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We discuss the nonlocality of W and Dicke states subject to losses. We consider two noise models, namely,
loss of excitations and loss of particles, and investigate how much loss can be tolerated such that the final state
remains nonlocal. This leads to a measure of robustness of the nonlocality of Dicke states, with a clear physical
interpretation. Our results suggest that the relation between nonlocality and entanglement of Dicke states is not
monotonic.
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I. INTRODUCTION

Quantum nonlocality [1], the fact that quantum statistics
can lead to Bell inequality violations, is now considered
a fundamental aspect of quantum theory and represents a
powerful resource for information processing (see, e.g., [2,3]).
While quantum nonlocality has been extensively studied in
the case of two parties [3], the multipartite case is not as well
understood. This is partly due to the complexity of multipartite
entanglement [4,5] and to the lack of tools adapted to the study
of multipartite nonlocality (see, however, Refs. [6,7]).

In the present paper, we discuss the nonlocal properties of
an important class of multipartite entangled states, namely,
(symmetric qubit) Dicke states [8]. These are central in the
fields of quantum optics and quantum information processing,
as they play a crucial role in the theory of interaction of light
and matter [8] and in quantum memories [9] and are relevant
for quantum metrology [10–12]. Dicke states form a basis of
all symmetric multipartite qubit states, and their entanglement
properties have been discussed, e.g., in Refs. [13–17].

It is a well-known fact that all multipartite entangled pure
states violate a Bell inequality [18] (see also [19]); hence
all Dicke states exhibit nonlocality. Moreover, the nonlocality
of symmetric pure qubit states is elegantly captured by a
single family of Bell inequalities [20]. The nonlocality of
the simplest Dicke states, featuring a single excitation (the
so-called W states), has been widely discussed [21–27],
in particular in the context of optical Bell tests based on
single-photon entanglement [28–30]. Notably, the possibility
of self-testing the W state has been recently demonstrated
[31,32]. Finally, the relevance of the nonlocality of Dicke
states in the context of many-body physics has been recently
discussed [33].

Our main focus here is to determine the robustness of the
nonlocality exhibited by Dicke states with respect to loss. This
provides a natural way to quantify the nonlocality of these
states, with a clear physical meaning. In addition, this allows
us to compare different Dicke states from the point of view
of nonlocality. For instance, a basic question is the following:
for a given number of particles (or modes) n, what is the most
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robust Dicke state; that is, how many excitations k are optimal
in terms of loss resistance?

Specifically, we consider two models of losses: (i) loss
of excitations and (ii) loss of particles. For a given Dicke
state, our goal is to determine how much loss can be tolerated
such that the final state remains nonlocal, i.e., still violates a
Bell inequality [34,35]. Our focus is to derive bounds for the
case of Dicke states featuring a large number of particles or
modes. Moreover, we study how the robustness is influenced
by the number of excitations in the state. While the most
entangled Dicke state of n particles is the one with exactly
k = �n/2� excitations [14], we find a very different behavior
for nonlocality. Specifically, the most robust Dicke state seems
to feature only a few excitations for both types of losses. This
suggests that the entanglement and the nonlocality of Dicke
states might be nonmonotonically related. Note that in the
bipartite case, entanglement and nonlocality were proven to
behave very differently in certain situations, quite different,
however, from the ones studied here (see [3]).

II. SCENARIO

We consider a source producing a symmetric (qubit) Dicke
state

|n,k〉 =
(

n

k

)− 1
2

sym[|0〉⊗n−k|1〉⊗k], (1)

where sym [· · · ] denotes symmetrization by party exchange.
We refer to such a state as a Dicke state with n particles (or
modes) and k excitations. The case k = 1 corresponds to the
so-called W state [36]. We also write ρn,k = |n,k〉 〈n,k|. Note
that ρn,0 corresponds to the n-partite vacuum and ρn,n is the
product state |1〉⊗n.

After being emitted by the source, state |n,k〉 may undergo
some losses, e.g., via propagation through a lossy channel.
In the end, local measurements are performed on the final
state, and our goal is to characterize the robustness of the
nonlocality of the original state with respect to losses and
hence the nonlocal property of this final state. Specifically,
we consider two different loss models, the study of which we
briefly motivate from a physical point of view.

