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UNIVERSAL COVER OF SALVETTI'S COMPLEX AND TOPOLOGY
OF SIMPLICIAL ARRANGEMENTS OF HYPERPLANES

LUIS PARIS

Abstract. Let V be a real vector space. An arrangement of hyperplanes in

F is a finite set si of hyperplanes through the origin. A chamber of si is

a connected component of V - (\Jh£& ") ■ The arrangement si is called

simplicial if C\HeJf H = {0} and every chamber of si is a simplicial cone.

For an arrangement si of hyperplanes in V , we set

M(si) = Vc- I  (J  Ac) ,

where Kc = C <g> V is the complexification of V , and, for H e si , He is the

complex hyperplane of Vc spanned by H .

Let si be an arrangement of hyperplanes of V . Salvetti constructed a

simplicial complex Sal(ja/) and proved that Sal(j^) has the same homotopy

type as M {si ). In this paper we give a new short proof of this fact. Afterwards,

we define a new simplicial complex Sal(j/ ) and prove that there is a natural

map p : Sal(si) —> Sal{si) which is the universal cover of Sal(j/). At the end,

we use Sal(si) to give a new proof of Deligne's result: "if si is a simplicial

arrangement of hyperplanes, then M (si) is a K(n, 1) space." Namely, we

prove that Sal(ja^ ) is contractible if si is a simplicial arrangement.

1. Introduction

Let V be a real vector space. An arrangement of hyperplanes in F is a

finite set sé of hyperplanes through the origin. We say that sé is essential if
Í~Wj/ 77 = {0}. A chamber of sé is a connected component of K- (Jh€jí H ■

The arrangement sé is called simplicial if sé is essential and every chamber

of sé is an open simplicial cone.

Let Vc = C <g> V be the complexification of V . Every element z of Vc can

be written in a unique way z = x + iy, where x, y £ 1 ® V = V . We say

that x is the real part of z and that y is its imaginary part. For two subsets

IjCF.we write

X + iY = {(x + iy) £ Vc\x £ X and y £ Y}.

Let 7f be a hyperplane of V. The complexification Hc of 77 is the hyperplane

of Vc spanned by H ; Hc = H + iH.
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Let sé be an arrangement of hyperplanes in a real vector space V. We set

M(sé) = Vc- (  IJ 77c).
\Hesi      I

This space is an open connected submanifold of Vc .

The study of the topology of M (sé) can be easily reduced to the case of

an essential arrangement of hyperplanes. Thus we assume throughout all the

arrangements to be essential.

In [Sal], Salvetti associates with a real arrangement sé of hyperplanes a

simplicial complex Sal(j/), and proves that Salisé) has the same homotopy

type as Misé).
An oriented system is a pair (T, ~) where T is an oriented graph and ~ is

an equivalence relation on the set of paths of T with some properties described

in §2. In [Pal], the author shows that there is a natural notion of universal

cover p: (È, ~) -♦ (r, ~) of an oriented system (r, ~), associates an oriented
system (T(j/ ), ~) with a real arrangement sé of hyperplanes, and constructs,

from the universal cover of ifisé), ~), the universal cover of Misé).

Note that, in [Sal], Salvetti uses this same oriented system (JZisé), ~) to

compute the fundamental group of Misé). He also proves that Vise) is the

1-skeleton of Sal(j/) provided with an orientation, and that ~ is the homotopy

relation on the paths of Vise). Nevertheless, both works, [Sal] and [Pal], are

completely independent.
In this paper we give a new short proof of Salvetti's result: Sal(^/ ) has the

same homotopy type as Misé) (Theorem 3.3). Afterwards, using techniques

introduced in [Pal], we define another simplicial complex Sal(j/), and prove

that there is a natural map p: Sal(j/) —► Sal(j/) which is the universal cover

of Sal(j^) (Theorem 3.7). In particular, Sal(jaf) has the same homotopy type

as the universal cover of Misé). At the end, we use Salisé) to give a new

proof of the following result of Deligne.

Theorem 1.1 (Deligne [De]). If sé is a simplicial arrangement of hyperplanes,

then Misé) is a Kin, 1) space (i.e., the universal cover of M(sé) is con-

tractible).

Namely, we prove that Sal(sé) is contractible if sé is a simplicial arrange-

ment.

We say that a real arrangement sé of hyperplanes is a K(n, 1) arrangement

if M(sé) is a K(n, 1) space. Most of the already known K(n, 1) arrange-

ments are supersolvable (see [Te2]) or simplicial. To find a general criterion

for an arrangement to be K(n, 1) remains an open problem. In particular,

Saito's conjecture that free arrangements are Kin, 1) is unsolved (see [Tel]).

Supersolvable arrangements are free (see [JT]) but simplicial arrangements are

not always free (see [Tel]). We refer to [FR] for a good exposition on Kin, 1)

arrangements.

The interest of our simplicial complex Sal(j/ ) is, in order to prove that a real

arrangement sé is Kin, 1), it suffices to prove that Sal(j/) is contractible.

Our proof of Theorem 1.1 is more simple than Deligne's one and, more-
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over, we isolate the part of the proof where the hypothesis "sé is a simplicial

arrangement of hyperplanes" is essential.

For a simplicial arrangement sé of hyperplanes, Deligne constructs in [De]

a cover q : M —> Misé), defines a simplicial complex Delisé), and proves that

Delisé) is contractible and has the same homotopy type as M. In particular,

M is the universal cover of Misé).

Our first innovation was in [Pa 1 ] to introduce a new combinatorial tool: the

oriented system. Deligne's combinatorial tool, the groupoid Gal, is, in some
sense, equivalent to our oriented system, but it cannot be defined for any real

arrangement of hyperplanes ((i) and (ii) of Proposition 1.19 of [De] are needed

to define Gal and their proof strongly uses the fact that sé is simplicial), and,

moreover, unlike in oriented systems, several preliminary results are needed to

define it (in particular, Ore's criterion for a semigroup to be embedded in a

group (see [Lj, p. 400]) must be generalized to "semigroupoids" and groupoids).

Another important innovation is to substitute the simplicial complex Delisé )

for Salisé). Using oriented systems, the complex Delisé) can be generalized

to any real arrangement of hyperplanes (in the general case, Delisé) is a CW

complex), but it does not always have the same homotopy type as the universal

cover M of Misé) (see [Pa2]). An advantage of our complex Sal(j/) over

Delisé) is, in order to prove that Delisé) has the same homotopy type as M,

several considerations on some kind of "subgroupoids" of Gal axe needed (see
(1.5), (1.6), (1.9), (1.24), (1.28), (1.29), (1.30), (1.31), (1.32) of [De]) which
are not necessary in our case.

To prove that either Sal(sé) or Delisé) axe contractible, a strong property

of simplicial arrangements is needed: the property D (see Theorem 4.1). In

our proof of Theorem 1.1 the hypothesis " sé is a simplicial arrangement of

hyperplanes" is only used to show that sé has the property D. In fact, for an

essential arrangement sé of hyperplanes, having the property D is equivalent

to being simplicial. I actually proved it some time after the first version of this

paper (see [Pa3]).
The only place where our proof of Theorem 1.1 coincides with Deligne's one

is in our Lemma 4.4. It is a preliminary result to the proof of Theorem 4.1.

Since I submitted for publication the first version of my paper, Raul Cor-

dovil has informed me he has independently of my paper generalized Deligne's

theorem for simplicial oriented matroids (see [Co]). On the other hand, Mario

Salvetti has informed me he has also proved independently Theorem 4.1 and

Theorem 4.6 (see [Sa2]).
Our work is organized as follows.

Section 2 is a summary of [Pall. Its aim is to introduce our main combina-

torial tool, the oriented systems, and to give the construction of the universal

cover M -♦ Misé) of M (sé).

In §3 we define the simplicial complexes Sal(sé) and Sal(^f), and prove that

Sal(j/) has the same homotopy type as Misé), and that there is a natural map

p: Sal(j/) -* Sal(«af) which is the universal cover of Sal(¿/).
The goal of §4 is to prove Theorem 1.1.

I am grateful to Peter Orlik and Hiroaki Terao who have helped me with
discussions, suggestions, and encouragement during my work.
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2. The universal cover of Misé)

This section is divided into three subsections. In the first one we introduce

our main combinatorial tool: the oriented system. In the second subsection we

define the oriented system (T(sé), ~) associated with a real arrangement sé

of hyperplanes. In the third subsection, from the universal cover p: (f, ~) —>

(T(sé), ~) of the oriented system (Y(sé), ~), we give the construction of the

universal cover M —> M (sé ) of M (sé ).

All the results stated in this section are derived from [Pal], so we will not

give any proofs.

2A.   Oriented systems.   An oriented graph Y is the following data:

(1) a set V(T) of vertices,
(2) a subset ACT) ç (V(T) x V(Y)) - {(v, v)\v £ V(T)} of arrows.
The begin of an arrow a = (v , w) is v and its end is w . An oriented graph

T is locally finite if every vertex v £ V(T) is the begin or the end of only a

finite number of arrows.

A path of an oriented graph Y is an expression

/=«•««?.■.«*•,

where a¡ £ A(T) and e, £ {±1} (for i = 1, ... , n), such that there exists a

sequence v0,vx,...,v„ of vertices of T with

a¡ = (Vi-x, Vi)   if e, = 1,

ai = (Vj,Vi-x)   ife, = -l.

We say that vq is the begin of / and that vn is its end. The integer n is

its length and Y%=x ei is its weight. Every vertex of T is assumed to be a

path of length 0 and of weight 0. For a path / = aex ■ ■• af,", we write /" ' =

añe" ■ ■ ■ axEl . For two paths / = a\x ■■■ af," and g = ô{" • • • b%" with end(fi) =

begin(g), we write fg = a\x--a^jbf ■ ■ ■ b%".
An oriented graph Y is connected if, for every pair (v , w) of vertices of T,

there exists a path of Y which begins at v and ends in w .

We assume throughout all the oriented graphs to be locally finite and con-
nected.

Let r be an oriented graph. An identification of Y is an equivalence relation

~ in the set of paths of Y with the following properties:

(1) / ~ g => begin(/) = begin(s-), end(/) = end(g), and weight(/) =
weight(g),

(2) ff~x ~ begin(/), for every path /,
(3) f~g*f-l~g-1,
(4) f ~ g => hxfih2 ~ h\gh2  for any two paths h\   and h2  such that

end(Äi) = begin(/) = begin(^) and begm(h2) = end(/) = end(g).

