A)X;. For reasons that are beyond the scope of this
thesis, the optimal choice for the polynomial p; is

pe(z) = Ci((x — ¢)/h) where C; is a Chebyshev polynomial of degree t.
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Here ¢ and h are scaling parameters that depend on the (unknown in general)
eigenvalues of A. This method accelerates over subspace iteration (1.2.1.2),
but this acceleration comes at the cost of tuning the previously discussed
hyperparameters which depend on unknown quantities. The convergence
guarantees of this method with optimal filtering (also called Chebyshev iteration)
can be found in Section 7.4.1 of [96].

Another family of “accelerated” algorithms is Krylov methods (Chapter 6
in [96]). Such algorithms are based on the construction of a Krylov subspace:
starting from an orthonormal matrix X € R™ ¥, one constructs the subspace

Span{X, AX, A*’X, ..., A"X}.

Methods that belong to this family build iteratively an orthogonal basis for
such Krylov subspace. This orthogonal basis serves as a good approximation
of the eigenvectors of the matrix A.

Krylov methods have similar convergence guarantees with Chebyshev itera-
tion, without the messy selection of hyperparameters. The price that needs to
be payed though is manifold: the cost of Krylov methods is not fixed per itera-
tion, but rather increases. Another serious issue is that in certain applications
(e.g. in electronic structure calculations [121]) the matrix A changes a little
during the course of the algorithm. This makes Krylov methods unsuitable,
as one needs to construct the whole Krylov subspace with the same matrix at
once.

The final algorithm we would like to mention is, by some measures, an
optimal eigenvalue solver. It is called locally optimal block preconditioned
conjugate gradients (LOBPCG) algorithm and first appeared in seminal works
by Andrew Knyazev [59, 60]. LOBPCG essentially computes the iterate that
maximizes the Rayleigh quotient, chosen from a space constructed by the
current iterate, a gradient-related term and a momentum term. It is at least as
fast as the basic preconditioned eigenvalue solver (PINVIT) [61], but efforts to
show that indeed accelerates over PINVIT have been proven illusive. That is
to say that the excellent practical performance of LOBPCG is not backed by
theoretical results in a solid way. Nevertheless, it is considered state-of-the-art
from a practical point of view. This is why we test our algorithms of Sections
5 and 6 primarily against LOBPCG. Research on the theoretical guarantees
of LOBPCG (and PINVIT) are still an active area of research, on which this
thesis contributes (Section 4). Unfortunately, the analysis of Section 4 applies
only to the basic PINVIT algorithm and not to the more advanced LOBPCG
version, for reasons that are discussed there.

There are of course a lot more methods for solving large-scale eigenvalue
problems, a complete exposition of them though would need the length of a
textbook. Also, it would not be really helpful for the reader of this thesis.
The traditional numerical linear algebra techniques have perhaps started to
reach a historical limit and progress through them is really incremental. On
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the other hand, there is some room for fresh approaches based on ideas of
(geodesically) convex optimization on Riemannian manifolds. This strategy
requires formulating the symmetric eigenvalue problem as an optimization
problem.

A good point to start is by noticing that computing a set of largest eigenvalues
of a matrix A € R™™" can be formulated as the minimization of the function

f(X)=—-Tr(XTAX)

over the set of n x k matrices with orthonormal columns. Indeed, from Fan’s
trace minimization theorem (see, e.g., [47, Corollary 4.3.39]) we know that

min{f(X): X eR”*" XTX =L} = (M + ... + ) = —Tr(A,) = f*.
(1.2.1.4)

An optimum of this problem is the matrix V, = [vl . Uk} defined pre-
viously. If the spectral gap 0 is strictly positive, then Span(V,) is unique;
otherwise, we can choose any v, from a subspace with dimension equal to the
multiplicity of A\g. It is readily seen that f(V,) = —(A1 + -+ A\y). In fact,
all minimizers of (1.2.1.4) are of the form V,Q with @ a k x k orthogonal
matrix. We also define V3 = |:’Uk-+1 vn] that contains the eigenvectors
corresponding to the eigenvalues Agi1, ..., A,. Its columns span the orthogonal
complement of Span(V,) in R™ and thus Vi'Vs = I, and V' Vi = O (np)-

Since Span(V,,) = Span(V,Q), it is more natural to consider this problem
as a minimization problem on the Grassmann manifold Gr(n, k), i.e. the set of
k-dimensional subspaces in R™. Let us therefore redefine the objective function
as

f(X) = —Tr(XTAX) where X = Span(X) for X € R st. XTX = [,.
(1.2.1.5)
This cost functlon can be seen as a block version of the standard Rayleigh
quotient r —» —LFE “Ar - An immediate benefit is that, if 6 > 0, the minimizer
of (1.2.1.5) is 1solated since it is the subspace V,, = Span(V ).

One of the contributions of this thesis is to develop and analyze various
solvers for this optimization problem (thus also for the symmetric eigenvalue
problem), using off-the-shelf techniques from convex optimization. It turns out
that in many cases the outcome is surprisingly competitive in practice, while
maintains good theoretical properties. All that is possible via the discovery of
a convexity-like structure for (1.2.1.5), analyzed in Section 2.

1.2.2 Polar decomposition

The second important problem presented in this thesis has to do with polar
decomposition. The polar decomposition of a matrix is a standard factorization,
where some matrix C' € R”*" n/ > n, must be written as the product of an
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orthonormal matrix X € R"*" and a symmetric and positive semi-definite
matrix P € R™", i.e.

C=XP.

Such a decomposition always exists and a good way to see that is through
the singular value decomposition. If a singular value decomposition of C' is

C=Uzv",
then the “polar factor” X of the polar decomposition is given as
X=Uuv"
and the symmetric positive semi-definite part P is given as
P=vxvT

One can easily see that the polar decomposition of C' is unique if and only
if C is invertible, i.e. if and only if its singular values are all positive.

The most direct way to compute a polar decomposition is via the SVD.
Clearly, this approach is too expensive. The numerical linear algebra community
has developed plenty of faster algorithms to tackle this problem. The most basic
one is the Newton method ([45], Section 8.3). The Newton method is in general
fast in the late stage of convergence, but can be very slow at the beginning if
the matrix C' is ill-conditioned. Another prominent class of algorithms is the
Padé family of iterations ([45], Section 8.5), which suffers more or less by the
same issues.

Most of the effort in the last few years has been focused on scaling the
basic Newton iteration, in order to obtain variants that do not suffer from slow
convergence at the beginning of the iterations. The so-called “optimal” scaling
[57] enjoys excellent theoretical behaviour, but the scaling factor depends on
the (generally unknown) smallest and largest singular values in each iterate X;.
A more practical version, that however lacks convergence guarantees, can be
found in [44]. A middle ground with a sub-optimal computable scaling that
still enjoys some convergence guarantees can be found in [28].

The state-of-the-art in this area comes probably from [76]. There, the
Halley’s method (which is a member of the Pade family of iterations) is scaled
in a principled way. The Halley method has cubic asymptotic convergence, but
the initial stage can be very slow for ill-conditioned matrices [37]. The scaling
of [76] helps to improve its performance in the initial stage of convergence.

An interesting property of the polar factor is that it is the closest orthonormal
matrix to the original matrix C' (see [45], Theorem 8.4). This makes polar
decomposition intimately related to the orthogonal Procrustes problem (see
[45], Theorem 8.6). The procrustes problem [98] is important in many areas of
applied science [6, 36, 55]. It seeks for an orthogonal matrix X € O(n), such
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that the quantity [|[AX — BJ|% for two matrices A, B € R™*" is as small as
possible. This problem admits the equivalent formulation
min — Tr(CX),
Xe0(n)

with C := BT A, and its solution is the polar factor of the matrix CT € R™*",
This problem turns out to have a geodesic convexity-like structure in the
orthogonal group, which we analyze in Section 7. This structure is similar to
the one that is analyzed for the symmetric eigenvalue problem in Section 2.

While we do not develop some application for this theory, as we do for the
case of the symmetric eigenvalue problem, we predict that many applications
can be found in noisy orthogonal Procrustes settings. In general, polar factors
behave quite badly with respect to perturbations of the original matrix. Let C
be a perturbation of C', then the distance between the polar factors X and X
can be upper bounded in general as (see Theorem 8.10 in [45])

2
O min (C) + Omin (é)

This means that computing the polar factor of a perturbed version of C' fast
and in high accuracy does not mean much, especially in the case where C' and
its perturbed version are nearly singular. In other words, we cannot just take
C and apply some of the classic algorithms mentioned above directly on it.

IX = X|r < I = Cllp-

1.3 Basics from differential geometry

In this section, we briefly present basic notions from the field of differential
geometry that will be useful later. The main point here is to present a
shallow introduction for the readers who are unfamiliar with the basics of
differential geometry, focusing on the intuitive relationship with more familiar
notions from the geometry of the Euclidean space. For an in depth study
of differential geometry, the reader can use a variety of excellent textbooks
including [67, 95, 106]. Here, we just follow the simplistic exposition of [10].

We also analyze the geometry of specific manifolds that are useful for our
purposes, namely the sphere, the Grassmann manifold and the orthogonal
group, this time in mode detail. The classic sources for whatever concerns
algorithmic computation on matrix manifolds are [3] and the seminal paper
[35].

Manifolds. A differentiable manifold M is a topological space that is locally
Euclidean. This means that for any point z € M, we can find a neighborhood
that is diffeomorphic to an open subset of some Euclidean space. This Euclidean
space can be proved to have the same dimension, regardless of the chosen point,
called the dimension of the manifold. Considering curves ¢ : [0, 1] — M that
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pass from a specific point x € M, the space of their derivatives at x is called
the tangent space and is usually denoted by T, M.

A Riemannian manifold (M, g) is a differentiable manifold equipped with a
Riemannian metric g,, i.e. an inner product for each tangent space T, M. We
denote the inner product of u,v € T, M with (u,v), or just (u,v) when the
tangent space is obvious from context. Similarly, we consider the norm as the
one induced by the inner product at each tangent space.

Geodesics Geodesics are curves v : [0,1] — M of constant speed and of
(locally) minimum length. They can be thought of as the Riemannian general-
ization of straight lines in Euclidean spaces. Geodesics are used to construct
the exponential map Exp, : T, M — M, defined by Exp,(v) = (1), where
7 is the unique geodesic such that v(0) = x and 4(0) = v. The exponential
map is locally a diffeomorphism. Using the notion of geodesics, we can define
an intrinsic distance (denoted as dist) between two points in the Riemannian
manifold M, as the infimum of lengths of geodesics that connect these two
points. A Riemannian manifold of which any two points are connected by some
geodesic is called complete. Geodesics also provide a way to transport vectors
from one tangent space to another. This operation, called parallel transport,
is usually denoted by I'Y : T, M — T, M. Closely linked to geodesics is the
notion of injectivity radius. Given a point x € M, we define the injectivity
radius at z (denoted inj(z)) to be the radius of the biggest ball around = that
the exponential map Exp, restricted to it is a diffeomorphism. We denote the
inverse of the exponential map inside this ball by Log, and we call it Rieman-
nian logarithm. Notice that in the Euclidean space the logarithm between two
points is just their difference: Log,(y) = y — x. In general, we have that, if
Log, (y) is well-defined, then Log,(y) = dist(z, y).

Figure 1.4: The geodesics of the torus, by Mark Irons.

Vector fields and the Riemannian gradient The notion of a vector field is
central in calculus. It is also important in Riemannian geometry:
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Definition 1.11 Let M be a Riemannian manifold. A vector field X in M
is a smooth map X : M — TM, where T M 1is the tangent bundle, i.e. the
collection of all tangent vectors in all tangent spaces of M such that po X 1is
the identity (p is the projection from T M to M ).

One can see a vector field as an infinite collection of imaginary curves,
the so-called integral curves (formally they are solutions of some first-order
differential equations on M).

A prominent vector field for us will be the Riemannian gradient of a real-
valued function f: M — R:

Definition 1.12 The Riemannian gradient gradf(z) of a function f: M — R
at a point x € M, 1is the tangent vector at x, such that (gradf(z),u) = df (x)u !,
for any u € T, M.

Covariant differentiation and the Riemannian Hessian The most suitable notion
to capture second order changes on a Riemannian manifold is called covariant
differentiation and it is induced by the fundamental property of Riemannian
manifolds to be equipped with a connection. The fact that a connection can
always be defined in a Riemannian manifold is the subject of the so-called
fundamental theorem of Riemannian geometry. We are interested in a specific
type of connection, called the Levi-Civita connection, which induces a specific
type of covariant derivative. For our purpose, it will however be sufficient to
define the notion of covariant derivative using the (simpler) notion of parallel
transport.

Definition 1.13 Given two vector fields X,Y in a Riemannian manifold M,
we define the covariant derivative of Y along X as

VxY(z):=lim o)

t—0 h ’

with v the unique integral curve of X passing from x.

Given the notions of Riemannian gradient and covariant differentiation, we
can define the notion of Riemannian Hessian:

Definition 1.14 Given vector fields X,Y in M, we define the Hessian operator
of f to be
Hess f(X,Y) := (Vxgrad f,Y).

Ldf denotes the differential of f, i.e. df(z)[u] = lims—o w, where ¢ : [0,1] - M is a smooth
curve such that ¢(0) =  and ¢(0) = w.
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This (0, 2)-tensor defines a bilinear form at each tangent space, i.e. Hess f(x)
is a map from T, M to T, M. A simpler definition of the operator Hess f(z) at
some point z € M can be

Hess f(z)v := lim Ieperadf(c(t)) — gradf(z)

t—0 t ’

for some curve ¢, such that ¢(0) = z and ¢(0) = v.

Curvature. The sectional curvatures is a way of measuring the curvature of a
Riemannian manifold along a particular 2-dimensional plane within the tangent
space at a point.

The sectional curvature K at a point x of a Riemannian manifold M with
Riemannian metric g is defined for each 2-dimensional plane ¢ C T, M. One
starts by defining the Riemann curvature tensor R, which is a (1, 3)-tensor
defined as:

R(v,w)z = VyVyz = Vi Vyz = Vi, )2,

where V is the Levi-Civita connection, and v, w, z € T, M.

The sectional curvature K (o) for the plane o spanned by v and w is given

by:
9(R(v, w)w,v)
g(”? U)g(wv U}) - g(vv w)2 '

What is important for our purposes is not so much a rigorous definition of
sectional curvatures, but rather its implications. All the manifolds that we deal
with in this thesis have nonnegative sectional curvatures at all points. This
implies the following important geometric bound, which can be seen as a law
of cosines for spaces of nonnegative sectional curvatures:

K(o) = K(v,w) =

Proposition 1.15 Consider three points x,y, z € M on a manifold of nonneg-
ative sectional curvatures M, such that they are connected by unique geodesics.
Then, we have

1. dist®(z,y) < dist®(z, ) + dist*(z, y) — 2(Log, (), Log. (y)).
2. dist(z,y) < || Log,(z) — Log,(y)|-

Proof Both 1 and 2 are simple consequences of the famous Toponogov’s theo-
rem (see Theorem 2.2 in [29]). |

We will need more geometric bounds along the text, which we will present

accordingly. We presented the previous bound already, as it will be used
extensively.
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Figure 1.5: Three manifolds of negative, 0 and positive curvature respectively from left to
right (taken from Wikipedia).

Geodesic convexity. The differentiability provided by the very structure of a
Riemannian manifold is a great feature for generalizing convexity-type notions.
It is also suitable for optimizing functions defined over manifolds using gradient-
based algorithms. A classic textbook on the topic is [111]. A newer textbook
with excellent exposition is [21]. The reader is suggested to consult them in
case they need a more complete picture on the relevant notions.

Definition 1.16 A subset E C M of a Riemannian manifold M is called
geodesically uniquely convex, if every two points in E are connected by a unique
geodesic.

Definition 1.17 A differentiable function f : M — R is called geodesically
convex in a geodesically uniquely conver subset E of M, if for all x,y € E it
holds

fy) — f(x) > (gradf(z), Log,(y))-

Note that we do not need a function to be differentiable to define convexity.
However, since in this thesis all functions of interest will be differentiable, we
define convexity directly through the gradient. As in the Fuclidean case, any
local minimum of a geodesically convex function is a global minimum.

In a similar manner, we define geodesic strong convexity:
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Definition 1.18 A differentiable function f : M — R is called geodesically
p-strongly convex (> 0) in a geodesically uniquely convexr subset E of M, if
forall x,y € E, it holds

f@) = f(y) < {gradi(x), Log, (y)) — Sdist*(z.y).

If a function f is geodesically strongly convex and a minimum exists, then
there is only one minimum and it is global.

Definition 1.19 A function f: M — R defined in a complete manifold M s
called geodesically L-smooth, if for all x,y € M, it holds

|gradf(z) — T'ygradf(y)|| < Ldist(x,y),
where I} is the parallel transport along some geodesic connecting x and y.

The previous definitions are well constructed enough to imply the standard
connection of convexity and smoothness with the Riemannian Hessian:

Proposition 1.20 A function f: M — R is
e geodesically p-strongly convex in an open subset E if and only if
Hessf(z) = ul
forallz € F.
e geodesically L-smooth if and only if
—LI < Hessf(x) <X LI
for all z € M.

> and = represent the classic positive semi-definite order in the space of
symmetric matrices.

Geodesic L-smoothness has similar implications with Euclidean L-smoothness.

Proposition 1.21 If f is L-smooth, then
e For all x,y € M, it holds

F(y) ~ £(2) < (arad f(x), ~ Log, (1)) + 5dist*(z. ).
e For all x € M, it holds

F@) = £ 2 S llarad £ P

where f* is the minimum of f.
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As discussed previously, in this thesis we are more interested in weaker
notions, namely the geodesic Polyak-Lojasiewicz condition and the geodesic
weak-quasi-strong convexity. To formally define the above, we just need to
substitute the “Euclidean” quantities appearing in their previous definitions
with Riemannian analogues of them:

Definition 1.22 A function f: M — R is:

e geodesically Polyak-Lojasiewicz (PL) in a geodesically uniquely convex
subset E C M if

lgrad f ()[I* > 2u(f (x) — f7),

for some p > 0 and for all x € E.

e geodesically weak-quasi-strongly convex (WQSC) in a geodesically uniquely
convex E C M, if it has a unique optimum x* in E and

flz)—fr< %(gradf(w), Log,(z*)) — gdistQ(x, x¥),

for some a,u > 0 and for all x € E. Again, if a function is geodesically
WQSC with parameters a and u, we will often write it as geodesically
(a, n)-WQSC. As in the Euclidean case, WQSC implies a PL condition.

Remark 1.3 We use the term “geodesically” to distinguish between the Eu-
clidean and Riemannian convexity-type notions. However, when the situation
is clear from context (i.e. it is obvious we work on a manifold), this word will
be omatted.

The previous notions are suitably constructed in an intrinsic differential-
geometric way, such that they give convergence guarantees for a similarly
suitable adaptation of gradient descent (1.1.0.2) for a Riemannian manifold:

Tep1 = Exp,, (—ngradf(z)), xo € M. (1.3.0.1)

This algorithm and variants of it will concern us a lot for the rest of this
thesis. We do not give here convergence guarantees of Riemannian gradient
descent (1.3.0.1) under the function classes discussed previously, as convergence
guarantees will be given throughout the text for specific optimization problems.

Besides gradient descent, Riemannian adaptations of accelerated gradient
descent with Nesterov momentum also exist ([4, 58, 75, 119]). In Section 6 we
develop a version of such algorithm for the symmetric eigenvalue problem with
rigorous convergence guarantees.
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1.3.1 The geometry of specific manifolds of interest

1.3.1.1 Sphere

The first manifold that we discuss is the sphere, i.e. the set of vectors of unit
norm:

S"t = {z e R"/||z| = 1}.

This space is useful when one is interested in computing only one eigenvalue
and associated eigenvector of a symmetric matrix. We present here some basic
quantities regarding the geometry of the sphere and refer the reader to [3, pages
73-76] for a more comprehensive presentation.

Tangent Space: The tangent space of the (n — 1)-dimensional sphere S"~! at
a point x is an (n — 1)-dimensional vector space, which generalizes the notion
of a two-dimensional tangent plane. We denote it by 7,S"! and a vector v
belongs in it, if and only if, it can be written as ¢(0), where c: (—¢,e) — S"!
(for some € > 0) is a smooth curve with ¢(0) = x. The tangent space at z can
be given also in an explicit way, as the set of all vectors in R™ orthogonal to x
with respect to the usual inner product. Given a vector w € R", we can always
project it orthogonally in any tangent space of S*~!. Taking all vectors to be
column vectors, the orthogonal projection in 7,S™ ! satisfies

Proj, (w) = (I — z2")w.

Geodesics: Geodesics on high-dimensional surfaces are defined to be locally
length-minimizing curves. On the (n — 1)-dimensional sphere, they coincide
with great circles. These can be computed explicitly and give rise to the
exponential and logarithmic maps. These are given by the following well-known
formulas

4

Exp, (v) = cos(|[v]])x + sin([|v]|) 7, Log,(y) = arccos((z,y))

Proj,(y — )
[[v]] )

[Proj,(y — z)I|
(1.3.1.1)

The distance between points x and y measured intrinsically in the sphere is
dist(z,y) = ||Log,(v)|| = arccos((z,y)). (1.3.1.2)

Notice that (z,y) = ||z||||y]| cos(£L(x,y)) = cos(ZL(z,y)), thus the distance of x
and y is actually the angle between them.

The inner product inherited by the ambient Fuclidean space R™ provides a
way of parallel transport. If y = Exp,(tv), then parallel transport is given by
the formula

T

t
VU . pv
Fgu = (I + COS(tHUH - ]-) ||'U||2 - Slﬂ(t”?)”)m) u.

28



Riemannian Gradient: The Riemannian gradient (which has been defined
previously in general) takes a particularly simple form in the case of the sphere.
We can compute the Riemannian gradient by orthogonally projecting the
Euclidean gradient V f(z) computed in the ambient space R™ into the tangent
space of x:

grad f(z) = Proj,(V(x)) = (I — xa™)V f(x).

Curvature: The sphere is a manifold of constant sectional curvature, equal to
1. For our purposes, we only use that its sectional curvatures are nonnegative.

1.3.1.2 Grassmann manifold

The (n, k)-Grassmann manifold is defined as the set of all k-dimensional sub-
spaces of R™:

Gr(n, k) = {X¥ CR": X' is a subspace and dim(X) = k}.

Any element X of Gr(n, k) can be represented by a matrix X € R™* that
satisfies X = Span(X). Such a representative is not unique since ¥ = X @ for
some invertible matrix @ € R*** satisfies Span(Y’) = Span(X). Without loss of
generality, we will therefore always take matrix representatives X of subspaces
X that have orthonormal columns. With some care, the non-uniqueness of the
representatives is not a problem 2. For example, the cost function (1.2.1.5) is
invariant to Q.

Tangent space and Riemannian metric: The set Gr(n, k‘) admits the structure
of a differentiable manifold with tangent spaces

Ty Gr(n, k) = {G € R™*: XTG =0}, (1.3.1.3)

where X = Span(X). Since X7G = 0 if and only if (XQ)"G = 0, for any
invertible matrix Q € R¥*¥ this description of the tangent space does not
depend on the representative X. However, a specific tangent vector G will
depend on the chosen X. With slight abuse of notation 3, the above definition
should therefore be interpreted as: given a fixed X, we define tangent vectors
G1,Gs, ... of Gr(n, k) at X = Span(X).

This subtlety is important, for example, when defining an inner product on

Ty Gr(n, k):
<G1, G2>)( = TI"(G{GQ) with Gl, G2 €Ty GI"(TL, k})

2This can be made very precise by describing Gr(n, k) as the quotient of the Stiefel manifold with the
orthogonal group. The elegant theory of this quotient manifold is worked out in [3].
3Using the quotient manifold theory, one would use horizontal lifts.
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Here, G; and G5 are tangent vectors of the same representative X. Observe

that the inner product is invariant to the choice of orthonormal representative:
If G; = G1Q and Gy = G2@Q with orthogonal (), then we have

<Gl, GQ>X = TI'(G?GQ) = TI'(QTG,{GQQ> = TT(G,{GQQQT) = TI'(G{GQ)

It is easy to see that the norm induced by this inner product in any tangent
space is the Frobenius norm, which we will denote as || - || :== || - || -
The orthogonal projection of a matrix W € R™ ¥ onto the tangent space
Ty Gr(n, k) is
Proj,(W) = (I = XXT)W,

where X is an orthonormal representative of X.

Exponential map and Riemannian logarithm: Given the Riemannian structure
of Gr(n, k), we can compute the exponential map at a point X as [2, Thm. 3.6]

Expy : Ty Gr(n, k) — Gr(n, k)

G — Span( XV cos(X) + Usin(X) ), (1.3.1.4)

where UXVT is the compact SVD of G such that ¥ and V are square matrices.
The exponential map is invertible in the domain [18, Prop. 5.1]

{G e To Gr(n, k): ||Gll2 < g} (1.3.1.5)

where |G|z is the spectral norm of G. The inverse of the exponential map
restricted to this domain is the logarithmic map, denoted by Log. Given two
subspaces X', ) € Gr(n, k), we have

Logy(Y) = U atan(3) V7, (1.3.1.6)

where USVT = (I — XXT)Y(XTY)™! is again a compact SVD. This is well-
defined if X7V is invertible, which is guaranteed if all principal angles between
X and ) are strictly less than 7/2. By taking G = Log,()), we see that
= atan(i). We can express the Riemannian logarithm using the notion
of principal angles between subspaces. The intrinsic distance induced by the

aforementioned Riemannian metric is

dist(X, V) = || Logx (V)| = | Logy (X) || = 1/ 0% + ... + 67 = [|0]l2, (1.3.1.7)

where § = (61, ...,0;)T with 6; being the principal angles between the subspaces
X and ). For more details on these facts, the reader can refer to Section 4.3
in [35] (arc length distance).
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Riemannian gradient: The gradient of a function f : Gr(n, k) — R at a point
X is given as the orthogonal projection of the Euclidean gradient V f(X)
computed in the ambient space at an orthonormal representative X of X:

grad f(X) = (I — XXT)Vf(X).

Curvature: We can compute exactly the sectional curvatures in Gr(n, k), but
for our purposes we only need that they are everywhere non-negative [18, 113].
This means that the geodesics on the Grassmann manifold spread more slowly
than in Euclidean space, which is essentially quantified by Proposition 1.15.

1.3.1.3 The orthogonal group

The orthogonal group Q(n) is the set of all orthogonal matrices in R"*". It is a
Riemannian manifold and a group, i.e. it has the structure of a Lie group. The
orthogonal group is disconnected, with two connected components, namely, the
orthogonal matrices with determinant equal to 1 and the ones with determinant
equal to —1. We present again the basics of the geometry of this manifold and
refer the reader to [18] for more.

Tangent space and Riemannian metric: The tangent space at a point X € O(n)
is
TxO(n) = {XQ / Q € R™" is skew-symmetric, i.e. Q7 = —Q}.

The most usual Riemannian metric that one equipes this space is

(V,W)x :==Tr(WTV).

Given this Riemannian metric, the orthogonal projection of a matrix Z €
R™™ onto TxO(n) is

Projy(Z) = Xskew(X'2),
where
A— AT

skew(A) := 5

is the skew-symmetric part of a matrix.

Exponential map and Riemannian logarithm: The exponential map at a point
X in the direction X2 is defined as

EXpX(XQ) = XeXpm(Q)a

where exp,, is the matrix exponential.
The Riemannian logarithm is the inverse of the exponential map, when the
latter is invertible. We now examine when this is the case.
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In order to identify the domain where the exponential map is invertible, we
need to verify when the equation

Expy(XQ) = Xexp,,(2) =Y
has a unique solution. This happens if and only if the equation
exp,,(Q) = XY

has a unique solution. Consider the eigenvalue decomposition Q = UAU!,
where A is diagonal with entries of the form 6 (since €2 is skew-symmetric).
This implies that the eigenvalue decomposition of exp,,(€2) is U exp,,,(A) U~
and exp,,(A) is diagonal featuring entries of the form e with 6 € (—,7].

Thus, the previous equation boils down to a series of equations of the form
e =s

where s are the eigenvalues of X7Y. These equations are well-defined and have
a unique solution if and only if s is in the domain of a definition of the complex
logarithm, i.e. in C\ (—o0,0]. In that case, 6 is allowed to be in (—m,7), i.e
0 # m. We can summarize the previous discussion as follows:

Lemma 1.23 e The domain of the orthogonal group where the exponential
map 1s a diffeomorphishm is

{XQ/Q" = —Q, ||| < 7} (1.3.1.8)
o Let X,Y € Q(n). If the phases 0 of the eigenvalues € of XTY satisfy

0 € (—m, ), then there is a unique geodesic connecting X and Y. In this
case, it trivially holds that X and 'Y are in the same connected component

of O(n).

o If some of the 0’s are equal to m, then it holds: if there is even number
of 0’s equal to m, then X and Y are in the same connected component
(and are connected by multiple geodesics). If there is odd number of 0’s
equal to w, then X and Y are in different connected components (i.e.

det(XY) = —1).

Let us now consider X and Y such that X7Y has eigenvalues with phases
in (—m, 7). Then Logy(Y) is well-defined and

Expy (Logx (Y)) =Y.
We can write Logy (V) = X for some skew-symmetric 2 and we have
X exp,,(Q) =Y, (1.3.1.9)
which can be written as

Q = log,,(X'Y),
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where log,, is the matrix logarithm.
Thus,
Logy(Y) = X log,,(XTY). (1.3.1.10)

Note that log,,(XTY) is indeed a skew-symmetric matrix since X and Y are
orthogonal.

Parallel transport: In the orthogonal group, the parallel transport from a
point X to a point Y (denoted by '), is given by

M (xQ) =vyXxXvovrx).

Notice that XTY QY7 X is a skew-symmetric matrix, since it is a conjugation
of the skew-symmetric matrix 2. This definition makes sense of course only if
X and Y are in the same connected component of Q(n).

Riemannian distance: Since we have computed the Riemannian logarithm
between two orthogonal matrices X and Y, we can also compute the Riemannian
distance between such matrices based on it:

dist*(X,Y) = || Logx (Y)|* = [|X log,,,(X"Y)|* = || log,,, (X" Y)|*.

In order to proceed, we decompose the orthogonal matrix X7Y into the
so-called canonical form PDP?, where P is an orthogonal matrix featuring the
eigenvectors of X7V in its columns and D is block diagonal. D is constructed as
follows. When X7Y has an eigenvalue equal to 1, D has a diagonal entry equal
to 1. When X7V has an eigenvalue of the form e? for some 6 € (—m,0) U (7, 0),
then e~ is also an eigenvalue and D features the 2 x 2 block that is the 2-d
cosf) —sinf
sinf  cos@

The matrix logarithm has the following convenient property. Given the
above decomposition, we have

log,,(PDP") = Plog, (D)P?.

rotation with angle #. That is

Taking D as constructed previously, log,,(D) has 0 in the positions where
0 —40 cosf) —sinf
D has 1 and {9 O] where D has {Sin 0 cosl

nal, the distance between X and Y turns out to be equal to || log,, (D)
Tr(log,, (D) log,,(D)). log,,(D)" log, (D) is again a 2 x 2 block diagonal ma-

2 _
trix with 0’s where log,,(D) has 0’s and [90 902} where log,, (D) has [g 09} .
Thus, the distance between X and Y is

1/2
dist(X,Y) (Z%) : (1.3.1.11)
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where € are the eigenvalues of X7Y. That is to say that
dist(X, Y) = [|9]2,

where ¢ = (0y,...,0,). If 6, = 0, then it appears only once in ¢, otherwise it
appears as a couple with —6¢;. Note that with a simple limit argument, we can
conclude that the same formula still holds when some phases of the eigenvalues
of XTY are equal to .

Riemannian gradient: As in the previous cases of embedded submanifolds,
the gradient of a function f : O(n) — R is the orthogonal projection of the
Euclidean gradient in the relevant tangent space:

gradf(X) = Projy(Vf(X)) = Xskew(XTVf(X)).

Curvature: The sectional curvatures in the orthogonal group are nonnegative,
as the orthogonal group is a special case of a Stiefel manifold and all Stiefel
manifolds have nonnegative sectional curvatures. This means that Proposition
1.15 holds for the orthogonal group.

1.4 Matching of sections to published or under review work

For making the study of this thesis easier, we present here the matching of
each section to work of us that is online. Some of these papers are already
published, while other are still under review.

e Section 2 <— [14] (published)
e Section 3 «— [8] (published)

e Section 4 «+— [9] (under review)

[
[
[
e Section 5 «+— [12] (published)
e Section 6 «— [15] (under review)

e Section 7 «— [13] (under preparation)
e Section 8 «— [7] (published)

Most of these papers have been written in collaboration with very capable
colleagues, who we would like to thank. Important role in their quality has
been played also by various reviewers, whose diligence has been of great service
for us.
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2 Geodesic convexity of the symmetric eigenvalue prob-
lem and convergence of gradient descent

We start the main part of this thesis with a thorough study of the optimization
landscape of problem (1.2.1.5). This section follows the exposition of our work
[14]. We reveal a convexity-like structure that on the one hand explains why
eigenvalue problems are easy to solve, while on the other hand is useful for
algorithmic computation.

2.1 Introduction

First, we discuss some related works. As discussed in the introduction, the
symmetric eigenvalue problem has been popular for several decades in the
numerical linear algebra and optimization communities. When only a few
eigenvalues are targeted, the main solvers for this problem have been based on
subspace iteration and Krylov subspace methods. Less but still considerable
attention has been given to the gradient descent method and its accelerated
versions. Most works on gradient descent focus only on computing the first
leading eigenvector of a symmetric matrix (k = 1), using a Euclidean version of
the algorithm. Asymptotic convergence rates are known for this setting since
the 1950’s, see [43]. More recently, exact non-asymptotic estimates for the
same Euclidean gradient descent with exact line search were proved in [62]. For
a more comprehensive overview of this line of research, the reader can refer to
[85] and the references therein.

Regarding the block version of the algorithm, where one targets multiple
pairs of eigenvalues and eigenvectors, much less is known. We refer here to
[86], which presents a gradient descent-like method for the multiple eigenvector
problem using Ritz projections onto a 2k-dimensional subspace in each step.
The convergence of this algorithm is proved to be linear, but computing the
Ritz projections is quite expensive. Instead, in this section, we consider a much
cheaper version of gradient descent by directly choosing only one of the vectors
in this 2k-dimensional subspace to update our algorithm. Some analysis for
such a gradient descent (without Ritz projection) on the Grassmann manifold
using a retraction and an Armijo step size is provided in [3] (see Algorithm 3
and Theorem 4.9.1). Unfortunately this convergence rate is asymptotic, that is,
a linear rate is achieved after an unknown number of iterations. The region in
which the convergence happens cannot be quantified. Also, such a convergence
rate does not yield an iteration complexity for the algorithm.

The optimization landscape provided by the block Rayleigh quotient on the
Grassmann manifold has also received some attention lately. [97] provides many
interesting properties of the critical points of this function and proves that all
but the global optimum are strict saddles. This is later used to derive favourable
convergence properties for a hybrid method consisting of Riemannian gradient
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descent in a first stage and a Riemannian Newton’s method in a final stage.
[71] proves the so-called robust strict saddle property for this function, that is,
the Hessian evaluated in each critical point except the global optimum has both
positive and negative eigenvalues in a whole neighborhood. However, none of
these papers talk about (generalized) convexity of any form, nor discusses any
convergence rates for gradient descent.

Turning the discussion to the convexity properties of eigenvalue problems,
there is a new line of research concerned by that. In [117], the authors prove
(Theorem 4) that the Rayleigh quotient is geodesically PL in the sphere (k = 1),
that is, it satisfies a spherical version of the Polyak—lLojasiewicz inequality.
The result of [117] is strengthened by our work [8], which is a special case of
the work presented in this section and will be discussed in detail (from an
application point of view) in the next section. Finally, [5] examines (among
other contributions) the convexity structure of the same block version of the
symmetric eigenvalue problem on the Grassmann manifold that we introduced
above. Unfortunately, the characterization of the geodesic convexity region
independently of the spectral gap 6 (Corollary 5 in [5]) is wrong (see our
Section 2.5 for a counterexample). As we will prove in Theorem 2.21, the
geodesic convexity region of f (and the one of the equivalent cost function used
in [5]) needs to depend on the spectral gap, as appears also in [50, Lemma 7]
in the case of the sphere (k = 1).

To the best of our knowledge, the work presented in this section is the first
one that provides non-asymptotic convergence rates for the gradient descent
algorithm for the multiple eigenvalue-eigenvector problem on the Grassmann
manifold. We do so by first proving that problem (1.2.1.5) satisfies a WQSC
condition.

As mentioned above, the standard algorithm for computing the leading
eigenspace of dimension k is subspace iteration (or power method when k = 1).4
However, there are reasons to believe that, in certain cases, Riemannian gradient
descent (and its accelerated version with non-linear conjugate gradients) should
be preferred, especially in noisy settings [8] or in electronic structure calculations
where the leading eigenspace of many varying matrices A needs to be computed.®
In particular, [8] presents strong experimental evidence that gradient descent
is more robust to perturbations of the matrix-vector products than subspace
iteration close to the optimum. While subspace iteration still behaves better at
the start of the iteration, it asymptotically fails to converge to an approximation
of the leading subspace that is as good as the one estimated by Riemannian
gradient descent. While [8] dealt with a noisy situation due to calculations in
a distributed setting with limited communication, exactly the same effect can

4Krylov methods are arguably the most popular algorithms but they do not iterate on a subspace directly
and are typically started from a single vector. In particular, they cannot easily improve a given approximation
of a subspace for large k > 1.

5More on that in Section 5.
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be observed when we inject the matrix-vector products with Gaussian noise.
Thus, we expect gradient descent to perform better than subspace iteration
close to the optimum in any stochastic regime [42].

Regarding worst-case theoretical guarantees, the strongest convergence result
for subspace iteration in the presence of a strictly positive spectral gap ¢ is
in terms of the largest principal angle between the iterates and the optimum
[39], that is, the {,-norm of the vector of principal angles. In contrast, our
convergence result for gradient descent for § > 0 (Theorem 2.10) is in terms of
the fo-norm of the same vector of angles, which is in general stronger. When
d =0, it is known from [65, 91] that the largest eigenvalue (k = 1) can still be
efficiently estimated. We extend this result for £ > 1 and prove a convergence
rate for gradient descent for the function values of f (Theorem 2.12), relying
only on weak-quasi convexity (and thus using a different argument from [65, 91]).
Weak-quasi convexity can be seen as (a,0)-WQSC.

Block Rayleigh quotient. As discussed in the introduction, the symmetric
eigenvalue problem can be transformed into an optimization problem of the
block version of the Rayleigh quotient:

f(X) = —Tr(XTAX) where X = Span(X) € Gr(n, k) s.t. XX = I,.

This function has V, = Span([v1 --- v]) as global minimizer. This minimizer
is unique on Gr(n, k) if and only if the spectral gap 0 := A\, — A\g4q is strictly
positive.

For a given representative X of X', the Riemannian gradient of the block
Rayleigh quotient satisfies

grad f(X) = —2(1 — XXT)AX.

Using the notions of the Riemannian gradient and Levi-Civita connection, we
can define also a Riemannian notion of Hessian as discussed in the introduction.
For the block Rayleigh quotient f, the Riemannian Hessian Hess f evaluated
as bilinear form satisfies

Hess f(X)[G,G] = 2(G,GXTAX — AG), (2.1.0.1)
for G € Ty Gr(n, k); see [35, §4.4] or [3, §6.4.2].

