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Abstract

This thesis primarily addresses the following problem: why can certain non-
convex optimization problems be solved efficiently? We focus on two important
problems in linear algebra and uncover a convexity-like structure that may
answer the aforementioned question. This convexity-like structure does not
hold in a Euclidean space but rather “geodesically” on a Riemannian manifold.
Thus, the main components of this thesis are linear algebra, optimization, and
differential geometry. Since it is challenging for a reader to be familiar with all
these prerequisites, we strive to present each topic as independently as possible.

The structure analyzed in this thesis facilitates numerous applications in
the field of numerical linear algebra. Consequently, a significant portion of the
thesis is dedicated to these applications. They include eigenvalue problems
in a distributed setting, a new analysis for preconditioned eigenvalue solvers,
as well as the development and analysis of new eigenvalue solvers for the
most elementary cases. This should certainly be of interest to readers with a
background in numerical linear algebra.

On the other hand, readers with an optimization background may view
this thesis as an illustration of the importance of the aforementioned structure
(weak-quasi-strong convexity). Insights into such structures have appeared not
only in linear algebra but also in deep learning. In the final section, we show
that this structure is indeed special for optimization in general, as it is in some
sense necessary for linear convergence of gradient descent with respect to the
error defined by the distances of iterates to the set of optima.

Readers interested in differential geometry may see this thesis as a good
example of the power of optimization on Riemannian manifolds. Although
differential geometry is not the central focus of this thesis, all the structures
discussed hold over curved spaces. This serves as an excellent example of
the primary goal of optimization on Riemannian manifolds: solving typically
non-convex problems within geometries where they satisfy a certain convexity
structure.
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Résumé

Cette thèse traite principalement du problème suivant: pourquoi certains
problèmes d’optimisation non-convexes peuvent être résolus rapidement. Nous
nous concentrons sur deux problèmes importants d’algèbre linéaire et révélons
une structure de type convexité qui peut répondre à la question précédente.
Cette structure de type convexité n’est pas valable dans un espace euclidien,
mais plutôt de manière “géodésique” sur une variété riemannienne. Ainsi, les
principales composantes de cette thèse sont l’algèbre linéaire, l’optimisation et la
géométrie différentielle. Comme il est difficile pour un lecteur de connâıtre tous
ces prérequis, nous nous efforçons de présenter chaque sujet aussi indépendamment
que possible.

La structure analysée dans cette thèse permet de faciliter de nombreuses
applications dans le domaine de l’algèbre linéaire numérique. Ainsi, une grande
partie de la thèse leur est consacrée. Elles incluent les problèmes de valeurs
propres dans un régime distribué, une nouvelle analyse pour les solveurs de
valeurs propres préconditionnés, mais aussi le développement et l’analyse de
nouveaux solveurs de valeurs propres dans les cas les plus élémentaires. Ceci
devrait certainement intéresser le lecteur issu de l’algèbre linéaire numérique.

D’un autre côté, le lecteur qui est plus proche de l’optimisation, peut voir
cette thèse comme une illustration de l’importance de la structure mentionnée
ci-dessus (weak-quasi-strong convexity). Des aperçus de telles structures sont
apparus non seulement en algèbre linéaire, mais aussi en apprentissage profond
(deep learning). Dans la dernière section, nous montrons que cette structure
est en effet spéciale pour l’optimisation en général, car elle est en quelque sorte
nécessaire pour la convergence linéaire de la descente de gradient en ce qui
concerne les distances des itérés à l’ensemble des optima.

Le lecteur intéressé par la géométrie différentielle peut voir dans cette thèse
un bon exemple de la puissance de l’optimisation sur les variétés riemanniennes.
Bien que la géométrie différentielle ne soit pas le centre de cette thèse, toutes les
structures discutées sont valables sur des espaces courbes. C’est un bon exemple
de l’objectif principal de l’optimisation sur les variétés riemanniennes, c’est-à-
dire résoudre des problèmes généralement non-convexes dans des géométries où
ils satisfont une certaine structure de convexité.
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1 Introduction

Tractability in optimization has long been associated with convexity. The
field of convex optimization has systematically studied algorithms and their
convergence guarantees for convex optimization problems with excellent results
[80]. Unfortunately, convexity turns out to be an unrealistic scenario for many
problems of interest. This category includes problems from basic linear algebra
to advanced deep learning models. Moreover, many of these problems turn out
to be tractable, i.e. their non-convex structure is benign in some sense. Such a
phenomenon can be observed experimentally (for instance it has been repeatedly
observed that stochastic gradient descent optimizes over-parametrized deep
neural networks fast and accurately) or even theoretically as in the case of
certain linear algebra applications. An example for the latter is the symmetric
eigenvalue problem, which, while non-convex, it is long known to be solvable
easily by many algorithms that have been developed by the numerical linear
algebra community [96], the most popular of them being the power method.

In this thesis, we reveal a convexity-like structure for two of the most popular
problems in linear algebra, namely the symmetric eigenvalue problem and the
problem of polar decomposition. We also study numerous applications of this
theory to practical algorithmic design and analysis, improving the state-of-
the-art in numerical linear algebra using off-the-self techniques from convex
optimization. In Section 8, we study the importance of the aforementioned
convexity-like structures for optimization in general, with a few surprising
results.

One aspect that co-exists on the side of this work is the importance of
optimization over Riemannian manifolds. The problems that we deal with
can be naturally posed on Riemannian manifolds and there are good reasons
to do so. The convexity-like structures that we study do not hold over some
Euclidean space, but rather “geodesically” over some Riemannian manifold.
As Riemannian adaptations of popular Euclidean algorithms are well-studied
under certain function classes (see for instance [54, 112, 118, 119]), more effort
should be invested in identifying problems, where a change in geometry of the
search space can yield to the rise of such function classes. Our results show
that the symmetric eigenvalue problem and polar decomposition offer great
examples.

We continue our introduction by discussing basic concepts of the three
fields that intersect in this thesis: optimization, linear algebra and differential
geometry.

1.1 Basics from optimization

Optimization is one of the most vibrant fields in applied mathematics. Its
success can be largely explained by its importance in training machine learning

9



models. However, optimization problems can be found in many other fields of
mathematics and applied sciences, including linear algebra. Many excellent
textbooks exist for the interested reader, see for instance [22, 80, 87].

Considering the problem of minimizing a function f : Rn → R that attains
a minimum

min
x∈Rn

f(x), (1.1.0.1)

the most popular algorithm to deal with it is gradient descent, which dates
back to the work of Cauchy [68].

This extremely simple algorithm assumes that f is differentiable, thus its
gradient can be computed at any point. It takes the form:

xt+1 = xt − η∇f(xt), (1.1.0.2)

where xt+1 is a new guess for a minimizer of f starting from a previous guess
xt and η > 0 is a step size. The first important property which guarantees
that gradient descent behaves reasonably well is the Lipschitz continuity of the
gradient:

Definition 1.1 (L-smoothness) A function f : Rn → R is called L-smooth
if its gradient is L-Lipschitz continuous, i.e.

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,

for all x, y ∈ Rn.

L-smoothness implies a number of interesting properties (see [120]):

Proposition 1.2 If f is L-smooth, then

• The largest eigenvalue of its Hessian is uniformly upper bounded by L in
absolute value.

• For all x, y ∈ Rn, it holds

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+
L

2
∥y − x∥2.

• For all x ∈ Rn, it holds

f(x)− f ∗ ≥ 1

2L
∥∇f(x)∥2,

where f ∗ is the minimum of f .

Under L-smoothness, gradient descent can be guaranteed to converge to
some critical point of f , i.e. a point x∗, such that ∇f(x∗) = 0.

Under extra convexity-like assumptions one can show stronger convergence
guarantees about gradient descent:

10



Proposition 1.3 If a function f is convex, then all local minima are global.
If in addition it is L-smooth, then gradient descent (1.1.0.2) with step size
η = 1/L converges to the global minimum f ∗ with an algebraic convergence
rate:

f(xt)− f ∗ ≤ 2L∥x0 − x∗∥2

t + 1
,

where x0 ∈ Rn is the starting point of the iteration and x∗ ∈ Rn some of the
global optima.

Proof The proof that every local minimum is global can be found in Proposi-
tion 1.2 in [26] and the convergence rate in Theorem 3.3 in [26].

Proposition 1.4 If a function f is µ-strongly convex, then the global minimizer
is unique. If, in addition, f is L-smooth, then gradient descent (1.1.0.2) with
step size η = 1/L converges to the global minimizer (let it be x∗) with a linear
convergence rate:

∥xt − x∗∥2 ≤
(

1− µ

L

)t
∥x0 − x∗∥2.

Proof See Theorem 3.10 in [26].

Notice that the previous convergence rate is with respect to the distances
of the iterates to the optimum. One can also show a convergence rate with
respect to the values of the function f to the minimum f ∗:

Proposition 1.5 For a µ-strongly convex and L-smooth function f , the iterates
of gradient descent (1.1.0.2) with η = 1/L satisfy

f(xt)− f ∗ ≤
(

1− µ

L

)t
(f(x0)− f ∗).

Proof Given the simplicity and the instructive nature of this proof, we present
it in detail.

Since f is L-smooth, we have that (see [120], Lemma 4)

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2.

Since xt+1 − xt = 1
L
∇f(xt), we have

f(xt+1)− f ∗ ≤ f(xt)− f ∗ − 1

2L
∥∇f(x)∥2.

Since f is µ-strongly convex, we have that (see Lemma 3(i) in [120])

∥∇f(x)∥2 ≥ 2µ(f(x)− f ∗), for all x. (1.1.0.3)

11



Writing this inequality for x = xt and combining with the previous inequality,
we get that

f(xt+1)− f ∗ ≤ f(xt)− f ∗ − µ

L
(f(xt)− f ∗) =

(
1− µ

L

)
(f(xt)− f ∗).

Extending this inequality by induction, we get the desired result.

Figure 1.1: A joint illustration of the notions of (strong-)convexity and smoothness. Such
function cannot grow faster than any quadratic and cannot shrink faster than a line in the
convex case or a quadratic in the strongly convex one.

A close inspection in the proof of Proposition 1.5 reveals that one does
not need strong convexity, but only its weaker implication (1.1.0.3). This
was first observed by Boris Polyak [93] and, as Stanis law  Lojasiewicz was
simultaneously studying more general version of the condition, it took the name
Polyak- Lojasiewicz (PL) condition.

The PL condition is much more general than strong convexity as it includes
non-convex optimization problems. Interesting examples of problems that
satisfy a PL condition, but are not strongly convex, include logistic regression
(see [56], section 2.3) and certain architectures of (usually overparametrized)
deep neural networks (see [105], Lemma 7.12). An important result coming
from [56] shows that among all properties that the optimization community has
come up with (until that point) in order to guarantee a linear convergence rate
for gradient descent, PL is the weakest. Even deeper, [1] shows (Theorem 5)
that PL is a necessary condition for gradient descent to have linear convergence
with respect to function values to the minimum, when applied to a function
with Lipschitz continuous gradient.
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Figure 1.2: A classic example of a function which satisfies a PL condition but is not convex.

While the PL condition is perhaps the most popular non-convexity property
studied in the realm of convex optimization, it will turn out to be insufficient
for our problems of interest. A stronger property than PL that facilitates our
future analysis is the following:

Definition 1.6 (Weak-quasi-strong convexity) A function f : Rn −→ R
is called (a, µ)-weak-quasi-strongly convex (WQSC) in a set E ⊆ Rn, if it has a
unique optimum x∗ in E and for all x ∈ E we have

f(x)− f ∗ ≤ 1

a
⟨gradf(x), x− x∗⟩ − µ

2
∥x− x∗∥2,

for some constants a, µ > 0.

Remark 1.1 WQSC is equivalent with the so-called weak-quasi convexity prop-
erty [40] and the more well-known quadratric growth property [33] holding
simultaneously.

Note that (a, µ)-WQSC includes the class of µ-strongly convex functions for
a = 1. Even when a ̸= 1, it guarantees a PL condition:

Proposition 1.7 If f is (a, µ)-WQSC in E, then it satisfies the PL condition

∥∇f(x)∥2 ≥ 2a2µ(f(x)− f ∗),

for all x ∈ E.
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Proof The proof is simple and can be found in [25] (Lemma 3.2).

What makes weak-quasi-strong convexity interesting is that it guarantees
linear convergence of gradient descent (1.1.0.2) with respect to distances of the
iterates to the optimum, in contrast with the PL condition, which guarantees
convergence only with respect to function values.

Proposition 1.8 If f is L-smooth and (a, µ)-WQSC in Rn, then gradient
descent with step size η = a/L produces iterates that satisfy

∥xt − x∗∥2 ≤
(

1− a2
µ

L

)t
∥x0 − x∗∥2.

Proof The proof can be found in Lemma 4.2 of [25].

Remark 1.2 We make the choice to not bother too much with the proofs of
these results in our introduction as they have already appeared in related works.
Later in the text, we will need versions of these results in slightly different
settings, like in a Riemannian regime, or with a more general step size, or in a
more restrictive domain etc. In these cases, we will revisit the proofs of these
results in detail.

Similarly with PL, we will show that weak-quasi-strong convexity has a
special meaning in optimization, namely, except sufficient, it is also necessary
for linear convergence of gradient descent with respect to distances of the
iterates to the optimum. This is the content of Section 8.

Except gradient descent, another popular algorithm that will concern us is
an accelerated version of gradient descent with momentum in the style proposed
by Yurii Nesterov in his seminal work [79]. This algorithm can take the simple
form of Algorithm 1.1 presented in page 78 of [80].

Algorithm 1.1 Accelerated gradient descent with Nesterov momentum

1: Choose x0 ∈ Rn and set v0 = x0.
2: for t ≥ 0 do
3: Compute αt > 0 such that α2

t = (1−αt)γt+αtµ
L .

4: Set yt =
αtγtvt+γt+1xt

γt+αtµ
.

5: Set xt+1 = xt − 1
L∇f(yt).

6: Set vt+1 = 1
γt+1

((1− αt)γtvt + αtµyt − αt∇f(yt).
7: end for

Accelerated gradient descent is more complicated than gradient descent, but
still constructed by simple ideas. The original convergence analysis is made
for convex or strongly convex functions using a technique called “estimate
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sequence”. In the strongly convex case (which is more of interest for us), such
algorithm produces iterates that satisfy

f(xt)− f ∗ ≤
(

1−
√

µ

L

)t

(f(x0)− f ∗).

The reader can refer to Theorem 2.2.3 in [80]. The “acceleration” is reflected
on the square root that appears around the inverse condition number µ/L.
Such number can be extremely small (close to 0) in many practical applications,
in which case its square root is substantially larger. This algorithm is not
the most practical, as there are certain hyperparameters that need to be set
accurately in order to achieve the desired convergence rate. It has though high
theoretical value as it is in some sense “optimal” among all first-order methods
(i.e. methods that access only function values and gradients).

In our case, we will not be dealing with strongly convex problems. However,
even weak-quasi-strong convexity is enough to design and analyse an estimate
sequence that gives rise to an algorithm with an accelerated convergence rate.
This will be important in Section 6.

1.2 Basics from linear algebra

1.2.1 The symmetric eigenvalue problem

One of the main problems presented in this thesis is the computation of some
eigenvalues and associated eigenvectors of some symmetric matrix A ∈ Rn×n.
Together with the algorithmic solution of linear systems, eigenvalue problems
have been prototypical for the domain of numerical linear algebra. They have
been prototypical for the field of optimization over Riemannian manifolds as well.
For instance, it is the most standard problem treated in the popular textbook
[3], while it appears also in earlier efforts, see for instance [17]. The latter is
a good example of an effort from the Riemannian optimization community
to design more competitive (trust-region-style) methods for the symmetric
eigenvalue problem, using some novel machinery. These early attempts are
focused mostly on computational aspects of useful Riemannian quantities and
not so much on strong convergence guarantees.

In this section, we present some basics related to eigenvalues and eigenvectors
and refer the reader to classic textbooks [39, 96, 110] for more.

An eigenvalue λ ∈ R and an associated eigenvector v ∈ Rn \ {0} of a
symmetric matrix A ∈ Rn×n is a pair such that

Ax = λx.

Eigenvalues and eigenvectors are well-defined for a larger class of matrices,
but we shall stick to the case of symmetric matrices, as then all eigenvalues
are guaranteed to be real numbers. One can write a symmetric eigenvalue
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problem also in matrix form. To that end, we denote by Λ ∈ Rn×n a diagonal
matrix containing some eigenvalues of A in its diagonal entries, while V ∈ Rn×k

denotes a matrix featuring k-many eigenvectors in its columns. The desired
relationship now takes the form

AV = V Λ. (1.2.1.1)

From now on, we will usually be dealing with a multiple eigenvalue-eigenvector
problem in matrix form. One question that we tackle is computing the largest
k eigenvalues and associated eigenvectors of the matrix A. Let us denote the
eigenvalues of A in decreasing order as λ1 ≥ λ2 ≥ . . . ≥ λk ≥ λk+1 ≥ . . . ≥ λn.
The first k eigenvalues are the wanted ones, while the last n− k are unwanted.
We also denote by δ = λk − λk+1 the gap between the wanted and unwanted
eigenvalues. Depicting this situation in matrix form requires to store the wanted
and unwanted eigenvalues separately in the diagonal entries of two diagonal ma-
trices Λα = diag(λ1, . . . , λk) and Λβ = diag(λk+1, . . . , λn). We can also define
a matrix Vα =

[
v1 · · · vk

]
, such that V T

α Vα = Ik, that contains the eigen-

vectors corresponding to the eigenvalues λ1, . . . , λk and Vβ =
[
vk+1 · · · vn

]
,

such that V T
β Vβ = In−k and V T

α Vβ = 0k×(n−k), that contains the eigenvectors
corresponding to the eigenvalues λk+1, . . . , λn.

Figure 1.3: Illustration of some datasets and the eigenvectors of their covariance matrices.
These eigenvectors indicate directions of maximum or minimum covariance. Picture by Jesse
Johnson.

The most popular algorithm for solving the problem (1.2.1.1) is the so-called
subspace iteration. Starting from an initial n× k matrix X0, one updates as

Xt+1 = QR(AXt). (1.2.1.2)

QR(·) means that the algorithm keeps the orthogonal factor of the QR decom-
position of AXt. This is done in order to prevent the columns of Xt to converge
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to the same eigenvector corresponding to the largest eigenvalue.
This algorithm is very simple and comes with an extremely simple con-

vergence analysis. For phrasing a convergence result, we need the notion of
principal angles between subspaces.

Definition 1.9 (Principal angles) Given two subspaces Span(X), Span(Y ) ⊆
Rn of dimension k with X, Y ∈ Rn×k orthonormal, the principal angles between
them are θ1, θ2, . . . , θk ∈ [0, π/2], if the SVD of Y TX can be written as

Y TX = U1 cos θ V T
1

where U1 ∈ Rk×k, V1 ∈ Rk×k are orthogonal and cos θ := diag(cos θ1, . . . , cos θk).

Notice that the definition of principal angles is independent of the specific
orthonormal matrices which represent the subspaces. This notion captures how
far away two subspaces are, similarly with the notion of the angle between two
vectors. Without loss of generality, we will treat the principal angles between
two subspaces as ordered θ1 ≤ θ2 ≤ . . . ≤ θk.

We now state a simple convergence result about subspace iteration (Theorem
8.2.1 in [39]):

Proposition 1.10 Let X0 ∈ Rn×k be an orthonormal matrix, such that XT
0 Vα

is non-singular. Let Xt be the iterates of subspace iteration (1.2.1.2). Then,
the largest principal angle θtk between Xt and Vα satisfies

tan θtk ≤
∣∣∣∣ λk

λk+1

∣∣∣∣t tan θ0.

Notice that if the spectral gap δ is strictly positive, then the previous result
gives a linear convergence rate. If the spectral gap is 0, then it just states that
the principal angles do not increase over the course of the algorithm.

Subspace iteration is a very handy algorithm, but it can suffer from poor
performance, especially in the case that the spectral gap is tiny (this happens a
lot in practical applications). The probably simplest idea on how to accelerate
subspace iteration is filtering the objective matrix using some polynomial. A
complete exposition of this process can be found in Chapter 7 of [96]. A general
version of such algorithm reads as:

Xt+1 = QR(pt(A)Xt), (1.2.1.3)

where pt is some polynomial of degree t. If pt(x) = xt, then we recover the case
of vanilla subspace iteration. QR(·) again keeps the orthogonal factor of the
QR decomposition of pt(A)Xt. For reasons that are beyond the scope of this
thesis, the optimal choice for the polynomial pt is

pt(x) = Ct((x− c)/h) where Ct is a Chebyshev polynomial of degree t.
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Here c and h are scaling parameters that depend on the (unknown in general)
eigenvalues of A. This method accelerates over subspace iteration (1.2.1.2),
but this acceleration comes at the cost of tuning the previously discussed
hyperparameters which depend on unknown quantities. The convergence
guarantees of this method with optimal filtering (also called Chebyshev iteration)
can be found in Section 7.4.1 of [96].

Another family of “accelerated” algorithms is Krylov methods (Chapter 6
in [96]). Such algorithms are based on the construction of a Krylov subspace:
starting from an orthonormal matrix X ∈ Rn×k, one constructs the subspace

Span{X,AX,A2X, ..., AmX}.

Methods that belong to this family build iteratively an orthogonal basis for
such Krylov subspace. This orthogonal basis serves as a good approximation
of the eigenvectors of the matrix A.

Krylov methods have similar convergence guarantees with Chebyshev itera-
tion, without the messy selection of hyperparameters. The price that needs to
be payed though is manifold: the cost of Krylov methods is not fixed per itera-
tion, but rather increases. Another serious issue is that in certain applications
(e.g. in electronic structure calculations [121]) the matrix A changes a little
during the course of the algorithm. This makes Krylov methods unsuitable,
as one needs to construct the whole Krylov subspace with the same matrix at
once.

The final algorithm we would like to mention is, by some measures, an
optimal eigenvalue solver. It is called locally optimal block preconditioned
conjugate gradients (LOBPCG) algorithm and first appeared in seminal works
by Andrew Knyazev [59, 60]. LOBPCG essentially computes the iterate that
maximizes the Rayleigh quotient, chosen from a space constructed by the
current iterate, a gradient-related term and a momentum term. It is at least as
fast as the basic preconditioned eigenvalue solver (PINVIT) [61], but efforts to
show that indeed accelerates over PINVIT have been proven illusive. That is
to say that the excellent practical performance of LOBPCG is not backed by
theoretical results in a solid way. Nevertheless, it is considered state-of-the-art
from a practical point of view. This is why we test our algorithms of Sections
5 and 6 primarily against LOBPCG. Research on the theoretical guarantees
of LOBPCG (and PINVIT) are still an active area of research, on which this
thesis contributes (Section 4). Unfortunately, the analysis of Section 4 applies
only to the basic PINVIT algorithm and not to the more advanced LOBPCG
version, for reasons that are discussed there.

There are of course a lot more methods for solving large-scale eigenvalue
problems, a complete exposition of them though would need the length of a
textbook. Also, it would not be really helpful for the reader of this thesis.
The traditional numerical linear algebra techniques have perhaps started to
reach a historical limit and progress through them is really incremental. On
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the other hand, there is some room for fresh approaches based on ideas of
(geodesically) convex optimization on Riemannian manifolds. This strategy
requires formulating the symmetric eigenvalue problem as an optimization
problem.

A good point to start is by noticing that computing a set of largest eigenvalues
of a matrix A ∈ Rn×n can be formulated as the minimization of the function

f(X) = −Tr(XTAX)

over the set of n× k matrices with orthonormal columns. Indeed, from Fan’s
trace minimization theorem (see, e.g., [47, Corollary 4.3.39]) we know that

min{f(X) : X ∈ Rn×k, XTX = Ik} = −(λ1 + . . . + λk) = −Tr(Λα) =: f ∗.
(1.2.1.4)

An optimum of this problem is the matrix Vα =
[
v1 · · · vk

]
defined pre-

viously. If the spectral gap δ is strictly positive, then Span(Vα) is unique;
otherwise, we can choose any vk from a subspace with dimension equal to the
multiplicity of λk. It is readily seen that f(Vα) = −(λ1 + · · · + λk). In fact,
all minimizers of (1.2.1.4) are of the form VαQ with Q a k × k orthogonal
matrix. We also define Vβ =

[
vk+1 · · · vn

]
that contains the eigenvectors

corresponding to the eigenvalues λk+1, . . . , λn. Its columns span the orthogonal
complement of Span(Vα) in Rn and thus V T

β Vβ = In−k and V T
α Vβ = 0k×(n−k).

Since Span(Vα) = Span(VαQ), it is more natural to consider this problem
as a minimization problem on the Grassmann manifold Gr(n, k), i.e. the set of
k-dimensional subspaces in Rn. Let us therefore redefine the objective function
as

f(X ) = −Tr(XTAX) where X = Span(X) for X ∈ Rn×k s.t. XTX = Ik.
(1.2.1.5)

This cost function can be seen as a block version of the standard Rayleigh
quotient x −→ −xTAx

xT x
. An immediate benefit is that, if δ > 0, the minimizer

of (1.2.1.5) is isolated since it is the subspace Vα = Span(Vα).
One of the contributions of this thesis is to develop and analyze various

solvers for this optimization problem (thus also for the symmetric eigenvalue
problem), using off-the-shelf techniques from convex optimization. It turns out
that in many cases the outcome is surprisingly competitive in practice, while
maintains good theoretical properties. All that is possible via the discovery of
a convexity-like structure for (1.2.1.5), analyzed in Section 2.

1.2.2 Polar decomposition

The second important problem presented in this thesis has to do with polar
decomposition. The polar decomposition of a matrix is a standard factorization,
where some matrix C ∈ Rn′×n, n′ ≥ n, must be written as the product of an
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orthonormal matrix X ∈ Rn′×n and a symmetric and positive semi-definite
matrix P ∈ Rn×n, i.e.

C = XP.

Such a decomposition always exists and a good way to see that is through
the singular value decomposition. If a singular value decomposition of C is

C = UΣV T ,

then the “polar factor” X of the polar decomposition is given as

X = UV T

and the symmetric positive semi-definite part P is given as

P = V ΣV T .

One can easily see that the polar decomposition of C is unique if and only
if C is invertible, i.e. if and only if its singular values are all positive.

The most direct way to compute a polar decomposition is via the SVD.
Clearly, this approach is too expensive. The numerical linear algebra community
has developed plenty of faster algorithms to tackle this problem. The most basic
one is the Newton method ([45], Section 8.3). The Newton method is in general
fast in the late stage of convergence, but can be very slow at the beginning if
the matrix C is ill-conditioned. Another prominent class of algorithms is the
Padé family of iterations ([45], Section 8.5), which suffers more or less by the
same issues.

Most of the effort in the last few years has been focused on scaling the
basic Newton iteration, in order to obtain variants that do not suffer from slow
convergence at the beginning of the iterations. The so-called “optimal” scaling
[57] enjoys excellent theoretical behaviour, but the scaling factor depends on
the (generally unknown) smallest and largest singular values in each iterate Xt.
A more practical version, that however lacks convergence guarantees, can be
found in [44]. A middle ground with a sub-optimal computable scaling that
still enjoys some convergence guarantees can be found in [28].

The state-of-the-art in this area comes probably from [76]. There, the
Halley’s method (which is a member of the Padè family of iterations) is scaled
in a principled way. The Halley method has cubic asymptotic convergence, but
the initial stage can be very slow for ill-conditioned matrices [37]. The scaling
of [76] helps to improve its performance in the initial stage of convergence.

An interesting property of the polar factor is that it is the closest orthonormal
matrix to the original matrix C (see [45], Theorem 8.4). This makes polar
decomposition intimately related to the orthogonal Procrustes problem (see
[45], Theorem 8.6). The procrustes problem [98] is important in many areas of
applied science [6, 36, 55]. It seeks for an orthogonal matrix X ∈ O(n), such
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that the quantity ∥AX − B∥2F for two matrices A,B ∈ Rm×n is as small as
possible. This problem admits the equivalent formulation

min
X∈O(n)

−Tr(CX),

with C := BTA, and its solution is the polar factor of the matrix CT ∈ Rn×n.
This problem turns out to have a geodesic convexity-like structure in the
orthogonal group, which we analyze in Section 7. This structure is similar to
the one that is analyzed for the symmetric eigenvalue problem in Section 2.

While we do not develop some application for this theory, as we do for the
case of the symmetric eigenvalue problem, we predict that many applications
can be found in noisy orthogonal Procrustes settings. In general, polar factors
behave quite badly with respect to perturbations of the original matrix. Let C̃
be a perturbation of C, then the distance between the polar factors X̃ and X
can be upper bounded in general as (see Theorem 8.10 in [45])

∥X − X̃∥F ≤
2

σmin(C) + σmin(C̃)
∥C − C̃∥F .

This means that computing the polar factor of a perturbed version of C fast
and in high accuracy does not mean much, especially in the case where C and
its perturbed version are nearly singular. In other words, we cannot just take
C̃ and apply some of the classic algorithms mentioned above directly on it.

1.3 Basics from differential geometry

In this section, we briefly present basic notions from the field of differential
geometry that will be useful later. The main point here is to present a
shallow introduction for the readers who are unfamiliar with the basics of
differential geometry, focusing on the intuitive relationship with more familiar
notions from the geometry of the Euclidean space. For an in depth study
of differential geometry, the reader can use a variety of excellent textbooks
including [67, 95, 106]. Here, we just follow the simplistic exposition of [10].

We also analyze the geometry of specific manifolds that are useful for our
purposes, namely the sphere, the Grassmann manifold and the orthogonal
group, this time in mode detail. The classic sources for whatever concerns
algorithmic computation on matrix manifolds are [3] and the seminal paper
[35].

Manifolds. A differentiable manifold M is a topological space that is locally
Euclidean. This means that for any point x ∈M, we can find a neighborhood
that is diffeomorphic to an open subset of some Euclidean space. This Euclidean
space can be proved to have the same dimension, regardless of the chosen point,
called the dimension of the manifold. Considering curves c : [0, 1]→M that
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pass from a specific point x ∈M, the space of their derivatives at x is called
the tangent space and is usually denoted by TxM.

A Riemannian manifold (M, g) is a differentiable manifold equipped with a
Riemannian metric gx, i.e. an inner product for each tangent space TxM. We
denote the inner product of u, v ∈ TxM with ⟨u, v⟩x or just ⟨u, v⟩ when the
tangent space is obvious from context. Similarly, we consider the norm as the
one induced by the inner product at each tangent space.

Geodesics Geodesics are curves γ : [0, 1] → M of constant speed and of
(locally) minimum length. They can be thought of as the Riemannian general-
ization of straight lines in Euclidean spaces. Geodesics are used to construct
the exponential map Expx : TxM → M, defined by Expx(v) = γ(1), where
γ is the unique geodesic such that γ(0) = x and γ̇(0) = v. The exponential
map is locally a diffeomorphism. Using the notion of geodesics, we can define
an intrinsic distance (denoted as dist) between two points in the Riemannian
manifold M, as the infimum of lengths of geodesics that connect these two
points. A Riemannian manifold of which any two points are connected by some
geodesic is called complete. Geodesics also provide a way to transport vectors
from one tangent space to another. This operation, called parallel transport,
is usually denoted by Γy

x : TxM → TyM. Closely linked to geodesics is the
notion of injectivity radius. Given a point x ∈ M, we define the injectivity
radius at x (denoted inj(x)) to be the radius of the biggest ball around x that
the exponential map Expx restricted to it is a diffeomorphism. We denote the
inverse of the exponential map inside this ball by Logx and we call it Rieman-
nian logarithm. Notice that in the Euclidean space the logarithm between two
points is just their difference: Logx(y) = y − x. In general, we have that, if
Logx(y) is well-defined, then Logx(y) = dist(x, y).

Figure 1.4: The geodesics of the torus, by Mark Irons.

Vector fields and the Riemannian gradient The notion of a vector field is
central in calculus. It is also important in Riemannian geometry:
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Definition 1.11 Let M be a Riemannian manifold. A vector field X in M
is a smooth map X : M→ TM, where TM is the tangent bundle, i.e. the
collection of all tangent vectors in all tangent spaces of M such that p ◦X is
the identity (p is the projection from TM to M).

One can see a vector field as an infinite collection of imaginary curves,
the so-called integral curves (formally they are solutions of some first-order
differential equations on M).

A prominent vector field for us will be the Riemannian gradient of a real-
valued function f :M→ R:

Definition 1.12 The Riemannian gradient gradf(x) of a function f :M→ R
at a point x ∈M, is the tangent vector at x, such that ⟨gradf(x), u⟩ = df(x)u 1,
for any u ∈ TxM.

Covariant differentiation and the Riemannian Hessian The most suitable notion
to capture second order changes on a Riemannian manifold is called covariant
differentiation and it is induced by the fundamental property of Riemannian
manifolds to be equipped with a connection. The fact that a connection can
always be defined in a Riemannian manifold is the subject of the so-called
fundamental theorem of Riemannian geometry. We are interested in a specific
type of connection, called the Levi-Civita connection, which induces a specific
type of covariant derivative. For our purpose, it will however be sufficient to
define the notion of covariant derivative using the (simpler) notion of parallel
transport.

Definition 1.13 Given two vector fields X, Y in a Riemannian manifold M,
we define the covariant derivative of Y along X as

∇XY (x) := lim
t→0

Γ
γ(0)
γ(t)Y (γ(t))− Y (x)

h
,

with γ the unique integral curve of X passing from x.

Given the notions of Riemannian gradient and covariant differentiation, we
can define the notion of Riemannian Hessian:

Definition 1.14 Given vector fields X, Y inM, we define the Hessian operator
of f to be

Hess f(X, Y ) := ⟨∇X grad f, Y ⟩.
1df denotes the differential of f , i.e. df(x)[u] = limt→0

f(c(t))−f(x)
t

, where c : [0, 1] → M is a smooth
curve such that c(0) = x and ċ(0) = u.
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This (0, 2)-tensor defines a bilinear form at each tangent space, i.e. Hess f(x)
is a map from TxM to TxM. A simpler definition of the operator Hess f(x) at
some point x ∈M can be

Hess f(x)v := lim
t→0

Γx
c(t)gradf(c(t))− gradf(x)

t
,

for some curve c, such that c(0) = x and ċ(0) = v.

Curvature. The sectional curvatures is a way of measuring the curvature of a
Riemannian manifold along a particular 2-dimensional plane within the tangent
space at a point.

The sectional curvature K at a point x of a Riemannian manifold M with
Riemannian metric g is defined for each 2-dimensional plane σ ⊂ TxM. One
starts by defining the Riemann curvature tensor R, which is a (1, 3)-tensor
defined as:

R(v, w)z = ∇v∇wz −∇w∇vz −∇[v,w]z,

where ∇ is the Levi-Civita connection, and v, w, z ∈ TxM.
The sectional curvature K(σ) for the plane σ spanned by v and w is given

by:

K(σ) = K(v, w) =
g(R(v, w)w, v)

g(v, v)g(w,w)− g(v, w)2
.

What is important for our purposes is not so much a rigorous definition of
sectional curvatures, but rather its implications. All the manifolds that we deal
with in this thesis have nonnegative sectional curvatures at all points. This
implies the following important geometric bound, which can be seen as a law
of cosines for spaces of nonnegative sectional curvatures:

Proposition 1.15 Consider three points x, y, z ∈M on a manifold of nonneg-
ative sectional curvatures M, such that they are connected by unique geodesics.
Then, we have

1. dist2(x, y) ≤ dist2(z, x) + dist2(z, y)− 2⟨Logz(x),Logz(y)⟩.

2. dist(x, y) ≤ ∥Logz(x)− Logz(y)∥.

Proof Both 1 and 2 are simple consequences of the famous Toponogov’s theo-
rem (see Theorem 2.2 in [29]).

We will need more geometric bounds along the text, which we will present
accordingly. We presented the previous bound already, as it will be used
extensively.
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Figure 1.5: Three manifolds of negative, 0 and positive curvature respectively from left to
right (taken from Wikipedia).

Geodesic convexity. The differentiability provided by the very structure of a
Riemannian manifold is a great feature for generalizing convexity-type notions.
It is also suitable for optimizing functions defined over manifolds using gradient-
based algorithms. A classic textbook on the topic is [111]. A newer textbook
with excellent exposition is [21]. The reader is suggested to consult them in
case they need a more complete picture on the relevant notions.

Definition 1.16 A subset E ⊆ M of a Riemannian manifold M is called
geodesically uniquely convex, if every two points in E are connected by a unique
geodesic.

Definition 1.17 A differentiable function f : M → R is called geodesically
convex in a geodesically uniquely convex subset E of M, if for all x, y ∈ E it
holds

f(y)− f(x) ≥ ⟨gradf(x),Logx(y)⟩.

Note that we do not need a function to be differentiable to define convexity.
However, since in this thesis all functions of interest will be differentiable, we
define convexity directly through the gradient. As in the Euclidean case, any
local minimum of a geodesically convex function is a global minimum.
In a similar manner, we define geodesic strong convexity:
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Definition 1.18 A differentiable function f : M → R is called geodesically
µ-strongly convex (µ > 0) in a geodesically uniquely convex subset E of M, if
for all x, y ∈ E, it holds

f(x)− f(y) ≤ ⟨gradf(x),Logx(y)⟩ − µ

2
dist2(x, y).

If a function f is geodesically strongly convex and a minimum exists, then
there is only one minimum and it is global.

Definition 1.19 A function f :M→ R defined in a complete manifold M is
called geodesically L-smooth, if for all x, y ∈M, it holds

∥gradf(x)− Γx
ygradf(y)∥ ≤ Ldist(x, y),

where Γx
y is the parallel transport along some geodesic connecting x and y.

The previous definitions are well constructed enough to imply the standard
connection of convexity and smoothness with the Riemannian Hessian:

Proposition 1.20 A function f :M→ R is

• geodesically µ-strongly convex in an open subset E if and only if

Hessf(x) ⪰ µI

for all x ∈ E.

• geodesically L-smooth if and only if

−LI ⪯ Hessf(x) ⪯ LI

for all x ∈M.

⪰ and ⪯ represent the classic positive semi-definite order in the space of
symmetric matrices.

Geodesic L-smoothness has similar implications with Euclidean L-smoothness.

Proposition 1.21 If f is L-smooth, then

• For all x, y ∈M, it holds

f(y)− f(x) ≤ ⟨gradf(x),−Logx(y)⟩+
L

2
dist2(x, y).

• For all x ∈M, it holds

f(x)− f ∗ ≥ 1

2L
∥gradf(x)∥2,

where f ∗ is the minimum of f .
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As discussed previously, in this thesis we are more interested in weaker
notions, namely the geodesic Polyak- Lojasiewicz condition and the geodesic
weak-quasi-strong convexity. To formally define the above, we just need to
substitute the “Euclidean” quantities appearing in their previous definitions
with Riemannian analogues of them:

Definition 1.22 A function f :M→ R is:

• geodesically Polyak- Lojasiewicz (PL) in a geodesically uniquely convex
subset E ⊆M if

∥gradf(x)∥2 ≥ 2µ(f(x)− f ∗),

for some µ > 0 and for all x ∈ E.

• geodesically weak-quasi-strongly convex (WQSC) in a geodesically uniquely
convex E ⊆M, if it has a unique optimum x∗ in E and

f(x)− f ∗ ≤ 1

a
⟨gradf(x),Logx(x∗)⟩ − µ

2
dist2(x, x∗),

for some a, µ > 0 and for all x ∈ E. Again, if a function is geodesically
WQSC with parameters a and µ, we will often write it as geodesically
(a, µ)-WQSC. As in the Euclidean case, WQSC implies a PL condition.

Remark 1.3 We use the term “geodesically” to distinguish between the Eu-
clidean and Riemannian convexity-type notions. However, when the situation
is clear from context (i.e. it is obvious we work on a manifold), this word will
be omitted.

The previous notions are suitably constructed in an intrinsic differential-
geometric way, such that they give convergence guarantees for a similarly
suitable adaptation of gradient descent (1.1.0.2) for a Riemannian manifold:

xt+1 = Expxt
(−ηgradf(xt)), x0 ∈M. (1.3.0.1)

This algorithm and variants of it will concern us a lot for the rest of this
thesis. We do not give here convergence guarantees of Riemannian gradient
descent (1.3.0.1) under the function classes discussed previously, as convergence
guarantees will be given throughout the text for specific optimization problems.

Besides gradient descent, Riemannian adaptations of accelerated gradient
descent with Nesterov momentum also exist ([4, 58, 75, 119]). In Section 6 we
develop a version of such algorithm for the symmetric eigenvalue problem with
rigorous convergence guarantees.
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1.3.1 The geometry of specific manifolds of interest

1.3.1.1 Sphere

The first manifold that we discuss is the sphere, i.e. the set of vectors of unit
norm:

Sn−1 = {x ∈ Rn/∥x∥ = 1}.
This space is useful when one is interested in computing only one eigenvalue

and associated eigenvector of a symmetric matrix. We present here some basic
quantities regarding the geometry of the sphere and refer the reader to [3, pages
73–76] for a more comprehensive presentation.

Tangent Space: The tangent space of the (n− 1)-dimensional sphere Sn−1 at
a point x is an (n− 1)-dimensional vector space, which generalizes the notion
of a two-dimensional tangent plane. We denote it by TxSn−1 and a vector v
belongs in it, if and only if, it can be written as ċ(0), where c : (−ε, ε)→ Sn−1

(for some ε > 0) is a smooth curve with c(0) = x. The tangent space at x can
be given also in an explicit way, as the set of all vectors in Rn orthogonal to x
with respect to the usual inner product. Given a vector w ∈ Rn, we can always
project it orthogonally in any tangent space of Sn−1. Taking all vectors to be
column vectors, the orthogonal projection in TxSn−1 satisfies

Projx(w) = (I − xxT )w.

Geodesics: Geodesics on high-dimensional surfaces are defined to be locally
length-minimizing curves. On the (n− 1)-dimensional sphere, they coincide
with great circles. These can be computed explicitly and give rise to the
exponential and logarithmic maps. These are given by the following well-known
formulas

Expx(v) = cos(∥v∥)x + sin(∥v∥) v

∥v∥
, Logx(y) = arccos(⟨x, y⟩) Projx(y − x)

∥Projx(y − x)∥
.

(1.3.1.1)

The distance between points x and y measured intrinsically in the sphere is

dist(x, y) = ∥Logx(y)∥ = arccos(⟨x, y⟩). (1.3.1.2)

Notice that ⟨x, y⟩ = ∥x∥∥y∥ cos(∠(x, y)) = cos(∠(x, y)), thus the distance of x
and y is actually the angle between them.

The inner product inherited by the ambient Euclidean space Rn provides a
way of parallel transport. If y = Expx(tv), then parallel transport is given by
the formula

Γy
xu =

(
I + cos(t∥v∥ − 1)

vvT

∥v∥2
− sin(t∥v∥) pv

t

∥v∥

)
u.
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Riemannian Gradient: The Riemannian gradient (which has been defined
previously in general) takes a particularly simple form in the case of the sphere.
We can compute the Riemannian gradient by orthogonally projecting the
Euclidean gradient ∇f(x) computed in the ambient space Rn into the tangent
space of x:

gradf(x) = Projx(∇f(x)) = (I − xxT )∇f(x).

Curvature: The sphere is a manifold of constant sectional curvature, equal to
1. For our purposes, we only use that its sectional curvatures are nonnegative.

1.3.1.2 Grassmann manifold

The (n, k)-Grassmann manifold is defined as the set of all k-dimensional sub-
spaces of Rn:

Gr(n, k) = {X ⊆ Rn : X is a subspace and dim(X ) = k}.

Any element X of Gr(n, k) can be represented by a matrix X ∈ Rn×k that
satisfies X = Span(X). Such a representative is not unique since Y = XQ for
some invertible matrix Q ∈ Rk×k satisfies Span(Y ) = Span(X). Without loss of
generality, we will therefore always take matrix representatives X of subspaces
X that have orthonormal columns. With some care, the non-uniqueness of the
representatives is not a problem 2. For example, the cost function (1.2.1.5) is
invariant to Q.

Tangent space and Riemannian metric: The set Gr(n, k) admits the structure
of a differentiable manifold with tangent spaces

TX Gr(n, k) = {G ∈ Rn×k : XTG = 0}, (1.3.1.3)

where X = Span(X). Since XTG = 0 if and only if (XQ)TG = 0, for any
invertible matrix Q ∈ Rk×k, this description of the tangent space does not
depend on the representative X. However, a specific tangent vector G will
depend on the chosen X. With slight abuse of notation 3, the above definition
should therefore be interpreted as: given a fixed X, we define tangent vectors
G1, G2, . . . of Gr(n, k) at X = Span(X).

This subtlety is important, for example, when defining an inner product on
TX Gr(n, k):

⟨G1, G2⟩X = Tr(GT
1G2) with G1, G2 ∈ TX Gr(n, k).

2This can be made very precise by describing Gr(n, k) as the quotient of the Stiefel manifold with the
orthogonal group. The elegant theory of this quotient manifold is worked out in [3].

3Using the quotient manifold theory, one would use horizontal lifts.
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Here, G1 and G2 are tangent vectors of the same representative X. Observe
that the inner product is invariant to the choice of orthonormal representative:
If Ḡ1 = G1Q and Ḡ2 = G2Q with orthogonal Q, then we have

⟨Ḡ1, Ḡ2⟩X = Tr(ḠT
1 Ḡ2) = Tr(QTGT

1G2Q) = Tr(GT
1G2QQT ) = Tr(GT

1G2).

It is easy to see that the norm induced by this inner product in any tangent
space is the Frobenius norm, which we will denote as ∥ · ∥ := ∥ · ∥F .

The orthogonal projection of a matrix W ∈ Rn×k onto the tangent space
TX Gr(n, k) is

ProjX (W ) = (I −XXT )W,

where X is an orthonormal representative of X .

Exponential map and Riemannian logarithm: Given the Riemannian structure
of Gr(n, k), we can compute the exponential map at a point X as [2, Thm. 3.6]

ExpX : TX Gr(n, k)→ Gr(n, k)

G 7→ Span(XV cos(Σ) + U sin(Σ) ),
(1.3.1.4)

where UΣV T is the compact SVD of G such that Σ and V are square matrices.
The exponential map is invertible in the domain [18, Prop. 5.1]{

G ∈ TX Gr(n, k) : ∥G∥2 <
π

2

}
, (1.3.1.5)

where ∥G∥2 is the spectral norm of G. The inverse of the exponential map
restricted to this domain is the logarithmic map, denoted by Log. Given two
subspaces X ,Y ∈ Gr(n, k), we have

LogX (Y) = U atan(Σ̂)V T , (1.3.1.6)

where UΣ̂V T = (I −XXT )Y (XTY )−1 is again a compact SVD. This is well-
defined if XTY is invertible, which is guaranteed if all principal angles between
X and Y are strictly less than π/2. By taking G = LogX (Y), we see that

Σ = atan(Σ̂). We can express the Riemannian logarithm using the notion
of principal angles between subspaces. The intrinsic distance induced by the
aforementioned Riemannian metric is

dist(X ,Y) = ∥LogX (Y)∥ = ∥LogY(X )∥ =
√
θ21 + ... + θ2k = ∥θ∥2, (1.3.1.7)

where θ = (θ1, . . . , θk)T with θj being the principal angles between the subspaces
X and Y. For more details on these facts, the reader can refer to Section 4.3
in [35] (arc length distance).
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Riemannian gradient: The gradient of a function f : Gr(n, k)→ R at a point
X is given as the orthogonal projection of the Euclidean gradient ∇f(X)
computed in the ambient space at an orthonormal representative X of X :

grad f(X ) = (I −XXT )∇f(X).

