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Abstract.
Background: Early onset dementias (EOD) are rare neurodegenerative dementias that present before 65 years. Genetic
factors have a substantially higher pathogenetic contribution in EOD patients than in late onset dementia.
Objective: To identify known and/or novel rare variants in major candidate genes associated to EOD by high-throughput
sequencing. Common-risk variants of apolipoprotein E (APOE) and prion protein (PRNP) genes were also assessed.
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Methods: We studied 22 EOD patients recruited in Memory Clinics, in the context of studies investigating genetic forms
of dementia. Two methodological approaches were applied for the target-Next Generation Sequencing (NGS) analysis of
these patients. In addition, we performed progranulin plasma dosage, C9Orf72 hexanucleotide repeat expansion analysis,
and APOE genotyping.
Results: We detected three rare known pathogenic mutations in the GRN and PSEN2 genes and eleven unknown-impact
mutations in the GRN, VCP, MAPT, FUS, TREM2, and NOTCH3 genes. Six patients were carriers of only common risk variants
(APOE and PRNP), and one did not show any risk mutation/variant. Overall, 69% (n = 9) of our early onset Alzheimer’s
disease (EAOD) patients, compared with 34% (n = 13) of sporadic late onset Alzheimer’s disease (LOAD) patients and 27%
(n = 73) of non-affected controls (ADNI, whole genome data), were carriers of at least two rare/common risk variants in the
analyzed candidate genes panel, excluding the full penetrant mutations.
Conclusion: This study suggests that EOD patients without full penetrant mutations are characterized by higher probability
to carry polygenic risk alleles that patients with LOAD forms. This finding is in line with recently reported evidence, thus
suggesting that the genetic risk factors identified in LOAD might modulate the risk also in EOAD.

Keywords: Alzheimer’s disease, common variants, early onset dementia, frontotemporal dementia, Lewy body dementia,
next generation sequencing, rare mutations

INTRODUCTION

The term early onset dementias (EOD) refers
to a group of progressive neurodegenerative dis-
eases, e.g., Alzheimer’s disease (AD), frontotemporal
dementia (FTD), or dementia with Lewy bodies
(LBD), affecting individuals aged between 45 and
65 years, and it represents roughly 5% of dementia
cases [1]. The symptoms of EOD are similar to those
of late onset AD (LOAD) and FTD. However, EOD
is thought to be more severe and typically causes a
rapid decline in health [2, 3].

Both AD and FTD are pathologically heteroge-
neous disorders, characterized by a complex genetic
architecture that is not yet completely understood.
The heritability rates of the different dementia sub-
types range from 40 to 80% with EOD showing a
higher genetic component than late-onset dementia
(for review [4]).

AD is clinically characterized by memory impair-
ment and pathologically by the presence of
amyloid-� (A�) peptide (the precursor of which is
encoded by the APP gene) plaques and intraneu-
ronal tangles of hyperphosphorylated forms of tau
(a microtubule-associated protein encoded by the
MAPT gene). The risk AD spectrum is composed of
Mendelian genetic traits, genetic population risk fac-
tors (susceptibility genes), and nongenetic risk factors
such as low cognitive reserve and head trauma [5,
6]. The apolipoprotein E gene (APOE) �4 allele is a
known population risk factor [7] that has been found
to increase the risk of early onset AD (EOAD) [8].
Since its discovery, over 550 susceptibility genes have
been suggested to increase the risk of AD [9], though
the impact of most of these genes seems to be much

lower than that of APOE [10, 11]. In particular, the
common variants with small individual effects jointly
modify the risk and age at onset of AD and dementia,
showing a stronger effect in carriers homozygous for
APOE �4 [12].

Three genes have been identified to carry causative
mutations for familial EOAD: amyloid precursor pro-
tein (APP), presenilin 1 (PSEN1), and presenilin
2 (PSEN2) (for review [11]). The estimated muta-
tion frequencies of these three genes are 1% for
APP, 6% for PSEN1, and 1% for PSEN2. Together,
they explain a genetic background of only 5–10%
of EOAD patients, leaving a large group of autoso-
mal dominant pedigrees genetically unexplained (for
review [13]). This finding suggests that additional
causal genes remain to be identified.