An oriented system is a pair (Y, ~), where Y is an oriented graph and ~ is

an identification of Y.
Let p : 8 —» Y be a morphism of oriented graphs. We say that p is a cover

of r if, for every vertex v of 0 and every path f of Y beginning at p(v),

there exists a unique path / of O such that begin(/) = v and p(f) = f.
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Let p: (6, ~) -> (Y, ~) be a morphism of oriented systems (i.e., / ~ g =>

pif) ~ pig)). We say that p is a cover of (r, ~) if it has the following two

properties:

( 1 ) p : 6 —> T is a cover of Y.
(2) Let v £ F(8), let / and g be two paths of Y which both begin at

piv), and let / and g be the lifts of / and g respectively into 8 beginning

at v . If / ~ g   (=> end(/) = end(g)), then / ~ g   (=> end(/) = end(£)).

Example. Let Y be the oriented graph shown in Figure la. Let ~ be the

smallest identification of Y such that ab ~ dc. The identification ~ can be

viewed as a "homotopy relation", namely, to identify ab with dc is like to

"add" a 2-cell to Y having abc~xd~x as border. Let f be the oriented graph

shown in Figure lb. The morphism n:Y—>Y which sends a¡ onto a, b¡ onto

b, c, onto c, d¡ onto d, and e¡ onto e (where i £ Z) is obviously a cover

of T. Let ~ be the smallest identification of Y such that a¡bj ~ d¡c¡ for every

/ £ Z. The map n: (f, ~) —► (r, ~) is a cover of (r, ~) ; in fact, it is the
universal cover of (r, ~) (see Proposition 2.1).

Proposition 2.1. Let (r, ~) be an oriented system. There exists a unique cover

n: (T, ~) —> (r, ~) ofi {Y, ~) iup to isomorphism) which has the following
universal property. If p: (8, ~) —> (r, ~) is a cover of (r, ~), then there

exists a unique cover n': (f, ~) -♦ (8, ~) of (8, ~) iup to isomorphism) such

that n = p o n'.

We call n: (f, ~) —> (r, ~) the universal cover of (T, ~).

Figure la

"-1 "o
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Figure lb
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Proposition 2.2. Let n: (f, ~) —> (Y, ~) be the universal cover of an oriented

system (r, ~). Two paths f and g of Y are identified by ~ if and only if

begin(/) = begin(g) and end(/) = end(g).

2B. Definition of (Yisé), ~). Let sé be an (essential) arrangement of hy-

perplanes in a real vector space V. Our goal in this subsection is to associate

with sé an oriented system (Yisé ), ~).

First, recall some definitions. The lattice of sé is the poset

&(j/) = J p| H\^ çsé\ ,
I H&SS J

ordered by reverse inclusion. V = f)He0 77 is the smallest element of Sfisé)

and {0} = f]He^ H is me greatest one. For X £ 2^ (sé), we set

séx = {H £sé\HDX}.

We refer to [Or] for a good exposition on 2f(sé) and its properties.

The hyperplanes of sé subdivide V into facets. We denote by ZF(sé) the set

of all the facets. The support \F\ of a facet F is the vector space \F\ £ 2fisé)

spanned by F . Every facet is open in its support. We denote by F the closure

of F in V . There is a partial order in ZFisé) defined by F <G if F Ç G.
A chamber of sé is a 0 codimension facet. A face is a 1 codimension facet.

Two chambers C and D are adjacent if they have a common face (i.e., a

common 1 codimension facet).
Now, let us define the oriented system (T, ~) = (Yisé), ~) associated with

sé .
The vertices of Y axe the chambers of sé . An arrow of Y is a pair (C, D),

where C and D axe adjacent chambers. Note that, in this oriented graph, if
(C, D) is an arrow, then (D, C) is also an arrow.

A positive path of an oriented graph A is a path / = a\x ■ ■ -af," with ex =

■■• = £„ = 1. This positive path is minimal if there is no positive path in A

having the same begin, the same end and a smaller length than /.

The relation ~ is the smallest identification of Y such that if / and g

axe both positive minimal paths with the same begin and the same end, then

f~g.
Remark. A gallery of sé is a sequence (Co, C\, ... , C„) of chambers of

sé such that C,_i and C, are adjacent for i = 1, ... , n (here we assume

C,_i ^ C, for i = 1, ... , n). Any positive path f = ax ■ ■ ■ a„ of Yisé) can

be viewed as the gallery G = (Co,C\, ... ,CH), where C, = end(öi • • • a¡) for

i = 0, I, ... , n. In particular, if f = ax ■■ ■ an is a positive minimal path

of Y (sé), then G = (Co, C\, ... , C„) is a minimal gallery (i.e., a gallery of

minimal length among the galleries of sé connecting Co with Cn ). Thus we

"identify" two minimal galleries which join the same chambers.

Example. Let sé be the arrangement of two lines in R2 . The oriented graph

shown in Figure 2a is Y(sé). The relation ~ is the smallest identification

of Y (sé) such that ab ~ a'd', be ~ b'a', cd ~ c'b', and da ~ d'e'. Let

(f, ~) —> (Yisé), ~) be the universal cover of (Y(sé), ~). The oriented graph

shown in Figure 2b is Y.
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Figure 2a

D D

D D

Figure 2b

2C.   Universal cover of Misé).   Let sé be an (essential) arrangement of hy-

perplanes in a real vector space V . We set

M = M(J*) = VC- I [J He)
\He.si     I

Our goal in this subsection is to explain the construction of the universal cover

q: M ^ M of Misé).
Let C be a chamber of sé . For a facet F e ZF(se ), we denote by Cf the
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unique chamber of sé\F\ containing C. We write

M(C)=     (J    (F + iCF) ç (V + iV) = Vc.
Fe9r(s/)

Note that this union is disjoint.

Lemma 2.3. The set {M(C)|C € ^(r)} is a covering of Misé) by open subsets.

Proof. First, let us prove that MiC) ç Misé) for every chamber C of sé .

Fix a chamber C of sé . Pick F £ Z^(sé). Let 77 be a hyperplane of

sé . If H D F, then CF n 77 = 0 (since CF is a chamber of sé\F\), thus

iF + iCF) n 77c = 0 . If H^F, then F n 7/ = 0 , thus (F + iC> ) n 77c = 0 .
Therefore (F + iCF) c Misé) for every F £ ^isé), thus MiC) ç Misé).

Now, let us prove that MiC) is an open subset of Vc for every chamber C

of sé.
Fix a chamber C of sé . Pick z = (x + iy) £ MiC). Let F be the facet of

sé such that xef. Then, by the definition of MiC), we have y £ CF . If
C7 is a facet of sé with G> F , then ^ | D ̂ G[, thus CF ç CG ■ We write

^(z) = (Ug>f ^) + *'Cf • The set 77(z) is clearly an open neighbourhood of z

and, by the above considerations, 77(z) ç MiC).

Now, let us prove that M (se) ç \JCeV{r) M(c) ■

Pick z = (x + iy) £ M (sé). Let F be the facet of sé such that x £ F .
Then there is a chamber D of sé\F\ such that y £ D . Choose a chamber C of

sé such that CF = D. Then z = (x + /y) e (F + iCF) ç M(C).    D

Now, consider the universal cover p: (f, ~) —> (r(j/), ~) of (Y(sé), ~).

For every vertex v of Y, write

M(v) = M(p(v)).

Set
Af'=       '   A/(u),

vevxf)

and let #' : M' —> Af be the natural projection.

It is easy to see that, if two chambers C and D are adjacent, then there is

only one hyperplane H £ sé which separates C and D ; it is the support of

their common face. For a chamber C of sé and a hyperplane 77 € sé , we

denote by 77¿: the open half-space of V bordered by 7/ and containing C.

Let 3Î be the smallest equivalence relation on M' such that if a = (v , w) £

A(Y), z £ M(v), z' £ M(w), and

q'(z) = q'(z') £ M(v) n M(w) n (H+w) + iV),

where 77 is the unique hyperplane of sé which separates p(v) and p(w),

then z&z'. The space M is the quotient M = M'¡dl, and q: M —> M is

the map induced by q'.

Theorem 2.4. The map q: M —> M is the universal cover of M (sé).

Example. Let V = K and let sé = {0}. The chambers of sé axe C = {x £

R\x > 0} and D = {x £ R\x < 0}. The oriented graph shown in Figure 3a

is Y(sé) and the oriented graph shown in Figure 3b is Y. The subsets of C



SALVETTI'S COMPLEX AND ARRANGEMENTS OF HYPERPLANES 157

shown in Figure 3c are MiC) and M(D). We have M(C) = C - {iy\y < 0}

and M(D) = C - {iy\y > 0}. Let (v, w) be an arrow of f with p(v) = C
and p(w) = D. We have

M(v)nM(w)n(H+w) + iV)

= (C - {iy\y < 0}) n (C - {iy\y > 0}) n {(x + iy) £ C\x < 0}

= {(x + iy) £ C\x < 0}.

The space shown in Figure 3d is (M(v)IIM(w))/Z% . If we extend this construc-

tion to all Ê, then we clearly obtain the universal cover of M (sé) = C - {0} .

Lemmas 2.5, 2.6 and 2.7 are in [Pal] preliminary results to the proof of

Theorem 2.4; nevertheless, we state them since they will be used later in the

paper.

Fix a vertex v £ V(Y). Write C = p(v). For every chamber D of sé , we

choose a positive minimal path fo of Y (sé) beginning at C and ending in

D .We denote by fD the lift of fio into f beginning at v . Note that the end of

fio does not depend on the choice of fiD (see the definition of the identification

~ of T). We set

l(v) = {end( fiD)\D£V(Y)}.

Figure 3a

u V
-•—►—•—►—•—►—•-

Figure 3b

iC

D

F
iD ,I>

M(C) M(D)

Figure 3c
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Figure 3d

The restriction of p to Y.(v) is clearly a bijection Z(v) —> V(Y).

Let v and w be two vertices of Y. We write

Z(v,w) = \Jp(u),
u

where the union is over al the vertices u £ Z(u)nZ(it;) and, for u £ I.(v)nll(w),

the set p(u) is the closure of p(u) in V. We denote by Z(v, w) the interior

of Z(u,io). Note that Z(v, w) is a union of facets of sé .

