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Background & Aims: Mesenchymal stem cell (MSC) transplanta-
tion was shown to be effective for the treatment of liver fibrosis,
but the mechanisms of action are not yet fully understood. We
transplanted encapsulated human MSCs in two mouse models
of liver fibrosis to determine the mechanisms behind the protec-
tive effect.
Methods: Human bone marrow-derived MSCs were microencap-
sulated in novel alginate-polyethylene glycol microspheres. In
vitro, we analyzed the effect of MSC-conditioned medium on
the activation of hepatic stellate cells and the viability, prolifera-
tion, cytokine secretion, and differentiation capacity of encapsu-
lated MSCs. The level of fibrosis induced by bile duct ligation
(BDL) or carbon tetrachloride (CCl4) was assessed after intraperi-
toneal transplantation of encapsulated MSCs, encapsulated
human fibroblasts, and empty microspheres.
Results: MSC-conditioned medium inhibited hepatic stellate cell
activation and release of MSC secreted anti-apoptotic (IL-6,
IGFBP-2) and anti-inflammatory (IL-1Ra) cytokines. Viability,
proliferation, and cytokine secretion of microencapsulated MSCs

were similar to those of non-encapsulated MSCs. Within the
microspheres, MSCs maintained their capacity to differentiate
into adipocytes, chondrocytes, and osteocytes. 23% (5/22) of the
MSC clones were able to produce anti-inflammatory IL-1Ra
in vitro. Microencapsulated MSCs significantly delayed the devel-
opment of BDL- and CCl4-induced liver fibrosis. Fibroblasts had
an intermediate effect against CCl4-induced fibrosis. Mice trans-
planted with encapsulated MSCs showed lower mRNA levels of
collagen type I, whereas levels of matrix metalloproteinase 9
were significantly higher. Human IL-1Ra was detected in the
serum of 36% (4/11) of the mice transplanted with microencapsu-
lated MSCs.
Conclusions: MSC-derived soluble molecules are responsible for
an anti-fibrotic effect in experimental liver fibrosis.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.

Introduction

Mesenchymal stem cells (MSCs) are adult progenitor cells that
contribute to stromal tissue renewal [1]. Originally found in the
bone marrow [2], MSCs are present in all types of tissues [3]
and were recently recognized as closely related to blood vessel
pericytes [4]. MSC-based cell therapy is currently investigated
with the aim to treat acute and chronic liver injury [5]. Indeed,
it was suggested that MSCs might be able to transdifferentiate
into hepatocytes [6]. Several other studies demonstrated that
MSCs have immunosuppressive and anti-inflammatory proper-
ties [7–9], which could represent another mechanism by which
MSCs improve chronic liver injury.

In experimental models, MSCs reduce liver fibrosis in rodents
[10–14]. The mechanisms of action remain largely unknown but
may involve the secretion of anti-inflammatory cytokines, such
as IL-10 [15] or IL-1 receptor antagonist (IL-1Ra) [16], or the
secretion of growth factors such as hepatocyte growth factor
[7,17], vascular endothelial growth factor [18] or insulin-like
growth factor-binding proteins [17]. Further, MSCs secrete matrix
metalloproteinases that could mediate a fibrolytic effect [12].
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Other studies showed that in vitro hepatocyte-like pre-differenti-
ation of MSCs has a therapeutic effect in experimental liver fibro-
sis [19,20]. Consequently, it is currently not clear whether
molecules secreted by MSCs are sufficient to mediate the anti-
fibrotic effect or whether cell-cell interactions and/or the pres-
ence of hepatocyte-differentiated MSCs are necessary.

A further issue is phenotype stability: even if MSCs engraft in
the injured liver and differentiate into hepatocyte-like cells, it is
likely that induction of chronic injury (e.g., high levels of trans-
forming growth factor-beta 1 (TGF-b)) precludes those cells from
maintaining epithelial-like characteristics. It was shown that cells
recruited from the bone marrow to an experimentally-induced
fibrotic liver finally became collagen-producing fibrocytes [21].

In the present study, we investigated whether immunoprotec-
tion by microencapsulation prevents MSCs from participating to
scar formation and allows MSCs to mediate an anti-fibrotic effect
by releasing soluble molecules in vitro and in vivo. We found that
MSC-conditioned medium (MSC-CM) reduced alpha smooth
muscle actin (a-SMA) expression, a marker of hepatic stellate cell
(HSC) activation (the key event in liver fibrosis).

