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Non-Markovian quantum state diffusion

L. Diósi,1 N. Gisin,2 and W. T. Strunz3
1Research Institute for Particle and Nuclear Physics, 1525 Budapest 114, P.O.B. 49, Hungary

2Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
3Fachbereich Physik, Universita¨t GH Essen, 45117 Essen, Germany

~Received 7 April 1998!

A nonlinear stochastic Schro¨dinger equation for pure states describing non-Markovian diffusion of quantum
trajectories and compatible with non-Markovian master equations is presented. This provides an unraveling of
the evolution of any quantum system coupled to a finite or infinite number of harmonic oscillators without any
approximation. Its power is illustrated by several examples, including measurementlike situations, dissipation,
and quantum Brownian motion. Some examples treat this environment phenomenologically as an infinite
reservoir with fluctuations of arbitrary correlation. In other examples the environment consists of a finite
number of oscillators. In such a quasiperiodic case we see the reversible decay of a macroscopic quantum-
superposition~‘‘Schrödinger cat’’!. Finally, our description of open systems is compatible with different
positions of the ‘‘Heisenberg cut’’ between system and environment.@S1050-2947~98!01409-7#

PACS number~s!: 03.65.Bz, 05.40.1j, 42.50.Lc

I. INTRODUCTION

In quantum mechanics, a mixed state, represented by a
density matrixr t , describes both an ensemble of pure states
and the ~reduced! state of a system entangled with some
other system, here consistently called ‘‘the environment.’’ In
both cases the time evolution ofr t is given by a linear map

r t5Ltr0 , ~1!

which describes the generally non-Markovian evolution of
the system under consideration. Such equations describe
both an open system in interaction with infinite reservoirs, or
a system entangled with a finite environment. In almost all
cases, the general Eq.~1! cannot be solved analytically. Even
numerical simulation is most often beyond today’s algo-
rithms and computer capacities, and thus, the solution of Eq.
~1! remains a challenge.

In the Markov limit, Eq.~1! simplifies and reduces to a
master equation of Lindblad form@1#

d

dt
r t52 i @H,r t#1

1

2(m ~@Lmr t ,Lm
† #1@Lm ,r tLm

† # !, ~2!

whereH is the system’s Hamiltonian and the operatorsLm
describe the effect of the environment in the Markov ap-
proximation. This approximation is often very useful be-
cause it is valid for many physically relevant situations and
because analytical or numerical solutions can be found.

In recent years, a breakthrough in solving the Markovian
master equation~2! has been achieved through the discovery
of stochastic unravelingsof the density operator dynamics.
An unraveling is a stochastic Schro¨dinger equation for states
uc t(z)&, driven by a certain noisezt such that the mean of the
solutions of the stochastic equation equals the density opera-
tor

r t5M @ uc t~z!&^c t~z!u#. ~3!

HereM @•••# denotes the ensemble mean value over the clas-
sical noisezt according to a certain distribution functional
P(z).

The simplest stochastic Schro¨dinger equations unraveling
the density matrix evolution are linear and do not preserve
the norm ofc t(z). Such an unraveling is merely a math-
ematical relation. To be truly useful, one should derive un-
ravelings in terms of the corresponding normalized states

c̃ t~z!5
c t~z!

ic t~z!i , ~4!

where now relation~3! can be interpreted as an unraveling of
the mixed stater t into an ensemble of pure states. Of course,
using the normalized statesc̃ t(z) requires a change of the
distribution P(z)→ P̃t(z) in order to ensure the correct en-
semble mean, with

P̃t~z![ic t~z!i2P~z! ~5!

so that the Eq.~3! remains valid for the normalized solutions,

r t5M̃ t@ uc̃ t~z!&^c̃ t~z!u#. ~6!

We refer to this change~5! of the probability measure as
a Girsanov transformation@2#—other authors refer to ‘‘cook-
ing the probability’’ or to ‘‘raw and physical ensembles’’
@3#, or to ‘‘a priori anda posterioristates’’ @4#.

In the case of Markovian master equations of Lindblad
form ~2!, several such unravelings~6! are known. Some un-
ravelings involve jumps at random times, others have con-
tinuous solutions. The Monte Carlo wave-function method
@5#, sometimes called quantum jump trajectories@6,7#, is the
best known example of the first class, whereas the quantum
state diffusion~QSD! unraveling@8# is typical of the second
class. All these unravelings have been used extensively over
recent years, as they provide useful insight into the dynamics
of continuously monitored~individual! quantum processes
@9,10#. In addition, they provide an efficient tool for the nu-
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merical solution of master equations. It is thus desirable to
extend the powerful concept of stochastic unravelings to the
more general case of non-Markovian evolution. First at-
tempts towards this goal using linear equations can be found
in @11#, other authors have tackled this problem by adding
fictitious modes to the system in such a way as to make the
enlarged, hypothetical system’s dynamics Markovian again
@12–14#. In our approach, by contrast, the system remains as
small as possible and thus the corresponding stochastic
Schrödinger equation becomes genuinely non-Markovian.

Throughout this paper we assume a normalized initial
statec0(z)[c0 of the system, independent of the noise at
t50. Such a choice corresponds to a pure initial stater0
5uc0&^c0u for the quantum ensemble and correspondingly,
to a factorized initial stater tot5r0^ renv of the total density
operator of system and environment.

In this paper we present the nonlinear non-Markovian sto-
chastic Schro¨dinger equation that unravels the dynamics of a
system interacting with an arbitrary ‘‘environment’’ of har-
monic oscillators, finite or infinite in number. For a brief
overview of the underlying microscopic model see Appendix
C. In the Markov limit, this unraveling reduces to QSD@8#
and will therefore be referred to asnon-Markovian quantum
state diffusion. Our results are based on the linear theories
presented in@15,16#, where the problem of non-Markovian
unravelings was tackled from two quite different approaches.
The linear version of the non-Markovian stochastic Schro¨-
dinger equation relevant for this paper, unifying these first
attempts, was presented in@17# for unnormalized states.

Here we present examples of the corresponding normal-
ized and thus more relevant theory. We include cases where
the environment is treated phenomenologically, represented
by an exponentially decaying bath correlation function, and
cases where the ‘‘environment’’ consists of only a finite,
small number of oscillators—in Sec. V of even just a single
oscillator. The latter case corresponds to periodic~or quasi-
periodic! systems, that is, to extreme non-Markovian situa-
tions. Before presenting examples in Secs. III, IV, and V, all
the basic equations are summarized in Sec. II. Several open
problems are discussed in Sec. VII, while the concluding
Sec. VIII summarizes the main achievements.

II. BASIC EQUATIONS

In this section we summarize all the basic equations. Let
us start by recalling the case of Markov QSD, providing an
unraveling of the Lindblad master equation~2!.

A. Markov case

The linear QSD equation for unnormalized states reads

d

dt
c t52 iHc t1Lc t +zt2

1

2
L†Lc t , ~7!

wherezt is a white complex-valued Wiener process of zero
mean and correlations

M @zt* zs#5d~ t2s!, M @ztzs#50, ~8!

and + denotes the Stratonovich product@18#.

The solutions of Eq.~7! unravel the density matrix evo-
lution according to the master equation~2! through the gen-
eral relation~3!. Here, Eq.~7! is written for a single Lindblad
operatorL, but it can be straightforwardly generalized by
including a sum over all Lindblad operatorsLm , each with
an independent complex Wiener processzm .

