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UNIVERSAL COVER OF SALVETTI'S COMPLEX AND TOPOLOGY
OF SIMPLICIAL ARRANGEMENTS OF HYPERPLANES

LUIS PARIS

ABSTRACT. Let V' be a real vector space. An arrangement of hyperplanes in
V is a finite set & of hyperplanes through the origin. A chamber of & is
a connected component of V — (Uycy H). The arrangement & is called
simplicial if Ny H = {0} and every chamber of & is a simplicial cone.
For an arrangement &/ of hyperplanes in V', we set

M(Ja/)ch—<U Hc),

Hey

where Ve = C®V is the complexification of V , and, for H € & , Hc is the
complex hyperplane of V¢ spanned by H .

Let &/ be an arrangement of hyperplanes of V . Salvetti constructed a
simplicial complex Sal(%/) and proved that Sal(%/) has the same homotopy
type as M (&) . In this paper we give anew short proof of this fact. Afterwards,
we define a new simplicial complex Sal(%/) and prove that there is a natural
map p: §al(M ) — Sal(&/) which is the universal cover of Sal(.&/). At the end,
we use §a|(J/ ) to give a new proof of Deligne’s result: “if &/ is a simplicial
arrangement of hyperplanes, then M(&) isa K(m, 1) space.” Namely, we
prove that §al(M ) is contractible if %/ is a simplicial arrangement.

1. INTRODUCTION

Let V' be a real vector space. An arrangement of hyperplanes in V is a
finite set .%/ of hyperplanes through the origin. We say that ./ is essential if
Nuesw H = {0} . A chamber of &/ is a connected component of V — Uy, H .
The arrangement &/ is called simplicial if &/ is essential and every chamber
of & is an open simplicial cone.

Let Vo = C® V be the complexification of V . Every element z of V¢ can
be written in a unique way z = x + iy, where x,y € 1@ V = V. We say
that x is the real part of z and that y is its imaginary part. For two subsets
X,Y CV, we write

X+iY={(x+iy)el|xeXandye Y}

Let H be a hyperplane of V' . The complexification Hc of H is the hyperplane
of V¢ spanned by H; Hc = H+ iH.
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Let &/ be an arrangement of hyperplanes in a real vector space V. We set

M(M):VC—(U Hc).

Hey

This space is an open connected submanifold of J¢.

The study of the topology of M (&) can be easily reduced to the case of
an essential arrangement of hyperplanes. Thus we assume throughout all the
arrangements to be essential.

In [Sal], Salvetti associates with a real arrangement %/ of hyperplanes a
simplicial complex Sal(%/), and proves that Sal(%/) has the same homotopy
type as M(&).

An oriented system is a pair (I', ~) where I" is an oriented graph and ~ is
an equivalence relation on the set of paths of I" with some properties described
in §2. In [Pal], the author shows that there is a natural notion of universal
cover p: (I', ~) = (I', ~) of an oriented system (I", ~), associates an oriented
system (I'(&/), ~) with a real arrangement .% of hyperplanes, and constructs,
from the universal cover of (I'(&/), ~), the universal cover of M(&).

Note that, in [Sal], Salvetti uses this same oriented system (I'(&/), ~) to
compute the fundamental group of M(%/). He also proves that I'(%/) is the
1-skeleton of Sal(%/) provided with an orientation, and that ~ is the homotopy
relation on the paths of I'(&/). Nevertheless, both works, [Sal] and [Pal], are
completely independent.

In this paper we give a new short proof of Salvetti’s result: Sal(&/) has the
same homotopy type as M(%/) (Theorem 3.3). Afterwards, using techniques
introduced in [Pal], we define another simplicial complex §al(% )}, and prove
that there is a natural map p: §al(%’ ) — Sal(%/) which is the universal cover
of Sal(&/) (Theorem 3.7). In particular, §al(% ) has the same homotopy type
as the universal cover of M(&). At the end, we use §al(% ) to give a new
proof of the following result of Deligne.

Theorem 1.1 (Deligne [De)). If & is a simplicial arrangement of hyperplanes,
then M(&/) is a K(n, 1) space (i.e., the universal cover of M(%) is con-
tractible).

Namely, we prove that §al(% ) is contractible if &/ is a simplicial arrange-
ment.

We say that a real arrangement &/ of hyperplanesisa K(n, 1) arrangement
if M(&) isa K(m, 1) space. Most of the already known K(m, 1) arrange-
ments are supersolvable (see [Te2]) or simplicial. To find a general criterion
for an arrangement to be K(m, 1) remains an open problem. In particular,
Saito’s conjecture that free arrangements are K(m, 1) is unsolved (see [Tel]).
Supersolvable arrangements are free (see [JT]) but simplicial arrangements are
not always free (see [Tel]). We refer to [FR] for a good exposition on K(m, 1)
arrangements. R

The interest of our simplicial complex Sal(%/) is, in order to prove that a real
arrangement . is K(m, 1), it suffices to prove that §al(% ) is contractible.

Our proof of Theorem 1.1 is more simple than Deligne’s one and, more-




SALVETTI'S COMPLEX AND ARRANGEMENTS OF HYPERPLANES 151

over, we isolate the part of the proof where the hypothesis “ .o/ is a simplicial
arrangement of hyperplanes” is essential.