2.2 Convexity-like properties of the block Rayleigh quotient

We now prove the new analytic properties of the block Rayleigh quotient
f(X)=—Tr(XTAX). These are important in their own right but will also be
used later for the convergence of the Riemannian gradient descent method.
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2.2.1 Smoothness

A C? function defined on the Grassmann manifold is L-smooth (see again
Definition 1.19) if the eigenvalues of its Riemannian Hessian are everywhere
upper bounded in absolute value by a positive constant L. This is true for the
block Rayleigh quotient, as we show in the next proposition:

Proposition 2.1 (Smoothness) The eigenvalues of the Riemannian Hessian
of f on Gr(n, k) are upper bounded in absolute value by L := 2(A\; — \,).

Proof Let G be a tangent vector of Gr(n,k) at X. Then the Riemannian
Hessian satisfies (see (2.1.0.1))

LHess f(X)[G,G] = Tr(GTGXTAX) — Tr(AGGT).

Since A, XTAX,GG", and GG are all symmetric and positive semi-definite
matrices, standard trace inequality (see, e.g, [47, Thm. 4.3.53]) gives

Hess f(X)[G, G] < 2(Amax(XTAX) = Auin (A)) |G-

Since X has orthonormal columns, Apa(X7TAX) < Apax(A); see, e.g., [47,
Cor. 4.3.37]. Thus,

Hess f(X)[G, G] < 2(A = M) |G|
Similarly,
—1Hess f(X)[G,G] = — Tr(GTGXTAX) + Tr(AGGT)
< (i (X TAX) + Ao (4)) | G2
< (_)‘min(A> + )‘maX<A))HGH2
= (M = MG
The last inequality follows from the fact that Ay (X7 AX) > Anin(A) (see for

instance the Cauchy interlacing theorem).
Putting it all together, we have

| Hess f()[G, G| < 2(A = X)) |G

and the desired result follows.
[ |

The result in Proposition 2.1 is tight: Choosing X = V,, and G = v,el, it is
readily verified that the upper bound is attained. From now on, we refer to
L as the specific value 2(A; — \,,). This value also features in a useful upper
bound for the spectral norm of the gradient. This bound is independent of X
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Lemma 2.2 For all X € Gr(n,k) and L = 2(A\; — \,), the Riemannian
gradient of f satisfies

| grad £z < .

Proof Since X has orthonormal columns, we can complete it to the orthog-
onal matrix @ = [X X,|. Hence, | grad f(X)|> = [|2(I - XXT)AX|, =
2]|XTAX||5. The result now follows directly from [69, Thm. 2| since A is real
symmetric and the definition of L = 2(A; — \,). [ |

By the second-order Taylor expansion of f (see, e.g., [21], Corollary 10.54)
it is easy to see that Proposition 2.1 implies

F(X) < f(Y) + (grad f(Y), Logy (X)) + g dist?(X,)), (2.2.1.1)

for any X, Y € Gr(n, k) such that Log,(Y) is well-defined.
As in the introduction, denote the global minimum of f by f* which is
attained at V, € Gr(n, k). Inequality (2.2.1.1) leads to the following lemma:

Lemma 2.3 For any X € Gr(n, k) and L = 2(\; — \,,), we have

F) — £ > e £

Proof Since f* is a global minimum of f, we have from (2.2.1.1) that

F* < F(X) < F) + larad (D), Loy (X)) + 5 | Logy ()]

for any X, € Gr(n, k) such that Log,(Y) is well-defined.

We set X := Exp,, (—1gradf(})). By Lemma 2.2, we have that H— gradf(Y
7 and by equation (1.3.1.5) we have that Logy,(X') is well-defined and equal to
—+gradf(Y). Then, the right hand side of the initial inequality becomes

1 1
£ < FO) — leradf)P + 5 lerad fV)IP = F) — 5 llrad f ()

Rearranging the last inequality and substituting J = &', we get the desired
result. [ |

Note that we have already discussed these results in a more general regime

in Proposition 1.21, but without proof. This is the reason that we discuss them
here in more detail.
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2.2.2 Weak-quasi convexity and quadratic growth

We now turn our interest in the convexity properties of the block Rayleigh
quotient function. We start by proving a property which is known in the
literature as quadratic growth.

Proposition 2.4 (Quadratic growth) Let 0 < 6, < --- < 0, < 7/2 be the
principal angles between the subspaces X and V,. The function f satisfies

fF(X) = f* > cqd dist? (X, V,)
where cg = 4/7* > 0.4.
Proof
The spectral decomposition of A = VA, VI + VgAgVﬁT implies
XTAX = X"V, AV X + XTVaAgV] X (2.2.2.1)
Since f(X) = —Tr(XTAX), we have
F(X) = f*=Tr(Aa) — TH(XTVLALVIX) — Tr(XTVaAsV X))
= Tr(Ao) — Tr(AV X XTV,) — Tr(AgVi X XTVp)
= Tr(Aa(lp — VIXXTV,)) — Tr(AgV) X XTVp).
From Definition 1.9 of the principal angles between X and V,,, we recall that
VIX = U cosO V7, (2.2.2.2)

where cos@ = diag(cosfy,...,cos) is a diagonal matrix and Uy, V] are or-
thogonal matrices. Plugging this equality in, we get that the jth eigenvalue
of the matrix Iy — VI XXTV, is equal to 1 — cos®6; = sin?6; > 0. Thus, by
standard trace inequality for symmetric and positive definite matrices (see,
e.g., [47, Thm. 4.3.53]), the first summand above satisfies

k
Tr(Aa(le = VIXXTV,)) > A > sin® 6.
j=1

The matrix VBTX X7V, has the same non-zero eigenvalues with the same
multiplicity as the matrix

X'VaViX =1, = Vicos® 0 VT = Vysin® 0 V)T

where we used V3Vy = I, — V, V[ and the SVD of VJ'X. Thus the jth
eigenvalue of VBTX XTVy is sin? ¢; > 0. By trace inequality again, the second
summand therefore satisfies

k
Tr(AgVy XXTV5) < Ajgr > sin 6.

J=1
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Putting both bounds together, we get
k k 4
* . 2 2
f(X) == (N — )\k+1)zlsm 6, > 6.21993'
j= j=

and the proof is complete by the Definition (1.3.1.7) of dist. [ ]

Recalling Definition 1.17, we say that f is geodesically convex if for all X
and ) in a suitable region it holds

f(X) = f(Y) < (grad f(X), — Log()).

In Section 2.5, we prove that our objective function f is geodesically convex
only in a small neighbourhood of size O(v/§) around the minimizer V,. For-
tunately, our key result of this section shows that f satisfies a much weaker
notion of geodesic convexity, known in the literature as weak-quasi convexity,
that does not depend on the spectral gap 9.

We first need the following lemma which is a general version of the CS
decomposition but applied to our setting of square blocks.

Lemma 2.5 Let X,Y € R™* be such that XTX = Y'Y = I, with k < n.
Choose X ,Y, € Rk sych that XTX, =YTY, =1, 4 and Span(X ) =
Span(X)+, Span(Y,) = Span(Y)*. Then there exist 0 < r,s < k such that

-Ir Or><m
YIX =U, C vl YTX, =1, S, %3
OPXP IP

YIX =0, Sy vl YIX, =0, —C vy
Ip Op><p

withp=k—r—s and m =n — 2k +r, and we have
e orthogonal matrices Uy, V1 of size k and Us, Vo of size n — k;
e identity matrices I, of size q;
o zero matrices Ogyy of size ¢ X t;

e diagonal matrices Cy = diag(ay,...,as) and Sy = diag(fy, ..., 5s) such
that1 > a1 > -2 a;,>0,0< 6, <--- <G, <1 cde’ersgzls.

Proof Since [X X l] and [Y YL] are orthogonal, the result follows directly

from the CS decomposition of the orthogonal matrix P = [Y’ YL}T (X X.];
see the Theorem of §4 in [92]. |
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Observe that the matrix diag(/,, Cs, Opxp) in this lemma corresponds to the
matrix cos(#) in Definition 1.9 with 6 the vector of principal angles 0 < 6; <
-+ < 0 < /2 between Span(X) and Span(Y'). However, the lemma explicitly
splits off the angles that are zero and 7/2 so that it can formulate the related
decompositions for Y7 X | YT X, and YT X, with C, and S,.

We are now ready to state our weak-quasi convexity result. In the statement
of the proposition below (and throughout this section), we use the convention
that 2= = 1.

tan 0

Proposition 2.6 (Weak-quasi convexity) Let 0 < 60 < --- < 0, < 7/2 be
the principal angles between the subspaces X and V,. Then, f satisfies

2a(X) (f(X) — [7) < (gradf(X), — Logx(Va))
with a(X) := 6/ tan by.

Proof Take X and V,, matrices with orthonormal columns such that X =
Span(X) and V, = Span(V,). Since 0, < w/2, we know that p = 0 in
Lemma 2.5 and thus s = k — r with r the number of principal angles that are
equal to zero. Choosing a matrix X, with orthonormal columns such that
Span(X,) = Span(X)*, we therefore get from Lemma 2.5 that there exist
orthogonal matrices Uy, V] of size k and V5 of size n — k such that

OT‘XT)’L

VIX =1, [Ir o } vi, VIx, =0 { Vil (2.2.2.3)
k—r

Sk—r:|

Comparing with Definition 1.9, we deduce that Cy_, = diag(cos 0,41, ..., cosby)
and Sy_, = diag(sin,,1,...,sinf) since C7_ + 5% =1
We recall from (1.3.1.6) that

Logy(V.) = U atan(X)V7, (2.2.2.4)

where ULVT = (I, — XXT)V,(XTV,)™! =: M is a compact SVD (without the
requirement that the diagonal of 3 is non-increasing). Using X, from above,
we can also write M = X | XTV,(XTV,)~!. Substituting (2.2.2.3) and using
that U; and V; are orthogonal gives

|:Om><r

M — XJ_‘/Q ‘/1T — XJ_‘?Q |:Or><'r ‘/1T7

Sk—rck_17n:| Sk_rC,glr]

where f/g e R=k)xk contains the last & columns of V; in order. Note that this
reformulation of the SVD of M holds always, regardless of the relationship

mxr

between m and r. If m > r, the matrix has its first m — r

Sk—rck__lr]
rows equal to 0, thus we can cut the first m — 7 columns of V3, since they do
not contribute to the product. This yields a matrix V5, with n — k rows and
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n —k —m+r =k of the last columns of V5. If m < r, then the first r — m

mxr

columns of { g -l } are 0 and now we can add r — m columns in
k—r“—p

the beginning of the matrix V5 that keep the derived matrix orthonormal. This
again yields a matrix V5 with n — k rows and n — kK +r — m = k columns.
rXTr

Sp_r O

=T

Since the matrix [ ] occurs by adding r — m zero rows at the

beginning of Omxr _1 |, the product does not change.
Sk—TCk—T

Since #; = --- =6, = 0, we can therefore formulate the compact SVD of M
using the vector # of all principal angles as follows:

M=UxV"T withU =X ,V,, ¥ =tan(d), V =Vi.
Hence from (2.2.2.4) we get directly that
Logy(Va) = X, Va0V, (2.2.2.5)

where 6 is a diagonal matrix.
We now claim that (2.2.2.5) also satisfies

0
Logy(Va) = X X1V, U,— V], (2.2.2.6)
sin ¢
where Siz 5 is a diagonal matrix for which ﬁ = 1. Indeed, recalling that
0, = --- =46, =0 and using the identities
- To 0 I I
XTVa — v rXT UT — T 3 r
= 2 |: Sk—r:| L sin 6 |: Sk_lr:| |: Tk—r:|
where Ty, = diag(0,41, ..., 0x), we obtain

. ~ O?"XT IT Ir T
RHS of (2.2.2.6) = XV, { Skr:| { g1 } { Tkr} Vi

k—r

=XV, {OW ] VI = X, V,0 V' = RHS of (2.2.2.5).

kar
Next, we work out

s = (grad f(&), — Logx(Va))-

Since grad f(X) and Logy (Va), respectively, give tangent vectors for the same
representative X of X', the inner product above is the trace of the corresponding
matrix representations. Using (2.2.2.6) with [ — X X7 = X | X7 we therefore
get

0
_ - T o T T
5= 2<([ XXTVAX, (I - XX W“Ul—sin(e)vl >
— 9 Ty, T T
=2Tr <sin(9) UTvI(I— XX )AXV1>.
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Since AV, = V,A,, we can simplify
VI - XXT)AX = AVIX —VIXXTAX. (2.2.2.7)

Substituting in the expression above and using that V.I X = U, cos 0 V/I', we
get

I 0 T T T
35 = Tr <Sin(9) Ui AUy cos(@)) — <sm(9) cos(0) V" X AXV1>
— Ty ( b (UlT AU — VTXTAXV1>>
tan ()
with the convention ﬁ =
Denote the symmetric matrix
S = UlAU, — VEXTAX V. (2.2.2.8)

We show below that all diagonal entries Sii,..., Sk of S are nonnegative.

Hence, by diagonality of the matrix %, we obtain

1 ej . (9]' Hk .
Ll N0 ¢ o _ )
2° zj:tanéj Sjj 2 min = 6. Te(S) = o [Tr(Aa) Tr(X AX)]

since U; and V) are orthogonal matrices. We recover the desired result after
substituting f(X) = — Tr(XTAX) and f* = — Tr(VTAV,) = — Tr(A,).

It remains to show that S;; > 0 for j = 1,...,k. Since Span(V) =
Span(V,)*, Lemma 2.5 gives us in addition to (2.2.2.3) also

VIX =0, {Om” S;”} Vil = Uysinf VT, (2.2.2.9)
where U2 € R(=k)xk contains the last k& columns of the orthogonal matrix U,
in order. A short calculation using (2.2.2.1) then shows that (2.2.2.8) satisfies

S = UlTAaUl — cosf UlTAaUl cosf — sin 6 UZTAgﬁg sin 0
with diagonal elements
S;; = sin?0; (U'A Uy — UFAgls),;
Since U; and U2 have orthonormal columns, we obtain
Amin(UF AU > Ain(Aa) = Moy Amax (U2 AgUs) < Amnax (Ag) = At

from which we get with Weyl’s inequality that
Auain(UF DUy = U3 AgU2) 2 Mnin(UT AaUt) = Amax(U3 AgU2) 2 A = Ayr > 0.
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Hence, the matrix 3 }
UL AUy — UL AU, (2.2.2.10)

is symmetric and positive semi-definite. Its diagonal entries, and thus also 5},
are therefore nonnegative. [ |

We are finally able to show the promised WQSC property of the symmetric
eigenvalue problem (recall Definition 1.22).

Theorem 2.7 (Weak-quasi-strong convexity) Let 0 < 6; < --- < 6, <
/2 be the principal angles between the subspaces X and V,. Then, [ satisfies

f(X) — f < @@rad (), — Loga (V) — cob dist?(X, V)

with a(X) = 0/ tan by > 0, cg = 4/7% > 0.4, and § = A\ — A\gy1 > 0.

Proof Combining Propositions 3.2 and 2.6 leads to

cgd dist? (X, V,) < f(X) — f* < 2@(1)(>

(grad f(X), — Logxy(Va))-

At the same time, Proposition 2.6 also implies

1
f(X) = [ < M@md F(X), = Logx(Va)) — cqf dist*(X, Va)
+ cob dist* (X, Va).
Using the first inequality to bound the last term of the right hand side, we
recover the desired result. [ |

Remark 2.1 Theorem 2.7 is also valid when the spectral gap 6 = 0. In that
case, V, is any subspace spanned by k leading eigenvectors of A and the theorem
(almost) reduces to Proposition 2.6 (up to a scalar 2).

While not needed for our convergence proof, the next result is of independent
interest and shows that f is PL in the Riemannian sense when the spectral
gap ¢ is strictly positive. This property generalizes a result by [117] for the
Rayleigh quotient in the sphere.

Proposition 2.8 (PL condition) The function [ satisfies

lgrad f(X)][* = 4cq da*(X)(f(X) — f7)

for all subspaces X that have a largest principal angle < 7/2 with V,,.
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Proof We assume that § > 0 since otherwise the statement is trivially true.
By Theorem 2.7, we have

1
f(X) = < m@rad f(X),— Logx(Va)) — cqd dist*(X, Va).
Since (G1, Ga) < £||G1]]* + %p”GQHZ for all matrices G, Go and p > 0, we can
write (for any p > 0) that

(grad (), = Log (V%)) < S llrad f(X) P + || Log (Vo) -

Using that dist(X,V,) = || Logy(Va)|| and choosing p = 1/(2cgda(X)), we get
the desired result. [ |

2.3 Convergence of Riemannian gradient descent

We now have everything in place to prove the convergence of the Riemannian
gradient descent (RGD) method on the Grassmann manifold for minimizing f.
Starting from a subspace Xy € Gr(n, k), we iterate

X1 = Expy, (—n; grad f(X;)). (2.3.0.1)

Here, n; > 0 is a step size that may depend on the iteration ¢ and will be
carefully chosen depending on the specific case, but always depending on L,
which equals 2(A; — \,).

We start by a general result which shows that the distance to the optimal
subspace contracts after one step of gradient descent. The step size depends on
the smoothness and weak-quasi convexity constants of f from Propositions 2.1
and 2.6. This is crucial since the constant a(X) depends on the biggest
principal angle between X and V, and bounding the evolution of distances
of the iterates to the minimizer will help us also bound this constant®. An
alternative contraction property with a more tractable step size is presented in
Proposition 2.15 of Section 2.4.

Lemma 2.9 (Contraction of RGD) Let X; and V, have principal angles
0<6, <--- <0, <7/2. Then, iteration (2.3.0.1) with
0 <mn < a(X)/L satisfies

dist* (X1, Va) < (1 — 2cgba(Xy) ny) dist? (X, Va).

Observe that L = 0 implies A = A\ and any subspace X of dimension k
will be an eigenspace of A with dist(X,V,) = 0. We will therefore not explicitly

6The analysis of [50] is wrong with respect to this issue as discussed in detail in [8].
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prove this lemma and all forthcoming convergence results for L = 0 since the
statements will be trivially true.

Proof [Proof of Lemma 2.9] By the assumption on the principal angles, we get
that 0 < a(X;) = 0;/tand, < 1. The hypothesis on 7, and Lemma 2.2 then
gives

a(Xy) 1

v
ne|| grad f(&y)[]2 < 7 | grad f(X;)[|2 < 5 <73

By (1.3.1.5), this guarantees that the geodesic 7 +— Exp(—7n: grad f(AX;)) lies
within the injectivity domain at X, for 7 € [0,1]. Hence, Exp is bijective
along this geodesic and thus Logy, (X;4+1) = —n¢ grad f(&;). We can thus apply
Proposition 1.15 to obtain

dist®(Xp+1, Va) < || = me grad f(X,) — Logy, (Vo)
= 7|l grad £(X,)||* + dist?(X;, Va) + 210 0 (2.3.0.2)

with
0= <gradf(')(t)7 LOgXt (Va)>

Theorem 2.7 and Lemma 2.3 together with Proposition 2.1 (see also Proposition
1.21) give

g

a(Xy)

< I = F(X) — cgd dist?(X, V)

1
< —57 llerad f(A)[* = cqd dist® (A, V).

Multiplying by 2a(AX;) n; and using 1, < a(X})/L, we get

< =i || grad f(X)|* — 2cqda(Xy) ne dist® (X, Va).
Substituting into (2.3.0.2), we obtain the first statement of the lemma. |

a(X; :
20 < —%H grad f(X)|]? — 2coda(Xy) n, dist®(X;, Vy)

Remark 2.2 When 6 =0, Lemma 2.9 still holds for any subspace V, spanned
by k leading eigenvectors of A. In that case, the lemma only guarantees that the
distance between the iterates of gradient descent and this V,, does not increase.

2.3.1 Linear convergence rate under positive spectral gap

Lemma 2.9 features a contraction rate only for one step of the algorithm. In
order to get a global convergence rate, one needs to bound the quantity a(X})
from below and independently of ¢t. To that end, we need a stricter bound in
the distance of the initial guess to the optimum. Such a bound guarantees that
a(X;) remains always lower bounded by a positive number, or equivalently, that
the iterates of the algorithm never get too close to a non-optimal critical point.
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Theorem 2.10 If dist(Xy,V,) < 7/2 then the iterates X; of Riemannian
gradient descent (2.3.0.1) with step size ny such that

0<n<mn <cos(dist(Xy, V.))/L
satisfy
dist? (X, V) < (1 — 2¢q cos(dist(Xo, Va)) d1)" dist?(Xo, Va).

Proof We first claim that dist(X};,V,) < dist(Xy, V,) for all ¢ > 0. This would
then also imply that 0y (X:, V,) < 7/2 for all ¢ > 0 since

k
Ok(Xs, Va) < 4| D 0:(Xs, Va)? = dist (X, V).
=1

For t = 0, we have 0;(Xp, V) < 7/2 by hypothesis on & and thus

O (X0, Vo)
X)) =
)= 6. v2)
Since by construction 1y < cos(dist(Xp, Va))/L , this implies that 7y < a(Xy)/L
and Lemma 2.9 guarantees that dist(X;,V,) < dist(&Xp, V,). In particular, we
also have (X1, Va) < /2.
Next, assume that

> cos(0k(Xp, Vo)) > cos(dist(Xp, Va)).

dist (X, V) < dist(Xo, Va),

which implies (X, V,) < 7/2. Then by a similar argument like above, we
have

a(X;) > cos(dist(&Xy, Va)) > cos(dist(Xy, Va))- (2.3.1.1)
By hypothesis on 7, we observe
< cos(dist(Xp, Va)) < cos(dist(Xy, Va)) < a(/'\ft).
L L L
Applying Lemma 2.9 once again with the induction hypothesis proves the claim:

dist( X1 1, Vo) < dist(X;, V,) < dist(Ap, Va).

The main statement of the theorem now follows easily: Since n; < a(&})/L
and 0y (X:, V,) < 7/2 for all t > 0, Lemma 2.9 gives

dist?( Xy 1, Va) < (1 — 2c0a(X;)0n:) dist® (X, Va).
Combining with (2.3.1.1) and 7; > 7 shows the desired result by induction. ®

If the spectral gap 0 is strictly positive, then Theorem 2.10 gives an expo-
nential convergence rate towards the optimum V,. If 6 = 0, then Theorem
2.10 does not provide a convergence rate but rather implies that the intrinsic
distances of the iterates to the optimum do not increase.

From Theorem 2.10 we get immediately the following iteration complexity.
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Corollary 2.11 Let Riemannian gradient descent starting from a subspace X
that satisfies dist(Xo, Vo) < 7/2 and with step size n satisfying the condition of
Theorem 2.10. Then after at most

B log(e) — log(dist(Xp, Va))
~ “log(1 — 0.8 cos(dist(Xp, Va))dn)

11<0 (10g(dist(Xg, V.)) — log(5)>

cos(dist(Xp, Va))on

many iterations, Xr will satisfy dist(Xr, V,) < e. With the mazimal step size
allowed in Theorem 2.10, we get

)\1 — )\n 1 diSt(X(), Va)
< _ .
T=0 ( d  cos?(dist(Xo, Va)) Log ( € )>

Proof In order to guarantee dist(Xr,V,) < ¢, it suffices to have
(1 — 2¢q cos(dist(Xo, Vo)) 6 )" dist?(Xy, V,) < €.
Taking the logarithm of both sides, we get
T'log(1 — 2¢q cos(dist(Xp, Va))on) + 2log(dist(Xp, Va)) < 2log(e),

which gives

T 9 log(€) — log(dist(Xp, Va))
~ Tlog(1 — 2¢q cos(dist(Xy, Va))’
since log(1 — 2¢q cos(dist(Xy, V,)) is negative. By considering that cg > 0.8,
we get
log(e) — log(dist(Xy, V)
~ “log(1 — 0.8 cos(dist(Xy, Va))dn)’

and the smallest integer that satisfies this inequality is exactly

B log(e) — log(dist( Xy, Va))
~ Tlog(1 — 0.8 cos(dist(Xp, Va))on)

The inequality part of the result follows by considering that
log(1 — 0.8 cos(dist(Xpy, Vi, )on) > — cos(dist(Xp, Va))dn.

The final bound for T follows by a simple substitution of n = cos(dist(Xy, V,))/L.
|

As expected, T depends inversely proportional on the spectral gap d and
proportional to the spread of the eigenvalues. In addition, we also have an extra
term 1/ cos?(dist(Xy, V,)) that depends on the initial distance dist(Xp, V., ),
which is due to the weak-quasi convexity property of f. This is a conservative
overestimation, since this quantity improves as the iterates get closer to the
optimum.
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Remark 2.3 If 6 > 0, the exponential convergence rate is in terms of the
intrinsic distance on the Grassmann manifold, that is, the ly norm of the
principal angles. Standard convergence results for subspace iteration are stated
for the biggest principal angle, that is, the (s, norm. This is weaker than the
wntrinsic distance. For subspace iteration with projection, the convergence result
from [96, Thm. 5.2] shows that all principal angles 0; converge to zero and
eventually gives convergence of the €4 norm of the principal angles. This is also
weaker than the intrinsic distance.

2.3.2 Convergence of function values without a spectral gap assumption

When § = 0, Theorem 2.10 still holds, but does not provide a rate of convergence
as discussed above. Instead, we can prove the following result:

Theorem 2.12 If the distance dist(Xy, V,) of the initial subspace Xy to the
minimizer satisfies dist(Xy, V) < w/2 for a subspace V, that is spanned by
any k leading eigenvectors of A, then the iterates X; of Riemannian gradient
descent (2.3.0.1) with fized step size

n < cos(dist(Xp, Vy))/L
satisfy
2L+ ;
4(cos(dist(Xp, V)t + 1)

Proof Since we satisfy all the hypotheses of Theorem 2.10, we know that for
all t > 0 it holds dist(&:, V,) < dist(Xp, Vo) < m/2 and thus also that A; is in
the injectivity domain of Exp at V,. In addition, its proof states in (2.3.1.1)
that

f(&) =<

1
dist?(Xp, V) = O (2) .

a(X;) > Cp := cos(dist(Xp, Va)) > 0,

which implies that the function f is weakly-quasi-convex at every X; with
constant 2C. Hence

2C0A; < (grad f(&;), — Logy, (Va)), (2.3.2.1)

where we defined
A= () — f
Similar to the proof of Theorem 2.10, by the hypothesis on the step size 7,
Lemma 2.9 shows that &}, is in the injectivity domain of Exp at X;. Hence,
by the definition of Riemannian gradient descent, we have

Logy, (A1) = —ngrad f(&). (2.3.2.2)
In addition, the smoothness property (2.2.1.1) of f gives

L
At-i—l — At S (grad f(Xt)a LOgXt<Xt+1>> + 5 diSt2(Xt, Xt+1)-
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Substituting (2.3.2.2), we obtain

L
D= s (<n+ 5 lamd fP <0, (2323)

since n < Cy/L with 0 < Cy := cos(dist(Xy, V,)) < 1 and L > 0.
Since Gr(n, k) has nonnegative sectional curvature, Proposition 1.15 implies

dist* (X1, Va) < dist® (X, Xipr) + dist? (X, V) — 2(Logy, (Xit1), Loga, (Va))-
Substituting (2.3.2.2) into the above and rearranging terms gives

2n(grad f(X;), — Logy, (Va)) < dist®(X;, Vo) —dist?(Xii1, Va)+0° | grad f(X;)]]%.
Combining with (2.3.2.1), we get

Ay <

y Con(dist2(Xt, Vo) — dist?(Xr, Vo)) + 4%,0” grad f(X)|%. (2.3.2.4)

Now multiplying (2.3.2.3) by CLO and summing with (2.3.2.4) gives

1 1 . 9 . 92
J— — - — < —
CO At+1 <OO 1) At 40077 (dlSt (Xt, Va) dist (Xt+1, Va))

1 L
Co< gt )llgraclf@"@||2 (2.3.2.5)

By assumption n < Cy/L, where 0 < Cj := cos(dist(Xp, V,)) < 1 and L > 0.

n n 0 n

Inequality (2.3.2.5) can be snnphﬁed to

1 1 . .
EOAH_I — (50 — ].) At S 40077 (dlSt2(Xt, Va) — dlSt2(Xt+1, Va))

Summing from 0 to ¢t — 1 gives

1 L2 L2
At + ;A — (— — 1) Ay < o (dlst (Xb, V,) — dist (Xt,Va)) )
From the smoothness property (2.2.1.1) at the critical point V, of f, we get

L
Dy < dist?(Xp, V. ).
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Combining these two inequalities then leads to

1 = 1 1
—A A, < —A dist? (X, V,
Co t+; _CO 0+40077 1S ( (),V )

1 1
< — [ L+ =) dist} (X, V).
_200( +277) 1S ( 0,V>

Since (2.3.2.3) holds for all ¢ > 0, it also implies A; < A for all 1 < s < ¢.

Substituting
t—1
tA <) A,
s=0

into the inequality from above,

1 L+2i L+2i
A< — 2 Qist2 (X, V) = ———21 dist2(Xp, V),
we obtain the desired result. [ |

Remark 2.4 This type of result is standard for functions that are geodesically
convez (see, e.g. [118]). Our objective function does not satisfy this property,
but we can still have a similar upper bound on the iteration complexity for
convergence in function value. We note that this does not imply convergence
of the iterates to a specific k-dimensional subspace, but only convergence of a
subsequence of the sequence of the iterates.

2.3.3 Sufficiently small step sizes

The convergence results in Theorems 2.10 and 2.12 require that the initial
subspace Xy lies within a distance strictly less than /2 from a global minimizer
V,. While this condition is independent from the spectral gap (unlike results
that rely on standard convexity, see Section 2.5), it is also not fully satisfactory:
it is hard to verify in practice, and it is unnecessarily severe in numerical
experiments. In fact, this condition is only used to obtain a uniform lower
bound on the weak-quasi convexity constant a(X;) = H,Ef) / tan(@,&t)) with 9,(:) the
largest principal angle between X; and V,. Since the Riemannian distance is the
{5 norm of the principal angles, a contraction in this distance leads automatically
to (9,(5) < m/2if 0,&0) < m/2. If one could guarantee by some other reasoning that

(9,(:) does not increase after one step, the condition dist(Xy, V,) < 7/2 would
not be needed.
We now show that for sufficiently small step sizes 7,, the largest principal

angle 0,(:) between &; and V,, does indeed not increase after each iteration of
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Riemannian gradient descent regardless of the initial subspace A,. While it
does not explain what we observe in numerical experiments where large steps
can be taken, it is a first result in explaining why we can initialize the iteration
at a random initial subspace Xj.

Proposition 2.13 Riemannian gradient descent started from a subspace X,
returns a subspace X1 such that

0k<Xt+1a Va) < 0k<Xt7 Va)a
for all step sizes 0 < n <7 where n > 0 is sufficiently small.

For the proof of this proposition, we will need the derivatives of certain
singular values. While this is well known for isolated singular values, it is
possible to generalize to higher multiplicities as well by relaxing the ordering
and sign of singular values [27]. For a concrete formula, we use the following
result from Lemma A.5 in [72].

Lemma 2.14 Let 01 > --- > 0, be the singular values of S € R™"™ with
Ui, ..., U, and vy,...,v, the associated left and right orthonormal singular
vectors. Suppose that o; has multiplicity m, that is,

Tjo—1 > Tjo = =+ = 05 =+ = Ojotm—1 > Tjo+m-
Then, the jth singular value of S+ nT satisfies
0;(S+1T) = o5+ nAj—jr1 + O(n*), n— 0%,
where \; is the jth largest eigenvalue of (U BV + VT BTU) with
U=luj, - Upym-1] and V =[vj, - Vjorm-]-

Proof [Proof of Proposition 2.13]. For ease of notation, let X := X, and
X, := Xy41 such that X; = Span(X) and X, = Span(X ). By definition of
the exponential map on Grassmann, the next iterate of the Riemannian GD
iteration (2.3.0.1) with step 7 satisfies

X, = XVcos(nX)VT + Usin(nx)V7’
where
UXVT = —grad f(&,).
Since V' is orthogonal, we can write

Usin(S)VT = Us) VTV (Sm;_gz)> VT = —pgrad f(X,)V (Sin;gx)) vT
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where 1/% := ¥~ and % = 1. Taking Taylor expansions of sin and cos,

Veos(E)WVT =V (I —0m)) VT =T -0(P)

V—Sm;gz) VI =V (I -06) VT =1-0(),
we obtain
VIX, =VIXU - 00)+ V) (—ngrad f(X))(I — O(n*))
VT (X — ygrad f()(T - OGP)) (233.1)

since ||V, ]|z = [| X2 = 1.
Let now 6 be the vector of k principal angles between &; and V,. As
in (2.2.2.2) and (2.2.2.9), we therefore have the SVDs

VIX =Upcos0V{ and  V]X =UssindV{, (2.3.3.2)

where Uy, Vi € RF* and U, € R(k)*F have orthonormal columns. Next, we
write (2.3.3.1) in terms of

M :=sin? @ Ul AU, cos 6 — cos 0 sin UQTABUQ sin 6.
Since grad f(X;) = —2(I — XXT)AX, the identity (2.2.2.7) gives
VI(X —ngrad f(X)) = VI X + 2nAVIX — 2V T X XTAX.

After substituting (2.2.2.1) and (2.3.3.2), a short calculation using cos? =
I —sin? § and the orthogonality of U; and V; then shows

VI(X —ngrad f(X,)) = Ui(cos 6 + 2nM)V/E.
Relating back to (2.3.3.1), we thus obtain
Vi Xy = Ui(cos + 2nM )V (I — O(n?))
= Uy(cos 0 + 2nM)(I — Vi"O(n*) Vi)V
= Uy (cosf + 2nM — O(n*))V{.
The singular values of V' X, are therefore the same as the singular values of
the matrix cos 6 + 2nM + O(n?).

By Weyl’s inequality (see, e.g., [47, Cor. 7.3.5]), each singular value of
cos O + 2nM + O(n?) is O(n?) close to some singular value of cos@ + 2nM. Let
1 < j < k. Denote the jth singular value of cos + 2nM by o;(n) to which we
will apply Lemma 2.14. Let m be the multiplicity of 0,(0). Hence, there exists
Jo such that 0;,(0) =--- = 0;(0) = - -+ = 0jy+m—1(0). Since cosf is a diagonal

matrix with decreasing diagonal, its fth singular value equals cos 8, and its
associated left /right singular vector is the ¢th canonical vector e,. Denoting

E= [ejo ejo-l-m—l} )
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observe that cosf E = cos 6, E (here, cosf is a diagonal matrix and cos 6;, is
a scalar) and likewise for sinf E. We thus get

ETME = sin® 0, cos 0, (Ul AUy — U Agly).

In the proof of Proposition 2.6, we showed that the matrix in brackets above is
symmetric and positive semi-definite (see (2.2.2.10)). Since 0 < 6;, < /2, the
eigenvalues of ET M E are therefore all non-negative. Lemma 2.14 thus gives
that o;(n) > o; for sufficiently small and positive 7. Since the singular values
of VI X, are the cosines of the principal angles between V, and X;,; with step
size n > 0, we conclude that there exists 77 > 0 such that for all n € [0, 7] it
holds
0j( X1, Va) < 0;(X;, Va).

Since j was arbitrary, this finishes the proof. [ |

2.4 Convergence with step size 1/L

We now prove convergence of gradient descent with a more tractable choice
of step size compared to the one of Theorem 2.10. However, this requires a
slightly better initialization at most ﬁi away from the minimizer.

2.4.1 Maximum extent of the iterates

We first prove that gradient descent with step size at most % does not guarantee
contraction on distances from step to step, but it does guarantees that squares
distances at most double over the course of the algorithm:

Proposition 2.15 Consider gradient descent applied to f with step size n <
If the iterates X, satisfy 0r(Xy, Vo) < 7, then they also satisfy

dist*(X;, V,) < 2dist?( Xy, Va)-

1
7

Proof Consider the discrete Lyapunov function

£1) = (X)) + Jis(X, V).
Then
E(t4+1) = E(1) = 7 (F(Hin) — F(20) + G (dist?(Kopr, Vo) — list?(X, Vi),

By L-smoothness of f, we have
L .
f(Xg1) — f(A&) < (gradf(&}:), Loga, (Xig1)) + EdISt(Xu Xii1)®

_ (_n+ gnz) lgrad ()]
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We also know by Proposition 2.6 that

(gradf(X), — Logx(Va)) = 0,

for any X with 0 (X,V,) < 7/2.
By the fact that the sectional curvatures of the Grassmann manifold are
non-negative, we have

dist® (X1, Vo) < dist?(X;, Vo) + dist®(Xip1, &) — 2(Logy, (Xir1), Loga, (Va))
= dist®(&X;, Va) + 17 |lgrad f(X,)||* + 2n{grad f(X;), Log, (Va))
< dist®(X;, Vo) + 7?[lgrad f (&) ||

Thus
2
£+ 1) - 60 < (7 + 1) lerad I + L leraa (0]

) lgrad f ()2 < 0,

AN
/lx
S hld

because n

<
Since &(t) do

(D hlH

not increase, we have

TU) = )+ Sist? (X, V)

1 1
5ohst (Xo, Va) + §dist2(X0, V,) = dist*(Xp, V)

%dist2(Xt,V ) < E(t) < £(0) =

and the desired result follows. [ ]

2.4.2 Convergence under positive spectral gap

When 6 > 0, we can use gradient dominance to prove convergence of gradient
descent to the (unique) minimizer in terms of function values:

Proposition 2.16 gradient descent with step size n = 1/L initialized at X
such that

dist (X, V) < %

satisfies t
) - 1 < (1= 03207 ) (X - 1.

Proof By the previous result and an induction argument to guarantee that the
biggest angle between X; and V,, stays strictly less than 7/2, we can bound
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the quantities a(X;) uniformly from below:
Since dist(X;, V,) < v/2 - dist(&p, V) < %, we have

a(Xy) > cos(Ox(Xy, Va)) > cos(dist(X, V,)) > cos (@) > 0.4.

By L-smoothness of f, we have

F(Hon) — f() < — lerad /(X7

2L
and applying gradient dominance (Proposition 2.8), we get the bound
2coda? (X, .
F(Xi) — f(20) < - 200 iy g

thus
Ft)=1 < (1= 20000 T ) (FE)-1) < (1= 03207 ) (F(X)~11),

By induction the desired result follows. [ |
We now state the iteration complexity of the gradient descent algorithm with
step size %:

Theorem 2.17 Gradient descent with step size % starting from a subspace Xy
with distance at most 7 from V, computes an estimate X of V, such that
dist(X7, V,) < € in at most

1 L f(&)-f Lo f(X)—f"
= —Log——""—"——+1< —log ————— | .
032000 "8 " gser 1= O (Gl

Proof For dist(Xr,V,) < ¢, it suffices to have
f(Xr)—f < CQ€25
by quadratic growth of f in Proposition 2.4. Using (1 — ¢)T < Exp(—cT) for

all T'> 0 and 0 < ¢ < 1, the previous result gives that it suffices to choose T’
as the smallest integer such that

f(&Xr) — f* <Exp (—O.320Q%T) (f(X) — %) < coes.