Consider the natural projection

p:M'=       '   M(v)^M.

For every v £ V(Y), we write M(v) = p(M(v)). Since q'': M' —► M sends

M(v) homeomorphically onto M(v) and q' = q op, the map q: M —► M

sends M(v) homeomorphically onto M(v). Moreover, since q is a cover,

M(v) is an open subset of M.

Lemma 2.5. Let v and w be two vertices of Y. The border of Z(v, w) is

included in the union of the hyperplanes H £ sé which separate p(u) and

p(w).

Lemma 2.6. Let v and w be two vertices of Y. Then

q(M(v) D M(w)) = M(v) n M(w) n (Z(v , w) + iV).

Corollary. Let v, w be two vertices of Y. If I,(v) n L(w) = 0, then M(v) n

M(w) = 0.

Lemma 2.7. For every chamber C of sé , we have

q~x(M(C))=     [J     M(v),
vep-l(C)

and this union is disjoint.
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3. Universal cover of Salvetti's complex

We assume throughout this section sé to be an (essential) arrangement of

hyperplanes in a real vector space V of dimension /.

This section is divided in two subsections. In the first one we define an (ab-

stract) simplicial complex %al(sé) (Salvetti's complex) and prove that Sal(j/)

has the same homotopy type as M (sé). Our complex Sal(j/) is essentially

the same complex as this defined in [Sal] but our proof that Sal(j/) has the

same homotopy type as M (sé) is completely new. In the second subsection

we define another simplicial complex Sal and prove that there is a natural map

p: Sal -> %al(sé) which is the universal cover of Sal(j/) (Theorem 3.7). In

particular, Sal has the same homotopy type as M, where M is the universal

cover of M (sé).

3A.   Salvetti's complex.   We provide V with an arbitrary scalar product. Let

S/_1 = {x £ V\ \x\ = 1} be the unit sphere. The arrangement sé determines

a cellular decomposition of S/_1 .With a facet F ^ {0} of sé corresponds the

(open) cell A(F) = FnS/_1 , and every open cell of this decomposition of S/_1

has that form.
This cellular decomposition of S'~ ' determines a simplicial decomposition

of S/_1 (called barycentric subdivision). For every facet F / {0} of sé we fix

a point x(F) £ A(F). A chain {0} ̂  F0 < F( < • • • < Fr of facets of sé deter-

mines a simplex t/> = x(F0)Vx(Fi)V- • -Vx(F-) having x(Fq) , x(Fx), ... , x(Fr)

as vertices, and every simplex of this simplicial decomposition of S/_ ' has that

form. From now on, we always assume S/_1 to be provided with the simplicial

decomposition described above.

Let l' = {x £ V\ \x\ < 1} be the unit disc. The simplicial decomposition of

S/_1 determines a simplicial decomposition of Bl (called the cone over S/_1).

We add the vertex x({0}) = 0 to the set of vertices of S/_1. A chain Fo < Fx <

■■• < Fr of facets of sé determines a simplex <f> = x(Fo) V x(F{) V • • • Vx(Fr)

having x(Fq), x(Fx), ... , x(Fr) as vertices (recall that {0} is a facet of sé),

and every simplex of this simplicial decomposition of B' has that form. Note

that, if F0 f= {0} , then <f> = x(F0) Vx(F) V- • • Vx(Fr) ç S*-x . From now on, we

always assume B' to be provided with the simplicial decomposition described

above.
Now we are going to define the (abstract) simplicial complex Sal(sé ). For

every X £ 2f(sé) and every chamber D of séx , we fix a point y(D) £ D. For

every facet F of sé and every chamber C, we set

z(F, C) = x(F) + iy(CF)

(recall that CF is the unique chamber of sé\p\ containing C). Note that
z(F ,C)£(F + iCF) ç M(C). We have z(Fx, C\) = z(F2, C2) if and only if

Fx =F2 and (Q)F, =(C2)Fl.
Let F(Sal) be an abstract set in bijection with the set of points of M (sé)

having the form z(F, C) with F e i9'(sé) and C a chamber of sé . We

denote by <y(F, C) the element of F(Sal) corresponding with z{F, C). We

have coiFx, Cx) = (oiF2, C2) if and only if Fx = F2 and (Ci)f, = iC2)p2. The
set K(Sal) will be the set of vertices of Sal(sé).

Let Fx and F2 be two facets of sé and let C be a chamber. We set

to(Fx, C) < to(F2, C) if Fx < F2 .
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Lemma 3.1. The relation " < " is a partial order in F(Sal).

Proof. Pick a>x, co2, co?, £ F(Sal) such that tox < co2 and to2 < to?,, and let

us prove that cox < co?.

Since tûx < co2, there exist two facets Fx and F2 of sé and a chamber

C such that Fx < F2, co\ = co(Fx, C), and co2 = co(F2, C). Since co2 <

0J3, there exist two facets F2 and F3 of sé and a chamber D such that

F2 < Ft,, co2 = co(F2, D), and cut, = íoíFt, , D). We have co2 = a>iF2, C) =

<y(F2', D), thus F> = F[ and CFl = DFl. The inequality F3 > F2 = F2

implies sé\Fi\ ç sé\Fl\, thus CFl = DF] (since CFl = DFj), therefore 013 =

<y(F3, D) = <y(F3, C). It follows that (Ox = w(F , C) <co-¡ = <y(F3, C) (since

Fx<F2 = F2' < Ff).    U

An r-simplex O of $al(sé) is a (r + 1) chain fc>o < «i < • • • < cor in

F (Sal). We write O = <wo V tui V • ■ • V û>r. A subset of a chain is clearly still a

chain, so Sal(j/ ) is well defined.

Let 4> = x(Fo) V • • • V x(Fr) be a simplex of Ml and let C be a chamber of
sé . Then </5 and C determine a simplex <P(0, C) of Sal(jaf) defined by

O(0,C) = a;(Fo,C)V---Vft;(Fr,C).

Lemma 3.2. Leí Q be a simplex of Sal(sé ). Then there exist a simplex <j> of

B' anda chamber C of sé such that O = <b(<¡>, C).

Proof. Write O = «yoVwi V- • • Vwr, with a>0 < Wi < • - • < 0)r. Fix a facet F0 of

j/ and a chamber C such that a>o = a>(Fo, C). Let us prove, by induction on

i = I, ... , r, that there exists a facet F, of sé such that «y, = co(F¡, C) and

F > F_i . It follows that 0> = O>(0, C), where 0 = x(F0) Vx(F) V • • • V x(Ff).
Assume there exists a facet F,_i of sé such that a),_i = <u(F,-_i, C). Since

o),_i < a»,, there exist two facets F/_, and F, of j/ and a chamber D such

that F/_, < F,, <y,_i = co(F/_x, D) and t/j, = fc>(F,, D). We have coj-x =

<w(F/_i, C) = co(F¡_x, D), thus Fj_j = F/_, and CF¡_¡ = DF¡ , . The inequality

F > F/_, = F,_! implies ^|fi| ç J^^,!, thus CF¡ = DF¡ (since CF¡_¡ = DF¡_t).

It follows that coi = co(F¡, D) = ftj(F,, C).   D

Note that, if O(0i, Cx) = <J>(02. C2), then <f>x = 4>2. The map rc: Sal(sé) -+
M1 which sends O(0, C) onto </3, for every simplex <j> of B' and every chamber

C of j/ , is clearly a well-defined simplicial map, and sends every simplex of

Sal(j/) onto a simplex of B; having the same dimension.

For a chamber C of j/ , we denote by B'(C) the subcomplex of Sal(j/)

generated by the vertices of Sal(j/) having the form a>(F, C) with F e

^"(J/). We have

B'(C) = |J4)(0,C),

where the union is over all the simplexes <p of B'. The restriction nc '■ B'(C) ->

B' of n to B'(C) is clearly an isomorphism of simplicial complexes. Moreover,

Sal(sé) = \jMl(C),

c

where the union is over all chambers C of sé .
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Theorem 3.3.  Sal(j/) has the same homotopy type as Misé).

Proof. With every vertex co of Sal(j/ ) we will associate an open convex subset

7/(<y) of M (sé). We will prove that % = {77(w)|w e K(Sal)} is a covering of

M (sé) having Sál(sé) as nerve. Since U(co) will be convex for every vertex co

of Sal(sé), any nonempty intersection of elements of %Z will be convex (thus

contractible). This implies, by [We], that Sal(sé) has the same homotopy type

as M (sé).
For a simplex tj> of §/_1, we write

K(4>) = {Xx\x £ 4> and X > 0}.

Note that, if <j> = x(F0) V • • • V x(Fr) with {0} ¿ F0 < Fx < ■■ ■ < Fr, then

K(4>) ç Fr. Furthermore, the family {K(<p)\4> a simplex of S/_1} is a partition

of V - {0} .
Let F be a facet of sé and let C be a chamber. If F = {0} , then we set

U(co(F,C)) = (V + iC).

If F ^ {0}, then we set

T7(<y(F,C))= (U *(</>)] +iCF,

where the union is over all the Simplexes tf> of S/_1 having x(F) as vertex.

We obviously have U(to(Fx, Cx)) = U(co(F2, C2)) if w(F. , C\) = to(F2, C2),
thus 77(tu) is well defined for every vertex to of Sal(sé). Moreover, U((û) is

clearly an open convex subset of Vc .

Now, we are going to prove successively the following four assertions.

(1) 77(ta) ç M (sé) for every vertex co of Sal(sé).

(2) M (sé) ç Uw U((û) , where the union is over all the vertices co of Sal(sé).

(3) Let o)o, tax, ■■■ , cor be (r + 1) distinct vertices of Sal(j/). If T7(a>0) n

U(tOx) n • • • n U(cor) ^ 0 , then coo, cox, ... , cor axe the vertices of a simplex

O of Sal(sé).
(4) If coo, cox, ... , tor axe the vertices of a simplex <P of Sal(sé), then

77(<y0) n 77(tui) n • • • n 77(£Ur) ¿ 0 .

Assertions (l)-(4) obviously prove that %Z = {U(to)\co £ ^(Sal)} is a cover-

ing of M (sé) having Sal(sé) as nerve.