Curvature: We can compute exactly the sectional curvatures in Gr(n, k), but
for our purposes we only need that they are everywhere non-negative [18, 113].
This means that the geodesics on the Grassmann manifold spread more slowly
than in Euclidean space, which is essentially quantified by Proposition 1.15.

1.3.1.3 The orthogonal group

The orthogonal group O(n) is the set of all orthogonal matrices in Rn×n. It is a
Riemannian manifold and a group, i.e. it has the structure of a Lie group. The
orthogonal group is disconnected, with two connected components, namely, the
orthogonal matrices with determinant equal to 1 and the ones with determinant
equal to −1. We present again the basics of the geometry of this manifold and
refer the reader to [18] for more.

Tangent space and Riemannian metric: The tangent space at a point X ∈ O(n)
is

TXO(n) = {XΩ / Ω ∈ Rn×n is skew-symmetric, i.e. ΩT = −Ω}.
The most usual Riemannian metric that one equipes this space is

⟨V,W ⟩X := Tr(W TV ).

Given this Riemannian metric, the orthogonal projection of a matrix Z ∈
Rn×n onto TXO(n) is

ProjX(Z) = Xskew(XTZ),

where

skew(A) :=
A− AT

2
is the skew-symmetric part of a matrix.

Exponential map and Riemannian logarithm: The exponential map at a point
X in the direction XΩ is defined as

ExpX(XΩ) = X expm(Ω),

where expm is the matrix exponential.
The Riemannian logarithm is the inverse of the exponential map, when the
latter is invertible. We now examine when this is the case.
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In order to identify the domain where the exponential map is invertible, we
need to verify when the equation

ExpX(XΩ) = X expm(Ω) = Y

has a unique solution. This happens if and only if the equation

expm(Ω) = XTY

has a unique solution. Consider the eigenvalue decomposition Ω = UΛU−1,
where Λ is diagonal with entries of the form iθ (since Ω is skew-symmetric).
This implies that the eigenvalue decomposition of expm(Ω) is U expm(Λ)U−1

and expm(Λ) is diagonal featuring entries of the form eiθ with θ ∈ (−π, π].
Thus, the previous equation boils down to a series of equations of the form

eiθ = s,

where s are the eigenvalues of XTY . These equations are well-defined and have
a unique solution if and only if s is in the domain of a definition of the complex
logarithm, i.e. in C \ (−∞, 0]. In that case, θ is allowed to be in (−π, π), i.e
θ ̸= π. We can summarize the previous discussion as follows:

Lemma 1.23 • The domain of the orthogonal group where the exponential
map is a diffeomorphishm is

{XΩ/ΩT = −Ω, ∥Ω∥2 < π}. (1.3.1.8)

• Let X, Y ∈ O(n). If the phases θ of the eigenvalues eiθ of XTY satisfy
θ ∈ (−π, π), then there is a unique geodesic connecting X and Y . In this
case, it trivially holds that X and Y are in the same connected component
of O(n).

• If some of the θ’s are equal to π, then it holds: if there is even number
of θ’s equal to π, then X and Y are in the same connected component
(and are connected by multiple geodesics). If there is odd number of θ’s
equal to π, then X and Y are in different connected components (i.e.
det(XY ) = −1).

Let us now consider X and Y such that XTY has eigenvalues with phases
in (−π, π). Then LogX(Y ) is well-defined and

ExpX(LogX(Y )) = Y.

We can write LogX(Y ) = XΩ for some skew-symmetric Ω and we have

X expm(Ω) = Y, (1.3.1.9)

which can be written as
Ω = logm(XTY ),
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where logm is the matrix logarithm.
Thus,

LogX(Y ) = X logm(XTY ). (1.3.1.10)

Note that logm(XTY ) is indeed a skew-symmetric matrix since X and Y are
orthogonal.

Parallel transport: In the orthogonal group, the parallel transport from a
point X to a point Y (denoted by ΓY

X), is given by

ΓY
X(XΩ) = Y (XTY ΩY TX).

Notice that XTY ΩY TX is a skew-symmetric matrix, since it is a conjugation
of the skew-symmetric matrix Ω. This definition makes sense of course only if
X and Y are in the same connected component of O(n).

Riemannian distance: Since we have computed the Riemannian logarithm
between two orthogonal matrices X and Y , we can also compute the Riemannian
distance between such matrices based on it:

dist2(X, Y ) = ∥LogX(Y )∥2 = ∥X logm(XTY )∥2 = ∥ logm(XTY )∥2.

In order to proceed, we decompose the orthogonal matrix XTY into the
so-called canonical form PDP T , where P is an orthogonal matrix featuring the
eigenvectors of XTY in its columns and D is block diagonal. D is constructed as
follows. When XTY has an eigenvalue equal to 1, D has a diagonal entry equal
to 1. When XTY has an eigenvalue of the form eiθ for some θ ∈ (−π, 0)∪ (π, 0),
then e−iθ is also an eigenvalue and D features the 2× 2 block that is the 2-d

rotation with angle θ. That is

[
cos θ − sin θ
sin θ cos θ

]
.

The matrix logarithm has the following convenient property. Given the
above decomposition, we have

logm(PDP T ) = P logm(D)P T .

Taking D as constructed previously, logm(D) has 0 in the positions where

D has 1 and

[
0 −θ
θ 0

]
where D has

[
cos θ − sin θ
sin θ cos θ

]
. Since P is orthogo-

nal, the distance between X and Y turns out to be equal to ∥ logm(D)∥2 =
Tr(logm(D)T logm(D)). logm(D)T logm(D) is again a 2× 2 block diagonal ma-

trix with 0’s where logm(D) has 0’s and

[
θ2 0
0 θ2

]
where logm(D) has

[
0 −θ
θ 0

]
.

Thus, the distance between X and Y is

dist(X, Y ) =

(
n∑

i=1

θ2i

)1/2

, (1.3.1.11)
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where eiθi are the eigenvalues of XTY . That is to say that

dist(X, Y ) = ∥ϕ∥2,

where ϕ = (θ1, . . . , θn). If θj = 0, then it appears only once in ϕ, otherwise it
appears as a couple with −θj . Note that with a simple limit argument, we can
conclude that the same formula still holds when some phases of the eigenvalues
of XTY are equal to π.

Riemannian gradient: As in the previous cases of embedded submanifolds,
the gradient of a function f : O(n) → R is the orthogonal projection of the
Euclidean gradient in the relevant tangent space:

gradf(X) = ProjX(∇f(X)) = Xskew(XT∇f(X)).

Curvature: The sectional curvatures in the orthogonal group are nonnegative,
as the orthogonal group is a special case of a Stiefel manifold and all Stiefel
manifolds have nonnegative sectional curvatures. This means that Proposition
1.15 holds for the orthogonal group.

1.4 Matching of sections to published or under review work

For making the study of this thesis easier, we present here the matching of
each section to work of us that is online. Some of these papers are already
published, while other are still under review.

• Section 2 ←→ [14] (published)

• Section 3 ←→ [8] (published)

• Section 4 ←→ [9] (under review)

• Section 5 ←→ [12] (published)

• Section 6 ←→ [15] (under review)

• Section 7 ←→ [13] (under preparation)

• Section 8 ←→ [7] (published)

Most of these papers have been written in collaboration with very capable
colleagues, who we would like to thank. Important role in their quality has
been played also by various reviewers, whose diligence has been of great service
for us.
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2 Geodesic convexity of the symmetric eigenvalue prob-
lem and convergence of gradient descent

We start the main part of this thesis with a thorough study of the optimization
landscape of problem (1.2.1.5). This section follows the exposition of our work
[14]. We reveal a convexity-like structure that on the one hand explains why
eigenvalue problems are easy to solve, while on the other hand is useful for
algorithmic computation.

2.1 Introduction

First, we discuss some related works. As discussed in the introduction, the
symmetric eigenvalue problem has been popular for several decades in the
numerical linear algebra and optimization communities. When only a few
eigenvalues are targeted, the main solvers for this problem have been based on
subspace iteration and Krylov subspace methods. Less but still considerable
attention has been given to the gradient descent method and its accelerated
versions. Most works on gradient descent focus only on computing the first
leading eigenvector of a symmetric matrix (k = 1), using a Euclidean version of
the algorithm. Asymptotic convergence rates are known for this setting since
the 1950’s, see [43]. More recently, exact non-asymptotic estimates for the
same Euclidean gradient descent with exact line search were proved in [62]. For
a more comprehensive overview of this line of research, the reader can refer to
[85] and the references therein.

Regarding the block version of the algorithm, where one targets multiple
pairs of eigenvalues and eigenvectors, much less is known. We refer here to
[86], which presents a gradient descent-like method for the multiple eigenvector
problem using Ritz projections onto a 2k-dimensional subspace in each step.
The convergence of this algorithm is proved to be linear, but computing the
Ritz projections is quite expensive. Instead, in this section, we consider a much
cheaper version of gradient descent by directly choosing only one of the vectors
in this 2k-dimensional subspace to update our algorithm. Some analysis for
such a gradient descent (without Ritz projection) on the Grassmann manifold
using a retraction and an Armijo step size is provided in [3] (see Algorithm 3
and Theorem 4.9.1). Unfortunately this convergence rate is asymptotic, that is,
a linear rate is achieved after an unknown number of iterations. The region in
which the convergence happens cannot be quantified. Also, such a convergence
rate does not yield an iteration complexity for the algorithm.

The optimization landscape provided by the block Rayleigh quotient on the
Grassmann manifold has also received some attention lately. [97] provides many
interesting properties of the critical points of this function and proves that all
but the global optimum are strict saddles. This is later used to derive favourable
convergence properties for a hybrid method consisting of Riemannian gradient
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descent in a first stage and a Riemannian Newton’s method in a final stage.
[71] proves the so-called robust strict saddle property for this function, that is,
the Hessian evaluated in each critical point except the global optimum has both
positive and negative eigenvalues in a whole neighborhood. However, none of
these papers talk about (generalized) convexity of any form, nor discusses any
convergence rates for gradient descent.

Turning the discussion to the convexity properties of eigenvalue problems,
there is a new line of research concerned by that. In [117], the authors prove
(Theorem 4) that the Rayleigh quotient is geodesically PL in the sphere (k = 1),
that is, it satisfies a spherical version of the Polyak– Lojasiewicz inequality.
The result of [117] is strengthened by our work [8], which is a special case of
the work presented in this section and will be discussed in detail (from an
application point of view) in the next section. Finally, [5] examines (among
other contributions) the convexity structure of the same block version of the
symmetric eigenvalue problem on the Grassmann manifold that we introduced
above. Unfortunately, the characterization of the geodesic convexity region
independently of the spectral gap δ (Corollary 5 in [5]) is wrong (see our
Section 2.5 for a counterexample). As we will prove in Theorem 2.21, the
geodesic convexity region of f (and the one of the equivalent cost function used
in [5]) needs to depend on the spectral gap, as appears also in [50, Lemma 7]
in the case of the sphere (k = 1).

To the best of our knowledge, the work presented in this section is the first
one that provides non-asymptotic convergence rates for the gradient descent
algorithm for the multiple eigenvalue-eigenvector problem on the Grassmann
manifold. We do so by first proving that problem (1.2.1.5) satisfies a WQSC
condition.

As mentioned above, the standard algorithm for computing the leading
eigenspace of dimension k is subspace iteration (or power method when k = 1).4

However, there are reasons to believe that, in certain cases, Riemannian gradient
descent (and its accelerated version with non-linear conjugate gradients) should
be preferred, especially in noisy settings [8] or in electronic structure calculations
where the leading eigenspace of many varying matrices A needs to be computed.5

In particular, [8] presents strong experimental evidence that gradient descent
is more robust to perturbations of the matrix-vector products than subspace
iteration close to the optimum. While subspace iteration still behaves better at
the start of the iteration, it asymptotically fails to converge to an approximation
of the leading subspace that is as good as the one estimated by Riemannian
gradient descent. While [8] dealt with a noisy situation due to calculations in
a distributed setting with limited communication, exactly the same effect can

4Krylov methods are arguably the most popular algorithms but they do not iterate on a subspace directly
and are typically started from a single vector. In particular, they cannot easily improve a given approximation
of a subspace for large k > 1.

5More on that in Section 5.
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be observed when we inject the matrix-vector products with Gaussian noise.
Thus, we expect gradient descent to perform better than subspace iteration
close to the optimum in any stochastic regime [42].

Regarding worst-case theoretical guarantees, the strongest convergence result
for subspace iteration in the presence of a strictly positive spectral gap δ is
in terms of the largest principal angle between the iterates and the optimum
[39], that is, the ℓ∞-norm of the vector of principal angles. In contrast, our
convergence result for gradient descent for δ > 0 (Theorem 2.10) is in terms of
the ℓ2-norm of the same vector of angles, which is in general stronger. When
δ = 0, it is known from [65, 91] that the largest eigenvalue (k = 1) can still be
efficiently estimated. We extend this result for k > 1 and prove a convergence
rate for gradient descent for the function values of f (Theorem 2.12), relying
only on weak-quasi convexity (and thus using a different argument from [65, 91]).
Weak-quasi convexity can be seen as (a, 0)-WQSC.

Block Rayleigh quotient. As discussed in the introduction, the symmetric
eigenvalue problem can be transformed into an optimization problem of the
block version of the Rayleigh quotient:

f(X ) = −Tr(XTAX) where X = Span(X) ∈ Gr(n, k) s.t. XTX = Ik.

This function has Vα = Span(
[
v1 · · · vk

]
) as global minimizer. This minimizer

is unique on Gr(n, k) if and only if the spectral gap δ := λk − λk+1 is strictly
positive.

For a given representative X of X , the Riemannian gradient of the block
Rayleigh quotient satisfies

grad f(X ) = −2(I −XXT )AX.

Using the notions of the Riemannian gradient and Levi-Civita connection, we
can define also a Riemannian notion of Hessian as discussed in the introduction.
For the block Rayleigh quotient f , the Riemannian Hessian Hess f evaluated
as bilinear form satisfies

Hess f(X )[G,G] = 2⟨G,GXTAX − AG⟩, (2.1.0.1)

for G ∈ TX Gr(n, k); see [35, §4.4] or [3, §6.4.2].

2.2 Convexity-like properties of the block Rayleigh quotient

We now prove the new analytic properties of the block Rayleigh quotient
f(X ) = −Tr(XTAX). These are important in their own right but will also be
used later for the convergence of the Riemannian gradient descent method.
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2.2.1 Smoothness

A C2 function defined on the Grassmann manifold is L-smooth (see again
Definition 1.19) if the eigenvalues of its Riemannian Hessian are everywhere
upper bounded in absolute value by a positive constant L. This is true for the
block Rayleigh quotient, as we show in the next proposition:

Proposition 2.1 (Smoothness) The eigenvalues of the Riemannian Hessian
of f on Gr(n, k) are upper bounded in absolute value by L := 2(λ1 − λn).

Proof Let G be a tangent vector of Gr(n, k) at X. Then the Riemannian
Hessian satisfies (see (2.1.0.1))

1
2

Hess f(X )[G,G] = Tr(GTGXTAX)− Tr(AGGT ).

Since A,XTAX,GGT , and GTG are all symmetric and positive semi-definite
matrices, standard trace inequality (see, e.g, [47, Thm. 4.3.53]) gives

Hess f(X )[G,G] ≤ 2(λmax(X
TAX)− λmin(A))∥G∥2.

Since X has orthonormal columns, λmax(X
TAX) ≤ λmax(A); see, e.g., [47,

Cor. 4.3.37]. Thus,

Hess f(X )[G,G] ≤ 2(λ1 − λn)∥G∥2.

Similarly,

−1
2

Hess f(X )[G,G] = −Tr(GTGXTAX) + Tr(AGGT )

≤ (−λmin(XTAX) + λmax(A))∥G∥2

≤ (−λmin(A) + λmax(A))∥G∥2

= (λ1 − λn)∥G∥2.

The last inequality follows from the fact that λmin(XTAX) ≥ λmin(A) (see for
instance the Cauchy interlacing theorem).

Putting it all together, we have

|Hess f(X )[G,G]| ≤ 2(λ1 − λn)∥G∥2

and the desired result follows.

The result in Proposition 2.1 is tight: Choosing X = Vα and G = vne
T
1 , it is

readily verified that the upper bound is attained. From now on, we refer to
L as the specific value 2(λ1 − λn). This value also features in a useful upper
bound for the spectral norm of the gradient. This bound is independent of X :
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Lemma 2.2 For all X ∈ Gr(n, k) and L = 2(λ1 − λn), the Riemannian
gradient of f satisfies

∥ grad f(X )∥2 ≤
L

2
.

Proof Since X has orthonormal columns, we can complete it to the orthog-
onal matrix Q =

[
X X⊥

]
. Hence, ∥ grad f(X )∥2 = ∥2(I − XXT )AX∥2 =

2∥XT
⊥AX∥2. The result now follows directly from [69, Thm. 2] since A is real

symmetric and the definition of L = 2(λ1 − λn).

By the second-order Taylor expansion of f (see, e.g., [21], Corollary 10.54)
it is easy to see that Proposition 2.1 implies

f(X ) ≤ f(Y) + ⟨grad f(Y),LogY(X )⟩+
L

2
dist2(X ,Y), (2.2.1.1)

for any X ,Y ∈ Gr(n, k) such that LogX (Y) is well-defined.
As in the introduction, denote the global minimum of f by f ∗ which is

attained at Vα ∈ Gr(n, k). Inequality (2.2.1.1) leads to the following lemma:

Lemma 2.3 For any X ∈ Gr(n, k) and L = 2(λ1 − λn), we have

f(X )− f ∗ ≥ 1

2L
∥ grad f(X )∥2.

Proof Since f ∗ is a global minimum of f , we have from (2.2.1.1) that

f ∗ ≤ f(X ) ≤ f(Y) + ⟨gradf(Y),LogY(X )⟩+
L

2
∥LogY(X )∥2,

for any X ,Y ∈ Gr(n, k) such that LogX (Y) is well-defined.
We set X := ExpY

(
− 1

L
gradf(Y)

)
. By Lemma 2.2, we have that

∥∥− 1
L

gradf(Y)
∥∥
2
<

π
2

and by equation (1.3.1.5) we have that LogY(X ) is well-defined and equal to

− 1
L

gradf(Y). Then, the right hand side of the initial inequality becomes

f ∗ ≤ f(Y)− 1

L
∥gradf(Y)∥2 +

1

2L
∥gradf(Y)∥2 = f(Y)− 1

2L
∥gradf(Y)∥2.

Rearranging the last inequality and substituting Y = X , we get the desired
result.

Note that we have already discussed these results in a more general regime
in Proposition 1.21, but without proof. This is the reason that we discuss them
here in more detail.
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2.2.2 Weak-quasi convexity and quadratic growth

We now turn our interest in the convexity properties of the block Rayleigh
quotient function. We start by proving a property which is known in the
literature as quadratic growth.

Proposition 2.4 (Quadratic growth) Let 0 ≤ θ1 ≤ · · · ≤ θk < π/2 be the
principal angles between the subspaces X and Vα. The function f satisfies

f(X )− f ∗ ≥ cQ δ dist2(X ,Vα)

where cQ = 4/π2 > 0.4.

Proof
The spectral decomposition of A = VαΛαV

T
α + VβΛβV

T
β implies

XTAX = XTVαΛαV
T
α X + XTVβΛβV

T
β X. (2.2.2.1)

Since f(X ) = −Tr(XTAX), we have

f(X )− f ∗ = Tr(Λα)− Tr(XTVαΛαV
T
α X)− Tr(XTVβΛβV

T
β X)

= Tr(Λα)− Tr(ΛαV
T
α XXTVα)− Tr(ΛβV

T
β XXTVβ)

= Tr(Λα(Ik − V T
α XXTVα))− Tr(ΛβV

T
β XXTVβ).

From Definition 1.9 of the principal angles between X and Vα, we recall that

V T
α X = U1 cos θ V T

1 , (2.2.2.2)

where cos θ = diag(cos θ1, . . . , cos θk) is a diagonal matrix and U1, V1 are or-
thogonal matrices. Plugging this equality in, we get that the jth eigenvalue
of the matrix Ik − V T

α XXTVα is equal to 1 − cos2 θj = sin2 θj ≥ 0. Thus, by
standard trace inequality for symmetric and positive definite matrices (see,
e.g., [47, Thm. 4.3.53]), the first summand above satisfies

Tr(Λα(Ik − V T
α XXTVα)) ≥ λk

k∑
j=1

sin2 θj.

The matrix V T
β XXTVβ has the same non-zero eigenvalues with the same

multiplicity as the matrix

XTVβV
T
β X = Ik − V1 cos2 θ V T

1 = V1 sin2 θ V T
1

where we used VβV
T
β = In − VαV

T
α and the SVD of V T

α X. Thus the jth

eigenvalue of V T
β XXTVβ is sin2 θj ≥ 0. By trace inequality again, the second

summand therefore satisfies

Tr(ΛβV
T
β XXTVβ) ≤ λk+1

k∑
j=1

sin2 θj.
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Putting both bounds together, we get

f(X )− f ∗ ≥ (λk − λk+1)
k∑

j=1

sin2 θj ≥ δ

k∑
j=1

4

π2
θ2j

and the proof is complete by the Definition (1.3.1.7) of dist.

Recalling Definition 1.17, we say that f is geodesically convex if for all X
and Y in a suitable region it holds

f(X )− f(Y) ≤ ⟨gradf(X ),−LogX (Y)⟩.

In Section 2.5, we prove that our objective function f is geodesically convex
only in a small neighbourhood of size O(

√
δ) around the minimizer Vα. For-

tunately, our key result of this section shows that f satisfies a much weaker
notion of geodesic convexity, known in the literature as weak-quasi convexity,
that does not depend on the spectral gap δ.

We first need the following lemma which is a general version of the CS
decomposition but applied to our setting of square blocks.

Lemma 2.5 Let X, Y ∈ Rn×k be such that XTX = Y TY = Ik with k < n.
Choose X⊥, Y⊥ ∈ Rn×(n−k) such that XT

⊥X⊥ = Y T
⊥ Y⊥ = In−k and Span(X⊥) =

Span(X)⊥, Span(Y⊥) = Span(Y )⊥. Then there exist 0 ≤ r, s ≤ k such that

Y TX = U1

Ir Cs

Op×p

V T
1 , Y TX⊥ = U1

Or×m

Ss

Ip

V T
2

Y T
⊥ X = U2

Om×r

Ss

Ip

V T
1 , Y T

⊥ X⊥ = U2

−Im −Cs

Op×p

V T
2

with p = k − r − s and m = n− 2k + r, and we have

• orthogonal matrices U1, V1 of size k and U2, V2 of size n− k;

• identity matrices Iq of size q;

• zero matrices Oq×t of size q × t;

• diagonal matrices Cs = diag(α1, . . . , αs) and Ss = diag(β1, . . . , βs) such
that 1 > α1 ≥ · · · ≥ αs > 0, 0 < β1 ≤ · · · ≤ βs < 1 and C2

s + S2
s = Is.

Proof Since
[
X X⊥

]
and

[
Y Y⊥

]
are orthogonal, the result follows directly

from the CS decomposition of the orthogonal matrix P =
[
Y Y⊥

]T [
X X⊥

]
;

see the Theorem of §4 in [92].
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Observe that the matrix diag(Ir, Cs, Op×p) in this lemma corresponds to the
matrix cos(θ) in Definition 1.9 with θ the vector of principal angles 0 ≤ θ1 ≤
· · · ≤ θk ≤ π/2 between Span(X) and Span(Y ). However, the lemma explicitly
splits off the angles that are zero and π/2 so that it can formulate the related
decompositions for Y TX⊥, Y

T
⊥ X, and Y T

⊥ X⊥ with Cs and Ss.
We are now ready to state our weak-quasi convexity result. In the statement

of the proposition below (and throughout this section), we use the convention
that 0

tan 0
= 1.

Proposition 2.6 (Weak-quasi convexity) Let 0 ≤ θ1 ≤ · · · ≤ θk < π/2 be
the principal angles between the subspaces X and Vα. Then, f satisfies

2a(X ) (f(X )− f ∗) ≤ ⟨gradf(X ),−LogX (Vα)⟩

with a(X ) := θk/ tan θk.

Proof Take X and Vα matrices with orthonormal columns such that X =
Span(X) and Vα = Span(Vα). Since θk < π/2, we know that p = 0 in
Lemma 2.5 and thus s = k − r with r the number of principal angles that are
equal to zero. Choosing a matrix X⊥ with orthonormal columns such that
Span(X⊥) = Span(X)⊥, we therefore get from Lemma 2.5 that there exist
orthogonal matrices U1, V1 of size k and V2 of size n− k such that

V T
α X = U1

[
Ir

Ck−r

]
V T
1 , V T

α X⊥ = U1

[
Or×m

Sk−r

]
V T
2 . (2.2.2.3)

Comparing with Definition 1.9, we deduce that Ck−r = diag(cos θr+1, . . . , cos θk)
and Sk−r = diag(sin θr+1, . . . , sin θk) since C2

k−r + S2
k−r = I.

We recall from (1.3.1.6) that

LogX (Vα) = U atan(Σ)V T , (2.2.2.4)

where UΣV T = (In−XXT )Vα(XTVα)−1 =: M is a compact SVD (without the
requirement that the diagonal of Σ is non-increasing). Using X⊥ from above,
we can also write M = X⊥X

T
⊥Vα(XTVα)−1. Substituting (2.2.2.3) and using

that U1 and V1 are orthogonal gives

M = X⊥V2

[
Om×r

Sk−rC
−1
k−r

]
V T
1 = X⊥Ṽ2

[
Or×r

Sk−rC
−1
k−r

]
V T
1 ,

where Ṽ2 ∈ R(n−k)×k contains the last k columns of V2 in order. Note that this
reformulation of the SVD of M holds always, regardless of the relationship

between m and r. If m ≥ r, the matrix

[
Om×r

Sk−rC
−1
k−r

]
has its first m− r

rows equal to 0, thus we can cut the first m− r columns of V2, since they do
not contribute to the product. This yields a matrix Ṽ2 with n − k rows and
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n − k −m + r = k of the last columns of V2. If m < r, then the first r −m

columns of

[
Om×r

Sk−rC
−1
k−r

]
are 0 and now we can add r −m columns in

the beginning of the matrix V2 that keep the derived matrix orthonormal. This
again yields a matrix Ṽ2 with n − k rows and n − k + r − m = k columns.

Since the matrix

[
Or×r

Sk−rC
−1
k−r

]
occurs by adding r −m zero rows at the

beginning of

[
Om×r

Sk−rC
−1
k−r

]
, the product does not change.

Since θ1 = · · · = θr = 0, we can therefore formulate the compact SVD of M
using the vector θ of all principal angles as follows:

M = UΣV T with U = X⊥Ṽ2, Σ = tan(θ), V = V1.

Hence from (2.2.2.4) we get directly that

LogX (Vα) = X⊥Ṽ2 θ V
T
1 , (2.2.2.5)

where θ is a diagonal matrix.
We now claim that (2.2.2.5) also satisfies

LogX (Vα) = X⊥X
T
⊥VαU1

θ

sin θ
V T
1 , (2.2.2.6)

where θ
sin θ

is a diagonal matrix for which 0
sin 0

= 1. Indeed, recalling that
θ1 = · · · = θr = 0 and using the identities

XT
⊥Vα = Ṽ2

[
Or×r

Sk−r

]
UT
1 ,

θ

sin θ
=

[
Ir

S−1
k−r

] [
Ir

Tk−r

]
where Tk−r = diag(θr+1, . . . , θk), we obtain

RHS of (2.2.2.6) = X⊥Ṽ2

[
Or×r

Sk−r

] [
Ir

S−1
k−r

] [
Ir

Tk−r

]
V T
1

= X⊥Ṽ2

[
Or×r

Tk−r

]
V T
1 = X⊥Ṽ2 θ V

T
1 = RHS of (2.2.2.5).

Next, we work out

s := ⟨grad f(X ),−LogX (Vα)⟩.
Since grad f(X ) and LogX (Vα), respectively, give tangent vectors for the same
representative X of X , the inner product above is the trace of the corresponding
matrix representations. Using (2.2.2.6) with I −XXT = X⊥X

T
⊥, we therefore

get

s = 2
〈

(I −XXT )AX, (I −XXT )VαU1
θ

sin(θ)
V T
1

〉
= 2 Tr

( θ

sin(θ)
UT
1 V

T
α (I −XXT )AXV1

)
.
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Since AVα = VαΛα, we can simplify

V T
α (I −XXT )AX = ΛαV

T
α X − V T

α XXTAX. (2.2.2.7)

Substituting in the expression above and using that V T
α X = U1 cos θ V T

1 , we
get

1

2
s = Tr

( θ

sin(θ)
UT
1 ΛαU1 cos(θ)

)
− Tr

( θ

sin(θ)
cos(θ)V T

1 XTAXV1

)
= Tr

( θ

tan(θ)

(
UT
1 ΛαU1 − V T

1 XTAXV1

))
,

with the convention 0
tan 0

= 1.
Denote the symmetric matrix

S := UT
1 ΛαU1 − V T

1 XTAXV1. (2.2.2.8)

We show below that all diagonal entries S11, . . . , Skk of S are nonnegative.
Hence, by diagonality of the matrix θ

tan(θ)
, we obtain

1

2
s =

∑
j

θj
tan θj

Sjj ≥ min
j

θj
tan θj

Tr(S) =
θk

tan θk

[
Tr(Λα)− Tr(XTAX)

]
since U1 and V1 are orthogonal matrices. We recover the desired result after
substituting f(X ) = −Tr(XTAX) and f ∗ = −Tr(V T

α AVα) = −Tr(Λα).
It remains to show that Sjj ≥ 0 for j = 1, . . . , k. Since Span(Vβ) =

Span(Vα)⊥, Lemma 2.5 gives us in addition to (2.2.2.3) also

V T
β X = U2

[
Om×r

Sk−r

]
V T
1 = Ũ2 sin θ V T

1 , (2.2.2.9)

where Ũ2 ∈ R(n−k)×k contains the last k columns of the orthogonal matrix U2

in order. A short calculation using (2.2.2.1) then shows that (2.2.2.8) satisfies

S = UT
1 ΛαU1 − cos θ UT

1 ΛαU1 cos θ − sin θ ŨT
2 ΛβŨ2 sin θ

with diagonal elements

Sjj = sin2 θj (UT
1 ΛαU1 − ŨT

2 ΛβŨ2)jj.

Since U1 and Ũ2 have orthonormal columns, we obtain

λmin(UT
1 ΛαU1) ≥ λmin(Λα) = λk, λmax(Ũ

T
2 ΛβŨ2) ≤ λmax(Λβ) = λk+1,

from which we get with Weyl’s inequality that

λmin(UT
1 ΛαU1 − ŨT

2 ΛβŨ2) ≥ λmin(UT
1 ΛαU1)− λmax(Ũ

T
2 ΛβŨ2) ≥ λk − λk+1 ≥ 0.
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Hence, the matrix
UT
1 ΛαU1 − ŨT

2 ΛβŨ2 (2.2.2.10)

is symmetric and positive semi-definite. Its diagonal entries, and thus also Sjj,
are therefore nonnegative.

We are finally able to show the promised WQSC property of the symmetric
eigenvalue problem (recall Definition 1.22).

Theorem 2.7 (Weak-quasi-strong convexity) Let 0 ≤ θ1 ≤ · · · ≤ θk <
π/2 be the principal angles between the subspaces X and Vα. Then, f satisfies

f(X )− f ∗ ≤ 1

a(X )
⟨grad f(X ),−LogX (Vα)⟩ − cQδ dist2(X ,Vα)

with a(X ) = θk/ tan θk > 0, cQ = 4/π2 > 0.4, and δ = λk − λk+1 ≥ 0.

Proof Combining Propositions 3.2 and 2.6 leads to

cQδ dist2(X ,Vα) ≤ f(X )− f ∗ ≤ 1

2a(X )
⟨grad f(X ),−LogX (Vα)⟩.

At the same time, Proposition 2.6 also implies

f(X )− f ∗ ≤ 1

2a(X )
⟨grad f(X ),−LogX (Vα)⟩ − cQδ dist2(X ,Vα)

+ cQδ dist2(X ,Vα).

Using the first inequality to bound the last term of the right hand side, we
recover the desired result.

Remark 2.1 Theorem 2.7 is also valid when the spectral gap δ = 0. In that
case, Vα is any subspace spanned by k leading eigenvectors of A and the theorem
(almost) reduces to Proposition 2.6 (up to a scalar 2).

While not needed for our convergence proof, the next result is of independent
interest and shows that f is PL in the Riemannian sense when the spectral
gap δ is strictly positive. This property generalizes a result by [117] for the
Rayleigh quotient in the sphere.

Proposition 2.8 (PL condition) The function f satisfies

∥gradf(X )∥2 ≥ 4 cQ δ a2(X )(f(X )− f ∗)

for all subspaces X that have a largest principal angle < π/2 with Vα.
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Proof We assume that δ > 0 since otherwise the statement is trivially true.
By Theorem 2.7, we have

f(X )− f ∗ ≤ 1

a(X )
⟨grad f(X ),−LogX (Vα)⟩ − cQδ dist2(X ,Vα).

Since ⟨G1, G2⟩ ≤ ρ
2
∥G1∥2 + 1

2ρ
∥G2∥2 for all matrices G1, G2 and ρ > 0, we can

write (for any ρ > 0) that

⟨grad f(X ),−LogX (Vα)⟩ ≤ ρ

2
∥gradf(X )∥2 +

1

2ρ
∥LogX (Vα)∥2.

Using that dist(X ,Vα) = ∥LogX (Vα)∥ and choosing ρ = 1/(2cQδa(X )), we get
the desired result.

2.3 Convergence of Riemannian gradient descent

We now have everything in place to prove the convergence of the Riemannian
gradient descent (RGD) method on the Grassmann manifold for minimizing f .
Starting from a subspace X0 ∈ Gr(n, k), we iterate

Xt+1 = ExpXt
(−ηt grad f(Xt)). (2.3.0.1)

Here, ηt > 0 is a step size that may depend on the iteration t and will be
carefully chosen depending on the specific case, but always depending on L,
which equals 2(λ1 − λn).

We start by a general result which shows that the distance to the optimal
subspace contracts after one step of gradient descent. The step size depends on
the smoothness and weak-quasi convexity constants of f from Propositions 2.1
and 2.6. This is crucial since the constant a(X ) depends on the biggest
principal angle between X and Vα and bounding the evolution of distances
of the iterates to the minimizer will help us also bound this constant6. An
alternative contraction property with a more tractable step size is presented in
Proposition 2.15 of Section 2.4.

Lemma 2.9 (Contraction of RGD) Let Xt and Vα have principal angles
0 ≤ θ1 ≤ · · · ≤ θk < π/2. Then, iteration (2.3.0.1) with
0 ≤ ηt ≤ a(Xt)/L satisfies

dist2(Xt+1,Vα) ≤
(
1− 2cQδa(Xt) ηt

)
dist2(Xt,Vα).

Observe that L = 0 implies A = λ1I and any subspace X of dimension k
will be an eigenspace of A with dist(X ,Vα) = 0. We will therefore not explicitly

6The analysis of [50] is wrong with respect to this issue as discussed in detail in [8].
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prove this lemma and all forthcoming convergence results for L = 0 since the
statements will be trivially true.
Proof [Proof of Lemma 2.9] By the assumption on the principal angles, we get
that 0 < a(Xt) = θk/ tan θk ≤ 1. The hypothesis on ηt and Lemma 2.2 then
gives

ηt∥ grad f(Xt)∥2 ≤
a(Xt)

L
∥ grad f(Xt)∥2 ≤

1

2
<

π

2
.

By (1.3.1.5), this guarantees that the geodesic τ 7→ Exp(−τηt grad f(Xt)) lies
within the injectivity domain at Xt for τ ∈ [0, 1]. Hence, Exp is bijective
along this geodesic and thus LogXt

(Xt+1) = −ηt grad f(Xt). We can thus apply
Proposition 1.15 to obtain

dist2(Xt+1,Vα) ≤ ∥ − ηt grad f(Xt)− LogXt
(Vα)∥2

= η2t ∥ grad f(Xt)∥2 + dist2(Xt,Vα) + 2ηt σ (2.3.0.2)

with
σ := ⟨grad f(Xt),LogXt

(Vα)⟩.
Theorem 2.7 and Lemma 2.3 together with Proposition 2.1 (see also Proposition
1.21) give

σ

a(Xt)
≤ f ∗ − f(Xt)− cQδ dist2(Xt,Vα)

≤ − 1

2L
∥ grad f(Xt)∥2 − cQδ dist2(Xt,Vα).

Multiplying by 2a(Xt) ηt and using ηt ≤ a(Xt)/L, we get

2ηt σ ≤ −
a(Xt) ηt

L
∥ grad f(Xt)∥2 − 2cQδa(Xt) ηt dist2(Xt,Vα)

≤ −η2t ∥ grad f(Xt)∥2 − 2cQδa(Xt) ηt dist2(Xt,Vα).

Substituting into (2.3.0.2), we obtain the first statement of the lemma.

Remark 2.2 When δ = 0, Lemma 2.9 still holds for any subspace Vα spanned
by k leading eigenvectors of A. In that case, the lemma only guarantees that the
distance between the iterates of gradient descent and this Vα does not increase.

2.3.1 Linear convergence rate under positive spectral gap

Lemma 2.9 features a contraction rate only for one step of the algorithm. In
order to get a global convergence rate, one needs to bound the quantity a(Xt)
from below and independently of t. To that end, we need a stricter bound in
the distance of the initial guess to the optimum. Such a bound guarantees that
a(Xt) remains always lower bounded by a positive number, or equivalently, that
the iterates of the algorithm never get too close to a non-optimal critical point.
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Theorem 2.10 If dist(X0,Vα) < π/2 then the iterates Xt of Riemannian
gradient descent (2.3.0.1) with step size ηt such that

0 < η ≤ ηt ≤ cos(dist(X0,Vα))/L

satisfy

dist2(Xt,Vα) ≤ (1− 2cQ cos(dist(X0,Vα)) δ η)t dist2(X0,Vα).

Proof We first claim that dist(Xt,Vα) ≤ dist(X0,Vα) for all t ≥ 0. This would
then also imply that θk(Xt,Vα) < π/2 for all t ≥ 0 since

θk(Xt,Vα) ≤

√√√√ k∑
i=1

θi(Xt,Vα)2 = dist(Xt,Vα).

For t = 0, we have θk(X0,Vα) < π/2 by hypothesis on X0 and thus

a(X0) =
θk(X0,Vα)

tan(θk(X0,Vα))
≥ cos(θk(X0,Vα)) ≥ cos(dist(X0,Vα)).

Since by construction η0 ≤ cos(dist(X0,Vα))/L , this implies that η0 ≤ a(X0)/L
and Lemma 2.9 guarantees that dist(X1,Vα) ≤ dist(X0,Vα). In particular, we
also have θk(X1,Vα) < π/2.

Next, assume that

dist(Xt,Vα) ≤ dist(X0,Vα),

which implies θk(Xt,Vα) < π/2. Then by a similar argument like above, we
have

a(Xt) ≥ cos(dist(Xt,Vα)) ≥ cos(dist(X0,Vα)). (2.3.1.1)

By hypothesis on ηt, we observe

ηt ≤
cos(dist(X0,Vα))

L
≤ cos(dist(Xt,Vα))

L
≤ a(Xt)

L
.

Applying Lemma 2.9 once again with the induction hypothesis proves the claim:

dist(Xt+1,Vα) ≤ dist(Xt,Vα) ≤ dist(X0,Vα).

The main statement of the theorem now follows easily: Since ηt ≤ a(Xt)/L
and θk(Xt,Vα) < π/2 for all t ≥ 0, Lemma 2.9 gives

dist2(Xt+1,Vα) ≤ (1− 2cQa(Xt)δηt) dist2(Xt,Vα).

Combining with (2.3.1.1) and ηt ≥ η shows the desired result by induction.

If the spectral gap δ is strictly positive, then Theorem 2.10 gives an expo-
nential convergence rate towards the optimum Vα. If δ = 0, then Theorem
2.10 does not provide a convergence rate but rather implies that the intrinsic
distances of the iterates to the optimum do not increase.

From Theorem 2.10 we get immediately the following iteration complexity.
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Corollary 2.11 Let Riemannian gradient descent starting from a subspace X0

that satisfies dist(X0,Vα) < π/2 and with step size η satisfying the condition of
Theorem 2.10. Then after at most

T = 2
log(ε)− log(dist(X0,Vα))

log(1− 0.8 cos(dist(X0,Vα))δη)
+ 1 ≤ O

(
log(dist(X0,Vα))− log(ε)

cos(dist(X0,Vα))δη

)
many iterations, XT will satisfy dist(XT ,Vα) ≤ ε. With the maximal step size
allowed in Theorem 2.10, we get

T ≤ O
(
λ1 − λn

δ

1

cos2(dist(X0,Vα))
Log

(
dist(X0,Vα)

ε

))
.

Proof In order to guarantee dist(XT ,Vα) ≤ ϵ, it suffices to have

(1− 2cQ cos(dist(X0,Vα)) δ η)T dist2(X0,Vα) ≤ ϵ2.

Taking the logarithm of both sides, we get

T log(1− 2cQ cos(dist(X0,Vα))δη) + 2 log(dist(X0,Vα)) ≤ 2 log(ϵ),

which gives

T ≥ 2
log(ϵ)− log(dist(X0,Vα))

log(1− 2cQ cos(dist(X0,Vα))
,

since log(1 − 2cQ cos(dist(X0,Vα)) is negative. By considering that cQ ≥ 0.8,
we get

T ≥ 2
log(ϵ)− log(dist(X0,Vα))

log(1− 0.8 cos(dist(X0,Vα))δη)
,

and the smallest integer that satisfies this inequality is exactly

T = 2
log(ϵ)− log(dist(X0,Vα))

log(1− 0.8 cos(dist(X0,Vα))δη)
.

The inequality part of the result follows by considering that

log(1− 0.8 cos(dist(X0,Vα)δη) ≥ − cos(dist(X0,Vα))δη.

The final bound for T follows by a simple substitution of η = cos(dist(X0,Vα))/L.

As expected, T depends inversely proportional on the spectral gap δ and
proportional to the spread of the eigenvalues. In addition, we also have an extra
term 1/ cos2(dist(X0,Vα)) that depends on the initial distance dist(X0,Vα),
which is due to the weak-quasi convexity property of f . This is a conservative
overestimation, since this quantity improves as the iterates get closer to the
optimum.
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Remark 2.3 If δ > 0, the exponential convergence rate is in terms of the
intrinsic distance on the Grassmann manifold, that is, the ℓ2 norm of the
principal angles. Standard convergence results for subspace iteration are stated
for the biggest principal angle, that is, the ℓ∞ norm. This is weaker than the
intrinsic distance. For subspace iteration with projection, the convergence result
from [96, Thm. 5.2] shows that all principal angles θi converge to zero and
eventually gives convergence of the ℓ4 norm of the principal angles. This is also
weaker than the intrinsic distance.

2.3.2 Convergence of function values without a spectral gap assumption

When δ = 0, Theorem 2.10 still holds, but does not provide a rate of convergence
as discussed above. Instead, we can prove the following result:

Theorem 2.12 If the distance dist(X0,Vα) of the initial subspace X0 to the
minimizer satisfies dist(X0,Vα) < π/2 for a subspace Vα that is spanned by
any k leading eigenvectors of A, then the iterates Xt of Riemannian gradient
descent (2.3.0.1) with fixed step size

η ≤ cos(dist(X0,Vα))/L

satisfy

f(Xt)− f ∗ ≤
2L + 1

η

4(cos(dist(X0,Vα))t + 1)
dist2(X0,Vα) = O

(
1

t

)
.

Proof Since we satisfy all the hypotheses of Theorem 2.10, we know that for
all t ≥ 0 it holds dist(Xt,Vα) ≤ dist(X0,Vα) < π/2 and thus also that Xt is in
the injectivity domain of Exp at Vα. In addition, its proof states in (2.3.1.1)
that

a(Xt) ≥ C0 := cos(dist(X0,Vα)) > 0,

which implies that the function f is weakly-quasi-convex at every Xt with
constant 2C0. Hence

2C0∆t ≤ ⟨grad f(Xt),−LogXt
(Vα)⟩, (2.3.2.1)

where we defined
∆t := f(Xt)− f ∗.

Similar to the proof of Theorem 2.10, by the hypothesis on the step size ηt,
Lemma 2.9 shows that Xt+1 is in the injectivity domain of Exp at Xt. Hence,
by the definition of Riemannian gradient descent, we have

LogXt
(Xt+1) = −η grad f(Xt). (2.3.2.2)

In addition, the smoothness property (2.2.1.1) of f gives

∆t+1 −∆t ≤ ⟨grad f(Xt),LogXt
(Xt+1)⟩+

L

2
dist2(Xt,Xt+1).
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Substituting (2.3.2.2), we obtain

∆t+1 −∆t ≤
(
−η +

L

2
η2
)
∥ grad f(Xt)∥2 ≤ 0, (2.3.2.3)

since η ≤ C0/L with 0 < C0 := cos(dist(X0,Vα)) ≤ 1 and L > 0.
Since Gr(n, k) has nonnegative sectional curvature, Proposition 1.15 implies

dist2(Xt+1,Vα) ≤ dist2(Xt,Xt+1) + dist2(Xt,Vα)− 2⟨LogXt
(Xt+1),LogXt

(Vα)⟩.

Substituting (2.3.2.2) into the above and rearranging terms gives

2η⟨grad f(Xt),−LogXt
(Vα)⟩ ≤ dist2(Xt,Vα)−dist2(Xt+1,Vα)+η2∥ grad f(Xt)∥2.

Combining with (2.3.2.1), we get

∆t ≤
1

4C0η
(dist2(Xt,Vα)− dist2(Xt+1,Vα)) +

η

4C0

∥ grad f(Xt)∥2. (2.3.2.4)

Now multiplying (2.3.2.3) by 1
C0

and summing with (2.3.2.4) gives

1

C0

∆t+1 −
(

1

C0

− 1

)
∆t ≤

1

4C0η
(dist2(Xt,Vα)− dist2(Xt+1,Vα))

+
1

C0

(
−η +

L

2
η2 +

η

4

)
∥ grad f(Xt)∥2. (2.3.2.5)

By assumption η ≤ C0/L, where 0 < C0 := cos(dist(X0,Vα)) ≤ 1 and L > 0.
Since

η

C0

(
−1 +

L

2
η +

1

4

)
≤ η

C0

(
C0

2
− 3

4

)
≤ −1

4

η

C0

< 0.

Inequality (2.3.2.5) can be simplified to

1

C0

∆t+1 −
(

1

C0

− 1

)
∆t ≤

1

4C0η
(dist2(Xt,Vα)− dist2(Xt+1,Vα)).

Summing from 0 to t− 1 gives

1

C0

∆t +
t−1∑
s=1

∆s −
(

1

C0

− 1

)
∆0 ≤

1

4C0η

(
dist2(X0,Vα)− dist2(Xt,Vα)

)
.

From the smoothness property (2.2.1.1) at the critical point Vα of f , we get

∆0 ≤
L

2
dist2(X0,Vα).
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Combining these two inequalities then leads to

1

C0

∆t +
t−1∑
s=0

∆s ≤
1

C0

∆0 +
1

4C0η
dist2(X0,Vα)

≤ 1

2C0

(
L +

1

2η

)
dist2(X0,Vα).