Solving for T and substituting c¢g = 4/7%, we get the required statement. M
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2.4.3 Gap-less result

We also prove a convergence result for the function values when ¢ is assumed
to be 0:
1

Theorem 2.18 Gradient descent with step size n = 1 initialized at Xy such
that
diSt(XO, Va) S

NS

satisfies

« f(X()) — f* —+ Ldist2<X0, Va) . 1
fX) — f < s o<;).

Proof By Proposition 2.15, we have that dist(X;,V,) < % and f satisfies
the weak-quasi convexity inequality at any iterate X; of gradient descent with
constant Cy := 0.4.

Consider the discrete Lyapunov function

£() = LX) - ) + St (X, V),

We have that

t 1 t+1
Et+1)— &) _Cot+Cotl _ Gt

R N

1
+ 5(custQ()c,fH, V,) — dist?(X;, V,)).

(f(X) = %)

Now we have to estimate a bound for dist*(X; 1, V,) — dist*(&;, V,). By L-
smoothness of f and denoting A; = f(X;) — f* we have

_ llgradf ()|
2L

By Cy-weak-quasi-strong convexity of f and the fact that the Grassmann

manifold is of positive curvature, we have

L.
A1 — Ay < (gradf(&X;), Logy, (Xit1)) + §d15t2(Xt7 Xit1) =

lgrad f ()|

L
COAt S E(diStQ(Xt, Va) — diStQ(Xt-‘rl) VO&)) + 2L

Summing this to the previous inequality, we get
. . 2 .
dist®(Xip1, Va) —dist® (X, Va) < 7 (A=Co)(F(X) = f (A1) = Col f (A1) = 7).
Thus

Et+1)—=£&(t) < Cot;_ 1(f(Xt+1) — (&%) + %(f(Xt+l> — ")
il _Lco(f(xt) — f(Xe)) — %(f(XtH) =)
L (f(2y00) — F()) < 0
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Thus £(t) < £(0) and the result follows.

2.5 Geodesic convexity

In this section, we show that f is geodesically convex, but only locally around
V., with a radius that depends on the spectral gap d. Let 6 > 0 and thus )V,
is the unique minimizer of f. Define the following neighbourhood of V, in
Gr(n, k):

Ni(p) ={X € Gr(n,k): 0,(X,Vs) <}  with p € [0,7/4]. (2.5.0.1)

Here, 0,.(X,V,) denotes the largest principal angle between X and V,,. Since 6y
is a metric on Gr(n, k) (see [94]), any two subspaces X, ) € N, (¢) will satisfy
0(X,Y) < 7/2 by triangle inequality. They thus have a unique connecting
geodesic. It is shown in [5, Lemma 2] that for any fixed ¢ € [0,7/4] this
geodesic remains in N,(¢). Each set N,(¢) is thus an open totally geodesically
convex set as defined in, e.g., [21, Def. 11.16].

One of the main results in [5], namely Cor. 4, states that f is geodesically
convex on N,(m/4). This is unfortunately wrong and we present a small
counterexample.

Counterexample for Cor. 4 in [5]. Here we use the notation of [5]. The reader
is encouraged to take a look there for notational purposes.
Take ¢ := cos(m/4) = v/2/2 and 0 < ¢ < 1. Define the matrices

0
10
: M.—Up(o 6).

These matrices satisfy the conditions posed in [5]:

S0 OO0
o OO0

0 0

e Principal alignment: XpTUp = ((c) 2)

e Principal angles between X, and U, are in [0, 7/4].

o U="U,since @ = I.

Now consider the following tangent vector of unit Frobenius norm:

00
A:

o O O
O = O
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It is clearly a tangent vector of [X,] since X/ A = 0. The Hessian of fs. at
[X,] in the direction of A satisfies (see equation (4.2) in [5])

Hess fruu([X,])[A, A] = =2 Tr(MTAAT(I-X, X )M)+|(AX] +X,AT)M|[3.
Simple calculation shows that
Hess fruu([X,))[A, A] = —2¢% + (1 + £%)c?.

Hence for € < 1, we have Hessffu([X,])[A, A] < 0 and the ff,; is non-convex
which is in contrast with Corollary 4.

Instead, our Theorem 2.21 guarantees convexity when ¢ depends on the
spectral gap. Since f is smooth, the function is geodesically convex on N, (y) if
and only if its Riemannian Hessian is positive definite on N, (¢); see, e.g., [21,
Thm. 11.23]. We will therefore compute the eigenvalues of Hess f based on its
matrix representation. This requires us to first vectorize the tangent space.

From (1.3.1.3), a matrix G is a tangent vector if and only if GTX = 0.
Hence, taking X, € R™*(%) orthonormal such that X+ = Span(X ), we have
the equivalent definition

Tx Gr(n, k) = {X, M: M € Rm=kxky,

The matrix M above can be seen as the coordinates of G = X | M in the
basis X |. More specifically, by using the linear isomorphism vec: R™** — R
that stacks all columns of a matrix under each other, we can define the tangent
vectors of Gr(n, k) as standard (column) vectors in the following way:

vec(G) = vee(X M) = (I, ® X, ) vec(M).

Here, the Kronecker product ® appears due to [48, Lemma 4.3.1]. By well-
known properties of ® (see, e.g., [48, Chap. 4.2]), the matrix I; ® X has
orthonormal columns. We have thus obtained an orthonormal basis for the
(vectorized) tangent space. With this setup, we can now construct the Hessian.

Lemma 2.19 Let I, ® X | be the orthonormal basis for the vectorization of
Ty Gr(n, k). Then the Riemannian Hessian of f at X in that basis has the
symmetric matrix representation

Hy =2(XTAX®1I,  — [ ® XTAX)). (2.5.0.2)
Furthermore, with 1 <i <k and 1 < j <n—k its k(n — k) eigenvalues satisfy
Nij(Hx) =2(0(XTAX) — N (XTAX))).
Proof Since vec is a linear isomorphism, the symmetric matrix Hx satisfies

HeSSf<X)[XJ_M, XJ_M] = (VGC(M), Hy V€C<M)>’ VM € Rnx(n—k)’
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where (-, ) is the Euclidean inner product. Define m = vec(M). Plugging in
the formula (2.1.0.1) for Hess f, we calculate

Hess f(X)[ X, M, X, M] = 2(X, M, X, MXTAX — AX, M)
(I®X)m,(XTAX @ X )m — (I ® AX,)m)
m,( I @ X, )" XTAX ® X, —T® AX,)m)
m, (XTAX @1 —1® XTAX,)m)

2(
2(
2(

Here, we used typical calculus rules for the Kronecker product (see, e.g., [48,
Chap. 4.2]). We recognize the matrix Hyx directly.
The eigenvalues of (2.5.0.2) can be directly obtained using [48, Thm. 4.4.5]. &

Taking X =V, and X = Vj, Lemma 2.19 shows immediately that the
minimal eigenvalue of Hess f(V,) is equal to 20 = 2(Ap — Ag41). Since § >
0, Hess f will remain strictly positive definite in a neighbourhood of V, by
continuity. To quantify this neighbourhood, we will connect V,, to an arbitrary
X using a geodesic and see how this influences the bounds of Lemma 2.19.
This also requires connecting Vs to X+. The next lemma shows that both
geodesics are closely related. Recall that sin(t0) and cos(t6) denote diagonal
matrices of size k X k. For convenience, we will denote by O a zero matrix
whose dimensions are clear from the context and is not always square.

Lemma 2.20 Let X,Y € R™* be such that XTX =YTY = I}, with k < n/2.
Denote the principal angles between Span(X) and Span(Y) by 6; < --- < 0
and assume that 0, < 7/2. Choose X,,Y| € R™ (k) sych that XTX, =
YTV, = I, & and Span(X ) = Span(X)*, Span(Y,) = Span(Y)*. Define the
curves

nx @
v(t): [0,1] — R™F, t— XVicos(td) + X Vs {sin(t@)} :

nx(n— —[ .
v (t): [0,1] — Rx(n=k), t|—>X¢V2[ COS(t@):|_X‘/1 (O sin(t0)] ,

where the orthogonal matrices Vi, Vs are the same as in Lemma 2.5. Then
Span(y(t)) is the connecting geodesic on Gr(n, k) from Span(X) to Span(Y’).
Likewise, Span(vy, (t)) is a connecting geodesic on Gr(n,n — k) from Span(X )
to Span(Y, ). Furthermore, ~(t) and v, (t) are orthonormal matrices for all t.

Proof Assume 0y = --- =6, = 0, where » = 0 means that #; > 0. Like in the
proof of Prop. 2.6, the CS decomposition of X and Y from Lemma 2.5 can
be written in terms of their principal angles 6y, ..., 6. Since 0, < 7/2 and
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n < k/2, this gives after dividing certain block matrices the relations

YTX = U cos(9) VT, YTX | = Uy [Opxn-2y sin(0)] V5"
O —I,

Ty _ (n—2k)xk T T _ n—2k T

Y X =0 [ sin(6) } Vi, Y X1 =0 — cos(h) Vas

where Uy, V; and Us, V, are orthogonal matrices of size k x k and (n—k) x (n—k),
resp.

Denote & = Span(X) and ) = Span(Y'). By definition, the connecting
geodesic v(t) is determined by the tangent vector Log,()), which can be
computed from (1.3.1.6). To this end, we first need the compact SVD of M :=
X, XTY (XTY)~1. Substituting the results from above, we get (cfr. (2.2.2.5))

Ozt . Ozt
M:Xﬂfz[ ;mf’g) ’“] UL Uy (cos(0)) 1V1T=le2{ i ’f} tan(9) V"

Observe that this is a compact SVD. Applying (1.3.1.6), we therefore get

@)

G :=Logy(Y) =UxVT with U =XV, [[
k

] ,u=0,V=V
and from (1.3.1.4), the connecting geodesic satisfies
Expy(tG) = Span( X Vi cos(t0) + XV, LO/J sin(t0) ).

We have proven the stated formula for y(t). Verifying that (t)Ty(t) = I
follows from a simple calculation that uses cos?(tf) + sin®(t0) = I.

Denote X+ = Span(X ) and Y+ = Span(Y). To prove v, (t), we proceed
similarly by computing G+ := Logy. (Y1), which requires now the SVD
of M+ := XX7Y, (XTY,)™!. Again substituting the results from the CS
decomposition, we get

~1
. —1I,_
Mt =XV [ka(n,gk) sm(é’ﬂ UlU, [ 2k —cos(@)} Vi
= XVi [Ox(n-2ky —tan(0)] V5"

Since (1.3.1.6) requires a compact SVD with a square 3, we rewrite this as

M*=[X XV] {O(n%)x(n%) VT

= tan(@)}

where X contains n — 2k columns that are orthonormal to X (the final result
will not depend on X). Let 6 < --- < 6, denote the principal angles
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between X'+ and Y. Up to zero angles, they are the same as those between
X and Y. Since k < n/2, we thus have

ef_:”'zei_ka:O’ 67J7,_72k+1 :91’...,63{7]{::0]@.

Applying (1.3.1.6) with these principal angles, we obtain

Gt i=Logy. (V1) =USVT withU=—[X XV, S=0" V=1,
From (1.3.1.4), the corresponding geodesic satisfies

Exp . (tGF) = Span( X V; cos(t6+) — [)? XV;] sin(t0))

I, .
= Span( XJ_‘/Q |i 2k (te):| — [Onx(n—Qk) X‘/l Sln(te)} )

COS

Rewriting the block matrix, we have proven ~, (¢). Its orthonormality is again
a straightforward verification. [ |

With the previous lemma, we can now investigate the Riemannian Hessian
of f near V, when it is given in the matrix form Hyx of Lemma 2.19. Let
X = Span(X) € Gr(n,k) with orthonormal X. Its principal angles with
V, are ) < --- < 0, < w/2. Use the substitutions X +— V,,Y — X and
X, — V5, Y, — X, in Lemma 2.20 to define the geodesics v(t) and ~, (¢) that
connect V,, to X, and Vg to X+, resp. Denoting

C = cos(6), S :=sin(f), C := [I C], S = m

we get the following expressions for the geodesics:

Y(t) = VaViC + VsVaS,  ~i(t) = VsVal — V1157,
Recall that Hy is defined using X7AX and XTAX,. Since y(1) = XQ,

and v, (1) = X+Q, for some orthogonal matrices @1, Q2, we can write with
A=V AV + VAV, that
Qf XTAXQy = v(1)"Ay(1)
— C (VAL C + ST (VAL S
Q3 XTAX1Qy =y (1)T Ay, (1)
= C (V" AgV2) C + S (VA1) ST
Here we used simplifications like VBTAVQ = VﬂTVaAa =0.

A simple bounding of the eigenvalues of the difference of these matrices
results in the main result.

(2.5.0.3)
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Theorem 2.21 Let k < n/2. Define the neighbourhood

‘ )
B = { ¥ € Gt k)5 sn(Ou(X. V) < -}

then f 1s geodesically convex on B,.

Proof Our aim is to show that \; ;(Hx) remains positive given the bound on
0. From Lemma 2.19, we see that

Amin(Hx) >0 <= Auin(XTAX) > A ( XTAX)). (2.5.0.4)

Since ()1, Q)2 are orthogonal in (2.5.0.3), it suffices to find a lower and upper
bound of, resp.,

Aunin(XTAX) = Xin (C (VT AV) € + 5T (VA V2) 5)
Amax(XTAX 1) = Ao (C (VL AgVa) C + S (VEAL VL) ST).
Standard eigenvalue inequalities for symmetric matrices (see, e.g., [47, Cor. 4.3.15])
give
Amin(XTAX)
Amax(XTAX 1)

in(C <V1TAaV1) C)+ )‘min(gT (V2TABV2> ‘§>

>
< Amax (C (VA Va) C) + Amax (S (VP ALV ST).

Am
Am
Recall that Ay > --- > A, are the eigenvalues of A. Since S is a tall rectangular

matrix, we apply the generalized version of Ostrowski’s theorem from [46,
Thm. 3.2] to each term above’ and obtain

Amin(c (‘/iTAa‘/i) O) 2 )\min(CQ))\min(Aa) = Cosz(ek))\k
Amin (ST (VI ASVE) S) > Ain(S78) Ammin (Ag) = sin®(61) A,

since the matrices V;, V4 are orthogonal and ¢ < --- < 6, < 7/2. Adding this
gives the lower bound

Amin(XTAX) > cos®(0x) A\, + sin®(6;) N, > cos?(0r) A (2.5.0.5)
Likewise, using the block structure of S , we get
Amax(C (V' AgV3) €) < Anax(C) Amax (Ag) = cos”(61) A

AmaX(g (VlTAOcvl) §T) = AmaX(S (VlTAOch) S)
S Amax(SQ))\max(Aa) - SiHQ(Qk)Al

and thus
Amax(XfAXl) S COS2(61))\k+1 + Sin2(9k>/\1 S )‘k—i-l + sin2(9k)>\1. (2506)

7Observe that the cited theorem orders the eigenvalues inversely to the convention used in this paper.
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The condition (2.5.0.4) is thus satisfied when
COS2((9k))\k = )\k — sin2(0k))\k Z )\k+1 + sinz(ﬁk))\l,

which reduces to the bound on 6, in the statement of the theorem.
It remains to show that B, is an open totally geodesically convex set. Since
A1 > A 2 A1 2> 0, we get
Ak — Akg1 < A 1

MA+N 2\ 2
)

Hence, B, = N,(p) with ¢ < 7/4 since sin*(7/4) = 1/2. |

If K =1, the proof above can be simplified.

Corollary 2.22 Let k=1 and define the neighbourhood

. J
B, = {X € Gr(n,1): sin®(6,(X,V,)) < m}

Then f is geodesically convexr on B,.

Proof Since k& = 1, there is no need to simplify the bounds (2.5.0.5) and
(2.5.0.6) as was done above. This gives that f is convex as long as

0052(01)/\1 + Sin2(91))\n > 0082(01))\2 + sin2(91))\1.

Rewriting leads directly to the stated condition on sin®(6;). ]
Remark that optimizing f on Gr(n,1) is equivalent to
m]%n —2" Az st x| =1, (2.5.0.7)
zeR™

which is the minimization of the Rayleigh quotient problem on the unit sphere
Sl = {x e R": 272 = 1}. Cor. 2.22 can therefore also be phrased in terms
of a geodesically convex region for this problem. Denoting a unit norm top
eigenvector of A by v; and using that sin? #; = 1 — cos? #;, we get that (2.5.0.7)
is geodesically convex on
B, =<{zesm ! (zTv))? > I—L
. ' - d+M— )

This result can now be directly compared to [50, Lemma 7] where the corre-

sponding region is defined as (z7v;)* > 1 — ﬁ. This is a stricter condition
and our result is therefore a small improvement.
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Figure 2.1: gradient descent along geodesics for the block Rayleigh quotient of size k applied
to a discretized 3D Laplacian matrix. The full lines correspond to the experimental values
and the dashed lines to the theoretical upper bounds.

2.6 Numerical experiment

We report on a small numerical experiment to verify the convergence rates
proven above. The gradient descent iteration with fixed step size was imple-
mented in MATLAB using the geodesic formula (1.3.1.4).

As first test matrix, we took the standard 3D Laplacian on a unit cube,
discretized with finite differences and zero Dirichlet boundary conditions. The
size of the matrix A is n = 400. We tested a few values for the block size k.
They are depicted in the table below, together with other parameters that are
relevant for Theorem 2.10.

k 5 dist(Xp, Va)
1 0.0665... 0.113...
6 0.0665... 0.280...
10 0.0262... 0.350...

In Figure 2.1, the convergence of the Riemannian distance is visible in
addition to the theoretical convergence rate of Theorem 2.10. We see that in
all cases, these bounds on the convergence are valid (in particular, exponential)
although they are rather conservative.

For completeness, we implemented gradient descent starting from a subspace
Xy far away from the optimum. In that case, Theorem 2.10 does not apply since,
if dist(Xp, V) > 7, the step size n < cos(dist(AXy, V,))/L is or will become
eventually negative. However, a meaningful choice for 7 is given by Proposition
2.16 of Section 2.4, where we prove a local linear convergence rate for the
function values of the iterates for step size n = 1/L.

66



Distance of X; to V,

—
<
%)

104 . . . .
0 200 400 600 800 1000

Iteration ¢

Figure 2.2: Same matrix from Figure 2.1 but such that dist(Xp, V4) > 7/2 and with fixed
step size 1/L.

We see in Figure 2.2 that despite the seemingly bad initial guess, gradient
descent converges globally with a linear rate.

In the second test, we investigate the convergence when the spectral gap
§ is small or zero. In particular, we take A = VDV € R000x1000 with V g

random orthogonal matrix and D contains the eigenvalues
M=3 A=2 A=1+1024+10° N\ =14+107% Xy =Xs = 1.

The other eigenvalues are equidistantly distributed between 0.1 and 0.2. The
block size and other relevant parameters for the test are described below. Since
the convergence for small § slows down considerably after the first 5 iterations,
we apply the bounds of Theorem 2.12 at iteration ¢ = 6 (and treat this as the
start with ¢ = 0).

k ) dist(Xp, Va)  dist(Xs, Va)
2 0.99... 0.051... 0.001...
3 1072 0.055. .. 0.031...
4 1076 0.063. .. 0.045. ..
5 0 0.070. .. 0.054...

The convergence in function value is visible in Figure 2.3. Observe that we
have displayed a logarithmic scale for both axes whereas before the figure had
a logarithmic scale only for y-axis. Algebraic convergence like 1/t is therefore
visible as a straight line. We see in the figure that the convergence is not
easily described, and that there is no clear difference between zero or small
gap. However, the upper bounds of Theorem 2.12 are again valid. In addition,
when the gap is not small, the convergence is clearly faster.
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Figure 2.3: Gradient descent along geodesics for the block Rayleigh quotient of size k applied
to a random matrix with small spectral gaps. The full lines correspond to the experimental
values and the dashed lines to the theoretical upper bounds of Theorem 2.12. Each color
corresponds to a certain spectral gap 4.

As before, we test the behaviour of gradient descent starting from an initial
guess far away from the optimum. We use again step size 1/L; see Theorem
2.18. In Figure 2.4 we show the convergence of gradient descent for the problem
defined by matrix A with this step size.

10°

Q 10
=
|
=
— 10—1 (]S
—gap = 9.9¢ — 01
—gap = 1.0e — 02
gap = 1.0e — 06
15 —gap = 0.0e + 00|
10
10° 102 10* 10° 108

Iteration ¢

Figure 2.4: Same matrices with small spectral gap from Figure 2.3 but such that
dist(Xp, Vo) > 7/2 and with fixed step size 1/L.

We observe again that the local nature of our theoretical results is quite
pessimistic: the algorithm converges with an algebraic rate even with a bad
initial guess but it shows eventually linear convergence.
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3 Distributed principal component analysis with limited
communication

We now discuss the first application of the theory presented in Section 2. This
has to do with principal component analysis in a data-parallel regime, where the
different agents (each one of them holds some batch of the data) communicate
in a low bit precision. We follow the exposition of our work [8], which actually
came before our work [14] and gave motivation for the development of the
general theory presented in Section 2. In the context of this thesis however, we
believe it is better to present it as a consequence of this theory.

3.1 Introduction

Something important to notice is that [8] deals only with the computation of the
leading principal component, i.e. only the leading eigenvector of a covariance
matrix. A suitable space to formulate this problem as an optimization problem
is the sphere. Notice that the sphere is not the same with the manifold
Gr(n,1). Actually, Gr(n, 1) is a sphere but with the two hemishperes merged
and recording only the direction of some vector. This is still a manifold and is
called projective space. From a mathematical point of view though, working in
the sphere or in the projective space is essentially the same.

Using the theory of Section 2, we could comfortably extend the results of
[8] in the block case. However, we do not believe that this adds substantially
to the scientific value of the exposed ideas and we shall stick to the case k = 1.
For completeness, we will re-prove the convexity-like properties developed in
Section 2 for the k = 1 case in the sphere.

To the best of our knowledge, the work presented in this section is the
first one to focus on the bandwidth cost of distributed PCA, i.e. the number
of bits which need to be transmitted for achieving computation of the first
principal component up to some accuracy. This is a significant bottleneck
in distributed systems and many works have dealt with it for other classic
problems, e.g. [49, 52, 108]. On the other hand, many works have dealt with
the problem of distributed PCA focusing only on latency cost, i.e. the number
of required communication rounds.

Our main contribution is a new algorithm for distributed leading eigenvector
computation, which specifically minimizes the total number of bits sent and
received by the computing nodes. To that end, we use a standard quantization
scheme developed in [31]. The theoretical analysis is done using special cases
of properties developed in Section 2.
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3.2 Setting and Related Work

Setting. We assume to be given m total samples coming from some distribution
D, organized as a global m x n data matrix M, which is partitioned row-wise
among p processors, with node ¢ being assigned the matrix M;, consisted
by m; consecutive rows, such that >  m; = m. As is common, let A :=
MTM =3P | M{"M; be the global covariance matrix, and A; := M! M; the
local covariance matrix owned by the node i. We denote by Ay, Ag, ..., A, the
eigenvalues of A in descending order and by vy, vy, ..., v, the corresponding
eigenvectors. We can approximate the leading eigenvector by solving the
following empirical risk minimization problem up to accuracy &:

. _ ' Az . T
T* = argmingcgn (o} el = argmin, .1 (—2' Az), (3.2.0.1)

where S ! is the (n—1)-dimensional sphere. When the spectral gap § := A\; — Ay
is strictly positive, the optimum x* is unique up to a change of sign.

We define f : S*! — R, with f(z) = —2TAz and f; : S ! — R, with
fi(x) = —aT A;z. Since the inner product is bilinear, we can write the global
cost as the sum of the local costs:

f(x) = fi(x).

Related Work. Lately, there has been a significant amount of research on
efficient variants of PCA and related problems [19, 90, 99, 100, 117, 118]. In
order to keep this discussion as simple as possible, we focus on related work on
communication-efficient algorithms. In particular, we discuss the relationship
to previous round-efficient algorithms; to our knowledge, what presented in
this section is the first work to specifically focus on the bit complexity of this
problem in the setting where data is randomly partitioned. More precisely,
previous work on this variant implicitly assumes that algorithms are able to
transmit real numbers at unit cost.

The straightforward approach to solve the minimization problem (3.2.0.1)
in a distributed setting, where the data rows are partitioned, would be to
use a distributed version of the power method, Riemannian gradient descent
(RGD), or the Lanczos algorithm. In order to achieve an e-approximation of
the minimizer x*, the latter two algorithms require O (’\6—1 log(1 /5)) rounds,
where the O notation hides poly-logarithmic factors in n. Distributed Lanczos
and accelerated RGD would improve this by an O(y/A1/d) factor. However,
Garber et al. [38] point out that, when ¢ is small, e.g. § = ©(1/y/Kp), then
unfortunately the number of communication rounds would increase with the
sample size, which renders these algorithms non-scalable.
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Standard distributed convex approaches, e.g. [53, 101], do not directly extend
to our setting due to non-convexity and the unit-norm constraint. Garber et
al. [38] proposed a variant of the Power Method, called Distributed Shift-and-

Invert (DSI), which converges in roughly O ( #ﬁ Log?(1/¢) log(1/5)> rounds,

where b is a bound on the squared f>-norm of the data. Huang and Pan [50]
aimed to improve the dependency of the algorithm on e and §, and proposed an
algorithm called Communication-Efficient Distributed Riemannian Eigensolver

(CEDRE). This algorithm is shown to have round complexity O <$ﬁ log(1/ 5)) :

which does not scale with the sample size for 6 = Q(1/4/Kp), and has only
logarithmic dependency on the accuracy ¢.

Technical issues in [50]. Huang and Pan [50] proposed an interesting approach,
which could provide the most round-efficient distributed algorithm to date.
Despite the fact that we find the main idea of this paper very creative, we
have unfortunately identified a significant gap in their analysis, which we now
outline.

Specifically, one of their main results, Theorem 3, uses the local PL condition
shown in [117]; yet, the application of this result is invalid, as it is done without
knowing in advance that the iterates of the algorithms continue to remain in
the ball of initialization. This is compounded by another error on the constant
of the used PL condition (Lemma 2), which we believe is caused by a typo in
the last part of the proof of Theorem 4 in [117]. This typo is unfortunately
propagated into their proof. More precisely, the objective is indeed gradient
dominated, but with a constant which vanishes when we approach the equator,
in contrast with the 2/6 which is claimed globally (we reprove this result
independently in Proposition 2.8). Thus, starting from a point lying in some
ball of the minimizer can lead to a new point where the objective satisfies a
PL condition, but with a worse constant.

This is a non-trivial technical problem which, in the case of gradient descent,
can be addressed by a choice of the learning rate depending on the initialization.
Given these issues, we perform a new and formally-correct analysis for gradient
descent based on the convexity-like properties derived in Section 2, which
guarantee convergence directly in terms of the distance of iterates to the
optimum, and not just function values. We would like however to note that
our focus in this section is on bit and not round complexity.

3.3 Computing the Leading Eigenvector in One Node

Here, we essentially make a recap of the theory developed in Section 2 for
k = 1, using mostly the terminology of [8]. This has some value as now the
manifold of interest is the sphere. See also our introduction on the geometry of
the sphere in Section 1.3.1.1.
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3.3.1 Convexity-like Properties and Smoothness

Our problem reads as
min —z Az
zesn—1
where A = MTM is the global covariance matrix. If § = A\; — Ay > 0, this
problem has exactly two global minima: v; and —v;. Let x € S ! be an
arbitrary point. Then = can be written in the form z = """ | o,v;. Fixing the
minimizer v;, we have that a ball in S*~! around v; is of the form

B,={r eS| a;>a} ={r eS| (z,v) >a} (3.3.1.1)

for some a. Without loss of generality, we may assume a > 0 (otherwise,
consider the ball around —uv; to establish convergence to —uv;).

We investigate the convexity properties of the function —z? Az. In particular,
we prove that this function is weakly-quasi convex with constant 2a in the ball
B, (that is to say (2a,0) — WQSC, see Definition 1.22).

Proposition 3.1 The function f(z) = —a® Ax satisfies
2a(f(x) — f*) < (grad f(z), — Log,(z"))
for any v € B, with a > 0.

Proof For any = € B,, we can write

n d
T = Z ;v;, Ar = Z i Qi 0; (3.3.1.2)
i=1 i=1

for some scalars «;. Recall that oy > a > 0 by (3.3.1.1).
With the orthogonal projector P, = I — xz! onto the tangent space 1T,S™ 1,
we get that

(g (o), Lo, o)) = (P9 (o), o

_ dist(z, z%) o) 7
BZCErE IR

P.(x —z™))

because P? = P,. For the exact expressions for the gradient and the logarithm
recall Section 1.3.1.1.
Direct calculation now gives

(P,Vf(x),r —2*) = =227 Az + 2(Azx, 2*) — 2f (2)||z||* + 2f (2)(z, 2*)
=2f(x) +2 oy — 2f(x) + 2f(z)oy
= 200(f(2) + M) = 201 ((x) — ) > 0.
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It is easy to verify that dist(z,2*) > || P.(z — z*)||. We thus obtain

(gradf(z), — Log, (z*)) > 2a1(f(x) — f*),

which gives the desired result since oy > a. [ |

We continue by providing a quadratic growth condition for our cost function,
which can also be found in [116, Lemma 2] in a slightly different form. Here
dist is the intrinsic distance in the sphere, that we also define in Section 1.3.1.1.

Proposition 3.2 The function f(x) = —a® Ax satisfies

4]
fla) = f* > Sdist*(w,2%), =3,
for any x € B, with a > 0.

Proof The proof follows the one in [116, Lemma 2]. Using the expansions
in (3.3.1.2), we get

ol Ar = Z \ad = Aol + Z Nl < Maf + A1 —af)
i=1 1=2

since ||lz|*> =1= >, af. From (1.3.1.2), we have that oy = cos(dist(z, 2*))
and so
o' Az < A cos®(dist(z, 2%)) + Ay sin®(dist(z, z%)).

Direct calculation now shows

f(z) — f*= =2 Az 4+ A\ > A\| — A\ cos®(dist(z, 2*)) — Ao sin®(dist(x, %))
= Ay sin? dist(z, 2*)) — Ao sin®(dist(x, %)) = 6 sin®(dist(z, 2*)).

Since xr € B, with a > 0, we have that x and x* are in the same hemisphere
and thus d = dist(x,2*) < 7/2. The desired result follows using sin(¢) > ¢/2
for 0 < ¢ < 7/2. [ ]

Next, we prove that quadratic growth and weak-quasi convexity imply a
WQSC property, similarly with Section 2.

Proposition 3.3 f satisfies

f(e) = * < clgradf(a), ~ Log, (7)) — Bdist?(z,2°),

for any v € B,, with a > 0.
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Proof From quadratic growth and weak-quasi convexity, we have

Pt (r,0°) < f(a) — I < 5 (arad f(x), ~ Log, (x")).

Now, again by weak-quasi convexity

flx)—fr < Q—(gradf(x), — Log,(z%)) + gdistQ(x, x*) — gdistZ(x,:v*)
a
1
< ~(grad f(r), - Log,(a")) — S dist*(w,2")
a
by substituting the previous inequality. [ |

Interestingly, using Proposition 3.3, we can recover the PL property proved
in [117, Theorem 4].

Proposition 3.4 f satisfies

lgrad f(x)[|* > 0a®(f(z) — f7)
for any x € B, with a > 0.
Proof By Proposition 3.3, we have

F) = I <~ {arad (), ~ Log () — Jdist*(x, ")

since, in our case, n = 6/2. Using (z,y) < 5(||z||? + ||y[|?) for all z,y € R?, we
can write for any positive p that

iy < P 1 "
(grad f(x), - Log,(z")) < Tlgradf (z)|* + 2—p|| Log, («")|]*.
Combining with p = 2 and using (1.3.1.2), we get

11 Lad d 1
< I 2~ i 42 ¥\ 7 io42 * 2.
F@) =1 < ~—ljgrad f(@)][*+- st (@, 2°)— Sdist* (2, 2°) = —jgrad [ (2)]

Proposition 3.5 The function f(x) = —xTAx is geodesically 2(A\; — \,)-
smooth in the sphere.

Proof The proof can be found also in [50, Lemma 1]. For x € S"! and
v € T,S" ! with |jv|| = 1, we have that the Riemannian Hessian of f satisfies

(v, V2f(z)v) = (v, —(I — z2")24v + 27 2A2v)
= 20T Av 4+ 22T Az < 2(\ — \)
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because v Av > )\, and 27 Az < )\, by the definition of eigenvalues and
|||, |v|| = 1. Similarly

—(v, V2 f(z)v) = 20T Av — 227 Az < 2(\,, — \y).

This finishes the proof, as the eigenvalues of V2f(x) are upper bounded by
2(A1 — A,) in absolute value. |

Thus, the smoothness constant of f, as defined in Definition 1.19, equals
L =2(\; — \y). Similarly, let L; denote the smoothness constant of f;, which
equals twice the difference of the largest eigenvalue to the smallest eigenvalue
of A;. In order to estimate L in a distributed fashion using only the local data
matrices A;, we shall use the over-approximation L < 2pmax;—1 ., Amax(4;)-

3.3.2 Convergence

We now consider Riemannian gradient descent with learning rate n > 0 starting
from a point zg € By:

Ty = Exp,, (—ngradf(x,)),

where Exp is the exponential map of the sphere, defined in Section 1.3.1.1.
Using Proposition 3.3 and a proper choice of 1, we can establish a convergence
rate for the instrinsic distance of the iterates to the minimizer.

Proposition 3.6 An iterate of Riemannian gradient descent applied to f(x) =
—aT Ax starting from a point x; € B, and with step size n < a/L where
L >2(\1 — \y), produces a point x,.1 that satisfies

dist® (2441, 2%) < (1 — apn) dist®(z,, %) for p=10/2.

Note that this result implies directly that if our initialization zq lies in the
ball B,, the distance of x; to the center x* decreases and thus all subsequent
iterates continue being in the initialization ball. This is essential since it
guarantees that the convexity-like properties for f continue to hold during the
whole optimization process.

Proof By definition of z4,, we have Log,, (v44+1) = —ngradf(z:). Applying
Proposition 1.15, we can thus write

| 2

dist*(¢41,27) < || = neradf(a) — Log,, (z7)]
I* + 2n(grad f(z:), Log,, (z7)).

= n’|lgrad f(z)||* + ||Log,, (x
By Propositions 3.3 and 1.21, we have

~(grad (). Log,, (#°)) < f* = f(w) = Selise?(, 2

1
< —5llgrad f ) |? = Gdist* (i, 2°).

(0]



Multiplying with 2na and using n < a/~, we get

a _ .
2n(grad f(z;), Log,, (%)) < —777||52;radf(av,g)||2 — pna dist?(z, 2*)
< —n?|lgradf(z,)||* — pna dist®(z, 2*).

Substituting to the first inequality, we get the desired result. [ |

3.4 Distributed gradient descent with limited communication

We now present our version of distributed gradient descent for leading eigen-
vector computation and measure its bit complexity until reaching accuracy € in
terms of the intrinsic distance of an iterate z7 from the minimizer z* (z* is the
leading eigenvector closest to the initialization point).

Lattice quantization. For estimating the Riemannian gradient in a distributed
manner with limited communication, we use a quantization procedure developed
in [31]. The original quantization scheme involves randomness, but we use a
deterministic version of it, by picking up the closest point to the vector that
we want to encode. This is similar to the quantization scheme used by [63] and
has the following properties.

Proposition 3.7 [63, 31] Denoting by b the number of bits that each machine
uses to communicate, there exists a quantization function

Q:RNXRRXR+XR+—>RN,

which, for each w,y > 0, consists of an encoding function enc,,, : R" — {0,1}"
and a decoding one dec,,, : {0,1}° x R™ — R, such that, for all z,2’ € R™,

4 decw,y<eHCw7y($),l‘/) = Q(:p,x’,y,w), Zf ||ZL‘ - QTIH < Y.
* HQ(.%,Z’/,y,U)) - ‘TH < w, Zf HfE - ZJH < Y.

e Ify/w > 1, the cost of the quantization procedure in number of bits satisfies

b= 0O (nlog(¥)).

In the following, the quantization takes place in the tangent space of each
iterate T,,S"!, which is linearly isomorphic to R*~*. We denote by Q, the
specification of the function @) at T,S"~!. The vector inputs of the function Q,
are represented in the local coordinate system of the tangent space that the
quantization takes place at each step. For decoding at ¢ > 0, we use information
obtained in the previous step, that we need to translate to the same tangent
space. We do that using parallel transport (see Section 1.3.1.1 for the formula).

76



Algorithm  We present now our main algorithm, which is inspired by quantized
gradient descent firstly designed by [74], and its similar version in [63]. The
communication model is centralized in the sense that all nodes communicate
their messages to a master node. The master node merges all the information,
updates its eigenvector approximation and then sends it back to the rest of the
nodes. For the rest, we use

L :=2p max Apax(A;).

i=1,...,p

1. Choose an arbitrary machine to be the master node, let it be ig.
2. Choose zy € S"1 (we analyze later specific ways to do that).

3. Consider the following parameters

i1 cos( Dy, K = -, 0= YTL=VE)

o 4
VE = 0K + /o, Rt:LK(\/g>tD

where D is an over-approximation for dist(zq,z*).
1

Assume that cos(D)un < %, otherwise run the algorithm with o = 3.
In T, S" %
4. Compute the local Riemannian gradient gradf;(xo) at xy in each node.

5. Encode gradf;(zo) in each node and decode in the master node using its
local information:

OR
ino = on (gradf’i<x0)7 gradfio (l'[)), 4)\1, 2—];)) .

6. Sum the decoded vectors in the master node:
p
Ry = Z qi,0-
i=1

7. Encode the sum in the master and decode in each machine ¢ using its local
information:

OR, HRO)

do = Qqp (Rﬂagradfi(xO)a N + 4\, DN

For ¢t > 0O:
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8. Take a gradient step using the exponential map:

Ti41 = EXpm (_77%)

with step size n (the choice of step size is discussed later).
InT,,,, S"
9. Compute the local Riemannian gradient grad f;(z;11) at x;41 in each node.

10. Encode grad f;(z:4+1) in each node and decode in the master node using
its (parallelly transported) local information from the previous step:

R OR
Qi1 = Qupy (gradfi(mt+1)7 Fi:“%‘,m ;—H 7 2;—1) ‘

11. Sum the decoded vectors in the master node:
p

Ry = Z%’,H—l-
i=1

12. Encode the sum in the master and decode in each machine using its local
information in the previous step after parallel transport:

0 OR
Q1 = Qupyy (Rt+1> e ae, (1 + 5) Ry, Ttﬂ> :

Convergence We first control the convergence of iterates simultaneously with
the convergence of quantized gradients.
Note that

\/—:1—2\/E+\/E:1+2\/ES \/5\/21+a: 1;0'

Lemma 3.8 If n < cos(D)/L, the previous quantized gradient descent algo-
rithm produces iterates x; and quantized gradients q; that satisfy

N s . . OR; ...
(i)dist?(zy, 2*) < €'D?, (i4)| gy — gradf;(z)| < 2—pt, (i11)||q — grad f(zy)|| < OR;.
The proof is a Riemannian adaptation of the similar one in [74] and [63].
We recall that since the sphere is positively curved, it provides a landscape

easier for optimization. It is quite direct to derive a general Riemannian
method for manifolds of bounded curvature using more advanced geometric
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bounds, however this exceeds the scope of this section, which focuses on leading
eigenvector computation.
Proof We do the proof by induction. We start from the case that ¢ = 0. (i) is
direct by the definition of D.