For a simplicial arrangement &/ of hyperplanes, Deligne constructs in [De]
acover g: M — M(%/), defines a simplicial complex Del(% ), and proves that

—

I/)\el(% ) is contractible and has the same homotopy type as M . In particular,
M is the universal cover of M(&).

Our first innovation was in [Pal] to introduce a new combinatorial tool: the
oriented system. Deligne’s combinatorial tool, the groupoid Gal, is, in some
sense, equivalent to our oriented system, but it cannot be defined for any real
arrangement of hyperplanes ((i) and (ii) of Proposition 1.19 of [De] are needed
to define Gal and their proof strongly uses the fact that &/ is simplicial), and,
moreover, unlike in oriented systems, several preliminary results are needed to
define it (in particular, Ore’s criterion for a semigroup to be embedded in a
group (see [Lj, p. 400]) must be generalized to “semigroupoids” and groupoids).

Another important innovation is to substitute the simplicial complex Del(%)
for §al(% ). Using oriented systems, the complex Del(%/) can be generalized
to any real arrangement of hyperplanes (in the general case, Del(&/) is a CW
complex), but it does not always have the same homotopy type as the universal

cover M of M (&) (see [Pa2]). An advantage of our complex §al(% ) over

Del(&) is, in order to prove that Del(%/) has the same homotopy type as M,
several considerations on some kind of “subgroupoids” of Gal are needed (see
(1.5), (1.6), (1.9), (1.24), (1.28), (1.29), (1.30), (1.31), (1.32) of [De]) which
are not necessary in our case.

To prove that either Sal(%/) or Del(&) are contractible, a strong property
of simplicial arrangements is needed: the property D (see Theorem 4.1). In
our proof of Theorem 1.1 the hypothesis “.%/ is a simplicial arrangement of
hyperplanes” is only used to show that &/ has the property D. In fact, for an
essential arrangement &/ of hyperplanes, having the property D is equivalent
to being simplicial. I actually proved it some time after the first version of this
paper (see [Pa3]).

The only place where our proof of Theorem 1.1 coincides with Deligne’s one
is in our Lemma 4.4. It is a preliminary result to the proof of Theorem 4.1.

Since I submitted for publication the first version of my paper, Raul Cor-
dovil has informed me he has independently of my paper generalized Deligne’s
theorem for simplicial oriented matroids (see [Co]). On the other hand, Mario
Salvetti has informed me he has also proved independently Theorem 4.1 and
Theorem 4.6 (see [Sa2]).

Our work is organized as follows.

Section 2 is a summary of [Pall. Its aim is to introduce our main combina-
torial tggl, the oriented systems, and to give the construction of the universal
cover M — M(&/) of M(). R

In §3 we define the simplicial complexes Sal(.%/) and Sal(.%/ ), and prove that
Sal&% ) has the same homotopy type as M (%), and that there is a natural map
p: Sal(&/) — Sal(&/) which is the universal cover of Sal(%/).

The goal of §4 is to prove Theorem 1.1.

I am grateful to Peter Orlik and Hiroaki Terao who have helped me with
discussions, suggestions, and encouragement during my work.
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2. THE UNIVERSAL COVER OF M (&)

This section is divided into three subsections. In the first one we introduce
our main combinatorial tool: the oriented system. In the second subsection we
define the oriented system (I'(%/), ~) associated with a real arrangement &/

~

of hyperplanes. In the third subsection, from the universal cover p: (I', ~) —
(I'(&7), ~) of the oriented system (I'(&/), ~), we give the construction of the
universal cover M — M (&) of M().

All the results stated in this section are derived from [Pal], so we will not
give any proofs.

2A. Oriented systems. An oriented graph T is the following data:

(1) aset V(I') of vertices,

(2) asubset A(I') C (V") x V(I)) — {(v, v)lv e V(I')} of arrows.

The begin of an arrow a = (v, w) is v and its end is w . An oriented graph
I" is locally finite if every vertex v € V(I') is the begin or the end of only a
finite number of arrows.

A path of an oriented graph I' is an expression

— 481 4¢ €
f_al|a22,.,ann,

where a; € A(I') and ¢; € {£1} (for i =1, ..., n), such that there exists a
sequence vg, ¥y, ..., U, of vertices of I" with

ai=Wi—1,v;) ifeg =1,
a; = (vi,vi—y) ifeg=-1.

We say that vy is the begin of f and that v, is its end. The integer n is
its length and Y_!_ ¢ is its weight. Every vertex of I' is assumed to be a
path of length 0 and of weight 0. For a path f =af ---ay, we write f~! =
a;® ---a;® . For two paths f =a}'---ay and g =b["---by" with end(f) =
begin(g), we write fg =aj ---a;b}" - by .

An oriented graph I' is connected if, for every pair (v, w) of vertices of I",
there exists a path of I" which begins at v and ends in w .

We assume throughout all the oriented graphs to be locally finite and con-
nected.

Let T" be an oriented graph. An identification of T' is an equivalence relation
~ 1in the set of paths of I" with the following properties:

(1) f ~ g = begin(f) = begin(g), end(f) = end(g), and weight(f) =
weight(g),

(2) ff~! ~ begin(f), for every path f,

(3) f~g=>f"t~g",

(4) f ~ g = h fhy ~ hjgh, for any two paths A, and A, such that
end(h;) = begin(f) = begin(g) and begin(h;) = end(f) = end(g) .