(1) Let F be a facet of sé and let C be a chamber. If F = {0}, then
U(co(F, C)) = (V + iC) is obviously included in M(sé). Now, assume F ^

{0}. Pick z = (x + iy) £ U(co(F, C)). There is a simplex tp of S/_l having

x(F) as vertex and such that x £ Ki<p). We write 0 = x(Fo)Vx(Fi)V- ■ -Vx(F-),

with {0} ¿ F0 < Fx < ■■ ■ < Fr. We have

K(tp) Ç Fr =► X £ Fr,

and

F < Fr =» CF ç CFr => y £ CFr.

Therefore z = (x + iy) £ (Fr + iCFr) ç Misé).
(2) Pick z = (x + iy) £ Misé). If x = 0, then x e H for every H £ sé ,

thus y & H for every H £ se , thus there exists a chamber C of sé such that

y£C. Therefore z = (x + iy) £ (V + iC) = C7(o;({0}, C)).
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Now, assume x ^ 0. There exists a simplex tf> of §/_1 such that x £ K(<j>).

We write </> = x(F0) V x(F,) v • • • v x(Fr) with {0} # F0 < F < • • ■ < Fr. Since
x £ K((f>) ç Fr ,there is no hyperplane H £ sé containing Fr which contains

y, thus there is a chamber D of sé\Fr\ such that y € D . Pick a chamber C of

j/ such that CFr = D. Then

z = (x + I» 6 (K(<j>) + iCFr) ç U(co(Fr, C)).

(3) Let coo, cox, ... , cor be (r + 1) distinct vertices of Sal(sé) such that

T7(û>o)nT7(c(;.)n- • -nU(cor) ± 0 . Write co¡ = &)(F,, Q), where F, £ ZF(sé) and
Ci is a chamber of j/ , for / = 0, 1, ... , r. Pick z = (x + iy) £ f)ri=0 77(a),).

Case a. Assume Fo = {0} .
Suppose there exists an i e{l,..., r] such that F, = {0} . Then

z = (x + i» £ U(o)o) n U(coi) = (V + /Co) n (F + fCi)

=* y g C0 n C¡

=^ Co n c,- t¿ 0

=> Q = d
=■ coo = co({0}, Co) = a), = o)({0}, Q).

This contradicts the fact that coo / &),. Therefore F, ^ {0} for i = 1, ... , r.

There is a simplex 0, of S/_1 having x(F,) as vertex and such that x 6

#(</>,), for i = 1,..., r. Since {K(4>)\4> a simplex of S/_1} is a partition of

V - {0}, we have </>■ = ■ ■■ = tj>r. Therefore x(F\), ... , x(Fr) axe vertices of

a same simplex tf> of S/_1, thus {Fx, ... , Fr) is a chain. Assume {0} = Fo <

Fx <■■■ <Fr. For i = I, ... , r we have

y 6 C0   and   ye (C,)f, ^ y £ (C0)F,   and   y 6 (C,)f,

=► (Co)/; n (d)Ft * 0

^ (Co)F¡ = (Q)F¡

=> a), = o)(F,, C,) = o)(F,, Co).

Moreover, we have F,_i ^ F, for / = 1, ... , r ; otherwise a),_i = o)(F_i, Co)

= co i = co(Fi, Co). It follows that coo, cox, ... , cor are the vertices of the

simplex

<P = o)(Fo, C0)VO)(F1, C0)V---Vo)(Fr, C0)

of Sal(sé).
Case b. Assume F, # {0} fox i = 0, 1, ... , r.

There is a simplex c£, of S/_1 having x(F,) as vertex and such that x 6

K(tf>i), for /' = 0, 1, ... , r. Since {K(tf>)\<¡> a simplex of S/-1} is a partition

of V - {0} , we have tj>o = <f>x = ■■■ = 4>r. Therefore {Fo, Fx, ... , Fr} is a

chain. Assume {0} ^ F0 < Fy <••• <Fr. For i = I, ... , r we have

y£(C0)Fo,    F,>F0   and   y 6 (Q)F¡ ^ y € (Cb)fl   and   y e (C,)f,.

=> (Ci,)« n (Q)Fi ¿ 0

=> (Co)fi = (Q)f,

^ cot = co(Fi, d) = co(Fi, Co).

Moreover, we have F,_i f^ F¡ fox i = I, ... , r; otherwise a),_i = co(F_i, Co)

= a>i = co(F¿, Co).   It follows that coo, cox, ... , cor are the vertices of the
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simplex

O = o)(F0, C0)VO)(F1, C0)V---Vû)(F, C0)

of Sal(sé).
(4) Let <D = <t>i<f), C) be a simplex of Sal(j/). We write <j> = x(F0) V

x(Fi ) V • • • v x(Fr) with F0 < F < •• • < F-. The vertices of 0> are co(F0, C),

co(F\, C), ... , to(Fr, C). Let us prove that f|/=o U(aiF¡, C)) = 0 .
Case a. Assume Fo = {0} .

Consider the simplex </>' = x(Ft) V • • • V x(Fr) of S/_1 . Pick x 6 K(<(>') and
y £ C, and write z = x + iy . We obviously have z e (V + iC) = U(co(Fq , C)).

The simplex </>' has x(F,) as vertex, x £ K(<ft) and y £ C ç CF¡, thus z = (X+

¿y) 6 U(m(F¡ ,C)) for i = 1, ... , r. It follows that z e H/=o 77(fo)(F,, C)).
Case b. Assume F0 ̂  {0} .

Then </5 is a simplex of S/_1. Pick x e 7T(0) and y £ C, and write
z = x + iy. The simplex <f> has x(F,) as vertex, x e A"(</») and y £ C C.CFi,

thus z = (x + /y) € U(o)(F¡, C)) for /' = 0, 1, ... , r. It follows that z e

nu#(«(#,c». □
3B. Universal cover of Salvetti's complex. Now, we are going to define the

(abstract) simplicial complex Sal.

Throughout this subsection, we denote by p: (t, ~) —* (Y(sé), ~) the uni-

versal cover of (Y(sé), ~), and by q: M —> M (sé) the universal cover of

M (sé), as defined in §2.
Let C be a chamber of sé . For every facet F £9r(sé) we have

z(F, C) = (x(F) + iy(CF)) £(F + iCF) C MiC).

By Lemma 2.7,
q~xiMiC))=     J     M(v),

vep-'(C)

and this union is disjoint. Moreover, recall that q sends M(v) homeomorphi-

cally onto M(u) = MiC) for every vertex v £ p~xiC). This implies that, for

every facet F e ZZFisé) and every vertex v £ V(Y), there exists a unique point

e(F, v) £ M(v) such that o(e(F, v)) = ziF, p(v)) (i.e., e(F, v) is the lift

of ziF, C) into M(u), where C = p(v)).

Let F (Sal) be an abstract set in bijection with the set of points of M having

the form e(F, v) with F 6 &(sé) and v £ F(f). We denote by ¿)(F, v)

the element of F(Sal) corresponding to e(F, v). The set F(Sal) will be the

set of vertices of Sal.

Lemma 3.4. Let Fx, F2 be two facets of sé , and let Vx, v2 be two vertices of

Y. Then
coiFx, vx) =co(F2, v2)

if and only if Fx = F2C Z(v\, v2) and p(vx)Ft = p(v2)Fl.

Proof. Assume co(Fx,Vx) = co(F2,v2)  (thus e(Fx,V\) = e(F2,v2)).   Since

e(F , vx) £ M(vx) and e(F2, v2) £ M(v2), by Lemma 2.6,

q(e(Fx ,vx)) = z(Fx, p(vx)) = ?(e(F2, v2))

= ziF2, p(v2)) £ Mivx) n Miv2) n (Z(vx, v2) + iV).
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The equality ziF\, p(ux)) = z(F2, p(v2)) implies Fx = F2 and p(v\)Fl =

p(v2)p2. On the other hand, x(Fj) £ Z(vx, v2), the set Z(vx, v2) is a union

of facets of sé and x(F) e Fx, thus Fx ç Z(vx, v2).

Now, assume F = F2 C Z(v\, v2) and p(vx)Fl = p(v2)Fl. This implies

z(Fx, p(vx)) = z(F2, p(v2))£(Fx + ipiVx)F¡)niF2 + ipiv2)p2)

n (Z(üi , v2) + iV) ç Mivx)nM(v2) n iZivx, v2) + iV).

It follows, by Lemma 2.6, that

z(Fx, p(vx)) = z(F2,p(v2)) £ q(M(vx)f\M(v2)).

The map q sends M(vx) homeomorphically onto M(vx), the point e(Fx,Vx)

is the lift of z(Fj, p(vx)) into M(vx), and z(Fx, p(vx)) £ q(M(vx) nM(v2)),

thus e(Fx ,Vx)£ M(vx)r\ M(v2). It follows that e(Fi, Vx) is the unique lift of

z(F2, p(v2)) = z(Fx, p(vx)) into M(v2), thus e(Ft ,V\) = e(F2, v2), therefore

cb(Fx,Vx) = co(F2,v2).   D

Let Fx and F2 be two facets of sé and let u be a vertex of Y. We set

co(Fx, v) < co(F2, v) if Fx < F2.

Lemma 3.5. The relation " < " is a partial order in F(Sal).

Proof. Pick cox,co2, co-i e F(Sal) such that cox < co2 and co2 < cos, and let

us prove that á>x < co?.

Since cox < co2, there exist two facets Fx and F2 of sé and a vertex v of Y

such that Fx < F2, cbx = co(F\, v), and co2 = cb(F2, v). Since co2 < ct)3, there

exist two facets F2 and F3 of sé and a vertex w of f such that F2 < F3,

0)2 = ô)(F2', to), and ¿03 = co(Fi, w). We have co2 = tb(F2, v) = co(F2, w),

thus, by Lemma 3.4, F2 = F2 ç Z(v, w) and p(v)p2 = p(w)f2 . Note that

Z(v, w) is a union of facets of sé and is an open subset of V, thus, if F

and G are two facets of sé such that G > F and F ç Z(v, w), then G ç

Z(ij , i«). Since F3 > F2 = F2 and F2 ç Z(v, w), we have F3 ç Z(v , w).

Furthermore, sé\Fl\ D sé\Fl¡ and p(v)Fl = p(w)Fl, thus p(v)F} = p(w)Fi. It

follows, by Lemma 3.4, that 0)3 = C0ÍF3, w) = o)(F3, v). Therefore cbx =

cbiFx, v) < C03 = ô)(F3, v) (since Fx < F2 = F2 < F3).    D

An r-simplex <S> of Sal is a (r + 1) chain ¿)o < cbx < • ■ ■ < tbr in F(Sal).