For the first model, we consider |n,k〉 as describing the state
of a system with n modes featuring k excitations. For instance,
this could represent k photons distributed among n modes, with
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an optical loss p in each arm or, alternatively, k excitations
stored in an ensemble of n atoms with a decay from state |1〉
to |0〉 with probability p, e.g., due to spontaneous emission
or collisions. In this case, it is natural to discuss channel
losses in the following way. In each mode, an excitation has a
probability p of being lost. That is, the channel we consider
implements the local, but nonunitary, amplitude-damping
transformation T characterized by the following relations:
|1〉 → |0〉 with probability p; otherwise, we have |1〉 → |1〉,
while the vacuum component always remains unchanged, i.e.,
|0〉 → |0〉 with probability 1.

Alternatively, one can describe this channel via its Kraus
operators

E0 =
(

1 0
0

√
(1 − p)

)
, E1 =

(
0

√
p

0 0

)
. (2)

Hence the final state is given by

ρf = T (ρn,k) =
∑

i

EiρE
†
i . (3)

We refer to this case as “losing excitations,” and our main goal
is to determine how much loss can be tolerated, i.e., how large
p can be such that the final state ρf is still nonlocal.

In the second loss model, we view state |n,k〉 as that of
a system with n particles, among which k are in state |1〉,
whereas the remaining ones are in state |0〉, where |0〉 and |1〉
refer to an internal degree of freedom of each particle. Here
we discuss the case in which a given number of particles m

is lost. Consider, for instance, the loss of particles from an
atomic ensemble. Hence the final state is given by

τf = trm(ρn,k), (4)

where trm means the partial trace over m fixed particles. Note
that since state ρn,k is symmetrical, it does not matter which
particles are lost. The final state τf contains nf = n − m

particles. We refer to this case as “losing particles,” and our
objective is to find out the largest fraction of particles that can
be lost such that the final state τf remains nonlocal.

The state after losses is distributed between N observers.
Note that N = n for the case of losing excitations, while N =
nf for the case of losing particles. Each observer performs
one out of two possible local measurements on his mode or
particle. Here we assume that all observers perform the same
projective qubit measurements described by the operators

Ai = cos(αi)σz + sin(αi)σx, (5)

where σx,z denote the usual Pauli matrices, each αi is a real
number, and i = 0,1 denotes the choice of setting. It is worth
commenting on this choice of measurements. First, given that
the final state is a mixture of Dicke states, a rather natural
computational simplification is to adopt the same measurement
settings for all parties. Second, since the correlations of Dicke
states are invariant under the exchange of x and y, we chose
to focus on settings in the x-z plane of the Bloch sphere. For
the W state in conjunction with the Werner-Wolf-Żukowski-
Brukner (WWZB) Bell inequalities [37,38] the optimality of
these measurements was numerically verified up to values of
n � 10 in Ref. [29].

The resulting measurement statistics are given by the joint
conditional probabilities

P (a1 · · · aN |x1 · · · xN ) = tr
(
ρPa1

x1
⊗ · · · ⊗ PaN

xN

)
, (6)

where xi = 0,1 and ai = ±1 denote the measurement choice
and outcome, respectively, for observer i. Note that we have
used the projectors Pai

xi
= (I + aiAxi

)/2 here. In order to test
the nonlocality of this correlation, we restrict ourselves to
a Bell scenario with two binary-outcome measurements per
observer. We shall make use of two specific classes of Bell
inequalities which have generalizations for N parties. The first
is given by

SN = P (0 · · · 0|0 · · · 0) −
∑
π

P (0 · · · 0|π (0 · · · 01))

−P (1 · · · 1|1 · · · 1) � 0, (7)

where the sum goes over all N permutations of (0 · · · 01). This
inequality (first discussed in [39]; see also [20]) can be viewed
as a multipartite generalization of the Hardy paradox [40]. The
second is the nonlinear Bell inequality WWZB [37,38] (see
also [41]):

BN =
∑

r

∣∣∣∣∣∣
∑

x∈{0,1}N
(−1)r·xE(x)

∣∣∣∣∣∣ � 2N, (8)

where r is a vector in {0,1}N , x = (x1 · · · xN ) is the vector of
all inputs, and

E(x) =
∑

a1···aN

(∏
i

ai

)
P (a1 · · · an|x1 · · · xN ) (9)

is the full-correlation function. Note that the constraints
due to all facet-defining full-correlation (i.e., featuring only
N -party correlation terms) Bell inequalities are captured by
this single nonlinear inequality. In particular, this includes the
full correlation Bell inequality of Mermin-Ardehali-Belinskii-
Klyshko (MABK) [42–44],