The simple linear equation~7! has two drawbacks. First,
its physical interpretation is unclear because unnormalized
state vectors do not represent pure states. Next, its relevance
for numerical simulation is severely reduced by the fact that
the normic t(z)i of the solutions tends to 0 with probability
1 ~and to infinity with probability 0, so that the mean square
norm is constant!. Hence, in practically all numerical simu-
lations of Eq.~7! the norm tends to 0, while the contribution
to the density matrix in Eq.~3! is dominated by very rare
realizations of the noisez.

Introducing the normalized states~4! removes both these
drawbacks. As a consequence, the linear Eq.~7! is trans-
formed into a nonlinear equation forc̃ t(z). In this Markov
case, the result of Girsanov transforming the noise according
to Eq.~5! and normalizing the state is well known@2,3#, it is
the following QSD evolution equation for the normalized
states

d

dt
c̃ t52 iH c̃ t1~L2^L& t!c̃ t +~zt1^L†& t!

2 1
2 ~L†L2^L†L& t!c̃ t , ~9!

where ^L&5^c̃ tuLuc̃ t&. This equation is the standard QSD
equation for the Markov case written as a Stratonovich sto-
chastic equation. Notice that it appears in its Itoˆ version in
Ref. @8#. The effect of the Girsanov transformation is the
appearance of the shifted noise

zt1^L†& t , ~10!

entering Eq.~9!, wherezt is the original process of Eq.~7!.
The effect of the normalization is the subtraction of the op-
erator’s expectation values.

B. Non-Markovian case

In the non-Markovian case, the linear stochastic Schro¨-
dinger equation generalizing Eq.~7! was derived in Ref.
@17#, it reads

d

dt
c t52 iHc t1Lc tzt2L†E

0

t

a~ t,s!
dc t

dzs
ds. ~11!

It unravels the reduced dynamics of a system coupled to an
arbitrary ‘‘environment’’ of harmonic oscillators—see Ap-
pendix C for a brief overview. Thus, Eq.~11! represents an
unraveling of a certain~standard! class of general non-
Markovian reduced dynamics as in Eq.~1!. The structure of
Eq. ~11! is very similar to the Markovian linear equation~7!:
The isolated system dynamics is Schro¨dinger’s equation with
some HamiltonianH. The stochastic influence of the envi-
ronment is described by a complex Gaussian processzt driv-
ing the system through the Lindblad operatorL. While this is
a white noise process in the Markov case, here it is a colored
process with zero mean and correlations
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M @zt* zs#5a~ t,s!, M @ztzs#50, ~12!

where the Hermitiana(t,s)5a* (s,t) is the environment
correlation function. Its microscopic expression can be found
in Appendix C. In this paper, we sometimes but not always
adopt a phenomenological point of view and will often
choose a(t,s) to be an exponential (g/2)exp@2gut2su
2 iV(t2s)], decaying on a finite environmental ‘‘memory’’
time scaleg21, and oscillating with some environmental
central frequencyV. The Markov case emerges in the limit
g→`. In the most extreme non-Markovian case, when the
‘‘environment’’ consists of just a single oscillator of fre-
quencyV, we have the periodica(t,s)5exp@2iV(t2s)#. Fi-
nally, the last term of Eq.~11! is the non-Markovian gener-
alization of the last term of the Markovian linear QSD Eq.
~7!. This term is highly nontrivial and reflects the origin of
the difficulties of non-Markovian unravelings.

One can motivate Eq.~11! on several grounds. First, it
was originally derived from a microscopic system-
environment model@17#. In the original derivation the corre-
lation functiona(t,s) describes the correlations of environ-
ment oscillators with positive frequencies. However, as can
be seen in Appendix C, any positive definitea(t,s) can for-
mally be obtained from some suitably chosen environment
that possibly includes negative frequency oscillators~Hamil-
tonian not bounded from below!.

Next, as a second motivation, we sketch a direct proof
that Eq. ~11! defines an evolution equation~1! for density
operators. This ensures that the stochastic equation is com-
patible with the standard description of mixed quantum
states@19,20#. Let r05( j pj uc0

( j )&^c0
( j )u be any decomposi-

tion of the density operator at the initial time 0~recall that at
time zero the system and environment are assumed uncorre-
lated!. What needs to be proven is thatr t is a function ofr0

only, wherer t[( j pjM @ uc t
( j )&^c t

( j )u#. This guarantees that
r t does not depend on the decomposition ofr0 into a mix-
ture of pure states$uc0

( j )&%. For this purpose we notice that
the solutionc t of Eq. ~11! is analytic inz and is thus inde-
pendent of z* . Hence we find (duc t&/dzs) ^c tu
5 d(uc t&^c tu)/dzs. Accordingly, the evolution equation of
uc t&^c tu is linear: it depends linearly onuc0&^c0u. Since the
meanM is also a linear operation,r t depends linearly onr0.
Finally, the positivity ofr t is guaranteed by the existence of
a pure state decomposition and its normalization follows
from the fact that Eq.~11! preserves the norm in the mean,
M @ ic ti2#5const as shown in Appendix B.

Third, another set of motivations for Eq.~11! is provided
by the numerous examples of the next sections of this paper
and by the fact that, by full analogy with the Markov case,
there exists a corresponding nonlinear equation for normal-
ized states, as will be shown in the remainder of this section.

To summarize, Eq.~11! is the basic equation for non-
Markovian linear QSD. The functional derivative under the
integral indicates that the evolution of the statec t at timet is
influenced by its dependence on the noisezs at earlier times
s. Admittedly, this functional derivative is the cause for the
difficulty of finding solutions of Eq.~11! in the general case,
even numerical solutions.

We tackle this problem by noting that the linear equation
~11! may be simplified with theAnsatz

dc t

dzs
5Ô~ t,s,z!c t , ~13!

where the time and noise dependence of the operator
Ô(t,s,z) can be determined from the consistency condition

d

dt

dc t

dzs
5

d

dzs
ċ t ~14!

with the linear equation~11!. The ansatz~13! is completely
general and hence, once the operatorÔ(t,s,z) is known, the
linear non-Markovian QSD equation~11! takes the more ap-
pealing form

d

dt
c t52 iHc t1Lc tzt2L†E

0

t

a~ t,s!Ô~ t,s,z!dsc t .

~15!

We are going to show in the subsequent sections how to
determineÔ(t,s,z) for many interesting and physically rel-
evant examples. In most of these cases, in fact, the operator
Ô turns out to be independent of the noisez and takes a
simple form.

Being the non-Markovian generalization, Eq.~11!, or
equivalently Eq.~15! suffers from the same drawbacks as its
Markov limit ~7!: the norm of its solutions tend to 0 with
probability 1. And the cure will be similar. One introduces
the normalized states~4! and substitutes the linear stochastic
Schrödinger equation~15! by the corresponding nonlinear
one. Its explicit form can be rather involved as will be dem-
onstrated in the following sections.

The derivation of the desired evolution equation of the
normalized statesc̃ t requires two steps: taking into account
the Girsanov transformation of the noise~5! and normaliza-
tion. In Appendix B we prove that the non-Markovian Gir-
sanov transformation for the noise probability distribution
P̃t(z) ~5! corresponds to a time-dependent shift of the origi-
nal processzt ,

z̃t5zt1E
0

t

a~ t,s!* ^L†&sds. ~16!

This shift and the normalization of the statec t results, as
shown in Appendix B, in the nonlinear, non-Markovian QSD
equation for the normalized state vectorsc̃ t , which takes the
ultimate form

d

dt
c̃ t52 iH c̃ t1~L2^L& t!c̃ tz̃t

2E
0

t

a~ t,s!@~L†2^L†& t!Ô~ t,s,z̃!