We write O = ô)o V á)i V - • • V á)r. A subset of a chain is clearly still a chain, so

Sal is well defined.
Let <p = x(F0) V x(F ) v • • • V x(Fr) be a simplex of l' and let v be a vertex

of T. Then 4> and v determine a simplex 0(cf>, v) of Sal defined by

O(0, u) = ó)(F0, v) Vó)(F , t))V---Vw(/v, v).

Lemma 3.6. Let Q be a simplex of Sal. Then there exist a simplex <p of B7

and a vertex vofY such that O = Q>(tf>, v).

Proof. Write <I> = cboVcbx V- • Vó)r with cb0 < cbx < ■■• <cbr. Fix a facet F0 of

j/ and a vertex « of T such that too = &(Fo, v). Let us prove, by induction

on i = 1, ... , r, that there exists a facet F, of j/ such that cb¡ = cb(F¡, v) and

F, > F,-_i . It follows that O = 0(tf>, v), where tp = x(F0) Vx(Ft) V • • • Vx(Fr).
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Assume there exists a facet F,_i of sé such that <»,-_) = û)(F,-_i, v). Since

¿),_i < ó),, there exist two facets F/_, and F, of sé and a vertex w of f such

that F/_, < F,, ô),-i = 6>(F/_,, u>) and ó), = ft)(F,, iu). We have g),-_i =
cb(Fi-x, v) = ft)(F/_,, w), thus, by Lemma 3.4, F,_i = F/_, Ç Z(v, w) and
P(v)f^i = Piw)F,_, . Since F, > F/_, = F,_i and F,_i ç Z(t>, iu), we have

F Ç Z(v, it;). Since F, > F-i and p(v)Ft_l = p(w)F¡_l , we have p(v)Fl =

p(w)F.. It follows, by Lemma 3.4, that ft), = cb(F¿, w) = cb(F¡ ,v).   D

Note that, if 0(</>i, Vx) = ®(<p2, v2), then <px = <p2. The map ñ: Sal -> W

which sends 0(0, tj) onto 0, for every simplex <f> of B' and every vertex v

of f, is clearly a well-defined simplicial map and sends every simplex of Sal

onto a simplex of B' having the same dimension.

For a vertex v of Y, we denote by W(v) the subcomplex of Sal generated

by the vertices of Sal having the form ó)(F, v) with F 6 Z^isé). We have

B'(v) = \J<i>(<t>,v),

where the union is over all the Simplexes tf> of B'. The restriction nv : W(v) -*

B7 of Ä to B'(îj) is clearly an isomorphism of simplicial complexes. Moreover,

Sal=   (J   W(v).

¡)€K(?)

Consider the map p: Sal -+ Sal(sé) which sends <í>(<p, v) onto <I>(0, /)(v))

for every simplex <p of B' and every vertex v of Y. It is clearly a simplicial

map and sends every simplex of Sal onto a simplex of Sal(j/ ) having the same

dimension.

Theorem 3.7. The map p: Sal -* Sal(sé) is the universal cover of Sal(sé). In

particular, Sal has the same homotopy type as M.

Remark. Using the same ideas as in the proof of Theorem 3.3, one can show

directly that Sal has the same homotopy type as M. Namely, for every facet

F of sé and every chamber C, we have U(to(F, C)) ç M(C). Thus, if

F £ ZFisé) and v £ V(Y), then there exists a unique open "convex" set

U(cb(F,v)) C M(v) such that q(UicbiF, v))) = l/(w(F, />(«))). One can
show that 7/(ft)(Fi, Vx)) = C7(ft>(F2, v2)) if cbiFx,Vx) = cbiF2,v2), the set

%Z = {77(fc))|û) £ F(Sal)} is a covering of M having Sal as nerve, and every

nonempty intersection of elements of % is "convex". Nevertheless, we present

here a different proof which may be more complicated but which carries more

information; for example, we will give explicitly a homotopy equivalence be-

tween Sal and M.
The following Lemma 3.8 is a preliminary result to the proof of Theorem

3.7.
For (r + 1 ) distinct points p0, Px, • ■ ■ , Pr of a real vector space, we set

aiPo,Px,...,Pr) = \YJtlpl\0<ti<l and ¿</=l[.
I,=0 (=0 J
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Consider the map i: Sal(sé) —► Vc which sends a simplex

í> = co(F0, C) V co(Fx, C) V • • • V ct)(Fr, C)

of Sal(j/) onto A(z(F0, C), z(F , C), ... , z(Fr, C)). This maps sends
co(F, C) onto ziF, C) for every facet F of sé and every chamber C. It is

obviously well defined.

Lemma 3.8. (i) Let (j) be a simplex of B', and let C be a chamber of sé . Write

<j> = x(F0) V x(F,) V • • • V x(Fr) with F0 < Fx <■■■ < Fr. Then /(<D(0, C)) Q
(Fr + iCFr). In particular, i(Sal(sé)) ç M (jé).

(ii) The map i is injective.
(iii) The map i: Sal(sé) —► M (sé) is a homotopy equivalence.

Proof, (i) Let ^ be a simplex of B', and let C be a chamber of sé . Write

<f> = x(F0) V x(F) V • • • V x(Fr) with F0 < F < • • • < Fr. Pick z = (x + iy) =
n=0A,z(F, C) G !(<&(</>, C)). We have A(x(F0), x(F), ... , x(Fr)) ç Fr,

thus x = £-=0/l,x(F,) £ Fr. On the other hand, y(CF() £ CFi ç CFr for

i' = 0, I, ... , r, thus y = Y,ri=0hy(CF¡) £ CFr (since CFr is convex).

(ii) Let (j) and ^ be two Simplexes of B', and let C and D be two chambers

of sé . Write (j> = x(F0) Vx(Fi) V- • • vx(Fr) with F0 < F < ■ • • < Fr, and ^ =
x(C7o)Vx(C7i)V •• -Vx^) with Go < C7i <■•• <GS. Let us prove, by induction

on r, that, if i(O>(0> C)) n i(0(^, D)) ^ 0, then <D(</>, C) = <D(^,D).
Pick z = (x + /y)€i(<D(</),C))n/(q)(v/,D)). Write z = EU'^-C) =

£;=o ^z(Cj, Ö), where 0 < r,, t) < 1 and E/=o '¿ = £;=o «/ = 1 • Recall that

{x(F)|F e ZZFisé)} is the set of vertices of a triangulation of B'. Since x =

£Lo'«*(*i) = E'=o^(G;). we have r = 5, F, = C7, (for i = 0, 1, ... , r)
and /, = t\ (for i = 0, ... , r). In particular, </> = xp. Moreover,

0 ft i(<t>(4>, C)) n ,(<ï>(0, D)) ç (Fr + iCFr) n (F + iDfr),

thus CFr nDFr^ 0 , therefore CFr = DFr. It follows that

trZiF,C))

trZÍFr , D)) £ 1(<S>(4/ , C)) H im*', D)) ,

where cf>' = x(Fo) Vx(Fi) V • • • vx(Fr_i). By the inductive hypothesis, we have

0(</)', C) = <D(0, D), therefore <&(</>, C) = <D(0, D) = <t>(ip, D).
(iii) Let (f(o)wev(SaX) be a partition of the unity subordinated to the cover-

ing {U(co)\co £ F(Sal)} of M (sé) (see the proof of Theorem 3.3). Namely,

ifiw)(oev(SaX)'. Misé) —»[0,1] is a collection of maps with

(1) fa(z) > 0 if z £ Uico) and fm(z) = 0 if z £ U(œ), for all z e Jlf(j/)
and all co £ F (Sal),

(2) ¿ZaxvwfM) = 1 for all z 6 M(^).
Let k: M{sé) -* Sal(j/) be the map defined by k(z) = £(üeF(Sai)7«(z)íy >

for all z e M(sé). Since the covering {T7(û))|ft) e F(Sal)} has Sal(^) as

nerve, k is well defined. Moreover, by [We, p. 143], k is a homotopy equiva-

lence.

>r-X

,1=0
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We are going to prove that idM^) and ik are homotopic. This implies that

i is a homotopy inverse of k , and thus is a homotopy equivalence.

Consider the homotopy (0,)o<ki : Misé) —► Vc defined by

9t(z) = tZ + (I - t)(lK)(z).

Let us prove that 0,(z) G M (sé) for all z g M (sé) and all t £ [0, 1]. This
shows that (0,)o<,<i : M(sé) —> M(sé) is a homotopy connecting id^j/) with

ik .

Pick z = (x + iy) £M(sé).
Case a. Assume x = 0.

Let C be the chamber of sé such that y G C. The only vertex co of Sal
such that z g 77(eo) is co = co({0}, C). We have z = (x -l- iy) £ ({0} + iC)

and ijc(z) = z({0}, C) g ({0} + iC), thus dt(z) g ({0} + iC) ç M(sé) (since
({0} + iC) is convex) for all t G [0, 1].

Case b. Assume x ^ 0.

There is a unique simplex tf> of S/_1 such that x G .fv(</>) .Write <p = x(Fi) v

• • • V x(Fr) with {0} ̂  F < • •• < F-. Set F0 = {0} . Since K(tf>) ç Fr, there is
a chamber Dr of ¿^ | with y £ Dr. On the other hand, if there is a chamber

D,_i of •#[/?._, | with y £ D,_!, then there is a chamber D, of sé\F.\ with y G D,
and D,_i ç D,. It follows that there exists a j £ {0, 1, ... , r) such that

(1) there is a chamber D, of sé\F¡\ containing y for all i = j, ... , r,

(2) there is no chamber of sé\F¡\ containing y for any i = 0, ... , j - I,

(3) D, ç D;+1 ç • • • ç D,.
Choose a chamber C of sé such that CFj = D¡. We obviously have CF¡ =

Di for i = j, ... , r. The set of vertices co of Sal such that z G 77(û)) is

{co(Fj, C), co(Fj+x ,C),...,co(Fr, C)}. Write <D = co(Fj, C)V- • -Vft)(F, C).
We have z = (x + iy) £ (Fr + iCFr) and ijc(z) G /(O) ç (Fr + iCFr), thus

e,(z) £ (Fr + iCFr) ç M (sé) (since (F + *'Cfr) is convex) for all t G [0, 1].   D

Proof of Theorem 3.7. Recall that, for every chamber C of sé ,

q-x(M(C))=     U     M(u),

t)e/>-'(C)

this union is disjoint (Lemma 2.7), and q sends M(v) homeomorphically onto

M(C) = M(v) for every vertex v £ p~x(C). Furthermore, for every simplex <j>

of B' and every chamber C of sé , we have i(<D(0, C)) ç A7(C) (see Lemma
4.8(f)).