For (ii), we have

lgrad fi(zo) — grad fiq (zo) || < [lgradfi(zo)|l + llgradfi, (zo)[| < 4As.

This is because ||gradf;(zo)| = [|2PAizol < 2[][Aixo|| < 2 max(4i) < 2y,
since A = >P A, and all A;’s are positive semi-definite. Similarly for
lgrad fi, (zo)]|-
By the definition of quantization (step 5), we get
OR
lgradfi(zo) = aioll < =5

Similarly for (iii), we have

9R0

p
lgrad f (o) = Roll < > llgradfilwo) — aioll < =

Then,
0R,
| Ro—grad fi(zo)|| < [|Ro—gradf(zo)||+|lgradf(zo) —grad fi(zo)|| < 7+4>\1~

By the definition of the quantization (step 7), we have

OR
g0 — Rol| < 20
Thus,
OR OR
llgo — gradf(zo)|| < ||gradf(zo) — Ro| + [|qo — Rol| < 70 + 70 = 0Ry.

We assume now that the inequalities hold for ¢ and we wish to prove that
they continue to hold for ¢ + 1.

We start with (i) and denote by #;,; the iteration of exact gradient descent
starting from z;. Since dist(x;, 2*) < D, we have that x; € B, with a = cos(D).

We have

dist(xp1, %) < dist(zpp1, Tpp1) + dist(Zpq, 27)
< |Ingrad f(z:) — ng:|| + Vodist(z,, z*).

We have the last inequality, because
dist(Z441, %) < Vodist(zy, %)
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by Proposition 3.6 and

dist (241, Ze41) < || Log,, (2141) — Log,, (Te41)|| = [|ngrad f(2:) — ng||

by Proposition 1.15.
Thus

dit(nn, ) < 200+ v (VE) D <0 (VE) D+ v (VE)
< (0K + /o) (\/E)tD < (\/g>t“ D

which concludes the induction for the first inequality.
For (ii), we have

lgrad fi(zi1) — Tg il < llgrad fi(ze) — Tgy grad fi(z) |
+[ITZ grad fi(we) — I gl
< Lidist(zy41, 2¢) + ||grad fi(ze) — gidl|

L t R,
<9 -t
<2 <\/§> D+0-
L t t
=2 (\/E) D+0LK (ﬁ) D/p
t
= /K +0)KL(VE) D/p

t
< (Vo +9K)KL (VE) D/p
_ B
p
and by the definition of the quantization scheme (step 10), we have
OR 1

df; — q; < .
|grad fi(z:11) Q,t+1|| =9

S

For (iii), we have

OR 1
2

[ Rey1 — grad f(ze)]] < Z Gie+1 — gradfi(ze)|| <

—1
and
|Rivr = Titqe]] < || Rir — grad f (i) || + [lgrad f (@) — Tt grad f (2, |
+ ||Toigrad f (o) — T3 g

OR
S TtH + LdiSt(ZL’H_l, il?t) + eRt

OR 41

0
< + Ry = (1 + 5) Ry
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by using again the argument for deriving the second inequality. The last
inequality implies that
OR: 1

2
by the definition of quantization (step 12). We can now write

g1 — grad f (X)) || < ll@1 — Rea || + [|[Rer — grad f(Xepq)||

OR OR
< 2t+1 + 2t+1 = OR¢11.

This completes the induction. [ |

||Rt+1 - C]t+1|| <

We now move to our main complexity result.

Theorem 3.9 Let n < cos(D)/L. Then, the previous quantized gradient de-
scent algorithm needs at most

b=0 (pnm log (m) log <§)) =0 (%)

bits in total to estimate the leading eigenvector with an accuracy € measured in
intrinsic distance.

The proof is based on the previous Lemma 3.8 in order to count the number
of steps that the algorithm needs to estimate the minimizer with accuracy e
and Proposition 3.7 to count the quantization cost in each round.

Proof For computing the cost of quantization at each step, we use Proposition
3.7.
The communication cost of encoding each gradf; at t =0

4\ SpA 2p
@ (nlogﬁ) =0 <nlog QLKID) <O (nlog@> :

2p

This is because 2)\; < L.
Now we use that o > % and have

1 4 12 12

6 Vol—va) “T1-0  cos(D)m’

Thus, the previous cost becomes

4)\1 . P
@) (nlog E) =0 (nlog DCOS(D);M]) .

2p
As D is only an over-approximation for the initial distance, we can write
this cost as

p
© (n o COS(D)W?) '
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The communication cost of decoding each ¢; o in the master node is

4h + U 4\ 1
Log———2 | < log 57 | < log ———1.
(’)(n og % > _(’)(n og% _(’)(n Ogcos(D),un)

Thus, the total communication cost at ¢ = 0 is

p
© (pn o8 COS(D)/m> '

For t > 0, the cost of encoding gradf;’s is

Ry /p . 2 . 1
@) (pn log QRt+1/2p) =0 (pn Log 9) =0 (pn log cos(D);m) .

as before.
The cost of decoding in the master node is

(14+60/2)Ri1 1 1
log———— ) < Log - | = log ——— | .
(@) (pn og Ry /2 < O | pnLlog 7 O ( pnlog cos(D)jin

Thus, the cost in each round of communication is in general bounded by

p
© (4% catn)

Our algorithm reaches accuracy € in function values if
dist(xy, %) < e.
We can now write
dist?(z,, z*) < €'D? < e~ 179t D2,

Thus, we need to run our algorithm for

1 D 1 D
log= | <O ——rlog =
o (gve?) <0 (amm <)

many iterates to reach accuracy e.
The total communication cost for doing that is

0 (s () rooe () -
© (pnCOS(ll?)un o8 (COS(%)MU) o (§)>
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Substituting

N S

by Proposition 3.2, we get

© (p”(;osé)(sn o (cos<%>5n) o (2»

many bits in total. [ |

3.5 Dependence on initialization
3.5.1 Uniformly random initialization

The cheapest choice to initialize quantized gradient descent is a point in the
sphere chosen uniformly at random. According to Theorem 4 in [117], such
a random point xy will lie, with probability at least 1 — pr, in a ball B,
(see (3.3.1.1)) where

a> L — dist(xg, z*) < arccos (ci) . (3.5.1.1)

v NS
Here, ¢ is a universal constant. We estimated numerically that c is around 1.25
(see Figure 3.1), thus we can use ¢ = 1 for simplicity.

Let x¢ be chosen from a uniform distribution in the sphere S*~!. We are
interested in oy = vz for some fixed v; € S""1. By spherical symmetry, a; is
distributed in the same way as the first component of xy. Let A, (h) be the
surface of the hyperspherical cap of S*~! with height h € [0,1]. Then it is
obvious that

P(laa| > a) = Ay(1 = a)/An(1) = Li_a2 ("5, 3),

where we used the well-known formula for A, (h) in terms of the regularized
incomplete Beta function I,(a,b); see, e.g., [70]. Solving the above expression®
for a when it equals a given probability 1 — pr, we can calculate the interval
[—1, —a] U [a, 1] in which «; will lie for a random z up to probability 1 — pr.

In the figure below, we have plotted these values of a divided by pr/y/n for
pr =107%,1072,1073,10~*. Numerically, there is strong evidence that a > ez
with ¢ ~ 1.25.

8This can be conveniently done using https://docs.scipy.org/doc/scipy/reference/generated/scipy!
special.betaincinv.html
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Figure 3.1: Numerical estimation of the constant c.

By choosing the step-size 7 as

c-pr

and the parameter D as

D = arccos (c%) ,

we are guaranteed that n = %(m, and dist(xg, z*) < D with probability at
least 1 — pr. Our analysis above therefore applies (up to probability 1 — pr)
and the general communication complexity result becomes

pn D D pn P D
1 log— ) = 1 log —
© (COS(D)577 ©8 cos(D)dn & ) © (nL(Sn ©8 nLdn %6 )

D
—(9< 2L510g 2L510g )

Substituting n? = & LCQ , the number of bits satisfies (up to probability 1 — pr)
the upper bound

n? L pnL D ~ n? L
= ——log——=1log— | = —— .
’ O(Pr2(50gpr5 oge) O(Pr25)
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3.5.2 Warm start

A reasonable strategy to get a more accurate initialization is to perform an
eigenvalue decomposition to one of the local covariance matrices, for instance
A;, (in the master node iy), and compute its leading eigenvector, let it be v;,.
For simplicity we will assume here that each machine hosts the same number
of data points m; = % (assuming of course that p divides m exactly). Then,
we communicate v;, to all machines in order to use the normalized quantized

approximation zq as initialization. We define:

: (v 7"
To =@ (Uio,vi, [vig — will, m

[ Zo|
where @ is the lattice quantization scheme in R" (i.e. we quantize the leading
eigenvector of the master node as a vector in R” and then project back to the
sphere). The input and output variance in this quantization can be bounded
by constants that we can practically estimate.

Zo

Proposition 3.10 Assume that our data are i.i.d. and sampled from a distri-
bution D bounded in f5 norm by a constant h. Given that the spectral gap 6,
the number of machines p and the total number of data points m satisfy

§>0Q (ﬁ\/p log %) , (3.5.2.1)

we have that the previous quantization costs O(pn) many bits and {xg,x*) is
lower bounded by some constant with probability at least 1 — pr.

Proof By Lemma 3 in [50] we have that

3210g (pﬂ) K2

m;,

<

which implies that

mAZ»O - i Az
1=1

with probability at least 1 — pr. Of course > 7| A; = A.
From this bound we can derive a bound for the distance between the
eigenvectors of the two matrices. Indeed, using Lemmas 5 and 8 in [50], we

can derive
\/128mp log <&)h

J

2

2
<32 m log (ﬁ) h* = 32mplog (ﬁ) h?
pr

mi, pr

1 — (v, 2%) <
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and

\/128mplog <ﬁ)h
d
with probability at least 1 — pr (note that the leading eigenvector of A;, is
equal to the leading eigenvector mA; ). This is because (v;,,z*) < 1, which
implies that (v;,,z*)? < (v;,, z*).
We notice that the squared distance of v;, and z* is

(Ui, ") > 1 —

\/128mp log <£> h
)

which is upper bounded by a constant by Assumption (3.5.2.1). The same
holds for ||v; — z*||, thus, by the triangle inequality, we have an upper bound
on ||v;, — v;|| to be at most double of the upper bound for |v;, — z*||, thus
it is still upper bounded by a constant. Since (v;,, z*) is lower bounded by a
constant, again by Assumption (3.5.2.1), we have that the ratio of the input to
the output variance in the quantization of v;, is upper bounded by a constant.
Thus, the total communication cost of this quantization is O(pn).
By the definition of the quantization scheme, we get

lvig =™ I* = [lvio |*+ [l " = 2(vs,, ) = 2(1— (vig, ")) < 2

<vi07 CL’*>

HjO_UZOH < (\/—+2)

For the projected vector xy, we have
[0 — i | < [1Zo — vio |l + [[Zo — 0| < 2[|To — vio || < 27

because xy is the closest point to zy belonging to the sphere and v;, belongs
also to the sphere.
By the triangle inequality, we have

lzo — 2" < Jlvig — 27 + [0 — wio |
which is equivalent to

V2(1 = (20, 2%)) < V/2(1 — (vy,, %)) + 27.

Thus
(20, 2*) > (v, %) — /2(1 — (vio, 2*))T — 272 > (v;,, ) — V21 — 27

= {(v; 7 = (v (Vig, T*) _ (vig, %)
_< igs L > (\/__'_2) < igs L > <\/_+2) (\/§_|_2) 2

with probability at least 1 — pr.
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Since (v;,, 2*) is lower bounded by a constant, (xg,x*) is also lower bounded
by a constant and we get the desired result.
|

Thus, if bound (3.5.2.1) is satisfied, then the communication complexity

becomes
L nlL 1 ~ L
b:O( 6log 5 log — > (9(an>

many bits in total with probability at least 1 — pr (notice that this can be
further simplified using bound (3.5.2.1)). This is because D in Theorem 3.9 is
upper bounded by a constant and the communication cost of quantizing v;,
does not affect the total communication cost. If we can estimate the specific
relation in bound (3.5.2.1) (the constant hidden inside 2), then we can compute
estimations of the quantization parameters in the definition of xg.

Condition (3.5.2.1) is quite typical in this literature; see [50] and references
therein (beginning of page 2), as we also briefly discussed in the introduction.
Notice that /m appears in the numerator and not the denominator, only
because we deal with the sum of local covariance matrices and not the average,
thus our spectral gap is m times larger than the spectral gap of the normalized
covariance matrix. Denoting by ¢’ the spectral gap of the normalized covariance
matrix, bound (3.5.2.1) can be written equivalently as

5/>Q<\/\/; logp) Q(\/Tln_o)

where my, is the number of data points owned by the master node (and any
other machine) and §2 hides logarithmic factors from the lower bound.

3.6 Numerical experiments

We evaluate our approach experimentally, comparing the proposed method of
Riemannian gradient quantization against three other benchmark methods:

e Full-precision Riemannian gradient descent: Riemannian gradient descent,
as described in Section 3.3.2, is performed with the vectors communicated
at full (64-bit) precision.

e Euclidean gradient difference quantization: the “naive” approach to quan-
tizing Riemannian gradient descent. Fuclidean gradients are quantized
and averaged before being projected to Riemannian gradients and used to
take a step. To improve performance, rather than quantizing Fuclidean
gradients directly, we quantize the difference between the current local
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gradient and the previous local gradient, at each node. Since these differ-

ences are generally smaller than the gradients themselves, we expect this
quantization to introduce lower error.

e Quantized power iteration: we also use as a benchmark a quantized version
of power iteration, a common method for leading-eigenvector computation
given by the update rule x;,1 < TAzd] A ” Az, can be computed in distributed

fashion by communicating and summing the vectors A;xy, 1 < n. It is
these vectors that we quantize.

All three of the quantized methods use the same vector quantization routine,
for fair comparison.

Comparison of izati for dient descent (o] of izati for Ri ian gradient descent in Mice
Human Activity. Parameters: m=24075, n-GO eta=1e-09, workers=>5, bits=4 Protein Expression. Parameters: m =1080,n =77, eta-59-05 workers=5 bits=4
[}
— Full precision Riemannian GD Full precision Riemannian GO
e ———— Euclidean gradient difference quantization -10 Euclidean gradient difference quantization
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Figure 3.2: Convergence results on real datasets

We show convergence results (Figure 3.2) for the methods on four real
datasets: Human Activity from the MATLAB Statistics and Machine Learning
Toolbox, and Mice Protein Expression, Spambase, and Libras Movement from
the UCI Machine Learning Repository [34]. All results are averages over 10 runs
of the cost function —z? Az (for each method, the iterates x are normalized to
lie in the 1-ball, so a lower value of —z¥ Az corresponds to being closer to the
principal eigenvector).

All four datasets display similar behavior: our approach of Riemannian
gradient quantization outperforms naive Euclidean gradient quantization, and
essentially matches the performance of the full-precision method while commu-
nicating only 4 bits per coordinate, for a 16x compression. Power iteration
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converges slightly faster (as would be expected from the theoretical convergence
guarantees), but is much more adversely affected by quantization, and reaches
a significantly suboptimal result. Our code is publicly available °.

9https://github.com/IST-DASLab/QRGD
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4 Preconditioned inverse eigenvalue solvers

This section is concerned with novel results in the theory of preconditioned
eigenvalue solvers. It follows the exposition of our work [9].

4.1 Introduction

We start by giving a general overview of preconditioned eigenvalue solvers.
Given a large-scale, symmetric positive definite (SPD) matrix A € R™"
with eigenvalues 0 < A; < Ay < --- < )\, this section considers the task of
approximating the smallest eigenvalue A\; and an associated eigenvector u*.
Notice the difference in notations here: we target the smallest eigenvalue, which
we denote A\; and use the symbol u* (and not z*) for its associated eigenvector
(z* is reserved for the optimum of our future objective optimization problem).
Targeting the smallest or the largest eigenvalue is mathematically the same.
Inverse iteration [39, Sec. 8.2.2] addresses this task by applying the power
method to the inverse: u;1; = A~ 'u,;, combined with some normalization to
avoid numerical issues. This iteration inherits the excellent global convergence
guarantee of the power method [39, Thm. 8.2.1]: For almost every choice of
starting vector ug, the angle between u* and u; converges linearly to zero with
rate A\;/Ay2. Moreover, the Rayleigh quotient A(u;) := u] Auy/uf u; converges
linearly to A\; with rate A?/A\2. A discussion about the convergence of power
method can be found also in Section 1.2. Notice here again a difference in
notation compared to Section 3: the Rayleigh quotient in the Euclidean space
is denoted by A(u), while the name f is reserved for our future objective cost
function.

A major limitation of the inverse iteration is that it requires to solve a linear
system with A in every iteration. Using, for example, a sparse Cholesky factor-
ization of A for this purpose may become expensive unless A has a favorable
sparsity pattern. In many situations, it is much cheaper to apply B! instead
of A=! for a preconditioner B constructed, for example, from multigrid meth-
ods [24], domain decomposition [109] or spectral sparsification [66]. In principle,
the availability of a preconditioner allows for the use of an iterative solver,
such as the preconditioned conjugate gradient method [39, Sec. 11.5.2], for
solving the linear systems with A within inverse iteration. However, combining
iterative methods in such an inner-outer iteration typically incurs redundancies.
Instead, it is preferable to incorporate the preconditioner more directly, in a
preconditioned eigenvalue solver.

The fruitfly of preconditioned eigenvalue solvers is the Preconditioned IN-
Verse ITeration (PINVIT)

Upp1 = Up — B7'r, with 7, = Ay, — A )uy. (4.1.0.1)

While PINVIT can be viewed as a preconditioned gradient descent method
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for minimizing the Rayleigh quotient, Neymeyr’s seminal (non-asymptotic)
convergence analysis [82, 83] is based on interpreting (4.1.0.1) as a perturbed
inverse iteration. Assuming that A(u;) € [A1, A2), a convergence result by
Knyazev and Neymeyr [61, Thm. 1] states that

)\(ut+1) — )\1 2)\(’&,5) — )\1

<« , 4.1.0.2
Ao — )\(Ut+1) N Ao — )\(Ut) ( )

with the convergence rate determined by a =1 — (1 — ag)(1 — A\;/A2), where

ap 18 such that
|l — B A|s <ap < 1. (4.1.0.3)

Here and in the following, || - ||¢ denotes the vector and operator norms induced
by an SPD matrix C. If ag < 1, this result shows that PINVIT nearly attains
the convergence rate of inverse iteration. In principle, the condition (4.1.0.3) can
always be satisfied for any SPD matrix B by suitably rescaling B to B/n, which
is equivalent to adding a step size n > 0 to PINVIT: w1 = v, — nB~'r,. With
PINVIT being one of the simplest preconditioned eigenvalue solvers, its analysis
also provides important insights into the performance of more advanced methods
like LOBPCG [59] and PRIMME [107]. Recently, provable accelerations of
PINVIT, in the sense of Nesterov’s accelerated gradient descent [79], have been
introduced in [102, 103], based on certain convexity structures of the Rayleigh
quotient. The analysis of these methods requires conditions on the initial vector
that are even stricter than the one required for PINVIT.

If AM(up) € [A1,A2) then (4.1.0.1) implies that A(u;) € [A1, \2) is satisfied for
all subsequent iterates u; of PINVIT and u; converges to u* (in terms of angles).
However, this assumption on the initial vector ug is quite restrictive. In fact, for
a Gaussian random initial ug, the probability of achieving A(ug) < Ay quickly
vanishes for larger n and does not benefit from the quality of the preconditioner
B. This is in stark contrast to both, inverse iteration (B = A) and gradient
descent [8] (B = I), which converge to u* almost surely for a Gaussian random
initial vector.

In this section, we present a new non-asymptotic convergence result for a
slight variation of PINVIT. For this purpose, we first reformulate the task of
computing the smallest eigenvalue and eigenvector as an equivalent Riemannian
optimization problem on the unit sphere S"~! in R", with the preconditioner B
incorporated. A similar but different reformulation was used in [102]. We show
that standard Riemannian gradient descent [104, Algorithm 3.1] applied to this
problem coincides with a variant of PINVIT (4.1.0.1) that uses a different step
size and normalization. Moreover, we show that this problem has a WQSC
structure, inspired by the results presented in Section 2, and in Section 3
for the case of computing one eigenvector. This yields as to our main result
(Theorem 4.8): Riemannian gradient descent and, hence, our variant of PINVIT
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converges if the initial vector ug satisfies
ul Bu*

T > Cos @, (4.1.0.4)
ol Bllw 5

where ¢ is an angle measuring the distortion of the Euclidean geometry in-
duced by the preconditioner at u*; see (4.3.2.1) for the precise definition.
The convergence is linear and we prove an asymptotic convergence rate that
matches (4.1.0.2) up to a small factor.

For B = I and B = A, it holds that cos¢y = 0 and, thus, the condi-
tion (4.1.0.4) recovers the excellent global convergence properties of gradient
descent and inverse iteration mentioned above. The practical use of PINVIT is
between these two extreme scenarios and in such cases our numerical results
indicate that the condition (4.1.0.4) is less stringent than A(ug) < Ag. For the
specific choices of mixed-precision and domain decomposition preconditioners,
we provide theoretical results underlining that good preconditioners lead to
cos ¢ =~ 0.

4.2 PINVIT as gradient descent

The results of this section are based on a novel formulation of PINVIT as
(Riemannian) gradient descent on S"~!. For this purpose, we define the following
optimization problem for SPD matrices A, B € R"*":

T -1
. B x
_min, f(z), f(z) = TR RAR, (4.2.0.1)
Using the substitution u = B2z, we have that
ul'u
The minimum of f is hence —1/\; and is attained at z* = ”gij—z;j:” for an
eigenvector u* associated to the eigenvalue \; of A, where || - || denotes the

Euclidean norm.

The formulation (4.2.0.1) is inspired by the previous work [102], which
considers the minimization of —1/f(x) instead of f(x). These two optimization
problems are clearly equivalent and behave very similarly close to the optimum
x*. For a local convergence analysis, as the one performed in [102], the choice
between the two optimization problems does not make a significant difference.
For attaining results of a more global nature, this choice matters and it turns
out that our new formulation (4.2.0.1) is more suitable.

Remark 4.1 Our work also applies to generalized eigenvalue problems of
the form A — AM, for SPD matrices A and M. The additional matrixz M
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can be absorbed by setting A= M=Y2ZAMY?, B = M~Y2BM~Y2 and
T = B YV2M~12BY2z, and one obtains the same type of optimization prob-
lem (4.2.0.1), simply with A, B and x replaced by A, B and z/||Z||.

We view S"! as a Riemannian submanifold of R"® with the restricted
Euclidean metric (see Section 1.3.1.1). Minimizing (4.2.0.1) by the Riemannian
gradient descent method yields the recurrence

Tep1 = expg, (—me grad f(z)), (4.2.0.2)

for an initial vector xy € S"~!, where grad denotes the Riemannian gradient in
the sphere and exp,, denotes the exponential map at x; on S"~! (see Section
1.3.1.1 for explicit formulas). We impose the natural restriction

™

0<m < ————
"7 2f|grad f(x,)]]

(4.2.0.3)

on the step size.
The following proposition shows that the recurrence (4.2.0.2) is a variant of
PINVIT (4.1.0.1) that uses a different step size'® and normalization.

Proposition 4.1 Consider the iterates x; produced by the recurrence (4.2.0.2)
with a step size satisfying (4.2.0.3). Then the transformed vectors u; := B~/%x,
satisfy the recurrence

U1 = Bry1(ue — my B™'ry), (4.2.0.4)

with a certain step size nf > 0, a normalization By > 0 chosen such that
|luir1||s = 1, and the residual ry = Auy — A(ug)uy.

Proof A direct calculation of the Euclidean gradient of f shows

. 2<B715Et + f(l't)Bil/zABil/QfEt)
V(@) = - |AV2B=1/2g, |2 :

(4.2.0.5)

Because I —x;z! is the orthogonal projection to the tangent space of the sphere
at x;, the Riemannian gradient is given by (see, e.g., [3, Example 3.6.1])

grad f(z,) = (I — 22l )V f(2)) = V (), (4.2.0.6)

where the latter equality follows from z!'V f(x;) = 0. In particular, this implies
that grad f(x;) is zero if and only if the residual r; is zero. In this case, the
recurrence (4.2.0.4) holds trivially. We may therefore assume grad f(z;) # 0 in
the following.

10Recall that PINVIT can use step size 1 thanks to the normalization of the preconditioner implied
by (4.1.0.3).
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Using the explicit expression of the exponential map in the sphere, the
recurrence (4.2.0.2) is rewritten as

d t
Ty = cos(||n; grad f(x)||)x¢ — sin(||n; grad f(%)“)%

= Bis1 (ze — My grad f(zy)),
where we set

t d t
Bii1 i= cos(|lm grad f(z,)])) and 7, = ta“ﬁf';ﬁjf( fgrﬁ )

By (4.2.0.3), 7, is well defined and positive. Substituting u; = B~/?z, and
using (4.2.0.5) and (4.2.0.6), we obtain that

Qﬁt -1 —1
Uppr = ﬁt+1<u,:—l—H A (B S0 B Auy))

_ 21, T Tt
= BH»I (Ut + —U?Aut <B Ut A(ut> B Aut>

= By (uy — 0:3717})’

with . .
= 2myuy uy _ 2 tan({|n, grad f(z¢)]|)u; ue ~0
T (uf Auy)? lgrad f(z)|| (uf Auy)? ‘
By definition, x;,4 is in the sphere and, therefore, it follows immediately that
[t = 1. u

4.3 Quality of preconditioner

In this section, we discuss quantities that measure the quality of the precondi-
tioner B in the context of preconditioned eigenvalue solvers.

4.3.1 Global: spectral equivalence

For any SPD matrices A, B, there exist constants 0 < Vi < Vmax such that

Vinin (27 Bx) < 27 Az < vyay (2" Bx),  Vaz, (4.3.1.1)
a property sometimes called spectral equivalence. Equivalently,
Vmin||Z])? < |AY2B™ V22| < vpax||z||?, Ve (4.3.1.2)

The tightest bounds are obtained by choosing v, and v, as the smallest
and largest eigenvalues of AB™!, respectively. As we will see below, their
ratio Ky, := Vmax/Vmin determines the convergence rate of PINVIT and other
preconditioned eigenvalue solvers.
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While (4.3.1.1) can always be satisfied, ideally k, is not too large. In
particular, when A arises from the discretization of a partial differential equation,
a good preconditioner B keeps k, bounded as the discretization is refined; see
also Section 4.5.

The inequality (4.3.1.1) only implies the condition (4.1.0.3) required by
the convergence (analysis) of PINVIT when B is scaled in a suitable manner.
According to [84], preconditioning with nB~! instead of B™! with 7 = 2/(Vpax +
Vmin) leads to ap = (k, —1)/(k, +1) < 1in (4.1.0.3).

4.3.2 Local: angle of distortion

Our condition on the initial vector will be based on an angle of distortion o,
which measures the distortion induced by the preconditioner at the eigenvector

" lu]?
u*
¢ = arcsin ——————— € (0,7/2]. (4.3.2.1)
[w*{| 5l w*]| 5

For the vector z* = Hgi;—;’ﬁ”, we have that
I'*TB_lﬂf* HU*HQ )
= = sin .
a*[[IB= x| llu*llsllwr]| 5

In other words, ¢ is complementary to the angle between xz* and B~'x*, as
illustrated in 4.1.

Figure 4.1: Angle of distortion ¢. Vectors x in the white region satisty dist(z,z*) < .

For x € S" 1, we let
dist(x, 2*) := arccos(z’ z*)

denote the angle between z* and x, which happens to be the intrinsic Rieman-
nian distance in the sphere. By suitably choosing the sign of z*, we may always
assume that dist(z, 2*) € [0,7/2]. When dist(x,z*) < ¢, the following lemma
establishes a lower bound on #7 B~!z* that will play an important role for the
so-called weak-quasi convexity property of the function f defined in (4.2.0.1);
see Proposition 4.6 below.
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Lemma 4.2 With the notation introduced above, we have that

][5

T n—1_.x*
' B xt >
[[ur]?

(cos (dist(z, ")) — cos go).

holds for any x € S"™' with dist(x, z*) < .
Proof Set o := ||Ju*||}-./||u*||*. By the Cauchy—Schwarz inequality,

"B 2* = oxl e + 2" (Bt - ol)a* > oxla* — ||(B™' — ol)z*|.
On the other hand, it holds that
Bfl —ox* 2 Bfl/2u* _ O.Bl/Qu* 2 u* 4
e Tt R U WY
o o?||u*l|3 |5 llu |5

where the second equality follows by expanding the square. The result fol-
lows from combining the two relationships, using that cos(dist(z, z*)) = z7z*.

In the absence of preconditioning, that is, B = I, the angle of distortion is
¢ = /2 and the inequality of Lemma 4.2 becomes a trivial equality. The same
holds when B # [ in the (unrealistic) scenario that u* is also an eigenvector
of B, which in particular holds when B = A. In the general case, one expects
that ¢ is still close to /2 or, equivalently, cos ¢ ~ 0 for a good preconditioner
B. From (4.3.1.1), one immediately obtains the bound

cos®p <1 — 5;1. (4.3.2.2)

However, this bound is often not sharp and we will establish much tighter
bounds for specific preconditioners in Section 4.6.
The following lemma provides a useful variational representation of cos .

Lemma 4.3 The angle of distortion ¢ satisfies

’UTB_lu*
COS @ = sup ; .
oTur=0 |[V]| B2 [Ju*| g

(4.3.2.3)

Proof The supremum in (4.3.2.3) is attained by the B~!-orthogonal projection
of u* onto the subspace span{u*}*. This projection is given by the vector

* |2
v, = U — ”u* ”2 Bu*, (4.3.2.4)
Ju* |5
which follows from verifying that vl u* = 0 and v B~ (u*—wv,) = ||||;‘: ||||22 vIu* = 0.
B

Note that u*, v, and u* — v, form a right triangle with respect to the
B~linner product, where u* is the hypotenuse. By Pythagoras,

N At 9 - RN [

2
— 55— = COS~
[l B w15 1w = vl w5 e -1 ’
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where we use the definition (4.3.2.4) of v, in the second equality, and the
definition (4.3.2.1) of ¢ in the third equality. |

Remark 4.2 For the situation considered in this section, the definition of
leading angle from [102, Definition 6] amounts to

TB—I
V=9, —1/\; f) = inf inf arccos<u>.
fl@)<—1/A1 vT2=0 lvllg-1]|z]| B-1
Similar to the proof of Lemma 4.3, one can show that
ol
[ Bu|[[lu]

Comparing with the definition of ¢ in (4.3.2.1), one observes that both ¥ and
@ are angles between Bu* and u*, one with respect to the standard Fuclidean
inner product and the other with respect to the B~'-inner product.

¥ = arcsin

4.4 Convergence analysis

In this section, we study the convergence of the Riemannian gradient descent
method (4.2.0.2) or, equivalently, the PINVIT-like method (4.2.0.4). Our
analysis utilizes concepts developed in Sections 2 and 3 for analyzing non-
preconditioned eigenvalue solvers. In particular, we will use smoothness and
weak-quasi-strong convexity of the objective function f defined in (4.2.0.1) to
show that the distance of the iterates (4.2.0.2) to z* contracts linearly.

4.4.1 Smoothness-type property

Our analysis requires the following smoothness-type property, parametrized by
a function y(x) > 0:
1
f(z) — f* > ——|lgrad f(2)|?>, VaeS" !, (4.4.1.1)
27(x)

where f* := f(2*) = —1/\; denotes the minimum of f. Note that standard
smoothness in (convex) optimization implies (4.4.1.1), but not vice versa. This
is similar to Proposition 3.5.

Proposition 4.4 The smoothness-type property (4.4.1.1) holds with
Viax - (A} T — A21)

n

|A/2B=1/2g||2

(x) =

Proof Using the transformation

A/2B-1/2,

o n—1
y(x) = TAZB—172]] esS", (4.4.1.2)
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we get _
flx) = fy(x)) == —y(a)" A y(x). (4.4.1.3)
with HSliIl f(y) = f*=—1/A.. Since f is the Rayleigh quotient for —A~!, we
yesn—t

can use the smoothness property of Proposition 3.5:

fl@) = f = fly(z) - f* = 5 lgrad f(y(2))|. (4.4.1.4)

1
(A=A
It remains to phrase this property in terms of z instead of y.

By the chain rule, we have df(z) = df(y(x))dy(z), which implies

grad f(z) = dy (z) grad f(y) and ||grad f(z)|| < || dy()|l[|grad f(y)|-
(4.4.1.5)
To lower bound the right-hand side of (4.4.1.4), we thus need to upper bound
the spectral norm of dy(z). Denote C' := AY2B~Y2 A direct calculation
shows that

Cv 2'CTCw 1 CxxtCT

dy(z)v = —— — Cx = ([——>CU
@ =16z ~ ez T el [Cal?

holds for any v. Taking the Euclidean norm and noticing that the matrix in
parentheses is an orthogonal projector, we obtain

IColl v/l
d < <
Nl < [y = Tav -7

and, hence, || dy(z)|| < \/Vmax/||AY?B~1/2z||. Plugging this inequality into (4.4.1.5),
we get
HAI/ZB_lﬂtz

max

lgrad f(y(2))|* = lgrad f(x)]*.

Together with the bound (4.4.1.4), this gives the desired inequality:

HAl/ZB—l/Zx”Z
Vanax(A] T — A-1)

n

lgrad f ()|

Ja) =1 = ;
u

It is worth noting that Proposition 4.5 combined with (4.3.1.2) give the
global bound
() <k, - (A=A, VeeSth (4.4.1.6)
4.4.2 Quadratic growth

In this and the next section, we derive two properties of f that correspond to
weakened notions of strong convexity. We recall that dist(xy, z2) denotes the
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angle between two vectors xy, zo. If ||z1]| = [|z2]] = 1, it follows from a simple
geometrical argument that

. s
|x1 — 22| < dist(zy,29) < §||x1 — | (4.4.2.1)
The next property is an analogue of Proposition 3.2.

Proposition 4.5 The function f satisfies
flz)—f"> @ dist*(z,2*), Vo€ S",
with

p() = 8vmin - (AL = A3 ) [[u*||s
- T AVEB 2 lurfa

Proof As in the proof of Proposition 4.4, we apply the transformation y(x)
from (4.4.1.2) to obtain the transformed objective function f in (4.4.1.3). By
the quadratic growth of f of Proposition 3.2, we have

fla) = [ =Fly@@) = f = (A = A1) dist®(y (), u"). (4.4.2.2)
It thus remains to lower bound dist(y(x),u*) in terms of dist(z, z*). For this
purpose, we may assume ||u*|| = 1 without loss of generality.

We first rewrite

y(z) —u* = AYV2B7Y2; with 2= ’

g AT
Using (4.4.2.1), we obtain that

dist*(y(),u") > [ly(z) — || = |AV2B22)? > vl 2]*. (4.4.2.3)
Since #* = BY2u* /||[u*||p and A=Y2u* = A\[*u*, we can also write

R
[A7B172] s

z =

For any oy, as € R and 21, 25 € S"7!, it holds that
2 2 2 T 2
oz — aoza||” = af + a5 — 2010027 T9 > ayanl|z) — xo|”.

Using (4.4.2.1) once more, we can therefore bound

* Al |
2 u*|5 2> dist? )
121" = e, 1~ W 2 Ay, O @)

Combined with (4.4.2.2) and (4.4.2.3), it yields the inequality

B 2 O S e 1| TV | P
1@ = 1" 2 B A w] ,

dist?(z, %),
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which is the desired result. [ |

By (4.3.1.2), the quantity pu(x) of Proposition 4.5 admits the constant lower
bound
8 = AyY)

- =g, VzeS (4.4.2.4)

p(x) =

This shows that pg-strong convexity implies the quadratic growth established by
Proposition 4.5, with p(z) replaced by the constant pg. This constant features
the key quantities in the classical convergence result (4.1.0.2): the spectral gap
of A=' measured by A\' — \;! and the spectral equivalence (4.3.1.1) of the
preconditioner measured by k,,.

4.4.3 Weak-quasi convexity

We now establish our second convexity-like property that is essential for the
analysis of the Riemannian gradient descent method (4.2.0.2). This is an
analogue of Proposition 3.1.

Proposition 4.6 Suppose that v € S"~! satisfies dist(z, x*) < o with the angle
of distortion ¢ defined in (4.3.2.1). Then

(grad f(z), — Log,(x")) > 2a(e) (f(x) - (@), (44.31)
where (-,-) denotes the Euclidean inner product, and

Ml |32 (cos(dist (2, ) — cos @)
a(l") = HA1/2371/2$H2HU*H2

Proof To simplify notation, we set 6, := dist(z,z*). Because ||P.z*||* =
1—(272%)? = 1—cos? 0, we can write the Riemannian logarithm from (1.3.1.1)
as

Log,(z*) = ——P,z".

As mentioned in the proof of 4.1, grad f(z) = P,V f(x) = V f(x). We therefore
get

(grad f(2), — Log, (a7)) = —— = (P,V f(x), Pua”) = —

sin 6,

02

sin 6,

(Vf(x),z7).
Using the expression (4.2.0.5) for Vf(z), B~Y/2AB~Y2z* = A\ B~'z*, and
f*=—=1/\1, one gets

2027 B~
(V1)) =~ g @) = 1)
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Combining the two equations above gives

MO, (2T B~ 12 .
(grad £ (o), ~ Log, (o)) = b e ) () = 1),

The result now follows from the bound on 7 B~!z* established in 4.2, addi-
tionally using that 6,/sinf, > 1. |

Remark 4.3 If cos(dist(x, 2*)) > cos ¢ + csin® ¢ for some 0 < ¢ < 1/2, the
factor a(x) of Proposition 4.6 can be bounded by a constant:

el
>
W) 2 AP B P

c

Z D
Ky

This follows from (4.3.1.2), (4.3.2.1), and Au* = \ju*.

4.4.4 Weak-quasi-strong convexity

The quadratic growth and weak-quasi convexity properties established above
result in a WQSC property, similarly to Proposition 3.3.

Proposition 4.7 The function f defined in (4.2.0.1) satisfies

1
)= 1 < o f(a). ~ o, o)) — 2 i),
for every x € S" ! satisfying dist(x, x*) < @, with p(x) and a(x) defined in
Propositions 4.5 and 4.6, respectively.
Proof By Propositions 4.5 and 4.6, we have

@dm%m*) < fla) - f <

< gy B (), ~log, (o).

Note that dist(z,z*) < ¢ implies a(x) > 0. Applying this inequality twice
shows the desired result:

flx)—fr < 2;‘%) (gradf(z), —log,(x¥)) + @dist%x, ") — @distz(x,x*)
< $(gradf(x), —log, (z%)) — @disﬁ(x,x*).
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4.4.5 Convergence analysis

Theorem 4.8 below contains the main theoretical result of this section, on
the contraction of the error (measured in terms of the angles dist(zy, z*)) for
the iterates produced by the Riemannian gradient descent method for the
problem (4.2.0.1). The condition on the initial vector prominently features the
angle of distortion ¢ defined in (4.3.2.1), whereas the contraction rate involves
the relative spectral gap for A~! and the quantity x, = Viax /Vmin Measuring
the spectral equivalence (4.3.1.1) of the preconditioner.