2^~L†2^L†& t!Ô~ t,s,z̃!& t#dsc̃ t , ~17!

wherez̃t is the shifted noise~16!.
Equation~17! is the central result of this paper, the non-

Markovian, normalized stochastic Schro¨dinger equation that
unravels the reduced dynamics of a system in interaction
with an arbitrary ‘‘environment’’ of harmonic oscillators—
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encoded by the properties of the environment correlation
functiona(t,s). In the following sections we will give many
interesting examples of thisnon-Markovian quantum state
diffusionequation~17!.

III. SPIN- 1
2 EXAMPLES

In this section we use spin-1
2 examples to illustrate gen-

eral methods to solve the non-Markovian QSD equations
~11! @or ~15!# and~17!, respectively. These are generally nu-
merical, though sometimes analytical, solutions, which illus-
trate certain features of non-Markovian QSD, unknown in
the Markov theory. Throughout this sectionsW denote the
Pauli matrices.

A. Measurementlike interaction

This is the simplest example, hence we present it in some
detail. LetH5 (v/2) sz , L5lsz with l a real number pa-
rametrizing the strength of the interaction. The harmonic os-
cillator environment is encoded by its correlation function
a(t,s), which is left arbitrary in this section. First, in order
to eliminate the functional derivative in Eq.~11!, we assume
as anAnsatz

dc t

dzs
5lszc t , ~18!

i.e., we chooseÔ(t,s,z)5lsz independent oft, s, andz in
Eq. ~13!. It is straightforward to show that, indeed, this an-
satz is compatible with Eq.~14!, i.e., it solves the fundamen-
tal linear equation~11!.

The corresponding nonlinear, non-Markovian QSD Eq.
~17! for the normalized statec̃ t reads

d

dt
c̃ t52 i

v

2
szc̃ t1l~sz2^sz& t!c̃ t

3S zt1lE
0

t

a~ t,s!* ^sz&sds1lE
0

t

a~ t,s!dŝ sz& tD .

~19!

This equation is the generalization of the Markov QSD equa-
tion ~9! for general environment correlationsa(t,s). Notice
that, indeed, Eq.~19! reduces to the corresponding Markov
QSD equation~9! in the limit of a delta-correlated environ-
ment @one has*0

t a(t,s) f (s)ds→ 1
2 f (t) for any function

f (t)].
Equation~19! shows the effect of the non-Markovian Gir-

sanov transformation~5!. It induces not only the shifted
noise ~16!, but also leads to an additional shift due to the
implicit zt dependence ofc̃ t , as explained in detail in Ap-
pendix B. Numerical simulations of Eq.~19! are shown be-
low.

In order to find the reduced density matrix of this model,
we solve analytically the linear non-Markovian QSD equa-
tion ~15!. Using Eq.~18! we find

d

dt
c t52 i

v

2
szc t1lszc tzt1l2E

0

t

a~ t,s!* dsc t .

~20!

From the explicit solution of this equation we obtain the
expression for the ensemble mean

r~ t ![M @ uc t&^c tu#5S r11~0! r12~0!e2F~ t !

r21~0!e2F~ t !* r22~0!
D ,

~21!

with F(t)5 ivt12l2*0
t ds*0

sdu@a(s,u)1a* (s,u)#. Taking
the time derivative, one can show that this density matrix is
the solution of the following non-Markovian master equa-
tions:

ṙ t52 i
v

2
@sz ,r t#

2
l2

2 E
0

t

@a~ t,s!1a* ~ t,s!#ds†sz ,@sz ,r t#‡ ~22!

52 i
v

2
@sz ,r t#1E

0

t

K~ t,s!rsds, ~23!

where the ‘‘memory superoperator’’K(t,s) acts as follows
on any operatorA:

K~ t,s!A52
l2

2
@a~ t,s!1a~ t,s!* #

3e22l2*s
t du*0

udv@a~u,v !1a~u,v !* #
†sz ,@sz ,A#‡.

~24!

Let us now turn to actual simulations of this example. In
Fig. 1~a! we show non-Markovian QSD trajectories from
solving Eq.~19! numerically withl252v and an exponen-
tially decaying environment correlation functiona(t,s)
5 (g/2) exp(2gut2su) with g5v ~solid lines!. For this expo-
nentially decaying environment correlation function the as-
ymptotical solution is either the up state or the down state
(^sz&561), while the ensemble meanM @^sz&# remains
constant~dashed line!. Thus, as in the standard Markov QSD
case, the two outcomes ‘‘up’’ or ‘‘down’’ appear with the
expected quantum probability: Prob(limt→`c t5u↑&)
5u^↑uc0&u2. Notice that for these non-Markovian situations,
the quantum trajectories are far smoother than their white-
noise counterparts of Markov QSD@8#. We emphasize that if
the environment consists of only a finite number of oscilla-
tors, represented by a quasiperiodic correlation function
a(t,s), no such reduction to an eigenstate will occur.

In Fig. 1~b! we compare the average over 10 000 trajec-
tories of the non-Markovian QSD equation~19! with the
analytical ensemble mean~21! and see very good agreement.
This confirms that indeed both the memory integrals in Eq.
~19! arising from the Girsanov transformation of the noise
are needed to ensure the correct ensemble mean.

B. Dissipative interaction

This is the simplest example with a non-self-adjoint Lind-
blad operator. Again we setH5 (v/2) sz , but now we

chooseL5ls2[l 1
2 (sx2 isy) describing spin relaxation.
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Also, the environmental correlation functiona(t,s) and thus
the quantum harmonic oscillator environment can be chosen
arbitrary.

First we have to replace the functional derivative in Eq.
~11!, and we try an ansatz~13! of the form

dc t

dzs
5 f ~ t,s!s2c t , ~25!

with f (t,s) a function to be determined. The consistency
condition ~14! of our ansatz~25! leads to the condition on
f (t,s):

] t f ~ t,s!s2c t5F2 i
v

2
sz2lF~ t !s1s2 , f ~ t,s!s2Gc t

~26!

5@ iv1lF~ t !# f ~ t,s!s2c t ~27!

with

F~ t ![E
0

t

a~ t,s! f ~ t,s!ds. ~28!

Hence, ifs2c tÞ0, the functionf (t,s) must satisfy the fol-
lowing equation:

] t f ~ t,s!5@ iv1lF~ t !# f ~ t,s! ~29!

with initial condition f (s,s)5l. The corresponding non-
Markovian QSD equation~17! for normalized state vectors
c̃ t reads

d

dt
c̃ t52 i

v

2
szc̃ t2lF~ t !~s1s22^s1s2& t!c̃ t

1l~s22^s2& t!c̃ t

3S zt1lE
0

t

a~ t,s!* ^s1&sds1^s1& tF~ t ! D ,

~30!

with F(t) determined from Eqs.~28! and ~29!. For a given
a(t,s), the non-Markovian QSD equation~30! can be solved
numerically, havingF(t) determined numerically from Eq.
~29!. Note that in the Markov limit, the correlation function
a(t,s) tends to the Dirac functiond(t2s). Consequently,
F(t) tends to the constant1

2 f (t,t)5 l/2 and one recovers the
standard Markov QSD, Eq.~9!.

It turns out that non-Markovian QSD can exhibit remark-
able properties, unknown in the Markov theory. In order to
highlight these features, we proceed analytically and assume
exponentially decaying environment correlationsa(t,s)
5 (g/2) e2gut2su2 iV(t2s). Then we see from Eqs.~28! and
~29! that the relevant functionF(t) in Eq. ~30! satisfies

Ḟ~ t !52gF~ t !1 i ~v2V!F~ t !1lF~ t !21
lg

2
~31!

with initial condition F(0)50. With g̃[g2 i (v2V) the
solution reads

F~ t !5
g̃

2l
2

Ag̃222g̃l2

2l

3tanhF t

2
Ag̃222g̃l21arctanhS g̃

Ag̃222g̃l2
D G .