MN =
∣∣∣∣∣∣

∑
x∈{0,1}N

β(x,N )E(x)

∣∣∣∣∣∣ � 2N, (10)

where x = ∑N
k=1 xk and [45]

β(x,N ) = 2
N+1

2 cos

[
π

4
(1 + N − 2x)

]
, (11)

which we will discuss in certain cases.
Note that the Hardy Bell expression (7) involves a number

of joint probabilities that grows linearly with N , while the
WWZB and MABK Bell expressions (8) and (10) feature a
number of correlation functions that grow exponentially with
N , which renders the numerical analysis of large N more
manageable for the former.

We denote by SN (ρ,α0,α1), BN (ρ,α0,α1), and
MN (ρ,α0,α1) the values that are obtained for SN , BN ,
and MN by performing the measurements parametrized by
the measurement angles α0 and α1 [see Eq. (5)] on state ρ.
In the following we use these quantities to characterize the
nonlocality of different Dicke states, starting with the W state,

032108-2



NONLOCALITY OF W AND DICKE STATES SUBJECT . . . PHYSICAL REVIEW A 91, 032108 (2015)

after they have been subjected to the two different types of
losses.

III. W STATE

We start our investigation with the single-excitation Dicke
state (i.e., k = 1), also known as the W state. For our first
model of losses, i.e., losing excitations with probability p, the
final state is given by

ρf = (1 − p)ρn,1 + pρn,0. (12)

For our second model, i.e., losing particles, the final state is
given by [see Eq. (4)]

τf = nf

n
ρnf ,1 + n − nf

n
ρnf ,0. (13)

Although the number of modes is different in the two cases,
the problem of determining the robustness of the final state is
essentially the same. It boils down to finding the robustness
of the nonlocality of the pure W state with respect to mixing
with the (separable) state ρN,0. Note that state ρf is entangled
for any p < 1. Determining the robustness of the nonlocality
of the W state (for general n) with respect to losing excitations
also determines the robustness with respect to the other loss
model. If a probability p of losing excitations can be tolerated
for N parties, then this implies that for n = � N

1−p
� parties,

n − N particles can be lost while preserving the nonlocality
of the state. It is therefore sufficient to study the first model.

To this end, we now focus on the n dependency of the
maximal loss probability p, denoted by pth(n), such that ρf is
nonlocal for all p < pth(n). By analyzing the violation of Sn,
Bn, and Mn using the simplification given in Eq. (5), we get
lower bounds on pth(n), which we denote by pS

th(n), pB
th(n),

and pM
th (n), respectively.

We first discuss the case of the Hardy inequality, for which a
lower bound on pth(n) is found by performing the optimization

pS
th(n) = max

α0,α1

Sn(ρn,1,α0,α1)

Sn(ρn,1,α0,α1) − Sn(ρn,0,α0,α1)
. (14)

We computed Sn(ρn,1,α0,α1) and Sn(ρn,0,α0,α1) as a function
of α0 and α1 (see Appendix A). For small n, the optimization
can be carried out numerically. To extend the result to
large n, for which the optimization becomes computationally
infeasible, we used the optimal measurement angles for small
n to guess their dependency on n. The resulting ansatz that we
adopted is given by

αS
0 (n) = π

2
− arctan(

√
7n),

(15)

αS
1 (n) = 1 − 1

π
arctan(

√
12n).

Computing Eq. (14) for these angles gives us the lower bounds
on pS

th(n) shown in Fig. 1. Moreover, we can determine
the asymptotic behavior (n → ∞), yielding pS

th(n → ∞) �
18.89%. In the context of losing particles, this result shows
that at least a constant fraction of 18.89% can be lost for
large n.

Next, we consider the WWZB inequalities, as well as
the specific case of MABK. We follow the same procedure
as discussed above. Considering small n, we determine the

FIG. 1. For W states of n qubits, the graph shows lower bounds
on the threshold probability pth(n) of losing an excitation for the
Hardy, WWZB, and MABK inequalities. The best bound is obtained
using the WWZB inequality, pth(n) � 31.4%, albeit for small values
of n. For the Mermin and the Hardy inequalities and large values of
n, we get pth(n) � 27.41% and pth(n) � 18.89%, respectively.

optimal settings for WWZB, resulting in the following ansatz:

αB
0 (n) = −π

2
+ arctan(

√
1.075n),

(16)
αB

1 (n) = π

2
− arctan(

√
0.3n).