An oriented system is a pair (I', ~), where I' is an oriented graph and ~ is
an identification of I".

Let p: ® - I' be a morphism of oriented graphs. We say that p is a cover
of T if, for every vertex v of © and every path f of I' beginning at p(v),

there exists a unique path f of © such that begin( f)=v and p(f)=f.
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Let p: (©, ~) — (I', ~) be a morphism of oriented systems (i.e., frg=
p(f) ~ p(g)). We say that p is a cover of (I', ~) if it has the following two
properties:

(1) p:® =T isacoverof I'.

(2) Let v € V(O®), let f and g be two paths of I" which both begin at
p(v), and let f and & be the lifts of f and g respectively into © beginning
at v. If f~g (=end(f) =end(g)), then f~ g (= end(f)=end(2)).

Example. Let I" be the oriented graph shown in Figure la. Let ~ be the
smallest identification of I' such that ab ~ dc. The identification ~ can be
viewed as a “homotopy relation”, namely, to identify ab with dc is like to
“add” a 2-cell to I" having abc~'d~" as border. Let I' be the oriented graph
shown in Figure 1b. The morphism 7: I' — I" which sends a; onto a, b; onto
b, c¢; onto ¢, d; onto d, and e; onto e (where i € Z) is obviously a cover
of I'. Let ~ be the smallest identification of T such that a;b; ~ d;c; for every
i €Z. Themap n: (I', ~) — (I', ~) is a cover of (I', ~); in fact, it is the
universal cover of (I', ~) (see Proposition 2.1).

Proposition 2.1. Let (I', ~) be an oriented system. There exists a unique cover
n: (T, ~) = (T,~) of T,~) (up to isomorphism) which has the following
universal property. If p: (©,~) — (I', ~) is a cover of (I', ~), then there
exists a unique cover m': (f‘, ~) = (0, ~) of (8, ~) (up to isomorphism) such
that m = pon'.

We call n: (f‘, ~) — (I, ~) the universal cover of (I', ~).

FIGURE 1b
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Proposition 2.2. Let n: (f, ~) = ([, ~) be the universal cover of an oriented
system (I, ~). Two paths f and g of T are identified by ~ if and only if
begin(f) = begin(g) and end(f) = end(g).

2B. Definition of (I'(%/), ~). Let &/ be an (essential) arrangement of hy-
perplanes in a real vector space V. Our goal in this subsection is to associate
with & an oriented system (I'(&/), ~).

First, recall some definitions. The lattice of &/ is the poset

Z(%):{ N H|95'g,w‘},

He#

ordered by reverse inclusion. V = (., H is the smallest element of .2 (&)
and {0} = Ny H is the greatest one. For X € Z(&/), we set

oy ={H e A |H D X}.

We refer to [Or] for a good exposition on .#(%/) and its properties.

The hyperplanes of &/ subdivide V' into facets. We denote by & (&) the set
of all the facets. The support |F| of a facet F is the vector space |F|e€ & (¥)
spanned by F . Every facet is open in its support. We denote by F the closure
of F in V. There is a partial order in . (/) definedby F <G if FCG.

A chamber of &/ is a 0 codimension facet. A face is a 1 codimension facet.
Two chambers C and D are adjacent if they have a common face (i.e., a
common 1 codimension facet).

Now, let us define the oriented system (I', ~) = (I'(&), ~) associated with
& .

The vertices of I" are the chambers of &/ . An arrow of I is a pair (C, D),
where C and D are adjacent chambers. Note that, in this oriented graph, if
(C, D) is an arrow, then (D, C) is also an arrow.

A positive path of an oriented graph A is a path f = a}'---aj" with ¢ =

. =g, = 1. This positive path is minimal if there is no positive path in A
having the same begin, the same end and a smaller length than f.

The relation ~ is the smallest identification of I' such that if f and g
are both positive minimal paths with the same begin and the same end, then

f~g.

Remark. A gallery of & is a sequence (Cp, Cy, ..., C,) of chambers of
& such that C;_; and C; are adjacent for i = 1, ..., n (here we assume
Ci.1 # C; for i =1,...,n). Any positive path f =a;---a, of I'(&) can
be viewed as the gallery G = (Cy, Cy, ..., Cy), where C; = end(a, ---a;) for
i =0,1,...,n. In particular, if f = a,---a, is a positive minimal path
of I'(&/), then G = (Cyp, C, ..., C,) is a minimal gallery (i.e., a gallery of
minimal length among the galleries of & connecting Cy with C,). Thus we
“identify” two minimal galleries which join the same chambers.

Example. Let & be the arrangement of two lines in R?. The oriented graph
shown in Figure 2a is I'(%7). The relation ~ is the smallest identification
of I'(&7) such that ab ~ a'd’, bc ~ b'a’, cd ~ c'b’', and da ~ d'c’. Let
(f’, ~) = (I'(&7), ~) be the universal cover of (I'(%/), ~). The oriented graph
shown in Figure 2b is .




SALVETTI'S COMPLEX AND ARRANGEMENTS OF HYPERPLANES 155

FIGURE 2a

FIGURE 2b

2C. Universal cover of M(&/). Let & be an (essential) arrangement of hy-
perplanes in a real vector space V. We set

M=M(M)=VC—(U Hc).