Since (2.3.2.3) holds for all t ≥ 0, it also implies ∆t ≤ ∆s for all 1 ≤ s ≤ t.
Substituting

t∆t ≤
t−1∑
s=0

∆s

into the inequality from above,

∆t ≤
1

2C0

L + 1
2η

1
C0

+ t
dist2(X0,Vα) =

L + 1
2η

2(C0t + 1)
dist2(X0,Vα),

we obtain the desired result.

Remark 2.4 This type of result is standard for functions that are geodesically
convex (see, e.g. [118]). Our objective function does not satisfy this property,
but we can still have a similar upper bound on the iteration complexity for
convergence in function value. We note that this does not imply convergence
of the iterates to a specific k-dimensional subspace, but only convergence of a
subsequence of the sequence of the iterates.

2.3.3 Sufficiently small step sizes

The convergence results in Theorems 2.10 and 2.12 require that the initial
subspace X0 lies within a distance strictly less than π/2 from a global minimizer
Vα. While this condition is independent from the spectral gap (unlike results
that rely on standard convexity, see Section 2.5), it is also not fully satisfactory:
it is hard to verify in practice, and it is unnecessarily severe in numerical
experiments. In fact, this condition is only used to obtain a uniform lower

bound on the weak-quasi convexity constant a(Xt) = θ
(t)
k / tan(θ

(t)
k ) with θ

(t)
k the

largest principal angle between Xt and Vα. Since the Riemannian distance is the
ℓ2 norm of the principal angles, a contraction in this distance leads automatically

to θ
(t)
k < π/2 if θ

(0)
k < π/2. If one could guarantee by some other reasoning that

θ
(t)
k does not increase after one step, the condition dist(X0,Vα) < π/2 would

not be needed.
We now show that for sufficiently small step sizes ηt, the largest principal

angle θ
(t)
k between Xt and Vα does indeed not increase after each iteration of
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Riemannian gradient descent regardless of the initial subspace X0. While it
does not explain what we observe in numerical experiments where large steps
can be taken, it is a first result in explaining why we can initialize the iteration
at a random initial subspace X0.

Proposition 2.13 Riemannian gradient descent started from a subspace Xt

returns a subspace Xt+1 such that

θk(Xt+1,Vα) ≤ θk(Xt,Vα),

for all step sizes 0 ≤ η ≤ η̄ where η̄ > 0 is sufficiently small.

For the proof of this proposition, we will need the derivatives of certain
singular values. While this is well known for isolated singular values, it is
possible to generalize to higher multiplicities as well by relaxing the ordering
and sign of singular values [27]. For a concrete formula, we use the following
result from Lemma A.5 in [72].

Lemma 2.14 Let σ1 ≥ · · · ≥ σn be the singular values of S ∈ Rn×n with
u1, . . . , un and v1, . . . , vp the associated left and right orthonormal singular
vectors. Suppose that σj has multiplicity m, that is,

σj0−1 > σj0 = · · · = σj = · · · = σj0+m−1 > σj0+m.

Then, the jth singular value of S + ηT satisfies

σj(S + ηT ) = σj + ηλj−j0+1 +O(η2), η → 0+,

where λj is the jth largest eigenvalue of 1
2
(UTBV + V TBTU) with

U =
[
uj0 · · · uj0+m−1

]
and V =

[
vj0 · · · vj0+m−1

]
.

Proof [Proof of Proposition 2.13]. For ease of notation, let X := Xt and
X+ := Xt+1 such that Xt = Span(X) and Xt+1 = Span(X+). By definition of
the exponential map on Grassmann, the next iterate of the Riemannian GD
iteration (2.3.0.1) with step η satisfies

X+ = XV cos(ηΣ)V T + U sin(ηΣ)V T

where
UΣV T = − grad f(Xt).

Since V is orthogonal, we can write

U sin(ηΣ)V T = U(ηΣ)V TV

(
sin(ηΣ)

ηΣ

)
V T = −η grad f(Xt)V

(
sin(ηΣ)

ηΣ

)
V T
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where 1/Σ := Σ−1 and sin 0
0

= 1. Taking Taylor expansions of sin and cos,

V cos(ηΣ)V T = V
(
I −O(η2)

)
V T = I −O(η2)

V
sin(ηΣ)

ηΣ
V T = V

(
I −O(η2)

)
V T = I −O(η2),

we obtain

V T
α X+ = V T

α X(I −O(η2)) + V T
α (−η grad f(X ))(I −O(η2))

= V T
α (X − η grad f(Xt))(I −O(η2)) (2.3.3.1)

since ∥Vα∥2 = ∥X∥2 = 1.
Let now θ be the vector of k principal angles between Xt and Vα. As

in (2.2.2.2) and (2.2.2.9), we therefore have the SVDs

V T
α X = U1 cos θ V T

1 and V T
β X = Ũ2 sin θ V T

1 , (2.3.3.2)

where U1, V1 ∈ Rk×k and Ũ2 ∈ R(n−k)×k have orthonormal columns. Next, we
write (2.3.3.1) in terms of

M := sin2 θ UT
1 ΛαU1 cos θ − cos θ sin θ ŨT

2 ΛβŨ2 sin θ.

Since grad f(Xt) = −2(I −XXT )AX, the identity (2.2.2.7) gives

V T
α (X − η grad f(Xt)) = V T

α X + 2ηΛαV
T
α X − 2ηV T

α XXTAX.

After substituting (2.2.2.1) and (2.3.3.2), a short calculation using cos2 θ =
I − sin2 θ and the orthogonality of U1 and V1 then shows

V T
α (X − η grad f(Xt)) = U1(cos θ + 2ηM)V T

1 .

Relating back to (2.3.3.1), we thus obtain

V T
α X+ = U1(cos θ + 2ηM)V T

1 (I −O(η2))

= U1(cos θ + 2ηM)(I − V T
1 O(η2)V1)V

T
1

= U1(cos θ + 2ηM −O(η2))V T
1 .

The singular values of V T
α X+ are therefore the same as the singular values of

the matrix cos θ + 2ηM +O(η2).
By Weyl’s inequality (see, e.g., [47, Cor. 7.3.5]), each singular value of

cos θ + 2ηM +O(η2) is O(η2) close to some singular value of cos θ + 2ηM . Let
1 ≤ j ≤ k. Denote the jth singular value of cos θ + 2ηM by σj(η) to which we
will apply Lemma 2.14. Let m be the multiplicity of σj(0). Hence, there exists
j0 such that σj0(0) = · · · = σj(0) = · · · = σj0+m−1(0). Since cos θ is a diagonal
matrix with decreasing diagonal, its ℓth singular value equals cos θℓ and its
associated left/right singular vector is the ℓth canonical vector eℓ. Denoting

E =
[
ej0 · · · ej0+m−1

]
,
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observe that cos θ E = cos θj0 E (here, cos θ is a diagonal matrix and cos θj0 is
a scalar) and likewise for sin θ E. We thus get

ETME = sin2 θj0 cos θj0(U
T
1 ΛαU1 − ŨT

2 ΛβŨ2).

In the proof of Proposition 2.6, we showed that the matrix in brackets above is
symmetric and positive semi-definite (see (2.2.2.10)). Since 0 ≤ θj0 ≤ π/2, the
eigenvalues of ETME are therefore all non-negative. Lemma 2.14 thus gives
that σj(η) ≥ σj for sufficiently small and positive η. Since the singular values
of V T

α X+ are the cosines of the principal angles between Vα and Xt+1 with step
size η ≥ 0, we conclude that there exists η̄ > 0 such that for all η ∈ [0, η̄] it
holds

θj(Xt+1,Vα) ≤ θj(Xt,Vα).

Since j was arbitrary, this finishes the proof.

2.4 Convergence with step size 1/L

We now prove convergence of gradient descent with a more tractable choice
of step size compared to the one of Theorem 2.10. However, this requires a
slightly better initialization at most π

2
√
2

away from the minimizer.

2.4.1 Maximum extent of the iterates

We first prove that gradient descent with step size at most 1
L

does not guarantee
contraction on distances from step to step, but it does guarantees that squares
distances at most double over the course of the algorithm:

Proposition 2.15 Consider gradient descent applied to f with step size η ≤ 1
L

.
If the iterates Xt satisfy θk(Xt,Vα) < π

2
, then they also satisfy

dist2(Xt,Vα) ≤ 2dist2(X0,Vα).

Proof Consider the discrete Lyapunov function

E(t) =
1

L
(f(Xt)− f ∗) +

1

2
dist2(Xt,Vα).

Then

E(t + 1)− E(t) =
1

L
(f(Xt+1)− f(Xt)) +

1

2
(dist2(Xt+1,Vα)− dist2(Xt,Vα)).

By L-smoothness of f , we have

f(Xt+1)− f(Xt) ≤ ⟨gradf(Xt),LogXt
(Xt+1)⟩+

L

2
dist(Xt,Xt+1)

2

=

(
−η +

L

2
η2
)
∥gradf(Xt)∥2.
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We also know by Proposition 2.6 that

⟨gradf(X ),−LogX (Vα)⟩ ≥ 0,

for any X with θk(X ,Vα) < π/2.
By the fact that the sectional curvatures of the Grassmann manifold are
non-negative, we have

dist2(Xt+1,Vα) ≤ dist2(Xt,Vα) + dist2(Xt+1,Xt)− 2⟨LogXt
(Xt+1),LogXt

(Vα)⟩
= dist2(Xt,Vα) + η2∥gradf(Xt)∥2 + 2η⟨gradf(Xt),LogXt

(Vα)⟩
≤ dist2(Xt,Vα) + η2∥gradf(Xt)∥2.

Thus

E(t + 1)− E(t) ≤
(
− η

L
+

η2

2

)
∥gradf(Xt)∥2 +

η2

2
∥gradf(Xt)∥2

≤
(
− η

L
+ η2

)
∥gradf(Xt)∥2 ≤ 0,

because η ≤ 1
L

.
Since E(t) does not increase, we have

1

2
dist2(Xt,Vα) ≤ E(t) ≤ E(0) =

1

L
(f(X0)− f ∗) +

1

2
dist2(X0,Vα)

≤ 1

2
dist2(X0,Vα) +

1

2
dist2(X0,Vα) = dist2(X0,Vα)

and the desired result follows.

2.4.2 Convergence under positive spectral gap

When δ > 0, we can use gradient dominance to prove convergence of gradient
descent to the (unique) minimizer in terms of function values:

Proposition 2.16 gradient descent with step size η = 1/L initialized at X0

such that
dist(X0,Vα) ≤ π

4

satisfies

f(Xt)− f ∗ ≤
(

1− 0.32cQ
δ

L

)t

(f(X0)− f ∗).

Proof By the previous result and an induction argument to guarantee that the
biggest angle between Xt and Vα stays strictly less than π/2, we can bound
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the quantities a(Xt) uniformly from below:

Since dist(Xt,Vα) ≤
√

2 · dist(X0,Vα) ≤
√
2π
4

, we have

a(Xt) ≥ cos(θk(Xt,Vα)) ≥ cos(dist(Xt,Vα)) ≥ cos

(√
2π

4

)
≥ 0.4.

By L-smoothness of f , we have

f(Xt+1)− f(Xt) ≤ −
∥gradf(Xt)∥2

2L

and applying gradient dominance (Proposition 2.8), we get the bound

f(Xt+1)− f(Xt) ≤ −
2cQδa

2(Xt)

L
(f(Xt)− f ∗)

thus

f(Xt+1)−f ∗ ≤
(

1− 2cQa
2(Xt)

δ

L

)
(f(Xt)−f ∗) ≤

(
1− 0.32cQ

δ

L

)
(f(Xt)−f ∗).

By induction the desired result follows.
We now state the iteration complexity of the gradient descent algorithm with
step size 1

L
:

Theorem 2.17 Gradient descent with step size 1
L

starting from a subspace X0

with distance at most π
4

from Vα computes an estimate XT of Vα such that
dist(XT ,Vα) ≤ ϵ in at most

T =
1

0.32cQ

L

δ
Log

f(X0)− f ∗

cQδϵ2
+ 1 ≤ O

(
L

δ
log

f(X0)− f ∗

δϵ

)
.

Proof For dist(XT ,Vα) ≤ ϵ, it suffices to have

f(XT )− f ∗ ≤ cQϵ
2δ

by quadratic growth of f in Proposition 2.4. Using (1− c)T ≤ Exp(−cT ) for
all T ≥ 0 and 0 ≤ c ≤ 1, the previous result gives that it suffices to choose T
as the smallest integer such that

f(XT )− f ∗ ≤ Exp

(
−0.32cQ

δ

L
T

)
(f(X0)− f ∗) ≤ cQϵ

2δ.

Solving for T and substituting cQ = 4/π2, we get the required statement.
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2.4.3 Gap-less result

We also prove a convergence result for the function values when δ is assumed
to be 0:

Theorem 2.18 Gradient descent with step size η = 1
L

initialized at X0 such
that

dist(X0,Vα) ≤ π

4
satisfies

f(Xt)− f ∗ ≤
f(X0)− f ∗ + L

2
dist2(X0,Vα)

0.4t + 1
= O

(
1

t

)
.

Proof By Proposition 2.15, we have that dist(Xt,Vα) ≤
√
2π
4

and f satisfies
the weak-quasi convexity inequality at any iterate Xt of gradient descent with
constant C0 := 0.4.

Consider the discrete Lyapunov function

E(t) =
C0t + 1

L
(f(Xt)− f ∗) +

1

2
dist2(Xt,Vα).

We have that

E(t + 1)− E(t) =
C0t + C0 + 1

L
(f(Xt+1)− f ∗)− C0t + 1

L
(f(Xt)− f ∗)

+
1

2
(dist2(Xt+1,Vα)− dist2(Xt,Vα)).

Now we have to estimate a bound for dist2(Xt+1,Vα) − dist2(Xt,Vα). By L-
smoothness of f and denoting ∆t = f(Xt)− f ∗ we have

∆t+1 −∆t ≤ ⟨gradf(Xt),LogXt
(Xt+1)⟩+

L

2
dist2(Xt,Xt+1) = −∥gradf(Xt)∥2

2L
By C0-weak-quasi-strong convexity of f and the fact that the Grassmann
manifold is of positive curvature, we have

C0∆t ≤
L

2
(dist2(Xt,Vα)− dist2(Xt+1,Vα)) +

∥gradf(Xt)∥2

2L
Summing this to the previous inequality, we get

dist2(Xt+1,Vα)−dist2(Xt,Vα) ≤ 2

L
((1−C0)(f(Xt)−f(Xt+1))−C0(f(Xt+1)−f ∗)).

Thus

E(t + 1)− E(t) ≤ C0t + 1

L
(f(Xt+1)− f(Xt)) +

C0

L
(f(Xt+1)− f ∗)

+
1− C0

L
(f(Xt)− f(Xt+1))−

C0

L
(f(Xt+1)− f ∗)

=
C0t + C0

L
(f(Xt+1)− f(Xt)) ≤ 0.
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Thus E(t) ≤ E(0) and the result follows.

2.5 Geodesic convexity

In this section, we show that f is geodesically convex, but only locally around
Vα with a radius that depends on the spectral gap δ. Let δ > 0 and thus Vα
is the unique minimizer of f . Define the following neighbourhood of Vα in
Gr(n, k):

N∗(φ) = {X ∈ Gr(n, k) : θk(X ,Vα) < φ} with φ ∈ [0, π/4]. (2.5.0.1)

Here, θk(X ,Vα) denotes the largest principal angle between X and Vα. Since θk
is a metric on Gr(n, k) (see [94]), any two subspaces X ,Y ∈ N∗(φ) will satisfy
θk(X ,Y) < π/2 by triangle inequality. They thus have a unique connecting
geodesic. It is shown in [5, Lemma 2] that for any fixed φ ∈ [0, π/4] this
geodesic remains in N∗(φ). Each set N∗(φ) is thus an open totally geodesically
convex set as defined in, e.g., [21, Def. 11.16].

One of the main results in [5], namely Cor. 4, states that f is geodesically
convex on N∗(π/4). This is unfortunately wrong and we present a small
counterexample.

Counterexample for Cor. 4 in [5]. Here we use the notation of [5]. The reader
is encouraged to take a look there for notational purposes.

Take c := cos(π/4) =
√

2/2 and 0 ≤ ε < 1. Define the matrices

Xp :=


1 0
0 1
0 0
0 0

 , Up :=


c 0
0 c
c 0
0 c

 , M := Up

(
1 0
0 ε

)
.

These matrices satisfy the conditions posed in [5]:

• Principal alignment: XT
p Up =

(
c 0
0 c

)
.

• Principal angles between Xp and Up are in [0, π/4].

• U = Up since Q = I.

Now consider the following tangent vector of unit Frobenius norm:

∆ =


0 0
0 0
0 1
0 0

 .
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It is clearly a tangent vector of [Xp] since XT
p ∆ = 0. The Hessian of ffull at

[Xp] in the direction of ∆ satisfies (see equation (4.2) in [5])

Hessffull([Xp])[∆,∆] = −2 Tr(MT∆∆T (I−XpX
T
p )M)+∥(∆XT

p +Xp∆
T )M∥2F .

Simple calculation shows that

Hessffull([Xp])[∆,∆] = −2c2 + (1 + ε2)c2.

Hence for ε < 1, we have Hessffull([Xp])[∆,∆] < 0 and the ffull is non-convex
which is in contrast with Corollary 4.

Instead, our Theorem 2.21 guarantees convexity when φ depends on the
spectral gap. Since f is smooth, the function is geodesically convex on N∗(φ) if
and only if its Riemannian Hessian is positive definite on N∗(φ); see, e.g., [21,
Thm. 11.23]. We will therefore compute the eigenvalues of Hess f based on its
matrix representation. This requires us to first vectorize the tangent space.

From (1.3.1.3), a matrix G is a tangent vector if and only if GTX = 0.
Hence, taking X⊥ ∈ Rn×(n−k) orthonormal such that X⊥ = Span(X⊥), we have
the equivalent definition

TX Gr(n, k) = {X⊥M : M ∈ R(n−k)×k}.

The matrix M above can be seen as the coordinates of G = X⊥M in the
basis X⊥. More specifically, by using the linear isomorphism vec : Rn×k → Rnk

that stacks all columns of a matrix under each other, we can define the tangent
vectors of Gr(n, k) as standard (column) vectors in the following way:

vec(G) = vec(X⊥M) = (Ik ⊗X⊥) vec(M).

Here, the Kronecker product ⊗ appears due to [48, Lemma 4.3.1]. By well-
known properties of ⊗ (see, e.g., [48, Chap. 4.2]), the matrix Ik ⊗ X⊥ has
orthonormal columns. We have thus obtained an orthonormal basis for the
(vectorized) tangent space. With this setup, we can now construct the Hessian.

Lemma 2.19 Let Ik ⊗X⊥ be the orthonormal basis for the vectorization of
TX Gr(n, k). Then the Riemannian Hessian of f at X in that basis has the
symmetric matrix representation

HX = 2(XTAX ⊗ In−k − Ik ⊗XT
⊥AX⊥). (2.5.0.2)

Furthermore, with 1 ≤ i ≤ k and 1 ≤ j ≤ n− k its k(n− k) eigenvalues satisfy

λi,j(HX) = 2(λi(X
TAX)− λj(X

T
⊥AX⊥)).

Proof Since vec is a linear isomorphism, the symmetric matrix HX satisfies

Hess f(X)[X⊥M,X⊥M ] = ⟨vec(M), HX vec(M)⟩, ∀M ∈ Rn×(n−k),
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where ⟨·, ·⟩ is the Euclidean inner product. Define m = vec(M). Plugging in
the formula (2.1.0.1) for Hess f , we calculate

Hess f(X)[X⊥M,X⊥M ] = 2⟨X⊥M,X⊥MXTAX − AX⊥M⟩
= 2⟨(I ⊗X⊥)m, (XTAX ⊗X⊥)m− (I ⊗ AX⊥)m⟩
= 2⟨m, (I ⊗X⊥)T (XTAX ⊗X⊥ − I ⊗ AX⊥)m⟩
= 2⟨m, (XTAX ⊗ I − I ⊗XT

⊥AX⊥)m⟩

Here, we used typical calculus rules for the Kronecker product (see, e.g., [48,
Chap. 4.2]). We recognize the matrix HX directly.

The eigenvalues of (2.5.0.2) can be directly obtained using [48, Thm. 4.4.5].

Taking X = Vα and X⊥ = Vβ, Lemma 2.19 shows immediately that the
minimal eigenvalue of Hess f(Vα) is equal to 2δ = 2(λk − λk+1). Since δ >
0, Hess f will remain strictly positive definite in a neighbourhood of Vα by
continuity. To quantify this neighbourhood, we will connect Vα to an arbitrary
X using a geodesic and see how this influences the bounds of Lemma 2.19.
This also requires connecting Vβ to X⊥. The next lemma shows that both
geodesics are closely related. Recall that sin(tθ) and cos(tθ) denote diagonal
matrices of size k × k. For convenience, we will denote by O a zero matrix
whose dimensions are clear from the context and is not always square.

Lemma 2.20 Let X, Y ∈ Rn×k be such that XTX = Y TY = Ik with k ≤ n/2.
Denote the principal angles between Span(X) and Span(Y ) by θ1 ≤ · · · ≤ θk
and assume that θk < π/2. Choose X⊥, Y⊥ ∈ Rn×(n−k) such that XT

⊥X⊥ =
Y T
⊥ Y⊥ = In−k and Span(X⊥) = Span(X)⊥, Span(Y⊥) = Span(Y )⊥. Define the

curves

γ(t) : [0, 1]→ Rn×k, t 7→ XV1 cos(tθ) + X⊥V2

[
O

sin(tθ)

]
,

γ⊥(t) : [0, 1]→ Rn×(n−k), t 7→ X⊥V2

[
I

cos(tθ)

]
−XV1

[
O sin(tθ)

]
,

where the orthogonal matrices V1, V2 are the same as in Lemma 2.5. Then
Span(γ(t)) is the connecting geodesic on Gr(n, k) from Span(X) to Span(Y ).
Likewise, Span(γ⊥(t)) is a connecting geodesic on Gr(n, n− k) from Span(X⊥)
to Span(Y⊥). Furthermore, γ(t) and γ⊥(t) are orthonormal matrices for all t.

Proof Assume θ1 = · · · = θr = 0, where r = 0 means that θ1 > 0. Like in the
proof of Prop. 2.6, the CS decomposition of X and Y from Lemma 2.5 can
be written in terms of their principal angles θ1, . . . , θk. Since θk < π/2 and

61



n ≤ k/2, this gives after dividing certain block matrices the relations

Y TX = U1 cos(θ)V T
1 , Y TX⊥ = U1

[
Ok×(n−2k) sin(θ)

]
V T
2

Y T
⊥ X = U2

[
O(n−2k)×k

sin(θ)

]
V T
1 , Y T

⊥ X⊥ = U2

[
−In−2k

− cos(θ)

]
V T
2 ,

where U1, V1 and U2, V2 are orthogonal matrices of size k×k and (n−k)×(n−k),
resp.

Denote X = Span(X) and Y = Span(Y ). By definition, the connecting
geodesic γ(t) is determined by the tangent vector LogX (Y), which can be
computed from (1.3.1.6). To this end, we first need the compact SVD of M :=
X⊥X

T
⊥Y (XTY )−1. Substituting the results from above, we get (cfr. (2.2.2.5))

M = X⊥V2

[
O(n−2k)×k

sin(θ)

]
UT
1 U1 (cos(θ))−1 V T

1 = X⊥V2

[
O(n−2k)×k

Ik

]
tan(θ)V T

1 .

Observe that this is a compact SVD. Applying (1.3.1.6), we therefore get

G := LogX (Y) = UΣV T with U = X⊥V2

[
O
Ik

]
, Σ = θ, V = V1

and from (1.3.1.4), the connecting geodesic satisfies

ExpX (tG) = Span(XV1 cos(tθ) + X⊥V2

[
O
Ik

]
sin(tθ) ).

We have proven the stated formula for γ(t). Verifying that γ(t)Tγ(t) = Ik
follows from a simple calculation that uses cos2(tθ) + sin2(tθ) = Ik.

Denote X⊥ = Span(X⊥) and Y⊥ = Span(Y⊥). To prove γ⊥(t), we proceed
similarly by computing G⊥ := LogX⊥(Y⊥), which requires now the SVD
of M⊥ := XXTY⊥(XT

⊥Y⊥)−1. Again substituting the results from the CS
decomposition, we get

M⊥ = XV1

[
Ok×(n−2k) sin(θ)

]
UT
2 U2

[
−In−2k

− cos(θ)

]−1

V T
2

= XV1

[
Ok×(n−2k) − tan(θ)

]
V T
2

Since (1.3.1.6) requires a compact SVD with a square Σ, we rewrite this as

M⊥ =
[
X̃ XV1

] [O(n−2k)×(n−2k)

− tan(θ)

]
V T
2

where X̃ contains n− 2k columns that are orthonormal to X (the final result

will not depend on X̃). Let θ⊥1 ≤ · · · ≤ θ⊥n−k denote the principal angles
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between X⊥ and Y⊥. Up to zero angles, they are the same as those between
X and Y . Since k ≤ n/2, we thus have

θ⊥1 = · · · = θ⊥n−2k = 0, θ⊥n−2k+1 = θ1, . . . , θ
⊥
n−k = θk.

Applying (1.3.1.6) with these principal angles, we obtain

G⊥ := LogX⊥(Y⊥) = UΣV T with U = −
[
X̃ XV1

]
, Σ = θ⊥, V = V2.

From (1.3.1.4), the corresponding geodesic satisfies

ExpX⊥(tG⊥) = Span(X⊥V2 cos(tθ⊥)−
[
X̃ XV1

]
sin(tθ⊥) )

= Span(X⊥V2

[
In−2k

cos(tθ)

]
−
[
On×(n−2k) XV1 sin(tθ)

]
).

Rewriting the block matrix, we have proven γ⊥(t). Its orthonormality is again
a straightforward verification.

With the previous lemma, we can now investigate the Riemannian Hessian
of f near Vα when it is given in the matrix form HX of Lemma 2.19. Let
X = Span(X) ∈ Gr(n, k) with orthonormal X. Its principal angles with
Vα are θ1 ≤ · · · ≤ θk < π/2. Use the substitutions X 7→ Vα, Y 7→ X and
X⊥ 7→ Vβ, Y⊥ 7→ X⊥ in Lemma 2.20 to define the geodesics γ(t) and γ⊥(t) that
connect Vα to X , and Vβ to X⊥, resp. Denoting

C := cos(θ), S := sin(θ), C̃ :=

[
I

C

]
, S̃ :=

[
O
S

]
,

we get the following expressions for the geodesics:

γ(t) = VαV1C + VβV2S̃, γ⊥(t) = VβV2C̃ − VαV1S̃
T .

Recall that HX is defined using XTAX and XT
⊥AX⊥. Since γ(1) = XQ1

and γ⊥(1) = X⊥Q2 for some orthogonal matrices Q1, Q2, we can write with
A = VαΛαV

T
α + VβΛβV

T
β that

QT
1X

TAXQ1 = γ(1)TAγ(1)

= C (V T
1 ΛαV1)C + S̃T (V T

2 ΛβV2) S̃

QT
2X

T
⊥AX⊥Q2 = γ⊥(1)TAγ⊥(1)

= C̃ (V T
2 ΛβV2) C̃ + S̃ (V T

1 ΛαV1) S̃
T .

(2.5.0.3)

Here we used simplifications like V T
β AVα = V T

β VαΛα = 0.
A simple bounding of the eigenvalues of the difference of these matrices

results in the main result.
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Theorem 2.21 Let k ≤ n/2. Define the neighbourhood

B∗ =

{
X ∈ Gr(n, k) : sin2(θk(X ,Vα)) ≤ δ

λ1 + λk

}
,

then f is geodesically convex on B∗.

Proof Our aim is to show that λi,j(HX) remains positive given the bound on
θk. From Lemma 2.19, we see that

λmin(HX) ≥ 0 ⇐⇒ λmin(XTAX) ≥ λmax(X
T
⊥AX⊥). (2.5.0.4)

Since Q1, Q2 are orthogonal in (2.5.0.3), it suffices to find a lower and upper
bound of, resp.,

λmin(XTAX) = λmin(C (V T
1 ΛαV1)C + S̃T (V T

2 ΛβV2) S̃)

λmax(X
T
⊥AX⊥) = λmax(C̃ (V T

2 ΛβV2) C̃ + S̃ (V T
1 ΛαV1) S̃

T ).

Standard eigenvalue inequalities for symmetric matrices (see, e.g., [47, Cor. 4.3.15])
give

λmin(XTAX) ≥ λmin(C (V T
1 ΛαV1)C) + λmin(S̃T (V T

2 ΛβV2) S̃)

λmax(X
T
⊥AX⊥) ≤ λmax(C̃ (V T

2 ΛβV2) C̃) + λmax(S̃ (V T
1 ΛαV1) S̃

T ).

Recall that λ1 ≥ · · · ≥ λn are the eigenvalues of A. Since S̃ is a tall rectangular
matrix, we apply the generalized version of Ostrowski’s theorem from [46,
Thm. 3.2] to each term above7 and obtain

λmin(C (V T
1 ΛαV1)C) ≥ λmin(C2)λmin(Λα) = cos2(θk)λk

λmin(S̃T (V T
2 ΛβV2) S̃) ≥ λmin(S̃T S̃)λmin(Λβ) = sin2(θ1)λn,

since the matrices V1, V2 are orthogonal and θ1 ≤ · · · ≤ θk < π/2. Adding this
gives the lower bound

λmin(XTAX) ≥ cos2(θk)λk + sin2(θ1)λn ≥ cos2(θk)λk. (2.5.0.5)

Likewise, using the block structure of S̃, we get

λmax(C̃ (V T
2 ΛβV2) C̃) ≤ λmax(C

2)λmax(Λβ) = cos2(θ1)λk+1

λmax(S̃ (V T
1 ΛαV1) S̃

T ) = λmax(S (V T
1 ΛαV1)S)

≤ λmax(S
2)λmax(Λα) = sin2(θk)λ1

and thus

λmax(X
T
⊥AX⊥) ≤ cos2(θ1)λk+1 + sin2(θk)λ1 ≤ λk+1 + sin2(θk)λ1. (2.5.0.6)

7Observe that the cited theorem orders the eigenvalues inversely to the convention used in this paper.
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The condition (2.5.0.4) is thus satisfied when

cos2(θk)λk = λk − sin2(θk)λk ≥ λk+1 + sin2(θk)λ1,

which reduces to the bound on θk in the statement of the theorem.
It remains to show that B∗ is an open totally geodesically convex set. Since

λ1 ≥ λk ≥ λk+1 ≥ 0, we get

λk − λk+1

λ1 + λk

≤ λk

2λk

=
1

2
.

Hence, B∗ = N∗(φ) with φ ≤ π/4 since sin2(π/4) = 1/2.

If k = 1, the proof above can be simplified.

Corollary 2.22 Let k = 1 and define the neighbourhood

B∗ =

{
X ∈ Gr(n, 1) : sin2(θ1(X ,Vα)) ≤ δ

δ + λ1 − λn

}
.

Then f is geodesically convex on B∗.

Proof Since k = 1, there is no need to simplify the bounds (2.5.0.5) and
(2.5.0.6) as was done above. This gives that f is convex as long as

cos2(θ1)λ1 + sin2(θ1)λn ≥ cos2(θ1)λ2 + sin2(θ1)λ1.

Rewriting leads directly to the stated condition on sin2(θ1).
Remark that optimizing f on Gr(n, 1) is equivalent to

min
x∈Rn
−xTAx s.t. ∥x∥ = 1, (2.5.0.7)

which is the minimization of the Rayleigh quotient problem on the unit sphere
Sn−1 = {x ∈ Rn : xTx = 1}. Cor. 2.22 can therefore also be phrased in terms
of a geodesically convex region for this problem. Denoting a unit norm top
eigenvector of A by v1 and using that sin2 θ1 = 1− cos2 θ1, we get that (2.5.0.7)
is geodesically convex on

B̂∗ =

{
x ∈ Sn−1 : (xTv1)

2 ≥ 1− δ

δ + λ1 − λn

}
.

This result can now be directly compared to [50, Lemma 7] where the corre-
sponding region is defined as (xTv1)

2 ≥ 1− δ
δ+λ1

. This is a stricter condition
and our result is therefore a small improvement.
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Figure 2.1: gradient descent along geodesics for the block Rayleigh quotient of size k applied
to a discretized 3D Laplacian matrix. The full lines correspond to the experimental values
and the dashed lines to the theoretical upper bounds.

2.6 Numerical experiment

We report on a small numerical experiment to verify the convergence rates
proven above. The gradient descent iteration with fixed step size was imple-
mented in Matlab using the geodesic formula (1.3.1.4).

As first test matrix, we took the standard 3D Laplacian on a unit cube,
discretized with finite differences and zero Dirichlet boundary conditions. The
size of the matrix A is n = 400. We tested a few values for the block size k.
They are depicted in the table below, together with other parameters that are
relevant for Theorem 2.10.

k δ dist(X0,Vα)

1 0.0665 . . . 0.113 . . .
6 0.0665 . . . 0.280 . . .
10 0.0262 . . . 0.350 . . .

In Figure 2.1, the convergence of the Riemannian distance is visible in
addition to the theoretical convergence rate of Theorem 2.10. We see that in
all cases, these bounds on the convergence are valid (in particular, exponential)
although they are rather conservative.

For completeness, we implemented gradient descent starting from a subspace
X0 far away from the optimum. In that case, Theorem 2.10 does not apply since,
if dist(X0,Vα) > π

2
, the step size η ≤ cos(dist(X0,Vα))/L is or will become

eventually negative. However, a meaningful choice for η is given by Proposition
2.16 of Section 2.4, where we prove a local linear convergence rate for the
function values of the iterates for step size η = 1/L.
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Figure 2.2: Same matrix from Figure 2.1 but such that dist(X0,Vα)≫ π/2 and with fixed
step size 1/L.

We see in Figure 2.2 that despite the seemingly bad initial guess, gradient
descent converges globally with a linear rate.

In the second test, we investigate the convergence when the spectral gap
δ is small or zero. In particular, we take A = V DV T ∈ R1000×1000 with V a
random orthogonal matrix and D contains the eigenvalues

λ1 = 3, λ2 = 2, λ3 = 1 + 10−2 + 10−6, λ4 = 1 + 10−6, λ5 = λ6 = 1.

The other eigenvalues are equidistantly distributed between 0.1 and 0.2. The
block size and other relevant parameters for the test are described below. Since
the convergence for small δ slows down considerably after the first 5 iterations,
we apply the bounds of Theorem 2.12 at iteration t = 6 (and treat this as the
start with t = 0).

k δ dist(X0,Vα) dist(X6,Vα)

2 0.99 . . . 0.051 . . . 0.001 . . .
3 10−2 0.055 . . . 0.031 . . .
4 10−6 0.063 . . . 0.045 . . .
5 0 0.070 . . . 0.054 . . .

The convergence in function value is visible in Figure 2.3. Observe that we
have displayed a logarithmic scale for both axes whereas before the figure had
a logarithmic scale only for y-axis. Algebraic convergence like 1/t is therefore
visible as a straight line. We see in the figure that the convergence is not
easily described, and that there is no clear difference between zero or small
gap. However, the upper bounds of Theorem 2.12 are again valid. In addition,
when the gap is not small, the convergence is clearly faster.
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Figure 2.3: Gradient descent along geodesics for the block Rayleigh quotient of size k applied
to a random matrix with small spectral gaps. The full lines correspond to the experimental
values and the dashed lines to the theoretical upper bounds of Theorem 2.12. Each color
corresponds to a certain spectral gap δ.

As before, we test the behaviour of gradient descent starting from an initial
guess far away from the optimum. We use again step size 1/L; see Theorem
2.18. In Figure 2.4 we show the convergence of gradient descent for the problem
defined by matrix A with this step size.

Figure 2.4: Same matrices with small spectral gap from Figure 2.3 but such that
dist(X0,Vα)≫ π/2 and with fixed step size 1/L.

We observe again that the local nature of our theoretical results is quite
pessimistic: the algorithm converges with an algebraic rate even with a bad
initial guess but it shows eventually linear convergence.
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3 Distributed principal component analysis with limited
communication

We now discuss the first application of the theory presented in Section 2. This
has to do with principal component analysis in a data-parallel regime, where the
different agents (each one of them holds some batch of the data) communicate
in a low bit precision. We follow the exposition of our work [8], which actually
came before our work [14] and gave motivation for the development of the
general theory presented in Section 2. In the context of this thesis however, we
believe it is better to present it as a consequence of this theory.

3.1 Introduction

Something important to notice is that [8] deals only with the computation of the
leading principal component, i.e. only the leading eigenvector of a covariance
matrix. A suitable space to formulate this problem as an optimization problem
is the sphere. Notice that the sphere is not the same with the manifold
Gr(n, 1). Actually, Gr(n, 1) is a sphere but with the two hemishperes merged
and recording only the direction of some vector. This is still a manifold and is
called projective space. From a mathematical point of view though, working in
the sphere or in the projective space is essentially the same.

Using the theory of Section 2, we could comfortably extend the results of
[8] in the block case. However, we do not believe that this adds substantially
to the scientific value of the exposed ideas and we shall stick to the case k = 1.
For completeness, we will re-prove the convexity-like properties developed in
Section 2 for the k = 1 case in the sphere.

To the best of our knowledge, the work presented in this section is the
first one to focus on the bandwidth cost of distributed PCA, i.e. the number
of bits which need to be transmitted for achieving computation of the first
principal component up to some accuracy. This is a significant bottleneck
in distributed systems and many works have dealt with it for other classic
problems, e.g. [49, 52, 108]. On the other hand, many works have dealt with
the problem of distributed PCA focusing only on latency cost, i.e. the number
of required communication rounds.

Our main contribution is a new algorithm for distributed leading eigenvector
computation, which specifically minimizes the total number of bits sent and
received by the computing nodes. To that end, we use a standard quantization
scheme developed in [31]. The theoretical analysis is done using special cases
of properties developed in Section 2.
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3.2 Setting and Related Work

Setting. We assume to be given m total samples coming from some distribution
D, organized as a global m× n data matrix M , which is partitioned row-wise
among p processors, with node i being assigned the matrix Mi, consisted
by mi consecutive rows, such that

∑p
i=1mi = m. As is common, let A :=

MTM =
∑p

i=1 M
T
i Mi be the global covariance matrix, and Ai := MT

i Mi the
local covariance matrix owned by the node i. We denote by λ1, λ2, ..., λn the
eigenvalues of A in descending order and by v1, v2, ..., vn the corresponding
eigenvectors. We can approximate the leading eigenvector by solving the
following empirical risk minimization problem up to accuracy ε:

x⋆ = argminx∈Rn\{0}

(
−xTAx

∥x∥2

)
= argminx∈Sn−1

(
−xTAx

)
, (3.2.0.1)

where Sn−1 is the (n−1)-dimensional sphere. When the spectral gap δ := λ1−λ2

is strictly positive, the optimum x∗ is unique up to a change of sign.
We define f : Sn−1 → R, with f(x) = −xTAx and fi : Sn−1 → R, with

fi(x) = −xTAix. Since the inner product is bilinear, we can write the global
cost as the sum of the local costs:

f(x) =

p∑
i=1

fi(x).

Related Work. Lately, there has been a significant amount of research on
efficient variants of PCA and related problems [19, 90, 99, 100, 117, 118]. In
order to keep this discussion as simple as possible, we focus on related work on
communication-efficient algorithms. In particular, we discuss the relationship
to previous round-efficient algorithms; to our knowledge, what presented in
this section is the first work to specifically focus on the bit complexity of this
problem in the setting where data is randomly partitioned. More precisely,
previous work on this variant implicitly assumes that algorithms are able to
transmit real numbers at unit cost.

The straightforward approach to solve the minimization problem (3.2.0.1)
in a distributed setting, where the data rows are partitioned, would be to
use a distributed version of the power method, Riemannian gradient descent
(RGD), or the Lanczos algorithm. In order to achieve an ε-approximation of
the minimizer x⋆, the latter two algorithms require Õ

(
λ1

δ
log(1/ε)

)
rounds,

where the Õ notation hides poly-logarithmic factors in n. Distributed Lanczos
and accelerated RGD would improve this by an O(

√
λ1/δ) factor. However,

Garber et al. [38] point out that, when δ is small, e.g. δ = Θ(1/
√
Kp), then

unfortunately the number of communication rounds would increase with the
sample size, which renders these algorithms non-scalable.
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Standard distributed convex approaches, e.g. [53, 101], do not directly extend
to our setting due to non-convexity and the unit-norm constraint. Garber et
al. [38] proposed a variant of the Power Method, called Distributed Shift-and-

Invert (DSI), which converges in roughly O
(√

b
δ
√
p

Log2(1/ε) log(1/δ)
)

rounds,

where b is a bound on the squared ℓ2-norm of the data. Huang and Pan [50]
aimed to improve the dependency of the algorithm on ε and δ, and proposed an
algorithm called Communication-Efficient Distributed Riemannian Eigensolver

(CEDRE). This algorithm is shown to have round complexity O
(

b
δ
√
p

log(1/ε)
)

,

which does not scale with the sample size for δ = Ω(1/
√
Kp), and has only

logarithmic dependency on the accuracy ε.

Technical issues in [50]. Huang and Pan [50] proposed an interesting approach,
which could provide the most round-efficient distributed algorithm to date.
Despite the fact that we find the main idea of this paper very creative, we
have unfortunately identified a significant gap in their analysis, which we now
outline.

Specifically, one of their main results, Theorem 3, uses the local PL condition
shown in [117]; yet, the application of this result is invalid, as it is done without
knowing in advance that the iterates of the algorithms continue to remain in
the ball of initialization. This is compounded by another error on the constant
of the used PL condition (Lemma 2), which we believe is caused by a typo in
the last part of the proof of Theorem 4 in [117]. This typo is unfortunately
propagated into their proof. More precisely, the objective is indeed gradient
dominated, but with a constant which vanishes when we approach the equator,
in contrast with the 2/δ which is claimed globally (we reprove this result
independently in Proposition 2.8). Thus, starting from a point lying in some
ball of the minimizer can lead to a new point where the objective satisfies a
PL condition, but with a worse constant.

This is a non-trivial technical problem which, in the case of gradient descent,
can be addressed by a choice of the learning rate depending on the initialization.
Given these issues, we perform a new and formally-correct analysis for gradient
descent based on the convexity-like properties derived in Section 2, which
guarantee convergence directly in terms of the distance of iterates to the
optimum, and not just function values. We would like however to note that
our focus in this section is on bit and not round complexity.

3.3 Computing the Leading Eigenvector in One Node

Here, we essentially make a recap of the theory developed in Section 2 for
k = 1, using mostly the terminology of [8]. This has some value as now the
manifold of interest is the sphere. See also our introduction on the geometry of
the sphere in Section 1.3.1.1.
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3.3.1 Convexity-like Properties and Smoothness

Our problem reads as
min

x∈Sn−1
−xTAx

where A = MTM is the global covariance matrix. If δ = λ1 − λ2 > 0, this
problem has exactly two global minima: v1 and −v1. Let x ∈ Sn−1 be an
arbitrary point. Then x can be written in the form x =

∑n
i=1 αivi. Fixing the

minimizer v1, we have that a ball in Sn−1 around v1 is of the form

Ba = {x ∈ Sd−1 | α1 ≥ a} = {x ∈ Sd−1 | ⟨x, v1⟩ ≥ a} (3.3.1.1)

for some a. Without loss of generality, we may assume a > 0 (otherwise,
consider the ball around −v1 to establish convergence to −v1).

We investigate the convexity properties of the function −xTAx. In particular,
we prove that this function is weakly-quasi convex with constant 2a in the ball
Ba (that is to say (2a, 0)−WQSC, see Definition 1.22).

Proposition 3.1 The function f(x) = −xTAx satisfies

2a(f(x)− f ∗) ≤ ⟨gradf(x),−Logx(x∗)⟩

for any x ∈ Ba with a > 0.

Proof For any x ∈ Ba, we can write

x =
n∑

i=1

αivi, Ax =
d∑

i=1

λiαivi (3.3.1.2)

for some scalars αi. Recall that α1 ≥ a > 0 by (3.3.1.1).
With the orthogonal projector Px = I − xxT onto the tangent space TxSn−1,

we get that

⟨gradf(x),−Logx(x∗)⟩ = ⟨Px∇f(x),
dist(x, x∗)

∥Px(x− x∗)∥
Px(x− x∗)⟩

=
dist(x, x∗)

∥Px(x− x∗)∥
⟨Px∇f(x), x− x∗⟩.

because P 2
x = Px. For the exact expressions for the gradient and the logarithm

recall Section 1.3.1.1.
Direct calculation now gives

⟨Px∇f(x), x− x∗⟩ = −2xTAx + 2⟨Ax, x∗⟩ − 2f(x)∥x∥2 + 2f(x)⟨x, x∗⟩
= 2f(x) + 2λ1α1 − 2f(x) + 2f(x)α1

= 2α1(f(x) + λ1) = 2α1(f(x)− f ∗) ≥ 0.
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It is easy to verify that dist(x, x∗) ≥ ∥Px(x− x∗)∥. We thus obtain

⟨gradf(x),−Logx(x∗)⟩ ≥ 2α1(f(x)− f ∗),

which gives the desired result since α1 ≥ a.

We continue by providing a quadratic growth condition for our cost function,
which can also be found in [116, Lemma 2] in a slightly different form. Here
dist is the intrinsic distance in the sphere, that we also define in Section 1.3.1.1.

Proposition 3.2 The function f(x) = −xTAx satisfies

f(x)− f ∗ ≥ µ

2
dist2(x, x∗), µ :=

δ

2
,

for any x ∈ Ba with a > 0.

Proof The proof follows the one in [116, Lemma 2]. Using the expansions
in (3.3.1.2), we get

xTAx =
n∑

i=1

λiα
2
i = λ1α

2
1 +

n∑
i=2

λiα
2
i ≤ λ1α

2
1 + λ2(1− α2

1)

since ∥x∥2 = 1 =
∑n

i=1 α
2
i . From (1.3.1.2), we have that α1 = cos(dist(x, x∗))

and so
xTAx ≤ λ1 cos2(dist(x, x∗)) + λ2 sin2(dist(x, x∗)).

Direct calculation now shows

f(x)− f ∗ = −xTAx + λ1 ≥ λ1 − λ1 cos2(dist(x, x∗))− λ2 sin2(dist(x, x∗))

= λ1 sin2 dist(x, x∗))− λ2 sin2(dist(x, x∗)) = δ sin2(dist(x, x∗)).

Since x ∈ Ba with a > 0, we have that x and x∗ are in the same hemisphere
and thus d = dist(x, x∗) ≤ π/2. The desired result follows using sin(ϕ) ≥ ϕ/2
for 0 ≤ ϕ ≤ π/2.

Next, we prove that quadratic growth and weak-quasi convexity imply a
WQSC property, similarly with Section 2.

Proposition 3.3 f satisfies

f(x)− f ∗ ≤ 1

a
⟨gradf(x),−Logx(x∗)⟩ − µ

2
dist2(x, x∗),

for any x ∈ Ba, with a > 0.
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Proof From quadratic growth and weak-quasi convexity, we have

µ

2
dist2(x, x∗) ≤ f(x)− f ∗ ≤ 1

2a
⟨gradf(x),−Logx(x∗)⟩.