We used recently developed alginate-polyethylene glycol
(alg-PEG) hybrid hydrogel to encapsulate MSCs. This hydrogel is
permissive to soluble factors (e.g., O2, glucose, cytokines) but
not to immune cells or antibodies, thus protecting MSCs from
immune rejection upon in vivo administration. We first verified
that cells maintained normal viability, proliferation, differentia-
tion, and cytokine secretion. We further observed that microen-
capsulated MSCs decreased liver fibrosis and inflammation in
mouse models of chronic liver injury induced by bile duct ligation
(BDL) or carbon tetrachloride (CCl4), suggesting that these effects
can be attributed solely to factors secreted by MSCs.

Materials and methods

Cell culture

This research project was accepted by the local ethical committee of the Univer-
sity Hospitals of Geneva (protocols NAC 01-015).

Human adult bone marrow MSCs were isolated from femoral heads of 11
adult orthopedic patients undergoing total hip replacement. Written informed
consent was obtained from each patient.

Cells were isolated and cultured as previously described [22]. Cells were cul-
tured in Iscove’s modified Dulbecco’s medium (IMDM) (Cambrex, Verviers, Bel-
gium) with 10% fetal calf serum (FCS) (Invitrogen, Basel, Switzerland), 100 IU/ml
penicillin, 100 mg/ml streptomycin (P-S) (Gibco-Invitrogen), dithiothreitol (DTT,
Sigma, St-Louis, USA) and 10 ng/ml platelet derived growth factor BB (PDGF-BB,
PeproTech EC Ltd, London, UK). Cells were expanded as previously described
[23,24], produced and used for experiments between passages 3 to 6. MSC-CM
was obtained after incubation of 5 � 106 cells in 10 ml IMDM with 5% FCS for
48 h. We used MSC-CM issuing from 22 different MSC clones (i.e., two per donor).
Primary human foreskin fibroblasts (designated in this study as EDX cells, a gift
from DFB Bioscience, Fort Worth, TX) were maintained in expansion medium con-
sisting of IMDM supplemented with 10% FCS and P-S. The medium was changed
every 3 days. EDX-conditioned medium was obtained after incubation of 5 � 106 -
cells in 10 ml IMDM with 5% FCS for 48 h. Human HSCs were obtained from biopsies
of healthy liver parenchyma from 3 patients undergoing partial hepatectomy. The
protocol was approved by the University Hospitals of Geneva ethics committee
and informed consent was obtained from all patients (protocols 01-172/chir01-
015). HSCs were isolated as previously described [25]. Cells were cultured in 24-
well plates (100,000 cells/dish) with IMDM medium containing 10% FCS and P-S
(Invitrogen) at 37 �C with 5% CO2. HSC cells were treated with either control con-
dition, MSC-CM, TGF-b (PreproTech, USA) or TGF-b and MSC-CM together, during
48 h. a-SMA and vimentin protein detection was performed in LX-2 cells (a human
HSC line provided by Prof. Scott Friedman, Mount Sinai School of Medicine, New
York, NY) after 5 days of culture.

Polyethylene glycol-alginate microencapsulation of cells

Reagents
Sodium alginate (Na-alg) (PRONOVA UP LVM) was obtained from FMC BioPoly-
mer (Novamatrix, Norway, batch no: FP-506-01). 8-arm polyethylene glycol
(PEG), molar mass 20 kg/mol (PEG-8-20), was purchased from Shearwater Poly-
mers (Huntsville, AL, USA). This PEG consists of a poly(glycerol) backbone with
multiple PEG arms attached through an ether bond (PEG-OH). Divinyl sulfone,
DTT, calcium chloride dihydrate, and sodium chloride were obtained from Sigma.
All chemicals were of analytical grade and were used as supplied, unless indicated
otherwise.