~32!

For the remainder of this section we assume exact reso-
nance:V5v and thusg̃5g. Let us first consider the case of
short memory or weak coupling,g.2l2. For long times,
F(t) tends to (g2Ag222gl2)/(2l). For large g this
asymptotic value tends tol/2, which corresponds to the
Markov limit ~7!, as it should.

More interesting, let us consider the opposite case of a
long memory or strong coupling,g,2l2. In this case,F(t)
diverges to infinity when the timet approaches the critical
time tc5@p12arctan(g/A2l2g2g2)#A2l2g2g2. What

FIG. 1. Quantum trajectories of the non-Markovian QSD equa-
tion for the ‘‘measurement’’-like caseH5 (v/2) sz , L5lsz and
an exponentially decaying bath correlation functiona(t,s)
5 (g/2) exp(2gut2su). We choosel252v, g5v and an initial
state uc0&5(112i )u↑&1(11 i )u↓&. Displayed is the expectation
value^sz& of several solutions of the non-Markovian QSD equation
~solid lines! and their ensemble average~dashed line!. ~b! Same
parameters as in~a!. Here we compare the ensemble average of the
Bloch vector using 10 000 quantum trajectories of non-Markovian
QSD ~solid lines!, with the analytical result~dashed lines!.
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happens is that at timetc , the first component of the vector
c t vanishes, hences2c tc

50 and Eq.~29! no longer holds.
Indeed, the second term of Eq.~30! becomes dominant and
drives the spin to the ground state in a finite time, which we
prove below in terms of the density matrix. In Fig. 2~a! ~for
individual trajectories! and Fig. 2~b! ~for the ensemble aver-
age over 10 000 runs! we see this effect from solving the
non-Markovian QSD equation numerically, where we choose
l25V5v, so thatvtc5 3

2 p'4.71. Fort.tc the statec t is
constant. This is an example where a stationary solution is
reached after a finite time. This is an example of a diffusive
stochastic Schro¨dinger equation that is at the same time com-
patible with the no-signaling constraint~i.e., the evolution of
mixed states depends only on the density matrix, not on a
particular decomposition into a mixture of pure states! and
has no ‘‘tails’’ ~does not take an infinite time to reach a

definite state!; see the discussions in@21,22#. In @23# it is
proven that such a feature is impossible for Markov situa-
tions. Notice that this peculiar feature holds at resonance
only.

Finally, we note that for the intermediate caseg52l2,
one hasF(t)5 l3t/(11l2t)→l for t→`, again approach-
ing a constant value„the reader may find it helpful to adopt
our convenient convention for the choice of units:@zt#
5@l#5@ f (t)#5@F(t)#5@1/At# and @a(t,s)#5@1/t#….

In order to determine the corresponding master equation
for the reduced density operator, we solve the linear QSD
equation~11! where we make use of the change of variable:

f t[e2 i (v/2) szt1ls1s2*0
t F(s)dsc t . After some computation

and taking the ensemble mean analytically, one gets

r t[M @ uc t&^c tu#

5S r11~0!e2*0
t
@F~s!1F~s!* #ds r12~0!e2 ivt2*0

t F~s!ds

r21~0!eivt2*0
t F~s!* ds 12r11~ t !

D .

~33!

This proves that whenever Re@*0
t F(s)ds# diverges for a fi-

nite time, the density matrixr t reaches the ground state in
that finite time and thus all pure state samples have to do so
as well. For the time evolution of this reduced density matrix
one gets

ṙ t52 i
v

2
@sz ,r t#1l@F~ t !1F~ t !* #

3~s2r ts12 1
2 $s1s2,r t%! ~34!

52 i
v

2
@sz ,r t#1E

0

t

K~ t,s!rsds, ~35!

where the ‘‘memory superoperator’’K(t,s) acts as follows
on any operatorA:

K~ t,s!A52
l2

2
@a~ t,s!1a~ t,s!* #

3~2e2l*s
tF~u!dus2As12$s1s2 ,A%

22~e2l*s
tF~u!du21!s1s2As1s2!. ~36!

In Figs. 2~a! and 2~b! we illustrate this example (l25g
5V5v) for exponentially decaying correlations. All indi-
vidual non-Markovian quantum trajectories reach the ground
state in the critical timevtc'4.71 @Fig. 2~a!#. Taking the
ensemble mean over 10 000 trajectories, we find very good
agreement with the analytical result of the reduced density
matrix @Fig. 2~b!#.

IV. MORE EXAMPLES

A. Model of energy measurement

This caseH5L5L† is a straightforward generalization of
Sec. III A. Again, the environment correlationa(t,s) can be

FIG. 2. ~a! Quantum trajectories of the non-Markovian QSD
equation for the dissipative caseH5 (v/2) sz , L5ls2, and an
exponentially decaying bath correlation functiona(t,s)
5 (g/2) exp@2gut2su2iV(t2s)#. We choosel25v, g5v and
resonanceV5v. As an initial state we useuc0&53u↑&1u↓&. Dis-
played is the expectation valuêsz& of several solutions of the
non-Markovian QSD equation~solid lines! and their ensemble av-
erage~dashed line!. At the finite time vtc5

3
2 p'4.71, all indi-

vidual trajectories reach the ground state.~b! Same parameters as in
~a!. Here we compare the ensemble average of the Bloch vector
using 10 000 quantum trajectories of non-Markovian QSD~solid
lines!, with the analytical result~dashed lines!.
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chosen arbitrary. We findÔ5H in Eq. ~13! and the non-
Markovian QSD equation~17! for the normalized states
reads

d

dt
c̃ t52 iHc t2~H22^H2& t!c̃ tE

0

t

a~ t,s!ds

1~H2^H& t!c̃ tS zt1E
0

t

a~ t,s!* ^H&sds

1E
0

t

a~ t,s!dŝ H& tD . ~37!

For the corresponding master equation we find

ṙ t52 i @H,r t#2E
0

t

a~ t,s!dsH@H,r t#

2E
0

t

a~ t,s!* ds@r t ,H#H, ~38!

hence Tr(Hr t) is constant, contrary to the individual expec-
tation valueŝ H&c̃ t

.
The eigenvectors ofH are stationary solutions of the non-

Markovian QSD equation~37!. Thus, if the noise is large
enough, all initial states tend asymptotically to such an
eigenstate, as in Markov QSD. However, if the noise has
long memory, as for example in the extreme case of periodic
systems~see Sec. V!, such a reduction property clearly does
not hold. The exact conditions under which Eq.~37! de-
scribes reduction~localization! to eigenstates are not known.
Notice, however, that if the correlation decays smoothly such
that*0

t a(t,s)ds tends for large timest to a real constant, and
if ^H& t converges for large times to a fixed value, then the
non-Markovian equation~37! tends to

d

dt
c̃ t52 iH c̃ t2~H22^H2& t!c̃ t3const

1~H2^H& t!c̃ t~zt1const3^H& t!. ~39!

The long-time solutions of this equation are the same as the
long-time solutions of the corresponding Markov approxima-
tion. The latter is the Markov QSD equation, hence the
asymptotic solutions tend to eigenstates ofH. Section III A
provides an example of this more general statement forH
5 (v/2) sz .