We proceed similarly for the case of MABK, for which it
turns out that we need to differentiate the four cases of
n = 0,1,2,3 mod 4. The corresponding functions for αM

j can
be found in Appendix B. With this ansatz, we obtain the
lower bounds on pB

th(n) and pM
th (n) shown in Fig. 1. The

WWZB and MABK inequalities appear to be much more
robust compared to the Hardy inequality. While we were not
able to go to arbitrarily large n due to computational reasons
(up to n = 46 for WWZB and n = 103 for MABK), our
results seem to approach pth(n) � pB

th(n) � 33.33% for large
n, consistent with the results of Refs. [29,35].1 Note that the
MABK inequality is less robust as we get pM

th (n) � 27.41%
for large n. Finally, in the context of losing particles this shows
that a constant fraction of (at least) one third of the particles
can be lost for large n.

IV. DICKE STATES

We now turn our attention towards general Dicke states
with k excitations. Let us first note that, unlike the case of the
W state, here the two loss models have to be treated separately.
This can be seen already for the case of k = 2 excitations, for
which we find

ρf = (1 − p)2ρn,2 + 2p(1 − p)ρn,1 + p2ρn,0 (17)

and

τf =
∑

l=0,1,2

(
nf

l

)(
n−nf

2−l

)
(
n

2

) ρnf ,l . (18)

1More precisely, we observe a monotonic increase in pB
th(n), and

for n = 46, the latter was found to be 31.4%.
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Note also that the Dicke states with k and n − k excitations
are equivalent when exchanging the roles of |0〉 and |1〉. This
symmetry is preserved in the final state τf after particle loss
but not in the final state ρf after losing excitations. This is due
to the fact that the loss model of losing excitations introduces
an asymmetry between |0〉 and |1〉. We therefore conclude that
the same number of particles can be lost for Dicke states with
k or n − k excitations. On the contrary, this is not the case for
losing excitations, where the amplitude-damping channel has
a different effect on states |0〉 and |1〉.

A. Losing excitations

We start our analysis by looking at the generalized Hardy
inequalitySn. The expressions forSn(ρn,k,α0,α1) can be found
in Appendix C. As in the case of the W state, we performed
the optimization over α0 and α1 in the case of few parties for
different numbers of excitations k = 2, . . . ,6 and investigated
the dependency of the optimal measurement angles on the
number of parties n. For k = 2, the resulting ansatz is given
by

αS
0 (n,2) = π

2
− arctan(1.97

√
n),

(19)

αS
1 (n,2) = π + 3

2
− arctan(6.93

√
n).

For k = 3, . . . ,6, we found that we could choose functions
which are structurally the same and are given by

αS
0 (n,k) = π

2
− arctan[q0(k)

√
n],

(20)

αS
1 (n,k) = π + 1

2
− arctan[q1(k)

√
n].

The values of the coefficients qj (k) as well as the lower bounds
on the threshold probability given by these measurements can
be found in Table I.

When looking at Table I, it may seem that the threshold
probability always increases monotonically with the number
of excitations, as one may expect due to the fact that the
state with k = � n

2 � excitations contains the largest amount of
entanglement. This is, however, not supported by the results
that we obtained. For fixed values of n we performed the
optimization to calculate the threshold probability pS

th(n,k)
for k = 2, . . . ,n − 2, by which it was found that the optimal

TABLE I. For Dicke states with n = 104 and k excitations, we
give lower bounds on the threshold probability of losing excitations
considering the Hardy inequality. Also given are the values of the
coefficients q0(k) and q1(k) defining the measurement angles given
by Eq. (20). Note that these coefficients were found with respect to
the optimal angles for small values of n.

k Lower bound on pS
th(n = 104) q0(k) q1(k)

1 0.1889
2 0.2599
3 0.2837 1.63 4.72
4 0.2956 1.47 3.77
5 0.2994 1.34 3.07
6 0.3017 1.24 2.66

FIG. 2. Bounds on the threshold probability pth(100,k) of losing
an excitation for Dicke states of n = 100 qubits with k excitations.
Here we consider the Hardy inequality S100. The most robust Dicke
state features only a few excitations, here k = 5. Note that for k

n

approaching 1 the numerics become unstable.

number of excitations k is far smaller than � n
2 �, as can be seen

in Fig. 2 for the case of n = 100. We observe that the optimal
number of excitations k increases slowly with increasing n

(see Fig. 3). Unfortunately, we were not able to determine
their exact relationship.