FTD is characterized by personality changes, lan-
guage impairment, and deficits of executive functions
associated with frontal and temporal lobe degenera-
tion. At least nine autosomal dominant genetic traits
have been associated with this pathology: mutations
in MAPT, in the progranulin gene (GRN), and in
the hexanucleotide repeat expansion C9orf72 genes
are the most common, with the highest prevalence
of GRN mutations found in populations of northern
Italy [14–17]. GRN null mutations cause protein hap-
loinsufficiency, leading to a significant decrease in
the circulating progranulin levels in plasma, serum,
and cerebrospinal fluid (CSF) of mutation carri-
ers [18–20]. Mutations in valosin-containing protein
(VCP), TAR DNA-binding protein 43 (TARDBP),
charged multivesicular body protein 2B (CHMP2B),
fused in sarcoma (FUS), dynactin (DCTN1), and trig-
gering receptor expressed on myeloid cell (TREM2)
are rarer causes of this pathology [4, 21]. Mutations in
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VCP [22], TARDBP [23], and TREM2 [24] have been
observed in Italian families with a history of FTD.

Interestingly, mutations in some of these genes,
such as MAPT, GRN, and C9orf72 have also been
detected at low frequencies in AD patients, support-
ing the notion that a genetic heterogeneity exists
for these diseases and that both diseases could form
an AD-FTD disease continuum (for review [13]).
An AD-like phenotype has also been described with
the presence of a nonsense mutation in the prion
protein gene (PRNP p.Q160*), which is respon-
sible for inherited neurodegenerative spongiform
encephalopathies [25]. In addition, the common cod-
ing polymorphism, methionine (M) to valine (V) at
position 129 (M129V) in PRNP has been associated
with EOAD, where the risk is higher for the VV geno-
type and is increased in patients with a positive family
history [26].

The recent development of extremely powerful,
massively, parallel DNA sequencing technologies
allows for the systematic screening of individual
genomes for DNA sequence variations at base-pair
resolution, enabling researchers to address the miss-
ing hereditability question and, thus, to uncover novel
and/or potentially pathogenic rare variants in can-
didate genes. As previously documented [27–29],
targeted re-sequencing of a clinically significant
gene panel may represent a powerful and cost-time-
effective technique compared to the previously used
sequential Sanger sequencing.

Recently, Cruchaga et al. [30], confirmed that the
genetic factors identified in LOAD modulate the risk
also in EOAD cohorts, where the burden of these risk
variants is associated with familial clustering and ear-
lier onset of AD. In the present study, we estimated
the genetic load in EOAD and LOAD, by identifying
known and novel, both rare and common risk vari-
ants in candidate genes. We applied next generation
sequencing (NGS) analysis in a selected retrospec-
tive cohort of Italian EOD patients and compared the
frequencies of variants found with those estimated in
samples from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database.

MATERIALS AND METHODS

Participants

A retrospective sample of patients was recruited in
the context of studies investigating genetic forms of
dementia at IRCCS Istituto Centro San Giovanni di
Dio Fatebenefratelli, Brescia Italy, Fondazione Case

Serena, Pontoglio, Brescia, Italy, and Fondazione
Europea Ricerca Biomedica, Centro di Eccellenza
Alzheimer, Ospedale Briolini Gazzaniga, Bergamo,
Italy. Specifically, twenty-two patients fulfilled the
following inclusion criteria for the present study: 1)
phenotype of AD, FTD, or LBD and 2) early disease
onset (<65 years old), or 3) family history suggestive
of an autosomal dominant genetic form of dementia
(i.e., high or medium risk of identifying a muta-
tion according to Loy and Woods criteria [31, 32],
as described below). Family history was collected
through interviews with a first-degree relative or the
spouse of the proband. The clinical and medical his-
tory of each family member was collected, and all
of the available documentation for affected members
was acquired. The probability of identifying a genetic
mutation for AD or FTD was estimated considering
the family medical history, the number of first and
second-degree affected family members, and the age
of symptom onset, according to the criteria developed
by Loy and colleagues [31]. According to Loy et al.’s
criteria for AD, we defined a probability of identi-
fying a genetic mutation of ≥86% as a high risk,
a probability of 68–85% as a medium risk, a prob-
ability of 15–67% as a low risk, and a probability
<15% as apparently sporadic/unknown significance.
Considering the same criteria for FTD patients, we
considered an ≥88% probability of identifying a
genetic mutation as a high risk, a 31–41% probability
as a medium risk, and a probability <13% as a low
risk. FTD pedigrees were also scored according to
Wood’s pedigrees classifications criteria [32, 33].