B. A simple toy model

In this subsection we use a simple toy model@24# to il-
lustrate that the non-Markovian QSD equation~17! may con-
tain unexpected additional terms that cancel in the Markov
limit. ConsiderH5p andL5q and an arbitrary environment
correlation functiona(t,s). Then the ansatz~13! for replac-
ing the functional derivative with some operator satisfying
the consistency condition~14! reads

dc t

dzs
5@q2~ t2s!#c t . ~40!

Thus, the non-Markovian QSD Eq.~17! takes the form

d

dt
c̃ t52 ipc̃ t2~q22^q2& t!E

0

t

a~ t,s!dsc̃ t1~q2^q& t!c̃ t

3S zt1E
0

t

a~ t,s!* ^q&sds1E
0

t

a~ t,s!dŝ q& tD
1~q2^q& t!c̃ tE

0

t

~ t2s!a~ t,s!ds. ~41!

The first two lines of this non-Markovian QSD equation
could have been expected, since they have the same form as
in the previous examples; see, for instance, Eq.~37!. The last
line of the above equation, however, has no counterpart in
the previous examples. Clearly, it vanishes in the Markov
limit @a(t,s)→d(t2s)#, when the non-Markovian QSD
equation~41! for this model reduces to the Markov QSD
equation~9!.

C. Quantum Brownian motion model

In this subsection we consider the important case of quan-
tum Brownian motion of a harmonic oscillator@25#, that is,
we chooseH5 (v/2) (p21q2), L5lq, and arbitrary envi-
ronmental correlationa(t,s). As shown in Appendix C, the
basic linear non-Markovian QSD equation for this quantum
Brownian motion case is again the fundamental linear equa-
tion ~11!.

It turns out that the functional derivative in Eq.~11! is
more complicated in this case, becauseÔ(t,s,z) depends
explicitly on the noisez. However, fortunately, this depen-
dence is relatively simple. Indeed, let

dc t

dzs
[Ô~ t,s,z!c t

5F f ~ t,s!q1g~ t,s!p1 i E
0

t

ds8 j ~ t,s,s8!zs8Gc t .

~42!

The consistency condition~14! leads to the following equa-
tions for the unknown functionsf (t,s), g(t,s), and
j (t,s,s8) in Eq. ~42!:

] t f ~ t,s!5vg~ t,s!1 il f ~ t,s!E
0

t

ds8@a~ t,s8!g~ t,s8!#

22ilg~ t,s!E
0

t

ds8@a~ t,s8! f ~ t,s8!#

2 ilE
0

t

ds8@a~ t,s8! j ~ t,s8,s!#, ~43!

] tg~ t,s!52v f ~ t,s!2 ilg~ t,s!E
0

t

ds8@a~ t,s8!g~ t,s8!#,

~44!

j ~ t,s,t !5lg~ t,s!, ~45!
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] t j ~ t,s,s8!52 ilg~ t,s!E
0

t

ds9@a~ t,s9! j ~ t,s9,s8!#.

~46!

These equations have to be solved together with the non-
Markovian QSD equation~17!.

If, for simplicity, we assume exponentially decaying en-
vironment correlationsa(t,s)5 (g/2) e2gut2su and introduc-
ing capital letters for the integrals,X(t)[*0

t a(t,s)x(t,s)ds,
for x5 f ,g, j , one obtains the simpler closed set of equations

Ḟ~ t !5
lg

2
2gF~ t !1vG~ t !2 ilF~ t !G~ t !2 il J̃~ t !,

~47!

Ġ~ t !52gG~ t !2vF~ t !2 ilG~ t !2, ~48!

J8 ~ t !5
lg

2
G~ t !22g J̃~ t !2 ilG~ t !J̃~ t !, ~49!

where J̃(t)[*0
t a(t,s8)J(t,s8)ds8. The initial conditions

read F(0)5G(0)5 J̃(0)50. Finally, J(t,s) can be deter-
mined from the solutions of the above equations, we get

J~ t,s!5lG~s!e2*s
t
@g1 ilG~s8!#ds8. ~50!

Hence, the non-Markovian QSD equation for quantum
Brownian motion becomes

d

dt
c̃ t52 iH c̃ t2~q22^q2& t!c̃ tF~ t !

2~qp2^qp& t2p^q& t1^p& t^q& t!c̃ tG~ t !

1~q2^q& t!c̃ tXzt1E
0

t

a~ t,s!* ^q&sds1^q& tF~ t !

2 i E
0

t

J~ t,s8!S zs81E
0

s8
a~s8,s!* ^q&sdsD ds8C.

~51!

Let us make some comments about this non-Markovian QSD
equation. First, recall that it corresponds to the exact solution
of the quantum Brownian motion problem@25# of a har-
monic oscillator. Next, this example shows a new feature
that we did not encounter in the previous examples: the noise
zt enters the equation nonlocally in time. Third, terms in-
volving the operatorqp appear, although there are no such
terms either in the Hamiltonian or in the Lindblad operator
L5lq. Finally, since this equation is exact, it is a good
starting point to tackle the quantum Brownian motion prob-
lem using this approach and to find its proper Markov limit.
In connection with this last point, we emphasize that the
master equation corresponding to Eq.~51! necessarily pre-
serves positivity@26# because it provides a decomposition of
the density operator into pure states at all times. However,
these questions and numerical simulations are left for future
work.

D. Harmonic oscillator at finite temperature

As another important example of an open quantum system
we briefly sketch the case of a harmonic oscillatorH
5va†a coupled to a finite temperature environment through
L25l2a. As explained in detail in Appendix C, the finite
temperature also induces absorption from the bath, which has
to be described by a second environment operatorL1

5l1a†. Hence, the linear non-Markovian QSD equation
~11! has to be modified and involves two independent noises,
zt

2 andzt
1 ,

d

dt
c t52 iHc t1l2ac tzt

22l2a†E
0

t

a2~ t,s!
dc t

dzs
2

ds

1l1a†c tzt
12l1aE

0

t

a1~ t,s!
dc t

dzs
1

ds, ~52!

see Eq.~C5! in Appendix C. This equation can be solved
with the following Ansätze:

dc t

dzs
2

5F f 2~ t,s!a1E
0

t

ds8 j 2~ t,s,s8!zs8
1 Gc t , ~53!

dc t

dzs
1

5F f 1~ t,s!a†1E
0

t

ds8 j 1~ t,s,s8!zs8
2 Gc t . ~54!

Using similar techniques as in the previous subsection the
evolution equations forf 6(t,s) and j 6(t,s,s8) can be ob-
tained and thus the resulting non-Markovian QSD equation
can be written in closed form. A new feature of this example,
again unknown in the Markov case, is that each of the two
environment operatorsL2 and L1 , is coupled to both
noises.

V. HARMONIC OSCILLATOR COUPLED TO A FEW
OSCILLATORS: DECAY AND REVIVAL

OF SCHRÖDINGER CAT STATES

The case of a harmonic oscillator coupled to a finite or
infinite number of harmonic oscillators all of which are ini-
tially in their ground state~zero temperature!, H5va†a, L
5la, is very similar to the damped spin-1

2 example treated
in Sec. III B. TheAnsatzdc t /dzs 5 f (t,s)ac t similar to Eq.
~25! holds with f (t,s) and F(t) satisfying the same equa-
tions ~29! and~28!. Thus, the non-Markovian QSD equation
~17! for this situation reads

d

dt
c̃ t52 iva†ac̃ t1~a2^a& t!c̃ t

3S zt1E
0

t

a* ~ t,s!^a†&sds1lF~ t !^a†& tD
2lF~ t !~a†a2^a†a& t!c̃ t . ~55!