The asymmetry of the noise model clearly manifests itself
in these findings since we do not observe a symmetry around
k = � n

2 �. Nevertheless, the rapid decline of the threshold
probability pS

th(n,k) was unexpected and could have been
an artifact of our choice of Bell inequality. This prompted
us to redo the computations using the WWZB and MABK
inequalities (for details see Appendix C). The results, which
are presented in Fig. 4 for n = 30, however, showed similar
behavior; the threshold values pB

th(n,k) and pM
th (n,k) both

attain their maximum for a small number of excitations. It
can also be seen that the threshold probability given by the
WWZB and MABK inequalities is larger than the one given
by the Hardy inequality, however, the optimization quickly

FIG. 3. We consider Dicke states of n qubits with k excitations
and give bounds pth(n,k) considering the Hardy inequality. The
bottommost curve, i.e., n = 100, corresponds to Fig. 2. Clearly,
robustness increases as the number of qubits n increases. For large
values of n, numerics could be performed only for small k.

032108-4



NONLOCALITY OF W AND DICKE STATES SUBJECT . . . PHYSICAL REVIEW A 91, 032108 (2015)

FIG. 4. A comparison of the threshold values pth(n,k) for the
Hardy, WWZB, and MABK inequalities. Here we consider the case
n = 30 qubits. Again, the WWZB inequality is optimal, slightly
outperforming the MABK inequality. Interestingly, the most robust
states, for each inequality, have only a few excitations.

becomes unstable for larger values of k in the case of WWZB
and MABK.

We conclude that the most robust state against excitation
loss, at least when considering symmetric equatorial measure-
ments, is likely one with only a few excitations.

B. Losing particles

The analysis for the case of losing particles is performed
in a similar fashion to the case of losing excitations. The
main difference is that nf

n
can take only a discrete number

of values for fixed n. Also, as noted previously, the final state
τf is symmetric under k → n − k and |0〉 ↔ |1〉, which is
why we can limit our analysis to k � � n

2 �. We perform the
optimization for fixed n and varying values of k for all families
of inequalities.

The critical fraction of particles one can afford to lose in
order for τf to allow for violations of the specified inequality
with symmetric equatorial measurements is shown in Fig. 5 for
the Hardy inequality (S200) and in Fig. 6 for the Hardy and the
WWZB inequalities (S30 and B30); note that the results of the

FIG. 5. Robustness of Dicke states of n = 200 qubits with k

excitations to loss of particles. We give bounds on the fraction of
qubits remaining in the final state nf for the Hardy inequality.

FIG. 6. Robustness of Dicke states of n = 30 qubits with k

excitations to loss of particles. We give bounds on the number of
qubits in the final state nf for the Hardy and the WWZB inequalities.

MABK inequality are not shown, as the inequality turns out
to be much less robust here. Note that, as above, the WWZB
inequality appears to be the most robust one, allowing for
roughly a third of the particles to be lost. However, for the
WWZB inequality the optimization could be carried out only
for values of k � 9.

As with the case of losing excitations, we notice again that
the highest robustness is achieved for small (and in this case,
by symmetry, also large) numbers of excitations and is not
around k = � n

2 �. This is further evidence that for the robustness
of nonlocal properties, the state with the largest entanglement
k = � n

2 � may not be optimal.

V. CONCLUSION

We have investigated the nonlocality of symmetric Dicke
states of n qubits subject to losses. We considered two
models of losses, namely, loss of excitations and loss of
particles. For each loss model, we investigated the robustness
of the nonlocality of these states using different families of
multipartite Bell inequalities. We found that independent of
n, the most robust Dicke states are those featuring a small
number of excitations, i.e., k 
 n. Since Dicke states become
more entangled when k is close to n/2, our results suggest that
the relation between nonlocality and entanglement of Dicke
states may not be monotonic.