Since i: Sal(j/) -> M (sé) isinjective, i(Sal(j/)) can be viewed as a geomet-

ric realisation of Sal(j/), so q~x(i(fZ>al(sé))) can also be seen as a geometric

realization of a simplicial complex (since q is a cover). Let us denote by W

the set of vertices of q~x(i(Sal(sé))). The application /: F(Sal) -» W which

sends d)(F, u) onto e(F, v), for every F G &(sé) and every i> G K(Sal),

is, by the definition of F (Sal), a bijection. It is easy to see that í can be

extended to an isomorphism i: Sal —» q~x(i(f$>al(sé))) of simplicial complexes

which sends <&(<f>, v) onto the lift of i(^(<¡>, C)) into M(v), where C = p(v),

for all simplexes <j> of B' and all vertices « off.
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The following diagram commutes:

Sal     —Í—»     M

p o   ,

Sal(sé) —'—+ M (sé)

the map q is a cover, i and f are injective, and q'x(i(Sal(sé))) = í(Sal), thus

p is a cover. Furthermore, q: M —> M (sé) is the universal cover of M (sé)

and i is a homotopy equivalence, thus p: Sal —► Sal(j/) is the universal cover

of Sal(j/) and f is a homotopy equivalence.   G

4. Topology of simplicial arrangements of hyperplanes

Recall that an essential arrangement sé of hyperplanes is called simplicial

if every chamber of sé is an open simplicial cone. Our goal in this section is

to prove that if sé is a simplicial arrangement of hyperplanes, then M (sé) is

a K(n, 1) space.
This section is divided in two subsections. In the first one we define a property

on real arrangements of hyperplanes: the property D, and we prove that if sé is

a simplicial arrangement of hyperplanes, then sé has the property D (Theorem

4.1). We do not know if, for an essential arrangement sé of hyperplanes, to

have the property D is equivalent to being simplicial. We will give a simple

example of a supersolvable arrangement which does not have the property D. It

is well known that, if sé is a supersolvable arrangement of hyperplanes, then

M (sé) is a K(n, 1) space (see [Te2]).

In the second subsection we prove that if sé has the property D, then Sal

is contractible (Theorem 4.6). Since Sal has the same homotopy type as the

universal cover M of M (sé) (Theorem 3.7), the space M is contractible if
sé is simplicial; thus, in this case, M (sé) is a K(n, 1) space.

4A. Property D. Throughout this subsection, sé is an arrangement of hy-

perplanes in a real vector space V, and (Y(sé), ~) is the oriented system

associated with sé .

Let A and B be two chambers of sé . We say that a chamber C of sé

is between A and B if there exists a positive minimal path f = ax---an of

Y (sé) beginning at A, ending in 77 and such that C = end(ö! • • • a,) for some

i = 0,l,...,n. In other words, C is between A and B if there exists a

minimal gallery (A = Co, C. , ... , C„ = B) of sé such that C = C, for some

i = 0, 1, ... , n . We denote by Bet(y4, B) the set of chambers of sé between
A and B.

From now on, for every pair (A, B) of chambers of sé , we fix a positive

minimal path m(A, B) of Y(sé) beginning at A and ending in B . Note that,

by the definition of the identification ~ of Y (sé ), the equivalence class of

m(A, B) with respect to ~ does not depend on the choice of m(A, B). We

obviously have C G Bet(vl, B) if and only if m(A, C)m(C, B) ~ m(A, B).

Let / and g be two positive paths of Y (sé) with end(/) = end(g). We

say that / ends with g if there exists a positive path h of Y (sé) such that

f~hg.
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Figure 4

Let / be a positive path of Y(sé). Write B = end(f). We say that /
has the property D if there exists a chamber A of sé such that / ends with

m(C, B) if and only if C G Bet(^4, B), for every chamber C of sé .
We say that sé has the property D if every positive path of Y (sé) has the

property D.

Theorem 4.1. If sé is a simplicial arrangement of hyperplanes, then sé has the
property D.

Example. Consider the arrangement sé = {Hx, H2, 7/3, 774, 775} in K3 shown

in Figure 4. Let us show that sé does not have the property D.

Let / be the positive path of Y (sé) corresponding with the gallery (A, Ax,
A2, A3, A4, C) of sé . One can verify that / ~ g and / ~ h , where g is the
positive path of Y (sé) corresponding with the gallery (A, A\, A2, A3, A2, C)

and h is the positive path of Y (sé) corresponding with the gallery (A, Bx, B2,

Bi, B2, C) of sé . Thus / ends with m(A4, C), with m(A2, C) and with
m(B2,C).

Suppose that f has the property D. Then there exists a chamber D of sé

such that / ends with m(B, C) if and only if B £ Bet(D, C). We have
A4, A2, B2 £ Bet(D, C), thus the hyperplanes H2, TT?, H4 separate D and C

(see Lemma 4.3), therefore D = -C . It is easy to see that / cannot end with

M(-C, C) (it does not "cross" H5), so we have a contradiction.

The following Lemmas 4.2-4.5 are preliminary results to the proof of The-

orem 4.1. Lemmas 4.2 and 4.3 are well-known results. A proof of Lemma 4.2

and Lemma 4.3(i) can be found in [Br, p. 14]. (ii) and (iii) of Lemma 4.3 are

immediate corollaries of Lemma 4.3(i).

Lemma 4.2. Let G = (C0, C\, .. ■ , Cn) be a gallery of sé . Let 77, be the
hyperplane of sé which separates C,_ ( and Ci for i = 1, ... , n. The gallery

G is minimal if and only if H¡ ̂  77, for i ^ j.
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Corollary. Let f = ax---a„ be a positive path of Y (sé). Write C, = end(«i- ■ -a,)

for i = 0, 1, ... , n . Let 77, be the hyperplane of sé which separates C,_i and

C¡ for i = 1, ..., n . The path f is positive minimal if and only if 77, / 77/
for í # j.

Lemma 4.3. Let G = (Co, Cx, ... , Cn) be a minimal gallery. Let H¡ be the
hyperplane of sé which separates C,_i and C¡ for i = 1, ... , n .

(i) The hyperplanes of sé which separate Co and C„ are exactly H\,... ,Hn.

(ii) Let F be a facet of sé . If F is common to Co and Cn , then 7/, contains
F for every i = 1, ... , n .

(Hi) Let F be a facet of sé . If (Co)f = (Cn)F, then H¿ does not contain F

for any i = 1, ... , n .

Corollary 1. Let f = ax---an be a positive minimal path. Write

Ci = end(<2i • ■ • ai)   for i = 0, 1, ... , n.

Let Hi be the hyperplane of sé which separates C,_i and Ci for i = 1, ... , n .

(i) The hyperplanes of sé which separate C0 and C„ are exactly 7/i,... ,Hn.

(ii) Let F be a facet of sé . If F is common to Co and C„ , then Hi contains

F for every i = 1, ... , n .
(iii) Let F be a facet of sé . If (Cq)f = (C„)F, then 77, does not contain F

for any i= 1, ... ,n .

Corollary 2. Let A and B be two chambers of sé . Then m(A, B)m(B, -A)
is a positive minimal path of Y(sé).

Let 31 be the smallest equivalence relation on the set of positive paths of

Y(sé) suchthat:

(1) if fiZ%g , then begin(/) = begin(^) and end(/) = end(g).
(2) if fifftg, then (hxfh2)Z3$(hxgh2) for any two positive paths hx and h2

such that endihx) = begin(/) = begin(g) and begin(/z2) = end(/) =

end(g).
(3) if / and g are two positive minimal paths of Y (sé) with the same

begin and the same end, then fZ%g .

Note that, if fiâlg, then / ~ g and length(/) = length(g).
Let / and g be two positive paths of Y (sé) such that end(/) = end(g).

We say that / ^-ends with g if there exists a positive path h of Y (sé) such

that f&ihg).
For any chamber A of sé , we write hx = m(A, —A)m(—A, A) and (/z/j)r =

hAhA ■■■hA  (r times).

Lemma 4.4. Let f and g be two positive paths of Y(sé) such that f ~ g.

Write A = begin(/) = begin(g). Then there exists an integer r > 0 such that

(hAyfz%(hAyg.

Proof. We denote by (-a) = (—A, -B) the opposite arrow of an arrow a =

(A,B) of Y(sé).
For every arrow a = (A, B) of Y (sé) set p(a) = a and

p(a'x) = m(B, -B)m(-B,A),
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and for every path / = a\x ■ ■ ■ af," set p(f) = p(a\1 ) ■ ■ -p(a%). It is clear that

p(f) is a positive path of Y (sé), that p(fig) = p(fi)p(g), and that p(f) = f
for every positive path /.

Assertion. Let / and g be two paths of Y (sé) such that / ~ g. Write
A = begin(/) = begin(g). Then there exist two integers r, s > 0 such that
(hA)rp(fi)3l(hAyp(g) ■

This assertion proves Lemma 4.4; indeed, if / and g axe two positive

paths of Yisé ) with / ~ g, then there exist two integers r, s > 0 such that

iihA)rf)Z%iihAyg). Since length««,,)'/) = length««,,)'*) and length(/) =
length(g) (because weight(/) = weight(g)), we have r = s .

Proof of the Assertion. Let a = (A, B) be an arrow of Y (sé). We have, by

Corollary 2 of Lemma 4.3,

m(A, -A)m(-A, A)aMm(A, -A)(-a)m(-B, A)a

3lm(A, -A)(-a)m(-B, B)

Mam(B, -A)(-a)m(-B, B)

3lam(B, -B)m(-B, B).