Theorem 4.8 For an eigenvector u* associated with the smallest eigenvalue
A1 and an SPD preconditioner B, let x* = BY?u*/|BY?u*||. Apply the
Riemannian gradient descent method (4.2.0.2) to the optimization problem
(4.2.0.1), with a starting vector xo € S"~' such that

dist(zg, z*) < @, (4.4.5.1)
and a step size n; satisfying

a(zy) M|t ||%-1 (cos(dist(z, z*)) — cos p)
(@) Vol PO = A7)

with y(z) and a(x) defined in Propositions 4.4 and 4.6. Then the iterates x;
produced by Algorithm (4.2.0.2) satisfy

t =

dist® (2441, 2%) < (1 — &) dist®(zy, %),

where & = mu(x)a(xy) with p(x) defined in Proposition 4.5, respectively.
When fizing the step size n, = a(xy)/~(x) we have

¢ = 8AL||u || Bllu -1 (cos(dist(z, 2¥)) — cosp)? AT — A"
w1 a |AY2 B 22 (AT =AY

(4.4.5.2)

bounded below by a positive constant, and dist(z;, x*) converges linearly to zero.

Proof By the structure of (4.2.0.2), we have Log,, (7:11) = —ngrad f(x,).
Since dist(z,y) = || Log,(y)||, it follows by Proposition 1.15 that

dist(2¢41,2%) < ||~ grad f(a) — Log,, (z")]”

= n?||grad f(z)||> + dist? (2, 2*) 4 2n,(grad f(z,), Log,, (x")).
(4.4.5.3)
By Propositions 4.7 and 4.4, we have

(arad f(2,), Log,, (")) < f* — flar) — 0 gist® (2, 07)

a(zy)

1 w(ze) .o
< —— d - dist ).
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Multiplying with 2n;a(x;) and using the hypothesis n; < a(x;)/v(z;), this gives

ma(we)

V(1)
—n;llgrad f(z)||* = mupe(ze)alz,) dist? (2, ).
Plugging this inequality into (4.4.5.3) proves the first part of the theorem:

dist? (241, 2%) < (1 — neplay)a(zy)) dist? (2, ).

The expression (4.4.5.2) directly follows from the definitions of a(x;), v(x), u(x),
implying dist(z;, *) < dist(zo, 2*). Finally, the claimed linear convergence can
be concluded from the fact that & admits the constant lower bound

8X [ sl 14 (cos(dist(wo, 7)) — cos @) AT" = A3

| I g Vit k(AT = A1)

2n,(grad f(z.), Log,, (¢7)) < — lerad f(ze)[1* — nep(we)alze) dist® (z, @)

IA

I

& >

>0,
where we use dist(z, 2*) < dist(zg, 2*) and the spectral equivalence (4.3.1.2). B

Propositions 4.1, 4.8 establish an error contraction, with contraction rate
1 — &, also for the PINVIT-like method (4.2.0.4), if the step size restriction
(4.2.0.3) is satisfied. Using the smoothness-type property (4.4.1.1) and the
weak-quasi convexity property (4.4.3.1), it follows that

a(zy)  2a(xy) (f(xt) — f(x*)) < —(grad f(x), Log,, (z*)) _ T
v(we) lgrad f(z)||? B lgrad f(x:)||? 2||grad f(z)||’

where the last inequality uses that || Log,, (¢*)|| = dist(z¢,2*) < 7/2 is implied
by (4.4.5.1). Hence, the step size restriction n; < a(x;)/v(z:) imposed by
Proposition 4.8 always implies (4.2.0.3). In terms of the PINVIT iterates
u; = B~Y2x,, the initial condition (4.4.5.1) takes the form

ul Bu*

[uoll sllu*(|5

<

dist(xg, z*) = distg(ug, u*) := arccos( > <, (4.4.5.4)

where the sign of u* is chosen such that ul Bu* > 0.
The following corollary establishes convergence for a constant step size.

Corollary 4.9 If

cos(dist(xo, x*)) > cos + csin® o and n = (4.4.5.5)

rp(A = A0

n

for some 0 < ¢ < 1/2, then the Riemannian gradient descent method (4.2.0.2)
with step size n produces iterates x; satisfying

8(ATT =AY

2,.4()\"1 -1
™ /{:V(Al _)\n

dist?(zy, 2%) < (1— ))tdlst (2o, x7). (4.4.5.6)

Thus, x; converges linearly to x*.
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Proof The proof proceeds by induction on ¢t. The result for ¢ = 0 is trivial.
Suppose (4.4.5.6) holds for some ¢ > 1 and we now show that it also holds for
t + 1. From (4.4.5.6) and (4.4.5.5), it follows that

cos(dist(zy, 2%)) > cos(dist(z, 2*)) > cos ¢ + csin® .

As shown in the bound (4.4.1.6) and Remark 4.3, we have y(z;) < x, (A =AY

and a(z;) > ¢/k,. Hence, the choice of 1 in (4.4.5.5) satisfies the condition
n < a(z¢)/v(z;). By Theorem 4.8, we have

dist® (2441, 2%) < (1 — nu(zy)a(z,)) dist? (2, 2*).

Using the lower bound (4.4.2.4) on pu(z;) and, once again, a(x;) > ¢/k,, the
contraction rate can be bounded by

e\t — M\t Se2(\"1 — \o!
1_nﬂ($t)&($t)§1—nM:1_ ( 1 2 )

"] PR =)

This completes the induction step. [ |

Corollary 4.9 immediately yields a statement on the iteration complexity.

Corollary 4.10 Suppose that Riemannian gradient descent (4.2.0.2) is applied
to the function f in (4.2.0.1) with starting vector xo and step size n satisfy-
ing (4.4.5.5). Then an approximation xr of x* such that dist(zr,z*) < € is

returned after
4 -1 _ y—-1 : *
T—0 (K,V AT — A, log dist(z, z )>

2y —1 )
ol €

iterations.

The following lemma simplifies the condition on the starting vector in 4.9,
at the expense of making it potentially (much) stricter.

Lemma 4.11 If

1-2
cos?(dist(zg, %)) > 1 — C, 0<c<1/2,
Ky

then the condition (4.4.5.5) on the starting vector xq is satisfied.

Proof To establish the result, we show that 1 — 1;—30 > (cos ¢ + csin® ¢)? holds
for every 0 < ¢ < 1/2. For this purpose, consider the quadratic function

q(c) = (cos ¢ + csin’ @)2 —14(1-2¢)/k,
= (sin® ¢)c* 4 2(cos psin® p — 1/k, )c + 1/k, — sin® .
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By the bound (4.3.2.2), we know that ¢(0) = 1/k, — sin® ¢ < 0. At the same
time, we have

1
q(1/2) = Zsin4 © + cos psin? ¢ — sin® p < 0.

Because ¢ is quadratic with leading non-negative coefficient, it follows that
q(c) <0 for every 0 < ¢ < 1/2, which completes the proof. [ |

We now derive the asymptotic convergence rate implied by Theorem 4.8.
This asymptotic rate is much more favorable than the non-asymptotic rate
established in Corollary 4.9.

Proposition 4.12 For the Riemannian gradient descent method (4.2.0.2) with
step size n, = a(xy)/vy(xy), the quantity & determining the convergence rate
1 — &, according to Theorem 4.8, satisfies

8 DY b
(1 +cosp)? k, (At — A1)

n

goo = lim ft =
t—r00
Proof Theorem 4.8 shows that dist(z;, *) — 0 ast — oo. Inserted into (4.4.5.2),
this gives

f = B\ lwllslulpr  (L—cosp)® At — A"
T wfwr|flurla [AVEBT R R, (AT = AR

Using the relations

* |4 *(|3 *|2
)\% _ ||U*||217 ||A1/2B_1/2x*||3 _ ||U*||é4 and  singp — — |u ||* 7
I Iy [w]| 5w -1
the expression for &, simplifies to
8(1—cosp)? A=At 8 At =T

goo:

m2sint k(AT =AY w214 cos@)2 k(AT — MDY

n n

The convergence result (4.1.0.2) by Knyazev and Neymeyr shows that the
eigenvalue approximations of PINVIT converge linearly with the asymptotic
convergence rate a®>. When B is optimally scaled, then

2 AT =T
Ky +1 0 A7

a=1-—

see Section 4.3.1. On the other hand, Proposition 4.12 establishes the asymptotic
convergence rate 1 — &, for the eigenvector approximation error. As the
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eigenvalue approximation error is quadratic in the eigenvector approximation
error (see, for example, [110, Eq. (27.3)]), it is reasonable to compare ., with
1—a:

4 Ky, + 1

w21+ cosp)? K,

oo = (1 — ) (1A,
Because 0 < cos ¢ < 1, this shows that our asymptotic rate matches (up to a
small constant) the sharp rate by Knyazev and Neymeyr.

4.5 Distortion angle for specific preconditioners

The convergence results of the previous section, most notably Theorem 4.8,
requires the condition (4.4.5.4) on the initial vector ug, which can be restated
as
ul Bu* v B~ ly*

———————— > CoS(p = sup ,

[uol|Bl[u* | 5 =0 [Vl -1 lurl|p-
where u* is an eigenvector belonging to the smallest eigenvalue A\; of A. For a
(Gaussian) random vector ug, the left-hand side of (4.5.0.1) is nonzero almost
surely, but it is unlikely to be far away from zero. Therefore, a good global
convergence guarantee requires cos¢ to be small. In this section, we will
demonstrate for two specific types of preconditioners that cos ¢ can be close to
zero under reasonable assumptions.

(4.5.0.1)

4.5.1 Additive Schwarz preconditioners

Domain decomposition methods (DDM) are widely used strategies for solving
large-scale partial differential equations (PDEs). They are based on splitting a
PDE, or an approximation of it, into coupled problems on smaller subdomains
that collectively form a (possibly overlapping) partition of the original compu-
tational domain. A powerful way to analyze and develop DDM is through a
subspace perspective [114] that divides the solution space into smaller subspaces,
typically corresponding to the geometric structure of the subdomain partition.
Here, we consider an additive Schwarz preconditioner as a representative DDM
approach. Further details on DDM can be found in several classical references
on the topic, such as [109]. The following discussion builds on the previous
work [102].

We first briefly describe a relatively standard mathematical setting for ellip-
tic PDEs. On a convex polygonal domain 2 C R? with d = 2 or 3, consider a
symmetric and uniformly positive definite coefficient matrix {a;;(z)}¢;_, such
that a;;(z) € C%1(Q) fori,j =1,...,d. Let Vi C V;, C H}(2) be continuous,
piecewise linear finite element spaces based on quasi-uniform triangular parti-
tions Ty and 7y, of €, such that 7}, is a refinement of 7, and 0 < h < H < 1
are the maximum mesh sizes of T, and Tg, respectively. Then the elliptic PDE
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eigenvalue problem discretized on V}, takes the following form:
A(u;v) = A\ (u*,v)e Vv eV, where||u*[ls=1andu" €V, (4.5.1.1)

Here (-, )2 and ||-||» denote the L? inner product and norm, respectively, and

8u ov
A(u,v) Z/au o, 8x]d (4.5.1.2)

The global solver is the linear operator A=! : V}, — V}, such that u — A~ 'u

satisfies
A(A  u,v) = (u,v)y Yo € V.

We are interested in an additive Schwarz preconditioner B~! for A~!.
To aid in understanding, we present a specific example of additive Schwarz
preconditioners, following the structure outlined in [23, Section 7.4].

Example 4.1 (Two-level overlapping domain decomposition preconditioner)
Consider the region 2 = [0,1]2. Let Ty be a coarse triangulation as shown in

Figure 4.2. The region §2 is divided into non-overlapping subdomains §); for

1 < j <16, which are aligned with Ty. Subsequently, Ty is further subdivided

to obtain the finer triangulation Tp,. Define Q; = ;5 N Q, where Q5 is an

open set obtained by enlarging Qj by a band of width 6, ensuring §); is aligned

with Ty, as shown in Figure 4.2. One often assumes that the overlapping ratio

d/H is bounded below by a constant, which is 0.5 in this case.

Let V; C V), denote the subspace of continuous, piecewise linear functions
supported in Q; for 1 < j < 16. Define the coarse/local solvers A7t and Aj_l
through

A(AI_JIUH,UH) = <UH,UH>2 \V/UH - VH,
A(Aj_luj,vj) = <Uj7?}j>2 VU]‘ € V;
Then the two-level overlapping domain decomposition preconditioner is given by

16
B™' = IyAL' L+ LA,
j=1
where Iy : Vg = Vj, and I; : V; — V), are the natural injection operators, i.e.,
Igvyg = vy for all vy € VH, and]vj =w; forall1 < j <16 and v; € Vj.

Under reasonable assumptions, such as those stated in [109, Assumptions 2.2—
2.4], it holds that cos = O(H) as H — 0. To see this, we employ the following
results from [102, Lemmas. 34 and 35], which hold under such assumptions:

B~ u* — Ag'u||a < oAy PH  and  ||v]|a-r < callv]lp— Vv € VA,
(4.5.1.3)
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Coarse meshes Fine meshes in two subdomains

Figure 4.2: Construction of an overlapping domain decomposition. Example and figure taken
from [102, Example 30].

where Ay is the smallest eigenvalue of A(-,-) in Vi, ||-[|4, ||-]|a-1, and ||-|| -1
are the norms induced by A(-,-), A7!, and B~!, respectively, and ¢4 > 0 is
a constant independent of the mesh sizes h, H. For any v € V}, satisfying
(u*;v)e = 0 and ||v||g-1 = 1, the Cauchy—Schwarz inequality yields

(B~ u*,v)y = (B7'u* — Mgt u®, )y < ||[v]| a1 || B~ — At u*]|a < 03)\1_1/2}[.
By the variational representation (4.5.0.1) of ¢,

B lu* 2)\_1/2H

< < ¢3H. (4.5.1.4)
wwpe=o [0llp-1llwllp-1 = fJurflp1 =

As ¢4 is independent of h, H, it follows that cos¢ = O(H) as H — 0.

4.5.2 Mixed-precision preconditioners

In this section, we study the condition (4.5.0.1) when using mixed-precision
preconditioners as proposed in [64]. For this purpose, we consider two levels of
precision: a working precision and a lower precision, for example, IEEE double
and single precision. The preconditioner is constructed in lower precision while
the rest of the computations are carried out in working precision. For simplicity,
the effects of round-off errors in working precision are ignored.

Consider the Cholesky factorization A = LLT, and let L be the Cholesky
anctorA computed in lower precision. We define the preconditioner B as B~z :=
L~T(L~'z), which is implemented by solving two triangular linear systems
by performing forward and backward substitution in lower precision. By [64,
Lemma 3], B! is a high-quality preconditioner for A, which satisfies

€
1—61

HI . AI/ZB—1A1/2” <
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where we assume ¢, := 4n(3n + 1)(\,/A1)u; < 1 and u; denotes unit roundoff
in lower precision. Note that

1— 1= AY?BTAY?|| < Apin(BT'A) < Apax(BTTA) < 14| 1—A2B71AY2.
Using the bound (4.3.2.2) for cos ¢, it follows that

)\min(BilA) < 1 - li_lel

AminlD Ay — 2.
Moen(B—IA) = 14 4 “

cosPp<1—kt=1—

Usually ¢ < 1 and, hence, cosp < 1/2¢ is close to zero. This implies that
a random starting vector nearly always satisfies the condition (4.5.0.1). In
contrast, the condition A(ug) < Ay required by the classical analysis of PINVIT
does not enjoy any benefit from such a high-quality preconditioner.

4.6 Numerical experiments

In this section, we present some numerical experiments to provide insight into
the behavior of ¢ and a comparison between our initial condition (4.4.5.1)
and the classical condition A(ug) € [A1, A2). All numerical experiments in this
section have been implemented in Matlab 2022b and were carried out on an
AMD Ryzen 9 6900HX Processor (8 cores, 3.3-4.9 GHz) and 32 GB of RAM.

4.6.1 Laplace eigenvalue problems

The experiments in this section target the smallest eigenvalue for the Laplacian

eigenvalue problem with zero Dirichlet boundary condition on the unit square
Q=1[0,1)%

—Au= A u in Q,

u=0 on 0,

We will consider two different scenarios:

(4.6.1.1)

AGMG Five-points finite difference discretization of (4.6.1.1) on a regular
grid of grid size h, together with an AGMG preconditioner,

DDM Piecewise linear finite element discretization of (4.6.1.1) on a regular
mesh of mesh width h, as shown in 4.1, together with a DDM precondi-
tioner.

Detailed descriptions of AGMG (aggregation-based algebraic multigrid)
preconditioners can be found in [89, 77]; we use the implementation from [8§]
(release 4.2.2). For DDM, we use the setting described in Example 4.1; a two-
level overlapping domain decomposition preconditioner with an overlapping
ratio of 0.5 is applied. Note that in the latter case, we actually solve a
generalized eigenvalue problem A — AM, see Remark 4.1, with M representing
the mass matrix from the finite element method.
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Table 4.1: Behavior of ¢ for Laplacian eigenvalue problems with AGMG and DDM precondi-
tioners.

AGMG
h 276 277 278 279 2710

cos? 0.0331 0.0192 0.0117 0.0064 0.0033
1—x,;t 06200 0.6260 0.6352 0.6378 0.6390

% 0.0534 0.0307 0.0184 0.0101 0.0051
DDM with H =272
h 24 25 26 27 2-8

cos? 0.1961 0.1935 0.1915 0.1905 0.1901
1—-x,1 08221 0.8201 0.8189 0.8182 0.8178

X 0.2386 0.2360 0.2339 0.2328 0.2324
DDM with h =278
H 272 273 24 275 26

cos? 0.1901 0.0720 0.0202 0.0052 0.0013
1—x,;t 08178 0.8213 0.8242 0.8278 0.8320

v

X 0.2324 0.0877 0.0246 0.0063 0.0016

4.6.1.1 Behavior of ¢

The purpose of the first experiment is to study the angle of distortion p. A
small value of cos @ is favorable for our theory, because this implies that the
condition on the initial vector becomes loose. We let A = —A,;, denote the
discretization of the Laplacian and B denote the preconditioner. For either
of the two scenarios described above, the preconditioner is only available
implicitly, through matrix-vector products with B~!. The ratio x, can be
obtained by computing the smallest and largest eigenvalues of —B~!A; with
the Lanczos method. The definition of the angle ¢ requires the computation of
both Bu* and B~!u*. While the second computation is straightforward, the
first computation is not, because B is not explicitly available. Instead of the
matrix-vector multiplication Bu*, we solve the linear system B~1z = u* using
the preconditioned conjugate gradient method with —A,, as the preconditioner.
Defining
_costy
X= T

the bound (4.3.2.2) is equivalent to x < 1. From the numerical results in
Table 4.1, one observes that yx is significantly smaller than 1, demonstrating
that the bound (4.3.2.2) is not sharp. Table 4.1 confirms our theoretical result
cos = O(H) from (4.5.1.4). For the AGMG preconditioner, it can be observed
that cos® p = O(h), i.e. a very favorable behavior.
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Table 4.2: Empirical success probabilities for Laplacian eigenvalue problems with AGMG
and DDM preconditioners.

AGMG
h 276 277 2—8 279 2710
Aug) < Ao 0% 0% 0% 0% 0%

distp(ug,u*) < ¢ 44.8% 53.7% 621% 67.9% 77.3%
DDM with H = 272

h 24 275 26 27 28

Aug) < A2 0.5% 0% 0% 0% 0%

distp(ug,u*) < ¢ 16.9% 7.2% 4.8% 1.3% 1.2%
DDM with h =278

H 272 273 24 277 276

Mug) < Mg 0% 0% 0% 0% 0%

distp(ug,u*) < ¢ 09% 11.1% 41.1% 71.3% 85.8%

4.6.1.2 Empirical probability tests

In most practical situations, PINVIT is used with a random initial vector wy.
Therefore it is of interest to measure the empirical success probability for our
condition distp(ug, u*) < ¢ and for the condition A(ug) < Ag required by [61].
It is tempting to choose a Gaussian random vector ug, but such a choice is
unfortunate—it yields an empirical success probability close to zero for both
conditions. A Gaussian random vector tends to be highly oscillatory, whereas
the eigenvector u* is typically very smooth. We address this issue by using a
smoother multivariate normal random vector. As the inverse Laplacian affects
smoothing, it makes sense to choose uy ~ N(0, B~2), which can be computed
as 1y = B7'w for a Gaussian random vector w. Using 1000 independent
random trials, we report the empirical success probabilities in Table 4.2, which
impressively show the superiority of our condition on the initial vector.

4.6.2 Mixed-precision preconditioners for kernel matrices

Following the setting in [64, Section 5.4], we perform experiments with the
mixed-precision preconditioner from Section 4.5.2 for targeting the smallest
eigenvalues of a kernel matrix. Choosing independent Gaussian random vectors

x1,...,%, € R" we consider the Laplacian kernel matrix defined by
(A)i; = exp(M), i,j=1,...,n.
Similarly, choosing another set of independent Gaussian random vectors 1, ..., Yy, €

R"™ and K(z,y) = (z7y + 1)3, we consider the complex kernel matrix defined
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by
(A)ij = K (i, 25) + K (yir y;) + S (K (23, 95) — K (i, 25)).

In both cases, we choose B to be the preconditioner obtained from performing
the Cholesky factorization of A in single precision. As in the previous section, we
measured the empirical success probability for distg(ug, u*) < ¢ and A(ug) < Aq.
We choose 1 to be a Gaussian random vector, set n € {512,1024, 2048, 4096} .
For each n, we verify the initial conditions on ug by sampling 1000 independent
random initial vectors, and collect the results in Table 4.3. With such effective
mixed-precision preconditioners, our condition on the initial vector achieves
nearly 100% success probability, whereas the condition A(ug) < Ay appears to
be never satisfied.

Table 4.3: Empirical success probabilities for dense kernel matrices with mixed-precision
preconditioner.

Laplacian Kernel Complex Kernel
n 512 1024 2048 4096 512 1024 2048 4096
AMuo) < Ao % 0% 0% 0% 0% 0% 0% 0%

distp(ug,u*) <¢ 100% 100% 100% 100% 96.8%  97.9%  100%  100%
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5 A state-of-the-art eigenvalue solver and its conver-
gence guarantees

In this and the next section, we would like to delve deeper into general eigenvalue
solvers. We showcase how our theory presented in Section 2 is useful not only
for analyzing the simple gradient descent version presented there, but also more
advanced versions. This section follows our work [12].

5.1 Introduction

A simple idea that comes from [12] and can improve the practical performance
of vanilla gradient descent is the following:

e Run iteration (2.3.0.1) choosing the step size 7, via an exact line search.

e Substitute the vanilla gradient approach with a conjugate gradients ap-
proach.

Our work [12] shows that if one uses a gradient update, the exact line search
step is very easy and cheap to compute. Moreover, this algorithm can be shown
to enjoy a local linear convergence rate using the results of Section 2. When one
moves to the conjugate gradients approach, both the line search strategy lacks
some theoretical rigor and convergence analysis is not possible. However, the
algorithm performs extremely well in practice, which allows us to confidently
say that it is state-of-the-art from a practical performance viewpoint.

As this section concerns general eigenvalue solvers, we turn again to the
block case, i.e. we consider the optimization problem

f(X) = -2 Tr(XTAX), with X = Span(X), X" X =1 (5.1.0.1)

The 1/2 scaling is harmless and is included in order to match the language

of [12].

5.2 Gradient method on Grassmann

In a gradient approach we would like to produce an iterate X1 = Span(X;;1)
starting from X; = Span(X;) following a rule of the form

Xiy1 = Xy —ngrad f(A), (5.2.0.1)

where the step size n > 0 is this time to be determined by some line search. The
direction opposite to the gradient is a direction of decrease for the objective
function f. However, it is unclear what value of the step 7 yields the largest
decrease in the value of f. This means that some care has to be exercised in
the search for the optimal 7.

For a Riemannian method defined on a manifold, the search direction (here,
—grad f(AX};)) always lies in the tangent space of the current point (here, A;)
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of said manifold. This makes sense since directions orthogonal to the tangent
space leave the objective function constant up to first order in the step if the
iterates are restricted to lie on the manifold.

As discussed in Section 2, the Riemannian gradient of the block Rayleigh
quotient at X' = Span(X) is

grad f(X) = —PxyAX = —(AX — X(O), (5.2.0.2)

with the orthogonal projector Py = I — XX7, and the projected matrix
C = XTAX (notice here the lack of a factor 2 due to the 1/2 scaling in our
cost function).

Even though — grad f(AX}) is in the tangent space (and a direction of decrease
for f), we are not interested in X, ; per se but in the subspace that it spans.
In particular, since we use orthonormal bases to define the value of f on the
manifold, we will need to “correct” the non-orthogonality of the update (5.2.0.1)
when considering f. This will be discussed shortly. For now we establish a few
simple relations.

For simplicity we denote X := X an orthonormal basis of the current iterate
X, X := X;;1 a (probably non-orthonormal) basis of the new iterate X and
G := grad f(X) the gradient direction. Then a step of the gradient method
satisfies X = X — nG and we have

2

f(X) = f(X)—nTr((AX)" Px(AX)) — % Tr((AX)T Px APx(AX)). (5.2.0.3)
We also have the following relations

(AX)TPy(AX) = —(AX)'G =—(GT(AX))' = -GT(AX)(5.2.0.4)
= (AX)"P{Px(AX)=G"G (5.2.0.5)

where the second equality exploits the fact that Py is an orthogonal projector.

Thus, the coefficient of 7 in the right-hand side of (5.2.0.3) is nothing but
|G||% and, therefore, as expected, the direction of G is a descent direction: for
small enough 7, X will be close to orthonormal, and regardless of the value of
the trace in the last term, we would get a decrease of the objective function
f. This will be the case unless we have already reached a critical point where
G =0.

When looking at (5.2.0.3) it may appear at first that when A is SPD, it is
possible to increase the value of ) arbitrarily and decrease the objective function
arbitrarily. This is clearly incorrect because we have not yet adjusted the basis:
we need to find the subspace spanned by X and compute the related value
of the objective function. In the following we address this issue by actually
optimizing the objective function in the Grassmann manifold.

Observe that since X7G = 0 we have:

XTX = (X —n@)T(X —nG) = I +1*G"G.
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Let the spectral decomposition of GTG be
GT'G =VDgV" (5.2.0.6)
and denote § = Diag(Dpg) the eigenvalues. We now define the diagonal matrix
D, = (I +7n*Dg)"/2. (5.2.0.7)

In order to make X orthogonal without changing its linear span, we multiply
it to the right by VD, 'V". This way, we obtain the matrix

X(n) = XVD,'V" = (X —nG)VD, 'V (5.2.0.8)
that depends on the step 1 and is easily seen to be orthonormal,
X)X (n) = D 'VI(I + P GTG)VD, " = 1.

While it is tempting to remove the V7 in (5.2.0.8) as this does not change
the linear span, it is useful to keep it. The normalization is only then equivalent
to the polar factor of X — nG. In the context of optimization on manifolds,
this so-called retraction has many nice properties. In particular, X(n) is a
best approximation of X — nG in the set of orthonormal matrices. In addition,
this retraction has an easy vector transport that is invariant to the choice of
representative in the subspace, which will be important later in Section 5.5,
where we discuss the acceleration of the gradient method.

Remark 5.1 A retraction in general is a first order approximation of the
geodesics of a manifold (see Section 3.6 in [21]). Similarly, vector transport
18 some method that transports tangent vectors to a new tangent space, which
consists a first order approximation of the parallel transport (Section 10.5 in
[21]). The main results of this section remain the same if the retraction discussed
above 1s substituted by the exact geodesics and the vector transport by the exvact
parallel transport. For simplicity though, we will keep the approximate choices.
The empirical performance is more or less the same, while some retractions
and vector transports are easier to compute compared to exact geodesics and
the parallel transport.

5.3 Efficient line search

We can now tackle the issue of determining the optimal 7. If we set

X, =XV, G,=GY, (5.3.0.1)
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then from (5.2.0.4)—(5.2.0.5) we get the relation G AX,, = —GI'G,,. In addition,
note that GI'G, = VIGTGV = Ds. With these relations we can now show:

f(&X ()
= —5 Tr(VD, 'VH(X —nG)TA(X —nG)VD,'VT)
— ITDP(X, - G A, — 1GL)D;)
= =T (D (XTAX, + 20(GYGY) + 7P (GTAGY)))

= —1iTr <(I +12Dg) " (XTAX, + 20 Dg + 1 G,UTAGU)> (5.3.0.2)

We will simplify notation by introducing the diagonal matrices:
D, =Diag(ay,...,a,) with «a; = (XTAX,)u, (5.3.0.3)
D. =Diag(v1,...,7p) with ;= (GTAG,)u. (5.3.0.4)

If we call u; the left singular vector of G associated with 1/f3; then we get

the useful relation
v = v] GTAGv; = Biu] Au,. (5.3.0.5)

Observe that when D is a diagonal matrix and C'is arbitrary, then Diag(DC') =
D Diag(C'). Therefore, (5.3.0.2) simplifies to:
F(Xm) = =3 T (I +9°Ds) " (Da+ 20D +92D,)) . (53.0.6)

This is a rational function that is the sum of k terms corresponding to the k
diagonal entries of the matrix involved in (5.3.0.6):

1 ;426 + v
X = =32 =g

(5.3.0.7)

When 1 — oo each term %’W will decrease to its limit ~;/5;. The
derivative of f(X(n)) satisfies

df(X(n)) e Bi + (v —oay Bi)n—Bin?
e = - ; o e . (5.3.0.8)

This derivative is the negative sum of k branches each associated with a diagonal
entry of the matrix of which the trace is taken in the above equation. The
numerator 3; + (v; — «;3i)n — 3?1? of each branch has the shape of an inverted
parabola and has a negative and a positive root. Therefore, the derivative
(5.3.0.8) is nonpositive at zero'! and as 1 increases away from the origin, each

Tt is equal to — > 8; = —||G||%
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of the branches will have a negative derivative. The derivative remains negative
until 1 reaches the second root which is

(i —aiB) (= aiBi)?+ 487

Let &min = min{&;} and &ae = max;{&;}. Clearly all branches of (5.3.0.7),
and therefore also their sum, will decrease in value when 7 goes from zero to
Emin- Thus, the value of the objective function (5.3.0.7) will decrease. Similarly,
when 7 increases from &,q, to infinity, the objective function (5.3.0.7) will
increase. The minimal value of (5.3.0.7) with respect to 7 can therefore be
determined by seeking the minimum in the interval [, &maz]. Since both f
and its derivative are available, this can be done efficiently by any standard
root finding algorithm.

The algorithm to get the optimal value for 7 is described in Algorithm
5.2. To obtain accurate solutions, some care is required in the numerical
implementation due to floating point arithmetic. We explain this in more detail
in Section 5.6.1.

0. (5.3.0.9)

Algorithm 5.1 Riemannian Gradient Descent(A4, X)
1: Start: Select initial Xy = Span(Xj), such that X{ Xy = I.
2: fort=20,1,... do
3: Compute G := grad f(X;) = —(AX; — X;Cy,) with C, = X AX,.

4: if ||G|| < tol then

5: return

6: end if

7: Diagonalize GTG = VDgVT.

8: Compute Dy, D, from (5.3.0.3) with X = X;.

9: Compute 7 as the (approximate) minimizer (5.3.0.7) using Get_Mu.

10: Compute X;41 as the polar factor of X; — nG like in (5.2.0.8) and set X;4q1 =
Span(X¢y1)

11: end for

Algorithm 5.2 14, = Get Mu(D,, Dg, D.,)

1: Input: Diagonal matrices Dy, Dg, D., of (5.3.0.3).

2: Compute smallest root &,;, and largest root &4, among the roots &; of (5.3.0.9)

3: Compute an approximation 7y, of the minimum of f on [&min, &maz] by safe-guarded
root finding on (5.3.0.7).

4: Return: value 7,4

5.4 Convergence of the gradient method

We start our convergence analysis by proving that the gradient method from
Algorithm 5.1 converges globally to a critical point, that is, where the Rieman-
nian gradient is zero. This result is valid for any initial iterate Xy but it does
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not give a linear rate of convergence. Such result holds also for the algorithm
presented in Section 2, but we omitted it there since the relevant paper does
not contain it.

When Aj is close to the dominant subspace, we also prove a linear rate
of convergence of the objective function. The closeness condition depends on

the spectral gap 0 of the dominant subspace but only as O <\/3> This result

seems to be new.

5.4.1 Global convergence of the gradient vector field

We examine the expression (5.3.0.7) in order to obtain a useful lower bound.
We first rewrite (5.3.0.7) as follows:

k
1 Z (14 Bim?) — ciBin® + 26 + vin?

X = ——
em) =33 T+ Gap
k k A2
BN o D 20 + (i — culBi)n” - (5.4.1.1)
2 =1 2 =1 1 _'_BZ

The first sum on the right-hand side is just the objective function before the
update, that is, the value of f at the current iterate X'(0) = X. The second
sum depends on the step 1 and thus represents what may be termed the “loss”
of the objective function for a given 7.

Lemma 5.1 Define L = M\ (A) — A\ (A). Then for any given n > 0 the “loss”
term (2nd term in right-hand side of (5.4.1.1)) satisfies

21 7 M1 2 2—-L
"Z 5“11“ ibin” ((1+677) 5 G, (5.4.1.2)

where G = grad f(X(0)) and Bpe: = max f;.

Proof We exploit (5.3.0.5) and set 7; = u Au; in order to rewrite the term
v — «a; (B; in the numerator as v, — «o; 5; = (7, — a;)5;. From (5.3.0.1)
and (5.3.0.4), we have a; = ] Az; with x; = Xv;. Hence, the term 7; — o;; =
ul Au; — xT Ax; represents the difference between two Rayleigh quotients with
respect to A and therefore, 7, — a; > — L. Thus the “loss” term satisfies

k k
1 28:m + (v — au Bi)n* 1 2—1Ln
S > — 0. 5.4.1.3

2; 1+ Bin? - 2;1—1-51‘772577 ( )
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The denominators 1 4 3;n? can be bounded from above by 1 + Bia.n? and this
will result in:

k k
__225177‘{’ Yi — azﬁz __Z 2_L77 P 2_L7777 Zﬁ
1+ Bim? T4 B (1 Bt "
(5.4.1.4)
The proof ends by noticing that 327, 6 = ||G||% due to (5.2.0.6). u

Lemma 5.2 If 1,y is the optimal n obtained from a line search at a given X,

then
k

1 2 |G
X < —= ; : 4.1,
) < 5 D= 517 (5.415)
Proof The right-hand side (5.4.1.2) is nearly minimized for n, = 1/L, so we
consider this special value of . We have

k

1 (2 — Lng)ns 2
(X (Mopt)) < f(X(ny)) < -3 ;oz R |G-

The second inequality in the above equation follows from (5.4.1.1) and the
previous Lemma 5.1. Calculating the right-hand side for n, = 1/L yields:

F(X (no)) < _}Z IGI%
o - 2 —1 L + Bmaa:/L)
Be Lemma 2.2, we have (3,4, < %2 since Bqe is the biggest eigenvalue of GTG.
Plugging this into the last inequality we get the desired result. [ |

The property (5.4.1.5) in Lemma 5.2 is known as a sufficient decrease
condition of the line search. We can now follow standard arguments from
optimization theory to conclude that (Riemannian) gradient descent for the
smooth objective function f converges in gradient norm.

Theorem 5.3 The sequence of gradient matrices grad f(X;) generated by Rie-
manian gradient descent with exact line search converges (unconditionally) to
zero starting from any Xo.

Proof We will proceed by avoiding the use of indices. First, we observe that
the traces of the iterates, that is, the consecutive values of f(X (7)) converge
since they constitute a bounded decreasing sequence. Recall that the first term,
that is, minus the half sum of the «;’s in the right-hand side of (5.4.1.5), is the
value of the objective function at the previous iterate. Thus, the second term
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in (5.4.1.5) is bounded from above by the difference between two consecutive

traces:

Gl
L

0<

ot Do

< —F(X ) — 3 D = S (X)) + F(X), (5:4.16)

and therefore it converges to zero. This implies that the sequence of gradients
also converges to 0. [ |

The bound of Lemma 5.2 can be used to prove some particular rate of
convergence for the gradient vector field. This argument is again classical for
smooth optimization. It is a slow (algebraic) rate but it holds for any initial
guess.

Proposition 5.4 The iterates X; of Algorithm 5.1 satisfy

1
t=0,..., 2 VK 7
where f* is the minimum of f.

Proof Since f* is the minimum of f, it holds

K-1

F(X) = 7> f(X) = f(X) = D (F(X) — f(Xiy)). (5.4.1.7)

t=0
After some rearrangement, Lemma 5.2 provides the bound

m

1

-3 Z a; = f(X(Nopt)) = (X)) = f(Xiq1) 2

=1

2

— llgrad f()| 12

Taking the sum of this inequality for ¢t = 0, ..., K — 1, we obtain the lower bound

K—1
2
_ > K2 i 2
;um) f(Xn) 2 Ko min | grad /()]
Combining with (5.4.1.7) gives the desired result. |

5.4.2 Local linear convergence

The previous proposition establishes a global but slow convergence to a critical
point. We now turn to the question of proving a fast (linear) rate to the
dominant k-dimensional subspace V, = Span(V,,) of A. The result will only
hold locally, however, for an initial guess X, sufficiently close to V,. We
therefore also assume a non-zero spectral gap d = A\y — Ap1 > 0.
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For showing such linear rate, we use the properties of the block Rayleigh
quotient proved in Section 2. In order to guarantee a uniform lower bound for
a(AX;) at the iterates &; of Algorithm 5.1, we need to start from a distance at

most O (\/5) from the optimum.

Proposition 5.5 An iterate X,y1 of Algorithm 5.1 starting from a point X,
satisfies

J

Pt = 1 < (1= Seaa @) ) (1) - 1)

Proof The result follows simply by combining the bounds of Lemma 5.2 and
Proposition 2.8. By Lemma 5.2, we have

2

f( K1) = fF < f(X) — f* = 5_LH grad f(&;)|%.
By the PL property of f in Proposition 2.8, we have
)
f( 1) = [ < f(A) — f7 — gCQa2(Xt>Z<f(Xt) - f)

< (1- Seen @ ) () - 1.

This provides the desired result. [ |

The convergence factor in the previous theorem still involves a quantity
a(X;) that depends on the iterate X, at step t. To get a convergence factor for
all ¢ that only depends on the initial step, we need to bound a(X;) globally from
below and independently of ¢. To that end, we need to restrict the initial guess

Xy to a radius O (\/3) away from the optimum. The reason for that is that,

using Proposition 5.5, we can only show that function values do not increase.
In order to obtain a bound for the distances of the iterates to the optimum
(and thus also for a(X;)), we need to use the quadratic growth condition of
Proposition 2.4. This leads to a loss of a factor ¢ in the upper bound for the
squared distances of the iterates to the optimum.