However, this work marks only the beginning of the
investigation of the nonlocality of Dicke states when subject
to losses. More work will be needed to see whether the
behavior observed here is generic or whether it is due to
the fact that we focus on specific classes of Bell inequalities
and the restriction to symmetric equatorial measurements. In
particular it would be interesting to consider Bell inequalities
with more measurement settings per party and less symmetric
measurements. Another interesting aspect would be to study
the robustness of genuine multipartite nonlocality for Dicke
states. Answers to any of these questions would certainly
represent significant progress in our understanding of the
nonlocal properties of Dicke states.

Note added. Recently, we became aware of related work
by Sohbi et al. [46]. In particular these authors also discuss
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the robustness of the nonlocality of Dicke states upon losing
excitations, using the Hardy inequality.
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APPENDIX A: VALUES OF SN AND MN FOR
EQUATORIAL MEASUREMENTS

In the following appendices we denote cos(αj ) by cj

and sin(αj ) by sj to simplify notation. The equations for
Sn(ρn,1,α0,α1) and Sn(ρn,0,α0,α1) for the Hardy inequality
are

Sn(ρn,1,α0,α1) = nc
2(n−1)
0 s2

0 − nc2
1s

2(n−1)
1

−(
cn−1

0 s1 + (n − 1)cn−2
0 s0c1

)2
, (A1)

Sn(ρn,0,α0,α1) = c2n
0 − nc

2(n−1)
0 c2

1 − s2n
1 .

The full correlators that are needed for the WWZB and
MABK inequalities were derived in Eq. (13) of [23]. While no
closed form could be obtained for the WWZB inequalities
(due to its nonlinearity), we could get a closed form for
Mn(ρn,1,α0,α1) and Mn(ρn,0,α0,α1):

Mn(ρn,0,α0,α1)

= 1
2e−i(n+1) π

4 [(c0 + ic1)n + i(ic0 + c1)n], (A2)

Mn(ρn,1,α0,α1)

=
√

2

4c4
0c

4
1

(1 + i)e−in π
4 {(c0 + ic1)2 (ic0 + c1)n

× [2i (c0c1 + s0s1) + n (s0 − is1)2] − (c0 − ic1)2

× (c0 + ic1)n [2 (c0c1 + s0s1) + in (s0 + is1)2]}. (A3)

APPENDIX B: OPTIMAL MEASUREMENT ANGLES FOR
THE MABK INEQUALITY WITH W STATES

Here we provide the ansatz for the measurement angles αM
j

for n = 0,1,2,3 mod 4. For the case n = 0 mod 4 we have

αM
0 (n) = π

2
+ arctan

(
5

4

√
n

)
,

(B1)

αM
1 (n) = π

2
− arctan

(
4

9

√
n

)
.

For n = 1 mod 4 we have

αM
0 (n) = π

2
+ arctan(0.72

√
n),

(B2)

αM
1 (n) = π

2
− arctan

(
4

3

√
n

)
.

For n = 2 mod 4 we have

αM
0 (n) = π

2
− arctan(0.72

√
n),

(B3)

αM
1 (n) = −π

2
+ arctan

(
4

3

√
n

)
.

Finally, for n = 3 mod 4 we have

αM
0 (n) = π

2
− arctan

(
3

4

√
n

)
,

(B4)

αM
1 (n) = π

2
+ arctan

(
4

3

√
n

)
.

APPENDIX C: PROBABILITIES AND CORRELATORS
FOR SYMMETRIC EQUATORIAL MEASUREMENTS

ON DICKE STATES

The expressions Sn(ρn,k,α0,α1) for the Hardy inequality are
given by a generalization of Eq. (A1). The value E(�x) for
the Dicke states can also be found below. Specifically, we
have

Sn(ρn,k,α0,α1) =
(

n

k

)
c

2(n−k)
0 s2k

0 − n(
n

k

) [(
n − 1

k − 1

)
cn−k

0 s1s
k−1
0 +

(
n − 1

k

)
cn−1−k

0 c1s
k
0

]2

−
(

n

k

)
s

2(n−k)
1 c2k

1 , (C1)

E(�x) = 1(
nf

k

) k∑
r=0

min(2r,x)∑
q=max(0,2r+x−nf )

(−1)k−r

(
nf − x

2r − q

)(
x

q

)(
2r

r

)(
nf − 2r

k − r

)
c
nf +q−x−2r

0 s
2r−q

0 c
x−q

1 s
q

1 . (C2)

Note that, contrary to the case of the W state, a closed expression for Mn(ρn,k,α0,α1) [computed using Eq. (10)] could not be
found.
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