All participants were of Italian ancestry. Demo-
graphic features and clinical data (age at onset,
MMSE) are reported in Table 1. As the sample
was retrospectively pooled for the analysis, a stan-
dard protocol for biomarker characterization was
not applied. Sixteen patients underwent one of
the following examinations as part of their diag-
nostic exam: magnetic resonance imaging (MRI),
positron emission tomography (FDG-PET) or single
photon emission computed tomography (SPECT),
and/or lumbar puncture. MRI and PET/SPECT
scans were visually evaluated to determine medial-
temporal atrophy and hypometabolism, respectively.
CSF samples were processed with local procedures
to determine the level of A�, tau, and p-tau. Posi-
tive diagnosis was determined based on established
cut-offs.

Blood samples were collected from all patients.
DNA and plasma were obtained according to stan-
dard procedures. Patients provided written informed
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consent. This study was approved by the local ethics
committee (CEIOC, 62/2013).

NGS panel analysis screening

Genomic DNA was extracted from whole-blood
samples with a commercially available kit according
to standard procedures (GENTRA Minneapolis, MN,
USA).

Due to logistics issues, some samples were ana-
lyzed through the use of the Ion Torrent PGM
(Thermo Fisher Scientific, Waltham, MA USA)
sequencer as NGS platform, by using a candidates
genes panel, already described in Beck et al. [27].
Briefly, for library construction, 5 ng of genomic
DNA were amplified using the Ion Ampliseq Demen-
tia Research gene panel (Ampliseq™, Thermo
Fisher Scientific, Waltham, MA USA), and the Ion
Ampliseq™ Library kit 2.0, according to manufac-
turer’s instructions. The generated amplicon library
includes PRNP, PSEN1, PSEN2, APP (Amyloid
Beta A4 Precursor Protein), GRN, MAPT, TREM2,
CHMP2B, CSF1R (Colony Stimulating Factor 1
Receptor), FUS, ITM2B (Integral Membrane Pro-
tein 2B), NOTCH3 (Notch 3), SERPINI1 (Serpin
Peptidase Inhibitor, Clade I (Neuroserpin), Mem-
ber 1), TARDBP, TYROBP (TYRO Protein Tyrosine
Kinase Binding Protein), VCP, SQSTM1 (Sequesto-
some 1). Amplicons were ligated to Ion Torrent
Barcodes/adapters P1 using DNA ligase. A first step
of Agencourt AMPure XP bead (Beckman Coul-
ter Inc., Brea CA, USA) purification was followed
by nick-translation of adapter-ligated products and
PCR-amplification. A second purification step using
AMPure beads was performed and the concentration
and size of the libraries were determined using an
Agilent BioAnalyzer DNA High-sensitivity LabChip
(Agilent Technologies, Santa Clara, CA USA). After
dilution to 100 pM, libraries were clonally amplified
on Ion sphere™ particles (ISP) by emulsion PCR with
the Ion PGM™ template OT2 200 kit on the Ion One
Touch 2 instrument according to the manufacturer’s
instructions (Thermo Fisher Scientific, Waltham, MA
USA). ISP were enriched using the Ion One Touch
ES module, loaded on an Ion 314 chip kit V2 and
sequenced with an Ion Torrent PGM System (Thermo
Fisher Scientific, Waltham, MA USA).