Hey

OurAgoal in this subsection is to explain the construction of the universal cover
g M- M of M().
Let C be a chamber of & . For a facet F € & (&), we denote by Cr the
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unique chamber of ¢ containing C. We write

MC)= |J (F+iCrc(V+iV)=
FeF (/)

Note that this union is disjoint.

Lemma 2.3. Theset {M(C)|C € V(I')} isa covering of M(/) by open subsets.

Proof. First, let us prove that M(C) C M (%) for every chamber C of &/ .

Fix a chamber C of &/ . Pick F € ¥ (&). Let H be a hyperplane of
& . If HD F,then CrNH = & (since Cr is a chamber of %)), thus
(F+iCr)NHe=2.1f HP F,then FNH =2, thus (F+iCr)NHc =2
Therefore (F + iCr) C M(&) forevery F € (&), thus M(C)C M(¥).

Now, let us prove that M (C) is an open subset of }¢ for every chamber C
of & .

Fix a chamber C of & . Pick z = (x +iy) € M(C). Let F be the facet of
& such that x € F. Then, by the definition of M(C), we have y € Cr. If
G is a facet of & with G > F, then | D ¥, thus Cr C Cg. We write
U(z) = (Ug>f G) +iCr . The set U(z) is clearly an open neighbourhood of z
and, by the above considerations, U(z) € M(C).

Now, let us prove that M (&) C Uceyry M(C).

Pick z = (x + iy) € M(&/). Let F be the facet of & such that x € F.
Then there is a chamber D of #ff| such that y € D. Choose a chamber C of
& such that Cr =D. Then z= (x+iy)e (F+iCr)CM(C). O

Now, consider the urliversal cover p: (f, ~)— (I(), ~) of (), ~).
For every vertex v of I', write

Set
[ M)
vev(T)
and let ¢': M’ — M be the natural projection.

It is easy to see that, if two chambers C and D are adjacent, then there is
only one hyperplane H € & which separates C and D; it is the support of
their common face. For a chamber C of & and a hyperplane H € & , we
denote by H} the open half-space of V' bordered by H and containing C.

Let # be the smallest equivalence relation on M’ such thatif a = (v, w) €

AT), ze M(v), 2’ € M(w), and
q'(z) =4'(z') e M(v) N M(w) N (Hy,, +iV),

where H 1is the unique hyperplanc of &/ Wthh separates p(v) and p(w),

then z#z'. The space M is the quotient M= M|Z%,and q: M — M is
the map induced by ¢’.

Theorem 2.4. The map q: M — M is the universal cover of M(s/).

Example. Let V' = R and let & = {0}. The chambers of & are C = {x €
Rjx > 0} and D = {x € R|x < 0}. The oriented graph shown in Figure 3a

is I'(&/) and the oriented graph shown in Figure 3b is I'. The subsets of C
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shown in Figure 3c are M(C) and M (D). We have M(C) = C — {iy|y < 0}
and M(D) =C - {iy|ly > 0}. Let (v, w) be an arrow of I" with p(v) = C
and p(w) = D. We have
M(v )ﬂM(w)ﬁ(HJr +iV)
=(C- {zy|y<0} N(C—{iyly >20}) n{(x +iy) e C|x < 0}
={(x+iy) e C|x < 0}.

The space shown in Figure 3d is (M (v)IM (w))/Z% . If we extend this construc-
tion to all T", then we clearly obtain the universal cover of M (%) =C — {0}.

Lemmas 2.5, 2.6 and 2.7 are in [Pal] preliminary results to the proof of
Theorem 2.4; nevertheless, we state them since they will be used later in the
paper.

Fix a vertex v € V(f) Write C = p(v). For every chamber D of &, we
choose a positive minimal path fp of I“(M ) beginning at C and endlng in
D .We denote by fD the lift of fp into F beginning at v . Note that the end of
fp does not depend on the choice of fp (see the definition of the identification
~ of T'). We set

= {end(/p)ID € V(I)}.

D o)
e E
FIGURE 3a

u v

FIGURE 3b

M(C) M(D)

FIGURE 3¢
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FIGURE 3d

The restriction of p to Z(v) is clearly a bijection Z(v) — V(I').
Let v and w be two vertices of I'. We write

7('0 , W) = Uﬁ(u)’

where the union is over al the vertices u € L(v)NZ(w) and, for u € X(v)nZ(w),
the set p(u) is the closure of p(u) in V. We denote by Z (v, w) the interior
of Z(v, w). Note that Z(v, w) is a union of facets of & .

Consider the natural projection

p:M= ] Mw)- M.
veV ()
For every v € V(f), we write M\(v) = p(M(v)). Since ¢q¢': M' — M sends
M(v) homeomorphically onto M(v) and ¢ = gop,themap g: M - M

sends M(v) homeomorphically onto M(v). Moreover, since g is a cover,
M(v) is an open subset of M .

Lemma 2.5. Let v and w be two vertices of T. The border of Z(v, w) is
included in the union of the hyperplanes H € & which separate p(v) and

p(w).
Lemma 2.6. Let v and w be two vertices of T. Then
qM@)NMw)) = M) NMw)N(Z(v, w) +iV).