Again, this non-Markovian QSD equation reduces to the
Markov equation~9! for a(t,s)5d(t2s) since in this case
F(t)5 l/2 according to Eq.~28!. As in the case of a dissi-
pative spin~Sec. III B!, for exponentially decaying bath cor-
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relations at resonance, the system oscillator may reach its
ground state in a finite time, provided the correlation time
g21 is long enough.

Notice also that Eq.~55! preserves coherent statesub&.
The time evolution of the complex numberb t labeling these
coherent states is given by

ḃ t5@2 iv2F~ t !#b t . ~56!

More interesting than a coherent state initial condition is
the case of a superpositionub&1u2b& of two symmetric
coherent states, known as a ‘‘Schro¨dinger cat’’ @27#. If the
correlation decays, so does the Schro¨dinger cat state. If, in
contrast, the environment consists only of a finite number of
oscillators, then the cat state will first decay, due to the lo-
calization property of QSD, but since the entire system is
quasiperiodic, the cat state will then revive.

As an illustration, we simulate the extreme case where the
‘‘environment’’ consists of only a single oscillator. It thus
models the decay and revival of a field cat state in a cavity
that is isolated from the outside, but coupled to a second
cavity, to which it may decay reversibly. Such an experiment
on reversible decoherence was proposed recently in@28#. In
this simple case, the environment correlation function reads

a~ t,s!5e2 iV~ t2s!, ~57!

whereV is the frequency of the single ‘‘environment’’ os-
cillator. Figure 3 shows the time evolution of theQ function
of such a ‘‘Schro¨dinger cat’’ in phase space forV50.5v
and a coupling strength between the two oscillators of 0.1v.
Apart from an overall oscillatory motion due to the ‘‘sys-
tem’’ Hamiltonianva†a, we see how the cat first decays but
later becomes alive again. Further investigations of stochas-
tic state vector descriptions of such reversible decoherence
processes are left for future investigations. It is worth men-
tioning that depending on the stochastic process, the cat my
subsequently decay into either of its two components.

VI. SHIFTING THE SYSTEM-ENVIRONMENT
BOUNDARY

In this section we consider a situation where the ‘‘Heisen-
berg cut’’ between the system and the environment is not
obvious. Since the non-Markovian QSD equation provides

the exact solution of the total system-environment dynamics,
the description of the system does not depend on this cut.
This is in contrast to the usual Markov approximation, where
the position of the cut is crucial. As an example, let us con-
sider a system consisting of one spin-1

2 and one harmonic
oscillator, the two subsystems being linearly coupled. As-
sume moreover that the spin12 is coupled to a heat bath at
zero temperature, see Fig. 4. The total Hamiltonian reads

H total5H11H21H121Henv1HI ~58!

with

H15
v1

2
sz , ~59!

H25v2a†a, ~60!

H125x~s2a†1s1a!, ~61!

Henv5(
v

vav
† av , ~62!

HI5(
v

xv~s2av
† 1s1av!. ~63!

We can either consider the spin-oscillator system coupled
to a heat bath, or consider only the spin coupled to a heat
bath and coupled to an auxiliary oscillator, as illustrated in

FIG. 3. Reversible decay of an initial Schro¨-
dinger cat stateuc0&5ua&1u2a& with a52. We
show theQ function of a non-Markovian quan-
tum trajectory of a harmonic oscillator (v),
coupled to just a single ‘‘environment’’ oscillator
(V50.5v), initially in its ground state. The cou-
pling strength between the two oscillators is
0.1v, and the time step between two successive
plots is 0.47/v.

FIG. 4. Shifting the ‘‘system-environment’’ boundary. First, we
consider the ‘‘spin-single oscillator’’ system with statec t(j),
coupled to a heat bath with noisej t . Alternatively, we can consider
the ‘‘spin’’ only as the ‘‘system’’f t(j,z), coupled to the ‘‘single
oscillator 1 heat bath’’ environment~noises j t ,zt). In non-
Markovian QSD, both descriptions are possible and lead to the
same reduced spin state.
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Fig. 4. In the first case, we can consider the Markov QSD
description, i.e., a family of spin-oscillator state vectors
c t(j) indexed by the complex Wiener processesj t . In the
second case, using non-Markovian QSD we have a family of
spin-12 state vectorsf t(j,z) indexed by the samej t plus the
non-Markovian noisezt with correlations

M @zt* zs#5e2 iv2~ t2s!. ~64!

The ~linear! stochastic equations~11! governingc t and f t
read

ċ t52 i ~H11H21H12!c t1ls2c tj t2
l2

2
s1s2c t ,

~65!

ḟ t52 iH 1f t1ls2f tj t2
l2

2
s1s2f t1xs2f tzt

2xs1E
0

t

e2 iv2~ t2s!
df t

dzs
ds, ~66!

wherel is a function of thexv’s, that is of the strength of
the spin–heat-bath coupling.

A natural question in the present framework is to study
the ‘‘Heisenberg cut’’: compare the states of the spin1

2 av-
eraged over the noisez with the mixed state obtained by
tracing out the second oscillator (Tr2) from the one-
oscillator-spin states, i.e., we ask whether the equality

Mz@ uf t~j,z!&^f t~j,z!u#5
?

Tr2~ uc t~j!&^c t~j!u! ~67!

holds. According to the general non-Markovian QSD theory
presented in this paper, the spin-1

2 state should be indepen-
dent of the position of the Heisenberg cut. Below we illus-
trate this feature using the present example.

By assumption the oscillator starts in the ground state:
c05f0^ u0&. Hence, the statec t can be expanded as

c t5c0~ t !u↓,0&1c1~ t !u↑,0&1c2~ t !u↓,1&, ~68!

where

ċ05lj~ t !c11 i
v1

2
c0 , ~69!

ċ152S i
v1

2
1

l2

2 D c12 ixc2 , ~70!

ċ252 i F S v22
v1

2 D c21xc1G . ~71!

Tracing out the single harmonic oscillator, one obtains the
spin-12 state~in the ↑↓ basis!

r1[Tr2~ uc t~j!&^c t~j!u!5S uc1u2 c0* c1

c0c1* uc0u21uc2u2D .

~72!

We now turn to the alternative description of the same
situation, but with the ‘‘cut’’ between the spin12 and the
oscillator. In order to solve Eq.~66! we make the usualAn-
satz

df t

dzs
5 f ~ t,s!s2f t , ~73!

where the consistency condition~14! leads to ] t f (t,s)
5@ iv11 l2/21xF(t)# f (t,s), where f (t,t)5x and F(t)
5*0

t a(t,s) f (t,s)ds. Consequently,

Ḟ~ t !5x1S iv12 iv21
l2

2
1xF~ t ! DF~ t !. ~74!

Using the notationsf t5v0(t)u↓&1v1(t)u↑& one gets

v̇05 i
v1

2
v01~lj t1xzt!v1, ~75!

v̇152S i
v1

2
1

l2

2
1xF~ t ! D v1 . ~76!

Note that sincev̇1 is independent ofzt , v1(t) is itself inde-
pendent ofz, hence,

d

dt
Mz@v0#5 i

v1

2
Mz@v0#1lj tv1 . ~77!

Averaging over thez noise, one obtains the spin-1
2 state~in

the ↑↓ basis!

r2[Mz@ uf t~j,z!&^f t~j,z!u#5S uv1u2 Mz@v0* #v1

Mz@v0#v1* Mz@ uv0u2#
D .

~78!

Finally, a straightforward comparison of Eqs.~69!–~71! and
~74!–~76! shows thatc05Mz@v0#, c15v1, andc252 iFv1.
Hence, 3 of the 4 entries of the matricesr1 andr2 are equal.
The equality of the fourth entry follows from the general
feature that linear non-Markovian QSD preserves the mean
of the square norm.