The remaining samples were analysed with the
Illumina MiSeq platform and the TruSight One
Sequencing Panel (Illumina, Inc., San Diego, CA,
USA). This panel includes 125,395 probes tar-
geting a 12-Mb region spanning 4,813 genes,

among which the genes investigated by Ion Torrent
PGM (PRNP, PSEN1, PSEN2, APP, GRN, MAPT,
TREM2, CHMP2B, CSF1R, FUS, ITM2B, NOTCH3,
SERPINI1, TARDBP, TYROBP, VCP, SQSTM1).
The data regarding the other all genes were not
used. The obtained sequence reads were aligned
to the hg19 human reference sequence using the
Burrow–Wheeler Aligner (BWA version 0.7.12).
Duplicated reads were removed with Picard tools.
Local realignment, recalibration, and variant calling
were conducted with the Genome Analysis Tool Kit
(GATK version 3.30). In order to have comparable
results between the two sequencing approaches, we
extracted from TruSight One Variant Call Format file
(i.e., VCF file), the variants located in the regions
sequenced by Ion Torrent PGM panel using BED-
Tools [34].

APOE genotyping

Genetic variation at the APOE locus was deter-
mined by using the SNaPshot technique [35]. Briefly,
assays for the APOE polymorphisms were performed
using PCR reactions, which were subsequently com-
bined to perform a single SNaPshot reaction. The
amplification assay was designed with the following
forward and reverse primers: APOE F: 5’ CCAAGG
AGCTGCAGGCGGCGCA 3’ and APOE R: 5’ GCC
CCGGCCTGGTACACTGCCA 3’. A product of PCR-
amplification was used as a template in the SNaP-
shot Multiplex assay. The following specific primers
were used: SNAP APOE112:5’ ACTGCACCAGG
CGGCCGC 3’ and SNAP APOE158:5’ATGCCGA
TGACCTGCAGAAG 3’. Finally, the samples were
analyzed, and allele peaks were determined using the
ABI 3130xl genetic analyzer and the GeneMapper
4.0 program (Applied Biosystems, Foster City, CA,
USA).

C9Orf72 hexanucleotide repeat expansion

PCR sizing of the GGGGCC hexanucleotide repeat
was performed using previously published primers
[36] on the ABI 3130xl genetic analyzer (Applied
Biosystems, Foster City, CA, USA). The PCR reac-
tion was carried out in a mixture containing 5%
dimethylsulfoxide and 7-deaza-2-deoxy GTP in sub-
stitution for dGTP. Allele identification and scoring
were performed using GeneMapper v4.0 software
(Applied Biosystems).
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GRN plasma level measurement

Plasma progranulin levels were measured in dupli-
cate using an ELISA kit (Human Progranulin ELISA
Kit, AdipoGen Inc., Seoul, Korea).

Statistical and bioinformatics analyses

To classify a variant as rare, its frequency should
be lower than 1% in at least one of the three reference
databases (1000 Genomes Project http://www.interna
tionalgenome.org/, Exome Sequencing Project http://
evs.gs.washington.edu/EVS/ and Exome Aggrega-
tion Consortium http://exac.broadinstitute.org) [37].

In order to predict the functional consequences of
non-synonymous variations, we exploited eight dif-
ferent bioinformatics tools, namely: SIFT, PolyPhen-
2, FATHMM, phyloP, MutationTaster, LRT, and
CADD and GERP++ [38–45]. A variant is classified
as damaging if for at least three tools the mutation is
predicted to be deleterious.

Finally, to evaluate the mutation rate of the candi-
date genes selected in the NGS panel, we considered
the gene damage index (GDI, a genome-wide, gene-
level metric of the mutational damage that has
accumulated in the general population), according to
Itan et al. [46].

ADNI whole genome data

As a genetic replication cohort, we consid-
ered whole genome data from the ADNI database
(http://adni.loni.usc.edu). From the whole genome
data, we extracted the variants within the regions
included in our sequencing panel and we applied
the same variants annotation and classification per-
formed for our sample.

The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator
Michael W. Weiner, MD. The aim of ADNI project is
to collect, validate and utilize heterogeneous clinical
and biological data (including MRI and PET images,
genetics, cognitive tests, CSF and blood biomark-
ers) to study the progression of AD. For up-to-date
information, see http://www.adni-info.org.

RESULTS

Target screening: Plasma progranulin and
C9ORF72 analyses

As a first step, progranulin plasma levels were
assayed to screen for GRN null mutations (Table 1).