Formation of microspheres
Microspheres were prepared under sterile conditions. We used a co-axial air-flow
droplet generator as previously described [26]. Briefly, MSCs or EDX cells were
detached using 0.25% trypsin-EDTA (Sigma) for about 30 sec and washed twice.
The cell suspension was centrifuged (1200 rpm, 5 min, RT) and the supernatant
discarded. The pellet was resuspended in Na-alg/PEG-8-20 solution (1.5% (w/v)
Na-alg + 10% (w/v) PEG-8-20 in DMEM (special formulation without NaCl and
KCl, Culture Technologies, Gravessano, Switzerland)) to a final concentration of
500,000 cells/ml. The mixture was extruded through a 400 lm needle into the
sterile gelation bath prepared by dissolving CaCl2 and DTT, in DMEM (special for-
mulation as indicated above) with osmolality adjusted to 300 mOs/kg (80 ± 5 mM
CaCl2). The receiving bath was incubated in a shaker (80 rpm) at 37 �C for 3 h to
achieve optimal cross-coupling [27]. Microspheres were collected by filtration
and cultured in IMDM 10% FCS. Microspheres without cells were prepared using
the same protocol.

Fibrosis induction in mice

All animal studies were approved by the animal ethics committee of the Geneva
Veterinarian Office and the University of Geneva, Geneva, Switzerland (protocol
number 1043/3603/2). Eight to 10 week-old male DBA-1 mice were purchased
from Janvier (Le Genest-St-Isles, France). All mice were maintained under stan-
dard conditions at the animal facility of the Geneva University. Water and food
were provided ad libitum. Liver fibrosis was induced by BDL as previously
described [28]. Briefly, mice were anesthetized with isoflurane and a midline
laparotomy was performed in order to expose the hepatic hilum and to identify
the common bile duct. We used a dissecting microscope to cut the common bile
duct in between three ligatures. To obtain CCl4-induced liver fibrosis, 2 ml/kilo-
gram of CCl4 50% (v/v) solution in corn oil (Sigma Co., Milan, Italy), containing
1.0 ml/kg of CCl4, was administered by subcutaneous injections, twice a week
for 4 weeks (to avoid intra-peritoneal damage of the encapsulated cells). Ani-
mals received intraperitoneally 1.5 million encapsulated MSCs in 1 ml alg-PEG
microspheres, or 1.5 million encapsulated EDX cells in 1 ml alg-PEG, or 1 ml
alg-PEG microspheres without cells. Sham operated mice were used as controls.
The animals were sacrificed 15 days after BDL, and blood (transaminases, IL-10,
and IL-1Ra measurements) and liver samples (histology and RT-PCR) were
collected.

Statistical analysis

Results were expressed as mean values ± SEM. Differences between groups were
analyzed using the Student t-test or Mann-Whitney U test (2 groups) and one-
way analysis of variance with Bonferroni multiple testing correction (>2 groups).

p <0.05 was considered statistically significant.

Results

Isolation and characterization of mesenchymal stem cells

MSCs were isolated from 11 adult donors. MSCs showed typical
spindle-shape morphology and were expanded during 3-6 pas-
sages to reach about 15 population doublings (Supplementary
Fig. 1A). Analysis of the surface antigens on MSCs by flow cytom-
etry showed patterns that are typical of MSCs. Cells were nega-
tive for HLA class1, CD34, CD36, and CD45, and positive for
CD44, CD54, CD90, CD105, and CD106 (Supplementary Fig. 1B).
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Mesenchymal stem cell conditioned medium decreased HSC activation
in vitro

The effect of MSC-CM on a-SMA expression, in immortalized (LX-
2) and primary human HSCs, was studied. LX-2 cells were treated
with control medium, MSC-CM, TGF-b (used as positive control),
and MSC-CM together with TGF-b for 5 days, and analyzed by
Western blotting (Fig. 1). LX-2 cells cultured with MSC-CM
showed decreased levels of a-SMA compared to untreated cells
(Fig. 1A). The treatment of LX-2 cells with MSC-CM together with
TGF-b also resulted in decreased expression of a-SMA compared
to cells treated with TGF-b alone (Fig. 1A), demonstrating neu-
tralization of the activation induced by TGF-b. Quantification of
a-SMA levels is shown in Fig. 1B. In primary HSCs, levels of col-
lagen type I and MMP-2 mRNA were also increased upon TGF-b
treatment, while the increase was statistically significantly lower
in the presence of MSC-CM (Fig. 1C and D). These results indicate
that MSC-CM was able to reduce LX-2 and primary HSC activation
when cells were cultured in profibrogenic conditions (i.e., upon
treatment with TGF-b).