Thus, if / is a positive path of Y (sé ) beginning at A and ending in B , then

((hAyf)^(f(hB)') for every integer t > 0.
Let fix and fi2 be two paths of Y (sé) beginning at the same chamber A

and ending in the same chamber B . Let g and « be two paths of Y (sé), g

ending in A and « beginning at B . Write C = begin(g). Assume there exist

two integers r, s > 0 such that ((hA)rp(fx))3l((hAyp(f2)). Then

(hcÏP(gfih) = (hc)rPig)p(fi)p(h)

¿%Pig)ihAypifx)pih)

&p(g)(hA)sp(f2)p(h)

31 (hc)sp(gf2h).

It follows that, in order to prove the Assertion, it suffices to consider the fol-

lowing cases:

(a) / and g are positive minimal paths with the same begin and the same

end.
(b) / = f'~x and g = g'~x , where /' and g' are positive minimal paths

with the same begin and the same end.

(c) / = aa~x and g = A, where a = (A, B) is an arrow of Y (sé).

(d) f = a~xa and g = B, where a = (A, B) is an arrow of Y (sé).

(a) Is trivial.

(b) Let f = ax---a„ be a positive minimal path of Y (sé). Write A =

begin(/) and B = end(/). Let us prove, by induction on the length n of fi,

that

p(fi-x)3?(hBy-xm(B, -B)m(-B,A).

This clearly implies the Assertion in the case b.
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Write Ai = end(öi • • • a¡) for i = 1,2, ... , n .

m(-A, -B)m(-B, A) is positive minimal

=>• (-ax)(—a2) ■■■ (-a„)m(-B, A) is positive minimal

=*• (-af) ■ ■ ■ (-a„)m(—B, A) is positive minimal

=> m(-Ax, —B)m(-B, A) is positive minimal

=* mi-Ai, -B)m(-B,A)3?m(-Ax, A).

It follows that

p(f-x)=p(a-x---a2x)p(a7x)

31 (hB)"-2m(B, -B)m(-B, Ax)m(Ax, -Ax)m(-Ax, A)

3î (hB)n"2m(B, -B)m(-B,Ax)m(Ax, B)m(B, -A\)

m(-Ax, -B)m(-B,A)

31 (hB)n~2m(B, -B)m(-B, B)m(B, -B)m(-B, A)

3l(hB)n-xm(B, -B)m(-B,A).

(c)

p(f) = am(B,-B)m(-B, A)

3lam(B, -A)(-a)m(-B, A)

m m(A, -A)m(-A, A) = hA = hAp(g).

(d)

p(f) = m(B,-B)m(-B, A)a

3lm(B,-B)m(-B,B) = hBp(g).   U

Lemma 4.5. Assume se to be simplicial.
(i) Let fix, fi and g be three positive paths of Y(sé) such that end(g) =

begin(/,) = begin(/2). If (gfi)3l(gf2), the fi3lfi2.
(ii) Let fix, f2 and h be three positive paths ofi Y(sé) with begin(«) =

end(/i) = end(/2). // (fih)3l(fi2h), then fi3lfi2 .
(iii) Let f be a positive path of Y(sé). Write B = end(/). There exists

a chamber A of sé such that f 31-ends with m(C, B) if and only if C £
Bet(A, B).

Proof. See [De, Proposition 1.19].   D

Proof of Theorem 4.1. Assume sé to be simplicial. Let / and g be two

positive paths of Y (sé). If fi3î g , then obviously / ~ g. On the other hand,

if / ~ g, then there exists an integer r > 0 such that ((hA)rf)3?((hA)rg)

(Lemma 4.4), where A = begin(/) = begin(g), therefore, by Lemma 4.5(i),

f3lg . Thus / ~ g if and only if fi3lg . In particular, a positive path / of
Y(sé) ends with a positive path g if and only if / c^-ends with g. Then

Theorem 4.1 easily follows from Lemma 4.5(iii).   D

4.B.   Property D and the topology of Sal.    Throughout this subsection, sé

is an essential arrangement of hyperplanes, p: (Y, ~) —» (Y(sé), ~) is the

universal cover of the oriented system (Y(sé), ~) associated with sé , and

p: Sal —> Sal(sé) is the universal cover of Salvetti's complex SaK^/) as defined

in §3.
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Theorem 4.6. If sé has the property D, then Sal ¿j contractible.

Corollary. If sé is a simplicial arrangement of hyperplanes, then M (sé ) is a

K(n, I) space.

The following Lemmas 4.7-4.12 are preliminary results to the proof of The-

orem 4.6.

Lemma 4.7. Let X be a simplicial complex.   We denote by V(X) the set of

vertices of X. Let W ç V(X) be a subset. Let Y be the subcomplex of X

generated by W (i.e., Y is the union of the Simplexes of X having their vertices

in W), and let Z be the subcomplex of X generated by V(X) - W.
Then Y is a strong deformation retract of (X - Z).

Proof. We have to define a continuous family (0,)o<,<i : (X - Z) —>■ (X - Z)

of maps such that
(1) e0(x) = x, for all xe(X-Z),
(2) dx(x) £ Y, for all x G (X - Z),
(3) 6t(x) = x , for all x G Y and all t £ [0, 1].
Let 4> be a simplex of X included in (X -Z). Let coo, cox, ... , cor be the

vertices of O. Via the canonical embedding i> —> W+x, every element x G O

can be written in a unique way

r

x = ^2 UtOi,
1=0

with 0 < t, < 1 for i = 0, 1, ... , r, and £¡_01¡ = 1. Since î>ç(I-Z),
there is at least one vertex of 0 included in W. Assume coo, cox, ... , cos to

be the vertices of <I> included in W. The restriction of 0, to <D is defined by

0, í¿/,ft),J =íí¿í,u),j +(l-f) (¿if)     (¿'«««j-

It is clear that 0, is well defined and satisfies (1), (2), and (3).   D

A wall of a chamber A of sé is the support of a face of A (i.e., of a 1

codimension facet of A).

Lemma 4.8. Let A be a chamber of sé , and let Hx, ... , Hr be r distinct walls

of A . Consider the subcomplex A of Sl~x generated by the vertices x(F) of

Sl~x included in (Ji-i (Hi)A ■ Then A is a strong deformation retract of B'.

Proof. Apply Lemma 4.7 to X = Sl~x and W the set of vertices x(F) of S/_1

included in Ui_,(Äi)J • we have X - Z = Sl~x n ([fi=l(Hi)^) and Y = A.

It follows that A is a strong deformation retract of S/_1 n (U/=i(-^í)^) • Since

§/_1 n (U/=i(#«)}) = §/_1 - (rii=i(^')J) is contractible (where (77,); is the
closed half-space of V bordered by 77, and not containing A), the subcomplex

A is contractible, thus is a strong deformation retract of B' (see [LW, Theorem

3.1, Chapter IV], for example).   D

Fix a vertex vq of Y. We denote by V(Y)+(vo) = V(Y)+ the set of vertices

v of f such that there exists a positive path in f beginning at Vo and ending in

v . We denote by V(Y)„(vq) = V(Y)„ the set of vertices v of f such that there
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exists a positive path in f of length < n beginning at v0 and ending in v .

Note that, if / and g axe both positive paths of Y beginning at vo and ending

in v £ V(Y)+ , then / ~ g (Proposition 2.2), thus length(/) = length(g). For

v £ V(Y)+ , we denote by d(v0, v) the length of a positive path of Y beginning

at vo and ending in v .

We denote by Sal+(v0) = Sal+ the subcomplex of Sal generated by the

vertices of Sal having the form to(F, v) with F g Z?~(sé) andv G V(Y)+.

We have

Sal+ =    U    W(v).

vev(?)+

We denote by Sal„(vo) = Sal„ the subcomplex of Sal generated by the vertices

of Sal having the form cb(F, v) with F G S1'(sé) and v £ V(Y)„ . We have

Sal„=    (J    B>).

v€V(?)n

Lemma 4.9. Assume se to have the property D. Fix a vertex vo of Y. Let

v , w £ V(Y)n+x - V(Y)n with v ^ w . Then

W(v)nB!(w) c Sal„.

Proof. Let cb be a vertex of Sal included in Ml (v)r\Ml (co). Write p(v) = A and

p(w) = B. There exist two facets F and G of sé such that cb = cb(F, v) =

cb(G, w). By Lemma 3.4, F = G ç Z(v, w) and AF = BF .
Let C be the chamber of sé such that F is a facet of C and CF = -AF =

-BF . The set Z(v , w) is a union of facets of sé , it is an open subset of V ,

F C Z(v, w), and C > F, thus C ç Z(v, w). Therefore there exists a vertex

u £ X(i>) n Z(w) such that p(u) = C.

Let m(v , u) be a positive path of Y beginning at v and ending in u, and

let m(w , u) be a positive path of T beginning at w and ending in u. Since

u £ L(v) n £(«;), one can assume p(m(v , u)) = m(A, C) and p(m(w, u)) =

m(B, C).

Pick a positive path f of Y beginning at vq and ending in v , and a positive

path g of f beginning at v0 and ending in w. Write

(i) / = p(fi) and g = p(g),
(ii) /o = fim(v, u) and j?0 = gm(w, u),

(Hi) fio = pifo) = fimiA, C) and #0 = p(go) = gm(B, C).
Note that To and go have the same begin v0 and the same end u, thus fio ~ go

(Proposition 2.2), therefore fio ~ go ■
Recall that sé has the property D. There exists a chamber Co of sé such

that /o ends with m(D, C) if and only if D g Bet(Co, C). Choose a positive

path « of Y(sé) such that /0 ~ hm(C0, C). Let « be the lift of « into f

beginning at Vq . Write uo = end(«).

Let us prove that uq £ V(Y)n and that cb = cb(F, «o) • This shows that

cb £ Sal„ , thus ends the proof of Lemma 4.9.
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First, let us prove that Co ̂  A . If not, then

n + 1 = length(/)   (since v £ V(Y)n+l - V(Y)n)

= length(TÖ) - length(w(Co, C))    (since Co = A)

= length(/o) - length(w(C0, B)) - length(m(B, C))

(since B g Bet(C0, C))

= length(g) - length(w(C0, 77))    (since /0 ~ g0)

= n + l- length(m(C0, 77))   (since w £ V(Y)n+x - V(f)„).

It follows that A = C0 = B, thus m(A, C) = m(B, C), therefore m(v, u) =
m(w, u). This contradicts the fact that v ^ w .