This completes the proof thatr15r2: the spin-12 state is
independent of the position of the Heisenberg cut, for all
times and all realizations of the heat-bath-induced noisej.
This illustrates the general fact that non-Markovian QSD at-
tributes stochastic pure states to systems in a way that de-
pends on the position of the Heisenberg cut, but that is con-
sistent for all possible choices of the cut. See Fig. 4 for the
illustration of these relationships. This is in opposition to the
case prevailing in Markovian unravelings.

VII. OPEN PROBLEMS

This paper is the first presentation of non-Markovian
QSD. Admittedly, there remain many open questions and a
lot of work has still to be done to exploit all the possibilities
opened up by this new approach. In this section we list some
of the open problems:

~1! The ultimate goal would be to develop a general pur-
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pose numerical simulation program. However, at present no
general recipe is known.

~2! When do the long time limit and the Markov limit
commute? This is a question that is of particular interest for
quantum Brownian motion.

~3! If the initial condition is not factorized, the present
approach must be generalized.

~4! In the Markov case unravelings exist both with con-
tinuous trajectories and with quantum jumps, and the con-
nection between the two is well understood@6,7#. In the non-
Markovian case, the only unraveling known at present is the
continuous non-Markovian QSD described in this paper.
What about non-Markovian unravelings with quantum
jumps?

~5! In the Markov case, continuous QSD unravelings exist
for real or pure imaginary noise, as well as for complex
noise. What about the non-Markovian case? It seems that in
the present case complex noise is essential.

~6! Note that most of the non-Markovian master equations
used in this paper have known analytical solutions. In these
cases, the general Zwanzig form@29# of the master equation:

ṙ t5E
0

t

K~ t2s!rsds ~79!

with the memory kernelK(t2s) could be rewritten as a
Lindblad type master equation with time-dependent coeffi-
cients. Then, the master equation can also be simulated using
Markov QSD with time-dependent coefficients. However, if
the solution of the master equation is not known explicitly,
or does not lead to a Lindblad type equation, then numerical
simulation has to use the non-Markovian QSD theory. It
would be interesting to illustrate non-Markovian QSD for
more of such examples and to study the conditions under
which a non-Markovian problem can be treated with Mar-
kovian unravelings.

~7! How does non-Markovian QSD compare with consis-
tent histories@30# and other approaches? For instance, it was
shown in@31# that the solutions of the non-Markovian equa-
tion ~17! can be considered as conditional states in the frame-
work of a ‘‘hybrid’’ representation of the fully quantized
microscopic system, allowing a clear physical interpretation
of the stochastic states.

~8! What is the perturbation expansion of the non-
Markovian QSD equation~17! in terms of the memory time
g21? The zeroth-order term would be the Markov QSD
equation~9!, what about the higher orders?

~9! Finally, non-Markovian QSD should be applied to
open problems in physics, where non-Markovian effects are
relevant, such as semiconductor lasers@12#, or atom lasers
@32#.

VIII. CONCLUSION

We present a stochastic equation for pure states describ-
ing non-Markovian quantum state diffusion, compatible with
non-Markovian master equations. We illustrate its power
with several examples. In essence, we show that quantum
~finite or infinite! harmonic oscillator environments can be
modeled by classical, complex Gaussian processes, entering
the non-linear, non-Markovian stochastic Schro¨dinger equa-

tion for the ‘‘system’’ state that we derive in this paper.
Several authors have proposed stochastic pure-state de-

scriptions of such non-Markovian situations using fictitious
modes added to the system in such a way as to make to
dynamics of the enlarged hypothetical system Markovian
@12,13#. Others@14# treat a non-Markovian problem with an
explicitly time-dependent Markov unraveling. In our ap-
proach, by contrast, there are no additional modes, hence the
system is as small as possible, and the stochastic Schro¨dinger
equation becomes genuinely non-Markovian. This is of in-
terest for efficient numerical simulation and high-focus in-
sight into the relevant physical processes. Also, non-
Markovian quantum trajectories are in general much
smoother than those of Markov processes, which might even
help to reduce further the numerical effort.

Let us stress an important conceptual difference between
Markov QSD and non-Markovian QSD. In the Markov case,
one starts from a master equation for mixed states and asso-
ciates to it a stochastic Schro¨dinger equation. The master
equation may either be derived from a microscopic model, or
merely be based on phenomenological motivations@8#. In the
non-Markovian case, on the contrary, one starts from the
stochastic Schro¨dinger equation~11!. The existence of a
master equation is guaranteed by the microscopic model
summarized in Appendix C. In general, however, the explicit
form of this master equation is not known. Nevertheless, this
existence ensures that the corresponding stochastic Schro¨-
dinger equation for normalized states~17! does not allow
arbitrary fast signaling, despite its nonlinearity@20#.

From a pragmatic point of view, the Hamiltonian and
Lindblad operators in the basic linear stochastic Schro¨dinger
equation ~11! can either be derived from a microscopic
theory, or be merely based on phenomenological motiva-
tions. Non-Markovian master equations are almost always
exceedingly difficult to treat, even numerically. However,
one can always start from the non-Markovian QSD approach
of this paper, which appears thus more fundamental than the
master equation approach.
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APPENDIX A: FREQUENCY REPRESENTATION

It is sometimes useful to express the noise by frequency
componentszv :

zt5(
v

zveivt, ~A1!

where the frequenciesv can take positive as well as negative
values. Also the correlation function can be written in Fou-
rier representation:
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a~ t,s!5a~ t2s!5(
v

ave2 iv~ t2s!, av.0. ~A2!

The correlation of the Fourier components of the noise is
trivial: M @zv

! zl#5dvlav . In this representation the distribu-
tion functional becomes a simple Gaussian distribution over
all zv’s:

P~z!5N expS 2(
v

uzvu2

av
D ~A3!

and the statesc t become functions of the frequency ampli-
tudeszv of the noise. We can then write the fundamental
linear non-Markovian QSD equation~11! in terms of them:

d

dt
c t52 iHc t1(

v
S Leivtzv2L†ave2 ivt

]

]zv
Dc t .

~A4!

This frequency representation is a helpful tool to discuss the
mathematical properties of the non-Markovian stochastic
Schrödinger equation~17!, as we do in Appendixes B and C.
Remember that in Eq.~A4! we assume the initial condition
to be independent of the noise:c0(z)5c0.

APPENDIX B: GIRSANOV TRANSFORMATION
FOR NON-MARKOVIAN QSD

As time goes by, Girsanov transformation distorts the dis-
tribution P(z) ~A3! of the complex noise intoP̃t(z) accord-
ing to Eq.~6!. In frequency representation, we have

P̃t~z!5N ic t~z!i2expS 2(
v

uzvu2

av
D . ~B1!

We assume that att50 the statec0 is normalized and does
not depend onz. So, initially, P̃0(z) is identical withP(z).

We find the time evolution ofP̃t(z) from the linear non-
Markovian Schro¨dinger equation~11! in frequency represen-
tation ~A4!. Using Eq.~B1!, we find

d

dt
P̃t~z!5N K c t~z!U d

dt
c t~z!L expS 2(

v

uzvu2

av
D 1c.c.

~B2!

Now we make a crucial observation. The solutionc t(z) of
Eq. ~A4!, with initial condition c t(z)5c0, is analytic in all
zv’s. Then it follows that]uc t(z)&/]zv

! 5]^c t(z)u/]zv50
for all zv . Hence, when inserting Eq.~A4! into Eq.~B2!, we
can substitute

K c t~z!UL†
]

]zv
c t~z!L 5

]

]zv
^L†& tic t~z!i2, ~B3!

and we obtain

d

dt
P̃t~z!52(

v
ave2 ivt

]

]zv
^L†& t P̃t~z!1c.c. ~B4!