Theorem 5.6 Algorithm 5.1, where Xy is such that

26@5
L Y

diSt(Xo, Va) S

produces iterates X, that satisfy

)~ £ < (1= coly ) () = )

for allt > 0.
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Proof Recall that a(X;) = 0,/ tan 6, with 6, the largest principal angle between
X, and V,. By the result of Proposition 5.5, we have

Pt = < (1= Seoa R ) () - 1) < ) = £

since 1 — %cgﬁ(%)% < 1. By induction, we can conclude that

(%) = f* < F(X) = 7,

for all ¢ > 0.
Then by quadratic growth and smoothness of f (Propositions 2.1 and 2.4),
we have
1

Ast?(Xe, V) € —=(F(2) — 1) € —=(F(%) — )
cQ CQ

L
dist?(Xp, Vo) < 1,

<
- 26Q5

for all t > 0, by the assumption on the initial distance between Xy and V,.
By elementary properties of cos(z) and z/tan(z) and using (1.3.1.7), we
have

a(X;) > cos(0x(X;, Va)) > cos(dist(X;, Va)) > cos(1) > %

Plugging this in the result of Proposition 5.5 and by an induction argument,
we get the desired result. [ |

Finally, we present an iteration complexity for computing an approximation
of the leading eigenspace via Algorithm 5.1. The O notation hides non-leading
logarithmic factors. This result is standard when a non-asymptotic convergence
rate (like the one of Theorem 5.6) is available.

Corollary 5.7 Algorithm 5.1 where Xy satisfies the assumption of Theorem 5.6
computes an estimate Xr of V, such that dist(Xr,V,) < € in at most

e f(X)—f A (L. f(%)—f
T = % log c0ms —l—l—(’)(glogf).

many iterations.

Proof For dist(Xr, V,) < ¢, it suffices to have
f(X) = f* < cqe?s

by quadratic growth of f in Proposition 2.4. Using (1 — ¢)! < exp(—ct) for
allt > 0 add 0 < ¢ <1, Theorem 5.6 gives that it suffices to choose T" as the
smallest integer such that

20

F(Xr) — £ < exp (—cQ5—LT) (F(X) - f°) < coé®s
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Solving for T and substituting cg = 4/72, we get the required statement. M

5.5 Accelerated gradient method

It is natural to consider an accelerated gradient algorithm as an improvement
to the standard gradient method. For convex quadratic functions on R", the
best example is the conjugate gradient algorithm since it speeds up convergence
significantly at virtually the same cost per step as the gradient method. In our
case, the objective function is defined on Gr(n, k) and is no longer quadratic.
Hence, other ideas are needed to accelerate. While there exist a few ways to
accelerate the gradient method, they all introduce some kind of momentum
term and compute a new search direction P recursively based on the previous
iteration.

5.5.1 Polak—Ribiere nonlinear conjugate gradients

A popular and simple example to accelerate the gradient method is by the
Polak-Ribiere rule that calculates a “conjugate direction” as

<G — CTYolda G>
<Gold> Gold)

Here, we avoid indices by calling Goq the old gradient (usually indexed by t)
and G the new one (usually indexed by ¢+ 1). The inner product used above is
the standard Frobenius inner product of matrices where (X,Y) = Tr(Y7X). Tt
is typical to restart with a pure gradient step (5 = 0) when P is not a descent
direction and at every t,start iterations for some fixed choice for t,egtart.

When applied to objective functions defined on manifolds, two modifications
are required to the Euclidean update in (5.5.1.1). First, since Gyq is a tangent
vector of X4, it needs to be “transported” to the current iterate X in order
for the inner product (Goq, G) to be well defined. A simple solution is by
orthogonal projection onto the tangent space 2 :

(G—(I—-XXT)Goa,G)
<Gold7 Gold> .

Since G = (I — XXT)G, we do not need to compute this projection explicitly
and the formula for £ in (5.5.1.1) remains valid in our case. Next, since P is
required to be a tangent vector, the result in (5.5.1.1) is again projected onto
the tangent space as (I — XXT)P.

P=c + 5P01d with 5 = (5511)

b=

121t is known that this is a vector transport that is invariant to the choice of representative of the subspaces
when the retraction on Grassmann is done via the polar factor, as we do in Alg. 5.3.
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5.5.2 Line search

In order to use P instead of G, we need to modify the line search in Algorithm 5.1.
We will explain the differences for a general P.

Let X(n) = X;41 and X = X, denote orthonormalized bases for the new
and old iterates X1 and X;. As before, we construct an iteration

X(n) = (X —nP)M

where the search direction P is a tangent vector, PT X = 0, and gradient-related,
Tr(GTP) > 0 with G = grad f(X). In addition, M is a normalization matrix
such that X(n)" X (n) = I.

A small calculation shows that the same normalization idea for M from
the gradient method (when P = G) can be used here: from the eigenvalue

decomposition
VDgVT = PP

we define
D, = (I +72Ds)2

Then it is easy to verify that
X(n) = (X —nP)VD'V" (5.5.2.1)

has orthonormal columns and represents again the polar factor of X — nP.
Let P, = PV and X, = XV. To perform the line search for n, we evaluate
f in the new point:

f(xX() = —3T(D,'V'(X —nP)"A(X —nP)VD,")
—1Tx(D, (X, — nP,)"A(X, — nP,) D, ")
= —1Tv (D (XTAX, - 29(PTAX,) + *(PTAP,)))
= ;T ((1 +12Dg) "' (Do + 20 D¢ + 7 D7)> (5.5.2.2)
where

D, =Diag(X!AX,), Dg=Diag(P!P,),

. . (5.5.2.3)
D. =Diag(P, AP,), D;= —Diag(P, AX,).

Comparing to (5.3.0.6), we see that a new D, has appeared. Observe that
D,, Dg, D., all have non-negative diagonal but this is not guaranteed for D,. If
P =G, then —PI'AX, = PI'P, and thus D, = Dg. For a gradient related P
that is a tangent vector, we know that 0 < Tr(PTG) = — Tr(VPTPx AXV) =
—Tr(PTAX,) = Tr(D.). However, that does not mean that all the diagonal
entries of D, are non-negative, only their sum is. This lack of positive diagonal
complicates the line search, as we will discuss next.
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Let «y, B;,7i, ¢ be the ith diagonal entry of D,, Dg, D,, D¢, resp. The
rational function that represents (5.5.2.2) and generalizes (5.3.0.7) satisfies

_ I 2+
F(X () ———; T (5.5.2.4)

with derivative

(5.5.2.5)

df (X(m) _ zk: G + (v — i Bi)n—BiG
dn i=1 (L4 Bim?)? '
Since we do not know the sign of ¢;, each term in (5.5.2.5) has a quadratic in
the numerator that can be convex or concave. This is different from (5.3.0.8),
where it is always convex (accounting for the negative sign outside the sum)
since (; = (;. In this case, there is a term with a concave quadratic and we can
therefore not directly repeat the same arguments for the bracketing interval of
n based on the zeros of the quadratics in (5.5.2.5). When there are negative
(i’s, we could restart the iteration and replace P by the gradient GG. Since this
wastes computational work, we prefer to simply disregard the branches that
are concave when determining the bracket interval.

Overall, the line search for the CG approach will cost a little more than
that for the gradient method, since we have an additional (diagonal) matrix to
compute, namely D,.

Algorithm 5.3 Riemannian Conjugate Gradient Descent(A, X)
1: Start: Select initial Xy = Span(Xj) such that X' Xo=1. Set G =P =0.
2: fort=20,1,... do
3: Keep Gold =G,

Diagonalize GTG = VDgVT.

Compute Dy, Dg, D+, D¢ from (5.5.2.3) with X = X,.
10: Compute 8 = <G — Gold, G> / <G01d7 G01d>

11 Update P := (I — X; X])(G + BP)

4: Update G = grad f(Xt) = —(AXt - XtCt) with Ct = XtTAXt
5: if |G| < tol then

6: return

7: end if

8:

9:

12: if restart then

13: P:=G

14: end if

15: Compute 7 as the minimizer of (5.5.2.4) using a modified version Get Mu.

16: Compute X1 as the polar factor of X; — nP like in (5.5.2.1), and set X1 =
Span(Xiy1).

17: end for
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5.6 Numerical implementation and experiments
5.6.1 Efficient and accurate implementation

A proper numerical implementation of Algorithms 5.1 and 5.3, and in particular
the line search, is critical to obtain highly accurate solutions. We highlight
here four important aspects.

In addition, we give some details on how to improve the efficiency of a direct
implementation of these algorithms so that they require the same number of
matrix vector products with A, as subspace iteration and LOBCG.

Calculation of bracket The 3;’s in (5.3.0.9) can be very small in some situations.
If we set 9; = v; — ay; B; then cancellation may cause loss of accuracy in formula
(5.3.0.9) when ¢; < 0. We can circumvent this by observing that in this case:

VO 487 —10i] _ 457

& = = = .
26 287(10:| + /07 +487)  16i/Bil + 1/ (0:/ B:)* + 4B,
(5.6.1.1)
When §; > 0 we can simply use (5.3.0.9) which we rewrite as
1 (4 5\
i = - + — | +45;]. 5.6.1.2
o= (5 () + 0042

Calculation of the minimizer For numerical reasons, it is advisable to compute
a root of grad f instead of a minimum of f. This can be done in an effective
way by a safe-guarded root finding algorithm, like the Dekker—Brent algorithm
from fzero in MATLAB. Since this algorithm converges superlinearly, we rarely
need more than 10 function evaluations to calculate the minimizer of f in
double precision.

Efficient matvecs At each iteration ¢, the line search requires AP, and AX;;
see (5.5.2.3). Supposing that AX; was calculated previously, it would seem that
we need another multiplication of A with P, which is not needed in subspace
iteration (accelerated by Chebyshev or not). Fortunately, it is possible to avoid
one of these multiplications. First, we proceed as usual by computing the next
subspace X;,; from the polar decomposition

Xoew = (X — nP)VDT;lVT.
Instead of calculating A X, explicitly in the next iteration, we observe that
_ —1y,/T
AXpew = (AX —nAP)VD, V", (5.6.1.3)
Hence, it suffices to compute only AP explicitly at each iteration since AX can

be updated by the recursion above.
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Except for a small loss of accuracy when the method has nearly converged,
this computation behaves very well numerically. In practice, the product AX
is only calculated explicitly when 1 = O(gmacn)-

Efficient orthonormalization The line search procedure requires the diagonal-
ization PTP =V DgV7T, which has a non-negligible cost of O(nk* + k*) flops.
Fortunately, the result of this decomposition can be used again for the nor-
malization of X, by the polar factor, as explained in (5.2.0.8) and (5.5.2.1).
Compared to using QR for the normalization, there is therefore very little
overhead involved.

5.6.2 Comparison with subspace iteration for a Laplacian matrix

We first test our methods for the standard 2D finite difference Laplacian on a
35 x 40 grid, resulting in a symmetric positive definite matrix of size n = 1400.
Recall that the dimension of the dominant subspace to be computed is denoted
by k.

Algorithms 5.1 and 5.3 (with ¢,esart = 75 are compared to subspace iteration
applied to a shifted and scaled matrix (A—cI)/h and a filtered matrix pg(A) with
given degree d, with py(z) = Cy((x —c)/h) where Cy is a Chebyshev polynomial
of degree d. The shift ¢ and scaling h are discussed briefly in Section 1.2.
More precisely, we consider ¢ = (A1 + An)/2 and h = (A1 — An)/2. See
also [122] for a concrete implementation based on a three-term recurrence that
only requires computing one product AX; per iteration. These choices of the
shift and the polynomial are in some sense optimal for the given degree d. In
addition, we compared to the locally optimal block conjugate gradients method
(LOBCG) from [59] which is closely related to Riemannian CG but with a
higher cost per iteration; see Section 5.6.4 for more details.

Observe that both subspace iteration methods make use of the exact values
of the smallest eigenvalue A\, and of the largest unwanted eigenvalue A;.;.
While this is not a realistic scenario in practice, the resulting convergence
behavior should therefore be seen as the best case possible for those methods.
Algorithms 5.1 and 5.3 on the other hand, do not require any knowledge on
the spectrum of A and can be applied immediately.

The subspace iteration with Chebyshev acceleration will restart every d
iterations to perform a normalization of X; and, in practice, adjusts the
Chebyshev polynomial based on refined Ritz values!3. For small d, the method
does not enjoy as much acceleration as for large d. On the other hand, for large
d the method is not stable.

In Figure 5.1, the convergence of the objective function f(&;) is visible
for subspace dimension & = 6 and polynomial degrees d € {15,30,60}. All
methods perform per iteration only one block matvec of A with a matrix of size

13This is not done in our numerical tests since we supply the method the exact unwanted spectrum.
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n x k. Since this is the dominant cost in large-scale eigenvalue computations
like SCF, we plotted the convergence in function of this number!4.

The benefits of acceleration by the Chebyshev polynomial filter or by Rie-
mannian CG are clearly visible in the figure. In black lines, we also indicated
the asymptotic convergence O(7') in function of the number of matvecs ¢ for
two values of . In particular, it is well known (see our results in Section 2)

that \ \
1= "\n
=—— =(00(1/9). 5.6.2.1
= 001/ (5.6.21)

is the condition number of the Riemannian Hessian of f at the dominant

subspace V,, with spectral gap 0. From this, the asymptotic convergence rate
of Riemannian GD is known (see [73, Chap. 12.5]) to satisfy

Yep = (“_ 1>2 —1-0(0).

K+ 1

K

In addition, for Riemannian CG we conjecture the rate

o (Y 10 ()

based on the similarity to classical CG for a quadratic objective function with
condition number k. For both Algorithms 5.1 and 5.3, we see that the actual
convergence is very well predicted by the estimates above.

5.6.3 A few other matrices

As our next experiment, we apply the same algorithms from the previous section
(but without restarting to have parameter free Riemannian methods) to a few
different matrices and several choices for the subspace dimension k. In addition,
we target also the minimal eigenvalues by applying the methods to — A instead
of A. This is not a problem, as the Riemannian gradient of f on Grassmann is
invariant under shifts. More concretely, Riemannian gradient descent (RGD)
and Riemannian CG (RCG) with exact line search applied to —A produce
the same iterates as when applied to —A + ¢I, for any ¢ € R. For Algorithm
5.3 the signs of G and G,y flip, but the parameter § remains the same at
each iteration. Thus, both methods converge to the eigenvectors associated to
the largest eigenvalues of —A, which are the eigenvectors associated with the
smallest eigenvalues of A.

Except for the standard finite difference matrices for the 3D Laplacian, the
matrices used were taken from the SuiteSparse Matrix Collection [32]. This
results in problems with moderately large Riemannian condition numbers &,
defined in (5.6.2.1).

14For this example with very sparse A, the SI methods are much faster per iteration than the Riemannian
methods. This is mainly because SI only needs to orthonomalize every d times.
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Figure 5.1: Error in objective value for subspace iteration (SI), Riemannian gradient descent
(GD), Riemannian nonlinear conjugate gradients (CG), and locally optimal block conjugate
gradients (LOBCG) for a Laplacian matrix of size n = 1400 based on finite differences when
computing the dominant subspace of dimension k£ = 6. For SI, optimal shift and optimal
Chebyshev polynomials were used of various degree (number in legend). The black lines
estimate the asymptotic convergence speed as explained in the text.

Due to the larger size of some of these matrices, we first compute with a
Krylov—-Schur method (implemented in MATLAB as eigs) the eigenvalues that
are required to determine the optimal Chebyshev filter in subspace iteration.
The Riemannian methods do not require this or any other information. As
optimal value f* for the function value, we took the best value of the results
computed from all methods, including the Krylov—Schur method.

FD3D This matrix is the 3D analogue of the matrix we tested in the previous
section. It corresponds to a standard finite difference discretization of the
Laplacian in a box with zero Dirichlet boundary conditions. We used n, =
35,n, = 40,n, = 25 points in the z,y, 2 direction, resp. The resulting matrix
is of size 35000. Compared to the earlier experiment, we took larger subspace
dimensions and also a minimization of the Rayleigh quotient. All these elements
make for a more challenging problem numerically.

problem type dimension & Riem. cond. nb. Cheb. degree

1 min 64 3.53 - 10% 100
2 max 32 5.54 - 103 100

In Fig. 5.2, we see that the convergence of the maximization problem is very
similar to that of the 2D case, although the asymptotic convergence rate of
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Figure 5.2: The FD3D matrix.

Riemannian CG seems to be slower than that of subspace iteration with optimal
filter. This can be improved by restarting (not shown) but even without it,
the results are good. On the other hand, the more relevant case of finding
the minimal eigenvalues of a Laplacian matrix turns out to be a challenge for
SI with or without Chebyshev acceleration. In fact, even with a degree 100
polynomial it takes about 1000 iterations before we see any acceleration. The
Riemannian methods, on the other hand, converge much faster and already
from the first iterations.

ukerbel This matrix is related to a 2D finite element problem on a locally
refined grid and it has a relatively small size n = 5981. It is therefore more
interesting than the uniform grid of the Laplacian examples above. We tested
the following parameters.

problem type dimension & Riem. cond. nb. Cheb. degree

3 max 32 4.85 - 103 20
4 max 64 5.21-103 100

In Figure 5.3, we observe that the Riemannian algorithms converge faster
than their subspace iteration counterparts. This behavior is seen for many
choices of p and the Chebyshev degree. Since the spectrum of this matrix is
symmetric around zero, the min problems are mathematically equivalent to
the max problems, and therefore omitted.

ACTIVSg70K We now test a larger matrix of size 69999. It models a synthetic
(yet realistic) power system grid from the Texas A&M Smart Grid Center. This
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Figure 5.3: The ukerbel matrix.

matrix has a spectral gap of O(10) but the Riemannian condition number,
which represents the correct relative measure of difficulty, is still large. Such a
different kind of scale makes this an interesting matrix to test our algorithms.

problem type dimension & Riem. cond. nb. Cheb. degree

5 min 16 1.15-10* 50
6 max 32 1.29 - 103 50

For the minimization problem (nb. 5), we see that the Riemannian algo-
rithms converge considerably faster than subspace iteration with or without
Chebyshev acceleration of degree 50. (The reason for the bad performance
of the Chebyshev acceleration is due to numerical instability with a degree
50 polynomial for this problem.) For the maximization problem (nb. 6), Rie-
mannian CG and Chebyshev acceleration with degree 50 have very similar
asymptotic convergence speed although the Riemannian algorithm has a faster
start. The same conclusion hods for Riemannian GD and standard subspace
iteration, although their convergence is of course significantly slower.

boneS01 This final matrix is part of the Oberwolfach model order reduction
benchmark set and models a 3D trabecular bone. It is our largest example of
size n = 127224. As we can see from the table below, for subspace dimension
k = 64 the minimization problem is particularly challenging with a large
Riemannian condition number.

problem type dimension & Riem. cond. nb. Cheb. degree

7 min 64 2.57 - 106 25
8 max 64 2.05 - 103 25
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Figure 5.5: The boneS01 matrix.

The convergence of the methods is visible in Fig. 5.5. We can make similar
observations as for the example above: the Riemannian algorithms have a
faster initial convergence compared to the subspace variants. In addition, the
accelerated variants are clear improvements.

5.6.4 Comparison to LOBCG

It is instructive to compare the Riemannian CG method from Alg. 5.3 to the
locally optimal block CG method (LOBCG) from [59] since both methods
minimize the partial trace function f using momentum terms. LOBCG is
equivalent to the better known LOBPCG method where the preconditioner is
not used (i.e. set to be identity).

Let t be the iteration number. The essential difference between the two
methods is that LOBCG minimizes f over all orthonormal matrices that lie in
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the 3k?-dimensional subspace'®

Vt = Span(Xt, Gt7 thl) = {XtQ + Gt\I] + thlf: Q, \IJ, f S RPXP}. (5641)

Here, the residual Gy = AX; — X; X AX;, is also the Riemannian gradient of f
at X;. Contrary to most optimization problems, this subspace search can be
computed exactly for the symmetric eigenvalue problem by the Rayleigh—Ritz
procedure: the optimal solution is related to the top k eigenvectors of the
symmetric 3k x 3k matrix QT AQ; with Q; an orthonormal basis for V.

In contrast, the Riemannian CG method minimizes f for the scalar a during
the line search applied to the orthonormalization of X; — aP;,. When k£ > 1,
there is no explicit solution for the optimal « in terms of a smaller eigenvalue
problem, but as explained above, it can be solved efficiently by diagonalizing
the matrix X7 X;.

When started at the same X; and X;_;, LOBCG will produce a basis X,
for a subspace X}, with a smaller objective value f(AX;,1) than the Riemannian
CG method. This is because an iterate produced with the step X; — aP; from
Riemannian CG is contained in the subspace searched by LOBCG. It is therefore
reasonable to expect!® that LOBCG converges faster overall in terms of number
of iterations.

We prove here that Riemannian CG with ¢ > 1 is suboptimal compared
to LOBCG when started at the same X; and X;_;. The case ¢ = 1 is also
explained in [3, Sections 4.6.5 and 8.3|. This improvement is of course more
computationally expensive.

Since Riemannian CG produces iterates of the form

Xt+1 == (Xt - OétPt)Mt (5642)

with M, the normalization so that X;,; has orthonormal columns, it is clear
that

Xt+1 S Span(Xt, Pt)
Here, Span(-,-) is to be interpreted as in (5.6.4.1), i.e. as a subspace of

dimension 2k. Since P, = (I — X, X[ )(G; + B:P,_1), we also have Span(P,) C
Span(Gy, P,_1, X;), from which it follows that

Xiv1 € Span(Xy, Gy, Pr_q).

The relation (5.6.4.2) also shows that P,_; € Span(X,_1, X;) if M, ; is invert-
ible, which is true generically. We therefore get that

Xiv1 € Span(Xy, Gy, Xy—1) =V,

15When X; converges, adding X;_1 to the columns of X; and G would lead to numerical cancellation when
computing an orthonormal basis for V;. In the implementation of LOBCG, a different matrix is therefore
added that has better numerical properties. For theoretical investigations, we can ignore it.

16Gince the iteration is not stationary and depends on the previous iterates, one cannot conclude that
LOBCG always produces iterates with lower objective value than Riemannian CG.
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where V; is the subspace used in LOBCG. Since LOBCG is optimal for f over
all orthonormal matrices with k£ columns in V;, it will be a lower bound of
(X))

In Table 5.1, we have compared LOBCG to Riemannian CG (denoted by
RCG) for the same matrices we tested above. For the matrices ukerbel and
FD3D, we see that LOBCG indeed requires less iterations than Riemannian
CG, usually by about a factor two. However, this does not mean that LOBCG
is faster in terms of computational time due to an increased cost per iteration.
In addition, the differences between LOBCG and Riemannian CG are less
predictable for the other matrices. Overall, Riemannian CG is usually faster in
computational time and also more reliable.

The increased cost per iteration of LOBCG compared to Riemannian CG
is due to the additional computations for the subspace search. While both
methods only require one product of the form AZ with an n x k£ matrix Z,
LOBCG performs 3 orthonormalizations (by Cholesky decomposition) whereas
Riemannian CG needs 2 (by polar factor). Furthermore, LOBCG needs 14
matrix products of the form Y7 Z for n x k matrices Y and Z, while Riemannian
CG requires only 4. Finally, the calculation of X;,; (and AX,.;) based on
the coefficients from the Rayleigh-Ritz procedure is not negligible in LOBCG
with a cost comparable to a product Y7 Z. For Riemannian CG, it is simply a
linear combination of two matrices (before normalization). In our experiments,
one iteration of LOBPCG was therefore about 2 to 3 times more expensive,
depending on A and k.

We have also tested a version of LOBCG where all the block entries in
QT AQ; are explicitly calculated (denoted by LOBCG(+) in the table). The
original code replaces X! AX; by the eigenvalues obtained in the Rayleigh-Ritz
procedure. While this behaves well early on, we have noticed stability issues in
our experiments. Figure 5.6 is a clear example where the original version of
LOBCG either does not converge or behaves erratically. In other examples (not
shown), the residual even grows in an unbounded way. The version LOBCG(+)
is however not always an improvement over LOBCG, which can be seen from
the table. This shows that an accurate implementation of CG-based methods
is not trivial, even with subspace search.

For Riemannian CG, we also tested a version (denoted by RCG(+)) where
the product of AX; is explicitly calculated instead of being computed recursively
as in (5.6.1.3). The unchanged number of iterations in Table 5.1 shows that
there is no loss of accuracy when utilizing the recursion. When the matrix A is
very sparse, like in FD3D, the version RCG(+) is less costly per iteration but
for other matrices, the original version of RCG is preferable.
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Table 5.1: Comparison of LOBCG and Riemannian CG (denoted by RCG) when minimiz-
ing/maximizing the partial trace for a few test matrices with different block sizes p. The
time in seconds (rounded to nearest integer) and number of iterations to reach a relative
residual [|G¢||oo/||Golloo of 1078 is indicated in sec. and its., resp. If the method did not
reach the required tolerance in 10000 iterations, a star * is given. The methods indicated
with a (+) are variants that aim to be more accurate; see the text for their definition.

LOBCG LOBCG(+) RCG(+) RCG

problem  secs. its. secs. its. secs. its. secs. its.

v k=106 max * * 5 152 4 301 3 301

2 k=16 min 4 152 4 152 29 2151 25 2151

& k=32max 110 2152 10 152 9 451 11 451

2 k=32 min 5 102 * * 4 201 5 201

5 k=64 max * * * * 70 1301 86 1301

< k=64 min 401 2852 19 102 27 551 36 551

k=16 max 9 752 10 752 11 1801 10 1801

k=16 min 7 602 8 652 3 451 2 451

A k=32max 16 552 16 552 11 1051 11 1051

8 k=32 min 22 802 20 702 37 3701 40 3701

~ k=64 max 51 752 57 802 22 901 27 901

k=64 min 55 802 52 752 36 1401 42 1401

k=16 max 25 352 27 352 39 501 25 501

k=16 min 276 4202 287 4002 340 4401 209 4401

3 k=32 max 42 252 52 302 22 301 19 301

cag k=32 min 648 4202 825 5202 480 6601 412 6601

8 k=64 max * * 170 402 101 651 101 651

k=16 max 1 452 1 502 1 601 1 601

k=16 min 1 452 1 452 1 501 1 501

2 k=32 max 2 552 2 502 1 651 2 651

”é k=32 min 2 402 2 402 2 701 1 701

= k=64 max 4 352 4 352 3 651 4 651

k=64 min 5 502 5 452 3 551 3 551

5 LOBPCG-ACTIVSg70K-p32-RR50-max LOBPCG-boneS01-p32-RR200-min
10 ' ' ' ' —=-RCG 10° ‘ ‘ -2-RCG
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Figure 5.6: Instability of the original LOBCG method.
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6 Nesterov’s accelerated gradient descent for the sym-
metric eigenvalue problem

In this section, we examine the theoretical analysis of a Riemannian gradient
descent algorithm with Nesterov momentum, in order to tackle the symmetric
eigenvalue problem. We follow in general the exposition of our work [16].

6.1 Introduction

Our contribution here is the theoretical and experimental analysis of a version of
Nesterov’s accelerated gradient descent [79] on the Grassmann manifold for cal-
culating a subspace spanned by the k leading eigenvectors of a matrix A € R™*",
To that end, we rely on the rich literature of general Riemannian algorithms,
and more specifically on the formulation of Riemannian accelerated gradient
descent by [119]. The other part of our analysis relies on the geodesic convexity
characterization of the block Rayleigh quotient f on the Grassmann manifold,
analyzed in Section 2 (Theorem 2.7). Despite that the estimate sequences
technique of [119] targets only geodesically strongly conver objectives, there is
already a technique to design estimate sequences for a weakly-quasi-strongly
convex function in the Euclidean regime due to [25]. Thus, from a technical
standpoint, we need to merge the Riemannian approach for strongly convex
and the Euclidean approach for weakly-quasi-strongly convex functions. To
that end, the geodesic search technique for selecting the momentum coefficient
analyzed in [11] (which extended the similar Euclidean technique of [81]) will be
of great help. This approach yields provable accelerated convergence guarantees
for our algorithm. On the experimental side, we show that our algorithm is
competitive compared to other state-of-the-art eigenvalue solvers.

Related work. Motivated by the classic work of Nesterov [79], a plethora of
works focusing on accelerated methods on Riemannian manifolds has been
developed in recent years. We refer the reader to [4, 119] for algorithms
targeting geodesically strongly convex objective functions. There is a second
line of work targeting objectives that are geodesically convex but not strongly
convex with moderate success so far [11, 58]. Recent work [75] seems to give a
better answer on the acceleration problem in the geodesically convex but not
strongly convex setting, its complexity though makes it inaccessible to us. In
all cases, the main obstacles consist of designing an estimate sequence that can
handle the non-linearity of the manifold. There is also a recent line of work on
no-go results on acceleration on manifolds, and namely that one cannot hope for
any global accelerated method on a manifold of negative sectional curvatures
[30, 41]. The latter are not directly applicable in our case, since we work
with the Grassmann manifold, which is of nonnegative sectional curvatures.
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However, they highlight the difficulties of designing accelerated methods on
manifolds, and they give indications of why this could be achieved only locally.

Turning to the symmetric eigenvalue problem, the simplest method for
computing eigenvectors and eigenvalues of a symmetric matrix is the subspace
iteration. However, as discussed in the introduction (Section 1.1), this method
is quite slow, both theoretically (O(1/6) iteration complexity) and practically.
A significant part of research in numerical linear algebra has to do with “ac-
celerating” vanilla methods like subspace iteration using more complicated
mechanisms. The most well-known accelerated scheme for computing lead-
ing eigenvectors is the Lanczos method, which is a member of the family of
Krylov methods. The Lanczos method has iteration complexity of O(1/v/6)
and improves over subspace iteration. This method is, however, not stationary
since it enlarges an approximation subspace in every step (like any Krylov
method). The cost per iteration therefore grows both in time and in memory.
This iteration is therefore restarted in practice. While the restarting strategy is
empirically effective, it makes the method more complicated to use and analyze.
In this paper, we therefore focus on methods that are accelerated versions of
stationary methods, like gradient descent. They have the benefit of a constant
cost per iteration.

An example of accelerating subspace iteration has been done employing
the technology of Polyak’s momentum (heavy ball) method by [115]. The
resulting deterministic scheme of this paper is a subspace iteration with an
extra momentum term that has guaranteed convergence in at most O(1/ \/5)
many iterations, if the momentum coefficient is chosen precisely in terms of
Ai+1 (the (k+1)th largest eigenvalue). If Ay and A\x4; are not known in advance
(which is usually the case), then the convergence behaviour of this algorithm
can worsen considerably.

The algorithm of [115] is essentially a modern reformulation of the classical
Chebyshev iteration (see [96]). An interesting contribution in [115] (except from
the main contribution, a stochastic version of the algorithm) is a clever way to
implement their algorithm (essentially Chebyshev iteration) in a numerically
stable manner (Lemma 12), paying the extra cost of a QR-decomposition in a
(2n) x k matrix (instead of n x k). A different approach based on non-linear
conjugate gradients is presented in Section 5. The conjugate gradient method
combined with a choice of step size via an exact line search has excellent
empirical performance, but it is very hard to prove any theoretical convergence
guarantees (Section 5 provides theoretical guarantees only for Algorithm 5.1
and not for Algorithm 5.3). Another interesting method that is empirically
accelerated but comes without much theory is LOBPCG [59].

In this section, we deviate from the previous research directions and develop
a version of Nesterov’s accelerated gradient descent on the Grassmann manifold
for the symmetric eigenvalue problem. When measured in terms of matrix-
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vector products, every iterate of this algorithm has double the cost as subspace
iteration and subspace iteration with momentum [115]. The algorithm does
in addition incur overheads when computing the momentum terms and the
geodesic. These costs are however not dependent on A and involve only
dense linear algebra routines that are typically very optimized in practical
implementations. ~

The analysis of our method reveals that one needs at most O(1/+/8) many
iterations to compute the dominant subspace with accuracy e, if the initialization
is O(6%4) close to the optimal subspace. The need for local initialization is
an artifact of the general analysis of the Riemannian version of accelerated
gradient descent we use, developed in [119]. Also, our algorithm relies on an
almost exact knowledge for the gap & = A\, — Agy1, similarly to [115] which
requires exact knowledge of \; and Agyq.

We do not claim that the work of this section is a go-to for practitioners.
Even from a theoretical point of view, the analysis is so complicated that
even the expert reader might find it difficult to follow. The convergence
guarantee is not impressive either, as one needs a very good initial guess in
order to achieve accelerated convergence. We do believe though that bringing
the famous symmetric eigenvalue problem together with the equally famous
Nesterov accelerated gradient descent algorithm merits some discussion. From
a higher lever viewpoint, it is certainly interesting that this algorithm can be
used for tackling this problem and perhaps this work serves as a good basis for
future improvements.

6.2 Weak estimate sequence

For reasons related to both the weak nature of geodesic convexity and the
non-linearity of the working domain (Grassmann manifold), we introduce a
weaker notion of the classical estimate sequence than [79]. This is the strategy
in both [25] and [119].

Definition 6.1 A weak estimate sequence for f is a sequence of functions
(91)52, defined on the Grassmann manifold, and a sequence of positive scalars
(1)20, such that

tlirg Ty = 0 and ¢t(vo¢) < (1 - Tt)f(va) + Tt¢0(voz)

where Vo, = argmin yegy(n ) f(X). We denote such a weak estimate sequence by
the pair (1¢, ¢y).

The difference with the classical definition is that the inequality holds only
at the optimum V,, and not at any point.
We utilize weak estimate sequences in the following way:
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Proposition 6.2 If for some sequence of subspaces (X;)22,, we have

f(X) < ¢f = Xeré?&k) or(X)

where (¢y, 7¢) is a weak estimate sequence, then

f(Xt) - "< Tt(¢0(Va) - f*)
Proof The proof is direct by the fact that

f(&X) < min ¢t( ) < 01(Va)

XeGr(n,
<(1- Tt>f(Va) +7¢0(Va) = (1 = 7) " + Tigo(Va).

Rearranging we get the result. [ |

Now, we describe how to construct a weak estimate sequence for our geodesi-
cally WQSC function f in (1.2.1.5). The result below is valid for any function
that satisfies Theorem 2.7, but we phrase it directly for f for simplicity. For
ease of notation we denote

1= 2cqo
for the rest of Section 6.
Proposition 6.3 Let f be the block Rayleigh quotient 1.2.1.5. Choose an
arbitrary function ¢o: Gr(n,k) — R and an arbitrary sequence ()52, of
subspaces in Gr(n, k). We also choose a sequence (ay)2, of scalars such that
ar € (0,1) and X2 0 = 0.

Define 1o = 1. For allt > 0, let B; be a lower bound for a(Y;) (as defined
in Theorem 2.7) and define

Tir1 = (1 — )1y

G (X) = (1 — a;)pi(X)
o (£00) + - (srad 1), Lo, () + Baist?(91.2))

If :(V.) < ¢:(Vo) for all t > 0, then the pair (1, ¢;) is a weak estimate
sequence for f.

Proof We prove the main inequality involving ¢, in the definition of a weak
estimate sequence by induction. For k = 0, we have ¢o(V,) = (1 — 70) f* +
To¢o(Va) because 1o = 1. Assume that the inequality holds for some k& > 0:

¢t(Va) - < Tt((bo(va) - f*)

139



Then, we have

Thus, the inequality holds also for ¢ + 1 which concludes the induction. The
first inequality follows from the construction of ¢;, the second by Theorem 2.7
(and a()}) > B;) and the third by the induction hypothesis.

Furthermore, we observe that the assumption 25° 04 = oo guarantees that
limy oo 77 = 0, Whlch finishes the proof. [ |

6.3 Towards an algorithm

We now use Proposition 6.3 to construct a more specific weak estimate sequence:

Proposition 6.4 Consider ¢, oy, B, and ), as in Proposition 6.3 and let ¢}
be defined as in Proposition 6.2. Choose ¢o(X) = ¢f + 2 ||Logy, (X)||* (this is
possible since Proposition 6.3 is for an arbitrary ¢o). For k > 0, we define the
following terms recursively:

® Vi1 = (1 — )y + aup

L Vt+1 = EXpyt (MLOgJ}t (Vt) Bt’7t+1g adf(yt))

Ye+1

0 G = (1= )0 + auf () — gt lgrad f (V)
4 atll=ot)y (gdistZ(yt,Vt) E(gradf(yt),Logyt(Vt)))

Yt+1

If vi41 is chosen such that

Yer1(L0gy,,, (Va) — Logy,,, (Vit1)[|? < i1 [ Logy, (Va) — Logy, Vi) 1%,
then the pair of sequences (1, ¢;) defined by
!
G(X) == @) + éHLogyt(X) — Logy, (V)|
T0 — 1, Ti4+1 ‘= (1 — Oét)Tt
1s a weak estimate sequence for f.

Proof We firstly prove that if ¢:(X) = ¢; + %[[Logy, (X) — Logy, (V,)|?,
then ¢, 1(X) = ¢}, + 15%||Logy, (X) — Logy, (Vi+1)||?, where ¢y, is defined
recursively from ¢; as in Proposition 6.3.
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Indeed, we have

Gusa () =1~ () 4 (FO0) + - (5090, Loy, () + st (0,0 )

by its definition in Proposition 6.3. We can rewrite the right hand side as

(1= a)) 4 (F02) + - (srad 1), Loy, () + 5list (00, 0) ) =
(1= ar) (97 + 5 Loy, (X) — Logy, (W)]?)
o (£ + - ered F 90, Logy, () + St (91,2) ).

where we use the induction hypothesis for ¢,. By rearranging the terms and
completing the square, we can write

(1= ar) (97 + 5 |[Logy, (X) — Logy, W)]?)
o () + 5 (aradf(0), Lo, () + st (3. )

%“HL g9, (X)|2 + (St grad f (Vi) — (1 — ag)yiLogy, V), Logy, (X))

B,
+ (1= ) (5 + 2 Logy, O)I1?) + arf (%)
_ Vi1 (1 —a)n ’
-5 Logy, (X) — (TL gy,(V) — t%ngadf(yt))
e || =) ’
2 ’Yt—|—1 Logyt (Vt) tVt+1 gradf(yt)
+ (1= ) (6 + lILogy, W) +af(0).

Plugging in the deﬁnltlon of V1 and splitting the norm in the second summand,
we can write the last expression as

22 || Logy, (¥) — Logy, (V)| grad ()|

232_
Oét(l - Oét) Ve M 9 1
+ ———— | 51lLogy, W)II” + - (Logy, V), grad f (Vr))
Ve+1 2 By

+ (1 = )y + anf (D).

Finally, we can use the definition of ¢;,; from ¢; and rewrite again in the
desired form:

¢;5k+1 + % ”LOg% (X) - Logyt (VtJFl) ||2 ’
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This proves our first claim.
Using the previous computation and the definition of v;,1, we immediately
get
¢t+1(va) < Cbt—i-l(Va)'

Thus, we have shown that the sequence ¢; defined as
x )
Gu(X) == of + EtHLOgyt(X) — Logy, (V)|

satisfies all the assumptions of Proposition 6.3. We therefore conclude that
(14, ¢¢) is a weak estimate sequence. u

Now we have a concrete definition of V;,; from ), and V;. It remains to
define ); through X; and V, and A, through );,. We do this with criterion
to guarantee f(X;) < ¢;. In order to guarantee that, let us assume that
(&) < ¢; and see what happens with ¢;, ; (towards having an induction step).
Using the definition of ¢}, in Proposition 6.4 and f(&;) < ¢;, we have:

2

¢:+1 > (1 —ay) f(X) + o f( Q) — QB;%H ||gradf(yt)\|2

1—
4 OO (0. Logy, (V).
tVt+1

The usual way to proceed from here is to assume that f is geodesically convex
and linearize it from below (see [119], Lemma 6). Since the Rayleigh quotient
on Grassmann is only-locally convex, we employ a different strategy using a

geodesic search as in [11], inspired by [81]. Namely, if we find a way to choose
Y, from X, and V; such that

QY

f(&) + p——(gradf(0), Logy,(W)) = f()) (6.3.0.1)
tVt+1
then the previous inequality can be reduced to
2
. Q
Orv1 = F(h) = 5 llgrad f(V)|1%. (6.3.0.2)
2Bi Y41

Inequality (6.3.0.1) is satisfied if we choose ), through an exact search in
the geodesic connecting V; and A:

Lemma 6.5 Let
Vi = Evat (ﬁtLOgvt (Xt))

where
ﬁt = argminﬁe[o,” (EXth (/BLOth (Xt) )) .
Then we have

f) < f(X) and (gradf (), Logy, (V1)) > 0.