Corollary. Let v, w be two vertices of T'. If (v) NE(w) = @, then M(v)N
Muw)=2.
Lemma 2.7. For every chamber C of & , we have

(M) = |J M@),

vEp~I(C)

and this union is disjoint.
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3. UNIVERSAL COVER OF SALVETTI'S COMPLEX

We assume throughout this section %/ to be an (essential) arrangement of
hyperplanes in a real vector space V' of dimension /.

This section is divided in two subsections. In the first one we define an (ab-
stract) simplicial complex Sal(&/) (Salvetti’s complex) and prove that Sal(.%/)
has the same homotopy type as M (& ). Our complex Sal(%/) is essentially
the same complex as this defined in [Sal] but our proof that Sal(%/) has the
same homotopy type as M(&%/) is completely new. In the second subsection
we define another simplicial complex Sal and prove that there is a natural map
p: Sal — Sal(% ) which is the universal cover of Sal(%/) (Theorem 3.7). In

particular, Sal has the same homotopy type as M where M is the universal
cover of M(&).

3A. Salvetti’s complex. We provide V' with an arbitrary scalar product. Let
S!=! = {x € V| |x| = 1} be the unit sphere. The arrangement % determines
a cellular decomposition of S/~! With a facet F # {0} of % corresponds the
(open) cell A(F) = FNS/~!, and every open cell of this decomposition of S/~!
has that form.

This cellular decomposition of S/~! determines a simplicial decomposition
of SI=! (called barycentric subdivision). For every facet F # {0} of & we fix
apoint x(F) € A(F). A chain {0} # Fy < F| < --- < F, of facets of .& deter-
mines a simplex ¢ = x(Fy)Vx(F,)V---Vx(F,) having x(Fp), x(F), ..., x(F)
as vertices, and every simplex of this simplicial decomposition of S$/~! has that
form. From now on, we always assume S'~! to be provided with the simplicial
decomposition described above.

Let B/ = {x € V| |x| < 1} be the unit disc. The simplicial decomposition of
S!~! determines a simplicial decomposition of B/ (called the cone over S/-!).
We add the vertex x({0}) = 0 to the set of vertices of S/~!. A chain Fy < F; <

.- < F, of facets of &/ determines a simplex ¢ = x(Fp) V x(F;) V---V x(F;)
having x(Fp), x(F1), ..., x(F,) as vertices (recall that {0} is a facet of &),
and every simplex of this simplicial decomposition of B/ has that form. Note
that, if Fy # {0}, then ¢ = x(Fo)Vx(F)V---Vx(F,) C S/~!. From now on, we
always assume B’ to be provided with the simplicial decomposition described
above.

Now we are going to define the (abstract) simplicial complex Sal(%/). For
every X € £ (&) and every chamber D of % , we fix a point y(D) € D. For
every facet F of &/ and every chamber C, we set

zZ(F, C)=x(F)+ iy(CF)
(recall that Cr is the unique chamber of r; containing C). Note that
z(F,C)e (F+iCrp)C M(C). We have z(F,, C) = z(F,, (3) if and only if
Fi=F, and (C)r, = (Q)R, -

Let V' (Sal) be an abstract set in bijection with the set of points of M (%)
having the form z(F, C) with F € (&) and C a chamber of &/ . We
denote by w(F, C) the element of V' (Sal) corresponding with z(F, C). We
have w(F;, C) = w(F,, C;) ifand only if F| = F, and (Cy)r, = (C3)F, - The
set V/(Sal) will be the set of vertices of Sal(/).

Let F; and F, be two facets of & and let C be a chamber. We set
w(Fl s C) < Cl)(Fz, C) if Fi<F.
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Lemma 3.1. The relation “ <” is a partial order in V(Sal).

Proof. Pick w;, w,, w3 € V(Sal) such that w; < w, and w; < w3, and let
us prove that w; < w;.

Since w; < w,, there exist two facets F; and F, of & and a chamber
C such that F} < F,, w; = w(F,,C), and w; = w(F;, C). Since w; <
w3, there exist two facets F, and F3 of & and a chamber D such that
F, < F, w, =w(F;,D), and w3 = w(F3, D). We have w; = w(F,, C) =
w(F,, D), thus F;, = FJ and Cp, = Dr,. The inequality F3 > F, = F
implies &g, C Hp,, thus Cp, = Df, (since Cr, = Df,), therefore w; =
w(F3, D) = w(F3, C). It follows that w; = w(F|, C) < w3 = w(F3, C) (since
F <F2=F2/<F3). ]

An r-simplex ® of Sal(&/) isa (r+ 1) chain wy < w; < -+ < @, in
V(Sal). We write ® = woV w; V---V w,. A subset of a chain is clearly still a
chain, so Sal(&/) is well defined.

Let ¢ = x(Fy) V-V x(F,) be a simplex of B/ and let C be a chamber of
& . Then ¢ and C determine a simplex ®(¢, C) of Sal(%/) defined by

(¢, C) = w(Fy, C)V---V(F,, C).

Lemma 3.2. Let ® be a simplex of Sal(&/). Then there exist a simplex ¢ of
B! and a chamber C of & such that ® = ®(¢, C).

Proof. Write ® = woVw,V---Vw,, with wg < w; < --- < w,. Fix a facet Fy of
& and a chamber C such that wg = w(Fy, C). Let us prove, by induction on
i=1,...,r, that there exists a facet F; of & such that w; = w(F;, C) and
F; > F;_, . It follows that ® = ®(¢, C), where ¢ = x(Fp)Vx(F|)V---Vx(F,).