Survival, proliferation, and differentiation of encapsulated mesenchymal
stem cells in vitro

First, the quality of MSCs after microencapsulation was analyzed
in in vitro assays. MSCs were microencapsulated in recently
developed alg-PEG hybrid microspheres [26,27,29] (Supplemen-
tary Fig. 2A). Cell viability was assessed at day 0 and at 5, 15, 45,
and 218 days after microencapsulation (Supplementary Fig. 3A).
Immediately after trypsinization and encapsulation, MSCs were

round-shaped (Supplementary Fig. 2B) and viability was
66.8 ± 3.8%, compared to 74.4 ± 2.9% among free MSCs (after
trypsinization) (mean ± SEM, n = 4 independent experiments,
difference not statistically significant (p = 0.418)) (Supplemen-
tary Fig. 3B). Five days after microencapsulation, MSCs recovered
their typical spindle-shaped morphology (Supplementary
Fig. 3C), almost without any cell death (viability close to 100%).
Viability of MSCs and integrity of alg-PEG microspheres were
maintained up to 6 months of culture (Supplementary Fig. 3A).
Similar levels of proliferation were observed in encapsulated
MSCs (2.7 ± 0.6%) and free MSCs (2.4 ± 0.2%) (mean ± SEM, n = 4
independent experiments, difference not statistically significant
(p = 0.673)), as shown by analysis of 24 h-EdU incorporation
(Supplementary Fig. 3C and D). When cultured in the respective
differentiation media, free MSCs and microencapsulated MSCs
were able to differentiate into adipocytes storing large lipid
droplets (oil-red-O staining), osteoblasts producing calcific
depositions (Alizarin red staining), and chondrocytes producing
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Fig. 1. Effect of mesenchymal stem cell conditioned medium (MSC-CM) on
alpha smooth muscle actin in LX-2 cells, and collagen and MMP-2 expression
in primary human HSC. (A) Total protein extracts from LX-2 cells, treated with
MSC-CM (n = 4), TGF-b (n = 13), TGF-b and MSC-CM together for 5 days (n = 10),
and untreated cells (control) (n = 4) were subjected to SDS-PAGE, transferred to
nitrocellulose and blotted with anti-a-SMA and anti-vimentin antibodies. (B)
Quantification of a-SMA signals in LX-2 cells by densitometry. The expression of
a-SMA was normalized to vimentin. Data are mean values ± SEM and are
expressed as fold change with respect to the control condition, which was set as
1. (C and D) Primary HSCs were isolated from human liver biopsies and cultured
for 2 days under the following conditions: untreated (control) (n = 8), treated
with MSC-CM (n = 7), treated with TGF-b (n = 10), and treated with TGF-b and
MSC-CM together (n = 4). Total mRNA was extracted from cells, and mRNA levels
of collagen type 1 alpha 1 (Col1a) (C) and MMP-2 (D) were determined by real-
time PCR (data are mean values obtained from 3 independent experiments).
⁄p <0.05, ⁄⁄p <0.01, ⁄⁄⁄p <0.001.
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Fig. 2. Cytokine secretion of free and microencapsulated mesenchymal stem
cells. (A) Human cytokine antibody array was used to analyze 48 h-conditioned
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reveals that cytokines like IGFBP-2, IL-6, and MCP-1 are present at similar levels
in conditioned medium from encapsulated MSCs and free MSCs (performed in
duplicate, data presented are in arbitrary units (AU), mean value ± SEM).
(C) Quantification of human IL-1Ra by ELISA in 22 different MSC-conditioned
media obtained from 11 human donors compared to four control media; data are
presented for individual measurements and mean values ± SEM.
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collagen type I to IV (Goldner’s trichrome), (Supplementary
Fig. 3E). These results indicate that microencapsulated MSCs
remain fully functional in terms of viability, proliferation, and
differentiation potential.

Cytokine profile of free and microencapsulated mesenchymal stem
cells

The cytokine profile of MSCs was analyzed using a human cyto-
kine antibody array, with the aim of identifying molecules that
might implicate an anti-fibrotic or anti-inflammatory effect
(Fig. 2C). Medium conditioned by free EDX cells was used as con-
trol for media from free MSCs and microencapsulated MSCs
(Fig. 2A). MSCs secreted several cytokines (Fig. 2A, Supplementary
Fig. 4A), with the most elevated ones being angiogenin, IGFBP-2,
IL-6, and MCP-1 (Fig. 2B). With the exception of angiogenin,
EDX cells secreted modest levels of cytokines when compared to
MSCs (Fig. 2B, Supplementary Fig. 4B). Conditioned medium from
microencapsulated MSCs and medium from free MSCs showed a
similar cytokine profile in vitro (i.e., angiogenin, IL-6, MCP-1)
(Fig. 2A and B).