142



Proof See Appendix B in [11]. |

Thus, if we choose ), in the manner of Lemma 6.5, the initial inequality for
¢y, implies inequality (6.3.0.2). Inequality (6.3.0.2) is similar to the function
value reduction that is obtained via a gradient step:

If we choose

1
X, 41 = Expy, (—Zgradf()/t)> : (6.3.0.3)

then, by L-smoothness, we have

F(Xein) < F(X) — o7 lamad f()

and if we also choose «; such that

2
o _1

2B?%,,, 2L’

then
2

F(X1) < FO) — QB?;M lerad f )| (6.3.0.4)

and consequently
f(X) < 04

We have also the freedom to make the gradient step from ), following the
QR-retraction (Retr) used in Section 5 and the step-size via an exact line-search:

Xip1 = Retry, (—7optimar - gradf(Jr)) . (6.3.0.5)

As analyzed in Section 5 this exact line search is cheap to compute.
Lemma 5.2 implies that in this case

F(Xr) < F(X) = 2 llarad F(2) P

and this means that if we choose a; such that

a? 2 1

28291 5L ol
we have again

f( &) < o0fy

is guaranteed. Here L is defined as %L, where L is the smoothness constant.
Choosing ¢f = f(X), we can now prove by induction that the following

algorithm produces iterates A;, such that f(X;) < ¢f, where ¢; is defined

recursively as in Proposition 6.4. This analysis yields us naturally to an
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algorithm, which can be proved to have accelerated convergence guarantees.
We choose to write the algorithm using equation (6.3.0.3) to perform the
gradient step for obtaining X;;; from )}, but we could also use equation
(6.3.0.5). The only thing that changes is the constant L to L.

Significant effort needs to be spent in proving that all operations in Algorithm
6.1 are well-defined. For that to happen, we need to insure that there is

™

a unique geodesic connecting V; and A}, that |[gradf(),)|2 < § and that

‘ %Log%(l}t} - %‘fl grad f(Y) )2 < % (i.e. these tangent vectors are inside

the injecitivity domain, recall equation (1.3.1.5)). To guarantee these bounds,
a careful selection of hyperparameters is crucial. Algorithm 6.1 is written in a
form, in which it is not clear whether some steps are doable, for instance it is
not clear whether one can find a =, from 4;,; such that the requirements of
step 9 are satisfied. For the moment we assume that all these can be done and
we show in the next section that a careful selection of 7y indeed yields all the
requirements of Algorithm 6.1.

Algorithm 6.1 Accelerated Gradient Descent for the Block Rayleigh Quotient
1: Initialize at Xy = Vo € Gr(n,p) and choose o, such that § <o < L

2: for k> 0 do
3 Br= a;g[ronhn {f(Exp,, (BLogy, (X:)))}
€10,

4: Y = Exp,y, (BrLogy, (X))

5. 4(1? _ (1*at)l’:/t+0ttl’f

6: Xiy1 = Exp,, (f%gradf(yt))

7 Fer = (1) taup

8 Viy1 = Expy, (MLO&A (Vi) — 2 gradf(yt))

Vt4+1 Y41

9:  y41lLogy,,, (Va) — Logy, ,, (Ver1)|I* < Fet1|[Logy, (Vo) — Logy, Ver1)|?, such that Je1 >
Yer1 > p/2.
10: end for

Remark Notice that Algorithm 6.1 is invariant under shifts of the matrix A
with multiples of the identity matrix. Indeed, the only steps that are affected
by such a shift are steps 3, 6 and 8, which feature the function f or its gradient.
The shift A+ al yields a function value which is just shifted by a constant, thus
step 3 remains unchanged. Also, the Riemannian gradient remains exactly the
same as the orthogonal projection neutralizes the extra term obtained by the
shift. Thus, steps 6 and 8 also remain unchanged. Notice that the parameters
~ and g remain unchanged as well.
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Theorem 6.6 If X satisfies

1 a\*
diSt(Xo,Va) < g@ (z) y

and step 9 in Algorithm 6.1 can be satisfied, i.e. there is v,11 satisfying the
required bounds, then the following holds:

(i) f(X), f(V) < f(A), for all k>0
(ii) a(Yy) > 5

(i1i) The operations in steps 3, 4, 6,and 8 in Algorithm 6.1 are well-defined in
the sense that the related tangent vectors are inside the injectivity domain
of Gr(n, k)

(iv) f(X) < ¢f, for all t > 0, where ¢} is defined as
¢ = f(Xo)

2

S = (1= )] + af ) = = lerad SO
+ M (HdistZ(yt, V) + 2(grad f (), Logyt(Vt))) )
Yt+1 2

Proof We proceed to the proof of all points together by induction.
For ¢t = 0, the first holds trivially since Xy = ).
The second point holds, because

1

a(Yo) > c08(Omar (Yo, Va)) > cos(dist(Vo, Va)) > cos (1) > 5

Here 6,,,. is used to denote the biggest principal angle between subspaces. This

inequality implies that By can be chosen to be %
The third holds since Xy = V, (steps 3-4 are well-defined) and by L-
smoothness of f, we have

_ , L(6\"* L
|lgrad f (Do) < Ldist(Vo, V.) = Ldist(Xp, V) < s\z < 5

This implies that the biggest singular value of —%grad f(Jo) is less than 7,

thus —%grad f(J) is inside the injectivity domain and step 6 is well-defined
for ¢ = 0. For step 8, we have that Logy, (Vo) = 0, thus we need to bound

H —%ﬂgradf(yo) H . For that, we use inequality (6.3.0.4), which can be rewritten
! 2
(with By = 1) as

2
%ugradﬂyo)u? < FOb) — F(A) < F(X) — 7.
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By multiplying both sides of the previous inequality with 2/, and L-smoothness
of f, we get

2 2 3
S Jaraa WP < S (o) <250 (1) =5 (1) <1

The second inequality follows from 4, > v > §.

This bound implies that —2% grad f()p) is inside the injectivity domain and
step 8 is well-defined for ¢ = 0.

The fourth point holds trivially since ¢ is defined as f(Xp).

Now, we assume that all the points hold for all iterations up to iteration ¢
and wish to prove that they still hold for ¢ 4 1.

By the construction of the algorithm we have

fVer1) < F(Qh).

This is because f(Vir1) < f(Xir1) (due to the geodesic search, step 3-4) and
f(Xer1) < (%) (due to the gradient step, step 6). Thus, we can conclude
that f(Vir1) < f(Qh) < f(Qo) = f(AXp) by the induction hypothesis. The same
inequalities imply that f(X;41) < f(X;) and by the induction hypothesis we
have f(X;11) < f(AXp). Thus, the first point is correct at iteration ¢ + 1.

We can use the result of the first point to bound the distance of the iter-
ates Vi1, Xj41 from the optimum V,, using the quadratic growth condition
(Proposition 2.4):

1 1
dist2(yt+1, V,) < _5(f(yt+1) —f) < _5(f(X0) - )
cQ cQ
Lo, 1 5\ 12
< 20Q5d18t (Xo, Va) < 128 (Z) .

The same bound holds also for dist(X;;1,V,). Thus, we have

1 5 1/4
dist(X,41, V), dist V)< — (=) .
IS( t+1 ) 1S (yt+1 ) 8\/§ (L)

This lower bound implies that the quantity a();y1) can be bounded as

1
a(Vir1) = €08(Omaz(Vit1, Vo)) = cos(dist(Viy1, Va)) = cos (1) > 2

which implies that the second point holds at the ¢ + 1 iteration.

The result of the second point together with the induction hypothesis provide
that a();) > 3 for all ¢ = 0,...,¢ + 1. This means that B; can be taken equal
to 1 in all the analysis of Sections 4 and 5 and with a choice of a; as in step 5

2
of the algorithm and ¢, as defined in the statement of the fourth point, we
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have automatically that f(X;41) < ¢;,,. Thus the fourth point is correct at
iteration ¢ + 1.

For showing that the steps 3-4 and 6 in the algorithm are well-defined in
iteration ¢ 4+ 1 (third point), we need also a bound for dist(V;,1,V,), which
turns out to be a quite complicated. For that, we start by using the second
bound of Proposition 1.15:

dist(Vig1, Va) < || Logy, , (Vo) — Logy, , (Ver) -
The quantity on the right hand side is directly related to the sequence ¢;:

2 . 2 .

I Logy,,, (Va) — Logy,,,(Vit1)|I* = -~ (Gr+1(Va) = d141) < . (Po(Va) = [7)

2 * Y 4. 9 * 2 * 7 4. .2
_— A — - — A <
= (6+ D dist?(Xo, Va) - f ) — (£() -1+ Y dist (%, Vo)) <

2 L L L
£ Lx dist®(Xp, Va) = 70 dist®(Xp, V) < 4=dist?*(Xp, V,) <
Tt+1 Ve+1 i

L 1 (6N 1[5\
—4 e [ 2 ——(2)
206 649 (L) 32 (L>

The first equality is implied by the definition of ¢;,1, the first inequality by
Proposition 6.2 combined with the inequality ¢y, ; > f(X;41) > f* which holds
since we have already explained that the fourth point holds for ¢+ 1, the second
equality by the definition of ¢y, the third equality by the definition of ¢, the
second inequality by L-smoothness, the third inequality by the upper bound on
7o and the lower bound on 7,1, and the rest are simple substitutions involving
the bound in the initial distance dist(Xy, V).

Thus
1 5 1/4
dist W) < ——= | = .
1S (Vt+1,V ) >~ 4\/§ (L>
Combining the bounds on dist(X,11, V,) and dist(Vii1, V,) with the triangle
inequality, we get
1

diSt(Xt+1, Vt+1) S diSt(Xt+1, V,l) + diSt(Vt+17 Va) S 5

This implies that there is a unique geodesic connecting X;,; and V;y1, thus
steps 3-4 are well-defined in iteration ¢ + 1.
In addition, L-smoothness of f implies that

lgrad f(Vir1)|] < Ldist(Vig1, Va) <

which provides the bound




The last bound implies that —%grad f(Yiy1) is inside the injectivity domain,
thus step 6 is well-defined in iteration ¢ + 1.
We lastly deal with step 8. We have that U=y (=are)yen

Fer2 (I—ae1)yer1touyip —
1 and | Logy,,,(Vix1)l| < || Logy,,,(Ves1)|l < 3. For the second summand
2%1*; gradf(Ys1), we use inequality (6.3.0.4), which can be rewritten (with
By =1)as

2 2
%ngadﬂytﬂ)w < Js1) — f(Xg2) < f(X) — [

Multiplying both sides with % and using L-smoothness of f, we get

402 L
L lgrad f (V)1 < ——dist?(Xp, V)
’Yt+2 )

By definition, we have § < ;11 < 442 Plugging in the assumed bound on
the initial distance, we get

3 3 1
402, L1 /6\e 1L /&\: 1 /6\* 1
Tra lgradf (V) I* < 649\ L 6405 \ L 6a\1L) 1

where we used that p = 2cgo.
By triangle inequality, we get

20041

1 — o
H an %HLOgytH(VtH) gradf(Ve1)|| < s+ 5 =1,

1 1
Ve+2 Vit2 2 2

thus a | )
— Q1) a
1 t+1LOgyt+1(Vt+1) 20 d f (V)
Vet2 42
is inside the injectivity radius of Gr(n, k) and step 8 is well-defined at iteration
t+1.
With that in order, the simultaneous induction of all four points is complete.
|

6.4 Effect of curvature/choice of parameters

In Algorithm 6.1, it is not clear whether we can choose 741 from %, (step 9)
in a tractable way, such that .41 > §.
We start by showing that there is a way to choose ;11 from #4;1, such that

Yer1l[Logy, (Vo) = Logy, , (Vir))I” < Fesa[|Logy, (Va) — Logy, (Vert)|1*
To that end, we need the following geometric result (Theorem 10 in [119]):
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Lemma 6.7 Letx,y, z,w be four points in a geodesically uniquely convex subset
of a Riemannian manifold, with sectional curvatures in the interval [— K, K|

and .
max{dist(z, z), dist(w, 2)} < —=

MWK’

then
ILog,, () ~Log,(y)* < (145K max{dist(z, z), dist(w, x)}*) [ Log. (x) ~Log. (y)|*
Proof See Theorem 10 in [119]. |

If z,y, z,w are subspaces on the Grassmann manifold with the standard
Riemannian structure, we can take K = 2 [113].

Note that ), is not yet computed at step 9, but it is to be computed
exactly in the next iteration of the algorithm. However, this is not a problem,
since the geometric result (Lemma 6.7) holds for any four points on a manifold
of bounded sectional curvatures.

Proposition 6.8 Choose

VPR -8
SRV R e i M

L jn
5_5\/;

dist(Xp, Va) < \/_( )3/4,

then one can choose v;11 from 1 satisfying all the requirements in step 9 of
Algorithm 6.1, as

and vy < L, where

If Xy satisfies

1
Ve+1 = m%ﬂ-

Proof We proceed by induction. For k = 0, 7, satisfies trivially the main
inequality of step 9 (because there is no 7). Also 7y > &, since (easy to see)

VIETUTBE - _
VB + (1 +B)E +5

£ =1/F.
Now we assume that we can choose ;.1 as in step 9 of Algorithm 6.1 in the
first ¢ iterations. Then the result of Theorem 6.6 holds and its proof guarantees

that

AV Va). D Va) < (5)1/4.
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This implies the weaker inequality
< 1
— 4 /_K Y

where K is an upper bound of the sectional curvatures of the Grassmann
manifold and it is taken equal to 2. Thus, the points V4, Vi1, Vir1 and V,
satisfy the assumptions of Lemma 6.7. This gives

diSt(yn Va) , dist (yt+1> Va)

1 (6

1/2
[Logy,,, (Va)—Logy,,, (V)| < (1 + 1058 (f) ) [Logy, (V) —Logy, Vi),

Thus, we can choose ;41 from #;,; such that

_ 1 s 1/2
E Z 1 + _O —
Vi1 128 \ L

or similarly, we can take v, = ﬁﬁtﬂ with

10 (6\'"?
< — | = .
b= 128 (L)
< 20 (8)2 thus
1 rpu\1/2
5=5(7)
is a valid choice. Such a selection of § is important for the rest. Note that 3 is

involved directly in the selection of v, and affects the sequences v, and ;.
We now prove with the aforementioned selections of § and vy that ~.1

selected in step 9 always satisfies v, > £.
/ B
> —ﬁgJF(l;ﬁ)L '8. To

It easy to see that % (%)1/2

/32 B
We first show that if v, > AVACRA G 1, then ag >
\/B2H(148)E+8

that end, we use the definition of ay at step 4 of Algorithm 6.1:

do? — (1 - O‘S)’Ys + sl
S L °

The positive solution of this quadratic equation is

(1= 70) 3 + (1 = o) +
Qs = 5 =: 9(7s)-

We first note that ay is always less than 1. Indeed, this happens if and only if

1 1 Ys
) — )2 Is <9
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or even stronger if
( ) L + Js <2
H—="7s oL T

d* — 2d —

which is equivalent with
> 4,

b'lt

where d = 4 /lLS. Since % < 1, it suffices to hold
d>—2d+3>0,

which always holds. Now, we bound «; from below.
The function g is increasing and we have

(\/m—ﬁ )_9(0—5_07

VBE+I+B)E+p C+p
where
C = \/52+ (1+8)%.
We have

C—p _ 28  28(C—-f) 28(C-p) _ 2L3(C—P)

Hooxpl e+~ 2= T @+pE"T T 1+p

and ) ) )
—BM:(C—B)M_( ~ 02, _ LC-)
C+p c2 — g (1+p)E" 1+5
Then,
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Now we prove that

Q

C+

=

Ve > T

=

for any £ > 0 by induction.

The claim is correct for ¢ = 0, by the choice of 79. Let us assume that
vy > g +g p. This also implies that a; > % by the previous argument. Then
Y¢41 satisfies

(14 B)y41 = (1 — )y + aupe

Since ay < 1 and ~; > g+gu, we have
C — 2
(I —a)y+ap>(1- Oét)CJrgquatu =l —a)p+opp—(1- at)o—fﬁu
28 C—8 N 28 _(  (C-ps 28
=t (=g 5“2’”( 2 1)C+ﬁ“‘(” C+p c+/3>“
¢-p
(14 A b

Thus 41 > g—;g p and the desired result holds.
For proving that v, > £, we only need to show that g s 1 which is quite
easy to see. This inequality can be written equivalently as

20-202C+f & C 2300 Fr+0)] 295 & <1+5>%2852=2—85%

Since 1+ 3 > 1, the last inequality holds and the desired result follows. Thus,
the sequence ~;, created by 7; as in the statement of the proposition, satisfies
the requirements of step 9. [ |

Proposition 6.8 leads us to a more concrete version of Algorithm 6.1 with a
specific choice of hyperparameters:

152



Algorithm 6.2 Accelerated Gradient Descent for the Block Rayleigh Quotient

1: Initialize at Xp = Vo € Gr(n,p) and choose shrinkage parameter 8 = é\/%

S VBB L8

2: Choose
o BEH(148) £ 158

3: for £ >0 do
4: Br = argmin {f(Exth (nLogvt (Xt)))}

n€[0,1]
5. Y = Expy, (BrLogy, (X:))
402 = U*Oﬂ%

Xiy1 = Expy, (—eradf(D4))
F41 = (1 — o)y + aups

1 =
Yt+1 = m’YHl

10: Vip1 = Expy, (MLO&Q(W) — 2 gradf(yt))

Yt+1 Y41

11: end for

From now on, we use Algorithm 6.2 as our standard algorithm for the rest
of this section. Its convergence is analyzed in the next section.

6.5 Convergence

We are finally ready to complete the convergence analysis. We start with the
following simple result.

Proposition 6.9 The sequence X, generated by Algorithm 6.2 satisfies
J(6) = 1" <7 (F(X) = "+ Ddist®(X, V)
Proof We choose Yo
do(X) = f(Xo) + EdistQ(Xo,Va)

as the beginning of the estimate sequence. Then ¢f = f(&Xy) and by construc-
tion of ¢} in Theorem 6.6, we get f(X;) < ¢;. The result now follows by simply
applying Proposition 6.2. [ |

Proposition 6.9 provides a worst-case upper bound for the sub-optimality
of f and it only remains to estimate 7;. Such an estimation can be easilty
obtained by the proof of Proposition 6.8.

Proposition 6.10 The sequence 7;, defined recursively as 1o = 1 and 1441 =
(1 — ay)7i, where oy comes from Algorithm 6.2 starting from a point Xy such
that

1 5\
diSt(Xo,Va) S g@ (Z) s
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18 upper bounded as

Proof We have
T = Hf;é(l — ;)

and we only need to estimate a lower bound for «;.
The proof of Proposition 6.8 provides a lower bound for «; as

VEa el
T 2 Y

with § = % (%)1/2. This is because we proved that ~; > g—;g -, for all ¢ by

induction and also proved that

¢-p VB +([A+8)E -8
I > .

Crpg HTw= 2

Taking into account the exact value for 3, we can rewrite the lower bound
for o as

Vi =

2+(1 £ — 1 1 4 1 2
0@2\/5 A+Hg =08 L uf JL ;4 [n 1 L2 e
2 2V L 25 25V L 5 5V L
This provides the desired result. [ |

We also rephrase the previous result in terms of iteration complexity:

Theorem 6.11 Algorithm 6.2 starting from Xy satisfying

diSt(Xo,Va) < g@ (E) y

computes an estimation Xr of Vs, such that dist(Xr, V,) < € in at most
L Xo) — f*
T=0 \/ilog—f( o) =/
) €0

Proof For dist(Xr,V,) <, it suffices to have

f(Xr) = [ < cpe®s

many iterates.
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by quadratic growth of f (Proposition 3.2). Using (1 — ¢)' < exp(—ct) for all
t>0and 0 <c¢ <1, Propositions 6.9 and 6.10 give that it suffices to choose ¢
as the smallest integer such that

) - 5 <o (=3 20) (120 - 1) < coes.

Solving for ¢ and substituting p = 2cqd, we get the required statement. [ |

Remark Since the expression

VB + +ﬁ——5
VB (1 + 8L 5"

is strictly increasing with respect to p, we can choose 7y by substituting g with
an over-approximation, for example ~:

L _VFEEEI-g
R/ P

6.6 Implementation details and computational cost of Algorithm
6.2

A naive implementation of Step 4 of Algorithm 6.2 can become quite costly
as a simple binary search may need many function evaluations to reach [, in
a good accuracy, and as a result, many large matrix-vector multiplications.
Fortunately, we can manipulate the expressions so that it suffices to do only
two large matrix-vector multiplications. The idea for such a technique comes
from [12].

Let X be a point on Grassmann and P a search direction. We consider the
function

X (n) = Expy(nP) = Span(XV cos(nE)VT + Usin(nZ)VT),

where X is a representative of X and UXV7T a compact SVD of P. Here X
is taken as a diagonal matrix and the functions sin and cos act only to its
diagonal entries.

The value of f evaluated at X' (n) is

FX()

= — Tr((XV cos(nX)VT + Usin(nX)VH)TA(XV cos(nX)VT + Usin(n)V71))

= — Tr(Veos(nX)VIXTAXV cos(nB)VT) — Tr(V sin(nX)UT AU sin(nx)V7T)
— Tr(V cos(n2)VIXT AU sin(n2)VT) — Tr(V sin(nB)UT AXV cos(n2)VT)

= — Y (cos® (%) a; + 2sin(n%;) cos(nX;) B; + sin?(nE;) ),
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Matrix n K structure fraction of nnz

FD3D 35000 7.0-103 real 1.95-104
ukerbel 5981 — rank-deficient, binary 4.39-1074
ACTIVSg7OK 69999 2.9-10% real 4.87-107°
boneS01 127224 4.2-107 real 3.40-1074
audikw_1 943 695 — rank-deficient, real 8.7-107°

Table 6.1: Summary statistics of the tested matrices.

where
o= (VIXTAXV)y, Bi = (VIXTAU); and v = (UTAU) .

Thus, for computing the steps 4-5 of Algorithm 6.2, we need to compute the
matrix-vector products AV, and AU, where U is the first matrix in the SVD
of Logy, (X;). Then, we can execute binary search (or any accelerated version,
including Newton’s method) for calculating ; without needing to compute any
additional matrix-vector products with A. Moreover, these calculations are
enough to provide immediately the product AY; as

AY, = (AV))V cos(B2)VT + (AU) sin(B,2)V7T,

where ULVT is the SVD of Logy, (A;). Thus, for computing the gradient step
(step 7) in Algorithm 6.2, we do not need to compute any new matrix-vector
products as AY; suffices for calculating gradf();). Consequently, the cost of
computing one iteration of Algorithm 6.2 is two matrix-vector products. This
is more than gradient descent or conjugate gradients method [12] (that need
only one matrix-vector product), but still reasonable as accelerated gradient
descent typically features three kind of iterates (X;, Vi, V;).

6.7 Numerical experiments

We test the proposed method on a series of benchmark test matrices from the
SuiteSparse Matrix Collection [32] used also by [96]. The main properties of
the tested matrices, including their size n, condition number k = A\;/\, and
other structural properties, are summarized in Table 6.1. For each of the tested
problems we also report the condition number

KR = % =0 (1/6), (6.7.0.1)
k — Nk+1

of the Riemannian Hessian evaluated the dominant subspace with spectral gap
5 [12, 14].

We compare the efficiency of the proposed Nesterov acceleration with three
other methods: Riemannian gradient descent, Chebyshev filter in subspace
iteration, and the Riemannian conjugate gradient for block Rayleigh quotient
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Method ‘ Mat. products per iter. Required info.

Riem. gradient descent 1
Chebyshev filter 1 Ak+1s An
BlockRQ RCG 1 -
Nesterov acceleration 2 0, Kk

Table 6.2: Comparison of the number of matrix products with A required by each of the
methods. Riem. gradient descent and Chebyshev filter subspace method require an additional
matriz product every s iterations where s corresponds to the degree of the filter polynomial.

107 10°
X Riem. steepest descent
g =3¢ Chebyshev filter g o
= 90 BlockRQ RCG L 10
E Nesterov acceleration g
T T
= 10°F = ~
= o
5 = 10°
& a
% 107 E)
g g 10®
é % Riem. steepest descent
. 108 F 5 v . : fi
= 10 5 1010 =3¢ Chebyshev filter
& N BlockRQ RCG
Nesterov acceleration
10°® 10"
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of matrix multiplies with (shifted) A Number of matrix multiplies with (shifted) A
(a) Problem nb 1 (k = 128, min.) (b) Problem nb 2 (k = 128, max.)

Figure 6.1: The FD3D matrix.

(BlockRQ RCG). We precompute the eigenvalues using eigs command in
MATLAB required to determine the optimal Chebyshev filter for the subspace
iteration and the parameters in the Nesterov acceleration and BlockRQ RCG.
The tested algorithms differ in the number of matrix-vector products that they
require per iteration, which we summarize in Table 6.2.

FD3D We generate a 3D finite difference Laplacian matrix corresponding to
the uniform grid of size 35 x 40 x 25 and zero Dirichlet boundary conditions,
resulting in a matrix of size 35000.

The four problems with the finite difference matrix FD3D are summarized in
Table 6.3. We experiment with computing the dominant subspace of dimension
k = 128 and also with the minimization of the Rayleigh quotient.

problem nb (FD3D) | type k Ok KR Cheb. degree
1 min 128 8.3-10~*% 1.4.10* 100
2 max 128 83-10* 1.4-10% 100

Table 6.3: Tested problems for the FD3D matrix (n = 35000,k = 7.0 - 103).
In Figure 6.1 we show the convergence plots tracking the number of matrix-
vector products for problem nb 1 and 2. Overall, for both problems BlockRQ

RCG outperforms the other methods, while Nesterov Acceleration matches the
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Figure 6.2: Comparison on ukerbel test matrix on problem nb 3 and 4.

slow convergence of Riem. gradient descent for the first 250 iterations after
which it starts converging at the proved rate O(1/v/8). The Chebyshev subspace
iteration with polynomial of degree 100 is able to match the convergence rate
of the Nesterov acceleration on problem nb 1 but not on problem nb 2.

ukerbel The matrix comes from a locally refined non-uniform grid of a 2D
finite element problem. Although the matrix is of a smaller size n = 5981
compared to the other tested matrices, it is a more challenging problem due to
the non-uniform grid resulting in a very high condition number. The two tested
problems are summarized in Table 6.4 and differ in the size of the subspace
k =64 and k = 128.

problem nb (ukerbel) ‘ type k Ok KR Cheb. degree
3 max 64 1.2-1073% 5.2-10° 100
4 max 128 94-107% 6.7-10° 100

Table 6.4: Tested problems for ukerbel rank-deficient matrix (n = 5981).

In Figure 6.2 we see the performance of the methods on problem nb 3 and 4
for ukerbel matrix. In both problems BlockRQ RCG and Chebyshev subspace
iteration eventually outperform the Nesterov acceleration. We also observe an
initial slow convergence of the Chebyshev iteration until the iteration 400 and
500 respectively.

ACTIVSg70K This large matrix models a synthetically generated power
system grid. We experiment with subspace dimension k& = 32 and k = 64 as
described in Table 6.5.
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Figure 6.3: Comparison on ACTIVSg70K test matrix on problem nb 5 and 6.

problem nb (ACTIVSg70K) | type k Ok KR Cheb. degree
) max 32 2.2-102 1.2-10% 50
6 max 64 20-10° 1.3-10° 50

Table 6.5: Tested problems for ACTIVSg70K matrix (n = 69999, k = 2.9 - 108).

Figure 6.3 shows the convergence plots for ACTIVSg70K. We see that Nesterov
acceleration outperforms the other methods on the problem with larger subspace
dimension of k£ = 64 (which is harder). For the problem with smaller subspace
of dimension k = 32, the Chebyshev iteration algorithm outperforms the other
methods (while being the worst performing on k£ = 64), which reveals its
sensitivity to choosing the correct degree of the filter polynomial.

boneS01 The second largest matrix we test is of size n = 127224 and comes
from a finite element model studying the porous bone micro-architecture. The
problem is challenging due to its large size and Riemannian condition number,
see Table 6.6

problem nb (boneS01) | type k& Ok KR Cheb. degree
7 max 64 2.4-100 2.1-103 50
8 max 128 1.3-10" 3.6-103 50

Table 6.6: Tested problems for boneS01 matrix (n = 127224,k = 4.2 - 107).

Figure 6.4 shows the performance of the methods on boneS01. We see that
the Chebyshev subspace iteration with degree 50, while having slower conver-
gence at the beginning, outperforms the other methods. Nesterov acceleration
is the second best performing and faster than Block RQ RCG and Riemannian
gradient descent.
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audikw_1 The largest matrix of size n = 943695 we experiment with comes
from finite elements problem modelling automotive crankshaft structure. The
problem is challenging due to its large size and its large Riemannian condition
number as can be seen in Table 6.7.

problem nb (audikw_1) ‘ type
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Figure 6.4: Comparison on boneS01 test matrix on problem 7 and 8.
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Table 6.7: Tested problems for audikw_1 rank-deficient matrix (n = 943695).

(X¢) = fuin)/ funin

=
S}

Rel. optim. gap (f

Figure 6.5: Comparison on audikw_1 test matrix on problem nb 9 and 10.

In Figure 6.5 we see the convergence results for the largest tested matrix
audikw_1. In this test, Nesterov acceleration clearly outperforms the other
methods. The Chebyshev subspace iteration algorithm does not converge,
which might be due to the wrong choice for the degree of the polynomial.
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7 Polar decomposition

We now turn to the problem of computing the polar factor of a square matrix
C' € R™". This section follows the exposition of our work [13].

7.1 Introduction

As discussed in Section 1.2.2, computing a polar factor of a square matrix is
equivalent to an orthogonal Procrustes problem. In this section, we reveal a
convexity-like structure for this (generally non-convex) problem similar to the
one for the symmetric eigenvalue problem in Section 2. Using this convexity-
like structure, we analyze a Riemannian gradient descent algorithm in the
orthogonal group for computing the polar factor of C. This algorithm is
in general slow compared to the state-of-the-art and is presented only for
theoretical purposes.

Although we have not yet developed a concrete state-of-the-art application
of this theory, we believe it is highly likely to find use in noisy versions of
polar decomposition, analogous to the theory developed for the symmetric
eigenvalue problem. Potential applications include stochastic versions of the
problem (where only an unbiased estimate of the matrix C is available, typically
requiring the use of stochastic algorithms) and robust formulations of polar
decomposition. The latter can be to solve the optimization problem

min max (— Tr(CX) — Bi I|C — Ci||2) : (7.1.0.1)
i=1

XeO(n) CERn*n

where {C;};_, is a set of independent observations for C' and 5 > 0 is a
regularizer. To the best of our knowledge, traditional linear algebra techniques
cannot be applied to such problem. A more viable approach would be min-max
optimization (for instance gradient descent-ascent), for which our theory could
be of value.

7.2 Convexity-like properties of orthogonal Procrustes

We investigate now thoroughly the orthogonal Procrustes problem. This
problem concerns with finding orthogonal matrices X; and X, that best fit two
other matrices A, B € R™*™:
min  ||AX; — BXy|%.
X1,X2€0(n)

Since this problem is invariant under simultaneous right multiplication of
X; and X5 with an orthogonal matrix () € R™™", we can fix X5 to be identity
and target only the matrix X; ~» X:

min [|AX — BJ*.
Xe0(n)

161



This problem can be written equivalently as

min —Tr(CX) =: f(X), (7.2.0.1)

XeO(n)
where
C := BT A.

In addition, this problem has a global solution and can be found in closed
form [98]: if C'=UXVT is an SVD of C, then a global solution is X* = VU™,
The minimum f* := f(X*) is the opposite of the sum of the singular values of

C.

We will use this structure to prove a quasi-convexity property for the function
F(X) = —Tx(CX)

around X*.
It is well known that the solution of the problem is unique if and only if all
the singular values of C' are strictly positive, i.e. if and only if C' is invertible.

Riemannian gradient: To compute the Riemannian gradient of f, we just
need to project the Euclidean gradient V f(X) = —C7T onto the tangent space
TxO(n). This results to

gradf(X) = Px(—C") = —Xskew(X7C™). (7.2.0.2)
Riemannian Hessian: For a function f defined in the orthogonal group, we
have (see [20])
Dgradf(X)[X] = Xskew(XTV f(X)) + Xskew(XTVf(X) + XTV2f(X)[X]),

where X = X is an arbitrary tangent vector. In our case, Vf(X)=-CT
and V2f(X) = 0, thus

Hessf(X)[X] = —Xskew(XTCT) — Xskew(XTCT). (7.2.0.3)

We now show a weak-quasi convexity property for f, similar to Proposition
2.6.

Proposition 7.1 (Geodesic weak-quasi convexity) Let X* € O(n) a global
optimum of the function f : OQ(n) — R. Let also X € OQ(n) such that the eigen-
values e of XTX* are such that r € (—m, 7). If |r|max denotes the largest
possible rotation induced by XTX* in absolute value, then

(grad £(X), ~ Logxc (X)) 2 (1 + cos(lrlma) ) (F(X) — f°).
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Proof The Riemannian gradient of f is given in equation (7.2.0.2). It remains
to compute a convenient expression for the Riemannian logarithm. According
to equation (1.3.1.10), the Riemannian logarithm is given as

Logy(X*) = X log,, (X7 X™).
As in the introduction (Section 1.2.2), we use the canonical form of the orthog-
onal matrix X7 X*:
X"X*=PDPT.
Since the matrix logarithm is invariant under conjugate action, we have
log,, (X X*) = Plog,,(D)P”

and log,, (D) is again a block diagonal matrix, with blocks being the logarithms
of the blocks of D: when D has a diagonal entry equal to 1, log,, (D) has a
diagonal entry equal to 0 and when D features a 2 x 2 block, which is a rotation
—r

0.

Similarly, the skew-symmetric part of X7 X* satisfies

skew(XTX*) = Pskew(D)P7,

where skew(D) is again block diagonal and has a 0 diagonal entry when D has

of angle r, log,, (D) features the block [S

a 1 diagonal entry, while it has a block [Sigr B sanr when D features a 2 x 2
rotation of angle r. Thus, it holds in general that
¢
1 D) = skew(D)——
08 (D) = skew(D) L=,
where ¢ = (ry,...,7,) is a vector capturing all the rotations induced by the

orthogonal matrix X7 X*. If r = 0, i.e. corresponds to a diagonal entry equal
to 1, then it appears only once in ¢, while if r € (—m,7) \ {0} it appears as a
couple with —r.
¢/ sin ¢ is a diagonal matrix with diagonal elements ;/sinr;. This convention
is made for ease of notation.

Given that, we can write

Logy (X*) = X log,,(X"X*) = X Plog,,(D)P" = X Pskew(D) .¢ ¢PT
S1n
¢ ¢ or
= X Pskew(D)PTP— PT = Py(X*)P—PT.
skew(D) sin ¢ x(X) sin ¢
Now we can finally deal with the desired inequality:
(g (X). ~ Logx (X)) = { Po(CT), Py (X)P=2 P ) =
<Xskew(XTCT),X*P_iPT> = Tr (PiPTX*TXskeW(XTCT)) .
sin sin ¢
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We pause to deal with the term X*7 Xskew(X7C7T):

Xrer—-cox x0T - XTXCX
2 B 2 '
Remember that if X* = VU7, then C = UXV7T is an SVD of C. Thus

X" Xskew(XTCT) = X*TX

x*Tot = uyxu”
and
xX*Txox = pDTPTUSVTVUTPDTPT = pDTPTUSUT PDT PT.
Plugging this expression in, we get
o

2(grad f(X), — Logy (X*)) = Tr (PmPTX*TXskeW(XTOT))

=Tr <PiPT(UzUT - PDTPTUEUTPDTPT)>

S11

—Tr <%(PTUZUTP - DTPTUZUTPDT)>
111

_ <.i(PTU2UTP)) T <%(DTPTUEUTPDT))

sin sin

:Tr<( ¢ DT e DT> PTUZUTP).

sin ¢ B sin ¢

It suffices to show that

sin ¢ B sin ¢

Tr (( 4 DTiDT) PTUEUTP) > (14 cos(|7|max)) (f(X) = ) =

(1 + cos(|7|max)) | Tr(PTUSUT P) — Tr(DT PTUXUT P)

=c :J?* —]:(X)

This holds if

Tr ((i _ DT pT (DT - I)) PTUEUTP> > 0.

sin ¢ sin ¢ -

Notice that the matrix A is symmetric and positive semi-definite.
D7 is a matrix with diagonal entries equal to 1 and 2 x 2 diagonal blocks

of the form [ cosT ST

. }, which essentially correspond to rotations with
—sinr cosr
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—r. Multiplying with the diagonal matrix ¢/sin ¢ from the right, keeps the
1 diagonal entries of DT unchanged, while it transforms the 2 x 2 diagonal
blocks to r/tanr "

—r  r/tanr
that correspond to r = 0 and has 2 x 2 diagonal blocks associated with

. The matrix DTﬁDT still keeps 1 in the entries

- : .
—L—cosr —rsinr sinr + rcosr
r € (—m,m)\ {0} that are | tanr ;o tan .
—rCcosT — sinr cosT — rsinr
tanr tanr

The matrix =2~ — DT-2_DT 4 ¢(D” —I) has 1 in the diagonal entries that

sin ¢ sin ¢
DT has 1 (r = 0) and has 2 x 2 diagonal blocks that correspond to rotations
with r € (—m,7) \ {0}, which are

T r : r . .
st tanr 905T+T31HT+C(?OST 1) ) fany ST reost +csiny } '
tany SILT 4+ 7 COST — CSsInr o7 tany COST A TSInT + c(cosr — 1)

Notice that this last 2 x 2 matrix is of the form {_045 g } .

The expression Tr ((ﬁ — DTﬁDT + (DT — ])) A) that we want to

prove nonnegative is the sum of the traces of the product of the diagonal

entries of ﬁ - DTﬁDT + ¢(DT — I) that correspond to r = 0 (i.e. 1)
with the corresponding diagonal entries of A and the 2 x 2 diagonal blocks of

¢ _ pT_2_pT 4 ¢(DT —1I) with the corresponding 2 x 2 diagonal blocks of A.

sin ¢ sin ¢
In the first case we get back the diagonal entries of A (which are nonnegative)

and in the second case we have the product of a matrix of the form [_aﬁ g }

j ]i , since A is symmetric. The diagonal entries of
this product (which are the ones that contribute in the trace) are as + ft and
— Bt + ak. Their sum is (s + t), thus it suffices to show that this expression
is nonnegative, i.e. that « is nonnegative since s and ¢ are nonnegative as
diagonal entries of the positive semi-definite matrix A.