One FTD patient was found to have progranulin
plasma levels lower than the optimized cut-off value
for null mutations detection of 61.55 ng/ml [19, 47].
For 5 samples, it was no possible to detect the pro-
granulin levels, due to the lack of plasma samples
from these patients.

None of the EOD patients carried the pathogenic
hexanucleotide repeat expansion of C9ORF72. All
patients were found to have less than 12 repeats [48].

NGS screening: Identification of known and
unknown rare variants

Through the target re-sequencing of the 17 can-
didate genes panel, we identified fourteen rare
variants in 68% of the selected EOD cases (15
patients) (Table 1). These variants were defined as
“pathogenic” when previously described in the lit-
erature, and they were classified as “damaging” by
bioinformatic tools or as “unknown impact” when no
data were available in literature and no deleterious
effect was predicted by bioinformatics tools.

Pathogenic variants

Among the 14 identified rare variants, three were
classified as pathogenic and damaging and have been
described in Italian pedigrees unrelated to the patients
analyzed in the present study. Two variants were
located in the PSEN2 gene (p.M239V = rs28936379
code case: 26 1, [49]; p.M239I = rs63749884 code
cases: 30 1, L031, [50]); and one variant was a
p.L271fs null mutation in the GRN gene (code cases:
29 1; L029) (Table 1).

Finally, a heterozygous R93C mutation of the VCP
gene was detected in a patient (Table 1, code: 36 1)
affected by Paget’s disease of bone diagnosed at 44 of
age and no signs of dementia at the last examination
(47 years). Family history showed multiple individ-
uals with FTD and Paget’s disease with autosomal
dominant inheritance.

Variants of unknown impact

Two variants in the TREM2 gene (R62H =
rs143332484, D87N = rs142232675, [51]) (Table 1)
were observed in three of the 22 patients (14%),
including a patient with LBD.

Moreover, in GRN gene, we found variants in the
5’UTR (rs76783532) and two rare missense variants
(V77I = rs148531161; R19W = rs63750723; Table 1),
which have been reported as “pathogenic nature

http://www.internationalgenome.org/
http://www.internationalgenome.org/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org
http://adni.loni.usc.edu
http://www.adni-info.org
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unclear” and “not pathogenic”, respectively, in online
database (www.molgen.en.ua.ac.be/FTDmutations).
Accordingly, these missense mutations did not influ-
ence the progranulin level in plasma (Table 1).

Other variants reported in online databases were
those at 3’UTR of the FUS (rs80301724) and a mis-
sense mutation (V1183M = rs10408676) in NOTCH3
gene resulting “damaging” according to bioinformat-
ics tools.

Moreover, we detected rare mutations which have
not been reported in the literature and databases.
In particular, we found a mutation localized in
the 5′UTR region and a missense mutation R93C
(NM 007126: exon3: c.C277T:p.R93C) in the VCP
gene, a deletion (NM 001203251:c.*55delA) in
MAPT gene at 3’UTR region, a splicing variant
(NM 000435: exon24: c.3838-1G>T) in NOTCH3
gene.

Screening of known common variants

All EOD patients were genotyped for the rs429358
and rs7412 polymorphisms in the APOE gene and the
rs1799990 polymorphism in the PRNP gene. APOE
�4 and PRNP 129Val are known to be risk alleles. The
results indicated that the frequencies of the APOE �4
carriers and the PRNP 129Val carriers were 59% for
both. Twenty (91%) of the 22 subjects carried at least
one of the two risk variants; of these subjects, 27%
(six out of 22) carried both the APOE �4 and the
PRNP 129Val risk alleles. Six patients were carriers
of at least one risk allele (APOE �4 or PRNP 129Val)
(Table 1).

One patient did not show any rare or common risk
variants (Table 1).