Assume there exists a facet F;_; of &/ suchthat w;,_; = w(F;_;, C). Since
w;—1 < w;, there exist two facets F/_, and F; of &/ and a chamber D such
that F/ | < F;, w;-y = w(F_,, D) and w; = w(F;, D). We have w,;_;| =
w(Fi—;, C) = w(F/_,, D),thus F;_; = F/_| and Cf,_, = Df,_, . The inequality
F; > F/_ | = F,_, implies A C ¥F,_,|, thus Cg, = Df, (since Cfr,_, = Df,_,).

i il

It follows that w; = w(F;, D) =w(F;, C). O

Note that, if ®(¢;, C) = ®(¢,, C,), then ¢, = ¢,. The map =: Sal(&/) —
B! which sends ®(¢, C) onto ¢, for every simplex ¢ of B/ and every chamber
C of &, is clearly a well-defined simplicial map, and sends every simplex of
Sal(%/) onto a simplex of B/ having the same dimension.

For a chamber C of &, we denote by B/(C) the subcomplex of Sal(.%)
generated by the vertices of Sal(%/) having the form w(F, C) with F €
F (). We have

B'(C) = | J (4. ©).
]

where the union is over all the simplexes ¢ of B'. The restriction n¢: B/(C) —
B! of n to B/(C) is clearly an isomorphism of simplicial complexes. Moreover,

Sal(«) = | JB/(C),
C

where the union is over all chambers C of & .




SALVETTI'S COMPLEX AND ARRANGEMENTS OF HYPERPLANES 161

Theorem 3.3. Sal(%/) has the same homotopy type as M ().

Proof. With every vertex w of Sal(%/) we will associate an open convex subset
U(w) of M(&/). We will prove that Z = {U(w)|w € V'(Sal)} is a covering of
M (&) having Sal(%/) as nerve. Since U(w) will be convex for every vertex @
of Sal(%/), any nonempty intersection of elements of % will be convex (thus
contractible). This implies, by [We], that Sal(%/) has the same homotopy type
as M(«).

For a simplex ¢ of S/~!, we write

K(¢) = {Ax|x € ¢ and 4 > 0}.

Note that, if ¢ = x(Fy) V-V x(F,) with {0} # Fp < F} < --- < F,, then
K(¢) C F,. Furthermore, the family {K(¢)|¢ a simplex of S'~!} is a partition
of V —{0}.

Let F be a facet of & and let C be a chamber. If F = {0}, then we set

Uw(F,C)=(V+iC).
If F # {0}, then we set

Ulo(F, C)) = (UK(¢)) +iCr,
¢

where the union is over all the simplexes ¢ of S/~! having x(F) as vertex.
We obviously have U(w(F;, Cy)) = U(w(F;, C3)) if w(F, C)) =w(F,, (3),
thus U(w) is well defined for every vertex w of Sal(%/). Moreover, U(w) is
clearly an open convex subset of V.

Now, we are going to prove successively the following four assertions.

(1) U(w) C M(&) for every vertex @ of Sal(&/).

(2) M(«) € U, U(w), where the union is over all the vertices w of Sal(%/).

(3) Let wg, wy, ..., w, be (r+1) distinct vertices of Sal(&/). If U(wp)N
Uw)n---NnU(w,) # @, then wy, wy, ..., w, are the vertices of a simplex
® of Sal(«).

4) If wy, w,, ..., w, are the vertices of a simplex ® of Sal(%/), then
Ulwo)NU(w)N---NnU(w,) # 2.

Assertions (1)-(4) obviously prove that Z = {U(w)|w € V(Sal)} is a cover-
ing of M (&) having Sal(%/) as nerve.

(1) Let F be a facet of & and let C be a chamber. If F = {0}, then
U(w(F, C)) = (V +iC) is obviously included in M (). Now, assume F #
{0}. Pick z = (x 4+ iy) € U(w(F, C)). There is a simplex ¢ of S/~! having
x(F) asvertex and such that x € K(¢). We write ¢ = x(Fo)Vx(Fy)V---Vx(F,),
with {0} # Fy < Fy <--- < F,. We have

K@p)CF=>xekF,

and
FSF,#CFQCI-“,:?}/GCF,.

Therefore z = (x +iy) € (F, +iCr) C M(¥).

(2) Pick z=(x+iy)e M(&). If x =0, then x € H forevery H € &,
thus y ¢ H for every H € & , thus there exists a chamber C of & such that
y € C. Therefore z = (x +iy) € (V +iC) = U(w({0}, C)).
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Now, assume x # 0. There exists a simplex ¢ of S'~! such that x € K(¢).
We write ¢ = x(Fo) Vx(Fy)V---Vx(F,) with {0} # Fp < F; <--- < F,. Since
x € K(¢) C F, ,there is no hyperplane H € & containing F, which contains
y, thus there is a chamber D of %, such that y € D. Pick a chamber C of
& such that Cp, = D. Then

z=(x+1iy) € (K(¢) + iCr) € U(a(F;, C)).

(3) Let wp, w1, ..., w, be (r+ 1) distinct vertices of Sal(/) such that
U(wo)NU(wy)N---NU(w,) # @. Write w; = o(F;, C;), where F; € ¥ (&) and
C; is a chamber of & , for i=0,1,...,r. Pick z=(x+iy) € Ni_o U(w).