Since it has been suggested that MSCs secrete interleukin
1 receptor antagonist (IL-1Ra) [16], this was investigated for
22 MSC-CM preparations using a human-specific IL-1Ra
ELISA (Fig. 2C). IL-1Ra was detected at levels above back-
ground (i.e., 100 pg/ml) in 5 out of 22 (23%) MSC-CM prep-
arations and was not detectable in control media (n = 4)
[16]. These results revealed that both free and microencap-
sulated MSCs secreted cytokines such as IGFBP-2, IL-6,
MCP-1, and IL-1Ra.

Survival of microencapsulated mesenchymal stem cells after
transplantation into mice

At one and six months after transplantation in mice, viable
MSCs were found, as shown by the presence of nucleated,
spindle-shaped, and human vimentin-positive cells in micro-
spheres (Supplementary Fig. 5A and B, Supplementary
Fig. 6A and B). The fibrotic reaction around the micro-
spheres visualized by Masson’s trichrome staining was mod-
erate, did not increase from one to six months, and was
not different between empty microspheres and microspheres
containing MSCs (Supplementary Fig. 6A). A cellular infiltra-
tion was observed around the microspheres with MSCs at
one month (Supplementary Fig. 6A). The infiltration included
IBA-1-positive macrophages and CD4 and CD8-positive T
cells. The relative presence of CD4 and CD8-positive T cells
(normalized to the total number of cells) was significantly
higher around microspheres with MSCs than around empty
microspheres (n = 3 mice per group, p = 0.042 and
p = 0.011, respectively). Similar levels of IBA-1-positive mac-
rophages, expressed with respect to the total number of
nuclei, were present around microspheres, in animals receiv-
ing empty microspheres or microspheres with MSCs (n = 3
mice per group, difference not statistically significant
(p = 0.176)). Quantification of F4/80-positive cells on cryosec-
tions gave similar results (data not shown). Together, these
results indicated that encapsulated MSCs are durably pro-
tected from rejection in mice and cause a modest fibrotic
reaction, with emergence of an immune infiltrate around
microspheres.

Reduced liver fibrosis and increased MMP-9 expression in the liver of
mice after bile duct ligation and transplantation with microencapsulated
mesenchymal stem cells

DBA-1 mice were treated with BDL or CCl4 and underwent intra-
peritoneal transplantation with empty microspheres, encapsu-
lated EDX cells or microencapsulated MSCs. The extent of liver
fibrosis was analyzed by Masson’s trichrome staining and by
measuring the expression of fibrosis-related genes. Quantifica-
tion of collagen revealed significantly less liver fibrosis in mice
transplanted with microencapsulated MSCs than in mice trans-
planted with microencapsulated EDX cells or empty micro-
spheres (8.2% vs. 12.0% and 11.0%, BDL model; 1.0% vs. 1.4% and
4.4%, CCl4 model) (Fig. 3A–D). Histology revealed microencapsu-
lated MSCs around the liver (Supplementary Fig. 5C). Liver colla-
gen type I mRNA levels were increased compared to mice without
BDL (>23-fold) or without CCl4 (10-fold). Collagen type I expres-
sion was reduced in the liver of mice treated with microencapsu-
lated MSCs compared to mice treated with microspheres
containing EDX cells or empty microspheres: the respective dif-
ferences did not reach statistical significance (Fig. 3E and F). Com-
pared with control mice that were not treated with BDL or CCl4,
all three treatment groups showed a substantial increase in liver
mRNA levels of a-SMA (Fig. 3G and H), MMP-9 (Fig. 3I and J), and
MMP-13 (Fig. 3K and L). In the BDL model, a-SMA mRNA levels
were significantly increased in the liver of mice treated with
empty microspheres (8.1-fold) or microencapsulated EDX cells
(9.1-fold), but not in mice treated with microencapsulated MSCs
(1.3-fold): the difference reached statistical significance (Fig. 3G).
No significant difference was observed in the CCl4 model
(Fig. 3H). The number of liver a-SMA and IBA-1 positive cells
was reduced in mice treated with encapsulated MSCs compared
to control (data not shown). Microencapsulated MSCs induced a
substantial increase in MMP-9 expression in BDL and CCl4 models
(7.6-fold and 8.3-fold, respectively) whereas microencapsulated
EDX cells or empty microspheres gave a lower increase (1.8
and 2.0-fold, respectively (BDL) and 2.9 and 5.7-fold, respectively
(CCl4)) (Fig. 3I and J). MMP-13 mRNA levels increased compared
to mice without BDL or CCl4, and without significant differences
between the three groups (Fig. 3K and L). We concluded that
microencapsulated MSCs transplanted into bile duct-ligated mice
have a protective effect during the development of liver fibrosis
since collagen accumulation was reduced. The results further
suggest that regulation of MMP-9 contributes to this effect.