Now, again by weak-quasi convexity

f(x)− f ∗ ≤ 1

2a
⟨gradf(x),−Logx(x∗)⟩+

µ

2
dist2(x, x∗)− µ

2
dist2(x, x∗)

≤ 1

a
⟨gradf(x),−Logx(x∗)⟩ − µ

2
dist2(x, x∗)

by substituting the previous inequality.

Interestingly, using Proposition 3.3, we can recover the PL property proved
in [117, Theorem 4].

Proposition 3.4 f satisfies

∥gradf(x)∥2 ≥ δa2(f(x)− f ∗)

for any x ∈ Ba with a > 0.

Proof By Proposition 3.3, we have

f(x)− f ∗ ≤ 1

a
⟨gradf(x),−Logx(x∗)⟩ − δ

4
dist2(x, x∗)

since, in our case, η = δ/2. Using ⟨x, y⟩ ≤ 1
2
(∥x∥2 + ∥y∥2) for all x, y ∈ Rd, we

can write for any positive ρ that

⟨gradf(x),−Logx(x∗)⟩ ≤ ρ

2
∥gradf(x)∥2 +

1

2ρ
∥Logx(x∗)∥2.

Combining with ρ = 2
aδ

and using (1.3.1.2), we get

f(x)−f ∗ ≤ 1

a

1

aδ
∥gradf(x)∥2+1

a

aδ

4
dist2(x, x∗)−δ

4
dist2(x, x∗) =

1

a2δ
∥gradf(x)∥2.

Proposition 3.5 The function f(x) = −xTAx is geodesically 2(λ1 − λn)-
smooth in the sphere.

Proof The proof can be found also in [50, Lemma 1]. For x ∈ Sn−1 and
v ∈ TxSn−1 with ∥v∥ = 1, we have that the Riemannian Hessian of f satisfies

⟨v,∇2f(x)v⟩ = ⟨v,−(I − xxT )2Av + xT2Axv⟩
= −2vTAv + 2xTAx ≤ 2(λ1 − λn)
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because vTAv ≥ λn and xTAx ≤ λ1, by the definition of eigenvalues and
∥x∥, |v∥ = 1. Similarly

−⟨v,∇2f(x)v⟩ = 2vTAv − 2xTAx ≤ 2(λn − λ1).

This finishes the proof, as the eigenvalues of ∇2f(x) are upper bounded by
2(λ1 − λn) in absolute value.

Thus, the smoothness constant of f , as defined in Definition 1.19, equals
L = 2(λ1 − λn). Similarly, let Li denote the smoothness constant of fi, which
equals twice the difference of the largest eigenvalue to the smallest eigenvalue
of Ai. In order to estimate L in a distributed fashion using only the local data
matrices Ai, we shall use the over-approximation L ≤ 2pmaxi=1,...,p λmax(Ai).

3.3.2 Convergence

We now consider Riemannian gradient descent with learning rate η > 0 starting
from a point x0 ∈ Ba:

xt+1 = Expxt
(−η gradf(xt)),

where Exp is the exponential map of the sphere, defined in Section 1.3.1.1.
Using Proposition 3.3 and a proper choice of η, we can establish a convergence

rate for the instrinsic distance of the iterates to the minimizer.

Proposition 3.6 An iterate of Riemannian gradient descent applied to f(x) =
−xTAx starting from a point xt ∈ Ba and with step size η ≤ a/L where
L ≥ 2(λ1 − λn), produces a point xt+1 that satisfies

dist2(xt+1, x
∗) ≤ (1− aµη) dist2(xt, x

∗) for µ = δ/2.

Note that this result implies directly that if our initialization x0 lies in the
ball Ba, the distance of x1 to the center x∗ decreases and thus all subsequent
iterates continue being in the initialization ball. This is essential since it
guarantees that the convexity-like properties for f continue to hold during the
whole optimization process.
Proof By definition of xt+1, we have Logxt

(xt+1) = −η gradf(xt). Applying
Proposition 1.15, we can thus write

dist2(xt+1, x
∗) ≤ ∥ − η gradf(xt)− Logxt

(x∗)∥2

= η2∥gradf(xt)∥2 + ∥Logxt
(x∗)∥2 + 2η⟨gradf(xt),Logxt

(x∗)⟩.

By Propositions 3.3 and 1.21, we have

1

a
⟨gradf(xt),Logxt

(x∗)⟩ ≤ f ∗ − f(xt)−
µ

2
dist2(xt, x

∗)

≤ − 1

2γ
∥gradf(xt)∥2 −

µ

2
dist2(xt, x

∗).
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Multiplying with 2ηa and using η ≤ a/γ, we get

2η⟨gradf(xt),Logxt
(x∗)⟩ ≤ −ηa

γ
∥gradf(xt)∥2 − µηa dist2(xt, x

∗)

≤ −η2∥gradf(xt)∥2 − µηa dist2(xt, x
∗).

Substituting to the first inequality, we get the desired result.

3.4 Distributed gradient descent with limited communication

We now present our version of distributed gradient descent for leading eigen-
vector computation and measure its bit complexity until reaching accuracy ϵ in
terms of the intrinsic distance of an iterate xT from the minimizer x∗ (x∗ is the
leading eigenvector closest to the initialization point).

Lattice quantization. For estimating the Riemannian gradient in a distributed
manner with limited communication, we use a quantization procedure developed
in [31]. The original quantization scheme involves randomness, but we use a
deterministic version of it, by picking up the closest point to the vector that
we want to encode. This is similar to the quantization scheme used by [63] and
has the following properties.

Proposition 3.7 [63, 31] Denoting by b the number of bits that each machine
uses to communicate, there exists a quantization function

Q : Rn × Rn × R+ × R+ → Rn,

which, for each w, y > 0, consists of an encoding function encw,y : Rn → {0, 1}b
and a decoding one decw,y : {0, 1}b × Rn → Rn, such that, for all x, x′ ∈ Rn,

• decw,y(encw,y(x), x′) = Q(x, x′, y, w), if ∥x− x′∥ ≤ y.

• ∥Q(x, x′, y, w)− x∥ ≤ w, if ∥x− x′∥ ≤ y.

• If y/w > 1, the cost of the quantization procedure in number of bits satisfies
b = O

(
nlog( y

w
)
)
.

In the following, the quantization takes place in the tangent space of each
iterate TxtSn−1, which is linearly isomorphic to Rn−1. We denote by Qx the
specification of the function Q at TxSn−1. The vector inputs of the function Qx

are represented in the local coordinate system of the tangent space that the
quantization takes place at each step. For decoding at t > 0, we use information
obtained in the previous step, that we need to translate to the same tangent
space. We do that using parallel transport (see Section 1.3.1.1 for the formula).
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Algorithm We present now our main algorithm, which is inspired by quantized
gradient descent firstly designed by [74], and its similar version in [63]. The
communication model is centralized in the sense that all nodes communicate
their messages to a master node. The master node merges all the information,
updates its eigenvector approximation and then sends it back to the rest of the
nodes. For the rest, we use

L := 2p max
i=1,...,p

λmax(Ai).

1. Choose an arbitrary machine to be the master node, let it be i0.

2. Choose x0 ∈ Sn−1 (we analyze later specific ways to do that).

3. Consider the following parameters

σ := 1− cos(D)µη, K :=
2√
σ
, θ :=

√
σ(1−

√
σ)

4
,√

ξ := θK +
√
σ, Rt = LK

(√
ξ
)t

D

where D is an over-approximation for dist(x0, x
∗).

Assume that cos(D)µη ≤ 1
2
, otherwise run the algorithm with σ = 1

2
.

In Tx0Sn−1:

4. Compute the local Riemannian gradient gradfi(x0) at x0 in each node.

5. Encode gradfi(x0) in each node and decode in the master node using its
local information:

qi,0 = Qx0

(
gradfi(x0), gradfi0(x0), 4λ1,

θR0

2p

)
.

6. Sum the decoded vectors in the master node:

R0 =

p∑
i=1

qi,0.

7. Encode the sum in the master and decode in each machine i using its local
information:

q0 = Qx0

(
R0, gradfi(x0),

θR0

2
+ 4λ1,

θR0

2

)
.

For t ≥ 0:
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8. Take a gradient step using the exponential map:

xt+1 = Expxt
(−ηqt)

with step size η (the choice of step size is discussed later).

In Txt+1Sn−1:

9. Compute the local Riemannian gradient gradfi(xt+1) at xt+1 in each node.

10. Encode gradfi(xt+1) in each node and decode in the master node using
its (parallelly transported) local information from the previous step:

qi,t+1 = Qxt+1

(
gradfi(xt+1),Γ

xt+1
xt

qi,t,
Rt+1

p
,
θRt+1

2p

)
.

11. Sum the decoded vectors in the master node:

Rt+1 =

p∑
i=1

qi,t+1.

12. Encode the sum in the master and decode in each machine using its local
information in the previous step after parallel transport:

qt+1 = Qxt+1

(
Rt+1,Γ

xt+1
xt

qt,

(
1 +

θ

2

)
Rt+1,

θRt+1

2

)
.

Convergence We first control the convergence of iterates simultaneously with
the convergence of quantized gradients.

Note that√
ξ =

1−
√
σ

2
+
√
σ =

1 +
√
σ

2
≤
√

2
√

1 + σ

2
=

√
1 + σ

2
.

Lemma 3.8 If η ≤ cos(D)/L, the previous quantized gradient descent algo-
rithm produces iterates xt and quantized gradients qt that satisfy

(i)dist2(xt, x
∗) ≤ ξtD2, (ii)∥qi,t − gradfi(xt)∥ ≤

θRt

2p
, (iii)∥qt − gradf(xt)∥ ≤ θRt.

The proof is a Riemannian adaptation of the similar one in [74] and [63].
We recall that since the sphere is positively curved, it provides a landscape
easier for optimization. It is quite direct to derive a general Riemannian
method for manifolds of bounded curvature using more advanced geometric

78



bounds, however this exceeds the scope of this section, which focuses on leading
eigenvector computation.
Proof We do the proof by induction. We start from the case that t = 0. (i) is
direct by the definition of D.

For (ii), we have

∥gradfi(x0)− gradfi0(x0)∥ ≤ ∥gradfi(x0)∥+ ∥gradfi0(x0)∥ ≤ 4λ1.

This is because ∥gradfi(x0)∥ = ∥2Px0Aix0∥ ≤ 2∥Aix0∥ ≤ 2λmax(Ai) ≤ 2λ1,
since A =

∑p
i=1Ai and all Ai’s are positive semi-definite. Similarly for

∥gradfi0(x0)∥.
By the definition of quantization (step 5), we get

∥gradfi(x0)− qi,0∥ ≤
θR0

2p
.

Similarly for (iii), we have

∥gradf(x0)−R0∥ ≤
p∑

i=1

∥gradfi(x0)− qi,0∥ ≤
θR0

2
.

Then,

∥R0−gradfi(x0)∥ ≤ ∥R0−gradf(x0)∥+∥gradf(x0)−gradfi(x0)∥ ≤
θR0

2
+4λ1.

By the definition of the quantization (step 7), we have

∥q0 −R0∥ ≤
θR0

2
.

Thus,

∥q0 − gradf(x0)∥ ≤ ∥gradf(x0)−R0∥+ ∥q0 −R0∥ ≤
θR0

2
+

θR0

2
= θR0.

We assume now that the inequalities hold for t and we wish to prove that
they continue to hold for t + 1.

We start with (i) and denote by x̃t+1 the iteration of exact gradient descent
starting from xt. Since dist(xt, x

∗) ≤ D, we have that xt ∈ Ba with a = cos(D).
We have

dist(xt+1, x
∗) ≤ dist(xt+1, x̃t+1) + dist(x̃t+1, x

∗)

≤ ∥ηgradf(xt)− ηqt∥+
√
σdist(xt, x

∗).

We have the last inequality, because

dist(x̃t+1, x
∗) ≤

√
σdist(xt, x

∗)
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by Proposition 3.6 and

dist(xt+1, x̃t+1) ≤ ∥Logxt
(xt+1)− Logxt

(x̃t+1)∥ = ∥ηgradf(xt)− ηqt∥

by Proposition 1.15.

Thus

dist(xt+1, x
∗) ≤ a

L
θRt +

√
σ
(√

ξ
)t

D ≤ θK
(√

ξ
)t

D +
√
σ
(√

ξ
)t

D

≤ (θK +
√
σ)
(√

ξ
)t

D ≤
(√

ξ
)t+1

D

which concludes the induction for the first inequality.
For (ii), we have

∥gradfi(xt+1)− Γxt+1
xt

qi,t∥ ≤ ∥gradfi(xt+1)− Γxt+1
xt

gradfi(xt)∥
+ ∥Γxt+1

xt
gradfi(xt)− Γxt+1

xt
qi,t∥

≤ Lidist(xt+1, xt) + ∥gradfi(xt)− qi,t∥

≤ 2
L

p

(√
ξ
)t

D + θ
Rt

p

= 2
L

p

(√
ξ
)t

D + θLK
(√

ξ
)t

D/p

= (2/K + θ)KL
(√

ξ
)t

D/p

≤ (
√
σ + θK)KL

(√
ξ
)t

D/p

=
Rt+1

p

and by the definition of the quantization scheme (step 10), we have

∥gradfi(xt+1)− qi,t+1∥ ≤
θRt+1

2p
.

For (iii), we have

∥Rt+1 − gradf(xt+1)∥ ≤
n∑

i=1

∥qi,t+1 − gradfi(xt+1)∥ ≤
θRt+1

2

and

∥Rt+1 − Γxt+1
xt

qt∥ ≤ ∥Rt+1 − gradf(xt+1)∥+ ∥gradf(xt+1)− Γxt+1
xt

gradf(xt)∥
+ ∥Γxt+1

xt
gradf(xt)− Γxt+1

xt
qt∥

≤ θRt+1

2
+ Ldist(xt+1, xt) + θRt

≤ θRt+1

2
+ Rt+1 =

(
1 +

θ

2

)
Rt+1
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by using again the argument for deriving the second inequality. The last
inequality implies that

∥Rt+1 − qt+1∥ ≤
θRt+1

2
by the definition of quantization (step 12). We can now write

∥qt+1 − gradf(Xt+1)∥ ≤ ∥qt+1 −Rt+1∥+ ∥Rt+1 − gradf(Xt+1)∥

≤ θRt+1

2
+

θRt+1

2
= θRt+1.

This completes the induction.

We now move to our main complexity result.

Theorem 3.9 Let η ≤ cos(D)/L. Then, the previous quantized gradient de-
scent algorithm needs at most

b = O
(
pn

1

cos(D)δη
log

(
p

cos(D)δη

)
log

(
D

ϵ

))
= Õ

(
pn

cos(D)δη

)
bits in total to estimate the leading eigenvector with an accuracy ϵ measured in
intrinsic distance.

The proof is based on the previous Lemma 3.8 in order to count the number
of steps that the algorithm needs to estimate the minimizer with accuracy ϵ
and Proposition 3.7 to count the quantization cost in each round.

Proof For computing the cost of quantization at each step, we use Proposition
3.7.

The communication cost of encoding each gradfi at t = 0

O

(
n log

4λ1

θR0

2p

)
= O

(
n log

8pλ1

θLKD

)
≤ O

(
n log

2p

θD

)
.

This is because 2λ1 ≤ L.
Now we use that σ ≥ 1

2
and have

1

θ
=

4√
σ(1−

√
σ)
≤ 12

1− σ
=

12

cos(D)µη
.

Thus, the previous cost becomes

O

(
n log

4λ1

θR0

2p

)
= O

(
n log

p

D cos(D)µη

)
.

As D is only an over-approximation for the initial distance, we can write
this cost as

O
(
n log

p

cos(D)µη

)
.
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The communication cost of decoding each qi,0 in the master node is

O

(
nLog

4λ1 + θR0

2
θR0

2

)
≤ O

(
n log

4λ1

θR0

2

)
≤ O

(
n log

1

cos(D)µη

)
.

Thus, the total communication cost at t = 0 is

O
(
pn log

p

cos(D)µη

)
.

For t > 0, the cost of encoding gradfi’s is

O
(
pn log

Rt+1/p

θRt+1/2p

)
= O

(
pnLog

2

θ

)
= O

(
pn log

1

cos(D)µη

)
.

as before.
The cost of decoding in the master node is

O
(
pn log

(1 + θ/2)Rt+1

θRt+1/2

)
≤ O

(
pnLog

1

θ

)
= O

(
pn log

1

cos(D)µη

)
.

Thus, the cost in each round of communication is in general bounded by

O
(
pn log

p

cos(D)µη

)
.

Our algorithm reaches accuracy ϵ in function values if

dist(xt, x
∗) ≤ ϵ.

We can now write

dist2(xt, x
∗) ≤ ξtD2 ≤ e−(1−ξ)tD2.

Thus, we need to run our algorithm for

O
(

1

1− ξ
log

D

ϵ

)
≤ O

(
1

cos(D)µη
log

D

ϵ

)
many iterates to reach accuracy ϵ.

The total communication cost for doing that is

O
(

1

cos(D)µη
log

(
D

ϵ

)
pn log

(
p

cos(D)µη

))
=

O
(
pn

1

cos(D)µη
log

(
p

cos(D)µη

)
log

(
D

ϵ

))
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Substituting

µ =
δ

2

by Proposition 3.2, we get

O
(
pn

1

cos(D)δη
log

(
p

cos(D)δη

)
log

(
D

ϵ

))
many bits in total.

3.5 Dependence on initialization

3.5.1 Uniformly random initialization

The cheapest choice to initialize quantized gradient descent is a point in the
sphere chosen uniformly at random. According to Theorem 4 in [117], such
a random point x0 will lie, with probability at least 1 − pr, in a ball Ba

(see (3.3.1.1)) where

a ≥ c
pr√
n
⇐⇒ dist(x0, x

∗) ≤ arccos

(
c

n
√

pr

)
. (3.5.1.1)

Here, c is a universal constant. We estimated numerically that c is around 1.25
(see Figure 3.1), thus we can use c = 1 for simplicity.

Let x0 be chosen from a uniform distribution in the sphere Sn−1. We are
interested in α1 = vT1 x0 for some fixed v1 ∈ Sn−1. By spherical symmetry, α1 is
distributed in the same way as the first component of x0. Let An(h) be the
surface of the hyperspherical cap of Sn−1 with height h ∈ [0, 1]. Then it is
obvious that

P(|α1| ≥ a) = An(1− a)/An(1) = I1−a2(
n−1
2
, 1
2
),

where we used the well-known formula for An(h) in terms of the regularized
incomplete Beta function Ix(a, b); see, e.g., [70]. Solving the above expression8

for a when it equals a given probability 1− pr, we can calculate the interval
[−1,−a] ∪ [a, 1] in which α1 will lie for a random x0 up to probability 1− pr.

In the figure below, we have plotted these values of a divided by pr/
√
n for

pr = 10−1, 10−2, 10−3, 10−4. Numerically, there is strong evidence that a ≥ c pr√
n

with c ≈ 1.25.

8This can be conveniently done using https://docs.scipy.org/doc/scipy/reference/generated/scipy.

special.betaincinv.html
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Figure 3.1: Numerical estimation of the constant c.

By choosing the step-size η as

η =
c · pr√
nL

and the parameter D as

D = arccos

(
c

pr√
n

)
,

we are guaranteed that η = cos(D)
L

, and dist(x0, x
∗) ≤ D with probability at

least 1 − pr. Our analysis above therefore applies (up to probability 1 − pr)
and the general communication complexity result becomes

O
(

pn

cos(D)δη
log

p

cos(D)δη
log

D

ϵ

)
= O

(
pn

ηLδη
log

p

ηLδη
log

D

ϵ

)
= O

(
pn

η2Lδ
log

p

η2Lδ
log

D

ϵ

)
.

Substituting η2 = pr2c2

nL2 , the number of bits satisfies (up to probability 1− pr)
the upper bound

b = O
(
p
n2

pr2
L

δ
log

pnL

prδ
log

D

ϵ

)
= Õ

(
p
n2

pr2
L

δ

)
.
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3.5.2 Warm start

A reasonable strategy to get a more accurate initialization is to perform an
eigenvalue decomposition to one of the local covariance matrices, for instance
Ai0 (in the master node i0), and compute its leading eigenvector, let it be vi0 .
For simplicity we will assume here that each machine hosts the same number
of data points mi = m

p
(assuming of course that p divides m exactly). Then,

we communicate vi0 to all machines in order to use the normalized quantized
approximation x0 as initialization. We define:

x̃0 = Q

(
vi0 , vi, ∥vi0 − vi∥,

⟨vi0 , x∗⟩
2(
√

2 + 2)

)
x0 =

x̃0

∥x̃0∥
where Q is the lattice quantization scheme in Rn (i.e. we quantize the leading
eigenvector of the master node as a vector in Rn and then project back to the
sphere). The input and output variance in this quantization can be bounded
by constants that we can practically estimate.

Proposition 3.10 Assume that our data are i.i.d. and sampled from a distri-
bution D bounded in ℓ2 norm by a constant h. Given that the spectral gap δ,
the number of machines p and the total number of data points m satisfy

δ ≥ Ω

(√
m
√
p

√
log

n

pr

)
, (3.5.2.1)

we have that the previous quantization costs O(pn) many bits and ⟨x0, x
∗⟩ is

lower bounded by some constant with probability at least 1− pr.

Proof By Lemma 3 in [50] we have that∥∥∥∥∥Ai0 −
1

m

p∑
i=1

Ai

∥∥∥∥∥
2

≤
32 log

(
n
pr

)
h2

mi0

which implies that∥∥∥∥∥mAi0 −
p∑

i=1

Ai

∥∥∥∥∥
2

≤ 32
m2

mi0

log

(
n

pr

)
h2 = 32mp log

(
n

pr

)
h2

with probability at least 1− pr. Of course
∑p

i=1Ai = A.
From this bound we can derive a bound for the distance between the

eigenvectors of the two matrices. Indeed, using Lemmas 5 and 8 in [50], we
can derive

1− ⟨vi0 , x∗⟩ ≤

√
128mp log

(
n
pr

)
h

δ
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and

⟨vi0 , x∗⟩ ≥ 1−

√
128mp log

(
n
pr

)
h

δ

with probability at least 1 − pr (note that the leading eigenvector of Ai0 is
equal to the leading eigenvector mAi0). This is because ⟨vi0 , x∗⟩ ≤ 1, which
implies that ⟨vi0 , x∗⟩2 ≤ ⟨vi0 , x∗⟩.

We notice that the squared distance of vi0 and x∗ is

∥vi0−x∗∥2 = ∥vi0∥2+∥x∗∥2−2⟨vi0 , x∗⟩ = 2(1−⟨vi0 , x∗⟩) ≤ 2

√
128mp log

(
n
pr

)
h

δ

which is upper bounded by a constant by Assumption (3.5.2.1). The same
holds for ∥vi − x∗∥, thus, by the triangle inequality, we have an upper bound
on ∥vi0 − vi∥ to be at most double of the upper bound for ∥vi0 − x∗∥, thus
it is still upper bounded by a constant. Since ⟨vi0 , x∗⟩ is lower bounded by a
constant, again by Assumption (3.5.2.1), we have that the ratio of the input to
the output variance in the quantization of vi0 is upper bounded by a constant.
Thus, the total communication cost of this quantization is O(pn).

By the definition of the quantization scheme, we get

∥x̃0 − vi0∥ ≤
⟨vi0 , x∗⟩

2(
√

2 + 2)
=: τ.

For the projected vector x0, we have

∥x0 − vi0∥ ≤ ∥x̃0 − vi0∥+ ∥x̃0 − x0∥ ≤ 2∥x̃0 − vi0∥ ≤ 2τ

because x0 is the closest point to x̃0 belonging to the sphere and vi0 belongs
also to the sphere.

By the triangle inequality, we have

∥x0 − x∗∥ ≤ ∥vi0 − x∗∥+ ∥x0 − vi0∥

which is equivalent to√
2(1− ⟨x0, x∗⟩) ≤

√
2(1− ⟨vi0 , x∗⟩) + 2τ.

Thus

⟨x0, x
∗⟩ ≥ ⟨vi0 , x∗⟩ −

√
2(1− ⟨vi0 , x∗⟩)τ − 2τ 2 ≥ ⟨vi0 , x∗⟩ −

√
2τ − 2τ

= ⟨vi0 , x∗⟩ − (
√

2 + 2)τ = ⟨vi0 , x∗⟩ − (
√

2 + 2)
⟨vi0 , x∗⟩

2(
√

2 + 2)
=
⟨vi0 , x∗⟩

2

with probability at least 1− pr.
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Since ⟨vi0 , x∗⟩ is lower bounded by a constant, ⟨x0, x
∗⟩ is also lower bounded

by a constant and we get the desired result.

Thus, if bound (3.5.2.1) is satisfied, then the communication complexity
becomes

b = O
(
pn

L

δ
log

nL

δ
log

1

ϵ

)
= Õ

(
pn

L

δ

)
many bits in total with probability at least 1− pr (notice that this can be

further simplified using bound (3.5.2.1)). This is because D in Theorem 3.9 is
upper bounded by a constant and the communication cost of quantizing vi0
does not affect the total communication cost. If we can estimate the specific
relation in bound (3.5.2.1) (the constant hidden inside Ω), then we can compute
estimations of the quantization parameters in the definition of x0.

Condition (3.5.2.1) is quite typical in this literature; see [50] and references
therein (beginning of page 2), as we also briefly discussed in the introduction.
Notice that

√
m appears in the numerator and not the denominator, only

because we deal with the sum of local covariance matrices and not the average,
thus our spectral gap is m times larger than the spectral gap of the normalized
covariance matrix. Denoting by δ′ the spectral gap of the normalized covariance
matrix, bound (3.5.2.1) can be written equivalently as

δ′ ≥ Ω

( √
p

√
m

√
log

n

pr

)
= Ω̃

(
1
√
mi0

)
,

where mi0 is the number of data points owned by the master node (and any
other machine) and Ω̃ hides logarithmic factors from the lower bound.

3.6 Numerical experiments

We evaluate our approach experimentally, comparing the proposed method of
Riemannian gradient quantization against three other benchmark methods:

• Full-precision Riemannian gradient descent: Riemannian gradient descent,
as described in Section 3.3.2, is performed with the vectors communicated
at full (64-bit) precision.

• Euclidean gradient difference quantization: the “näıve” approach to quan-
tizing Riemannian gradient descent. Euclidean gradients are quantized
and averaged before being projected to Riemannian gradients and used to
take a step. To improve performance, rather than quantizing Euclidean
gradients directly, we quantize the difference between the current local
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gradient and the previous local gradient, at each node. Since these differ-
ences are generally smaller than the gradients themselves, we expect this
quantization to introduce lower error.

• Quantized power iteration: we also use as a benchmark a quantized version
of power iteration, a common method for leading-eigenvector computation
given by the update rule xt+1 ← Axt

∥Axt∥ . Axt can be computed in distributed

fashion by communicating and summing the vectors Aixt, i ≤ n. It is
these vectors that we quantize.

All three of the quantized methods use the same vector quantization routine,
for fair comparison.
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Figure 3.2: Convergence results on real datasets

We show convergence results (Figure 3.2) for the methods on four real
datasets: Human Activity from the MATLAB Statistics and Machine Learning
Toolbox, and Mice Protein Expression, Spambase, and Libras Movement from
the UCI Machine Learning Repository [34]. All results are averages over 10 runs
of the cost function −xTAx (for each method, the iterates x are normalized to
lie in the 1-ball, so a lower value of −xTAx corresponds to being closer to the
principal eigenvector).

All four datasets display similar behavior: our approach of Riemannian
gradient quantization outperforms näıve Euclidean gradient quantization, and
essentially matches the performance of the full-precision method while commu-
nicating only 4 bits per coordinate, for a 16× compression. Power iteration

88



converges slightly faster (as would be expected from the theoretical convergence
guarantees), but is much more adversely affected by quantization, and reaches
a significantly suboptimal result. Our code is publicly available 9.

9https://github.com/IST-DASLab/QRGD
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4 Preconditioned inverse eigenvalue solvers

This section is concerned with novel results in the theory of preconditioned
eigenvalue solvers. It follows the exposition of our work [9].

4.1 Introduction

We start by giving a general overview of preconditioned eigenvalue solvers.
Given a large-scale, symmetric positive definite (SPD) matrix A ∈ Rn×n

with eigenvalues 0 < λ1 < λ2 ≤ · · · ≤ λn, this section considers the task of
approximating the smallest eigenvalue λ1 and an associated eigenvector u∗.
Notice the difference in notations here: we target the smallest eigenvalue, which
we denote λ1 and use the symbol u∗ (and not x∗) for its associated eigenvector
(x∗ is reserved for the optimum of our future objective optimization problem).
Targeting the smallest or the largest eigenvalue is mathematically the same.
Inverse iteration [39, Sec. 8.2.2] addresses this task by applying the power
method to the inverse: ut+1 = A−1ut, combined with some normalization to
avoid numerical issues. This iteration inherits the excellent global convergence
guarantee of the power method [39, Thm. 8.2.1]: For almost every choice of
starting vector u0, the angle between u∗ and ut converges linearly to zero with
rate λ1/λ2. Moreover, the Rayleigh quotient λ(ut) := uT

t Aut/u
T
t ut converges

linearly to λ1 with rate λ2
1/λ

2
2. A discussion about the convergence of power

method can be found also in Section 1.2. Notice here again a difference in
notation compared to Section 3: the Rayleigh quotient in the Euclidean space
is denoted by λ(u), while the name f is reserved for our future objective cost
function.

A major limitation of the inverse iteration is that it requires to solve a linear
system with A in every iteration. Using, for example, a sparse Cholesky factor-
ization of A for this purpose may become expensive unless A has a favorable
sparsity pattern. In many situations, it is much cheaper to apply B−1 instead
of A−1 for a preconditioner B constructed, for example, from multigrid meth-
ods [24], domain decomposition [109] or spectral sparsification [66]. In principle,
the availability of a preconditioner allows for the use of an iterative solver,
such as the preconditioned conjugate gradient method [39, Sec. 11.5.2], for
solving the linear systems with A within inverse iteration. However, combining
iterative methods in such an inner-outer iteration typically incurs redundancies.
Instead, it is preferable to incorporate the preconditioner more directly, in a
preconditioned eigenvalue solver.

The fruitfly of preconditioned eigenvalue solvers is the Preconditioned IN-
Verse ITeration (PINVIT)

ut+1 = ut −B−1rt with rt = Aut − λ(ut)ut. (4.1.0.1)

While PINVIT can be viewed as a preconditioned gradient descent method
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for minimizing the Rayleigh quotient, Neymeyr’s seminal (non-asymptotic)
convergence analysis [82, 83] is based on interpreting (4.1.0.1) as a perturbed
inverse iteration. Assuming that λ(ut) ∈ [λ1, λ2), a convergence result by
Knyazev and Neymeyr [61, Thm. 1] states that

λ(ut+1)− λ1

λ2 − λ(ut+1)
≤ α2λ(ut)− λ1

λ2 − λ(ut)
, (4.1.0.2)

with the convergence rate determined by α = 1− (1− αB)(1− λ1/λ2), where
αB is such that

∥I −B−1A∥A ≤ αB < 1. (4.1.0.3)

Here and in the following, ∥ · ∥C denotes the vector and operator norms induced
by an SPD matrix C. If αB ≪ 1, this result shows that PINVIT nearly attains
the convergence rate of inverse iteration. In principle, the condition (4.1.0.3) can
always be satisfied for any SPD matrix B by suitably rescaling B to B/η, which
is equivalent to adding a step size η > 0 to PINVIT: ut+1 = ut− ηB−1rt. With
PINVIT being one of the simplest preconditioned eigenvalue solvers, its analysis
also provides important insights into the performance of more advanced methods
like LOBPCG [59] and PRIMME [107]. Recently, provable accelerations of
PINVIT, in the sense of Nesterov’s accelerated gradient descent [79], have been
introduced in [102, 103], based on certain convexity structures of the Rayleigh
quotient. The analysis of these methods requires conditions on the initial vector
that are even stricter than the one required for PINVIT.

If λ(u0) ∈ [λ1, λ2) then (4.1.0.1) implies that λ(ut) ∈ [λ1, λ2) is satisfied for
all subsequent iterates ut of PINVIT and ut converges to u∗ (in terms of angles).
However, this assumption on the initial vector u0 is quite restrictive. In fact, for
a Gaussian random initial u0, the probability of achieving λ(u0) < λ2 quickly
vanishes for larger n and does not benefit from the quality of the preconditioner
B. This is in stark contrast to both, inverse iteration (B = A) and gradient
descent [8] (B = I), which converge to u∗ almost surely for a Gaussian random
initial vector.

In this section, we present a new non-asymptotic convergence result for a
slight variation of PINVIT. For this purpose, we first reformulate the task of
computing the smallest eigenvalue and eigenvector as an equivalent Riemannian
optimization problem on the unit sphere Sn−1 in Rn, with the preconditioner B
incorporated. A similar but different reformulation was used in [102]. We show
that standard Riemannian gradient descent [104, Algorithm 3.1] applied to this
problem coincides with a variant of PINVIT (4.1.0.1) that uses a different step
size and normalization. Moreover, we show that this problem has a WQSC
structure, inspired by the results presented in Section 2, and in Section 3
for the case of computing one eigenvector. This yields as to our main result
(Theorem 4.8): Riemannian gradient descent and, hence, our variant of PINVIT

91



converges if the initial vector u0 satisfies

uT
0Bu∗

∥u0∥B∥u∗∥B
> cosφ, (4.1.0.4)

where φ is an angle measuring the distortion of the Euclidean geometry in-
duced by the preconditioner at u∗; see (4.3.2.1) for the precise definition.
The convergence is linear and we prove an asymptotic convergence rate that
matches (4.1.0.2) up to a small factor.

For B = I and B = A, it holds that cosφ = 0 and, thus, the condi-
tion (4.1.0.4) recovers the excellent global convergence properties of gradient
descent and inverse iteration mentioned above. The practical use of PINVIT is
between these two extreme scenarios and in such cases our numerical results
indicate that the condition (4.1.0.4) is less stringent than λ(u0) < λ2. For the
specific choices of mixed-precision and domain decomposition preconditioners,
we provide theoretical results underlining that good preconditioners lead to
cosφ ≈ 0.

4.2 PINVIT as gradient descent

The results of this section are based on a novel formulation of PINVIT as
(Riemannian) gradient descent on Sn−1. For this purpose, we define the following
optimization problem for SPD matrices A,B ∈ Rn×n:

min
x∈Sn−1

f(x), f(x) := − xTB−1x

xTB−1/2AB−1/2x
. (4.2.0.1)

Using the substitution u = B−1/2x, we have that

f(x) = − uTu

uTAu
.

The minimum of f is hence −1/λ1 and is attained at x∗ = B1/2u∗

∥B1/2u∗∥ for an

eigenvector u∗ associated to the eigenvalue λ1 of A, where ∥ · ∥ denotes the
Euclidean norm.

The formulation (4.2.0.1) is inspired by the previous work [102], which
considers the minimization of −1/f(x) instead of f(x). These two optimization
problems are clearly equivalent and behave very similarly close to the optimum
x∗. For a local convergence analysis, as the one performed in [102], the choice
between the two optimization problems does not make a significant difference.
For attaining results of a more global nature, this choice matters and it turns
out that our new formulation (4.2.0.1) is more suitable.

Remark 4.1 Our work also applies to generalized eigenvalue problems of
the form A − λM , for SPD matrices A and M . The additional matrix M
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can be absorbed by setting Â = M−1/2AM−1/2, B̂ = M−1/2BM−1/2 and

x̂ = B̂−1/2M−1/2B1/2x, and one obtains the same type of optimization prob-

lem (4.2.0.1), simply with A, B and x replaced by Â, B̂ and x̂/∥x̂∥.

We view Sn−1 as a Riemannian submanifold of Rn with the restricted
Euclidean metric (see Section 1.3.1.1). Minimizing (4.2.0.1) by the Riemannian
gradient descent method yields the recurrence

xt+1 = expxt
(−ηt grad f(xt)), (4.2.0.2)

for an initial vector x0 ∈ Sn−1, where grad denotes the Riemannian gradient in
the sphere and expxt

denotes the exponential map at xt on Sn−1 (see Section
1.3.1.1 for explicit formulas). We impose the natural restriction

0 < ηt <
π

2∥grad f(xt)∥
(4.2.0.3)

on the step size.
The following proposition shows that the recurrence (4.2.0.2) is a variant of

PINVIT (4.1.0.1) that uses a different step size10 and normalization.

Proposition 4.1 Consider the iterates xt produced by the recurrence (4.2.0.2)
with a step size satisfying (4.2.0.3). Then the transformed vectors ut := B−1/2xt

satisfy the recurrence

ut+1 = βt+1(ut − η∗tB
−1rt), (4.2.0.4)

with a certain step size η∗t > 0, a normalization βt+1 > 0 chosen such that
∥ut+1∥B = 1, and the residual rt = Aut − λ(ut)ut.

Proof A direct calculation of the Euclidean gradient of f shows

∇f(xt) = −2(B−1xt + f(xt)B
−1/2AB−1/2xt)

∥A1/2B−1/2xt∥2
. (4.2.0.5)

Because I−xtx
T
t is the orthogonal projection to the tangent space of the sphere

at xt, the Riemannian gradient is given by (see, e.g., [3, Example 3.6.1])

grad f(xt) = (I − xtx
T
t )∇f(xt) = ∇f(xt), (4.2.0.6)

where the latter equality follows from xT
t ∇f(xt) = 0. In particular, this implies

that grad f(xt) is zero if and only if the residual rt is zero. In this case, the
recurrence (4.2.0.4) holds trivially. We may therefore assume grad f(xt) ̸= 0 in
the following.

10Recall that PINVIT can use step size 1 thanks to the normalization of the preconditioner implied
by (4.1.0.3).
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Using the explicit expression of the exponential map in the sphere, the
recurrence (4.2.0.2) is rewritten as

xt+1 = cos(∥ηt grad f(xt)∥)xt − sin(∥ηt grad f(xt)∥)
grad f(xt)

∥grad f(xt)∥
= βt+1

(
xt − ηt grad f(xt)

)
,

where we set

βt+1 := cos(∥ηt grad f(xt)∥) and ηt :=
tan(∥ηt grad f(xt)∥)
∥grad f(xt)∥

.

By (4.2.0.3), ηt is well defined and positive. Substituting ut = B−1/2xt and
using (4.2.0.5) and (4.2.0.6), we obtain that

ut+1 = βt+1

(
ut +

2ηt
∥A1/2B−1/2xt∥2

(
B−1ut + f(xt)B

−1Aut

))
= βt+1

(
ut +

2ηt
uT
t Aut

(
B−1ut −

1

λ(ut)
B−1Aut

))
= βt+1(ut − η∗tB

−1rt),

with

η∗t :=
2ηtu

T
t ut

(uT
t Aut)2

=
2 tan(∥ηt grad f(xt)∥)uT

t ut

∥grad f(xt)∥(uT
t Aut)2

> 0.

By definition, xt+1 is in the sphere and, therefore, it follows immediately that
∥ut+1∥B = 1.

4.3 Quality of preconditioner

In this section, we discuss quantities that measure the quality of the precondi-
tioner B in the context of preconditioned eigenvalue solvers.

4.3.1 Global: spectral equivalence

For any SPD matrices A,B, there exist constants 0 < νmin ≤ νmax such that

νmin(xTBx) ≤ xTAx ≤ νmax(x
TBx), ∀x, (4.3.1.1)

a property sometimes called spectral equivalence. Equivalently,

νmin∥x∥2 ≤ ∥A1/2B−1/2x∥2 ≤ νmax∥x∥2, ∀x. (4.3.1.2)

The tightest bounds are obtained by choosing νmin and νmax as the smallest
and largest eigenvalues of AB−1, respectively. As we will see below, their
ratio κν := νmax/νmin determines the convergence rate of PINVIT and other
preconditioned eigenvalue solvers.
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While (4.3.1.1) can always be satisfied, ideally κν is not too large. In
particular, when A arises from the discretization of a partial differential equation,
a good preconditioner B keeps κν bounded as the discretization is refined; see
also Section 4.5.

The inequality (4.3.1.1) only implies the condition (4.1.0.3) required by
the convergence (analysis) of PINVIT when B is scaled in a suitable manner.
According to [84], preconditioning with ηB−1 instead of B−1 with η = 2/(νmax+
νmin) leads to αB = (κν − 1)/(κν + 1) < 1 in (4.1.0.3).

4.3.2 Local: angle of distortion

Our condition on the initial vector will be based on an angle of distortion φ,
which measures the distortion induced by the preconditioner at the eigenvector
u∗:

φ := arcsin
∥u∗∥2

∥u∗∥B∥u∗∥B−1

∈ (0, π/2]. (4.3.2.1)

For the vector x∗ = B1/2u∗

∥B1/2u∗∥ , we have that

x∗TB−1x∗

∥x∗∥∥B−1x∗∥
=

∥u∗∥2

∥u∗∥B∥u∗∥B−1

= sinφ.

In other words, φ is complementary to the angle between x∗ and B−1x∗, as
illustrated in 4.1.

x∗

B−1x∗

φ

Figure 4.1: Angle of distortion φ. Vectors x in the white region satisfy dist(x, x∗) < φ.

For x ∈ Sn−1, we let

dist(x, x∗) := arccos(xTx∗)

denote the angle between x∗ and x, which happens to be the intrinsic Rieman-
nian distance in the sphere. By suitably choosing the sign of x∗, we may always
assume that dist(x, x∗) ∈ [0, π/2]. When dist(x, x∗) < φ, the following lemma
establishes a lower bound on xTB−1x∗ that will play an important role for the
so-called weak-quasi convexity property of the function f defined in (4.2.0.1);
see Proposition 4.6 below.
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Lemma 4.2 With the notation introduced above, we have that

xTB−1x∗ ≥
∥u∗∥2B−1

∥u∗∥2
(

cos
(
dist(x, x∗)

)
− cosφ

)
.

holds for any x ∈ Sn−1 with dist(x, x∗) < φ.

Proof Set σ := ∥u∗∥2B−1/∥u∗∥2. By the Cauchy–Schwarz inequality,

xTB−1x∗ = σxTx∗ + xT (B−1 − σI)x∗ ≥ σxTx∗ − ∥(B−1 − σI)x∗∥.

On the other hand, it holds that

∥(B−1 − σI)x∗∥2

σ2
=
∥B−1/2u∗ − σB1/2u∗∥2

σ2∥u∗∥2B
= 1− ∥u∗∥4

∥u∗∥2B∥u∗∥2B−1

= cos2 φ,

where the second equality follows by expanding the square. The result fol-
lows from combining the two relationships, using that cos(dist(x, x∗)) = xTx∗.

In the absence of preconditioning, that is, B = I, the angle of distortion is
φ = π/2 and the inequality of Lemma 4.2 becomes a trivial equality. The same
holds when B ≠ I in the (unrealistic) scenario that u∗ is also an eigenvector
of B, which in particular holds when B = A. In the general case, one expects
that φ is still close to π/2 or, equivalently, cosφ ≈ 0 for a good preconditioner
B. From (4.3.1.1), one immediately obtains the bound

cos2 φ ≤ 1− κ−1
ν . (4.3.2.2)

However, this bound is often not sharp and we will establish much tighter
bounds for specific preconditioners in Section 4.6.

The following lemma provides a useful variational representation of cosφ.

Lemma 4.3 The angle of distortion φ satisfies

cosφ = sup
vTu∗=0

vTB−1u∗

∥v∥B−1∥u∗∥B−1

. (4.3.2.3)

Proof The supremum in (4.3.2.3) is attained by the B−1-orthogonal projection
of u∗ onto the subspace span{u∗}⊥. This projection is given by the vector

v∗ = u∗ − ∥u
∗∥2

∥u∗∥2B
Bu∗, (4.3.2.4)

which follows from verifying that vT∗ u
∗ = 0 and vT∗ B

−1(u∗−v∗) = ∥u∗∥2
∥u∗∥2B

vT∗ u
∗ = 0.

Note that u∗, v∗ and u∗ − v∗ form a right triangle with respect to the
B−1-inner product, where u∗ is the hypotenuse. By Pythagoras,

|vT∗ B−1u∗|2

∥v∗∥2B−1∥u∗∥2B−1

= 1− |(u∗ − v∗)
TB−1u∗|2

∥(u∗ − v∗)∥2B−1∥u∗∥2B−1

= 1− ∥u∗∥4

∥u∗∥2B∥u∗∥2B−1

= cos2 φ,
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where we use the definition (4.3.2.4) of v∗ in the second equality, and the
definition (4.3.2.1) of φ in the third equality.

Remark 4.2 For the situation considered in this section, the definition of
leading angle from [102, Definition 6] amounts to

ϑ ≡ ϑ(In,−1/λ1; f) = inf
f(x)≤−1/λ1

inf
vT x=0

arccos
( |vTB−1x|
∥v∥B−1∥x∥B−1

)
.

Similar to the proof of Lemma 4.3, one can show that

ϑ = arcsin
∥u∗∥2B

∥Bu∗∥∥u∗∥
.

Comparing with the definition of φ in (4.3.2.1), one observes that both ϑ and
φ are angles between Bu∗ and u∗, one with respect to the standard Euclidean
inner product and the other with respect to the B−1-inner product.

4.4 Convergence analysis

In this section, we study the convergence of the Riemannian gradient descent
method (4.2.0.2) or, equivalently, the PINVIT-like method (4.2.0.4). Our
analysis utilizes concepts developed in Sections 2 and 3 for analyzing non-
preconditioned eigenvalue solvers. In particular, we will use smoothness and
weak-quasi-strong convexity of the objective function f defined in (4.2.0.1) to
show that the distance of the iterates (4.2.0.2) to x∗ contracts linearly.

4.4.1 Smoothness-type property

Our analysis requires the following smoothness-type property, parametrized by
a function γ(x) > 0:

f(x)− f ∗ ≥ 1

2γ(x)
∥grad f(x)∥2, ∀x ∈ Sn−1, (4.4.1.1)

where f ∗ := f(x∗) = −1/λ1 denotes the minimum of f . Note that standard
smoothness in (convex) optimization implies (4.4.1.1), but not vice versa. This
is similar to Proposition 3.5.

Proposition 4.4 The smoothness-type property (4.4.1.1) holds with

γ(x) =
νmax · (λ−1

1 − λ−1
n )

∥A1/2B−1/2x∥2
.

Proof Using the transformation

y(x) :=
A1/2B−1/2x

∥A1/2B−1/2x∥
∈ Sn−1, (4.4.1.2)
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we get
f(x) = f(y(x)) := −y(x)TA−1y(x). (4.4.1.3)

with min
y∈Sn−1

f(y) = f ∗ = −1/λ1. Since f is the Rayleigh quotient for −A−1, we

can use the smoothness property of Proposition 3.5:

f(x)− f ∗ = f(y(x))− f ∗ ≥ 1

2(λ−1
1 − λ−1

n )
∥grad f(y(x))∥2. (4.4.1.4)

It remains to phrase this property in terms of x instead of y.
By the chain rule, we have df(x) = df(y(x)) dy(x), which implies

grad f(x) = dyT (x) grad f(y) and ∥grad f(x)∥ ≤ ∥ dy(x)∥∥grad f(y)∥.
(4.4.1.5)

To lower bound the right-hand side of (4.4.1.4), we thus need to upper bound
the spectral norm of dy(x). Denote C := A1/2B−1/2. A direct calculation
shows that

dy(x)v =
Cv

∥Cx∥
− Cx

xTCTCv

∥Cx∥3
=

1

∥Cx∥

(
I − CxxTCT

∥Cx∥2

)
Cv

holds for any v. Taking the Euclidean norm and noticing that the matrix in
parentheses is an orthogonal projector, we obtain

∥ dy(x)v∥ ≤ ∥Cv∥
∥Cx∥

≤
√
νmax∥v∥

∥A1/2B−1/2x∥

and, hence, ∥ dy(x)∥ ≤ √νmax/∥A1/2B−1/2x∥. Plugging this inequality into (4.4.1.5),
we get

∥grad f(y(x))∥2 ≥ ∥A
1/2B−1/2x∥2

νmax

∥grad f(x)∥2.