Case a. Assume Fy = {0}.

Suppose there exists an i € {1, ..., r} such that F; = {0}. Then

z=(x+iy) e Ulwo)NU(w;) =V +iCo)N(V +iCy)
=>yeCnC;
=>CNC #92
= Co=GC;

= Wy = 0)({0} > CO) =w;= CL)({O} > Cl)

This contradicts the fact that wg # w;. Therefore F; # {0} for i=1,...,r.
There is a simplex ¢; of S/~! having x(F;) as vertex and such that x €
K(¢;), for i =1,...,r. Since {K(4)|¢ a simplex of S'~!} is a partition of

V — {0}, we have ¢ = --- = ¢,. Therefore x(Fy), ..., x(F;) are vertices of
a same simplex ¢ of S/~!, thus {F,, ..., F,} is a chain. Assume {0} = Fy <
Fi<---<F,.Fori=1,...,r wehave

y€Cy and ye(C)r=ye€(G)r and ye€(C)F
= (Co)r,N(C)F, # 2
= (Co)r, = (C)F,
= w; = 0(F;, Ci) = w(F;, ).

Moreover, we have F;_; # F; for i=1, ..., r; otherwise w;_; = w(Fj—;, Cp)
= w; = w(F;, Cy). It follows that wg, w;, ..., w, are the vertices of the
simplex

D =w(F, Co)Vw(F, C)V---Vu(F, C)
of Sal(«).

Case b. Assume F; # {0} for i=0,1,...,r.

There is a simplex ¢; of S/~! having x(F;) as vertex and such that x €
K(¢;), for i=0,1,...,r. Since {K(¢)|¢ a simplex of S'~!} is a partition
of V — {0}, we have ¢9 = ¢, = --- = ¢,. Therefore {Fy, F;,..., F} isa
chain. Assume {0} #Fy<F; <---<F,.Fori=1,...,r wehave

y€(CQr, Fi>FK and ye€(Ci)r=ye€(Co)r, and ye€ (C)F,
= (Co)r, N(C)F, # 2
= (Co)r, = (C)F,
= w; = o(F;, C;) = o(F;, Gy).

Moreover, wehave F;_ # F; for i =1, ..., r; otherwise w;_, = w(Fj—;, Cp)
= w; = w(F;, Cy). It follows that wg, w;, ..., @, are the vertices of the
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simplex
D =w(F, Co)Vo(F,,Cy) V- Vau(F, C)
of Sal(&/).

(4) Let ® = ®(p, C) be a simplex of Sal(&/). We write ¢ = x(Fp) V
X(F)V---Vx(F,) with Fy < F} < --- < F,. The vertices of ® are w(Fy, C),
w(F,C), ..., o(F, C). Let us prove that ;_, U(w(F;, C)) =2.

Case a. Assume Fy = {0}.

Consider the simplex ¢’ = x(F|)V---V x(F,) of S/I=!. Pick x € K(¢') and
y € C, and write z = x+iy. We obviously have z € (V+iC) = U(w(F, C)).
The simplex ¢’ has x(F;) asvertex, x € K(¢') and y € C C Cf,, thus z = (x+
iy) € U(w(F;, C)) for i=1,...,r. It follows that z € N _, U(w(F;, C)).

Case b. Assume Fy # {0}.

Then ¢ is a simplex of S/~!. Pick x € K(¢) and y € C, and write
z =x +iy. The simplex ¢ has x(F;) as vertex, x € K(¢) and y € C C Cp,,
thus z = (x + iy) € U(w(F;, C)) for i =0,1,...,r. It follows that z €
Nico U(w(F;, C)). O
3B. Universal cover of Salvetli’s complex. Now, we are going to define the
(abstract) simplicial complex Sal. R

Throughout this subsection, we denote by p: (I', ~) - (I'(&/), ~) the uni-
versal cover of (I'(&/), ~), and by g: Mo M (/) the universal cover of

M (&), as defined in §2.
Let C be a chamber of .7 . For every facet F € ¥ (&) we have

z(F, C) = (x(F) +iy(CF)) € (F +iCr) € M(C).

By Lemma 2.7, _
g'MCy= {J M),
vep=1(C)

and this union is disjoint. Moreover, recall that g sends M (v) homeomorphi-
cally onto M(v) = M(C) for every vertex v € p~!(C). This implies that, for
every facet F € & (&) and every vertex v € V(f) , there exists a unique point
e(F,v) € M\(v) such that g(e(F, v)) = z(F, p(v)) (i.e., e(F,v) is the lift
of z(F, C) into M(v), where C = p(v)).

Let V(§al) be an abstract set in bijection with the set of points of M having
the form e(F,v) with F € (&) and v € V(I'). We denote by &(F, v)
the element of V(§al) corresponding to e(F, v). The set V(§al) will be the
set of vertices of Sal.