Decreased ALT and AST levels and increased levels of IL-10 and IL-
1Ra in mice transplanted with microencapsulated mesenchymal
stem cells

Mice with bile duct ligation- or CCl4-induced liver fibrosis
showed a substantial increase in ALT and AST after bile duct liga-
tion, reflecting liver parenchymal damage (Fig. 4A–D). Liver
enzymes were lower in mice receiving microencapsulated MSCs
in both models, and the difference was statistically significant
in the bile duct ligation model (p <0.05). Mice treated with micro-
encapsulated EDX cells showed a lower reduction, which did not
reach statistical significance in either model. Levels of IL-10 were
significantly higher in mice after transplantation with microen-
capsulated MSCs than in control mice in which no bile duct
ligation was performed (p <0.05); an increase in IL-10 was also
seen in mice after bile duct ligation and transplantation with
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microencapsulated EDX cells, but this difference did not reach
statistical significance (Fig. 4E). In the bile duct ligation model,
human IL-1Ra was detected in the serum of 4 out of 11 mice
(36%) transplanted with microencapsulated MSCs, and in none
of the mice transplanted with empty microspheres (n = 7)
(Fig. 4F). These results showed that encapsulated MSCs reduced
liver damage induced by bile duct ligation or CCl4, promoted
endogenous anti-inflammatory IL-10 secretion, and secreted
anti-inflammatory cytokine IL-1Ra in vivo.

Discussion

MSC transplantation is currently investigated in 22 clinical trials as
potential treatment for chronic liver diseases (www.clinicaltrial.
gov) and several phase 1-2 studies are published [5,30,31]. These
trials are based on pre-clinical studies where MSCs were shown
to reduce liver fibrosis upon systemic injection [10,11,14]. The
mechanisms underlying this beneficial effect are not well under-
stood and may include MSC ability to differentiate into hepato-
cyte-like cells [32], to reduce inflammation [33] and to enhance
tissue repair at the site of injury [34]. The aim of the present study
was to analyze the potential anti-fibrotic effect of molecules
secreted by MSCs. We used cell microencapsulation to avoid cellu-
lar interactions between recipient’s cells and transplanted MSCs,

and to analyze solely the effect of released cytokines on liver
fibrosis.

We first showed that conditioned medium from human bone
marrow-derived MSCs impeded the activation of HSC in vitro. To
analyze whether this effect persisted in vivo, MSCs were microen-
capsulated to avoid intercellular contact after transplantation
into mice. We used newly developed alg-PEG microspheres [27]
allowing reduced inflammation and better mechanical resistance,
when compared to conventional calcium-alginate microspheres
[29]. In vitro, microencapsulated MSCs continued to proliferate
and kept their capacity to differentiate into adipocytes, osteo-
cytes and chondrocytes, demonstrating that microencapsulated
MSCs were fully functional after encapsulation.