Together with the bound (4.4.1.4), this gives the desired inequality:

f(x)− f ∗ ≥ ∥A1/2B−1/2x∥2

2νmax(λ
−1
1 − λ−1

n )
∥grad f(x)∥2.

It is worth noting that Proposition 4.5 combined with (4.3.1.2) give the
global bound

γ(x) ≤ κν · (λ−1
1 − λ−1

n ), ∀x ∈ Sn−1. (4.4.1.6)

4.4.2 Quadratic growth

In this and the next section, we derive two properties of f that correspond to
weakened notions of strong convexity. We recall that dist(x1, x2) denotes the
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angle between two vectors x1, x2. If ∥x1∥ = ∥x2∥ = 1, it follows from a simple
geometrical argument that

∥x1 − x2∥ ≤ dist(x1, x2) ≤
π

2
∥x1 − x2∥. (4.4.2.1)

The next property is an analogue of Proposition 3.2.

Proposition 4.5 The function f satisfies

f(x)− f ∗ ≥ µ(x)

2
dist2(x, x∗), ∀x ∈ Sn−1,

with

µ(x) :=
8νmin · (λ−1

1 − λ−1
2 )∥u∗∥B

π2∥A1/2B−1/2x∥∥u∗∥A
.

Proof As in the proof of Proposition 4.4, we apply the transformation y(x)
from (4.4.1.2) to obtain the transformed objective function f in (4.4.1.3). By
the quadratic growth of f of Proposition 3.2, we have

f(x)− f ∗ = f(y(x))− f ∗ ≥ (λ−1
1 − λ−1

2 ) dist2(y(x), u∗). (4.4.2.2)

It thus remains to lower bound dist(y(x), u∗) in terms of dist(x, x∗). For this
purpose, we may assume ∥u∗∥ = 1 without loss of generality.

We first rewrite

y(x)− u∗ = A1/2B−1/2z with z =
x

∥A1/2B−1/2x∥
−B1/2A−1/2u∗.

Using (4.4.2.1), we obtain that

dist2(y(x), u∗) ≥ ∥y(x)− u∗∥2 = ∥A1/2B−1/2z∥2 ≥ νmin∥z∥2. (4.4.2.3)

Since x∗ = B1/2u∗/∥u∗∥B and A−1/2u∗ = λ
−1/2
1 u∗, we can also write

z =
x

∥A1/2B−1/2x∥
− ∥u

∗∥B
∥u∗∥A

x∗,

For any α1, α2 ∈ R and x1, x2 ∈ Sn−1, it holds that

∥α1x1 − α2x2∥2 = α2
1 + α2

2 − 2α1α2x
T
1 x2 ≥ α1α2∥x1 − x2∥2.

Using (4.4.2.1) once more, we can therefore bound

∥z∥2 ≥ ∥u∗∥B
∥A1/2B−1/2x∥∥u∗∥A

∥x− x∗∥2 ≥ 4∥u∗∥B
π2∥A1/2B−1/2x∥∥u∗∥A

dist2(x, x∗).

Combined with (4.4.2.2) and (4.4.2.3), it yields the inequality

f(x)− f ∗ ≥ 4νmin(λ−1
1 − λ−1

2 )∥u∗∥B
π2∥A1/2B−1/2x∥∥u∗∥A

dist2(x, x∗),
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which is the desired result.

By (4.3.1.2), the quantity µ(x) of Proposition 4.5 admits the constant lower
bound

µ(x) ≥ 8(λ−1
1 − λ−1

2 )

π2κν

=: µ0, ∀x ∈ Sn−1. (4.4.2.4)

This shows that µ0-strong convexity implies the quadratic growth established by
Proposition 4.5, with µ(x) replaced by the constant µ0. This constant features
the key quantities in the classical convergence result (4.1.0.2): the spectral gap
of A−1 measured by λ−1

1 − λ−1
2 and the spectral equivalence (4.3.1.1) of the

preconditioner measured by κν .

4.4.3 Weak-quasi convexity

We now establish our second convexity-like property that is essential for the
analysis of the Riemannian gradient descent method (4.2.0.2). This is an
analogue of Proposition 3.1.

Proposition 4.6 Suppose that x ∈ Sn−1 satisfies dist(x, x∗) < φ with the angle
of distortion φ defined in (4.3.2.1). Then

⟨grad f(x),−Logx(x∗)⟩ ≥ 2a(x)
(
f(x)− f(x∗)

)
, (4.4.3.1)

where ⟨·, ·⟩ denotes the Euclidean inner product, and

a(x) :=
λ1∥u∗∥2B−1(cos(dist(x, x∗))− cosφ)

∥A1/2B−1/2x∥2∥u∗∥2
.

Proof To simplify notation, we set θx := dist(x, x∗). Because ∥Pxx
∗∥2 =

1−(xTx∗)2 = 1−cos2 θx, we can write the Riemannian logarithm from (1.3.1.1)
as

Logx(x∗) =
θx

sin θx
Pxx

∗.

As mentioned in the proof of 4.1, grad f(x) = Px∇f(x) = ∇f(x). We therefore
get

⟨grad f(x),−Logx(x∗)⟩ = − θx
sin θx

⟨Px∇f(x), Pxx
∗⟩ = − θx

sin θx
⟨∇f(x), x∗⟩.

Using the expression (4.2.0.5) for ∇f(x), B−1/2AB−1/2x∗ = λ1B
−1x∗, and

f ∗ = −1/λ1, one gets

⟨∇f(x), x∗⟩ = − 2λ1x
TB−1x∗

∥A1/2B−1/2x∥2
(
f(x)− f ∗).
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Combining the two equations above gives

⟨grad f(x),−Logx(x∗)⟩ =
2λ1θx(xTB−1x∗)

∥A1/2B−1/2x∥2 sin θx

(
f(x)− f ∗).

The result now follows from the bound on xTB−1x∗ established in 4.2, addi-
tionally using that θx/ sin θx ≥ 1.

Remark 4.3 If cos(dist(x, x∗)) ≥ cosφ + c sin2 φ for some 0 < c < 1/2, the
factor a(x) of Proposition 4.6 can be bounded by a constant:

a(x) ≥ c∥u∗∥2A
∥A1/2B−1/2x∥2∥u∗∥2B

≥ c

κν

,

This follows from (4.3.1.2), (4.3.2.1), and Au∗ = λ1u
∗.

4.4.4 Weak-quasi-strong convexity

The quadratic growth and weak-quasi convexity properties established above
result in a WQSC property, similarly to Proposition 3.3.

Proposition 4.7 The function f defined in (4.2.0.1) satisfies

f(x)− f ∗ ≤ 1

a(x)
⟨grad f(x),− logx(x∗)⟩ − µ(x)

2
dist2(x, x∗),

for every x ∈ Sn−1 satisfying dist(x, x∗) < φ, with µ(x) and a(x) defined in
Propositions 4.5 and 4.6, respectively.

Proof By Propositions 4.5 and 4.6, we have

µ(x)

2
dist2(x, x∗) ≤ f(x)− f ∗ ≤ 1

2a(x)
⟨gradf(x),− logx(x∗)⟩.

Note that dist(x, x∗) < φ implies a(x) > 0. Applying this inequality twice
shows the desired result:

f(x)− f ∗ ≤ 1

2a(x)
⟨gradf(x),− logx(x∗)⟩+

µ(x)

2
dist2(x, x∗)− µ(x)

2
dist2(x, x∗)

≤ 1

a(x)
⟨gradf(x),− logx(x∗)⟩ − µ(x)

2
dist2(x, x∗).
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4.4.5 Convergence analysis

Theorem 4.8 below contains the main theoretical result of this section, on
the contraction of the error (measured in terms of the angles dist(xt, x

∗)) for
the iterates produced by the Riemannian gradient descent method for the
problem (4.2.0.1). The condition on the initial vector prominently features the
angle of distortion φ defined in (4.3.2.1), whereas the contraction rate involves
the relative spectral gap for A−1 and the quantity κν = νmax/νmin measuring
the spectral equivalence (4.3.1.1) of the preconditioner.

Theorem 4.8 For an eigenvector u∗ associated with the smallest eigenvalue
λ1 and an SPD preconditioner B, let x∗ := B1/2u∗/∥B1/2u∗∥. Apply the
Riemannian gradient descent method (4.2.0.2) to the optimization problem
(4.2.0.1), with a starting vector x0 ∈ Sn−1 such that

dist(x0, x
∗) < φ, (4.4.5.1)

and a step size ηt satisfying

ηt ≤
a(xt)

γ(xt)
=

λ1∥u∗∥2B−1(cos(dist(xt, x
∗))− cosφ)

νmax∥u∗∥2(λ−1
1 − λ−1

n )
,

with γ(x) and a(x) defined in Propositions 4.4 and 4.6. Then the iterates xt

produced by Algorithm (4.2.0.2) satisfy

dist2(xt+1, x
∗) ≤ (1− ξt) dist2(xt, x

∗),

where ξt := ηtµ(xt)a(xt) with µ(x) defined in Proposition 4.5, respectively.
When fixing the step size ηt = a(xt)/γ(xt) we have

ξt =
8λ2

1∥u∗∥B∥u∗∥4B−1

π2∥u∗∥4∥u∗∥A
(cos(dist(xt, x

∗))− cosφ)2

∥A1/2B−1/2xt∥3
λ−1
1 − λ−1

2

κν(λ−1
1 − λ−1

n )
(4.4.5.2)

bounded below by a positive constant, and dist(xt, x
∗) converges linearly to zero.

Proof By the structure of (4.2.0.2), we have Logxt
(xt+1) = −ηt grad f(xt).

Since dist(x, y) = ∥Logx(y)∥, it follows by Proposition 1.15 that

dist2(xt+1, x
∗) ≤ ∥−ηt grad f(xt)− Logxt

(x∗)∥2

= η2t ∥grad f(xt)∥2 + dist2(xt, x
∗) + 2ηt⟨grad f(xt),Logxt

(x∗)⟩.
(4.4.5.3)

By Propositions 4.7 and 4.4, we have

1

a(xt)
⟨grad f(xt),Logxt

(x∗)⟩ ≤ f ∗ − f(xt)−
µ(xt)

2
dist2(xt, x

∗)

≤ − 1

2γ(xt)
∥grad f(xt)∥2 −

µ(xt)

2
dist2(xt, x

∗).
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Multiplying with 2ηta(xt) and using the hypothesis ηt ≤ a(xt)/γ(xt), this gives

2ηt⟨grad f(xt),Logxt
(x∗)⟩ ≤ −ηta(xt)

γ(xt)
∥grad f(xt)∥2 − ηtµ(xt)a(xt) dist2(xt, x

∗)

≤ −η2t ∥grad f(xt)∥2 − ηtµ(xt)a(xt) dist2(xt, x
∗).

Plugging this inequality into (4.4.5.3) proves the first part of the theorem:

dist2(xt+1, x
∗) ≤ (1− ηtµ(xt)a(xt)) dist2(xt, x

∗).

The expression (4.4.5.2) directly follows from the definitions of a(xt), γ(xt), µ(xt),
implying dist(xt, x

∗) ≤ dist(x0, x
∗). Finally, the claimed linear convergence can

be concluded from the fact that ξt admits the constant lower bound

ξt ≥
8λ2

1∥u∗∥B∥u∗∥4B−1

π2∥u∗∥4∥u∗∥A
(cos(dist(x0, x

∗))− cosφ)2

ν
3/2
max

λ−1
1 − λ−1

2

κν(λ−1
1 − λ−1

n )
> 0,

where we use dist(xt, x
∗) ≤ dist(x0, x

∗) and the spectral equivalence (4.3.1.2).

Propositions 4.1, 4.8 establish an error contraction, with contraction rate
1− ξt, also for the PINVIT-like method (4.2.0.4), if the step size restriction
(4.2.0.3) is satisfied. Using the smoothness-type property (4.4.1.1) and the
weak-quasi convexity property (4.4.3.1), it follows that

a(xt)

γ(xt)
≤

2a(xt)
(
f(xt)− f(x∗)

)
∥grad f(xt)∥2

≤
−⟨grad f(x),Logxt

(x∗)⟩
∥grad f(xt)∥2

<
π

2∥grad f(xt)∥
,

where the last inequality uses that ∥Logxt
(x∗)∥ = dist(xt, x

∗) < π/2 is implied
by (4.4.5.1). Hence, the step size restriction ηt ≤ a(xt)/γ(xt) imposed by
Proposition 4.8 always implies (4.2.0.3). In terms of the PINVIT iterates
ut = B−1/2xt, the initial condition (4.4.5.1) takes the form

dist(x0, x
∗) = distB(u0, u

∗) := arccos
( uT

0Bu∗

∥u0∥B∥u∗∥B

)
< φ, (4.4.5.4)

where the sign of u∗ is chosen such that uT
0Bu∗ ≥ 0.

The following corollary establishes convergence for a constant step size.

Corollary 4.9 If

cos
(
dist(x0, x

∗)
)
≥ cosφ + c sin2 φ and η =

c

κ2
ν(λ−1

1 − λ−1
n )

(4.4.5.5)

for some 0 < c < 1/2, then the Riemannian gradient descent method (4.2.0.2)
with step size η produces iterates xt satisfying

dist2(xt, x
∗) ≤

(
1− 8c2(λ−1

1 − λ−1
2 )

π2κ4
ν(λ−1

1 − λ−1
n )

)t

dist2(x0, x
∗). (4.4.5.6)

Thus, xt converges linearly to x∗.
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Proof The proof proceeds by induction on t. The result for t = 0 is trivial.
Suppose (4.4.5.6) holds for some t ≥ 1 and we now show that it also holds for
t + 1. From (4.4.5.6) and (4.4.5.5), it follows that

cos
(
dist(xt, x

∗)
)
≥ cos

(
dist(x0, x

∗)
)
≥ cosφ + c sin2 φ.

As shown in the bound (4.4.1.6) and Remark 4.3, we have γ(xt) ≤ κν(λ−1
1 −λ−1

n )
and a(xt) ≥ c/κν . Hence, the choice of η in (4.4.5.5) satisfies the condition
η ≤ a(xt)/γ(xt). By Theorem 4.8, we have

dist2(xt+1, x
∗) ≤ (1− ηµ(xt)a(xt)) dist2(xt, x

∗).

Using the lower bound (4.4.2.4) on µ(xt) and, once again, a(xt) ≥ c/κν , the
contraction rate can be bounded by

1− ηµ(xt)a(xt) ≤ 1− η
8c(λ−1

1 − λ−1
2 )

π2κ2
ν

= 1− 8c2(λ−1
1 − λ−1

2 )

π2κ4
ν(λ−1

1 − λ−1
n )

.

This completes the induction step.

Corollary 4.9 immediately yields a statement on the iteration complexity.

Corollary 4.10 Suppose that Riemannian gradient descent (4.2.0.2) is applied
to the function f in (4.2.0.1) with starting vector x0 and step size η satisfy-
ing (4.4.5.5). Then an approximation xT of x∗ such that dist(xT , x

∗) ≤ ϵ is
returned after

T = O
(
κ4
ν

c2
λ−1
1 − λ−1

n

λ−1
1 − λ−1

2

log
dist(x0, x

∗)

ϵ

)
iterations.

The following lemma simplifies the condition on the starting vector in 4.9,
at the expense of making it potentially (much) stricter.

Lemma 4.11 If

cos2(dist(x0, x
∗)) ≥ 1− 1− 2c

κν

, 0 < c < 1/2,

then the condition (4.4.5.5) on the starting vector x0 is satisfied.

Proof To establish the result, we show that 1− 1−2c
κν
≥ (cosφ+ c sin2 φ)2 holds

for every 0 < c < 1/2. For this purpose, consider the quadratic function

q(c) =
(
cosφ + c sin2 φ

)2 − 1 + (1− 2c)/κν

= (sin4 φ)c2 + 2
(
cosφ sin2 φ− 1/κν

)
c + 1/κν − sin2 φ.
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By the bound (4.3.2.2), we know that q(0) = 1/κν − sin2 φ ≤ 0. At the same
time, we have

q(1/2) =
1

4
sin4 φ + cosφ sin2 φ− sin2 φ ≤ 0.

Because q is quadratic with leading non-negative coefficient, it follows that
q(c) ≤ 0 for every 0 < c < 1/2, which completes the proof.

We now derive the asymptotic convergence rate implied by Theorem 4.8.
This asymptotic rate is much more favorable than the non-asymptotic rate
established in Corollary 4.9.

Proposition 4.12 For the Riemannian gradient descent method (4.2.0.2) with
step size ηt = a(xt)/γ(xt), the quantity ξt determining the convergence rate
1− ξt, according to Theorem 4.8, satisfies

ξ∞ := lim
t→∞

ξt =
8

π2(1 + cosφ)2
λ−1
1 − λ−1

2

κν(λ−1
1 − λ−1

n )
.

Proof Theorem 4.8 shows that dist(xt, x
∗)→ 0 as t→∞. Inserted into (4.4.5.2),

this gives

ξ∞ =
8λ2

1∥u∗∥B∥u∗∥4B−1

π2∥u∗∥4∥u∗∥A
(1− cosφ)2

∥A1/2B−1/2x∗∥3
λ−1
1 − λ−1

2

κν(λ−1
1 − λ−1

n )
.

Using the relations

λ2
1 =
∥u∗∥4A
∥u∗∥4

, ∥A1/2B−1/2x∗∥3 =
∥u∗∥3A
∥u∗∥3B

and sinφ =
∥u∗∥2

∥u∗∥B∥u∗∥B−1

,

the expression for ξ∞ simplifies to

ξ∞ =
8(1− cosφ)2

π2 sin4 φ

λ−1
1 − λ−1

2

κν(λ−1
1 − λ−1

n )
=

8

π2(1 + cosφ)2
λ−1
1 − λ−1

2

κν(λ−1
1 − λ−1

n )
.

The convergence result (4.1.0.2) by Knyazev and Neymeyr shows that the
eigenvalue approximations of PINVIT converge linearly with the asymptotic
convergence rate α2. When B is optimally scaled, then

α = 1− 2

κν + 1

λ−1
1 − λ−1

2

λ−1
1

;

see Section 4.3.1. On the other hand, Proposition 4.12 establishes the asymptotic
convergence rate 1 − ξ∞ for the eigenvector approximation error. As the
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eigenvalue approximation error is quadratic in the eigenvector approximation
error (see, for example, [110, Eq. (27.3)]), it is reasonable to compare ξ∞ with
1− α:

ξ∞ = (1− α) · 4

π2(1 + cosφ)2
· κν + 1

κν

· (1 + λ−1
n ).

Because 0 ≤ cosφ < 1, this shows that our asymptotic rate matches (up to a
small constant) the sharp rate by Knyazev and Neymeyr.

4.5 Distortion angle for specific preconditioners

The convergence results of the previous section, most notably Theorem 4.8,
requires the condition (4.4.5.4) on the initial vector u0, which can be restated
as

uT
0Bu∗

∥u0∥B∥u∗∥B
> cosφ = sup

vTu∗=0

vTB−1u∗

∥v∥B−1∥u∗∥B−1

, (4.5.0.1)

where u∗ is an eigenvector belonging to the smallest eigenvalue λ1 of A. For a
(Gaussian) random vector u0, the left-hand side of (4.5.0.1) is nonzero almost
surely, but it is unlikely to be far away from zero. Therefore, a good global
convergence guarantee requires cosφ to be small. In this section, we will
demonstrate for two specific types of preconditioners that cosφ can be close to
zero under reasonable assumptions.

4.5.1 Additive Schwarz preconditioners

Domain decomposition methods (DDM) are widely used strategies for solving
large-scale partial differential equations (PDEs). They are based on splitting a
PDE, or an approximation of it, into coupled problems on smaller subdomains
that collectively form a (possibly overlapping) partition of the original compu-
tational domain. A powerful way to analyze and develop DDM is through a
subspace perspective [114] that divides the solution space into smaller subspaces,
typically corresponding to the geometric structure of the subdomain partition.
Here, we consider an additive Schwarz preconditioner as a representative DDM
approach. Further details on DDM can be found in several classical references
on the topic, such as [109]. The following discussion builds on the previous
work [102].

We first briefly describe a relatively standard mathematical setting for ellip-
tic PDEs. On a convex polygonal domain Ω ⊂ Rd with d = 2 or 3, consider a
symmetric and uniformly positive definite coefficient matrix {aij(x)}di, j=1 such

that aij(x) ∈ C0,1(Ω) for i, j = 1, . . . , d. Let VH ⊂ Vh ⊂ H1
0 (Ω) be continuous,

piecewise linear finite element spaces based on quasi-uniform triangular parti-
tions TH and Th of Ω, such that Th is a refinement of TH , and 0 < h < H < 1
are the maximum mesh sizes of Th and TH , respectively. Then the elliptic PDE
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eigenvalue problem discretized on Vh takes the following form:

A(u∗, v) = λ1⟨u∗, v⟩2 ∀ v ∈ Vh, where ∥u∗∥2 = 1 and u∗ ∈ Vh. (4.5.1.1)

Here ⟨·, ·⟩2 and ∥·∥2 denote the L2 inner product and norm, respectively, and

A(u, v) :=
d∑

i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂v

∂xj

dx. (4.5.1.2)

The global solver is the linear operator A−1 : Vh → Vh such that u 7→ A−1u
satisfies

A(A−1u, v) = ⟨u, v⟩2 ∀ v ∈ Vh.

We are interested in an additive Schwarz preconditioner B−1 for A−1.
To aid in understanding, we present a specific example of additive Schwarz

preconditioners, following the structure outlined in [23, Section 7.4].

Example 4.1 (Two-level overlapping domain decomposition preconditioner)
Consider the region Ω = [0, 1]2. Let TH be a coarse triangulation as shown in
Figure 4.2. The region Ω is divided into non-overlapping subdomains Ω̃j for
1 ≤ j ≤ 16, which are aligned with TH . Subsequently, TH is further subdivided
to obtain the finer triangulation Th. Define Ωj = Ω̃j,δ ∩ Ω, where Ω̃j,δ is an

open set obtained by enlarging Ω̃j by a band of width δ, ensuring Ωj is aligned
with Th as shown in Figure 4.2. One often assumes that the overlapping ratio
δ/H is bounded below by a constant, which is 0.5 in this case.

Let Vj ⊂ Vh denote the subspace of continuous, piecewise linear functions
supported in Ωj for 1 ≤ j ≤ 16. Define the coarse/local solvers A−1

H and A−1
j

through
A(A−1

H uH , vH) = ⟨uH , vH⟩2 ∀ vH ∈ VH ,

A(A−1
j uj, vj) = ⟨uj, vj⟩2 ∀ vj ∈ Vj.

Then the two-level overlapping domain decomposition preconditioner is given by

B−1 = IHA
−1
H ITH +

16∑
j=1

IjA
−1
j ITj ,

where IH : VH 7→ Vh and Ij : Vj 7→ Vh are the natural injection operators, i.e.,
IHvH = vH for all vH ∈ VH , and Ijvj = vj for all 1 ≤ j ≤ 16 and vj ∈ Vj.

Under reasonable assumptions, such as those stated in [109, Assumptions 2.2—
2.4], it holds that cosφ = O(H) as H → 0. To see this, we employ the following
results from [102, Lemmas. 34 and 35], which hold under such assumptions:

∥B−1u∗ − λ−1
H u∗∥A ≤ cdλ

−1/2
1 H and ∥v∥A−1 ≤ cd∥v∥B−1 ∀ v ∈ Vh,

(4.5.1.3)
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Figure 4.2: Construction of an overlapping domain decomposition. Example and figure taken
from [102, Example 30].

where λH is the smallest eigenvalue of A(·, ·) in VH , ∥·∥A, ∥·∥A−1 , and ∥·∥B−1

are the norms induced by A(·, ·), A−1, and B−1, respectively, and cd > 0 is
a constant independent of the mesh sizes h,H. For any v ∈ Vh satisfying
⟨u∗, v⟩2 = 0 and ∥v∥B−1 = 1, the Cauchy–Schwarz inequality yields

⟨B−1u∗, v⟩2 = ⟨B−1u∗ − λ−1
H u∗, v⟩2 ≤ ∥v∥A−1∥B−1u∗ − λ−1

H u∗∥A ≤ c2dλ
−1/2
1 H.

By the variational representation (4.5.0.1) of φ,

cosφ = sup
⟨u∗,v⟩2=0

⟨B−1u∗, v⟩2
∥v∥B−1∥u∗∥B−1

≤ c2dλ
−1/2
1 H

∥u∗∥B−1

≤ c3dH. (4.5.1.4)

As cd is independent of h,H, it follows that cosφ = O(H) as H → 0.

4.5.2 Mixed-precision preconditioners

In this section, we study the condition (4.5.0.1) when using mixed-precision
preconditioners as proposed in [64]. For this purpose, we consider two levels of
precision: a working precision and a lower precision, for example, IEEE double
and single precision. The preconditioner is constructed in lower precision while
the rest of the computations are carried out in working precision. For simplicity,
the effects of round-off errors in working precision are ignored.

Consider the Cholesky factorization A = LLT , and let L̂ be the Cholesky
factor computed in lower precision. We define the preconditioner B as B−1x :=

L̂−T (L̂−1x), which is implemented by solving two triangular linear systems
by performing forward and backward substitution in lower precision. By [64,
Lemma 3], B−1 is a high-quality preconditioner for A, which satisfies

∥I − A1/2B−1A1/2∥ ≤ ϵl
1− ϵl
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where we assume ϵl := 4n(3n + 1)(λn/λ1)ul < 1 and ul denotes unit roundoff
in lower precision. Note that

1−∥I−A1/2B−1A1/2∥ ≤ λmin(B−1A) ≤ λmax(B
−1A) ≤ 1+∥I−A1/2B−1A1/2∥.

Using the bound (4.3.2.2) for cosφ, it follows that

cos2 φ ≤ 1− κ−1
ν = 1− λmin(B−1A)

λmax(B−1A)
≤ 1−

1− ϵl
1−ϵl

1 + ϵl
1−ϵl

= 2ϵl.

Usually ϵl ≪ 1 and, hence, cosφ ≤
√

2ϵl is close to zero. This implies that
a random starting vector nearly always satisfies the condition (4.5.0.1). In
contrast, the condition λ(u0) < λ2 required by the classical analysis of PINVIT
does not enjoy any benefit from such a high-quality preconditioner.

4.6 Numerical experiments

In this section, we present some numerical experiments to provide insight into
the behavior of φ and a comparison between our initial condition (4.4.5.1)
and the classical condition λ(u0) ∈ [λ1, λ2). All numerical experiments in this
section have been implemented in Matlab 2022b and were carried out on an
AMD Ryzen 9 6900HX Processor (8 cores, 3.3–4.9 GHz) and 32 GB of RAM.

4.6.1 Laplace eigenvalue problems

The experiments in this section target the smallest eigenvalue for the Laplacian
eigenvalue problem with zero Dirichlet boundary condition on the unit square
Ω = [0, 1]2:

−∆u = λu in Ω,

u = 0 on ∂Ω,
(4.6.1.1)

We will consider two different scenarios:

AGMG Five-points finite difference discretization of (4.6.1.1) on a regular
grid of grid size h, together with an AGMG preconditioner,

DDM Piecewise linear finite element discretization of (4.6.1.1) on a regular
mesh of mesh width h, as shown in 4.1, together with a DDM precondi-
tioner.

Detailed descriptions of AGMG (aggregation-based algebraic multigrid)
preconditioners can be found in [89, 77]; we use the implementation from [88]
(release 4.2.2). For DDM, we use the setting described in Example 4.1; a two-
level overlapping domain decomposition preconditioner with an overlapping
ratio of 0.5 is applied. Note that in the latter case, we actually solve a
generalized eigenvalue problem A− λM , see Remark 4.1, with M representing
the mass matrix from the finite element method.
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Table 4.1: Behavior of φ for Laplacian eigenvalue problems with AGMG and DDM precondi-
tioners.

AGMG

h 2−6 2−7 2−8 2−9 2−10

cos2 φ 0.0331 0.0192 0.0117 0.0064 0.0033
1− κ−1

ν 0.6200 0.6260 0.6352 0.6378 0.6390
χ 0.0534 0.0307 0.0184 0.0101 0.0051

DDM with H = 2−2

h 2−4 2−5 2−6 2−7 2−8

cos2 φ 0.1961 0.1935 0.1915 0.1905 0.1901
1− κ−1

ν 0.8221 0.8201 0.8189 0.8182 0.8178
χ 0.2386 0.2360 0.2339 0.2328 0.2324

DDM with h = 2−8

H 2−2 2−3 2−4 2−5 2−6

cos2 φ 0.1901 0.0720 0.0202 0.0052 0.0013
1− κ−1

ν 0.8178 0.8213 0.8242 0.8278 0.8320
χ 0.2324 0.0877 0.0246 0.0063 0.0016

4.6.1.1 Behavior of φ

The purpose of the first experiment is to study the angle of distortion φ. A
small value of cosφ is favorable for our theory, because this implies that the
condition on the initial vector becomes loose. We let A = −∆h denote the
discretization of the Laplacian and B denote the preconditioner. For either
of the two scenarios described above, the preconditioner is only available
implicitly, through matrix-vector products with B−1. The ratio κν can be
obtained by computing the smallest and largest eigenvalues of −B−1∆h with
the Lanczos method. The definition of the angle φ requires the computation of
both Bu∗ and B−1u∗. While the second computation is straightforward, the
first computation is not, because B is not explicitly available. Instead of the
matrix-vector multiplication Bu∗, we solve the linear system B−1z = u∗ using
the preconditioned conjugate gradient method with −∆h as the preconditioner.

Defining

χ :=
cos2 φ

1− κ−1
ν

,

the bound (4.3.2.2) is equivalent to χ ≤ 1. From the numerical results in
Table 4.1, one observes that χ is significantly smaller than 1, demonstrating
that the bound (4.3.2.2) is not sharp. Table 4.1 confirms our theoretical result
cosφ = O(H) from (4.5.1.4). For the AGMG preconditioner, it can be observed
that cos2 φ = O(h), i.e. a very favorable behavior.
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Table 4.2: Empirical success probabilities for Laplacian eigenvalue problems with AGMG
and DDM preconditioners.

AGMG

h 2−6 2−7 2−8 2−9 2−10

λ(u0) < λ2 0% 0% 0% 0% 0%
distB(u0, u

∗) < φ 44.8% 53.7% 62.1% 67.9% 77.3%

DDM with H = 2−2

h 2−4 2−5 2−6 2−7 2−8

λ(u0) < λ2 0.5% 0% 0% 0% 0%
distB(u0, u

∗) < φ 16.9% 7.2% 4.8% 1.3% 1.2%

DDM with h = 2−8

H 2−2 2−3 2−4 2−5 2−6

λ(u0) < λ2 0% 0% 0% 0% 0%
distB(u0, u

∗) < φ 0.9% 11.1% 41.1% 71.3% 85.8%

4.6.1.2 Empirical probability tests

In most practical situations, PINVIT is used with a random initial vector u0.
Therefore it is of interest to measure the empirical success probability for our
condition distB(u0, u

∗) < φ and for the condition λ(u0) < λ2 required by [61].
It is tempting to choose a Gaussian random vector u0, but such a choice is

unfortunate—it yields an empirical success probability close to zero for both
conditions. A Gaussian random vector tends to be highly oscillatory, whereas
the eigenvector u∗ is typically very smooth. We address this issue by using a
smoother multivariate normal random vector. As the inverse Laplacian affects
smoothing, it makes sense to choose u0 ∼ N (0, B−2), which can be computed
as u0 = B−1ω for a Gaussian random vector ω. Using 1000 independent
random trials, we report the empirical success probabilities in Table 4.2, which
impressively show the superiority of our condition on the initial vector.

4.6.2 Mixed-precision preconditioners for kernel matrices

Following the setting in [64, Section 5.4], we perform experiments with the
mixed-precision preconditioner from Section 4.5.2 for targeting the smallest
eigenvalues of a kernel matrix. Choosing independent Gaussian random vectors
x1, . . . , xn ∈ Rn, we consider the Laplacian kernel matrix defined by

(A)ij = exp
(−∥xi − xj∥

2

)
, i, j = 1, . . . , n.

Similarly, choosing another set of independent Gaussian random vectors y1, . . . , yn ∈
Rn and K(x, y) = (xTy + 1)3, we consider the complex kernel matrix defined
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by
(A)ij = K(xi, xj) + K(yi, yj) + ℑ

(
K(xi, yj)−K(yi, xj)

)
.

In both cases, we choose B to be the preconditioner obtained from performing
the Cholesky factorization of A in single precision. As in the previous section, we
measured the empirical success probability for distB(u0, u

∗) < φ and λ(u0) < λ2.
We choose u0 to be a Gaussian random vector, set n ∈ {512, 1024, 2048, 4096}.
For each n, we verify the initial conditions on u0 by sampling 1000 independent
random initial vectors, and collect the results in Table 4.3. With such effective
mixed-precision preconditioners, our condition on the initial vector achieves
nearly 100% success probability, whereas the condition λ(u0) < λ2 appears to
be never satisfied.

Table 4.3: Empirical success probabilities for dense kernel matrices with mixed-precision
preconditioner.

Laplacian Kernel Complex Kernel

n 512 1024 2048 4096 512 1024 2048 4096

λ(u0) < λ2 0% 0% 0% 0% 0% 0% 0% 0%
distB(u0, u

∗) < φ 100% 100% 100% 100% 96.8% 97.9% 100% 100%
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5 A state-of-the-art eigenvalue solver and its conver-
gence guarantees

In this and the next section, we would like to delve deeper into general eigenvalue
solvers. We showcase how our theory presented in Section 2 is useful not only
for analyzing the simple gradient descent version presented there, but also more
advanced versions. This section follows our work [12].

5.1 Introduction

A simple idea that comes from [12] and can improve the practical performance
of vanilla gradient descent is the following:

• Run iteration (2.3.0.1) choosing the step size ηt via an exact line search.

• Substitute the vanilla gradient approach with a conjugate gradients ap-
proach.

Our work [12] shows that if one uses a gradient update, the exact line search
step is very easy and cheap to compute. Moreover, this algorithm can be shown
to enjoy a local linear convergence rate using the results of Section 2. When one
moves to the conjugate gradients approach, both the line search strategy lacks
some theoretical rigor and convergence analysis is not possible. However, the
algorithm performs extremely well in practice, which allows us to confidently
say that it is state-of-the-art from a practical performance viewpoint.

As this section concerns general eigenvalue solvers, we turn again to the
block case, i.e. we consider the optimization problem

f(X ) = −1
2

Tr(XTAX), with X = Span(X), XTX = I (5.1.0.1)

The 1/2 scaling is harmless and is included in order to match the language
of [12].

5.2 Gradient method on Grassmann

In a gradient approach we would like to produce an iterate Xt+1 = Span(Xt+1)
starting from Xt = Span(Xt) following a rule of the form

Xt+1 = Xt − η grad f(Xt), (5.2.0.1)

where the step size η > 0 is this time to be determined by some line search. The
direction opposite to the gradient is a direction of decrease for the objective
function f . However, it is unclear what value of the step η yields the largest
decrease in the value of f . This means that some care has to be exercised in
the search for the optimal η.

For a Riemannian method defined on a manifold, the search direction (here,
− grad f(Xt)) always lies in the tangent space of the current point (here, Xt)
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of said manifold. This makes sense since directions orthogonal to the tangent
space leave the objective function constant up to first order in the step if the
iterates are restricted to lie on the manifold.

As discussed in Section 2, the Riemannian gradient of the block Rayleigh
quotient at X = Span(X) is

grad f(X ) = −PXAX ≡ −(AX −XC), (5.2.0.2)

with the orthogonal projector PX = I − XXT , and the projected matrix
C = XTAX (notice here the lack of a factor 2 due to the 1/2 scaling in our
cost function).

Even though − grad f(Xt) is in the tangent space (and a direction of decrease
for f), we are not interested in Xt+1 per se but in the subspace that it spans.
In particular, since we use orthonormal bases to define the value of f on the
manifold, we will need to “correct” the non-orthogonality of the update (5.2.0.1)
when considering f . This will be discussed shortly. For now we establish a few
simple relations.

For simplicity we denote X := Xt an orthonormal basis of the current iterate
X , X̃ := Xt+1 a (probably non-orthonormal) basis of the new iterate X̃ and
G := grad f(X ) the gradient direction. Then a step of the gradient method
satisfies X̃ = X − ηG and we have

f(X̃ ) = f(X )−η Tr((AX)TPX(AX))− η2

2
Tr((AX)TPXAPX(AX)). (5.2.0.3)

We also have the following relations

(AX)TPX(AX) = −(AX)TG = −(GT (AX))T = −GT (AX)(5.2.0.4)

= (AX)TP T
XPX(AX) = GTG (5.2.0.5)

where the second equality exploits the fact that PX is an orthogonal projector.
Thus, the coefficient of η in the right-hand side of (5.2.0.3) is nothing but

∥G∥2F and, therefore, as expected, the direction of G is a descent direction: for

small enough η, X̃ will be close to orthonormal, and regardless of the value of
the trace in the last term, we would get a decrease of the objective function
f . This will be the case unless we have already reached a critical point where
G = 0.

When looking at (5.2.0.3) it may appear at first that when A is SPD, it is
possible to increase the value of η arbitrarily and decrease the objective function
arbitrarily. This is clearly incorrect because we have not yet adjusted the basis:
we need to find the subspace spanned by X̃ and compute the related value
of the objective function. In the following we address this issue by actually
optimizing the objective function in the Grassmann manifold.

Observe that since XTG = 0 we have:

X̃T X̃ = (X − ηG)T (X − ηG) = I + η2GTG.
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Let the spectral decomposition of GTG be

GTG = V DβV
T (5.2.0.6)

and denote β = Diag(Dβ) the eigenvalues. We now define the diagonal matrix

Dη ≡ (I + η2Dβ)1/2. (5.2.0.7)

In order to make X̃ orthogonal without changing its linear span, we multiply
it to the right by V D−1

η V T . This way, we obtain the matrix

X(η) = X̃V D−1
η V T = (X − ηG)V D−1

η V T . (5.2.0.8)

that depends on the step η and is easily seen to be orthonormal,

X(η)TX(η) = D−1
η V T (I + η2GTG)V D−1

η = I.

While it is tempting to remove the V T in (5.2.0.8) as this does not change
the linear span, it is useful to keep it. The normalization is only then equivalent
to the polar factor of X − ηG. In the context of optimization on manifolds,
this so-called retraction has many nice properties. In particular, X(η) is a
best approximation of X − ηG in the set of orthonormal matrices. In addition,
this retraction has an easy vector transport that is invariant to the choice of
representative in the subspace, which will be important later in Section 5.5,
where we discuss the acceleration of the gradient method.

Remark 5.1 A retraction in general is a first order approximation of the
geodesics of a manifold (see Section 3.6 in [21]). Similarly, vector transport
is some method that transports tangent vectors to a new tangent space, which
consists a first order approximation of the parallel transport (Section 10.5 in
[21]). The main results of this section remain the same if the retraction discussed
above is substituted by the exact geodesics and the vector transport by the exact
parallel transport. For simplicity though, we will keep the approximate choices.
The empirical performance is more or less the same, while some retractions
and vector transports are easier to compute compared to exact geodesics and
the parallel transport.

5.3 Efficient line search

We can now tackle the issue of determining the optimal η. If we set

Xv = XV, Gv = GV, (5.3.0.1)
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then from (5.2.0.4)–(5.2.0.5) we get the relation GT
vAXv = −GT

vGv. In addition,
note that GT

vGv = V TGTGV = Dβ. With these relations we can now show:

f(X (η))

= −1
2

Tr(V D−1
η V T (X − ηG)TA(X − ηG)V D−1

η V T )

= −1
2

Tr(D−1
η (Xv − ηGv)

TA(Xv − ηGv)D
−1
η )

= −1
2

Tr
(
D−2

η

(
XT

v AXv + 2η(GT
vGv) + η2(GT

vAGv)
))

= −1
2

Tr
(

(I + η2Dβ)
−1 (

XT
v AXv + 2η Dβ + η2 GT

vAGv

))
(5.3.0.2)

We will simplify notation by introducing the diagonal matrices:

Dα = Diag(α1, . . . , αp) with αi = (XT
v AXv)ii, (5.3.0.3)

Dγ = Diag(γ1, . . . , γp) with γi = (GT
vAGv)ii. (5.3.0.4)

If we call ui the left singular vector of G associated with
√
βi then we get

the useful relation
γi ≡ vTi G

TAGvi = βiu
T
i Aui. (5.3.0.5)

Observe that when D is a diagonal matrix and C is arbitrary, then Diag(DC) =
D Diag(C). Therefore, (5.3.0.2) simplifies to:

f(X (η)) = −1
2

Tr
((

I + η2Dβ

)−1 (
Dα + 2ηDβ + η2Dγ

))
. (5.3.0.6)

This is a rational function that is the sum of k terms corresponding to the k
diagonal entries of the matrix involved in (5.3.0.6):

f(X (η)) = −1

2

k∑
i=1

αi + 2βiη + γiη
2

1 + βiη2
. (5.3.0.7)

When η → ∞ each term αi +2βiη+γiη
2

1+βiη2
will decrease to its limit γi/βi. The

derivative of f(X (η)) satisfies

df(X (η))

dη
= −

k∑
i=1

βi + (γi − αi βi)η − β2
i η

2

(1 + βiη2)2
. (5.3.0.8)

This derivative is the negative sum of k branches each associated with a diagonal
entry of the matrix of which the trace is taken in the above equation. The
numerator βi + (γi− αiβi)η− β2

i η
2 of each branch has the shape of an inverted

parabola and has a negative and a positive root. Therefore, the derivative
(5.3.0.8) is nonpositive at zero11 and as η increases away from the origin, each

11It is equal to −
∑

βi = −∥G∥2F
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of the branches will have a negative derivative. The derivative remains negative
until η reaches the second root which is

ξi =
(γi − αiβi) +

√
(γi − αiβi)2 + 4β3

i

2β2
i

> 0. (5.3.0.9)

Let ξmin = mini{ξi} and ξmax = maxi{ξi}. Clearly all branches of (5.3.0.7),
and therefore also their sum, will decrease in value when η goes from zero to
ξmin. Thus, the value of the objective function (5.3.0.7) will decrease. Similarly,
when η increases from ξmax to infinity, the objective function (5.3.0.7) will
increase. The minimal value of (5.3.0.7) with respect to η can therefore be
determined by seeking the minimum in the interval [ξmin, ξmax]. Since both f
and its derivative are available, this can be done efficiently by any standard
root finding algorithm.

The algorithm to get the optimal value for η is described in Algorithm
5.2. To obtain accurate solutions, some care is required in the numerical
implementation due to floating point arithmetic. We explain this in more detail
in Section 5.6.1.

Algorithm 5.1 Riemannian Gradient Descent(A,X)

1: Start: Select initial X0 = Span(X0), such that XT
0 X0 = I.

2: for t = 0, 1, . . . do
3: Compute G := grad f(Xt) = −(AXt −XtCk) with Ck = XT

k AXt.
4: if ∥G∥ < tol then
5: return
6: end if
7: Diagonalize GTG = V DβV

T .
8: Compute Dα, Dγ from (5.3.0.3) with X = Xt.
9: Compute η as the (approximate) minimizer (5.3.0.7) using Get Mu.

10: Compute Xt+1 as the polar factor of Xt − ηG like in (5.2.0.8) and set Xt+1 =
Span(Xt+1)

11: end for

Algorithm 5.2 ηout = Get Mu(Dα, Dβ , Dγ)

1: Input: Diagonal matrices Dα, Dβ , Dγ of (5.3.0.3).
2: Compute smallest root ξmin and largest root ξmax among the roots ξi of (5.3.0.9)
3: Compute an approximation ηout of the minimum of f on [ξmin, ξmax] by safe-guarded

root finding on (5.3.0.7).
4: Return: value ηout

5.4 Convergence of the gradient method

We start our convergence analysis by proving that the gradient method from
Algorithm 5.1 converges globally to a critical point, that is, where the Rieman-
nian gradient is zero. This result is valid for any initial iterate X0 but it does
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not give a linear rate of convergence. Such result holds also for the algorithm
presented in Section 2, but we omitted it there since the relevant paper does
not contain it.

When X0 is close to the dominant subspace, we also prove a linear rate
of convergence of the objective function. The closeness condition depends on

the spectral gap δ of the dominant subspace but only as O
(√

δ
)

. This result

seems to be new.

5.4.1 Global convergence of the gradient vector field

We examine the expression (5.3.0.7) in order to obtain a useful lower bound.
We first rewrite (5.3.0.7) as follows:

f(X (η)) = −1

2

k∑
i=1

αi(1 + βiη
2)− αiβiη

2 + 2βiη + γiη
2

1 + βiη2

= −1

2

k∑
i=1

αi −
1

2

k∑
i=1

2βiη + (γi − αiβi)η
2

1 + βiη2
. (5.4.1.1)

The first sum on the right-hand side is just the objective function before the
update, that is, the value of f at the current iterate X (0) = X . The second
sum depends on the step η and thus represents what may be termed the “loss”
of the objective function for a given η.

Lemma 5.1 Define L ≡ λ1(A)− λn(A). Then for any given η ≥ 0 the “loss”
term (2nd term in right-hand side of (5.4.1.1)) satisfies

−1

2

k∑
i=1

2βiη + (γi − αiβi)η
2

1 + βiη2
≥ (2− Lη)η

2(1 + βmaxη2)
· ∥G∥2F , (5.4.1.2)

where G = grad f(X (0)) and βmax = max βi.

Proof We exploit (5.3.0.5) and set τi = uT
i Aui in order to rewrite the term

γi − αi βi in the numerator as γi − αi βi = (τi − αi)βi. From (5.3.0.1)
and (5.3.0.4), we have αi = xT

i Axi with xi = Xvi. Hence, the term τi − αi ≡
uT
i Aui − xT

i Axi represents the difference between two Rayleigh quotients with
respect to A and therefore, τi − αi ≥ −L. Thus the “loss” term satisfies

−1

2

k∑
i=1

2βiη + (γi − αiβi)η
2

1 + βiη2
≥ −1

2

k∑
i=1

2− Lη

1 + βiη2
βiη. (5.4.1.3)
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The denominators 1 + βiη
2 can be bounded from above by 1 + βmaxη

2 and this
will result in:

−1

2

k∑
i=1

2βiη + (γi − αiβi)η
2

1 + βiη2
≥ −1

2

k∑
i=1

2− Lη

1 + βmaxη2
βiη =

(2− Lη)η

2(1 + βmaxη2)

k∑
i=1

βi.

(5.4.1.4)

The proof ends by noticing that
∑k

i=1 βi = ∥G∥2F due to (5.2.0.6).