Now,

d(v0, u0) = length(«)

= length(«)

= length(/0) - length(m(C0, C))   (since /0 ~ hm(C0, C))

= length(To) - length(m(C0, A)) - length(m(A, Q)

(since A GBet(C0, C))

= length(/) - length(w(C0, A))

= n+l- length(w(C0, A))    (since v g V(Y)n+i - V(Y)n)

< n   (since Co ̂  A).

This shows that Uo £ V(Y)„.
If 77 D F, then 77 separates A and C (since CF = —AF), thus 77 does

not separate C0 and A (since A £ Bet(C0, C)), therefore (Co)f = AF . The

vertex u is included in I(i>) fl Z(«0) (lift m(C0, A)m(A, C) into f), thus

p(u) = C ç Z(v , uo). Since F ç C, we have F ç Z(v , u0). If H separates

A = p(v) and Co = p(uo), then H does not contain F (since (Co)f = AF).
It follows that F is not included in the border of Z(v , Uo) (see Lemma 2.5),

thus F ç Z(v, Uo). By Lemma 3.4, we have cb = cb(F, v) = cb(F, u0).   ü

Lemma 4.10. Assume sé to have the property D. Fix a vertex v0 of Y. Let

v £ F(f)n+i - V(Y)„ . Write A = p(v). Then there exists a set {//i, ... , 77r}

of walls of A such that B'(v)n Sal„ is the subcomplex of B'(v) generated by

the vertices ofi W (v) having the form cb(F, v) with F C \Jri=,(//,-)^ .

Proof. Choose a positive path / of f beginning at v0 and ending in v . Write

/ - P(f) ■ Let ax, ... , ar be all the arrows of Y (sé) such that / ends with a¡
(for i = 1, ... , r). Write A¡ = begin(a,) and 7f, the hyperplane of sé which

separates A¡ and A ,fox i = 1, ... , r. Let us show that {Tfi, ... , 77r} is the

required set of walls of A .

Let F be a facet of sé . Assume there exists an / g {1, ... , r) such that

F Q (H¡) a- Since / ends with a¡, there exists a positive path « of Y (sé)

such that / ~ ha¡■■. Let « be the lift of « into f beginning at v0. Write

w¡ = end(«). Let us prove that w¡ £ V(Y)„ and that cb(F, v) = cb(F, w¡).

This shows that cb(F ,v)£Ml(v)n Sal„.

d(v0, w¡) = length(Â) = length(«) = n,

thus 10/ G V(Y)n .
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Since F ç (//,)+,, the facet F is not included in //,, thus (A¡)F = AF.

Pick a chamber C of sé having F as facet. Since F ç (77,)+ and FCC,

we have C ç (//,•)+,, thus 77, does not separate A and C, therefore A £

Bet(Ai, C) (by Lemmas 4.2 and 4.3(i)). This implies that there exists a vertex

u £ I(u)íll(w¡) suchthat p(u) = C (lift m(A,-, A)m(A, C) into f). It

follows that C ç Z(v, w¿), therefore F ç Z(v, w¡) (since F ç C). The

equality (A¿)F = AF shows that no hyperplane of sé containing F separates

A¡ = p(Wi) and A = p(v), thus, by Lemma 2.5, we have F ç Z(v, w¡). It
follows, by Lemma 3.4, that cb(F, v) = cb(F, w¡).

Now, let ó) be a vertex of Sal included in W(v) n Sal„. There exist a

vertex w £ V(Y)n and two facets F and G of sé such that cb = cb(F, v) =

cb(G, iu). Write B = p(w). By Lemma 3.4, F = G ç Z(v , w) and AF = BF .
Let C be the chamber of sé having F as facet and such that CF = -AF =

-BF . The set Z(v, w) is a union of facets of sé , it is an open subset of

V, F Ç Z(v , w), and C > F, thus C ç Z(v , w;). Therefore there exists a

vertex u £ Z(v) n X(u;) such that piu) = C. Let m(u , u) be a positive path

of f beginning at v and ending in u, and let m(w, u) be a positive path of

f beginning at w and ending in u . Since u £ L(v) n S(ííj) , one can assume

pim(v , u)) = miA, C) and pim(w , u)) = m(B, C).

Pick a positive path / of Y beginning at v0 and ending in v , and a positive

path g of f beginning at vo and ending in w . Write

W -^= ^/) and * = ^£) '
(ii) fio = /w(-y, «) and ^0 = ^w(u>, u),

(iii) /o = /)(/o) = /m(v4, C) and g0 = /?(^o) = gmiB, C).

Note that fi, and ^o have the same begin v0 and the same end u, thus fio ~ go

(Proposition 2.2), therefore To ~ go •
Recall that sé has the property D. There exists a chamber Co of sé such

that fio ends with m(D, C) if and only if D G Bet(Co, C). Choose a positive
path « of Y(sé) such that To ~ «m(Co, C). As in the proof of Lemma 4.9,

fio ~ go and «/» imply Co ̂  A . Since

fio = fimiA, C) ~ «m(C0, ^)m(^, C)

indeed, ^ G Bet(Co, C)), the path / ends with w(Co, A).
Write m(Co, A) = bx ■ ■ ■ bn . There is an i £ {I, ... , r) such that ¿>„ = a,.

Since ^ G Bet(Co, C) and 77, separates Co and A, the hyperplane 77, does

not separate A and C (by Lemmas 4.2 and 4.3(i)), thus C ç (77,)^. This

implies F ç (77,)^ (since FCC), where (77,)^ is the closed half-space of V
bordered by 77, and containing A . If H £ sé contains F, then H separates

A and C (since CF = -AF), thus 7/ does not separate Co and A (since

A G Bet(C0, C)), therefore 77 ̂  7/,. It follows that F ç (77,)+ .   D

Lemma 4.11. Assume sé to have the property D. Fix a vertex vo off. Then

Sal+(iJo) is contractible.

Proof. Let us show that Sal„ is a strong deformation retract of Sal„+i for all

n > 0. Since Sal+ = lim Sal„ and Salo = B«v0) is contractible, this proves

Lemma 4.11.
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We have to define a continuous family (0f)o<r<i: §al„+i -♦ Sal„+i of maps

such that
(1) &o(x) = x, for al x G Sal„+i ,

(2) 0,(x) G Sal«, for all x G Sal„+, ,

(3) e,(x) = x, for all x G Sal« and all t £ [0, 1].

Let v £ F(f)„+i - V(Y)„. Write A = p(v). By Lemma 4.10, there exists a

set {//[, ... , Hr} of walls of A such that ñv(ñ!(v) n Sal„) is the subcomplex

of B' generated by the vertices x(F) of Ml included in \JmÍhí)a- Note

that x({0}) = 00 \Jri=x(Hi)^. By Lemma 4.8, ñv(Ml(v) n Sal„) is a strong

deformation retract of B'. It follows that W(v) n Sal„ is a strong deformation

retract of B'(v) (since nv: B!(v) -* W is an isomorphism). Choose a homotopy

ie?)o<t<i:Bliv)^W(v) with
(a) 0o'(x) = x,forall xeB*(v),

(b) 0[(x) G M'(v) nSal„ , for all x G B'(v),

(c) dfix) = x , for all x 6 W(v) n Sal« and all / G [0, 1].

Set dt\W(v) = 6vt if u G K(f)„+, - F(f)„ , and 6t\W(v) = idB,(i;) if « € V(f)n ■
By Lemma 4.9, the homotopy 0, is well defined. It obviously satisfies (1),

(2) and (3).   D

Recall that, for a chamber A of sé , hA = m(A, -A)m(-A, A). Write
(hA)~r = (hA)-x(hA)-x---(hA)-x   (r times) for all r>0.

Lemma 4.12. Let f be a path of Y (sé). Write A = begin(/). Then there exist

a positive path g of Y (sé) and an integer r > 0 such that fi ~ (hA)~rg.

Proof. Write / = a\l ■ ■ ■ fl„". Set r = |{/ g {1, ... , r}|e, = -1 }|. We are going
to prove, by induction on r, that there exists a positive path g of Y (sé ) such

that f~ihA)-rg.
Assume r > 0. For an arrow a = (C, D) of Yisé), we write (-a) =

(-C, -D). Let Ai = end(öi' •■■a]1) for i = 1,2, ..., n. There exists a
j £ {1, ... , n] such that ßi = e2 = • • • = e,_, = 1 and e, = -1. We have

hAf ~ m(A, -A)m(-A, A)ax ■ ■ ■ a,-xa~xa>l\ ■ • -fl„"

~ m(A, -A)(-ax)m(-Ax, A)axa2 ■ ■ ■ aj-xaJxaejJ¿{ ■■■aEn"

~m(A, -A)(-ax)m(-Ax, Ax)a2---aj-.xaflajfx ■■■acn"

~ m(A, -A)(-ax)(-a2) ■ ■ ■ (-ay_,)m(-^_,, Aj.x)afxaj;\ •••a„»

~ «j(^, -/l)(-ai) • • • (-aj-.x)m(-Aj-x, Aj)ajafxa£jJfx • • • a„"

~ m(A, -A)(-ai).-- (-aj-.x)m(-Aj-x, Aj)ajfx ■■■aen»

~ (hA)x~rg   (inductive hypothesis),

where g is a positive path. Thus / ~ (hA)~rg.   D

Proof of Theorem 4.6. Fix a vertex v0 £ V(Y). Write A = /)(vo). Let us

define, by induction on r > 0, a vertex ur G V(Y) with /)(fr) = ^4. Assume

wr_i to be defined. Let hr be the lift of hA into È ending in vr^x ■ We set

vr = begin(«r).
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We clearly have V(Y)+(vr-i) ç V(Y)+(vr), thus Sal+(?Jr_i) ç Sal+(ur), for

r>0.
Let us prove that, for every vertex w £ V(Y), there exists an integer r > 0

such that w £ V(Y)+(vr). This shows that

Sal =    y   Bl(w) = lim Sal+(ur),

wevtr)

thus Sal is contractible (since, by Lemma 4.11, Sal+(vr) is contractible).

Let / be a path of f beginning at vq and ending in w . Write / = p(f).
By Lemma 4.12, there exists an integer r > 0 and a positive path g of Y(sé )

such that / ~ (hA)~rg. The lift of (hA)~rg into È beginning at Vo has the

form hxx ■ ■ h~xg, where g is a positive path of Y. By the definition of a

cover of an oriented system, we have / ~ hxx ■ ■ ■ h~xg, thus g begins at vr

and ends in w = end(fi), therefore w £ V(Y)+(vr).   □
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