Comparison to whole genome data

We compared and calculated the rare and common
risk variants frequencies of the 17 candidate genes
in our panel, with the data from the ADNI whole
genome sequencing database. In the ADNI database,
sporadic late-onset (38 patients), early onset (7
patients) AD cases, and 272 controls subjects were
available. In our sample, the results indicated that,
excluding the full penetrant mutations present in five
patients, 9 patients (69%) showed ≥2 rare/common
risk variants, compared with 13 (34%) and 73 (27%)
observed in ADNI late-onset AD cases (LOAD) and
controls, respectively (Chi-squared test: χ2 = 15.8,
df = 4, p = 0.003; Table 2). If we add to our sample, the
seven EOAD patients coming from ADNI database

(n tot = 20), the percentage of genetic load did not
change (65%, n = 13, Chi-squared test: χ2 = 17.9,
df = 4, p = 0.001; Table 2).

DISCUSSION

This study suggests that EOD patients without full
penetrant mutations are characterized by higher prob-
ability to carry polygenic risk alleles that patients
with LOAD forms. This finding is in line with
recently reported evidence [30], thus suggesting that
the genetic risk factors identified in LOAD might
modulate the risk also in EOAD.

Moreover, we confirmed the role of GRN and
PSEN2 genes in EOD, with the involvement of spe-
cific rare mutations already known. We also detected
additional rare variants of unknown impact, located
in the 5’/3’ UTRs regulatory gene region of the GRN,
VCP, MAPT, and FUS genes, missense mutations in
TREM2, GRN, NOTCH3, and VCP, genes and a splic-
ing variant in NOTCH3 gene. According to the gene
damage index (GDI) [46], mutations in these genes
showed a value of “medium”, suggesting that these
genes are not frequently mutated in healthy popula-
tions. This finding further implies that mutations in
these genes could be disease-causing.

Rare mutations of known significance

Twenty three percent of the cases carried one
pathogenic mutation for dementia. In line with pre-
vious studies [14], mutations in the PSEN2 gene,
a rare cause of dementia worldwide, were frequent
in our cohort (14%). Looking at the geographical
distribution of PSEN2 mutations described to date,
it is noteworthy that 80% of these mutations were
uncovered in two southern European countries, Italy
and Spain. Thus, we can speculate that the non-
homogeneous distribution of pathogenic mutations
might be a result of genetic drift.

The GRN p.L271fs mutation is one of the most
common GRN mutations worldwide. An analysis of
this mutation in northern Italy showed that almost all
families can be traced to a single founder. The origin
of the mutation was dated to the Middle Ages at the
turn of the first millennium, which explains the high
frequency of this mutation in this geographic area
[52].

Rare mutations of unknown significance

The role for novel variants of unknown significance
in both common and rare dementia-associated genes

www.molgen.en.ua.ac.be/FTDmutations
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was not exhaustively elucidated. Recently, novel,
likely pathogenic variants were described in Italian
patients with dementia [53].

We found two AD patients carrying the R62H
mutation in the TREM2 gene, which has an unknown
impact. A recent review on the correlation between
TREM2 and AD [54], showed a meta-analytic asso-
ciation of this mutation with the late onset form of
the disease. Our results also showed its involvement
in the early onset form of AD. Since the two patients
were also homozygous for the APOE �4 allele, this
finding suggests interactions between TREM2 and
APOE, as already demonstrated in vitro [55, 56].
TREM2 is a lipid sensor that interacts with several
AD risk factors involved in lipid metabolism, includ-
ing APOE, which could decrease the threshold of
disease occurrence [57].

In the specific case of two AD patients carrying
the GRN p.V77I and R19W mutations, there is evi-
dence of AD pathology in imaging and from biofluid
biomarkers (Table 1). Since these missense muta-
tions do not affect the progranulin levels, a pathogenic
role of these mutations seems unlikely. However, we
cannot exclude that they might have a pathogenic
role other than “loss of function”, as no functional
studies have been performed. Their presence in AD
patients might rather indicate that this gene could
be implicated also in the pathophysiological mech-
anisms leading to AD dementia.