Lemma 5.2 If ηopt is the optimal η obtained from a line search at a given X ,
then

f(X (ηopt)) ≤ −
1

2

k∑
i=1

αi −
2

5

∥G∥2F
L

. (5.4.1.5)

Proof The right-hand side (5.4.1.2) is nearly minimized for ηs = 1/L, so we
consider this special value of η. We have

f(X (ηopt)) ≤ f(X (ηs)) ≤ −
1

2

k∑
i=1

αi −
(2− Lηs)ηs

2(1 + βmaxη2s)
· ∥G∥2F .

The second inequality in the above equation follows from (5.4.1.1) and the
previous Lemma 5.1. Calculating the right-hand side for ηs = 1/L yields:

f(X (ηopt)) ≤ −
1

2

k∑
i=1

αi −
∥G∥2F

2(L + βmax/L)
.

Be Lemma 2.2, we have βmax ≤ L2

4
since βmax is the biggest eigenvalue of GTG.

Plugging this into the last inequality we get the desired result.

The property (5.4.1.5) in Lemma 5.2 is known as a sufficient decrease
condition of the line search. We can now follow standard arguments from
optimization theory to conclude that (Riemannian) gradient descent for the
smooth objective function f converges in gradient norm.

Theorem 5.3 The sequence of gradient matrices grad f(Xt) generated by Rie-
manian gradient descent with exact line search converges (unconditionally) to
zero starting from any X0.

Proof We will proceed by avoiding the use of indices. First, we observe that
the traces of the iterates, that is, the consecutive values of f(X (ηopt)) converge
since they constitute a bounded decreasing sequence. Recall that the first term,
that is, minus the half sum of the αi’s in the right-hand side of (5.4.1.5), is the
value of the objective function at the previous iterate. Thus, the second term
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in (5.4.1.5) is bounded from above by the difference between two consecutive
traces:

0 ≤ 2

5

∥G∥2F
L
≤ −f(X (ηopt))−

1

2

k∑
i=1

αi = −f(X (ηopt)) + f(X ), (5.4.1.6)

and therefore it converges to zero. This implies that the sequence of gradients
also converges to 0.

The bound of Lemma 5.2 can be used to prove some particular rate of
convergence for the gradient vector field. This argument is again classical for
smooth optimization. It is a slow (algebraic) rate but it holds for any initial
guess.

Proposition 5.4 The iterates Xt of Algorithm 5.1 satisfy

min
t=0,...,K−1

∥ grad f(Xt)∥F ≤
√

5

2
L(f(X0)− f ∗)

1√
K

,

where f ∗ is the minimum of f .

Proof Since f ∗ is the minimum of f , it holds

f(X0)− f ∗ ≥ f(X0)− f(Xt) =
K−1∑
t=0

(f(Xt)− f(Xt+1)). (5.4.1.7)

After some rearrangement, Lemma 5.2 provides the bound

−1

2

m∑
i=1

αi − f(X (ηopt)) = f(Xt)− f(Xt+1) ≥
2

5L
∥gradf(Xt)∥2F .

Taking the sum of this inequality for t = 0, ..., K−1, we obtain the lower bound

K−1∑
t=0

(f(Xt)− f(Xt+1)) ≥ K
2

5L
min

t=0,...,K−1
∥ grad f(Xt)∥2F .

Combining with (5.4.1.7) gives the desired result.

5.4.2 Local linear convergence

The previous proposition establishes a global but slow convergence to a critical
point. We now turn to the question of proving a fast (linear) rate to the
dominant k-dimensional subspace Vα = Span(Vα) of A. The result will only
hold locally, however, for an initial guess X0 sufficiently close to Vα. We
therefore also assume a non-zero spectral gap δ = λk − λk+1 > 0.
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For showing such linear rate, we use the properties of the block Rayleigh
quotient proved in Section 2. In order to guarantee a uniform lower bound for
a(Xt) at the iterates Xt of Algorithm 5.1, we need to start from a distance at

most O
(√

δ
)

from the optimum.

Proposition 5.5 An iterate Xt+1 of Algorithm 5.1 starting from a point Xt

satisfies

f(Xt+1)− f ∗ ≤
(

1− 8

5
cQa

2(Xt)
δ

L

)
(f(Xt)− f ∗).

Proof The result follows simply by combining the bounds of Lemma 5.2 and
Proposition 2.8. By Lemma 5.2, we have

f(Xt+1)− f ∗ ≤ f(Xt)− f ∗ − 2

5L
∥ grad f(Xt)∥2.

By the PL property of f in Proposition 2.8, we have

f(Xt+1)− f ∗ ≤ f(Xt)− f ∗ − 8

5
cQa

2(Xt)
δ

L
(f(Xt)− f ∗)

≤
(

1− 8

5
cQa

2(Xt)
δ

L

)
(f(Xt)− f ∗).

This provides the desired result.

The convergence factor in the previous theorem still involves a quantity
a(Xt) that depends on the iterate Xt at step t. To get a convergence factor for
all t that only depends on the initial step, we need to bound a(Xt) globally from
below and independently of t. To that end, we need to restrict the initial guess

X0 to a radius O
(√

δ
)

away from the optimum. The reason for that is that,

using Proposition 5.5, we can only show that function values do not increase.
In order to obtain a bound for the distances of the iterates to the optimum
(and thus also for a(Xt)), we need to use the quadratic growth condition of
Proposition 2.4. This leads to a loss of a factor δ in the upper bound for the
squared distances of the iterates to the optimum.

Theorem 5.6 Algorithm 5.1, where X0 is such that

dist(X0,Vα) ≤
√

2cQδ

L
,

produces iterates Xt that satisfy

f(Xt)− f ∗ ≤
(

1− cQ
2δ

5L

)t

(f(X0)− f ∗)

for all t ≥ 0.
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Proof Recall that a(Xt) = θt/ tan θt with θt the largest principal angle between
Xt and Vα. By the result of Proposition 5.5, we have

f(Xt+1)− f ∗ ≤
(

1− 8

5
cQa

2(Xt)
δ

L

)
(f(Xt)− f ∗) ≤ f(Xt)− f ∗,

since 1− 8
5
cQa

2(Xt)
δ
L
≤ 1. By induction, we can conclude that

f(Xt)− f ∗ ≤ f(X0)− f ∗,

for all t ≥ 0.
Then by quadratic growth and smoothness of f (Propositions 2.1 and 2.4),

we have

dist2(Xt,Vα) ≤ 1

cQδ
(f(Xt)− f ∗) ≤ 1

cQδ
(f(X0)− f ∗)

≤ L

2cQδ
dist2(X0,Vα) ≤ 1,

for all t ≥ 0, by the assumption on the initial distance between X0 and Vα.
By elementary properties of cos(x) and x/ tan(x) and using (1.3.1.7), we

have

a(Xt) ≥ cos(θk(Xt,Vα)) ≥ cos(dist(Xt,Vα)) ≥ cos(1) ≥ 1

2
.

Plugging this in the result of Proposition 5.5 and by an induction argument,
we get the desired result.

Finally, we present an iteration complexity for computing an approximation
of the leading eigenspace via Algorithm 5.1. The Õ notation hides non-leading
logarithmic factors. This result is standard when a non-asymptotic convergence
rate (like the one of Theorem 5.6) is available.

Corollary 5.7 Algorithm 5.1 where X0 satisfies the assumption of Theorem 5.6
computes an estimate XT of Vα such that dist(XT ,Vα) ≤ ϵ in at most

T =
5π2L

8δ
log

f(X0)− f ∗

cQεδ
+ 1 = Õ

(
L

δ
log

f(X0)− f ∗

ε

)
.

many iterations.

Proof For dist(XT ,Vα) ≤ ϵ, it suffices to have

f(Xt)− f ∗ ≤ cQϵ
2δ

by quadratic growth of f in Proposition 2.4. Using (1 − c)t ≤ exp(−ct) for
all t ≥ 0 add 0 ≤ c ≤ 1, Theorem 5.6 gives that it suffices to choose T as the
smallest integer such that

f(XT )− f ∗ ≤ exp

(
−cQ

2δ

5L
T

)
(f(X0)− f ∗) ≤ cQϵ

2δ.
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Solving for T and substituting cQ = 4/π2, we get the required statement.

5.5 Accelerated gradient method

It is natural to consider an accelerated gradient algorithm as an improvement
to the standard gradient method. For convex quadratic functions on Rn, the
best example is the conjugate gradient algorithm since it speeds up convergence
significantly at virtually the same cost per step as the gradient method. In our
case, the objective function is defined on Gr(n, k) and is no longer quadratic.
Hence, other ideas are needed to accelerate. While there exist a few ways to
accelerate the gradient method, they all introduce some kind of momentum
term and compute a new search direction P recursively based on the previous
iteration.

5.5.1 Polak–Ribiere nonlinear conjugate gradients

A popular and simple example to accelerate the gradient method is by the
Polak–Ribiere rule that calculates a “conjugate direction” as

P = G + βPold with β =
⟨G−Gold, G⟩
⟨Gold, Gold⟩

. (5.5.1.1)

Here, we avoid indices by calling Gold the old gradient (usually indexed by t)
and G the new one (usually indexed by t+ 1). The inner product used above is
the standard Frobenius inner product of matrices where ⟨X, Y ⟩ = Tr(Y TX). It
is typical to restart with a pure gradient step (β = 0) when P is not a descent
direction and at every trestart iterations for some fixed choice for trestart.

When applied to objective functions defined on manifolds, two modifications
are required to the Euclidean update in (5.5.1.1). First, since Gold is a tangent
vector of Xold, it needs to be “transported” to the current iterate X in order
for the inner product ⟨Gold, G⟩ to be well defined. A simple solution is by
orthogonal projection onto the tangent space 12 :

β =

〈
G− (I −XXT )Gold, G

〉
⟨Gold, Gold⟩

.

Since G = (I −XXT )G, we do not need to compute this projection explicitly
and the formula for β in (5.5.1.1) remains valid in our case. Next, since P is
required to be a tangent vector, the result in (5.5.1.1) is again projected onto
the tangent space as (I −XXT )P .

12It is known that this is a vector transport that is invariant to the choice of representative of the subspaces
when the retraction on Grassmann is done via the polar factor, as we do in Alg. 5.3.
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5.5.2 Line search

In order to use P instead of G, we need to modify the line search in Algorithm 5.1.
We will explain the differences for a general P .

Let X(η) = Xt+1 and X = Xt denote orthonormalized bases for the new
and old iterates Xt+1 and Xt. As before, we construct an iteration

X(η) = (X − ηP )M

where the search direction P is a tangent vector, P TX = 0, and gradient-related,
Tr(GTP ) > 0 with G = grad f(X ). In addition, M is a normalization matrix
such that X(η)TX(η) = I.

A small calculation shows that the same normalization idea for M from
the gradient method (when P = G) can be used here: from the eigenvalue
decomposition

V DβV
T = P TP

we define
Dη = (I + η2Dβ)1/2.

Then it is easy to verify that

X(η) = (X − ηP )V D−1
η V T (5.5.2.1)

has orthonormal columns and represents again the polar factor of X − ηP .
Let Pv = PV and Xv = XV . To perform the line search for η, we evaluate

f in the new point:

f(X (η)) = −1
2

Tr(D−1
η V T (X − ηP )TA(X − ηP )V D−1

η )

= −1
2

Tr(D−1
η (Xv − ηPv)

TA(Xv − ηPv)D
−1
η )

= −1
2

Tr
(
D−2

η

(
XT

v AXv − 2η(P T
v AXv) + η2(P T

v APv)
))

= −1
2

Tr
((

I + η2Dβ

)−1 (
Dα + 2η Dζ + η2 Dγ

))
(5.5.2.2)

where
Dα = Diag(XT

v AXv), Dβ = Diag(P T
v Pv),

Dγ = Diag(P T
v APv), Dζ = −Diag(P T

v AXv).
(5.5.2.3)

Comparing to (5.3.0.6), we see that a new Dζ has appeared. Observe that
Dα, Dβ, Dγ all have non-negative diagonal but this is not guaranteed for Dζ . If
P = G, then −P T

v AXv = P T
v Pv and thus Dζ = Dβ. For a gradient related P

that is a tangent vector, we know that 0 ≤ Tr(P TG) = −Tr(V P TPXAXV ) =
−Tr(P T

v AXv) = Tr(Dζ). However, that does not mean that all the diagonal
entries of Dζ are non-negative, only their sum is. This lack of positive diagonal
complicates the line search, as we will discuss next.
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Let αi, βi, γi, ζi be the ith diagonal entry of Dα, Dβ, Dγ, Dζ , resp. The
rational function that represents (5.5.2.2) and generalizes (5.3.0.7) satisfies

f(X (η)) = −1

2

k∑
i=1

αi + 2ζiη + γiη
2

1 + βiη2
, (5.5.2.4)

with derivative

df(X (η))

dη
= −

k∑
i=1

ζi + (γi − αi βi)η − βiζi η
2

(1 + βiη2)2
. (5.5.2.5)

Since we do not know the sign of ζi, each term in (5.5.2.5) has a quadratic in
the numerator that can be convex or concave. This is different from (5.3.0.8),
where it is always convex (accounting for the negative sign outside the sum)
since ζi = βi. In this case, there is a term with a concave quadratic and we can
therefore not directly repeat the same arguments for the bracketing interval of
η based on the zeros of the quadratics in (5.5.2.5). When there are negative
ζi’s, we could restart the iteration and replace P by the gradient G. Since this
wastes computational work, we prefer to simply disregard the branches that
are concave when determining the bracket interval.

Overall, the line search for the CG approach will cost a little more than
that for the gradient method, since we have an additional (diagonal) matrix to
compute, namely Dζ .

Algorithm 5.3 Riemannian Conjugate Gradient Descent(A,X)

1: Start: Select initial X0 = Span(X0) such that XT
0 X0 = I. Set G = P = 0.

2: for t = 0, 1, . . . do
3: Keep Gold := G.
4: Update G := grad f(Xt) = −(AXt −XtCt) with Ct = XT

t AXt.
5: if ∥G∥ < tol then
6: return
7: end if
8: Diagonalize GTG = V DβV

T .
9: Compute Dα, Dβ , Dγ , Dζ from (5.5.2.3) with X = Xt.

10: Compute β = ⟨G−Gold, G⟩ / ⟨Gold, Gold⟩
11: Update P := (I −XtX

T
t )(G+ βP )

12: if restart then
13: P := G
14: end if
15: Compute η as the minimizer of (5.5.2.4) using a modified version Get Mu.
16: Compute Xt+1 as the polar factor of Xt − ηP like in (5.5.2.1), and set Xt+1 =

Span(Xt+1).
17: end for
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5.6 Numerical implementation and experiments

5.6.1 Efficient and accurate implementation

A proper numerical implementation of Algorithms 5.1 and 5.3, and in particular
the line search, is critical to obtain highly accurate solutions. We highlight
here four important aspects.

In addition, we give some details on how to improve the efficiency of a direct
implementation of these algorithms so that they require the same number of
matrix vector products with A, as subspace iteration and LOBCG.

Calculation of bracket The βi’s in (5.3.0.9) can be very small in some situations.
If we set δi = γi − αiβi then cancellation may cause loss of accuracy in formula
(5.3.0.9) when δi < 0. We can circumvent this by observing that in this case:

ξi =

√
δ2i + 4β3

i − |δi|
2β2

i

=
4β3

i

2β2
i (|δi|+

√
δ2i + 4β3

i )
=

2

|δi/βi|+
√

(δi/βi)2 + 4βi

.

(5.6.1.1)
When δi > 0 we can simply use (5.3.0.9) which we rewrite as

ξi =
1

2βi

 δi
βi

+

√(
δi
βi

)2

+ 4βi

 . (5.6.1.2)

Calculation of the minimizer For numerical reasons, it is advisable to compute
a root of grad f instead of a minimum of f . This can be done in an effective
way by a safe-guarded root finding algorithm, like the Dekker–Brent algorithm
from fzero in Matlab. Since this algorithm converges superlinearly, we rarely
need more than 10 function evaluations to calculate the minimizer of f in
double precision.

Efficient matvecs At each iteration t, the line search requires APt and AXt;
see (5.5.2.3). Supposing that AXt was calculated previously, it would seem that
we need another multiplication of A with Pt which is not needed in subspace
iteration (accelerated by Chebyshev or not). Fortunately, it is possible to avoid
one of these multiplications. First, we proceed as usual by computing the next
subspace Xt+1 from the polar decomposition

Xnew = (X − ηP )V D−1
η V T .

Instead of calculating AXnew explicitly in the next iteration, we observe that

AXnew = (AX − ηAP )V D−1
η V T . (5.6.1.3)

Hence, it suffices to compute only AP explicitly at each iteration since AX can
be updated by the recursion above.
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Except for a small loss of accuracy when the method has nearly converged,
this computation behaves very well numerically. In practice, the product AX
is only calculated explicitly when η = O(εmach).

Efficient orthonormalization The line search procedure requires the diagonal-
ization P TP = V DβV

T , which has a non-negligible cost of O(nk2 + k3) flops.
Fortunately, the result of this decomposition can be used again for the nor-
malization of Xnew by the polar factor, as explained in (5.2.0.8) and (5.5.2.1).
Compared to using QR for the normalization, there is therefore very little
overhead involved.

5.6.2 Comparison with subspace iteration for a Laplacian matrix

We first test our methods for the standard 2D finite difference Laplacian on a
35× 40 grid, resulting in a symmetric positive definite matrix of size n = 1400.
Recall that the dimension of the dominant subspace to be computed is denoted
by k.

Algorithms 5.1 and 5.3 (with trestart = 75 are compared to subspace iteration
applied to a shifted and scaled matrix (A−cI)/h and a filtered matrix pd(A) with
given degree d, with pd(x) = Cd((x−c)/h) where Cd is a Chebyshev polynomial
of degree d. The shift c and scaling h are discussed briefly in Section 1.2.
More precisely, we consider c = (λk+1 + λn)/2 and h = (λk+1 − λn)/2. See
also [122] for a concrete implementation based on a three-term recurrence that
only requires computing one product AXt per iteration. These choices of the
shift and the polynomial are in some sense optimal for the given degree d. In
addition, we compared to the locally optimal block conjugate gradients method
(LOBCG) from [59] which is closely related to Riemannian CG but with a
higher cost per iteration; see Section 5.6.4 for more details.

Observe that both subspace iteration methods make use of the exact values
of the smallest eigenvalue λn and of the largest unwanted eigenvalue λk+1.
While this is not a realistic scenario in practice, the resulting convergence
behavior should therefore be seen as the best case possible for those methods.
Algorithms 5.1 and 5.3 on the other hand, do not require any knowledge on
the spectrum of A and can be applied immediately.

The subspace iteration with Chebyshev acceleration will restart every d
iterations to perform a normalization of Xt and, in practice, adjusts the
Chebyshev polynomial based on refined Ritz values13. For small d, the method
does not enjoy as much acceleration as for large d. On the other hand, for large
d the method is not stable.

In Figure 5.1, the convergence of the objective function f(Xt) is visible
for subspace dimension k = 6 and polynomial degrees d ∈ {15, 30, 60}. All
methods perform per iteration only one block matvec of A with a matrix of size

13This is not done in our numerical tests since we supply the method the exact unwanted spectrum.
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n× k. Since this is the dominant cost in large-scale eigenvalue computations
like SCF, we plotted the convergence in function of this number14.

The benefits of acceleration by the Chebyshev polynomial filter or by Rie-
mannian CG are clearly visible in the figure. In black lines, we also indicated
the asymptotic convergence O(γt) in function of the number of matvecs t for
two values of γ. In particular, it is well known (see our results in Section 2)
that

κ =
λ1 − λn

λk − λk+1

= O(1/δ). (5.6.2.1)

is the condition number of the Riemannian Hessian of f at the dominant
subspace Vα with spectral gap δ. From this, the asymptotic convergence rate
of Riemannian GD is known (see [73, Chap. 12.5]) to satisfy

γGD =

(
κ− 1

κ + 1

)2

= 1−O(δ).

In addition, for Riemannian CG we conjecture the rate

γCG =

(√
κ− 1√
κ + 1

)2

= 1−O
(√

δ
)

based on the similarity to classical CG for a quadratic objective function with
condition number κ. For both Algorithms 5.1 and 5.3, we see that the actual
convergence is very well predicted by the estimates above.

5.6.3 A few other matrices

As our next experiment, we apply the same algorithms from the previous section
(but without restarting to have parameter free Riemannian methods) to a few
different matrices and several choices for the subspace dimension k. In addition,
we target also the minimal eigenvalues by applying the methods to −A instead
of A. This is not a problem, as the Riemannian gradient of f on Grassmann is
invariant under shifts. More concretely, Riemannian gradient descent (RGD)
and Riemannian CG (RCG) with exact line search applied to −A produce
the same iterates as when applied to −A + cI, for any c ∈ R. For Algorithm
5.3 the signs of G and Gold flip, but the parameter β remains the same at
each iteration. Thus, both methods converge to the eigenvectors associated to
the largest eigenvalues of −A, which are the eigenvectors associated with the
smallest eigenvalues of A.

Except for the standard finite difference matrices for the 3D Laplacian, the
matrices used were taken from the SuiteSparse Matrix Collection [32]. This
results in problems with moderately large Riemannian condition numbers κ,
defined in (5.6.2.1).

14For this example with very sparse A, the SI methods are much faster per iteration than the Riemannian
methods. This is mainly because SI only needs to orthonomalize every d times.
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Figure 5.1: Error in objective value for subspace iteration (SI), Riemannian gradient descent
(GD), Riemannian nonlinear conjugate gradients (CG), and locally optimal block conjugate
gradients (LOBCG) for a Laplacian matrix of size n = 1400 based on finite differences when
computing the dominant subspace of dimension k = 6. For SI, optimal shift and optimal
Chebyshev polynomials were used of various degree (number in legend). The black lines
estimate the asymptotic convergence speed as explained in the text.

Due to the larger size of some of these matrices, we first compute with a
Krylov–Schur method (implemented in Matlab as eigs) the eigenvalues that
are required to determine the optimal Chebyshev filter in subspace iteration.
The Riemannian methods do not require this or any other information. As
optimal value f ∗ for the function value, we took the best value of the results
computed from all methods, including the Krylov–Schur method.

FD3D This matrix is the 3D analogue of the matrix we tested in the previous
section. It corresponds to a standard finite difference discretization of the
Laplacian in a box with zero Dirichlet boundary conditions. We used nx =
35, ny = 40, nz = 25 points in the x, y, z direction, resp. The resulting matrix
is of size 35000. Compared to the earlier experiment, we took larger subspace
dimensions and also a minimization of the Rayleigh quotient. All these elements
make for a more challenging problem numerically.

problem type dimension k Riem. cond. nb. Cheb. degree

1 min 64 3.53 · 104 100
2 max 32 5.54 · 103 100

In Fig. 5.2, we see that the convergence of the maximization problem is very
similar to that of the 2D case, although the asymptotic convergence rate of
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Figure 5.2: The FD3D matrix.

Riemannian CG seems to be slower than that of subspace iteration with optimal
filter. This can be improved by restarting (not shown) but even without it,
the results are good. On the other hand, the more relevant case of finding
the minimal eigenvalues of a Laplacian matrix turns out to be a challenge for
SI with or without Chebyshev acceleration. In fact, even with a degree 100
polynomial it takes about 1000 iterations before we see any acceleration. The
Riemannian methods, on the other hand, converge much faster and already
from the first iterations.

ukerbe1 This matrix is related to a 2D finite element problem on a locally
refined grid and it has a relatively small size n = 5981. It is therefore more
interesting than the uniform grid of the Laplacian examples above. We tested
the following parameters.

problem type dimension k Riem. cond. nb. Cheb. degree

3 max 32 4.85 · 103 50
4 max 64 5.21 · 103 100

In Figure 5.3, we observe that the Riemannian algorithms converge faster
than their subspace iteration counterparts. This behavior is seen for many
choices of p and the Chebyshev degree. Since the spectrum of this matrix is
symmetric around zero, the min problems are mathematically equivalent to
the max problems, and therefore omitted.

ACTIVSg70K We now test a larger matrix of size 69999. It models a synthetic
(yet realistic) power system grid from the Texas A&M Smart Grid Center. This
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Figure 5.3: The ukerbe1 matrix.

matrix has a spectral gap of O(10) but the Riemannian condition number,
which represents the correct relative measure of difficulty, is still large. Such a
different kind of scale makes this an interesting matrix to test our algorithms.

problem type dimension k Riem. cond. nb. Cheb. degree

5 min 16 1.15 · 104 50
6 max 32 1.29 · 103 50

For the minimization problem (nb. 5), we see that the Riemannian algo-
rithms converge considerably faster than subspace iteration with or without
Chebyshev acceleration of degree 50. (The reason for the bad performance
of the Chebyshev acceleration is due to numerical instability with a degree
50 polynomial for this problem.) For the maximization problem (nb. 6), Rie-
mannian CG and Chebyshev acceleration with degree 50 have very similar
asymptotic convergence speed although the Riemannian algorithm has a faster
start. The same conclusion hods for Riemannian GD and standard subspace
iteration, although their convergence is of course significantly slower.

boneS01 This final matrix is part of the Oberwolfach model order reduction
benchmark set and models a 3D trabecular bone. It is our largest example of
size n = 127224. As we can see from the table below, for subspace dimension
k = 64 the minimization problem is particularly challenging with a large
Riemannian condition number.

problem type dimension k Riem. cond. nb. Cheb. degree

7 min 64 2.57 · 106 25
8 max 64 2.05 · 103 25
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Figure 5.4: The ACTIVSg70K matrix.
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Figure 5.5: The boneS01 matrix.

The convergence of the methods is visible in Fig. 5.5. We can make similar
observations as for the example above: the Riemannian algorithms have a
faster initial convergence compared to the subspace variants. In addition, the
accelerated variants are clear improvements.

5.6.4 Comparison to LOBCG

It is instructive to compare the Riemannian CG method from Alg. 5.3 to the
locally optimal block CG method (LOBCG) from [59] since both methods
minimize the partial trace function f using momentum terms. LOBCG is
equivalent to the better known LOBPCG method where the preconditioner is
not used (i.e. set to be identity).

Let t be the iteration number. The essential difference between the two
methods is that LOBCG minimizes f over all orthonormal matrices that lie in
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the 3k2-dimensional subspace15

Vt = Span(Xt, Gt, Xt−1) = {XtΩ + GtΨ + Xt−1f : Ω,Ψ, f ∈ Rp×p}. (5.6.4.1)

Here, the residual Gt = AXt −XtX
T
t AXt is also the Riemannian gradient of f

at Xt. Contrary to most optimization problems, this subspace search can be
computed exactly for the symmetric eigenvalue problem by the Rayleigh–Ritz
procedure: the optimal solution is related to the top k eigenvectors of the
symmetric 3k × 3k matrix QT

t AQt with Qt an orthonormal basis for Vt.
In contrast, the Riemannian CG method minimizes f for the scalar α during

the line search applied to the orthonormalization of Xt − αPt. When k > 1,
there is no explicit solution for the optimal α in terms of a smaller eigenvalue
problem, but as explained above, it can be solved efficiently by diagonalizing
the matrix XT

t Xt.
When started at the same Xt and Xt−1, LOBCG will produce a basis Xt+1

for a subspace Xt+1 with a smaller objective value f(Xt+1) than the Riemannian
CG method. This is because an iterate produced with the step Xt − αPt from
Riemannian CG is contained in the subspace searched by LOBCG. It is therefore
reasonable to expect16 that LOBCG converges faster overall in terms of number
of iterations.

We prove here that Riemannian CG with t ≥ 1 is suboptimal compared
to LOBCG when started at the same Xt and Xt−1. The case t = 1 is also
explained in [3, Sections 4.6.5 and 8.3]. This improvement is of course more
computationally expensive.

Since Riemannian CG produces iterates of the form

Xt+1 = (Xt − αtPt)Mt (5.6.4.2)

with Mt the normalization so that Xt+1 has orthonormal columns, it is clear
that

Xt+1 ∈ Span(Xt, Pt).

Here, Span(·, ·) is to be interpreted as in (5.6.4.1), i.e. as a subspace of
dimension 2k. Since Pt = (I −XtX

T
t )(Gt + βtPt−1), we also have Span(Pt) ⊆

Span(Gt, Pt−1, Xt), from which it follows that

Xt+1 ∈ Span(Xt, Gt, Pt−1).

The relation (5.6.4.2) also shows that Pt−1 ∈ Span(Xt−1, Xt) if Mt−1 is invert-
ible, which is true generically. We therefore get that

Xt+1 ∈ Span(Xt, Gt, Xt−1) = Vt,
15When Xt converges, adding Xt−1 to the columns of Xt and Gt would lead to numerical cancellation when

computing an orthonormal basis for Vt. In the implementation of LOBCG, a different matrix is therefore
added that has better numerical properties. For theoretical investigations, we can ignore it.

16Since the iteration is not stationary and depends on the previous iterates, one cannot conclude that
LOBCG always produces iterates with lower objective value than Riemannian CG.
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where Vt is the subspace used in LOBCG. Since LOBCG is optimal for f over
all orthonormal matrices with k columns in Vt, it will be a lower bound of
f(Xt+1).

In Table 5.1, we have compared LOBCG to Riemannian CG (denoted by
RCG) for the same matrices we tested above. For the matrices ukerbe1 and
FD3D, we see that LOBCG indeed requires less iterations than Riemannian
CG, usually by about a factor two. However, this does not mean that LOBCG
is faster in terms of computational time due to an increased cost per iteration.
In addition, the differences between LOBCG and Riemannian CG are less
predictable for the other matrices. Overall, Riemannian CG is usually faster in
computational time and also more reliable.

The increased cost per iteration of LOBCG compared to Riemannian CG
is due to the additional computations for the subspace search. While both
methods only require one product of the form AZ with an n × k matrix Z,
LOBCG performs 3 orthonormalizations (by Cholesky decomposition) whereas
Riemannian CG needs 2 (by polar factor). Furthermore, LOBCG needs 14
matrix products of the form Y TZ for n×k matrices Y and Z, while Riemannian
CG requires only 4. Finally, the calculation of Xt+1 (and AXt+1) based on
the coefficients from the Rayleigh–Ritz procedure is not negligible in LOBCG
with a cost comparable to a product Y TZ. For Riemannian CG, it is simply a
linear combination of two matrices (before normalization). In our experiments,
one iteration of LOBPCG was therefore about 2 to 3 times more expensive,
depending on A and k.

We have also tested a version of LOBCG where all the block entries in
QT

t AQt are explicitly calculated (denoted by LOBCG(+) in the table). The
original code replaces XT

t AXt by the eigenvalues obtained in the Rayleigh–Ritz
procedure. While this behaves well early on, we have noticed stability issues in
our experiments. Figure 5.6 is a clear example where the original version of
LOBCG either does not converge or behaves erratically. In other examples (not
shown), the residual even grows in an unbounded way. The version LOBCG(+)
is however not always an improvement over LOBCG, which can be seen from
the table. This shows that an accurate implementation of CG-based methods
is not trivial, even with subspace search.

For Riemannian CG, we also tested a version (denoted by RCG(+)) where
the product of AXt is explicitly calculated instead of being computed recursively
as in (5.6.1.3). The unchanged number of iterations in Table 5.1 shows that
there is no loss of accuracy when utilizing the recursion. When the matrix A is
very sparse, like in FD3D, the version RCG(+) is less costly per iteration but
for other matrices, the original version of RCG is preferable.
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Table 5.1: Comparison of LOBCG and Riemannian CG (denoted by RCG) when minimiz-
ing/maximizing the partial trace for a few test matrices with different block sizes p. The
time in seconds (rounded to nearest integer) and number of iterations to reach a relative
residual ∥Gt∥∞/∥G0∥∞ of 10−8 is indicated in sec. and its., resp. If the method did not
reach the required tolerance in 10000 iterations, a star * is given. The methods indicated
with a (+) are variants that aim to be more accurate; see the text for their definition.

LOBCG LOBCG(+) RCG(+) RCG
problem secs. its. secs. its. secs. its. secs. its.

A
C
T
IV

S
g7
0K

k=16 max * * 5 152 4 301 3 301
k=16 min 4 152 4 152 29 2151 25 2151
k=32 max 110 2152 10 152 9 451 11 451
k=32 min 5 102 * * 4 201 5 201
k=64 max * * * * 70 1301 86 1301
k=64 min 401 2852 19 102 27 551 36 551

k=16 max 9 752 10 752 11 1801 10 1801
k=16 min 7 602 8 652 3 451 2 451

F
D
3
D k=32 max 16 552 16 552 11 1051 11 1051

k=32 min 22 802 20 702 37 3701 40 3701
k=64 max 51 752 57 802 22 901 27 901
k=64 min 55 802 52 752 36 1401 42 1401

k=16 max 25 352 27 352 39 501 25 501
k=16 min 276 4202 287 4002 340 4401 209 4401

b
on

eS
01 k=32 max 42 252 52 302 22 301 19 301

k=32 min 648 4202 825 5202 480 6601 412 6601
k=64 max * * 170 402 101 651 101 651
k=64 min * * * * * * * *

k=16 max 1 452 1 502 1 601 1 601
k=16 min 1 452 1 452 1 501 1 501

u
ke
rb
e1 k=32 max 2 552 2 502 1 651 2 651

k=32 min 2 402 2 402 2 701 1 701
k=64 max 4 352 4 352 3 651 4 651
k=64 min 5 502 5 452 3 551 3 551
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Figure 5.6: Instability of the original LOBCG method.
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6 Nesterov’s accelerated gradient descent for the sym-
metric eigenvalue problem

In this section, we examine the theoretical analysis of a Riemannian gradient
descent algorithm with Nesterov momentum, in order to tackle the symmetric
eigenvalue problem. We follow in general the exposition of our work [16].

6.1 Introduction

Our contribution here is the theoretical and experimental analysis of a version of
Nesterov’s accelerated gradient descent [79] on the Grassmann manifold for cal-
culating a subspace spanned by the k leading eigenvectors of a matrix A ∈ Rn×n.
To that end, we rely on the rich literature of general Riemannian algorithms,
and more specifically on the formulation of Riemannian accelerated gradient
descent by [119]. The other part of our analysis relies on the geodesic convexity
characterization of the block Rayleigh quotient f on the Grassmann manifold,
analyzed in Section 2 (Theorem 2.7). Despite that the estimate sequences
technique of [119] targets only geodesically strongly convex objectives, there is
already a technique to design estimate sequences for a weakly-quasi-strongly
convex function in the Euclidean regime due to [25]. Thus, from a technical
standpoint, we need to merge the Riemannian approach for strongly convex
and the Euclidean approach for weakly-quasi-strongly convex functions. To
that end, the geodesic search technique for selecting the momentum coefficient
analyzed in [11] (which extended the similar Euclidean technique of [81]) will be
of great help. This approach yields provable accelerated convergence guarantees
for our algorithm. On the experimental side, we show that our algorithm is
competitive compared to other state-of-the-art eigenvalue solvers.

Related work. Motivated by the classic work of Nesterov [79], a plethora of
works focusing on accelerated methods on Riemannian manifolds has been
developed in recent years. We refer the reader to [4, 119] for algorithms
targeting geodesically strongly convex objective functions. There is a second
line of work targeting objectives that are geodesically convex but not strongly
convex with moderate success so far [11, 58]. Recent work [75] seems to give a
better answer on the acceleration problem in the geodesically convex but not
strongly convex setting, its complexity though makes it inaccessible to us. In
all cases, the main obstacles consist of designing an estimate sequence that can
handle the non-linearity of the manifold. There is also a recent line of work on
no-go results on acceleration on manifolds, and namely that one cannot hope for
any global accelerated method on a manifold of negative sectional curvatures
[30, 41]. The latter are not directly applicable in our case, since we work
with the Grassmann manifold, which is of nonnegative sectional curvatures.
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However, they highlight the difficulties of designing accelerated methods on
manifolds, and they give indications of why this could be achieved only locally.

Turning to the symmetric eigenvalue problem, the simplest method for
computing eigenvectors and eigenvalues of a symmetric matrix is the subspace
iteration. However, as discussed in the introduction (Section 1.1), this method
is quite slow, both theoretically (Õ(1/δ) iteration complexity) and practically.
A significant part of research in numerical linear algebra has to do with “ac-
celerating” vanilla methods like subspace iteration using more complicated
mechanisms. The most well-known accelerated scheme for computing lead-
ing eigenvectors is the Lanczos method, which is a member of the family of
Krylov methods. The Lanczos method has iteration complexity of Õ(1/

√
δ)

and improves over subspace iteration. This method is, however, not stationary
since it enlarges an approximation subspace in every step (like any Krylov
method). The cost per iteration therefore grows both in time and in memory.
This iteration is therefore restarted in practice. While the restarting strategy is
empirically effective, it makes the method more complicated to use and analyze.
In this paper, we therefore focus on methods that are accelerated versions of
stationary methods, like gradient descent. They have the benefit of a constant
cost per iteration.

An example of accelerating subspace iteration has been done employing
the technology of Polyak’s momentum (heavy ball) method by [115]. The
resulting deterministic scheme of this paper is a subspace iteration with an
extra momentum term that has guaranteed convergence in at most Õ(1/

√
δ)

many iterations, if the momentum coefficient is chosen precisely in terms of
λk+1 (the (k+1)th largest eigenvalue). If λk and λk+1 are not known in advance
(which is usually the case), then the convergence behaviour of this algorithm
can worsen considerably.

The algorithm of [115] is essentially a modern reformulation of the classical
Chebyshev iteration (see [96]). An interesting contribution in [115] (except from
the main contribution, a stochastic version of the algorithm) is a clever way to
implement their algorithm (essentially Chebyshev iteration) in a numerically
stable manner (Lemma 12), paying the extra cost of a QR-decomposition in a
(2n)× k matrix (instead of n× k). A different approach based on non-linear
conjugate gradients is presented in Section 5. The conjugate gradient method
combined with a choice of step size via an exact line search has excellent
empirical performance, but it is very hard to prove any theoretical convergence
guarantees (Section 5 provides theoretical guarantees only for Algorithm 5.1
and not for Algorithm 5.3). Another interesting method that is empirically
accelerated but comes without much theory is LOBPCG [59].

In this section, we deviate from the previous research directions and develop
a version of Nesterov’s accelerated gradient descent on the Grassmann manifold
for the symmetric eigenvalue problem. When measured in terms of matrix-
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vector products, every iterate of this algorithm has double the cost as subspace
iteration and subspace iteration with momentum [115]. The algorithm does
in addition incur overheads when computing the momentum terms and the
geodesic. These costs are however not dependent on A and involve only
dense linear algebra routines that are typically very optimized in practical
implementations.

The analysis of our method reveals that one needs at most Õ(1/
√
δ) many

iterations to compute the dominant subspace with accuracy ϵ, if the initialization
is O(δ3/4) close to the optimal subspace. The need for local initialization is
an artifact of the general analysis of the Riemannian version of accelerated
gradient descent we use, developed in [119]. Also, our algorithm relies on an
almost exact knowledge for the gap δ = λk − λk+1, similarly to [115] which
requires exact knowledge of λk and λk+1.

We do not claim that the work of this section is a go-to for practitioners.
Even from a theoretical point of view, the analysis is so complicated that
even the expert reader might find it difficult to follow. The convergence
guarantee is not impressive either, as one needs a very good initial guess in
order to achieve accelerated convergence. We do believe though that bringing
the famous symmetric eigenvalue problem together with the equally famous
Nesterov accelerated gradient descent algorithm merits some discussion. From
a higher lever viewpoint, it is certainly interesting that this algorithm can be
used for tackling this problem and perhaps this work serves as a good basis for
future improvements.

6.2 Weak estimate sequence

For reasons related to both the weak nature of geodesic convexity and the
non-linearity of the working domain (Grassmann manifold), we introduce a
weaker notion of the classical estimate sequence than [79]. This is the strategy
in both [25] and [119].

Definition 6.1 A weak estimate sequence for f is a sequence of functions
(ϕt)

∞
t=0 defined on the Grassmann manifold, and a sequence of positive scalars

(τt)
∞
t=0, such that

lim
t→∞

τt = 0 and ϕt(Vα) ≤ (1− τt)f(Vα) + τtϕ0(Vα)

where Vα = argminX∈Gr(n,k)f(X ). We denote such a weak estimate sequence by
the pair (τt, ϕt).

The difference with the classical definition is that the inequality holds only
at the optimum Vα and not at any point.

We utilize weak estimate sequences in the following way:
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Proposition 6.2 If for some sequence of subspaces (Xt)
∞
t=0, we have

f(Xt) ≤ ϕ∗
t := min

X∈Gr(n,k)
ϕt(X )

where (ϕt, τt) is a weak estimate sequence, then

f(Xt)− f ∗ ≤ τt(ϕ0(Vα)− f ∗).

Proof The proof is direct by the fact that

f(Xt) ≤ min
X∈Gr(n,k)

ϕt(X ) ≤ ϕt(Vα)

≤ (1− τt)f(Vα) + τtϕ0(Vα) = (1− τt)f
∗ + τtϕ0(Vα).

Rearranging we get the result.

Now, we describe how to construct a weak estimate sequence for our geodesi-
cally WQSC function f in (1.2.1.5). The result below is valid for any function
that satisfies Theorem 2.7, but we phrase it directly for f for simplicity. For
ease of notation we denote

µ := 2cQδ

for the rest of Section 6.

Proposition 6.3 Let f be the block Rayleigh quotient 1.2.1.5. Choose an
arbitrary function ϕ0 : Gr(n, k) → R and an arbitrary sequence (Yt)

∞
t=0 of

subspaces in Gr(n, k). We also choose a sequence (αt)
∞
t=0 of scalars such that

αt ∈ (0, 1) and Σ∞
t=0αt =∞.

Define τ0 = 1. For all t ≥ 0, let Bt be a lower bound for a(Yt) (as defined
in Theorem 2.7) and define

τt+1 := (1− αt)τt

ϕ̄t+1(X ) := (1− αt)ϕt(X )

+ αt

(
f(Yt) +

1

Bt

⟨gradf(Yt),LogYt
(X )⟩+

µ

2
dist2(Yt,X )

)
If ϕt(Vα) ≤ ϕ̄t(Vα) for all t ≥ 0, then the pair (τt, ϕt) is a weak estimate
sequence for f .

Proof We prove the main inequality involving ϕt in the definition of a weak
estimate sequence by induction. For k = 0, we have ϕ0(Vα) = (1 − τ0)f

∗ +
τ0ϕ0(Vα) because τ0 = 1. Assume that the inequality holds for some k ≥ 0:

ϕt(Vα)− f ∗ ≤ τt(ϕ0(Vα)− f ∗).
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Then, we have

ϕt+1(Vα)− f ∗ ≤ ϕ̄t+1(Vα)− f ∗

≤ (1− αt)ϕt(Vα) + αtf
∗ − f ∗

= (1− αt)(ϕt(Vα)− f ∗)

≤ (1− αt)τt(ϕ0(Vα)− f ∗)

= τt+1(ϕ0(Vα)− f ∗).

Thus, the inequality holds also for t + 1 which concludes the induction. The
first inequality follows from the construction of ϕt, the second by Theorem 2.7
(and a(Yt) ≥ Bt) and the third by the induction hypothesis.

Furthermore, we observe that the assumption Σ∞
t=0αt =∞ guarantees that

limt→∞ τt = 0, which finishes the proof.

6.3 Towards an algorithm

We now use Proposition 6.3 to construct a more specific weak estimate sequence:

Proposition 6.4 Consider ϕt, αt, Bt and Yt as in Proposition 6.3 and let ϕ∗
t

be defined as in Proposition 6.2. Choose ϕ0(X ) = ϕ∗
0 + γ0

2
∥LogY0

(X )∥2 (this is
possible since Proposition 6.3 is for an arbitrary ϕ0). For k ≥ 0, we define the
following terms recursively:

• γ̄t+1 := (1− αt)γt + αtµ

• Vt+1 := ExpYt

(
(1−αt)γt

γ̄t+1
LogYt

(Vt)− αt

Btγ̄t+1
gradf(Yt)

)
• ϕ∗

t+1 := (1− αt)ϕ
∗
t + αtf(Yt)− α2

t

2B2
t γ̄t+1
∥gradf(Yt)∥2

+ αt(1−αt)γt
γ̄t+1

(
µ
2
dist2(Yt,Vt) + 1

Bt
⟨gradf(Yt),LogYt

(Vt)⟩
)

If γt+1 is chosen such that

γt+1∥LogYt+1
(Vα)− LogYt+1

(Vt+1)∥2 ≤ γ̄t+1∥LogYt
(Vα)− LogYt

(Vt+1)∥2,

then the pair of sequences (τt, ϕt) defined by

ϕt(X ) := ϕ∗
t +

γt
2
∥LogYt

(X )− LogYt
(Vt)∥2

τ0 = 1, τt+1 := (1− αt)τt

is a weak estimate sequence for f .

Proof We firstly prove that if ϕt(X ) = ϕ∗
t + γt

2
∥LogYt

(X ) − LogYt
(Vt)∥2,

then ϕ̄t+1(X ) = ϕ∗
t+1 + γ̄t+1

2
∥LogYt

(X ) − LogYt
(Vt+1)∥2, where ϕ̄t+1 is defined

recursively from ϕt as in Proposition 6.3.
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Indeed, we have

ϕ̄t+1(X ) =(1− αt)ϕt(X ) + αt

(
f(Yt) +

1

Bt

⟨gradf(Yt),LogYt
(X )⟩+

µ

2
dist2(Yt,X )

)
,

by its definition in Proposition 6.3. We can rewrite the right hand side as

(1− αt)ϕt(X ) + αt

(
f(Yt) +

1

Bt

⟨gradf(Yt),LogYt
(X )⟩+

µ

2
dist2(Yt,X )

)
=

(1− αt)
(
ϕ∗
t +

γt
2
∥LogYt

(X )− LogYt
(Vt)∥2

)
+ αt

(
f(Yt) +

1

Bt

⟨gradf(Yt),LogYt
(X )⟩+

µ

2
dist2(Yt,X )

)
,

where we use the induction hypothesis for ϕt. By rearranging the terms and
completing the square, we can write

(1− αt)
(
ϕ∗
t +

γt
2
∥LogYt

(X )− LogYt
(Vt)∥2

)
+ αt

(
f(Yt) +

1

Bt

⟨gradf(Yt),LogYt
(X )⟩+

µ

2
dist2(Yt,X )

)
=

γ̄t+1

2
∥LogYt

(X )∥2 + ⟨αt

Bt

gradf(Yt)− (1− αt)γtLogYt
(Vt),LogYt

(X )⟩

+ (1− αt)
(
ϕ∗
t +

γt
2
∥LogYt

(Vt)∥2
)

+ αtf(Yt)

=
γ̄t+1

2

∥∥∥∥LogYt
(X )−

(
(1− αt)γt

γ̄t+1

LogYt
(Vt)−

αt

Btγ̄t+1

gradf(Yt)

)∥∥∥∥2
− γ̄t+1

2

∥∥∥∥(1− αt)γt
γ̄t+1

LogYt
(Vt)−

αt

Btγ̄t+1

gradf(Yt)

∥∥∥∥2
+ (1− αt)

(
ϕ∗
t +

γt
2
∥LogYt

(Vt)∥2
)

+ αtf(Yt).

Plugging in the definition of Vt+1 and splitting the norm in the second summand,
we can write the last expression as

γ̄t+1

2

∥∥LogYt
(X )− LogYt

(Vt+1)
∥∥2 − α2

t

2B2
t γ̄t+1

∥gradf(Yt)∥2

+
αt(1− αt)γt

γ̄t+1

(
µ

2
∥LogYt

(Vt)∥2 +
1

Bt

⟨LogYt
(Vt), gradf(Yt)⟩

)
+ (1− αt)ϕ

∗
t + αtf(Yt).