This is a remarkable result. It shows that the Girsanov trans-
formation is equivalent to a drift of the random variablez.
We read off the drift velocities directly from Eq.~B4!:

d

dt
zv5ave2 ivt^L†& t . ~B5!

One can see that the Girsanov transformation preserves
the normalization of the distributionP̃t(z). This has the im-
mediate consequence that the non-Markovian stochastic
Schrödinger equation~11! preserves the mean norm of the
quantum state:

M @ ic ti2#[E ic ti2P~z!dz5E P̃t~z!dz51. ~B6!

Now we are going to derive the stochastic non-Markovian
Schrödinger equation for the normalized statesc̃ t(z)
5c t(z)/ic t(z)i , wherec t(z) is the unnormalized solution
of the linear stochastic equation~11!. First, we solve the drift
Eq. ~B5! for the trajectorieszv(t), with the initial conditions
zv(0)5zv for all v:

z̃v~ t !5zv1E
0

t

ave2 ivs^L†&sds, ~B7!

where ^L†& t5^c t„z̃(t)…uL†uc t„z̃(t)…&/^c t„z̃(t))uc t„z̃(t)…&.
The Girsanov transformation~5! leaves invariant the prob-
ability of the noisez along the above trajectories:

P̃t„z̃~ t !…dz̃~ t ![P~z!dz ~B8!

for all zv . Hence, we can write the stochastic unraveling~6!
as follows:

r t5M̃ t@ uc̃ t~z!&^c̃ t~z!u#5M @ uc̃ t„z̃~ t !…&^c̃ t„z̃~ t !…u#.
~B9!

The mean value on the very right refers to the simple undis-
torted distributionP(z). To calculate it, one has to express
c t„z̃(t)… as a function of the initial amplitudeszv5 z̃v(0).
Remember thatc t(z) is the solution of the linear non-
Markovian equation~11! or ~A4! with initial condition
c t(z)5c0. The additional time dependence ofc t„z̃(t)…
throughz̃(t) appends a new term to the evolution equation of
these ‘‘Girsanov-shifted’’ states, so that we find the follow-
ing stochastic evolution equation:

d

dt
c t„z̃~ t !…5

]

]t
c t1(

v
żv

]

]zv
c t ~B10!

52 iHc t1(
v

Leivtz̃v2~L†2^L†& t!

3E
0

t

a~ t,s!Ô~ t,s,z̃!dsc t , ~B11!

where we used Eqs.~13!, ~15!, and~B5!. Finally, these states
have to be normalized. The resulting evolution equation for
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the normalized statesc̃ t is our central result, given by Eq.
~17!. In the time domain, the shifted noise~B7! takes the
form ~16!.

APPENDIX C: REVIEW OF THE LINEAR
NON-MARKOVIAN THEORY

Here we briefly review the microscopic origin of the lin-
ear non-Markovian stochastic Schro¨dinger equation~11!—
see @15–17#. The linear non-Markovian QSD equation re-
sults from a standard model of a system interacting with an
environment of harmonic oscillators, represented by a set of
bosonic annihilation and creation operatorsav ,av

† . The in-
teraction termHI between system and environment is chosen
to be linear in theav’s and arbitrary in the system operator
L: HI5(vxv(Lav

† 1L†av), with some coupling constants
xv . Thus, the model is defined by

H tot5Hsyst1HI1Henv ~C1!

5Hsyst1(
v

xv~Lav
† 1L†av!1(

v
vav

† av . ~C2!

Solving this total closed system in a clever way leads to the
linear non-Markovian stochastic Schro¨dinger equation~11!
for the system statec t(z). As an initial condition we assume
a factorized formr tot5uc0&^c0u ^ rT for the total density
operator, with all bath oscillators initially in some thermal
staterT5 ^ vrv(T).

1. Zero temperature

In @17# it was shown that if all the environment oscillators
are initially in their ground state (T50), the dynamics of the
reduced density operatorr t5trenvr tot(t) of the model~C1!
can be unraveled„r t5M @ uc t(z)&^c t(z)u#… using the linear
stochastic Schro¨dinger equation~11!,

d

dt
c t52 iHc t1Lc tzt2L†E

0

t

a~ t,s!
dc t

dzs
ds, ~C3!

where the colored complex stochastic processeszt with zero
mean satisfy

M @zt* zs#5(
v

xv
2 e2 iv~ t2s![a~ t,s!, M @ztzs#50.

~C4!

We see the microscopic origin of the bath correlation func-
tion a(t,s) at zero temperature. For real physical systems we
have v.0 in Eq. ~C4!. To model an arbitrary time-
translation-invariant correlation function, one needs environ-
ment oscillators with negative frequencies as well.

2. Finite temperature

In order to derive the linear non-Markovian QSD equation
at finite temperatures, we use a simple mathematical trick,
well known in field theory@33#: the nonzero temperature
density operatorrT of the heat bath can be canonically
mapped onto the zero-temperature density operator~the
vacuum! of a larger~hypothetical! environment. The prob-

lem atT.0 is thus reduced to the problem atT50, whose
linear non-Markovian QSD equation~C3! we already know.
The resulting finite-temperature linear non-Markovian QSD
equation is

d

dt
c t52 iHc t1Lc tzt

22L†E
0

t

a2~ t,s!
dc t

dzs
2

ds

1L†c tzt
12LE

0

t

a1~ t,s!
dc t

dzs
1

ds. ~C5!

It thus depends on two independent processeszt
2 ,zt

1 with
zero means and with temperature-dependent correlations

M @zt
2* zs

2#5(
v

~ n̄v11!xv
2 e2 iv~ t2s![a2~ t,s!,

~C6!

M @zt
2zs

2#50

and

M @zt
1* zs

1#5(
v

n̄vxv
2 eiv~ t2s![a1~ t,s!, M @zt

1zs
1#50.

~C7!

Here, n̄v5(exp\v/kT21)21 denotes the average thermal
number of quanta in the modev. We identify these terms as
describing the stimulated (n̄) and spontaneous (11) emis-
sions (Lz2) and the stimulated absorptions (n̄) from the
bath (L†z1). Notice also that forT→0, all the n̄v tend to
zero and Eq.~C5! reduces to Eq.~C3!, as it should.

3. Finite temperature and L 5L †

In the case of a self-adjoint coupling operatorL5L†[K,
the finite temperature result can be simplified considerably
by introducing the sum processzt5zt

21zt
1 having zero

mean and correlations

M @zt* zs#5a1~ t,s!1a2~ t,s![a~ t,s!

5(
v

xv
2 @~2n̄v11!cosv~ t2s!2 isinv~ t2s!#,

M @ztzs#50. ~C8!

Notice that (2n̄v11)5coth(\v/2kT) so thata(t,s) is noth-
ing but the well-known bath correlation kernel of the so-
called quantum Brownian motion model@25#. In terms of
this single processzt , the linear non-Markovian QSD equa-
tion at finite temperature~C5! takes the simple form of the
zero-temperature equation~C3! involving just one noisezt

d

dt
c t52 iHc t1Kc tzt2KE

0

t

a~ t,s!
dc t

dzs
ds, ~C9!

with the temperature-dependenta(t,s) of Eq. ~C8!. For K
5q the position operator, this unraveling was first intro-
duced in@16#, derived from the exact Feynman-Vernon path
integral propagator of this model.
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1712 PRA 58L. DIÓSI, N. GISIN, AND W. T. STRUNZ