Remember that a has been taken as

with one of the form

r r
= - i 1 max —1
= o = COST TSI (1 + cos(|r|max))(cos T — 1)

v
C

r r
>

— sinr tanr

cost + rsinr + (1 4+ cosr)(cosr — 1),
since r < || max and cosr — 1 < 0. The last lower bound for « turns out to be

positive for all » € (—m, ), thus our proof is complete.
|
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We now examine a property for f known as quadratic growth. This property
gives a non-trivial inequality only in the case that the Procrustes problem has
a unique solution (i.e. if and only if C' is non-singular). This is similar to
Proposition 2.4.

Proposition 7.2 (Quadratic growth) Let X* € O(n) to be a global mini-
mizer for f and X € Q(n) in the same connected component. Then f satisfies

T2

fX) == dist™(X, X™),

where owin(C) is the smallest singular value of C.

Proof Recall that if C = UXV7T is an SVD of C, then X* = VU7 is a global

minimizer. Consider again the canonical form of the orthogonal matrix X7 X*:
X'X*=PDP".
Then, we have

f(X)— f = -Tr(CX) + Tr(CX*) = Tr(PTUSUT P) — Tr(UXUT PDT PT)
=Tr((I — D) PTUXUTP)

pos. semi-definite

Let us denote again A := PTUXUT P, which is symmetric and positive
semi-definite. The matrix I — DT has diagonal entries equal to 0 for rotations
r = 0, diagonal entries equal to 2 for r = m and 2 x 2 diagonal blocks of the

1 —cosr sinr

form . } for rotations with angle r € (—m, ) not 0. Thus,
—sinr 1 —cosr

the diagonal entries of the product (I — DT)PTUXUT P are either 0 for entries
that correspond to no rotation, i.e. (1 — cosr)Ay;, or the diagonal entries of a

product of the form
1 —cosr sinr st
—sinr 1 —cosr| |t k|’

These are (1 — cosr)s +sinrt and —sinrt + (1 — cosr)k. Since summing them
makes the terms sinrt to cancel out, we get

Tr((I — DTYPTUSUT P) = Tr((I — cos 9) PTUSUT P),

where ¢ = (r1,...,7,) a vector capturing all the rotations between X and X*.
If rj = 0 or m, then it appears only once, if r; # 0, 7 it appears coupled with
its opposite —r. Notice that

o]l = dist(X, X~).
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Since for all r it holds r € (—m, 7], we have

2
1 —cosr > —2r2.
T

By basic properties of the trace, we have

2 .
Tr((1 — cos p)PTUSUT P) > Apin(PTUSUT P) Tr(I — cos ¢) > "ml—g(c)ngbn?
m

The last inequality completes the proof.
|

We can combine Propositions 7.1 and 7.2 to a more compact form, which
we call weak-quasi-strong convexity (WQSC). This is similar to Theorem 2.7.
Interestingly, the role of a strong convexity constant y is played by a multiple
of omin(C). That is to say, the further away from being singular C' is, the
stronger this property becomes. If C' is singular, the derived inequality reduces
to weak-quasi convexity (Proposition 7.1, but with slightly weaker parameters).

Proposition 7.3 (Weak-quasi-strong convexity) For any X satisfying the
properties of Propositions 7.1, 7.2, f satisfies the following inequality:

F3) = € ooy tamad FX). — Logy (X)) = Sulist?(X, ")

with a(X) := w and = 40’”;#. |7 maz < T is the largest rotation
in absolute value induced by the orthogonal matriz X X*.

Proof For the specific choices of a(X) and i, we have

Ldist?(X, X*) < f(X) = f* < (gradf(X), — Log (X*)).

~ 2a(X)

The left inequality is derived by Proposition 7.2 and the right one by Proposition
7.1.
Now, again by Proposition 7.1, we have

* * M. 2 * M. 2 *
X)—fr< X),—L X = X, X") — = X, X
FIX) = F* < sy (arad £ (X), — Logue (X)) + Saist®(X, X°) = Laist*(, X
1 * K. *

< 3 (e (), Loy (X)) - Saist*(X. )
by substituting the previous inequality. [ |

We close this exploration around a convexity-like structure for f, by exam-
ining its smoothness properties.
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Proposition 7.4 (Smoothness) f is geodesically omax(C)—smooth.

Proof It suffices to show that the eigenvalues of the Riemannian Hessian
at X are upper bounded in absolute value by op,.x(C) for all X. For our
computations, we follow the exposition of [20]:

(X, Hessf(X)[X]) = Tr(XT Xskew(—XTCT)) + Tr(XT Xskew(—XTCT)).

The first term is 0 as the trace of the product of a symmetric and skew-
symmetric matrix. The second term becomes

Tr(XT Xskew(— XTCT)) = % TH(XTXCX — XTXXTCT).
Substituting X7X = Q7 we get
% Tr(XTXCX — XTXXTCT) = %Tr(QTC’X —QTxTcT) =
% Tr(QTCX + QXTCT) = Tr(QTCX) = Tr(QYCX Q) = Tr(CXQ0T).

The last expression features the trace of the product of the matrix C'X with
the symmetric and positive semi-definite matrix QQ7. By basic facts in lin-
ear algebra, we can upper bound the absolute value of this expression by
Tmax (CX) Tr(QOQT). Since X is orthogonal, we have that oax(CX) = Omax(C).
Also Tr(QQT) = Tr(X XT) = || X]|?. Putting it all together, we get

(X, Hess f(X)[X])] < 0max(O)]| X

and the desired result follows. [ ]

As it is customary, we denote
L := 0pmax(C).

We conclude this section with a small technical lemma that allows us to
show that gradient descent with a properly chosen step size is well-defined in
the sense that the direction used for update belongs in the injectivity domain
(1.3.1.8).

Lemma 7.5 The Riemannian gradient of [ evaluated at X is of the form X,
for a skew-symmetric matriz Q0 with

122 < Owmax(C).
Proof The Riemannian gradient of f at X is

gradf(X) = Xskew(X7CT),
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thus Q is taken as skew(X7C7T). By the sub-additivity of the spectral norm
and its invariance under multiplication with orthogonal matrices, we have

o IXTCT s+ ICX e _ IC7 o+ 1IC
> 9 2 )

This gives the desired result. [ |

192/l = [|skew (X" C)]]

7.3 Convergence of Riemannian gradient descent

Riemannian gradient descent applied to a function f: Q(n) — R reads as

Xit1 = Expy, (—ngrad f(Xy)), (7.3.0.1)

with n; > 0 being the step size.

The results of Section 7.2 guarantee a local (non-asymptotic) linear conver-
gence rate for Riemannian gradient descent on f in the case that C is invertible,
if ran with a properly chosen step size and the initial guess Xy is sufficiently
close to the optimum. We again emphasize that this is not a practical algorithm

and is presented for theoretical purposes and to match the discussion of Section
2.

Proposition 7.6 Let X; and X* be such that the largest rotation |r|max induced
by the orthogonal matriz X X* satisfies |r|max < 7. Then, iteration (7.3.0.1)
with 0 < ny < a(Xy)/L satisfies

: . 4 : .
dist®(X,41, X*) < (1 - Famin(C)a(Xt)nO dist?(X,, X*),

with a(X;) defined as in Proposition 7.3.

Proof We start by showing that iteration (7.3.0.1) is well-defined. By the
assumption |r|max < 7, we get that 0 < a(X;) = w < 1. By Lemma
7.5, the tangent vector mgradf(X;) that is used to update iteration (7.3.0.1)
can be written as XQ, with ||Q|]2 < 7:0m4:(C). By the definition of n;, we have
that

a(Xy) 1
O'max(C) Omax 9 .
Thus, ngrad f(X;) is inside the injectivity domain (1.3.1.8) and, as a conse-

quence, iteration (7.3.0.1) is well-defined.
We can now apply Proposition 1.15 to obtain

a(X,
6 < 250

Umax(c) = (O) <

dist*(Xp1, X*) < || = mugrad f(X,) — Logy, (X*)|*
= n?||grad f(X,)||* + dist*(X;, X*) + 2n, 0 (7.3.0.2)
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with
o = (grad f(Xy), Logy, (X7)).
Propositions 7.3 and 7.4 (see also Proposition (1.21)) give

o % 20min(c) .2 *
< _ _ Z7minA\~J
a(Xt) = f f(Xt) 7T2 dlSt (Xth )
1 2Umin(C> . *
< 7 lerad () 2 — P dist? (X, X°).

Multiplying by 2a(X;)n; and using n; < a(X;)/L, we get

a(X, 4o-min C . *
20 < —%Hgmd £GP - %G(Xt)ntdlsﬁ()(t, X*)
4O-min C . *
< o lerad X2 — 7 0?6, X,
Substituting into equation (7.3.0.2), we obtain the desired result. |

Theorem 7.7 (Convergence of RGD for the procrustes problem) Let
C' be invertible (0min(C) > 0) and X* the (unique) minimizer of f. Then, Rie-
mannian gradient descent (7.3.0.1) in the orthogonal group, starting by a point
Xo € O(n) such that

dist(Xo, X*) <,

and ran with fixed step size

1 + cos(dist(Xg, X*
m=n S ( ( 0 ))a
40 max (C)

produces iterates X; that satisfy
. . 1 . . L .
dist?(X,, X*) < (1 — F(l + cos(dist(Xg, X )))Umin(C)n) dist?(Xo, X*).

Proof We do the proof by induction.

For ¢t = 0, the inequality is trivially true.

We now assume that the inequality is true for ¢ and we wish to show that it
is true also for t + 1.

Since dist(X;, X*) < dist(Xg, X*), we also get that the largest possible
rotation |r(X;, X*)|max induced by X/ X* satisfies

(Xt X e < (| D 7K, X7)2 = dlist(Xe, X*) < dist(Xo, X),

=1
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where r;(X;, X*) are the rotations induced by the matrix X X*. The equality
in the previous derivation comes from equation (1.3.1.11).
By the definition of a(X};) in Proposition (7.3), we have

1+ cos(|r (X, X*)|max) < 1 + cos(dist(Xg, X*))
4 - 4 ’

a(Xy) =

thus n < a(X:)/L.
Since 7 satisfies the previous bound, the outcome of Proposition 7.6 holds,
and combining it with the induction hypothesis, we get

4
dist?*(X; 11, X*) < (1 — ﬁamin(C)a(Xt)n) dist?(X;, X*) <

(1 — %(1 + Cos(dist(Xo,X*)))Umin(o)ﬁ) dist?(X;, X*) <

1 3 * t+1 . *
(1 - ﬁ(l + cos(dist(Xg, X )))Umin(C)n) dist? (X, X*).

This concludes the induction.
|

Remark 7.1 If C' is singular, then the previous theorem only states that the
distances of the iterates of gradient descent to the set of optima do not increase.
In that case we can still prove an algebraic convergence rate for the function
values of Riemannian gradient descent based only on weak-quasi convexity.

Remark 7.2 The assumption dist(Xo, X*) < 7 allows to bound globally |r( Xy, X*)|max
from above by dist(Xo, X*) and as a result keep the quantity 14+cos(|r( Xy, X*)|max)

far away from O over the course of gradient descent. Intuitively, it does not

allow the algorithm to go too close to non-optimal critical points. Gradient
descent would not stick to non-optimal critical points, but it would probably

slow down a lot.

We close this section by showing an algebraic convergence rate for gradient
descent that covers also the case that C' is singular.

Theorem 7.8 Gradient descent applied to f for any square non-zero matriz
C, starting from Xy € O(n) such that

diSt(X(), X*) <7
and with fixed step size

0 < 1+ cos(dist(XO,X*)),
40 max(C)
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produces iterates X; that satisfy
1
2L+ 5

JX) =17 S o cos(@st (X0, X)) T

. . 1
4dlst2(X0,X ) =0 (¥) .
Proof Since we still satisfy all the hypotheses of Theorem 7.7, we know that

for all £ > 0 it holds dist(Xy, X*) < dist(Xp, X*) < 7. This implies that

a(X)) > 1+ cos(dlzt(Xo,X )

> 0,

which implies that the function f is weakly-quasi-convex (Proposition 7.1) at
every X; such that:

(grad f(Xy), — Logx (X)) = 5(1 4 cos(dist(Xo, X™))) (f(Xe) — [7).

DN | —

Denoting Cy := HCOS(diSi(XO’X*)) and A; := f(X;) — f*, we can write

2C0 A < (gradf(X;), — Logx, (X™)). (7.3.0.3)

Similarly to the proof of Proposition 7.6, by the hypothesis on the step size
N, Lemma 7.5 shows that —n, X;,; is in the injectivity domain of exp at X;.
Hence, by the definition of Riemannian gradient descent, we have

Logy, (Xi41) = —ngrad f(X). (7.3.0.4)
In addition, the smoothness property of f (Proposition 7.4) gives
L .
At+1 — At S <gradf(Xt), LOgXt (XtJrl)) + §d18t2(Xt, Xt+1).

Substituting (7.3.0.4), we obtain

L

By Proposition 1.15, we have
dist®(Xy1, X*) < dist®( Xy, Xpp1)+dist?( Xy, X*)—2(Logy, (Xi41), Logy, (X™)).
Substituting (7.3.0.4) into the above and rearranging terms gives
2n(grad f(X;), — Logy, (X™)) < dist? (X, X*)—dist?( X1, X*)+1°||grad f (X,)]|?.

Combining with (7.3.0.3), we get

(dist2(X,, X*) — dist?(Xo11, X*)) + —|lgrad f(X) % (7.3.0.6)

A <
b= 40077 400

172



Now multiplying (7.3.0.5) by Cio and summing with (7.3.0.6) gives

1 1
— A —=—-1)A,< dist?(X,, X*) — dist®(X,,q, X*
Gt = (g = 1) B € g (@, X7) = dist(Xer, X7)

1 L ,
Co( n+ 5+ )ngadf(Xt)H (7.3.0.7)

By assumption, we have n < Cy/L, where 0 < Cy = (1+4cos(dist(Xg, X*)))/4 <
+and L > 0. Since

n L 1 n (Co 3 17

S/A U I A )

co< +2"+> 00< 1) =3¢,
Inequality (7.3.0.7) can be simplified to

1 1 1
goAt_i_l - (EO - 1) At S 40077 (dlSt2(Xt, ) dlst (Xt+1,X ))

Summing from 0 to ¢t — 1 gives

At + ZA (— — 1) Ay < 45077 (dist*(Xo, X*) — dist®(X;, X*)) .
s=1

From Proposition 7.4 (and its implication presented in the first bullet point of
Proposition 1.21 with y ~» Xy and xz ~» X*), we get

L
Ag < EdistZ(XO,X*).

Combining these two inequalities leads to

1 . .
At+ZA A0+ 400ndist2(X0,X)

1 1
L dist?( Xy, X*).
_200( +277) ist7(Xo, X7
Since (7.3.0.5) holds for all ¢ > 0, it also implies A; < A for all 0 < s < ¢.

Substituting
t—1
tA <) A,
s=0

into the inequality from above, we obtain

A, < 1L+2"dt2(XX) o dt(XX)
— is , ————dis , .
After substituting Cy, the last inequality provides the desired convergence rate.
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8 The importance of weak-quasi-strong convexity in
optimization

As promised in the introduction, we show that WQSC is a necessary property
for gradient descent applied to an L-smooth optimization problem to have
linear convergence with respect to distances of the iterates to some optimum.
A similar result but for the connection between the PL condition and linear
convergence with respect to function values has been proved in [1] (Theorem
5). We follow here the exposition of our work [7] with minor modifications.

8.1 Introduction

As discussed in Section 1.2.2; a function is said to satisfy a WQSC condition if it
satisfies Definition 1.6. Notice that Definition 1.6 assumes that the optimum is
unique in the domain of interest. This definition (or rather Definition 1.22 about
geodesic WQSC) is enough for the cases of the symmetric eigenvalue problem
(Theorem 2.7) and polar decomposition (Proposition 7.3), as the optima in
these cases are isolated (given that the spectral gap and the smallest singular
value are positive respectively). We give here a slightly more general definition
that includes also the case that the optima form a continuum. This type of
definition is more popular in the literature, see for instance [78] (Definition 1)
or [56] (Appendix A).

Definition 8.1 (Weak-quasi-strong convexity (WQSC)) A function

f: R™ = R with a convez set of global optima X* := argmin, cp. f(z) is called
(a, p)-weak-quasi-strongly convex (WQSC) in a set E C R", if there exist
constants a, it > 0 such that

fla) = fr < %(Vf(x),x T

e —ml? VreF,

where x, is the projection of x onto X*.

Remark 8.1 Notice that the set of optima X* is assumed to be convex. This
assumption is necessary to ensure that the projection onto this set is well-
defined. An interesting class of non-convex functions with convex set of optima
is quasi-convex functions (all level sets of a quasi-convez function are conver,
thus also the set of optima).

In this section, we will be refering to (a, 1)-WQSC property in the slightly
more general sense of Definition 8.1.

Proposition 8.2 If f is (a,u)-WQSC in a set E, then it also satisfies the PL
condition

IV (@) > 2pa®(f(x) — [*)
n F.

174



Proof The proof is similar to the one of Lemma 3.2 in [25]. For completeness

though we re-analyze it as we now allow multiple global optima.
If fis (a,n)-WQSC, then we have

f@) — < (Vi) o —n)— blle— P, VoeE,

where z,, is the projection of x onto the set of global optima.
We can write

1
(V@) =) < SIVI@IP + 5l = ol

for all p > 0.
Combining the two inequalities, we get

P 1 p
F@) = £ < eIV F@IP + ol = = Sl =
Choosing p = aL,u the two last terms in the right hand side cancel out, and
the inequality becomes

1
202

fla) =" < IVf()?, Ve E,
which gives the desired result after a rearrangement.
|

WQSC in the form of Definition 8.1 can guarantee linear convergence of the
gradient descent algorithm with respect to the distances of the iterates to the
set of of optima X*. We recall an iterate of the gradient descent as

T=x—nVf(x). (8.1.0.1)
Proposition 8.3 Consider the optimization problem
min f(z),

where f : R™ — R is L-smooth and (a, u)-WQSC'in E. An iterate T of (8.1.0.1)
starting from x € E with step size 0 < n < a/L satisfies

12 = 2, )* < (1 = apn)|lw — = ||*.

Here, T, is the projection of & onto X* = argmin cpn f(2), while x, is that of
x.

Proof The proof is a simple adaptation of Lemma 4.2 in [25]. The difference
is that, in this result, the global optimum is not necessarily unique. We state
it here for completeness.
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We inspect the quantity || — z,[|?. We have

|17 — 2, lI* = |z = nV f(2) = 2[I* = |z — 21> = 20{V f (), 2 — @) +17*[|V f ()|
(8.1.0.2

Notice that since f is L-smooth, we have (by Proposition 1.2) that

F@) = 1= IV
By (a, u)-WQSC of f (Definition 8.1), we have

—é(Vf(m),x — ) < f* = flx) - ng - "EPHQ

and combining with the previous inequality we get

1 I
— (V@) z—zp) < ——IIVf( )P = Sl =zl

We now multiply this inequality by 2na on both sides:
—2)(V[(x), 2 —ap) < ——HVf( P = nuallz — |

Substituting in (8.1.0.2), we get

12 = 2l < (1 = apm)llz — |12 + (n* = 22 ) IV £ @)
and since 0 < n < ¢, we have

12 = 2, ]|* < (1 = apm)ll — ||*.

By noticing that ||z — Z,|| < || — z,|| since Z, is the projection of T to the set
of optima, we get the desired result. [ |

8.2 Necessity of WQSC

We now pass to the main result of this section, which is essentially the inverse of
Proposition 8.3. That is to say, WQSC is in some sense the bare minimum that
an L-smooth optimization problem must satisfy, such that gradient descent
converges linearly with respect to intrinsic distances. The backbone of the
proof is the same as Theorem 5 in [7], but it has two small differences in order
to make it work for the case of WQSC in the sense of Definition 8.1: i) the
contraction quantity in the linear rate is assumed to be proportional to the
step-size, ii) a limit argument is used at the end, examining the inequality
derived in [7] for arbitrarily small step sizes. For this limit argument to work,
we need to assume a linear convergence rate for all step sizes 1 close to 0. This
assumption is (totally) realistic though as it is supported by the conclusion of
Proposition 8.3.
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Theorem 8.4 Let f: R" — R be continuously differentiable, bounded below,
L-smooth (see Definition 1.1) and the set of its global optima X* is conver.
Consider the optimization problem

min f(z).

Assume that there exist constants 7 and d such that the new iterate & of (8.1.0.1)
started from any x € E CR™ and with any step size n € (0,7) satisfies

17 = Zl1* < (1= dn)l|lz — @,

where x,, and Z, are the projections of x and T respectively onto X*. Then, f
is (a, u)-WQSC in E with parameters

d L

Proof Let z € E and 7 the result of one iteration of gradient descent (8.1.0.1).
We first rewrite the term [|Z — Z,||*:

12 = &1 = [l = nV f(2) — 31"
= llz = 3|1 = 2(V (), 2 — &) + 0’|V f(2)]]*.

For ease of notation, we set ¢ := dn. This equality together with the contraction
assumption gives

lo—2pl*—=20(V f (), 2=Zp) +1* IV f (@) [* < (A=) o=y [|* < (1=c) o= |*.

The second inequality follows from the fact that z, is the projection of x onto
X* (as defined in Definition 8.1). The derived inequality can thus be rewritten
as

WV F(@),a = 3) = cllz — |12 + n2V £ (@) (8:20.1)

Next, we use the inequality
Pz, L 2
< = —
(.2 < Bl + 51

that holds for all ¢,z € R™ and any p > 0 to obtain
p V 2 > V ~, 1 ~ 112
SIVI@Z = (V[ (), & = Tp) — o= [lo = 2 [°.
2 2p
Multiplying both sides by %, we get

2 25 2772 - 772 ~ 2
IV f()|° > 7<Vf(l“),x—ffp> —?Ilw—l“pll :
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Combining this with (8.2.0.1), we get

. . 2n? .
WV f(x),x — Fp) > cllw — &> + —Z (Vf(z),x — &)
2
n -
= lle = 5P,

or equivalently
2 2 ~ 2 _
(20 22) (@pehe =) = (e = L) o - 5

Since the last inequality holds for any p > 0, we choose p := \2/—776 so that it
becomes

(1= ) (Vfhr = 3) = Fllo = 3P

By L-smoothness of f we have (substitute y ~» x,z ~» &, in Equation (2.1.6)
of Theorem 2.1.5 of [80])

2 *
Z(f@) = 1)

and using that to bound the last term of the previous inequality, we have

[E =

C

(1= ) (Vs = 2 Slo = alP + 5 (@) - 1)

Rearranging, we get

Ve

F@) ~ < 2t (V@) B~ e — 2,

Since ¢ = dn, we substitute and obtain

V@ I
f@) = " <2L—2(V [ (2), 2 = &) = 7]z = B[,

for all n € (0,7).

Taking the limit » — 0 in both sides of this inequality, we have that
T — x and, since the metric projection onto a convex set is a continuous
function, also that #, — z,. Putting everything together, we have the desired
result:

f@) < 2 @) 7 — 2 = Tl =z,
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We believe that Theorem 8.4 is a deep result, since it states that an L-smooth
optimization problem is solvable via gradient descent with a linear convergence
rate with respect to distances of the iterates to the set of optima if and only
if it is weak-quasi-strongly convex. A valuable role is played by the scaling
depending on the constant a. Versions of WQSC have mainly appeared in the
literature without the 1/a scaling in front of the inner product in Definition
8.1 see ([78], Definition 1 and [56], Appendix A). This scaling gives a weaker
property (what we call “quasi” in naming WQSC), which is still sufficient
though to guarantee linear convergence of gradient descent with respect to
distances of the iterates to the set of optima (Proposition 8.3). Moreover, it
has enough expressive power to include important problems like the symmetric
eigenvalue problem and polar decomposition. Even more importantly, it is also
a necessary property for this type of convergence (the result of Theorem 8.4
would not be possible without the 1/a scaling).

Now we give a simple but fundamental corollary that connects the two types
of convergence (with respect to distances and function values).

Corollary 8.5 Consider a function f : R™ — R and the problem

min f(z).
If f is L-smooth with a convex set of global optima and an iterate T of gradient
descent (8.1.0.1) starting from any x € R™ with any step size n € (0,2/L)
satisfies
7 = &,l12 < (1 = o)l - 2,1,
for a constant d € (0,1/n), then an iterate T of (8.1.0.1) starting from = with
step size 7 € (0,2/L) satisfies

s -5 < (1= (2-a) L) v - 1

Proof Since an iterate of gradient descent contracts with respect to the distance

) o ) L d _L
from X*, rJ:“h'eorem 8.4 implies that f is (a, u)-WQSC, Wlth. a=5; and p = 3.
By Proposition 8.2, we have that f satisfies the PL condition

2 2 *\ L d2 *\ d2 *
IVF @) 2 200%(f(a) ~ %) = 25 {55 (F @) = £7) = T (Fla) = £°).

By Proposition 1.5 for a general step size 77 (Proposition 1.5 is for 7 = %
but the adaptation for a general step size is straightforward), we have that
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T =x —nV f(z) satisfies

f@) = <

N
—_
|
=
%)
|
33
=
|&
[\
N——
~~
=
&
|
kh
*

Remark: In Corollary 8.5 we pass from linear convergence with respect to
distances to linear convergence with respect to function values. We lose
something from the sharpness of the contraction though: if n = % and T =1 =
x — nV f(x), then starting from a rate

17 = 21* < (1 = di)llz — @

yields to a rate

s -1 < (1- 25 o - 1),

As dn < 1, the latter rate is slower.

8.3 The manifold case

In this section, we extend our main result to Riemannian gradient descent
in a complete Riemannian manifold M of sectional curvatures bounded from
above. This analysis mainly consists of combining the technique of Theorem
8.4 with standard geometric bounds, it is still a valuable result though since
the main problems that concern us in this thesis (i.e. the symmetric eigenvalue
problem and polar decomposition) are naturally posed on some manifold. For
completeness, we start first with a general analysis of Riemannian gradient
descent under geodesic L-smoothness and WQSC (Lemma 2.9 and Proposition
7.6 take into account that the relevant manifold is of nonnegative sectional
curvatures). Geodesic L-smoothness has been defined in Definition 1.19, while
geodesic WQSC in Definition 1.22. However, here we go with a slightly more
general definition allowing multiple global optima forming a geodesically convex
set in the spirit of Definition 8.1.

Definition 8.6 e A geodesically convex subset X* of a complete Riemannian
manifold M is one such that every two points inside it are connected by
some geodesic.

o A function f : M — R defined in a complete manifold M and with a
geodesically convex set of global optima X* = argmin ., f(z) is called
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geodesically (a, u)-WQSC in a subset E C M, if the projection of any
point of E onto X* 1s unique and it holds

flx)—fr < é(gradf(x), — Log,(z,)) — gdistQ(:p,xp), Vr € E,

where x, is the projection of x onto X*.

Remark: Pay attention on the statement “if the projection of any point of F
onto X* is unique”. In Riemannian manifolds, the uniqueness of projection
becomes trickier. We adopt this simple statement in order to avoid getting too
deep into the matter, but, in general, the uniqueness of projection of a point
p to a set X* is equivalent with the strict convexity of the distance function
d: X*—R:

d(x) = dist(z, p).

For manifolds of nonpositive sectional curvatures (i.e. Euclidean and hyperbolic
spaces), the distance function from any point to any closed and geodesically
convex set is always strictly convex, thus the projection is always unique. In
manifolds that attain some positive sectional curvatures though, the situation
is not that simple. Take for example a sphere, choose two poles, consider the
northern hemisphere as the closed and geodesically convex subset of interest,
and try to project the south pole onto it. Then, all the points in the equator
are potential candidates. A general bound about the convexity of the distance
function in manifolds of positive curvatures is given in [10] (Corollary 2.1).
Similarly as before, we recall an iterate of Riemannian gradient descent as

T = exp,(—ngradf(z)) (8.3.0.1)

Proposition 8.7 Let M be a complete Riemannian manifold of sectional

curvatures bounded from below by k. Consider the optimization problem
min f(z),

where f: M — R is geodesically L-smooth in M and (a, u)-WQSC in a subset

E C M as in Definition 8.6. If T is produced by one iterate of Riemannian

gradient descent (8.3.0.1) starting from x € E with n < CiL, where ¢ is defined
as

V= Fmmdist(z,zp) '
¢ tanh(v/—kmindist(z,zp)) s kmin <0
1 7kmin Z 0,

then we have
dist?*(#, 7,) < (1 — apn)dist®(z, z,),

where x, is the unique projection of x onto X*, while Z,, is some projection of
T onto X*.
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Proof Take an arbitrary x € E and I the result of one iterate of Riemannian
gradient descent (8.3.0.1).

By Lemma 6 in [118] combined with Lemma 2 in [10] (applied to the geodesic
triangle AzZx,), we have that

dist?(#, x,) < (dist?(x, ) + dist?(z, z,) — 2(Log, (%), Log,(z,)), (8.3.0.2)

where ( is
V—FEmindist(z,zp) .
C — tanh(\/fkmindist(;;pp)) ,kmln <0
1 7kmin 2 O
By noticing that Log,(Z) = —ngradf(z) by the structure of Riemannian

gradient descent, we can rewrite this inequality as

dist*(Z, z,) < dist*(z, z,) — 2n(grad f (z), — Log, (z,)) + (n*[|grad f (x)[|*.
(8.3.0.3)

By geodesic (a, 1)-WQSC (Definition 8.6), we have that
—2n(grad f(z), — Log,(z,)) < —2na(f(z) — f*) — apndist® (z, z,).
Applying L-smoothness, we have
a .
—2n(grad f(z), - Log, (z,)) < —= gradf()||* = apndist*(z, z,).

Plugging that in (8.3.0.3), we obtain
dist*(7,7,) < (1= apm)dist?(w,,) + (Cn* = 72 [lgrad f ()]

Since < &, we have (n* — 1 <0, thus

dist*(7, z,) < (1 — aun)dist®(z, z,).
By definition of z, and z,, we have
dist(z, z,) < dist(z, =)

and the desired result follows. [ ]

Remark 8.2 As it is evident by previous works in the field [10, 118], con-
vergence is harder in the case of lower curvatures (¢ is 1 if curvatures are
nonnegative but larger than 1 if curvatures are negative).

Before passing to the Riemannian extension of Theorem 8.4, we need an
auxiliary geometric result similar to Lemma 6 in [118], which can be found in
Corollary 2.1 of [10].
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Lemma 8.8 Let Aabe be a geodesic triangle (i.e. a triangle whose sides are
geodesics) in a complete manifold of sectional curvatures bounded from above
by kmax- If kmax > 0, we assume in addition that the lengths of the sides of this
triangle are less than 7 //kmax. Then

dist?(a, ) > ¢ - dist?(b, ¢) + 2(Log,(a), Log,(c)) + dist?(a, b).

where

tan(\/kmaxdiSt (a‘zq))

VFmaxdist(a.q) Fmax > 0
5o » 'vmax
1 ,]{?max S 07

with q being some point on the geodesic bc.
We use this lemma to prove a Riemannian analogue of Theorem 8.4:

Theorem 8.9 Consider the L-smooth optimization problem

min f(z),
with M being a complete Riemannian manifold of sectional curvatures bounded
from above by kuax. Also assume that the set of optima X* = argmin ., f(x)
18 geodesically convew.
Assume that a step of Riemannian gradient descent (8.3.0.1) starting from any
point v € B C M satisfies

dist*(7, 7,) < (1 — dn)dist?(z, x,)
for some constant d > 0 and any n € (0,7),7 > 0. If kpnax > 0, we assume also

that

E C {{E € M’dist(x,:vp) < 2\/%} :

Then f is geodesically (a, u)-WQSC in E, with

d L

Gizﬁ,u:ZE.

Proof We fix an arbitrary point z € E and consider = to be the result of one
iterate of Riemannian gradient descent (8.3.0.1).
We first bound dist®(%, #,) using Lemma 8.8 in the geodesic triangle Ar7,:

dist*(%, &) > 0 - dist®(w, ) + dist*(z, 7,) — 2(Log, (%), Log, (%,)),

where

5— {\/ kmaxdist(q, T,) cot (v kmaxdist(q, Tp)) , kmax > 0
1 <0,

Y kmax

with ¢ being some point in the geodesic connecting x and .
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This inequality together with the assumed contraction (and after setting
¢ :=dn) gives

§ - dist?(z, 7) + dist®(w, #,) — 2(Log, (%), Log,(¥,)) < (1 — ¢)dist*(z, z,)
(8.3.0.4)

< (1 — ¢)dist(x, ;).
(8.3.0.5)

Even when k.. > 0, 0 can be lower bounded as follows:
the function x — xcot(x) is decreasing if > 0, thus it suffices to bound
dist(g, ¥,) from above. To that end, we have

dist(q, 7,) < dist(z, z,) + dist(Z, ¢) < dist(z, z,) + dist(z, ).

Since & = Exp,(—ngradf(z)), we have that Log,(Z) = —ngradf(z) and
dist(z,Z) = nl||gradf(z)||. Moreover, by L-smoothness of f, we have that
|lgradf(z)| < Ldist(x, x,).

Using all these facts, we can bound dist(q, z,) as

dist(q, 7,) < (1 +nL) dist(z, z,).

This implies

_ (14nL)VEmaxdist(z,xp) b >0
5 Z 5(77) e tan((1+’I7L)\/kmaxdist(x7xp)) y 'vimax
1 ) kmaX S 07

for n sufficiently small.

This bound can be potentially negative, but in the limit case that 1 becomes
arbitrarily small, it becomes positive. This is because, if k., > 0, we have
assumed that dist(z, ;) < ;77— Thus, we fix an 7 > 0, such that 5(n) >0,

for any n € (0,19). Since our assumed convergence rate holds for all step sizes
n arbitrarily close to 0, we can continue the derivation assuming that 1 < 7.

Using again that Log,(Z) = —ngradf(z), we can rewrite inequality (8.3.0.4)
as

2n(gradf(z), — Log,(%,)) > c- dist*(z,,) + 6(n)n?||eradf(z)||%.  (8.3.0.6)

Next, we use the inequality
P 2, 1 2
< —
(0. ) < Sl + 5131
for any o, 8 € T,M and p > 0 and we obtain

Ellerad (I > (grad f(2), — Lok, (@) = 5-dist*(z. )
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Multiplying both sides by 25(+)”2, we get

_ 26(n)n? i o(m)n?* .. N
SaPllsrad ) = 20 (grad (o), ~ Log, (3)) — "G dist (e, 3,).
Using equation (8.3.0.6), we get
2n(gradf(z), — Log,(z;)) =
20(n)n?

(gradf (x), — Log, (&) — "L dist? (2, 7,),

c - dist?*(z,7,) + 2

or equivalently

(20- @) (g (o).~ Log, () = (e 5(””72) dist?(z, 7).

2

Since the last inequality holds for any p > 0, we can choose p = 2%. Then

” (1 ) \/5(;7)\/?:) :

it becomes

gradf(z), — Log,(7p)) >

3
chistz(x, T,) = ZdistQ(x, T,) + gdistQ(x, Tp).

By geodesic L-smoothness, we have
2
dist?(z,3) > = (/) ~ ),

and using that to bound the last term of the previous inequality, we have

2n (1 — —W) (

gradf(z), — Log,(i,)) > gdist2(x, z,) + %( F(x) — f).

Rearranging, we get

5(n)ve
Fl@) — £ < 2Ln —— (gmadf(x). - Log, (7)) ~ Sdist*(x,7,)

Substituting ¢ = dn, we get

i)V I
fla)—f < 2Lnd—n2<gradf (2), = Log,(%p)) — 7 dist’(z, 7).

Taking the limit when n — 0, we get 2, — x,, thus

. 2L L .
flz)—fr< 7<gradf(x), — Log,(z,)) — ZdlstQ(x, Tp).
This is the desired result.
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9 Conclusion

9.1 Reflection on our contributions

We are confident that this thesis contributes meaningfully to the theory of both
non-convex optimization and numerical linear algebra.

The reader interested primarily in optimization will perhaps view its main
contribution as the thorough analysis of the weak-quasi-strong convexity prop-
erty. This property was proved to be necessary and sufficient for linear conver-
gence of gradient descent with respect to distances of the iterates to the set of
optima, as the more well-known PL inequality, which has a similar behavior
but with respect to function values. We also identified two important problems
from linear algebra that serve as good examples of this structure.

The reader primarily interested in linear algebra will probably prioritize
the justification of the tractability of the symmetric eigenvalue and polar
decomposition problems through the aforementioned convexity-like structure,
but also the practical contributions of this thesis. Highlights include a novel
state-of-the-art theory for preconditioned eigenvalue solvers (Section 4) and
the development of really competitive eigenvalue solvers (Section 5) that could
be considered by all kinds of practitioners from now on.

The reader mostly interested in Riemannian optimization, i.e. the field of
optimization over non-linear surfaces, will perhaps see this thesis as a success
story for the very case of this field: non-convex problems in the Euclidean sense
can be convex (or quasi-convex) in an intrinsic Riemannian sense, if they are
posed properly over some Riemannian manifold.

9.2 Directions for future work

Fruitful directions for future work can easily be deduced directly from the
topics treated in this thesis.

Section 4, for instance, deals only with the case of the basic preconditioned
eigenvalue solver (PINVIT) and not with the state-of-the-art one (LOBPCG).
It would be interesting to see whether a modification of this analysis can be
applied also to LOBPCG. This is not clear to us at this point.

A main narrative in this thesis is the value of the derived convexity-like
structures in analyzing eigenvalue or polar decomposition problems in noisy
regimes. The main examples we gave are i) distributed scenaria with limited
communication (Section 3) and ii) preconditioned eigenvalue solvers (Section 4),
which are essentially perturbed versions of inverse iteration. Other important
noisy regimes that are worth examining could be computing eigenvalues or
polar factors via stochastic algorithms, or even “robust” re-formulations (see
equation (7.1.0.1)).

Deviating a bit from the exact topics of this thesis, but staying inside the
general philosophy, one could try to show some convexity-like structure for
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the problem of optimally approximating a matrix with another matrix of fixed
rank. This problem admits a closed-form solution via the truncated SVD of
the matrix, which is essentially the projection onto the manifold of fixed rank
matrices. Similarly, orthogonal Procrustes (Section 7) is the projection of a
matrix onto the orthogonal group. It would not be too surprising if the problem
of low rank approximation admits a similar structure, we expect the situation
to be more involved though, as the manifold of fixed rank matrices has a much
more complicated Riemannian structure compared to the orthogonal group.
Another interesting problem over the Stiefel manifold is computing the polar
factor of a rectangular matrix.

Taking the discussion of the previous paragraph a step further, while linear
algebra offers an ecosystem of problems that are really interesting and important,
deep learning has dominated the field of non-convex optimization the last few
years. An important open problem in the theory of deep learning has to
do with explaining its success: while all real-world deep neural networks are
highly non-convex, training them using stochastic first-order methods has
been proven surprisingly effective. We conjecture that this is the case due to
various convexity-like structures that appear in these optimization problems.
Results of this nature have long been appeared for the case of over-parametrized
models [105]. Over-parametrization though is not always a realistic assumption.
More recently, research started going beyond it [51]. Given the paramount
importance of deep learning models in our society and economy, we believe
that understanding their structure must be set priority by the non-convex
optimization community. We personally wish to contribute in this direction in
the years to come.
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