Our analyses showed the presence of additional
rare variants located in the 5’/3’ UTR regulatory
gene region of the GRN, VCP, MAPT, and FUS
genes. A recent study reported that 3’UTR SNPs,
such as rs80301724 in the FUS gene, are present
in microRNA binding sites and could impact the
post-transcriptional regulation, resulting in overex-
pression of the protein [58]. Also missense mutations
in TREM2, GRN, NOTCH3, and VCP genes and
a splicing variant in NOTCH3 gene were detected
but, except for some information from bioinfor-
matic tools, their specific functional impact was
not assessed. The involvement of NOTCH3 gene in
dementia patients is interesting, both with a mis-
sense and with a splicing variant. This gene encodes
a single-pass trans-membrane protein of 2321 amino
acids, predominantly expressed in vascular smooth
muscle cells in adults. It is well documented that
NOTCH3 mutations play a critical role in the
pathogenetic mechanism of vascular smooth mus-
cle cell degeneration linked to CADASIL, one of
the most common hereditary forms of stroke [59].
A recent hypothesis of AD [60] suggested that in
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CADASIL triggering events in the pathogenic cas-
cade are not amyloid deposits but damaged blood
vessels caused by inflammatory reactions that lead
to ischemia, amyloid accumulation, axonal degen-
eration, synaptic loss, and eventually irreversible
neuronal cell death. Inflammation and blood vessel
damage are well recognized complications of AD, but
what causes them and why the cerebral microvascu-
lature is affected is still under debate [60]. Mutations
in NOTCH3 gene are known to provoke inflamma-
tory reactions and damage the brain in a wide variety
of diseases [59], thus it is possible that one or more
mutations in this gene may damage the microvascu-
lature of the brain eventually leading that leads to
dementia. The V1183M mutation was classified as a
polymorphism in an Italian population [61], though
the A allele frequency observed was 0.006.

Inclusion body myopathy with Paget’s disease of
bone and/or FTD (IBMPFD) is a recently identified
autosomal dominant disorder due to mutations in the
VCP gene affecting muscle, bone, and brain. Interest-
ingly, in our cohort we found the R93C (47832C>T)
mutation in the VCP gene already described in
patients with IBMPFD [62–65].

Common variants

In this study, we investigated the most established
common risk variant for AD, the APOE �4 haplo-
type. The functional role of this polymorphism in
AD pathogenesis is unclear. However, there is now
strong evidence that APOE �4 could affect amyloid
deposition [66]. Consistent with this evidence, in our
cohort all APOE4 carriers with available CSF were
amyloid positive (Table 1), except for the case code
19 1 of which we discuss separately (see below). The
frequency of the �4/�4 genotype (n = 4, 17%, exact
confidence interval 3–32%) was higher than that com-
monly observed in the Caucasian population (1000
genomes), which is reported to be 2%.

Moreover, we investigated the non-synonymous
polymorphism p.Met129Val in the PRNP gene.
Although there are no data on the functional effect of
this polymorphism, we observed that the frequency of
the risk variant allele G/Val was higher (59%) than the
frequency reported in the general European popula-
tion (frequency G/Val = 33% reported by the Exome
Aggregation Consortium). A recent meta-analysis
showed that the p.Met129Val allele was associated
with decreased disease risk in late-onset AD, but not
in EOAD [67].

Six patients from the present cohort carry only
common risk variants. They could be sporadic cases
with onset at the extreme end of expected age range.
However, the hypothesis that EOD is caused by
mutations in genes not included in the NGS panel
cannot be ruled out. In this regard, whole genome
sequencing could foster the investigation of addi-
tional genetic factors underlying apparently sporadic
EOD. Nonetheless, this task was beyond the scope of
the present work.

Additional observations

Interestingly, fifteen (68%) of the 22 patients car-
ried at least one rare variant (TREM2, GRN, PSEN2,
MAPT, VCP, NOTCH3, or FUS). Among these, four-
teen subjects carried also a common variant (APOE
and/or PRNP). This result supports the hypothesis
that EOD results from the interconnected mecha-
nisms leading to neurodegeneration, where multiple
genes can be implicated in one or more systems.
Indeed, recent biochemical approaches [55, 56] have
shown interactions among these genes, such as
between TREM2 and APOE in vitro. These results
strongly implicate a potential additive/synergic effect
in EOD forms linked to the variable inter- and intra-
familiar expressivity. To indirectly assess this effect,
we found through the ADNI database that, exclud-
ing the full penetrant mutations, 69% of our sample
showed ≥2 rare/common risk variants, as compared
to 34% and 27% in sporadic late-onset AD patients
and controls, respectively. This indicates that the
EOD is more often associated with rare variants or
risk alleles, and this could be useful in the genotype-
phenotype correlations. Moreover, <10% of subjects,
in our cohort, and in late onset AD patients, compared
to 25% in a control group, were not carriers of any
of the examined variants, which strengthens the idea
of using an NGS whole/exome genome approach in
a larger sample.