Finally, we can use the definition of ϕ∗
t+1 from ϕ∗

t and rewrite again in the
desired form:

ϕ∗
t+1 +

γ̄t+1

2

∥∥LogYt
(X )− LogYt

(Vt+1)
∥∥2 .
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This proves our first claim.
Using the previous computation and the definition of γt+1, we immediately

get
ϕt+1(Vα) ≤ ϕ̄t+1(Vα).

Thus, we have shown that the sequence ϕt defined as

ϕt(X ) := ϕ∗
t +

γt
2
∥LogYt

(X )− LogYt
(Vt)∥2

satisfies all the assumptions of Proposition 6.3. We therefore conclude that
(τt, ϕt) is a weak estimate sequence.

Now we have a concrete definition of Vt+1 from Yt and Vt. It remains to
define Yt through Xt and Vt and Xt+1 through Yt. We do this with criterion
to guarantee f(Xt) ≤ ϕ∗

t . In order to guarantee that, let us assume that
f(Xt) ≤ ϕ∗

t and see what happens with ϕ∗
t+1 (towards having an induction step).

Using the definition of ϕ∗
t+1 in Proposition 6.4 and f(Xt) ≤ ϕ∗

t , we have:

ϕ∗
t+1 ≥ (1− αt)f(Xt) + αtf(Yt)−

α2
t

2B2
t γ̄t+1

∥gradf(Yt)∥2

+
αt(1− αt)γt

Btγ̄t+1

⟨gradf(Yt),LogYt
(Vt)⟩.

The usual way to proceed from here is to assume that f is geodesically convex
and linearize it from below (see [119], Lemma 6). Since the Rayleigh quotient
on Grassmann is only-locally convex, we employ a different strategy using a
geodesic search as in [11], inspired by [81]. Namely, if we find a way to choose
Yt from Xt and Vt such that

f(Xt) +
αtγt

Btγ̄t+1

⟨gradf(Yt),LogYt
(Vt)⟩ ≥ f(Yt) (6.3.0.1)

then the previous inequality can be reduced to

ϕ∗
t+1 ≥ f(Yt)−

α2
t

2B2
t γ̄t+1

∥gradf(Yt)∥2. (6.3.0.2)

Inequality (6.3.0.1) is satisfied if we choose Yt through an exact search in
the geodesic connecting Vt and Xt:

Lemma 6.5 Let
Yt := ExpVt

(βtLogVt
(Xt))

where
βt := argminβ∈[0,1](ExpVt

(βLogVt
(Xt))).

Then we have

f(Yt) ≤ f(Xt) and ⟨gradf(Yt),LogYt
(Vt)⟩ ≥ 0.
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Proof See Appendix B in [11].

Thus, if we choose Yt in the manner of Lemma 6.5, the initial inequality for
ϕ∗
t+1 implies inequality (6.3.0.2). Inequality (6.3.0.2) is similar to the function

value reduction that is obtained via a gradient step:
If we choose

Xt+1 = ExpYt

(
− 1

L
gradf(Yt)

)
, (6.3.0.3)

then, by L-smoothness, we have

f(Xt+1) ≤ f(Xt)−
1

2L
∥gradf(Xt)∥2

and if we also choose αt such that

α2
t

2B2
t γ̄t+1

=
1

2L
,

then

f(Xt+1) ≤ f(Yt)−
α2
t

2B2
t γ̄t+1

∥gradf(Yt)∥2 (6.3.0.4)

and consequently
f(Xt+1) ≤ ϕ∗

t+1.

We have also the freedom to make the gradient step from Yt following the
QR-retraction (Retr) used in Section 5 and the step-size via an exact line-search:

Xt+1 = RetrYt (−ηoptimal · gradf(Yt)) . (6.3.0.5)

As analyzed in Section 5 this exact line search is cheap to compute.
Lemma 5.2 implies that in this case

f(Xt+1) ≤ f(Xt)−
2

5L
∥gradf(Xt)∥2

and this means that if we choose αt such that

α2
t

2B2
t γ̄t+1

=
2

5L
=:

1

2L̃
,

we have again
f(Xt+1) ≤ ϕ∗

t+1

is guaranteed. Here L̃ is defined as 5
4
L, where L is the smoothness constant.

Choosing ϕ∗
0 = f(X0), we can now prove by induction that the following

algorithm produces iterates Xt, such that f(Xt) ≤ ϕ∗
t , where ϕ∗

t is defined
recursively as in Proposition 6.4. This analysis yields us naturally to an

143



algorithm, which can be proved to have accelerated convergence guarantees.
We choose to write the algorithm using equation (6.3.0.3) to perform the
gradient step for obtaining Xt+1 from Yt, but we could also use equation
(6.3.0.5). The only thing that changes is the constant L to L̃.

Significant effort needs to be spent in proving that all operations in Algorithm
6.1 are well-defined. For that to happen, we need to insure that there is
a unique geodesic connecting Vt and Xt, that ∥gradf(Yt)∥2 < π

2
and that∥∥∥ (1−αt)γt

γ̄t+1
LogYt

(Vt)− 2αt

γ̄t+1
gradf(Yt)

∥∥∥
2
< π

2
(i.e. these tangent vectors are inside

the injecitivity domain, recall equation (1.3.1.5)). To guarantee these bounds,
a careful selection of hyperparameters is crucial. Algorithm 6.1 is written in a
form, in which it is not clear whether some steps are doable, for instance it is
not clear whether one can find a γt+1 from γ̄t+1 such that the requirements of
step 9 are satisfied. For the moment we assume that all these can be done and
we show in the next section that a careful selection of γ0 indeed yields all the
requirements of Algorithm 6.1.

Algorithm 6.1 Accelerated Gradient Descent for the Block Rayleigh Quotient

1: Initialize at X0 = V0 ∈ Gr(n, p) and choose γ0, such that µ
2
≤ γ0 ≤ L

2: for k ≥ 0 do

3: βk = argmin
β∈[0,1]

{
f(ExpVt

(βLogVt
(Xt)))

}
4: Yt = ExpVt

(βkLogVt
(Xt))

5: 4α2
t = (1−αt)γt+αtµ

L

6: Xt+1 = ExpYt

(
− 1

L
gradf(Yt)

)
7: γ̄t+1 = (1− αt)γt + αtµ

8: Vt+1 = ExpYt

(
(1−αt)γt

γ̄t+1
LogYt

(Vt)− 2αt
γ̄t+1

gradf(Yt)
)

9: γt+1∥LogYt+1
(Vα)− LogYt+1

(Vt+1)∥2 ≤ γ̄t+1∥LogYt
(Vα)− LogYt

(Vt+1)∥2, such that γ̄t+1 ≥
γt+1 ≥ µ/2.

10: end for

Remark Notice that Algorithm 6.1 is invariant under shifts of the matrix A
with multiples of the identity matrix. Indeed, the only steps that are affected
by such a shift are steps 3, 6 and 8, which feature the function f or its gradient.
The shift A+αI yields a function value which is just shifted by a constant, thus
step 3 remains unchanged. Also, the Riemannian gradient remains exactly the
same as the orthogonal projection neutralizes the extra term obtained by the
shift. Thus, steps 6 and 8 also remain unchanged. Notice that the parameters
γ and µ remain unchanged as well.
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Theorem 6.6 If X0 satisfies

dist(X0,Vα) ≤ 1

8

√
cQ

(
δ

L

)3/4

,

and step 9 in Algorithm 6.1 can be satisfied, i.e. there is γt+1 satisfying the
required bounds, then the following holds:

(i) f(Xt), f(Yt) ≤ f(X0), for all k ≥ 0

(ii) a(Yt) ≥ 1
2

(iii) The operations in steps 3, 4, 6,and 8 in Algorithm 6.1 are well-defined in
the sense that the related tangent vectors are inside the injectivity domain
of Gr(n, k)

(iv) f(Xt) ≤ ϕ∗
t , for all t ≥ 0, where ϕ∗

t is defined as

ϕ∗
0 = f(X0)

ϕ∗
t+1 = (1− αt)ϕ

∗
t + αtf(Yt)−

α2
t

8γ̄t+1

∥gradf(Yt)∥2

+
αt(1− αt)γt

γ̄t+1

(µ
2

dist2(Yt,Vt) + 2⟨gradf(Yt),LogYt
(Vt)⟩

)
.

Proof We proceed to the proof of all points together by induction.
For t = 0, the first holds trivially since X0 = Y0.
The second point holds, because

a(Y0) ≥ cos(θmax(Y0,Vα)) ≥ cos(dist(Y0,Vα)) ≥ cos (1) >
1

2
.

Here θmax is used to denote the biggest principal angle between subspaces. This
inequality implies that B0 can be chosen to be 1

2
.

The third holds since X0 = V0 (steps 3-4 are well-defined) and by L-
smoothness of f , we have

∥gradf(Y0)∥ ≤ Ldist(Y0,Vα) = Ldist(X0,Vα) ≤ L

8

(
δ

L

)3/4

≤ L

8
.

This implies that the biggest singular value of − 1
L

gradf(Y0) is less than π
2
,

thus − 1
L

gradf(Y0) is inside the injectivity domain and step 6 is well-defined
for t = 0. For step 8, we have that LogY0

(V0) = 0, thus we need to bound∥∥∥−2α0

γ̄1
gradf(Y0)

∥∥∥
2
. For that, we use inequality (6.3.0.4), which can be rewritten

(with B0 = 1
2
) as

2α2
0

γ̄1
∥gradf(Y0)∥2 ≤ f(Y0)− f(X1) ≤ f(X0)− f ∗.
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By multiplying both sides of the previous inequality with 2/γ̄1 and L-smoothness
of f , we get

4α2
0

γ̄2
1

∥gradf(Y0)∥2 ≤
L

γ̄1
dist2(X0,Vα) ≤ 2

L

µ

1

64
cQ

(
δ

L

) 3
2

=
1

64

L

δ

(
δ

L

) 3
2

≤ 1.

The second inequality follows from γ̄1 ≥ γ0 ≥ µ
2
.

This bound implies that −2α0

γ̄1
gradf(Y0) is inside the injectivity domain and

step 8 is well-defined for t = 0.
The fourth point holds trivially since ϕ∗

0 is defined as f(X0).
Now, we assume that all the points hold for all iterations up to iteration t

and wish to prove that they still hold for t + 1.
By the construction of the algorithm we have

f(Yt+1) ≤ f(Yt).

This is because f(Yt+1) ≤ f(Xt+1) (due to the geodesic search, step 3-4) and
f(Xt+1) ≤ f(Yt) (due to the gradient step, step 6). Thus, we can conclude
that f(Yt+1) ≤ f(Yt) ≤ f(Y0) = f(X0) by the induction hypothesis. The same
inequalities imply that f(Xt+1) ≤ f(Xt) and by the induction hypothesis we
have f(Xt+1) ≤ f(X0). Thus, the first point is correct at iteration t + 1.

We can use the result of the first point to bound the distance of the iter-
ates Yt+1,Xt+1 from the optimum Vα, using the quadratic growth condition
(Proposition 2.4):

dist2(Yt+1,Vα) ≤ 1

cQδ
(f(Yt+1)− f ∗) ≤ 1

cQδ
(f(X0)− f ∗)

≤ L

2cQδ
dist2(X0,Vα) ≤ 1

128

(
δ

L

)1/2

.

The same bound holds also for dist(Xt+1,Vα). Thus, we have

dist(Xt+1,Vα), dist(Yt+1,Vα) ≤ 1

8
√

2

(
δ

L

)1/4

.

This lower bound implies that the quantity a(Yt+1) can be bounded as

a(Yt+1) ≥ cos(θmax(Yt+1,Vα)) ≥ cos(dist(Yt+1,Vα)) ≥ cos (1) >
1

2
,

which implies that the second point holds at the t + 1 iteration.
The result of the second point together with the induction hypothesis provide

that a(Yi) ≥ 1
2

for all i = 0, ..., t + 1. This means that Bi can be taken equal

to 1
2

in all the analysis of Sections 4 and 5 and with a choice of αt as in step 5
of the algorithm and ϕ∗

t+1 as defined in the statement of the fourth point, we
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have automatically that f(Xt+1) ≤ ϕ∗
t+1. Thus the fourth point is correct at

iteration t + 1.
For showing that the steps 3-4 and 6 in the algorithm are well-defined in

iteration t + 1 (third point), we need also a bound for dist(Vt+1,Vα), which
turns out to be a quite complicated. For that, we start by using the second
bound of Proposition 1.15:

dist(Vt+1,Vα) ≤ ∥LogYt+1
(Vα)− LogYt+1

(Vt+1)∥.
The quantity on the right hand side is directly related to the sequence ϕ∗

t :

∥LogYt+1
(Vα)− LogYt+1

(Vt+1)∥2 =
2

γt+1

(ϕt+1(Vα)− ϕ∗
t+1) ≤

2

γt+1

(ϕ0(Vα)− f ∗) =

2

γt+1

(
ϕ∗
0 +

γ0
2

dist2(X0,Vα)− f ∗
)

=
2

γt+1

(
f(X0)− f ∗ +

γ0
2

dist2(X0,Vα)
)
≤

2

γt+1

L + γ0
2

dist2(X0,Vα) =
L + γ0
γt+1

dist2(X0,Vα) ≤ 4
L

µ
dist2(X0,Vα) ≤

= 4
L

2cQδ

1

64
cQ

(
δ

L

)3/2

=
1

32

(
δ

L

)1/2

.

The first equality is implied by the definition of ϕt+1, the first inequality by
Proposition 6.2 combined with the inequality ϕ∗

t+1 ≥ f(Xt+1) ≥ f ∗ which holds
since we have already explained that the fourth point holds for t+ 1, the second
equality by the definition of ϕ0, the third equality by the definition of ϕ∗

0, the
second inequality by L-smoothness, the third inequality by the upper bound on
γ0 and the lower bound on γt+1, and the rest are simple substitutions involving
the bound in the initial distance dist(X0,Vα).

Thus

dist(Vt+1,Vα) ≤ 1

4
√

2

(
δ

L

)1/4

.

Combining the bounds on dist(Xt+1,Vα) and dist(Vt+1,Vα) with the triangle
inequality, we get

dist(Xt+1,Vt+1) ≤ dist(Xt+1,Vα) + dist(Vt+1,Vα) ≤ 1

2
.

This implies that there is a unique geodesic connecting Xt+1 and Vt+1, thus
steps 3-4 are well-defined in iteration t + 1.

In addition, L-smoothness of f implies that

∥gradf(Yt+1)∥ ≤ Ldist(Yt+1,Vα) ≤ L

8

which provides the bound ∥∥∥∥− 1

L
gradf(Yt+1)

∥∥∥∥
2

≤ 1

8
.
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The last bound implies that − 1
L

gradf(Yt+1) is inside the injectivity domain,
thus step 6 is well-defined in iteration t + 1.

We lastly deal with step 8. We have that (1−αt+1)γt+1

γ̄t+2
= (1−αt+1)γt+1

(1−αt+1)γt+1+αt+1µ
≤

1 and ∥LogYt+1
(Vt+1)∥ ≤ ∥LogXt+1

(Vt+1)∥ ≤ 1
2
. For the second summand

2αt+1

γ̄t+2
gradf(Yt+1), we use inequality (6.3.0.4), which can be rewritten (with

Bt+1 = 1
2
) as

2α2
t+1

γ̄t+2

∥gradf(Yt+1)∥2 ≤ f(Yt+1)− f(Xt+2) ≤ f(X0)− f ∗.

Multiplying both sides with 2
γ̄t+2

and using L-smoothness of f , we get

4α2
t+1

γ̄2
t+2

∥gradf(Yt+1)∥2 ≤
L

γ̄t+2

dist2(X0,Vα)

By definition, we have µ
2
≤ γt+1 ≤ γ̄t+2. Plugging in the assumed bound on

the initial distance, we get

4α2
t+1

γ̄2
t+2

∥gradf(Yt+1)∥2 ≤ 2
L

µ

1

64
cQ

(
δ

L

) 3
2

=
1

64

L

δ

(
δ

L

) 3
2

=
1

64

(
δ

L

) 1
2

≤ 1

4
,

where we used that µ = 2cQδ.
By triangle inequality, we get∥∥∥∥(1− αt+1)γt+1

γ̄t+2

LogYt+1
(Vt+1)−

2αt+1

γ̄t+2

gradf(Yt+1)

∥∥∥∥ ≤ 1

2
+

1

2
= 1,

thus
(1− αt+1)γt+1

γ̄t+2

LogYt+1
(Vt+1)−

2αt+1

γ̄t+2

gradf(Yt+1)

is inside the injectivity radius of Gr(n, k) and step 8 is well-defined at iteration
t + 1.

With that in order, the simultaneous induction of all four points is complete.

6.4 Effect of curvature/choice of parameters

In Algorithm 6.1, it is not clear whether we can choose γt+1 from γ̄t+1 (step 9)
in a tractable way, such that γt+1 ≥ µ

2
.

We start by showing that there is a way to choose γt+1 from γ̄t+1, such that

γt+1∥LogYt+1
(Vα)− LogYt+1

(Vt+1)∥2 ≤ γ̄t+1∥LogYt
(Vα)− LogYt

(Vt+1)∥2.

To that end, we need the following geometric result (Theorem 10 in [119]):
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Lemma 6.7 Let x, y, z, w be four points in a geodesically uniquely convex subset
of a Riemannian manifold, with sectional curvatures in the interval [−K,K]
and

max{dist(z, x), dist(w, z)} ≤ 1

4
√
K

,

then

∥Logw(x)−Logw(y)∥2 ≤ (1+5K max{dist(z, x), dist(w, x)}2)∥Logz(x)−Logz(y)∥2.

Proof See Theorem 10 in [119].

If x, y, z, w are subspaces on the Grassmann manifold with the standard
Riemannian structure, we can take K = 2 [113].

Note that Yt+1 is not yet computed at step 9, but it is to be computed
exactly in the next iteration of the algorithm. However, this is not a problem,
since the geometric result (Lemma 6.7) holds for any four points on a manifold
of bounded sectional curvatures.

Proposition 6.8 Choose

γ0 ≥
√

β2 + (1 + β)µ
L
− β√

β2 + (1 + β) µ
L

+ β
· µ

and γ0 ≤ L, where

β =
1

5

√
µ

L
.

If X0 satisfies

dist(X0,Vα) ≤ 1

8

√
cQ

(
δ

L

)3/4

,

then one can choose γt+1 from γ̄t+1 satisfying all the requirements in step 9 of
Algorithm 6.1, as

γt+1 =
1

1 + β
γ̄t+1.

Proof We proceed by induction. For k = 0, γ0 satisfies trivially the main
inequality of step 9 (because there is no γ̄0). Also γ0 ≥ µ

2
, since (easy to see)√

β2 + (1 + β)µ
L
− β√

β2 + (1 + β)µ
L

+ β
≥ 1

2
,

if β = 1
5

√
µ
L

.
Now we assume that we can choose γt+1 as in step 9 of Algorithm 6.1 in the

first t iterations. Then the result of Theorem 6.6 holds and its proof guarantees
that

dist(Yt,Vα), (Yt+1,Vα) ≤ 1

8
√

2

(
δ

L

)1/4

.
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This implies the weaker inequality

dist(Yt,Vα), dist(Yt+1,Vα) ≤ 1

4
√
K

,

where K is an upper bound of the sectional curvatures of the Grassmann
manifold and it is taken equal to 2. Thus, the points Yt,Yt+1,Vt+1 and Vα
satisfy the assumptions of Lemma 6.7. This gives

∥LogYt+1
(Vα)−LogYt+1

(Vt+1)∥2 ≤

(
1 + 10

1

128

(
δ

L

)1/2
)
∥LogYt

(Vα)−LogYt
(Vt+1)∥2.

Thus, we can choose γt+1 from γ̄t+1 such that

γ̄t+1

γt+1

≥ 1 +
10

128

(
δ

L

)1/2

or similarly, we can take γt+1 = 1
1+β

γ̄t+1 with

β ≤ 10

128

(
δ

L

)1/2

.

It easy to see that 1
5

(
µ
L

)1/2 ≤ 10
128

(
δ
L

)1/2
, thus

β =
1

5

(µ
L

)1/2
is a valid choice. Such a selection of β is important for the rest. Note that β is
involved directly in the selection of γ0 and affects the sequences γt and γ̄t.

We now prove with the aforementioned selections of β and γ0 that γt+1

selected in step 9 always satisfies γt+1 ≥ µ
2
.

We first show that if γs ≥
√

β2+(1+β) µ
L
−β√

β2+(1+β) µ
L
+β
· µ, then αs ≥

√
β2+(1+β) µ

L
−β

2
. To

that end, we use the definition of αs at step 4 of Algorithm 6.1:

4α2
s =

(1− αs)γs + αsµ

L
.

The positive solution of this quadratic equation is

αs =
(µ− γs)

1
4L

+
√

(µ− γs)2
1

16L2 + γs
L

2
=: g(γs).

We first note that αs is always less than 1. Indeed, this happens if and only if

(µ− γs)
1

4L
+

√
(µ− γs)2

1

16L2
+

γs
L
≤ 2

150



or even stronger if

(µ− γs)
1

2L
+

√
γs
L
≤ 2

which is equivalent with

d2 − 2d− µ

L
≥ −4,

where d :=
√

γs
L

. Since µ
L
≤ 1, it suffices to hold

d2 − 2d + 3 ≥ 0,

which always holds. Now, we bound αs from below.
The function g is increasing and we have

αs ≥ g

(√
β2 + (1 + β)µ

L
− β√

β2 + (1 + β)µ
L

+ β
· µ

)
= g

(
C − β

C + β
· µ
)
,

where

C :=

√
β2 + (1 + β)

µ

L
.

We have

µ− C − β

C + β
µ =

2β

C + β
µ =

2β(C − β)

C2 − β2
=

2β(C − β)

(1 + β)µ
L

µ =
2Lβ(C − β)

(1 + β)

and
C − β

C + β
µ =

(C − β)2

C2 − β2
µ =

(C − β)2

(1 + β)µ
L

µ =
L(C − β)2

1 + β
.

Then,

g

(
C − β

C + β
· µ
)

=

2Lβ(C−β)
(1+β)

1
4L

+
√

4L2β2(C−β)2

(1+β)2
1

16L2 + L(C−β)2

1+β
1
L

2

=

β(C−β)
2(1+β)

+
√

β2(C−β)2

4(1+β)2
+ (C−β)2

1+β

2

= (C − β)

β
2(1+β)

+
√

β2+4β+4
4(1+β)2

2

=
C − β

2

(
β

2(1 + β)
+

β + 2

2(1 + β)

)
=

C − β

2
.

Thus,

αs ≥
√

β2 + (1 + β)µ
L
− β

2
.
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Now we prove that

γt ≥
C − β

C + β
· µ

for any k ≥ 0 by induction.
The claim is correct for t = 0, by the choice of γ0. Let us assume that

γt ≥ C−β
C+β
· µ. This also implies that αt ≥ C−β

2
by the previous argument. Then

γt+1 satisfies
(1 + β)γt+1 = (1− αt)γt + αtµ.

Since αt ≤ 1 and γt ≥ C−β
C+β

µ, we have

(1− αt)γt + αtµ ≥ (1− αt)
C − β

C + β
µ + αtµ = (1− αt)µ + αtµ− (1− αt)

2β

C + β
µ

=µ + (αt − 1)
2β

C + β
µ ≥ µ +

(
C − β

2
− 1

)
2β

C + β
µ =

(
1 +

(C − β)β

C + β
− 2β

C + β

)
µ

=(1 + β)
C − β

C + β
µ.

Thus γt+1 ≥ C−β
C+β

µ and the desired result holds.

For proving that γt ≥ µ
2
, we only need to show that C−β

C+β
≥ 1

2
, which is quite

easy to see. This inequality can be written equivalently as

2C−2β ≥ C+β ⇔ C ≥ 3β ⇔ β2+(1+β)
µ

L
≥ 9β2 ⇔ (1+β)

µ

L
≥ 8β2 =

8

25

µ

L

Since 1 + β > 1, the last inequality holds and the desired result follows. Thus,
the sequence γt, created by γ̄t as in the statement of the proposition, satisfies
the requirements of step 9.

Proposition 6.8 leads us to a more concrete version of Algorithm 6.1 with a
specific choice of hyperparameters:

152



Algorithm 6.2 Accelerated Gradient Descent for the Block Rayleigh Quotient

1: Initialize at X0 = V0 ∈ Gr(n, p) and choose shrinkage parameter β = 1
5

√
µ
L

2: Choose γ0 ≥
√

β2+(1+β) µ
L
−β√

β2+(1+β) µ
L
+β

· µ

3: for k ≥ 0 do

4: βk = argmin
η∈[0,1]

{
f(ExpVt

(ηLogVt
(Xt)))

}
5: Yt = ExpVt

(βkLogVt
(Xt))

6: 4α2
t = (1−αt)γt+αtµ

L

7: Xt+1 = ExpYt

(
− 1

L
gradf(Yt)

)
8: γ̄t+1 = (1− αt)γt + αtµ

9: γt+1 = 1
1+β

γ̄t+1

10: Vt+1 = ExpYt

(
(1−αt)γt

γ̄t+1
LogYt

(Vt)− 2αt
γ̄t+1

gradf(Yt)
)

11: end for

From now on, we use Algorithm 6.2 as our standard algorithm for the rest
of this section. Its convergence is analyzed in the next section.

6.5 Convergence

We are finally ready to complete the convergence analysis. We start with the
following simple result.

Proposition 6.9 The sequence Xt generated by Algorithm 6.2 satisfies

f(Xt)− f ∗ ≤ τt

(
f(X0)− f ∗ +

γ0
2

dist2(X0,Vα)
)
.

Proof We choose
ϕ0(X ) = f(X0) +

γ0
2

dist2(X0,Vα)

as the beginning of the estimate sequence. Then ϕ∗
0 = f(X0) and by construc-

tion of ϕ∗
t in Theorem 6.6, we get f(Xt) ≤ ϕ∗

t . The result now follows by simply
applying Proposition 6.2.

Proposition 6.9 provides a worst-case upper bound for the sub-optimality
of f and it only remains to estimate τt. Such an estimation can be easilty
obtained by the proof of Proposition 6.8.

Proposition 6.10 The sequence τt, defined recursively as τ0 = 1 and τt+1 =
(1− αt)τt, where αt comes from Algorithm 6.2 starting from a point X0 such
that

dist(X0,Vα) ≤ 1

8

√
cQ

(
δ

L

)3/4

,

153



is upper bounded as

τt ≤
(

1− 2

5

√
µ

L

)k

.

Proof We have
τt = Πt−1

i=0(1− αi)

and we only need to estimate a lower bound for αi.
The proof of Proposition 6.8 provides a lower bound for αi as

αi ≥
√

β2 + (1 + β)µ
L
− β

2
,

with β = 1
5

(
µ
L

)1/2
. This is because we proved that γi ≥ C−β

C+β
· µ, for all i by

induction and also proved that

γi ≥
C − β

C + β
· µ⇒ αi ≥

√
β2 + (1 + β)µ

L
− β

2
.

Taking into account the exact value for β, we can rewrite the lower bound
for αi as

αi ≥
√
β2 + (1 + β)µ

L
− β

2
=

1

2

√
µ

L

√ 1

25
+ 1 +

4

25

√
µ

L
− 1

5

 ≥ 2

5

√
µ

L
.

This provides the desired result.

We also rephrase the previous result in terms of iteration complexity:

Theorem 6.11 Algorithm 6.2 starting from X0 satisfying

dist(X0,Vα) ≤ 1

8

√
cQ

(
δ

L

)3/4

,

computes an estimation XT of Vα such that dist(XT ,Vα) ≤ ϵ in at most

T = O

(√
L

δ
log

f(X0)− f ∗

εδ

)
many iterates.

Proof For dist(XT ,Vα) ≤ ϵ, it suffices to have

f(XT )− f ∗ ≤ cQϵ
2δ
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by quadratic growth of f (Proposition 3.2). Using (1− c)t ≤ exp(−ct) for all
t ≥ 0 and 0 ≤ c ≤ 1, Propositions 6.9 and 6.10 give that it suffices to choose t
as the smallest integer such that

f(Xt)− f ∗ ≤ exp

(
−2

5

√
µ

L
t

)
(f(X0)− f ∗) ≤ cQϵ

2δ.

Solving for t and substituting µ = 2cQδ, we get the required statement.

Remark Since the expression√
β2 + (1 + β) µ

L
− β√

β2 + (1 + β)µ
L

+ β
· µ

is strictly increasing with respect to µ, we can choose γ0 by substituting µ with
an over-approximation, for example γ:

γ0 =

√
β2 + β + 1− β√
β2 + β + 1 + β

· γ

6.6 Implementation details and computational cost of Algorithm
6.2

A naive implementation of Step 4 of Algorithm 6.2 can become quite costly
as a simple binary search may need many function evaluations to reach βk in
a good accuracy, and as a result, many large matrix-vector multiplications.
Fortunately, we can manipulate the expressions so that it suffices to do only
two large matrix-vector multiplications. The idea for such a technique comes
from [12].

Let X be a point on Grassmann and P a search direction. We consider the
function

X (η) = ExpX (ηP ) = Span(XV cos(ηΣ)V T + U sin(ηΣ)V T ),

where X is a representative of X and UΣV T a compact SVD of P . Here Σ
is taken as a diagonal matrix and the functions sin and cos act only to its
diagonal entries.

The value of f evaluated at X (η) is

f(X (η))

=− Tr((XV cos(ηΣ)V T + U sin(ηΣ)V T )TA(XV cos(ηΣ)V T + U sin(ηΣ)V T ))

=− Tr(V cos(ηΣ)V TXTAXV cos(ηΣ)V T )− Tr(V sin(ηΣ)UTAU sin(ηΣ)V T )

− Tr(V cos(ηΣ)V TXTAU sin(ηΣ)V T )− Tr(V sin(ηΣ)UTAXV cos(ηΣ)V T )

=− Σk
i=1(cos2(ηΣi)αi + 2 sin(ηΣi) cos(ηΣi)βi + sin2(ηΣi)γi),
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Matrix n κ structure fraction of nnz
FD3D 35 000 7.0 · 103 real 1.95 · 10−4

ukerbe1 5 981 − rank-deficient, binary 4.39 · 10−4

ACTIVSg70K 69 999 2.9 · 108 real 4.87 · 10−5

boneS01 127 224 4.2 · 107 real 3.40 · 10−4

audikw 1 943 695 − rank-deficient, real 8.7 · 10−5

Table 6.1: Summary statistics of the tested matrices.

where

αi = (V TXTAXV )ii, βi = (V TXTAU)ii and γi = (UTAU)ii.

Thus, for computing the steps 4-5 of Algorithm 6.2, we need to compute the
matrix-vector products AVt and AU , where U is the first matrix in the SVD
of LogVt

(Xt). Then, we can execute binary search (or any accelerated version,
including Newton’s method) for calculating βt without needing to compute any
additional matrix-vector products with A. Moreover, these calculations are
enough to provide immediately the product AYt as

AYt = (AVt)V cos(βtΣ)V T + (AU) sin(βtΣ)V T ,

where UΣV T is the SVD of LogVt
(Xt). Thus, for computing the gradient step

(step 7) in Algorithm 6.2, we do not need to compute any new matrix-vector
products as AYt suffices for calculating gradf(Yt). Consequently, the cost of
computing one iteration of Algorithm 6.2 is two matrix-vector products. This
is more than gradient descent or conjugate gradients method [12] (that need
only one matrix-vector product), but still reasonable as accelerated gradient
descent typically features three kind of iterates (Xt, Yt, Vt).

6.7 Numerical experiments

We test the proposed method on a series of benchmark test matrices from the
SuiteSparse Matrix Collection [32] used also by [96]. The main properties of
the tested matrices, including their size n, condition number κ = λ1/λn and
other structural properties, are summarized in Table 6.1. For each of the tested
problems we also report the condition number

κR =
λ1 − λn

λk − λk+1

= O (1/δ) , (6.7.0.1)

of the Riemannian Hessian evaluated the dominant subspace with spectral gap
δ [12, 14].

We compare the efficiency of the proposed Nesterov acceleration with three
other methods: Riemannian gradient descent, Chebyshev filter in subspace
iteration, and the Riemannian conjugate gradient for block Rayleigh quotient
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Method Mat. products per iter. Required info.
Riem. gradient descent 1 –

Chebyshev filter 1 λk+1, λn

BlockRQ RCG 1 –
Nesterov acceleration 2 δ, κ

Table 6.2: Comparison of the number of matrix products with A required by each of the
methods. Riem. gradient descent and Chebyshev filter subspace method require an additional
matrix product every s iterations where s corresponds to the degree of the filter polynomial.
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(a) Problem nb 1 (k = 128, min.)
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(b) Problem nb 2 (k = 128, max.)

Figure 6.1: The FD3D matrix.

(BlockRQ RCG). We precompute the eigenvalues using eigs command in
MATLAB required to determine the optimal Chebyshev filter for the subspace
iteration and the parameters in the Nesterov acceleration and BlockRQ RCG.
The tested algorithms differ in the number of matrix-vector products that they
require per iteration, which we summarize in Table 6.2.

FD3D We generate a 3D finite difference Laplacian matrix corresponding to
the uniform grid of size 35× 40× 25 and zero Dirichlet boundary conditions,
resulting in a matrix of size 35000.

The four problems with the finite difference matrix FD3D are summarized in
Table 6.3. We experiment with computing the dominant subspace of dimension
k = 128 and also with the minimization of the Rayleigh quotient.

problem nb (FD3D) type k δk κR Cheb. degree
1 min 128 8.3 · 10−4 1.4 · 104 100
2 max 128 8.3 · 10−4 1.4 · 104 100

Table 6.3: Tested problems for the FD3D matrix (n = 35000, κ = 7.0 · 103).

In Figure 6.1 we show the convergence plots tracking the number of matrix-
vector products for problem nb 1 and 2. Overall, for both problems BlockRQ
RCG outperforms the other methods, while Nesterov Acceleration matches the
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(a) Problem nb 3 (k = 64)
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(b) Problem nb 4 (k = 128)

Figure 6.2: Comparison on ukerbe1 test matrix on problem nb 3 and 4.

slow convergence of Riem. gradient descent for the first 250 iterations after
which it starts converging at the proved rateO(1/

√
δ). The Chebyshev subspace

iteration with polynomial of degree 100 is able to match the convergence rate
of the Nesterov acceleration on problem nb 1 but not on problem nb 2.

ukerbe1 The matrix comes from a locally refined non-uniform grid of a 2D
finite element problem. Although the matrix is of a smaller size n = 5981
compared to the other tested matrices, it is a more challenging problem due to
the non-uniform grid resulting in a very high condition number. The two tested
problems are summarized in Table 6.4 and differ in the size of the subspace
k = 64 and k = 128.

problem nb (ukerbe1) type k δk κR Cheb. degree
3 max 64 1.2 · 10−3 5.2 · 103 100
4 max 128 9.4 · 10−4 6.7 · 103 100

Table 6.4: Tested problems for ukerbe1 rank-deficient matrix (n = 5981).

In Figure 6.2 we see the performance of the methods on problem nb 3 and 4
for ukerbe1 matrix. In both problems BlockRQ RCG and Chebyshev subspace
iteration eventually outperform the Nesterov acceleration. We also observe an
initial slow convergence of the Chebyshev iteration until the iteration 400 and
500 respectively.

ACTIVSg70K This large matrix models a synthetically generated power
system grid. We experiment with subspace dimension k = 32 and k = 64 as
described in Table 6.5.
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(a) Problem nb 5 (max, k = 32)
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Figure 6.3: Comparison on ACTIVSg70K test matrix on problem nb 5 and 6.

problem nb (ACTIVSg70K) type k δk κR Cheb. degree
5 max 32 2.2 · 102 1.2 · 103 50
6 max 64 2.0 · 102 1.3 · 103 50

Table 6.5: Tested problems for ACTIVSg70K matrix (n = 69 999, κ = 2.9 · 108).

Figure 6.3 shows the convergence plots for ACTIVSg70K. We see that Nesterov
acceleration outperforms the other methods on the problem with larger subspace
dimension of k = 64 (which is harder). For the problem with smaller subspace
of dimension k = 32, the Chebyshev iteration algorithm outperforms the other
methods (while being the worst performing on k = 64), which reveals its
sensitivity to choosing the correct degree of the filter polynomial.

boneS01 The second largest matrix we test is of size n = 127224 and comes
from a finite element model studying the porous bone micro-architecture. The
problem is challenging due to its large size and Riemannian condition number,
see Table 6.6

problem nb (boneS01) type k δk κR Cheb. degree
7 max 64 2.4 · 101 2.1 · 103 50
8 max 128 1.3 · 101 3.6 · 103 50

Table 6.6: Tested problems for boneS01 matrix (n = 127224, κ = 4.2 · 107).

Figure 6.4 shows the performance of the methods on boneS01. We see that
the Chebyshev subspace iteration with degree 50, while having slower conver-
gence at the beginning, outperforms the other methods. Nesterov acceleration
is the second best performing and faster than Block RQ RCG and Riemannian
gradient descent.
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(a) Prob nb 7 (max k = 64)
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Figure 6.4: Comparison on boneS01 test matrix on problem 7 and 8.

audikw 1 The largest matrix of size n = 943695 we experiment with comes
from finite elements problem modelling automotive crankshaft structure. The
problem is challenging due to its large size and its large Riemannian condition
number as can be seen in Table 6.7.

problem nb (audikw 1) type k δk κR Cheb. degree
9 max 32 4.3 · 106 5.6 · 103 25
10 max 64 1.9 · 107 1.3 · 103 25

Table 6.7: Tested problems for audikw 1 rank-deficient matrix (n = 943 695).
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(a) Prob nb 9 (max, k = 64)
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(b) Prob nb 10 (max, k = 128)

Figure 6.5: Comparison on audikw 1 test matrix on problem nb 9 and 10.

In Figure 6.5 we see the convergence results for the largest tested matrix
audikw 1. In this test, Nesterov acceleration clearly outperforms the other
methods. The Chebyshev subspace iteration algorithm does not converge,
which might be due to the wrong choice for the degree of the polynomial.
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7 Polar decomposition

We now turn to the problem of computing the polar factor of a square matrix
C ∈ Rn×n. This section follows the exposition of our work [13].

7.1 Introduction

As discussed in Section 1.2.2, computing a polar factor of a square matrix is
equivalent to an orthogonal Procrustes problem. In this section, we reveal a
convexity-like structure for this (generally non-convex) problem similar to the
one for the symmetric eigenvalue problem in Section 2. Using this convexity-
like structure, we analyze a Riemannian gradient descent algorithm in the
orthogonal group for computing the polar factor of C. This algorithm is
in general slow compared to the state-of-the-art and is presented only for
theoretical purposes.

Although we have not yet developed a concrete state-of-the-art application
of this theory, we believe it is highly likely to find use in noisy versions of
polar decomposition, analogous to the theory developed for the symmetric
eigenvalue problem. Potential applications include stochastic versions of the
problem (where only an unbiased estimate of the matrix C is available, typically
requiring the use of stochastic algorithms) and robust formulations of polar
decomposition. The latter can be to solve the optimization problem

min
X∈O(n)

max
C∈Rn×n

(
−Tr(CX)− β

s∑
i=1

∥C − Ci∥2
)
, (7.1.0.1)

where {Ci}si=1 is a set of independent observations for C and β > 0 is a
regularizer. To the best of our knowledge, traditional linear algebra techniques
cannot be applied to such problem. A more viable approach would be min-max
optimization (for instance gradient descent-ascent), for which our theory could
be of value.

7.2 Convexity-like properties of orthogonal Procrustes

We investigate now thoroughly the orthogonal Procrustes problem. This
problem concerns with finding orthogonal matrices X1 and X2 that best fit two
other matrices A,B ∈ Rm×n:

min
X1,X2∈O(n)

∥AX1 −BX2∥2F .

Since this problem is invariant under simultaneous right multiplication of
X1 and X2 with an orthogonal matrix Q ∈ Rn×n, we can fix X2 to be identity
and target only the matrix X1 ⇝ X:

min
X∈O(n)

∥AX −B∥2.
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This problem can be written equivalently as

min
X∈O(n)

−Tr(CX) =: f(X), (7.2.0.1)

where
C := BTA.

In addition, this problem has a global solution and can be found in closed
form [98]: if C = UΣV T is an SVD of C, then a global solution is X∗ = V UT .
The minimum f ∗ := f(X∗) is the opposite of the sum of the singular values of
C.

We will use this structure to prove a quasi-convexity property for the function

f(X) = −Tr(CX)

around X∗.
It is well known that the solution of the problem is unique if and only if all

the singular values of C are strictly positive, i.e. if and only if C is invertible.

Riemannian gradient: To compute the Riemannian gradient of f , we just
need to project the Euclidean gradient ∇f(X) = −CT onto the tangent space
TXO(n). This results to

gradf(X) = PX(−CT ) = −Xskew(XTCT ). (7.2.0.2)

Riemannian Hessian: For a function f defined in the orthogonal group, we
have (see [20])

Dgradf(X)[Ẋ] = Ẋskew(XT∇f(X)) + Xskew(ẊT∇f(X) + ẊT∇2f(X)[Ẋ]),

where Ẋ = XΩ is an arbitrary tangent vector. In our case, ∇f(X) = −CT

and ∇2f(X) = 0, thus

Hessf(X)[Ẋ] = −Ẋskew(XTCT )−Xskew(ẊTCT ). (7.2.0.3)

We now show a weak-quasi convexity property for f , similar to Proposition
2.6.

Proposition 7.1 (Geodesic weak-quasi convexity) Let X∗ ∈ O(n) a global
optimum of the function f : O(n)→ R. Let also X ∈ O(n) such that the eigen-
values eir of XTX∗ are such that r ∈ (−π, π). If |r|max denotes the largest
possible rotation induced by XTX∗ in absolute value, then

⟨gradf(X),−LogX(X∗)⟩ ≥ 1

2
(1 + cos(|r|max))(f(X)− f ∗).
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Proof The Riemannian gradient of f is given in equation (7.2.0.2). It remains
to compute a convenient expression for the Riemannian logarithm. According
to equation (1.3.1.10), the Riemannian logarithm is given as

LogX(X∗) = X logm(XTX∗).

As in the introduction (Section 1.2.2), we use the canonical form of the orthog-
onal matrix XTX∗:

XTX∗ = PDP T .

Since the matrix logarithm is invariant under conjugate action, we have

logm(XTX∗) = P logm(D)P T

and logm(D) is again a block diagonal matrix, with blocks being the logarithms
of the blocks of D: when D has a diagonal entry equal to 1, logm(D) has a
diagonal entry equal to 0 and when D features a 2×2 block, which is a rotation

of angle r, logm(D) features the block

[
0 −r
r 0.

]
Similarly, the skew-symmetric part of XTX∗ satisfies

skew(XTX∗) = P skew(D)P T ,

where skew(D) is again block diagonal and has a 0 diagonal entry when D has

a 1 diagonal entry, while it has a block

[
0 − sin r

sin r 0

]
when D features a 2× 2

rotation of angle r. Thus, it holds in general that

logm(D) = skew(D)
ϕ

sinϕ
,

where ϕ = (r1, . . . , rn) is a vector capturing all the rotations induced by the
orthogonal matrix XTX∗. If r = 0, i.e. corresponds to a diagonal entry equal
to 1, then it appears only once in ϕ, while if r ∈ (−π, π) \ {0} it appears as a
couple with −r.
ϕ/ sinϕ is a diagonal matrix with diagonal elements rj/ sin rj . This convention
is made for ease of notation.

Given that, we can write

LogX(X∗) = X logm(XTX∗) = XP logm(D)P T = XP skew(D)
ϕ

sinϕ
P T

= XP skew(D)P TP
ϕ

sinϕ
P T = PX(X∗)P

ϕ

sinϕ
P T .

Now we can finally deal with the desired inequality:

⟨gradf(X),−LogX(X∗)⟩ =

〈
PX(CT ), PX(X∗)P

ϕ

sinϕ
P T

〉
=〈

Xskew(XTCT ), X∗P
ϕ

sinϕ
P T

〉
= Tr

(
P

ϕ

sinϕ
P TX∗TXskew(XTCT )

)
.
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We pause to deal with the term X∗TXskew(XTCT ):

X∗TXskew(XTCT ) = X∗TX
XTCT − CX

2
=

X∗TCT −X∗TXCX

2
.

Remember that if X∗ = V UT , then C = UΣV T is an SVD of C. Thus

X∗TCT = UΣUT

and

X∗TXCX = PDTP TUΣV TV UTPDTP T = PDTP TUΣUTPDTP T .

Plugging this expression in, we get

2⟨gradf(X),−LogX(X∗)⟩ = Tr

(
P

ϕ

sinϕ
P TX∗TXskew(XTCT )

)
= Tr

(
P

ϕ

sinϕ
P T (UΣUT − PDTP TUΣUTPDTP T )

)
= Tr

(
ϕ

sinϕ
(P TUΣUTP −DTP TUΣUTPDT )

)
= Tr

(
ϕ

sinϕ
(P TUΣUTP )

)
− Tr

(
ϕ

sinϕ
(DTP TUΣUTPDT )

)
= Tr

((
ϕ

sinϕ
−DT ϕ

sinϕ
DT

)
P TUΣUTP

)
.

It suffices to show that

Tr

((
ϕ

sinϕ
−DT ϕ

sinϕ
DT

)
P TUΣUTP

)
≥ (1 + cos(|r|max))(f(X)− f ∗) =

(1 + cos(|r|max))︸ ︷︷ ︸
:=c

Tr(P TUΣUTP )︸ ︷︷ ︸
−f∗

−Tr(DTP TUΣUTP )︸ ︷︷ ︸
−f(X)

 .

This holds if

Tr

((
ϕ

sinϕ
−DT ϕ

sinϕ
DT + c(DT − I)

)
P TUΣUTP︸ ︷︷ ︸

:=A

)
≥ 0.

Notice that the matrix A is symmetric and positive semi-definite.
DT is a matrix with diagonal entries equal to 1 and 2× 2 diagonal blocks

of the form

[
cos r sin r
− sin r cos r

]
, which essentially correspond to rotations with
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−r. Multiplying with the diagonal matrix ϕ/ sinϕ from the right, keeps the
1 diagonal entries of DT unchanged, while it transforms the 2 × 2 diagonal

blocks to

[
r/ tan r r
−r r/ tan r

]
. The matrix DT ϕ

sinϕ
DT still keeps 1 in the entries

that correspond to r = 0 and has 2 × 2 diagonal blocks associated with

r ∈ (−π, π) \ {0} that are

[
r

tan r
cos r − r sin r r

tan r
sin r + r cos r

−r cos r − r
tan r

sin r r
tan r

cos r − r sin r

]
.

The matrix ϕ
sinϕ
−DT ϕ

sinϕ
DT + c(DT − I) has 1 in the diagonal entries that

DT has 1 (r = 0) and has 2× 2 diagonal blocks that correspond to rotations
with r ∈ (−π, π) \ {0}, which are[

r
sin r
− r

tan r
cos r + r sin r + c(cos r − 1) − r

tan r
sin r − r cos r + c sin r

r
tan r

sin r + r cos r − c sin r r
sin r
− r

tan r
cos r + r sin r + c(cos r − 1)

]
.