To identify molecules implicated in the anti-fibrotic effects of
MSCs, we performed a cytokine antibody array using MSC-CM.
We compared medium from free and microencapsulated MSCs
to verify that cytokine release from MSC was not inhibited by
the microencapsulation procedure. The results confirmed that
both free and microencapsulated MSCs secrete cytokines at sim-
ilar levels. IL-6, IGFBP-2, and MCP-1 were among the cytokines
showing the highest level of secretion. Of note, IL-6 has known
anti-apoptotic effects and may contribute to the protective effect
of MSCs [35,36]. IGFBP-2 regulates insulin-like growth factor-I,
which is a potent cytoprotective and anabolic hormone produced
by the liver; upregulated insulin-like growth factor-I was shown
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Fig. 3. Effect of microencapsulated mesenchymal stem cells on liver fibrosis in mice and correlation with MMP-9 expression in the liver. (A–D) Livers from mice were
collected 15 days after BDL or 4 weeks of CCl4 treatment and transplantation with either empty microspheres (n = 8 (BDL), n = 8 (CCl4)), microencapsulated EDX cells (n = 5
(BDL), n = 8 (CCl4)), or microencapsulated MSCs (n = 4 (BDL), n = 8 (CCl4)). Mice without BDL (n = 6) or mice treated with corn oil (n = 3) were used as controls. Samples were
fixed in formalin and embedded in paraffin. Liver sections were stained with Masson’s trichrome. Liver parenchyma appears in red and fibrotic areas in blue. Scale bars
400 lm. (B and D) Morphometric quantification of fibrosis was performed on multiple liver sections and expressed as percentage fibrotic surface area. Data are presented as
mean value ± SEM. (E–L) Liver collagen type I alpha 1 mRNA (E and F), a-SMA (G and H), MMP-9 (I and J), and MMP-13 (K and L) quantification by real time-PCR in liver
samples of mice (n = 7 (without BDL), n = 3 (treated with corn oil)), and in mice with BDL and transplanted with empty microspheres (n = 11 (BDL), n = 8 (CCl4)),
microencapsulated EDX cells (n = 5 (BDL), n = 8 (CCl4)), and microencapsulated MSCs (n = 12 (BDL), n = 8 (CCl4)). Data presented are fold change with respect to
housekeeping genes (see Materials and methods) and expressed as mean value ± SEM. ⁄p <0.05, ⁄⁄p <0.01, ⁄⁄⁄p <0.001.
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to have fibrinolytic effects during experimental liver fibrosis [37].
It is thus possible that IGFBP-2 plays a role in the decreased liver
injury observed upon treatment with microencapsulated MSCs.

We further showed that MSCs secrete IL-1Ra in vitro and
in vivo. This natural inhibitor of the pro-inflammatory effect of
IL-1 could be responsible for the anti-inflammatory effects of
MSCs, as suggested by others [16,38,39]. In contrast, increased lev-
els of pro-inflammatory MCP-1 [40] in MSC-CM seem to be in con-
tradiction with the anti-inflammatory effect of MSCs. However,
macrophages are known to play a dual role in liver fibrosis [41]:
in the present model, macrophages possibly contribute to liver
fibrosis during the initial phase of tissue injury, and contribute
to enhanced matrix degradation once liver fibrosis is established.

In vivo, we first demonstrated that microencapsulated MSCs
survived well upon transplantation underneath the kidney cap-
sule of mice, and triggered a modest reaction, visualized by the
presence of CD4 and CD8-positive T cells around microspheres,
one month after transplantation. A fibrotic reaction was observed

that was similar for empty microspheres and microspheres with
MSCs.

Second, we showed the effectiveness of microencapsulated
MSCs in reducing BDL- and CCl4-induced liver fibrosis in mice.
Fifteen days after BDL and transplantation of microencapsulated
MSCs, a significant reduction of a-SMA expression was observed,
compared to mice treated with encapsulated EDX cells or with
empty microspheres. This confirmed the in vitro results where
MSC-CM reduced a-SMA expression in HSCs. After 4 weeks of
CCl4 treatment, this effect was not observed, possibly because
the peak of a-SMA expression had passed, making potential dif-
ferences difficult to detect.

We found that microencapsulated MSCs increased endoge-
nous IL-10 secretion, confirming that MSCs promoted anti-
inflammatory/anti-fibrotic signals in the mouse liver fibrosis
model. Our results are in line with another study on liver fibrosis
in mice, where mouse bone marrow MSCs reduced a-SMA
expression in the fibrotic liver [10]. A direct cellular contact of
MSCs with immune or inflammatory cells or liver cells was pre-
vented by microencapsulation procedure in our experimental
design, indicating that factors secreted by MSCs are responsible
for the inhibitory effect on HSC activation.