One AD patient with a very early age of onset (41
years) showed neither rare nor common-risk vari-
ants. Even an exome clinic investigation detected
no rare or common risk variants. The family history
was negative, as no other first-degree relatives were
affected (neither the parents nor three siblings, two of
whom were older than the patient, presented with the
disease). Misdiagnosis is unlikely since this patient
was positive for all AD biomarkers (abnormal CSF
amyloid and tau levels, hypometabolism on FDG-
PET, and medial temporal atrophy on MRI).
Although we considered the possibility that the
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patient may show an extreme early-onset presentation
of sporadic AD, this finding suggests that additional
genes could be implicated in EOD, which strengthens
the evidence that the panel of candidate genes needs
to be expanded in the future.

For the first time, the D87N mutation in the TREM2
gene was detected in a LBD patient with early
onset. LBD is the second most common form of
dementia after AD, with a prevalence rate of 4%
in the general population [68]. The core symptoms
of LBD include sleep disturbances, hallucinations,
and cognitive deficits, accompanied within the first
year by Parkinsonian motor symptoms. A recent
twin study did not show a strong support for a
genetic contribution to LBD. However, other studies
have demonstrated that LBD aggregates in families
and may have an autosomal inheritance pattern (for
review [4]). To date, a few genetic markers have
been identified. For instance, duplication and SNPs
within �, �, �−synuclein genes have been associ-
ated with increased risk of LBD [69, 70]. Moreover,
mutations in the glucocerebrosidase (GBA) gene are
more common in LBD, in addition to mutations in
the MAPT or leucine rich repeat kinase 2 (LRRK2)
genes (for review [4]). Only one genome-wide link-
age study has been performed among patients with
familial LBD. A locus on chromosome 2q35-q36
was identified, though none of the genes in this
region could explain the relation with LBD [71].
Although further confirmation is needed, the pres-
ence of a TREM2 mutation in an LBD patient adds
a new actor to its genetic architecture. Mutations in
TREM2, a microglial receptor, can lead to aberrant
innate immune cell signaling, contributing to the ini-
tiation and propagation of several neurodegenerative
phenotypes [72–83], including LBD. Moreover, this
LBD patient was a carrier of the GG (Val/Val) PRNP
risk genotype. This finding is in agreement with a pre-
vious study [84] that described a patient carrying the
M232R mutation in the PRNP gene who developed
dementia and died six years after onset. An autopsy
revealed the patient had dementia with Lewy bodies,
not Creutzfeldt-Jakob disease.

Conclusions

This study confirms the role of GRN and PSEN2
mutations in EOD, in the Italian population and
provides evidence for roles of novel rare mutations
located in the 5’/3’ UTRs regulatory gene region of
the GRN, VCP, MAPT, and FUS genes, missense
mutations in TREM2, GRN, NOTCH3, and VCP,

genes and a splicing variant in NOTCH3 gene, with a
“medium” GDI value. As previously observed, muta-
tions in the PSEN2 gene, a rare cause of dementia
worldwide, are frequent in Italian patients. We also
confirmed that mutations in GRN gene were present
in both FTD and AD phenotypes. Moreover, six
patients were carriers of only common risk variants
(APOE and PRNP), and one patient did not show any
mutation/variant. Overall, 69% (n = 9) of our EAOD
patients, compared with 34% (n = 13) of sporadic
LOAD patients and 27% (n = 73) of non-affected con-
trols, were carriers of at least two rare/common risk
variants in the analyzed candidates’ genes panel.

Though our findings are consistent with results
obtained from large cohorts [12], independent repli-
cations in larger samples are warranted. To further
validate the role of polygenic risk variants in EOD, a
systematic screening of rare and common variants in
dementia-associated genes should be implemented in
prospective cohorts with full clinical and biomarker
characterization.
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