Notice that this last 2× 2 matrix is of the form

[
α β
−β α

]
.

The expression Tr
((

ϕ
sinϕ
−DT ϕ

sinϕ
DT + c(DT − I)

)
A
)

that we want to

prove nonnegative is the sum of the traces of the product of the diagonal
entries of ϕ

sinϕ
− DT ϕ

sinϕ
DT + c(DT − I) that correspond to r = 0 (i.e. 1)

with the corresponding diagonal entries of A and the 2× 2 diagonal blocks of
ϕ

sinϕ
−DT ϕ

sinϕ
DT + c(DT − I) with the corresponding 2×2 diagonal blocks of A.

In the first case we get back the diagonal entries of A (which are nonnegative)

and in the second case we have the product of a matrix of the form

[
α β
−β α

]
with one of the form

[
s t
t k

]
, since A is symmetric. The diagonal entries of

this product (which are the ones that contribute in the trace) are αs + βt and
−βt + αk. Their sum is α(s + t), thus it suffices to show that this expression
is nonnegative, i.e. that α is nonnegative since s and t are nonnegative as
diagonal entries of the positive semi-definite matrix A.

Remember that α has been taken as

α : =
r

sin r
− r

tan r
cos r + r sin r + (1 + cos(|r|max))︸ ︷︷ ︸

c

(cos r − 1)

≥ r

sin r
− r

tan r
cos r + r sin r + (1 + cos r)(cos r − 1),

since r ≤ |r|max and cos r − 1 ≤ 0. The last lower bound for α turns out to be
positive for all r ∈ (−π, π), thus our proof is complete.
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We now examine a property for f known as quadratic growth. This property
gives a non-trivial inequality only in the case that the Procrustes problem has
a unique solution (i.e. if and only if C is non-singular). This is similar to
Proposition 2.4.

Proposition 7.2 (Quadratic growth) Let X∗ ∈ O(n) to be a global mini-
mizer for f and X ∈ O(n) in the same connected component. Then f satisfies

f(X)− f ∗ ≥ 2σmin(C)

π2
dist2(X,X∗),

where σmin(C) is the smallest singular value of C.

Proof Recall that if C = UΣV T is an SVD of C, then X∗ = V UT is a global
minimizer. Consider again the canonical form of the orthogonal matrix XTX∗:

XTX∗ = PDP T .

Then, we have

f(X)− f ∗ = −Tr(CX) + Tr(CX∗) = Tr(P TUΣUTP )− Tr(UΣUTPDTP T )

= Tr((I −DT ) P TUΣUTP︸ ︷︷ ︸
pos. semi-definite

)

Let us denote again A := P TUΣUTP , which is symmetric and positive
semi-definite. The matrix I −DT has diagonal entries equal to 0 for rotations
r = 0, diagonal entries equal to 2 for r = π and 2× 2 diagonal blocks of the

form

[
1− cos r sin r
− sin r 1− cos r

]
for rotations with angle r ∈ (−π, π) not 0. Thus,

the diagonal entries of the product (I −DT )P TUΣUTP are either 0 for entries
that correspond to no rotation, i.e. (1− cos r)Aii, or the diagonal entries of a
product of the form [

1− cos r sin r
− sin r 1− cos r

] [
s t
t k

]
.

These are (1− cos r)s + sin rt and − sin rt + (1− cos r)k. Since summing them
makes the terms sin rt to cancel out, we get

Tr((I −DT )P TUΣUTP ) = Tr((I − cosϕ)P TUΣUTP ),

where ϕ = (r1, . . . , rn) a vector capturing all the rotations between X and X∗.
If rj = 0 or π, then it appears only once, if rj ̸= 0, π it appears coupled with
its opposite −r. Notice that

∥ϕ∥ = dist(X,X∗).
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Since for all r it holds r ∈ (−π, π], we have

1− cos r ≥ 2

π2
r2.

By basic properties of the trace, we have

Tr((I − cosϕ)P TUΣUTP ) ≥ λmin(P TUΣUTP ) Tr(I − cosϕ) ≥ 2σmin(C)

π2
∥ϕ∥2.

The last inequality completes the proof.

We can combine Propositions 7.1 and 7.2 to a more compact form, which
we call weak-quasi-strong convexity (WQSC). This is similar to Theorem 2.7.

Interestingly, the role of a strong convexity constant µ is played by a multiple
of σmin(C). That is to say, the further away from being singular C is, the
stronger this property becomes. If C is singular, the derived inequality reduces
to weak-quasi convexity (Proposition 7.1, but with slightly weaker parameters).

Proposition 7.3 (Weak-quasi-strong convexity) For any X satisfying the
properties of Propositions 7.1, 7.2, f satisfies the following inequality:

f(X)− f ∗ ≤ 1

a(X)
⟨gradf(X),−LogX(X∗)⟩ − µ

2
dist2(X,X∗)

with a(X) := 1+cos(|r|max)
4

and µ := 4σmin(C)
π2 . |r|max < π is the largest rotation

in absolute value induced by the orthogonal matrix XTX∗.

Proof For the specific choices of a(X) and µ, we have

µ

2
dist2(X,X∗) ≤ f(X)− f ∗ ≤ 1

2a(X)
⟨gradf(X),−LogX(X∗)⟩.

The left inequality is derived by Proposition 7.2 and the right one by Proposition
7.1.

Now, again by Proposition 7.1, we have

f(X)− f ∗ ≤ 1

2a(X)
⟨gradf(X),−LogX(X∗)⟩+

µ

2
dist2(X,X∗)− µ

2
dist2(X,X∗)

≤ 1

a(X)
⟨gradf(X),−LogX(X∗)⟩ − µ

2
dist2(X,X∗)

by substituting the previous inequality.

We close this exploration around a convexity-like structure for f , by exam-
ining its smoothness properties.
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Proposition 7.4 (Smoothness) f is geodesically σmax(C)−smooth.

Proof It suffices to show that the eigenvalues of the Riemannian Hessian
at X are upper bounded in absolute value by σmax(C) for all X. For our
computations, we follow the exposition of [20]:

⟨Ẋ,Hessf(X)[Ẋ]⟩ = Tr(ẊT Ẋskew(−XTCT )) + Tr(ẊTXskew(−ẊTCT )).

The first term is 0 as the trace of the product of a symmetric and skew-
symmetric matrix. The second term becomes

Tr(ẊTXskew(−ẊTCT )) =
1

2
Tr(ẊTXCẊ − ẊTXẊTCT ).

Substituting ẊTX = ΩT , we get

1

2
Tr(ẊTXCX − ẊTXẊTCT ) =

1

2
Tr(ΩTCẊ − ΩT ẊTCT ) =

1

2
Tr(ΩTCẊ + ΩẊTCT ) = Tr(ΩTCẊ) = Tr(ΩTCXΩ) = Tr(CXΩΩT ).

The last expression features the trace of the product of the matrix CX with
the symmetric and positive semi-definite matrix ΩΩT . By basic facts in lin-
ear algebra, we can upper bound the absolute value of this expression by
σmax(CX) Tr(ΩΩT ). Since X is orthogonal, we have that σmax(CX) = σmax(C).
Also Tr(ΩΩT ) = Tr(ẊẊT ) = ∥Ẋ∥2. Putting it all together, we get

|⟨Ẋ,Hessf(X)[Ẋ]⟩| ≤ σmax(C)∥Ẋ∥2

and the desired result follows.

As it is customary, we denote

L := σmax(C).

We conclude this section with a small technical lemma that allows us to
show that gradient descent with a properly chosen step size is well-defined in
the sense that the direction used for update belongs in the injectivity domain
(1.3.1.8).

Lemma 7.5 The Riemannian gradient of f evaluated at X is of the form XΩ,
for a skew-symmetric matrix Ω with

∥Ω∥2 ≤ σmax(C).

Proof The Riemannian gradient of f at X is

gradf(X) = Xskew(XTCT ),
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thus Ω is taken as skew(XTCT ). By the sub-additivity of the spectral norm
and its invariance under multiplication with orthogonal matrices, we have

∥Ω∥2 = ∥skew(XTCT )∥2 ≤
∥XTCT∥2 + ∥CX∥2

2
=
∥CT∥2 + ∥C∥2

2
.

This gives the desired result.

7.3 Convergence of Riemannian gradient descent

Riemannian gradient descent applied to a function f : O(n)→ R reads as

Xt+1 = ExpXt
(−ηtgradf(Xt)), (7.3.0.1)

with ηt > 0 being the step size.
The results of Section 7.2 guarantee a local (non-asymptotic) linear conver-

gence rate for Riemannian gradient descent on f in the case that C is invertible,
if ran with a properly chosen step size and the initial guess X0 is sufficiently
close to the optimum. We again emphasize that this is not a practical algorithm
and is presented for theoretical purposes and to match the discussion of Section
2.

Proposition 7.6 Let Xt and X∗ be such that the largest rotation |r|max induced
by the orthogonal matrix XT

t X
∗ satisfies |r|max < π. Then, iteration (7.3.0.1)

with 0 ≤ ηt ≤ a(Xt)/L satisfies

dist2(Xt+1, X
∗) ≤

(
1− 4

π2
σmin(C)a(Xt)ηt

)
dist2(Xt, X

∗),

with a(Xt) defined as in Proposition 7.3.

Proof We start by showing that iteration (7.3.0.1) is well-defined. By the

assumption |r|max < π, we get that 0 < a(Xt) = 1+cos(|r|max))
4

≤ 1
2
. By Lemma

7.5, the tangent vector ηtgradf(Xt) that is used to update iteration (7.3.0.1)
can be written as XΩ, with ∥Ω∥2 ≤ ηtσmax(C). By the definition of ηt, we have
that

∥Ω∥2 ≤
a(Xt)

L
σmax(C) =

a(Xt)

σmax(C)
σmax(C) ≤ 1

2
.

Thus, ηtgradf(Xt) is inside the injectivity domain (1.3.1.8) and, as a conse-
quence, iteration (7.3.0.1) is well-defined.

We can now apply Proposition 1.15 to obtain

dist2(Xt+1, X
∗) ≤ ∥ − ηtgradf(Xt)− LogXt

(X∗)∥2

= η2t ∥gradf(Xt)∥2 + dist2(Xt, X
∗) + 2ηt σ (7.3.0.2)
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with
σ := ⟨gradf(Xt),LogXt

(X∗)⟩.
Propositions 7.3 and 7.4 (see also Proposition (1.21)) give

σ

a(Xt)
≤ f ∗ − f(Xt)−

2σmin(C)

π2
dist2(Xt, X

∗)

≤ − 1

2L
∥gradf(Xt)∥2 −

2σmin(C)

π2
dist2(Xt, X

∗).

Multiplying by 2a(Xt) ηt and using ηt ≤ a(Xt)/L, we get

2ηtσ ≤ −
a(Xt)ηt

L
∥gradf(Xt)∥2 −

4σmin(C)

π2
a(Xt)ηtdist2(Xt, X

∗)

≤ −η2t ∥gradf(Xt)∥2 −
4σmin(C)

π2
a(Xt)ηtdist2(Xt, X

∗).

Substituting into equation (7.3.0.2), we obtain the desired result.

Theorem 7.7 (Convergence of RGD for the procrustes problem) Let
C be invertible (σmin(C) > 0) and X∗ the (unique) minimizer of f . Then, Rie-
mannian gradient descent (7.3.0.1) in the orthogonal group, starting by a point
X0 ∈ O(n) such that

dist(X0, X
∗) < π,

and ran with fixed step size

ηt ≡ η ≤ 1 + cos(dist(X0, X
∗))

4σmax(C)
,

produces iterates Xt that satisfy

dist2(Xt, X
∗) ≤

(
1− 1

π2
(1 + cos(dist(X0, X

∗)))σmin(C)η

)t

dist2(X0, X
∗).

Proof We do the proof by induction.
For t = 0, the inequality is trivially true.
We now assume that the inequality is true for t and we wish to show that it

is true also for t + 1.
Since dist(Xt, X

∗) ≤ dist(X0, X
∗), we also get that the largest possible

rotation |r(Xt, X
∗)|max induced by XT

t X
∗ satisfies

|r(Xt, X
∗)|max ≤

√√√√ n∑
i=1

ri(Xt, X∗)2 = dist(Xt, X
∗) ≤ dist(X0, X

∗),
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where ri(Xt, X
∗) are the rotations induced by the matrix XT

t X
∗. The equality

in the previous derivation comes from equation (1.3.1.11).
By the definition of a(Xt) in Proposition (7.3), we have

a(Xt) =
1 + cos(|r(Xt, X

∗)|max)

4
≥ 1 + cos(dist(X0, X

∗))

4
,

thus η ≤ a(Xt)/L.
Since η satisfies the previous bound, the outcome of Proposition 7.6 holds,

and combining it with the induction hypothesis, we get

dist2(Xt+1, X
∗) ≤

(
1− 4

π2
σmin(C)a(Xt)η

)
dist2(Xt, X

∗) ≤(
1− 1

π2
(1 + cos(dist(X0, X

∗)))σmin(C)η

)
dist2(Xt, X

∗) ≤(
1− 1

π2
(1 + cos(dist(X0, X

∗)))σmin(C)η

)t+1

dist2(X0, X
∗).

This concludes the induction.

Remark 7.1 If C is singular, then the previous theorem only states that the
distances of the iterates of gradient descent to the set of optima do not increase.
In that case we can still prove an algebraic convergence rate for the function
values of Riemannian gradient descent based only on weak-quasi convexity.

Remark 7.2 The assumption dist(X0, X
∗) < π allows to bound globally |r(Xt, X

∗)|max

from above by dist(X0, X
∗) and as a result keep the quantity 1+cos(|r(Xt, X

∗)|max)
far away from 0 over the course of gradient descent. Intuitively, it does not
allow the algorithm to go too close to non-optimal critical points. Gradient
descent would not stick to non-optimal critical points, but it would probably
slow down a lot.

We close this section by showing an algebraic convergence rate for gradient
descent that covers also the case that C is singular.

Theorem 7.8 Gradient descent applied to f for any square non-zero matrix
C, starting from X0 ∈ O(n) such that

dist(X0, X
∗) < π

and with fixed step size

η ≤ 1 + cos(dist(X0, X
∗))

4σmax(C)
,
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produces iterates Xt that satisfy

f(Xt)− f ∗ ≤
2L + 1

η

(1 + cos(dist(X0, X∗)))t + 4
dist2(X0, X

∗) = O
(

1

t

)
.

Proof Since we still satisfy all the hypotheses of Theorem 7.7, we know that
for all t ≥ 0 it holds dist(Xt, X

∗) ≤ dist(X0, X
∗) < π. This implies that

a(Xt) ≥
1 + cos(dist(X0, X

∗))

4
> 0,

which implies that the function f is weakly-quasi-convex (Proposition 7.1) at
every Xt such that:

⟨gradf(Xt),−LogX(X∗)⟩ ≥ 1

2
(1 + cos(dist(X0, X

∗)))(f(Xt)− f ∗).

Denoting C0 := 1+cos(dist(X0,X∗))
4

and ∆t := f(Xt)− f ∗, we can write

2C0∆t ≤ ⟨gradf(Xt),−LogXt
(X∗)⟩. (7.3.0.3)

Similarly to the proof of Proposition 7.6, by the hypothesis on the step size
ηt, Lemma 7.5 shows that −ηtXt+1 is in the injectivity domain of exp at Xt.
Hence, by the definition of Riemannian gradient descent, we have

LogXt
(Xt+1) = −ηgradf(Xt). (7.3.0.4)

In addition, the smoothness property of f (Proposition 7.4) gives

∆t+1 −∆t ≤ ⟨gradf(Xt),LogXt
(Xt+1)⟩+

L

2
dist2(Xt, Xt+1).

Substituting (7.3.0.4), we obtain

∆t+1 −∆t ≤
(
−η +

L

2
η2
)
∥gradf(Xt)∥2 ≤ 0. (7.3.0.5)

By Proposition 1.15, we have

dist2(Xt+1, X
∗) ≤ dist2(Xt, Xt+1)+dist2(Xt, X

∗)−2⟨LogXt
(Xt+1),LogXt

(X∗)⟩.

Substituting (7.3.0.4) into the above and rearranging terms gives

2η⟨gradf(Xt),−LogXt
(X∗)⟩ ≤ dist2(Xt, X

∗)−dist2(Xt+1, X
∗)+η2∥gradf(Xt)∥2.

Combining with (7.3.0.3), we get

∆t ≤
1

4C0η
(dist2(Xt, X

∗)− dist2(Xt+1, X
∗)) +

η

4C0

∥gradf(Xt)∥2. (7.3.0.6)
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Now multiplying (7.3.0.5) by 1
C0

and summing with (7.3.0.6) gives

1

C0

∆t+1 −
(

1

C0

− 1

)
∆t ≤

1

4C0η
(dist2(Xt, X

∗)− dist2(Xt+1, X
∗))

+
1

C0

(
−η +

L

2
η2 +

η

4

)
∥gradf(Xt)∥2. (7.3.0.7)

By assumption, we have η ≤ C0/L, where 0 < C0 = (1+cos(dist(X0, X
∗)))/4 ≤

1
2

and L > 0. Since

η

C0

(
−1 +

L

2
η +

1

4

)
≤ η

C0

(
C0

2
− 3

4

)
≤ −1

2

η

C0

< 0.

Inequality (7.3.0.7) can be simplified to

1

C0

∆t+1 −
(

1

C0

− 1

)
∆t ≤

1

4C0η
(dist2(Xt, X

∗)− dist2(Xt+1, X
∗)).

Summing from 0 to t− 1 gives

1

C0

∆t +
t−1∑
s=1

∆s −
(

1

C0

− 1

)
∆0 ≤

1

4C0η

(
dist2(X0, X

∗)− dist2(Xt, X
∗)
)
.

From Proposition 7.4 (and its implication presented in the first bullet point of
Proposition 1.21 with y ⇝ X0 and x⇝ X∗), we get

∆0 ≤
L

2
dist2(X0, X

∗).

Combining these two inequalities leads to

1

C0

∆t +
t−1∑
s=0

∆s ≤
1

C0

∆0 +
1

4C0η
dist2(X0, X

∗)

≤ 1

2C0

(
L +

1

2η

)
dist2(X0, X

∗).

Since (7.3.0.5) holds for all t ≥ 0, it also implies ∆t ≤ ∆s for all 0 ≤ s ≤ t.
Substituting

t∆t ≤
t−1∑
s=0

∆s

into the inequality from above, we obtain

∆t ≤
1

2C0

L + 1
2η

1
C0

+ t
dist2(X0, X

∗) =
L + 1

2η

2(C0t + 1)
dist2(X0, X

∗).

After substituting C0, the last inequality provides the desired convergence rate.

173



8 The importance of weak-quasi-strong convexity in
optimization

As promised in the introduction, we show that WQSC is a necessary property
for gradient descent applied to an L-smooth optimization problem to have
linear convergence with respect to distances of the iterates to some optimum.
A similar result but for the connection between the PL condition and linear
convergence with respect to function values has been proved in [1] (Theorem
5). We follow here the exposition of our work [7] with minor modifications.

8.1 Introduction

As discussed in Section 1.2.2, a function is said to satisfy a WQSC condition if it
satisfies Definition 1.6. Notice that Definition 1.6 assumes that the optimum is
unique in the domain of interest. This definition (or rather Definition 1.22 about
geodesic WQSC) is enough for the cases of the symmetric eigenvalue problem
(Theorem 2.7) and polar decomposition (Proposition 7.3), as the optima in
these cases are isolated (given that the spectral gap and the smallest singular
value are positive respectively). We give here a slightly more general definition
that includes also the case that the optima form a continuum. This type of
definition is more popular in the literature, see for instance [78] (Definition 1)
or [56] (Appendix A).

Definition 8.1 (Weak-quasi-strong convexity (WQSC)) A function
f : Rn → R with a convex set of global optima X∗ := argminx∈Rnf(x) is called
(a, µ)-weak-quasi-strongly convex (WQSC) in a set E ⊆ Rn, if there exist
constants a, µ > 0 such that

f(x)− f ∗ ≤ 1

a
⟨∇f(x), x− xp⟩ −

µ

2
∥x− xp∥2, ∀x ∈ E,

where xp is the projection of x onto X∗.

Remark 8.1 Notice that the set of optima X∗ is assumed to be convex. This
assumption is necessary to ensure that the projection onto this set is well-
defined. An interesting class of non-convex functions with convex set of optima
is quasi-convex functions (all level sets of a quasi-convex function are convex,
thus also the set of optima).

In this section, we will be refering to (a, µ)-WQSC property in the slightly
more general sense of Definition 8.1.

Proposition 8.2 If f is (a, µ)-WQSC in a set E, then it also satisfies the PL
condition

∥∇f(x)∥2 ≥ 2µa2(f(x)− f ∗)

in E.
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Proof The proof is similar to the one of Lemma 3.2 in [25]. For completeness
though we re-analyze it as we now allow multiple global optima.

If f is (a, µ)-WQSC, then we have

f(x)− f ∗ ≤ 1

a
⟨∇f(x), x− xp⟩ −

µ

2
∥x− xp∥2, ∀x ∈ E,

where xp is the projection of x onto the set of global optima.
We can write

⟨∇f(x), x− xp⟩ ≤
ρ

2
∥∇f(x)∥2 +

1

2ρ
∥x− xp∥2,

for all ρ > 0.
Combining the two inequalities, we get

f(x)− f ∗ ≤ ρ

2a
∥∇f(x)∥2 +

1

2aρ
∥x− xp∥2 −

µ

2
∥x− xp∥2.

Choosing ρ = 1
aµ

, the two last terms in the right hand side cancel out, and

the inequality becomes

f(x)− f ∗ ≤ 1

2a2µ
∥∇f(x)∥2, ∀x ∈ E,

which gives the desired result after a rearrangement.

WQSC in the form of Definition 8.1 can guarantee linear convergence of the
gradient descent algorithm with respect to the distances of the iterates to the
set of of optima X∗. We recall an iterate of the gradient descent as

x̃ = x− η∇f(x). (8.1.0.1)

Proposition 8.3 Consider the optimization problem

min
x∈Rn

f(x),

where f : Rn → R is L-smooth and (a, µ)-WQSC in E. An iterate x̃ of (8.1.0.1)
starting from x ∈ E with step size 0 ≤ η ≤ a/L satisfies

∥x̃− x̃p∥2 ≤ (1− aµη)∥x− xp∥2.

Here, x̃p is the projection of x̃ onto X∗ = argminx∈Rnf(x), while xp is that of
x.

Proof The proof is a simple adaptation of Lemma 4.2 in [25]. The difference
is that, in this result, the global optimum is not necessarily unique. We state
it here for completeness.
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We inspect the quantity ∥x̃− xp∥2. We have

∥x̃− xp∥2 = ∥x− η∇f(x)− xp∥2 = ∥x− xp∥2 − 2η⟨∇f(x), x− xp⟩+ η2∥∇f(x)∥2.
(8.1.0.2)

Notice that since f is L-smooth, we have (by Proposition 1.2) that

f(x)− f ∗ ≥ 1

2L
∥∇f(x)∥2,

By (a, µ)-WQSC of f (Definition 8.1), we have

−1

a
⟨∇f(x), x− xp⟩ ≤ f ∗ − f(x)− µ

2
∥x− xp∥2

and combining with the previous inequality we get

−1

a
⟨∇f(x), x− xp⟩ ≤ −

1

2L
∥∇f(x)∥2 − µ

2
∥x− xp∥2.

We now multiply this inequality by 2ηa on both sides:

−2η⟨∇f(x), x− xp⟩ ≤ −
ηa

L
∥∇f(x)∥2 − ηµa∥x− xp∥2.

Substituting in (8.1.0.2), we get

∥x̃− xp∥2 ≤ (1− aµη)∥x− xp∥2 +
(
η2 − ηa

L

)
∥∇f(x)∥2

and since 0 ≤ η ≤ a
L

, we have

∥x̃− xp∥2 ≤ (1− aµη)∥x− xp∥2.

By noticing that ∥x̃− x̃p∥ ≤ ∥x̃− xp∥ since x̃p is the projection of x̃ to the set
of optima, we get the desired result.

8.2 Necessity of WQSC

We now pass to the main result of this section, which is essentially the inverse of
Proposition 8.3. That is to say, WQSC is in some sense the bare minimum that
an L-smooth optimization problem must satisfy, such that gradient descent
converges linearly with respect to intrinsic distances. The backbone of the
proof is the same as Theorem 5 in [7], but it has two small differences in order
to make it work for the case of WQSC in the sense of Definition 8.1: i) the
contraction quantity in the linear rate is assumed to be proportional to the
step-size, ii) a limit argument is used at the end, examining the inequality
derived in [7] for arbitrarily small step sizes. For this limit argument to work,
we need to assume a linear convergence rate for all step sizes η close to 0. This
assumption is (totally) realistic though as it is supported by the conclusion of
Proposition 8.3.
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Theorem 8.4 Let f : Rn → R be continuously differentiable, bounded below,
L-smooth (see Definition 1.1) and the set of its global optima X∗ is convex.
Consider the optimization problem

min
x∈Rn

f(x).

Assume that there exist constants η and d such that the new iterate x̃ of (8.1.0.1)
started from any x ∈ E ⊆ Rn and with any step size η ∈ (0, η) satisfies

∥x̃− x̃p∥2 ≤ (1− dη)∥x− xp∥2,

where xp and x̃p are the projections of x and x̃ respectively onto X∗. Then, f
is (a, µ)-WQSC in E with parameters

a :=
d

2L
, µ :=

L

2
.

Proof Let x ∈ E and x̃ the result of one iteration of gradient descent (8.1.0.1).
We first rewrite the term ∥x̃− x̃p∥2:

∥x̃− x̃p∥2 = ∥x− η∇f(x)− x̃p∥2

= ∥x− x̃p∥2 − 2η⟨∇f(x), x− x̃p⟩+ η2∥∇f(x)∥2.

For ease of notation, we set c := dη. This equality together with the contraction
assumption gives

∥x−x̃p∥2−2η⟨∇f(x), x−x̃p⟩+η2∥∇f(x)∥2 ≤ (1−c)∥x−xp∥2 ≤ (1−c)∥x−x̃p∥2.

The second inequality follows from the fact that xp is the projection of x onto
X∗ (as defined in Definition 8.1). The derived inequality can thus be rewritten
as

2η⟨∇f(x), x− x̃p⟩ ≥ c∥x− x̃p∥2 + η2∥∇f(x)∥2. (8.2.0.1)

Next, we use the inequality

⟨y, z⟩ ≤ ρ

2
∥y∥2 +

1

2ρ
∥z∥2

that holds for all y, z ∈ Rn and any ρ > 0 to obtain

ρ

2
∥∇f(x)∥2 ≥ ⟨∇f(x), x− x̃p⟩ −

1

2ρ
∥x− x̃p∥2.

Multiplying both sides by 2η2

ρ
, we get

η2∥∇f(x)∥2 ≥ 2η2

ρ
⟨∇f(x), x− x̃p⟩ −

η2

ρ2
∥x− x̃p∥2.
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Combining this with (8.2.0.1), we get

2η⟨∇f(x), x− x̃p⟩ ≥ c∥x− x̃p∥2 +
2η2

ρ
⟨∇f(x), x− x̃p⟩

− η2

ρ2
∥x− x̃p∥2,

or equivalently(
2η − 2η2

ρ

)
⟨∇f(x), x− x̃p⟩ ≥

(
c− η2

ρ2

)
∥x− x̃p∥2.

Since the last inequality holds for any ρ > 0, we choose ρ := 2η√
c

so that it

becomes

2η

(
1−
√
c

2

)
⟨∇f(x), x− x̃p⟩ ≥

3c

4
∥x− x̃p∥2

=
c

4
∥x− x̃p∥2 +

c

2
∥x− x̃p∥2.

By L-smoothness of f we have (substitute y ⇝ x, x⇝ x̃p in Equation (2.1.6)
of Theorem 2.1.5 of [80])

∥x− x̃p∥2 ≥
2

L
(f(x)− f ∗),

and using that to bound the last term of the previous inequality, we have

2η

(
1−
√
c

2

)
⟨∇f(x), x− x̃p⟩ ≥

c

4
∥x− x̃p∥2 +

c

L
(f(x)− f ∗).

Rearranging, we get

f(x)− f ∗ ≤ 2Lη
1−

√
c
2

c
⟨∇f(x), x− x̃p⟩ −

L

4
∥x− x̃p∥2.

Since c = dη, we substitute and obtain

f(x)− f ∗ ≤ 2L
1−

√
dη
2

d
⟨∇f(x), x− x̃p⟩ −

L

4
∥x− x̃p∥2,

for all η ∈ (0, η̄).
Taking the limit η −→ 0 in both sides of this inequality, we have that

x̃ −→ x and, since the metric projection onto a convex set is a continuous
function, also that x̃p −→ xp. Putting everything together, we have the desired
result:

f(x)− f ∗ ≤ 2L

d
⟨∇f(x), x− xp⟩ −

L

4
∥x− xp∥2.
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We believe that Theorem 8.4 is a deep result, since it states that an L-smooth
optimization problem is solvable via gradient descent with a linear convergence
rate with respect to distances of the iterates to the set of optima if and only
if it is weak-quasi-strongly convex. A valuable role is played by the scaling
depending on the constant a. Versions of WQSC have mainly appeared in the
literature without the 1/a scaling in front of the inner product in Definition
8.1 see ([78], Definition 1 and [56], Appendix A). This scaling gives a weaker
property (what we call “quasi” in naming WQSC), which is still sufficient
though to guarantee linear convergence of gradient descent with respect to
distances of the iterates to the set of optima (Proposition 8.3). Moreover, it
has enough expressive power to include important problems like the symmetric
eigenvalue problem and polar decomposition. Even more importantly, it is also
a necessary property for this type of convergence (the result of Theorem 8.4
would not be possible without the 1/a scaling).

Now we give a simple but fundamental corollary that connects the two types
of convergence (with respect to distances and function values).

Corollary 8.5 Consider a function f : Rn → R and the problem

min
x∈Rn

f(x).

If f is L-smooth with a convex set of global optima and an iterate x̃ of gradient
descent (8.1.0.1) starting from any x ∈ Rn with any step size η ∈ (0, 2/L)
satisfies

∥x̃− x̃p∥2 ≤ (1− dη)∥x− xp∥2,
for a constant d ∈ (0, 1/η), then an iterate x̄ of (8.1.0.1) starting from x with
step size η̄ ∈ (0, 2/L) satisfies

f(x̄)− f ∗ ≤
(

1−
(

2

L
− η̄

)
d2η̄

8

)
(f(x)− f ∗).

Proof Since an iterate of gradient descent contracts with respect to the distance
from X∗, Theorem 8.4 implies that f is (a, µ)-WQSC, with a = d

2L
and µ = L

2
.

By Proposition 8.2, we have that f satisfies the PL condition

∥∇f(x)∥2 ≥ 2µa2(f(x)− f ∗) = 2
L

2

d2

4L2
(f(x)− f ∗) =

d2

4L
(f(x)− f ∗).

By Proposition 1.5 for a general step size η̄ (Proposition 1.5 is for η̄ = 1
L

but the adaptation for a general step size is straightforward), we have that
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x̄ = x− η̄∇f(x) satisfies

f(x̄)− f ∗ ≤
(

1− η̄(2− η̄L)
d2

8L

)
(f(x)− f ∗)

=

(
1−

(
2

L
− η̄

)
d2η̄

8

)
(f(x)− f ∗).

Remark: In Corollary 8.5 we pass from linear convergence with respect to
distances to linear convergence with respect to function values. We lose
something from the sharpness of the contraction though: if η̄ = 1

L
and x̃ ≡ x̄ =

x− η̄∇f(x), then starting from a rate

∥x̃− x̃p∥2 ≤ (1− dη̄)∥x− xp∥2

yields to a rate

f(x̄)− f ∗ ≤
(

1− d2η̄2

8

)
(f(x)− f ∗).

As dη̄ < 1, the latter rate is slower.

8.3 The manifold case

In this section, we extend our main result to Riemannian gradient descent
in a complete Riemannian manifold M of sectional curvatures bounded from
above. This analysis mainly consists of combining the technique of Theorem
8.4 with standard geometric bounds, it is still a valuable result though since
the main problems that concern us in this thesis (i.e. the symmetric eigenvalue
problem and polar decomposition) are naturally posed on some manifold. For
completeness, we start first with a general analysis of Riemannian gradient
descent under geodesic L-smoothness and WQSC (Lemma 2.9 and Proposition
7.6 take into account that the relevant manifold is of nonnegative sectional
curvatures). Geodesic L-smoothness has been defined in Definition 1.19, while
geodesic WQSC in Definition 1.22. However, here we go with a slightly more
general definition allowing multiple global optima forming a geodesically convex
set in the spirit of Definition 8.1.

Definition 8.6 • A geodesically convex subset X∗ of a complete Riemannian
manifold M is one such that every two points inside it are connected by
some geodesic.

• A function f : M → R defined in a complete manifold M and with a
geodesically convex set of global optima X∗ = argminx∈Mf(x) is called
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geodesically (a, µ)-WQSC in a subset E ⊆ M, if the projection of any
point of E onto X∗ is unique and it holds

f(x)− f ∗ ≤ 1

a
⟨gradf(x),−Logx(xp)⟩ −

µ

2
dist2(x, xp), ∀x ∈ E,

where xp is the projection of x onto X∗.

Remark: Pay attention on the statement “if the projection of any point of E
onto X∗ is unique”. In Riemannian manifolds, the uniqueness of projection
becomes trickier. We adopt this simple statement in order to avoid getting too
deep into the matter, but, in general, the uniqueness of projection of a point
p to a set X∗ is equivalent with the strict convexity of the distance function
d : X∗ → R:

d(x) = dist(x, p).

For manifolds of nonpositive sectional curvatures (i.e. Euclidean and hyperbolic
spaces), the distance function from any point to any closed and geodesically
convex set is always strictly convex, thus the projection is always unique. In
manifolds that attain some positive sectional curvatures though, the situation
is not that simple. Take for example a sphere, choose two poles, consider the
northern hemisphere as the closed and geodesically convex subset of interest,
and try to project the south pole onto it. Then, all the points in the equator
are potential candidates. A general bound about the convexity of the distance
function in manifolds of positive curvatures is given in [10] (Corollary 2.1).

Similarly as before, we recall an iterate of Riemannian gradient descent as

x̃ = expx(−ηgradf(x)) (8.3.0.1)

Proposition 8.7 Let M be a complete Riemannian manifold of sectional
curvatures bounded from below by kmin. Consider the optimization problem

min
x∈M

f(x),

where f :M→ R is geodesically L-smooth in M and (a, µ)-WQSC in a subset
E ⊆ M as in Definition 8.6. If x̃ is produced by one iterate of Riemannian
gradient descent (8.3.0.1) starting from x ∈ E with η ≤ a

ζL
, where ζ is defined

as

ζ :=

{ √
−kmindist(x,xp)

tanh(
√
−kmindist(x,xp))

, kmin < 0

1 , kmin ≥ 0,

then we have
dist2(x̃, x̃p) ≤ (1− aµη)dist2(x, xp),

where xp is the unique projection of x onto X∗, while x̃p is some projection of
x̃ onto X∗.
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Proof Take an arbitrary x ∈ E and x̃ the result of one iterate of Riemannian
gradient descent (8.3.0.1).

By Lemma 6 in [118] combined with Lemma 2 in [10] (applied to the geodesic
triangle ∆xx̃xp), we have that

dist2(x̃, xp) ≤ ζdist2(x, x̃) + dist2(x, xp)− 2⟨Logx(x̃),Logx(xp)⟩, (8.3.0.2)

where ζ is

ζ :=

{ √
−kmindist(x,xp)

tanh(
√
−kmindist(x,xp))

, kmin < 0

1 , kmin ≥ 0.

By noticing that Logx(x̃) = −ηgradf(x) by the structure of Riemannian
gradient descent, we can rewrite this inequality as

dist2(x̃, xp) ≤ dist2(x, xp)− 2η⟨gradf(x),−Logx(xp)⟩+ ζη2∥gradf(x)∥2.
(8.3.0.3)

By geodesic (a, µ)-WQSC (Definition 8.6), we have that

−2η⟨gradf(x),−Logx(xp)⟩ ≤ −2ηa(f(x)− f ∗)− aµηdist2(x, xp).

Applying L-smoothness, we have

−2η⟨gradf(x),−Logx(xp)⟩ ≤ −
ηa

L
∥gradf(x)∥2 − aµηdist2(x, xp).

Plugging that in (8.3.0.3), we obtain

dist2(x̃, xp) ≤ (1− aµη)dist2(x, xp) +
(
ζη2 − ηa

L

)
∥gradf(x)∥2.

Since η ≤ a
ζL

, we have ζη2 − ηa
L
≤ 0, thus

dist2(x̃, xp) ≤ (1− aµη)dist2(x, xp).

By definition of x̃p and xp, we have

dist(x̃, x̃p) ≤ dist(x̃, xp)

and the desired result follows.

Remark 8.2 As it is evident by previous works in the field [10, 118], con-
vergence is harder in the case of lower curvatures (ζ is 1 if curvatures are
nonnegative but larger than 1 if curvatures are negative).

Before passing to the Riemannian extension of Theorem 8.4, we need an
auxiliary geometric result similar to Lemma 6 in [118], which can be found in
Corollary 2.1 of [10].
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Lemma 8.8 Let ∆abc be a geodesic triangle (i.e. a triangle whose sides are
geodesics) in a complete manifold of sectional curvatures bounded from above
by kmax. If kmax > 0, we assume in addition that the lengths of the sides of this
triangle are less than π/

√
kmax. Then

dist2(a, c) ≥ δ · dist2(b, c) + 2⟨Logb(a),Logb(c)⟩+ dist2(a, b).

where

δ =

{ √
kmaxdist(a,q)

tan(
√
kmaxdist(a,q))

, kmax > 0

1 , kmax ≤ 0,

with q being some point on the geodesic bc.

We use this lemma to prove a Riemannian analogue of Theorem 8.4:

Theorem 8.9 Consider the L-smooth optimization problem

min
x∈M

f(x),

with M being a complete Riemannian manifold of sectional curvatures bounded
from above by kmax. Also assume that the set of optima X∗ = argminx∈Mf(x)
is geodesically convex.
Assume that a step of Riemannian gradient descent (8.3.0.1) starting from any
point x ∈ E ⊆M satisfies

dist2(x̃, x̃p) ≤ (1− dη)dist2(x, xp)

for some constant d > 0 and any η ∈ (0, η̄), η̄ > 0. If kmax > 0, we assume also
that

E ⊆
{
x ∈M

∣∣∣dist(x, xp) <
π

2
√
kmax

}
.

Then f is geodesically (a, µ)-WQSC in E, with

a :=
d

2L
, µ :=

L

2
.

Proof We fix an arbitrary point x ∈ E and consider x̃ to be the result of one
iterate of Riemannian gradient descent (8.3.0.1).

We first bound dist2(x̃, x̃p) using Lemma 8.8 in the geodesic triangle ∆xx̃x̃p:

dist2(x̃, x̃p) ≥ δ · dist2(x, x̃) + dist2(x, x̃p)− 2⟨Logx(x̃),Logx(x̃p)⟩,

where

δ =

{√
kmaxdist(q, x̃p) cot(

√
kmaxdist(q, x̃p)) , kmax > 0

1 , kmax ≤ 0,

with q being some point in the geodesic connecting x and x̃.
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This inequality together with the assumed contraction (and after setting
c := dη) gives

δ · dist2(x, x̃) + dist2(x, x̃p)− 2⟨Logx(x̃),Logx(x̃p)⟩ ≤ (1− c)dist2(x, xp)
(8.3.0.4)

≤ (1− c)dist(x, x̃p).
(8.3.0.5)

Even when kmax > 0, δ can be lower bounded as follows:
the function x → x cot(x) is decreasing if x > 0, thus it suffices to bound
dist(q, x̃p) from above. To that end, we have

dist(q, x̃p) ≤ dist(x̃, x̃p) + dist(x̃, q) ≤ dist(x, xp) + dist(x, x̃).

Since x̃ = Expx(−ηgradf(x)), we have that Logx(x̃) = −ηgradf(x) and
dist(x, x̃) = η∥gradf(x)∥. Moreover, by L-smoothness of f , we have that
∥gradf(x)∥ ≤ Ldist(x, xp).

Using all these facts, we can bound dist(q, xp) as

dist(q, x̃p) ≤ (1 + ηL) dist(x, xp).

This implies

δ ≥ δ̄(η) =

{
(1+ηL)

√
kmaxdist(x,xp)

tan((1+ηL)
√
kmaxdist(x,xp))

, kmax > 0

1 , kmax ≤ 0,

for η sufficiently small.
This bound can be potentially negative, but in the limit case that η becomes

arbitrarily small, it becomes positive. This is because, if kmax > 0, we have
assumed that dist(x, xp) <

π
2
√
kmax

. Thus, we fix an η0 > 0, such that δ̄(η) > 0,

for any η ∈ (0, η0). Since our assumed convergence rate holds for all step sizes
η arbitrarily close to 0, we can continue the derivation assuming that η < η0.

Using again that Logx(x̃) = −ηgradf(x), we can rewrite inequality (8.3.0.4)
as

2η⟨gradf(x),−Logx(x̃p)⟩ ≥ c · dist2(x, x̃p) + δ̄(η)η2∥gradf(x)∥2. (8.3.0.6)

Next, we use the inequality

⟨α, β⟩ ≤ ρ

2
∥α∥2 +

1

2ρ
∥β∥2

for any α, β ∈ TxM and ρ > 0 and we obtain

ρ

2
∥gradf(x)∥2 ≥ ⟨gradf(x),−Logx(x̃p)⟩ −

1

2ρ
dist2(x, x̃p).
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Multiplying both sides by 2δ̄(η)η2

ρ
, we get

δ̄(η)η2∥gradf(x)∥2 ≥ 2δ̄(η)η2

ρ
⟨gradf(x),−Logx(x̃p)⟩ −

δ̄(η)η2

ρ2
dist2(x, x̃p).

Using equation (8.3.0.6), we get

2η⟨gradf(x),−Logx(x̃p)⟩ ≥

c · dist2(x, x̃p) +
2δ̄(η)η2

ρ
⟨gradf(x),−Logx(x̃p)⟩ −

δ̄(η)η2

ρ2
dist2(x, x̃p),

or equivalently(
2η − 2δ̄(η)η2

ρ

)
⟨gradf(x),−Logx(x̃p)⟩ ≥

(
c− δ̄(η)η2

ρ2

)
dist2(x, x̃p).

Since the last inequality holds for any ρ > 0, we can choose ρ = 2

√
δ̄(η)η√
c

. Then

it becomes

2η

(
1−

√
δ̄(η)
√
c

2

)
⟨gradf(x),−Logx(x̃p)⟩ ≥

3c

4
dist2(x, x̃p) =

c

4
dist2(x, x̃p) +

c

2
dist2(x, x̃p).

By geodesic L-smoothness, we have

dist2(x, x̃p) ≥
2

L
(f(x)− f ∗),

and using that to bound the last term of the previous inequality, we have

2η

(
1−

√
δ̄(η)
√
c

2

)
⟨gradf(x),−Logx(x̃p)⟩ ≥

c

4
dist2(x, x̃p) +

c

L
(f(x)− f ∗).

Rearranging, we get

f(x)− f ∗ ≤ 2Lη
1−
√

δ̄(η)
√
c

2

c
⟨gradf(x),−Logx(x̃p)⟩ −

L

4
dist2(x, x̃p).

Substituting c = dη, we get

f(x)− f ∗ ≤ 2Lη
1−
√

δ̄(η)
√
dη

2

dη
⟨gradf(x),−Logx(x̃p)⟩ −

L

4
dist2(x, x̃p).

Taking the limit when η −→ 0, we get x̃p −→ xp, thus

f(x)− f ∗ ≤ 2L

d
⟨gradf(x),−Logx(xp)⟩ −

L

4
dist2(x, xp).

This is the desired result.

185



9 Conclusion

9.1 Reflection on our contributions

We are confident that this thesis contributes meaningfully to the theory of both
non-convex optimization and numerical linear algebra.

The reader interested primarily in optimization will perhaps view its main
contribution as the thorough analysis of the weak-quasi-strong convexity prop-
erty. This property was proved to be necessary and sufficient for linear conver-
gence of gradient descent with respect to distances of the iterates to the set of
optima, as the more well-known PL inequality, which has a similar behavior
but with respect to function values. We also identified two important problems
from linear algebra that serve as good examples of this structure.

The reader primarily interested in linear algebra will probably prioritize
the justification of the tractability of the symmetric eigenvalue and polar
decomposition problems through the aforementioned convexity-like structure,
but also the practical contributions of this thesis. Highlights include a novel
state-of-the-art theory for preconditioned eigenvalue solvers (Section 4) and
the development of really competitive eigenvalue solvers (Section 5) that could
be considered by all kinds of practitioners from now on.

The reader mostly interested in Riemannian optimization, i.e. the field of
optimization over non-linear surfaces, will perhaps see this thesis as a success
story for the very case of this field: non-convex problems in the Euclidean sense
can be convex (or quasi-convex) in an intrinsic Riemannian sense, if they are
posed properly over some Riemannian manifold.

9.2 Directions for future work

Fruitful directions for future work can easily be deduced directly from the
topics treated in this thesis.

Section 4, for instance, deals only with the case of the basic preconditioned
eigenvalue solver (PINVIT) and not with the state-of-the-art one (LOBPCG).
It would be interesting to see whether a modification of this analysis can be
applied also to LOBPCG. This is not clear to us at this point.

A main narrative in this thesis is the value of the derived convexity-like
structures in analyzing eigenvalue or polar decomposition problems in noisy
regimes. The main examples we gave are i) distributed scenaria with limited
communication (Section 3) and ii) preconditioned eigenvalue solvers (Section 4),
which are essentially perturbed versions of inverse iteration. Other important
noisy regimes that are worth examining could be computing eigenvalues or
polar factors via stochastic algorithms, or even “robust” re-formulations (see
equation (7.1.0.1)).

Deviating a bit from the exact topics of this thesis, but staying inside the
general philosophy, one could try to show some convexity-like structure for
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the problem of optimally approximating a matrix with another matrix of fixed
rank. This problem admits a closed-form solution via the truncated SVD of
the matrix, which is essentially the projection onto the manifold of fixed rank
matrices. Similarly, orthogonal Procrustes (Section 7) is the projection of a
matrix onto the orthogonal group. It would not be too surprising if the problem
of low rank approximation admits a similar structure, we expect the situation
to be more involved though, as the manifold of fixed rank matrices has a much
more complicated Riemannian structure compared to the orthogonal group.
Another interesting problem over the Stiefel manifold is computing the polar
factor of a rectangular matrix.

Taking the discussion of the previous paragraph a step further, while linear
algebra offers an ecosystem of problems that are really interesting and important,
deep learning has dominated the field of non-convex optimization the last few
years. An important open problem in the theory of deep learning has to
do with explaining its success: while all real-world deep neural networks are
highly non-convex, training them using stochastic first-order methods has
been proven surprisingly effective. We conjecture that this is the case due to
various convexity-like structures that appear in these optimization problems.
Results of this nature have long been appeared for the case of over-parametrized
models [105]. Over-parametrization though is not always a realistic assumption.
More recently, research started going beyond it [51]. Given the paramount
importance of deep learning models in our society and economy, we believe
that understanding their structure must be set priority by the non-convex
optimization community. We personally wish to contribute in this direction in
the years to come.
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