We observed a reduced collagen deposition in the liver of
mice treated with microencapsulated MSCs compared to mice
treated with microencapsulated EDX cells or empty micro-
spheres; this is in line with previous studies [10,11,42]. Further,
reduced fibrosis could implicate matrix metalloproteinases,
known to contribute to the matrix degradation during liver fibro-
sis and resolution of fibrosis [43]. The substantial increase of
MMP-9 expression in the liver, induced by microencapsulated
MSC, might represent a possible explanation for the reduced
fibrosis in the mouse liver fibrosis model. Indeed, MMP-9 is over-
expressed by lymphocytes, neutrophils, and Kupffer cells during
chronic liver injury, to counteract massive extracellular matrix
accumulation [43,44]; also, increased levels of MMP-9 have been
associated with diminished liver fibrosis in rodents [12,45] or
cardiac ventricular fibrosis [46].

The microencapsulation of human MSCs allows the study of
the effect of human MSCs instead of murine MSCs, because the
microsphere provides protection against the xeno-immune reac-
tion. We sought to specifically analyze human MSC effects with
the aim of applying our findings to clinical research. This is rele-
vant because murine MSC isolation is challenging and homoge-
nous populations showing similar properties compared to
human MSCs are difficult to obtain, rendering the comparison
between these two cell types difficult [47–50]. An alternative
approach is to use immunodeficient mice unable to mount a
xeno-immune reaction, but liver fibrosis may develop inade-
quately in such animals [51].

A clear advantageous observation in the present study was
that microencapsulated human MSCs in immunocompetent mice
induced minor inflammation, indicating that the observed effects
on the liver are not likely to be due to a bystander effect of an
activated immune system or inflammatory reaction. In order to
exclude such an effect, we transplanted microencapsulated EDX
cells as a control group. EDX cells had a marginal effect on fibrosis
development in the BDL model; an intermediate effect was
observed in the CCl4 model. Albeit to a lesser extent compared
to MSCs, fibrosis and transaminases were reduced, following
encapsulated EDX cell transplantation. Of note, EDX had no effect
on MMP-9 in either model. The effect of EDX cells might be
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explained by their basal secretion of soluble molecules
(Supplementary Fig. 4) that could be responsible for an
anti-inflammatory effect [52]. Moreover, the differences between
the two models may be explained by the fact that liver fibrosis,
induced by the subcutaneous injection of CCl4, is less severe
and of different nature (mainly centrilobular vs. periportal)
compared to BLD-induced fibrosis. This could explain why EDX
cells have an intermediate effect in the CCl4 model and a
marginal effect in the BDL model. Nevertheless, a bystander effect
caused by xenogeneic MSCs or EDX cannot be totally ruled out.
Overall, the fact that MSCs have a stronger effect compared to
EDX suggests that the anti-fibrotic effect is likely to be due
to the secreted factors and not to a ‘‘deviation’’ of inflammation
to the peritoneal cavity.

As stated above, MSCs are investigated in several clinical trials
to treat end-stage liver diseases caused by hepatitis B, C or alco-
holic hepatitis [5,30,31]. Overall, evidence for efficacy in most of
these clinical studies is quite poor, and there were few indica-
tions of a safety concern. Factors contributing to a low efficacy
might be that the cells are often poorly characterized; and
improvements are claimed where there are insufficiently pow-
ered experimental/control groups or lack of randomization to
make this claim. Based on the present experimental animal study,
we suggest to test clinically microencapsulated MSCs for liver
diseases, such as the group of patients with alcoholic steatohep-
atitis and underlying cirrhosis that do not respond to a short-
term course of steroids. For these patients, no therapy is currently
available and the mortality is over 50% at 6 months; essentially,
there is an unmet medical need for alternative therapeutic
options [53]. Microencapsulated MSCs might provide anti-
inflammatory effects and prevent progression to liver failure.

In conclusion, we here show that secreted factors from human
bone marrow-derived MSCs have a direct effect on HSC activation
in vitro. We further demonstrate that microencapsulated MSCs
show anti-fibrotic and anti-inflammatory effects in BDL-induced
liver fibrosis in mice and that soluble factors secreted by the
microencapsulated cells have a key role in this effect. Potential
mechanisms may include increased secretion and activity of
MMP-9, an anti-apoptotic effect mediated by IL-6 or IGFBP-2,
and inhibition of inflammation by IL-1Ra.
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