Lemma 34. Let F,, F, be two facets of &/ , and let v, v, be two vertices of
T. Then

O(Fi, v1) = O(F, v7)
ifand only if Fy = F, C Z(vy, v2) and p(v1)r, = p(v2)F,.
Proof. Assume @(F;,v,) = @(F,, v;) (thus e(Fy,v,) = e(Fy, v3)). Since
e(Fi, v1) € M(v;) and e(F», v2) € M(v,), by Lemma 2.6,

qg(e(Fy, v)) = z(Fy, p(v1)) = q(e(F2, v2))
= z(Fy, p(v2)) € M(v1) N M(v2) N(Z(vy, v2) + iV).
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The equality z(Fi, p(v1)) = z(F;, p(v2)) implies F; = F, and p(vi)r, =
p(v2)F, . On the other hand, x(F;) € Z(v;, v3), the set Z(v;, v;) is a union
of facets of & and x(F)) € F,, thus F, C Z(v;, v3).

Now, assume F; = F, C Z(v;, v2) and p(v1)f, = p(v2)F, . This implies

z(Fy, p(v1)) = z(F2, p(v2)) € (Fy + ip(v1)R) N (F2 + ip(v2)F,)
N (Z(vy, v2) + V) € M(y) 0 M(v2) N (Z (01, 03) + iV).

It follows, by Lemma 2.6, that
2(Fy, p(ny)) = 2(Fy, p(v2)) € g(M(vy) N M(vy)).

The map ¢ sends M (v1) homeomorphlcally onto M(v;), the pomt e(Fl , Uy)
is the lift of z(Fl, p(vy)) mto M(vl) and z(Fy, p(vy)) eq(M(v,)nM(vz))
thus e(Fy, vy) € M(vl) nM(vz) It follows that e(F), v;) is the unique lift of

2(Fy, p(v2)) = z(F1, p(v1)) into M(vy), thus e(Fy, v;) = e(F2, v,), therefore
W(F,v1)=0F,v). O

Let F; and F, be two facets of &/ and let v be a vertex of I'. We set
O(F,v)<@(F,v) if F<F.

Lemma 3.5. The relation “ <™ is a partial order in V (Sal).

Proof. Pick @y, @y, @3 € V(§a1) such that @, < @, and @; < @3, and let
us prove that @; < @3 . R
Since @; < @, , there exist two facets F; and F, of &/ andavertex v of I"
such that F; < F,, @y = &(F,,v),and @; = &(F,, v) .ASince @, < @3, there
exist two facets F; and F3 of & and a vertex w of I' such that F, < F3,
W, = O(Fy, w), and @3 = @(F3, w). We have @) = @(F,, v) = O(F;, w),
thus, by Lemma 3.4, F, = F; C Z(v, w) and p(v)r, = p(w)r,. Note that
Z(v, w) is a union of facets of &/ and is an open subset of V', thus, if F
and G are two facets of & such that G > F and F C Z(v, w), then G C
Z(v,w). Since F3 > F;, =F, and F, C Z(v, w), we have F3 C Z(v, w).
Furthermore, ¥r,| 2 #f| and p(v)r, = p(W)F, thus p(V)p = p(w)r . It
follows, by Lemma 3.4, that @3 = @(F;3, w) = @&(F3, v). Therefore @, =
O(F,v)<@3=0(F3,v) (since Fi<F,=F/<F;). O

An r-simplex ® of Sal is a (r+1) chain @y < @) < --- < @, in V(§al).
We write ® = doV @ V---V&,. A subset of a chain is clearly still a chain, so
Sal is well defined.

Let ¢ = x(F)Vx(F;)V---Vx(F,) be asimplex of B/ and let v be a vertex
of T'. Then ¢ and v determine a simplex ®(¢, v) of Sal defined by

D(p,v)=0(Fy,v)VO(F,v)V---Va(E, v).

Lemma 3.6. Let ® be a simplex of Sal. Then there exist a simplex ¢ of B
and a vertex v of T such that ® = ®(, v).

Proof. Write ® = @oV@,V---V@®, with @¢ < @, < --- < @, . Fix a facet Fy of
& and a vertex v of T such that @y = &(Fy, v). Let us prove, by induction

oni=1,...,r,that thereexists a facet F; of &/ suchthat @; = @(F;, v) and
F; > F;_,. It follows that ® = ®(¢, v), where ¢ = x(Fo)VX(F1)V---Vx(F).
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Assume there exists a facet F;_; of &/ such that @;_, = &(F;_,, v). Since
@;—1 < @;, there exist two facets F/_; and F; of &/ and a vertex w of T such
that F/ | < F;, @;—y = @(F/_,, w) and @, = &(F;, w). We have @, =
@(Fi_y,v) = &(F/_,, w), thus, by Lemma 34, F,_y = F/_, C Z(v, w) and
p(V)F_, = p(w)f,_, . Since F; > F/_, = F;_y and F,_; C Z(v, w), we have
F; CZ(v w). Smce F; > Fi_, and p(v)f_, = p(w)fr_,, we have p(v)f, =

p(w)g, . It follows, by Lemma 3.4, that @; = @(F;, w) =@(F;,v). O

Note that, if ®(¢;, v;) = ®(¢7, v2), then ¢; = ¢,. The map #: Sal — B/
Wthh sends ®(¢, v) onto ¢, for every simplex ¢ of B’ and every vertex v
of l" is clearly a well-defined simplicial map and sends every simplex of Sal
onto a simplex of B’ havmg the same dimension.

For a vertex v of T, we denote by Bi(v) the subcomplex of Sal generated
by the vertices of Sal having the form @(F, v) with F € ¥ (& ). We have

B'(v) = (¢, v),
¢

where the union is over all the simplexes ¢ of B/. The restriction #,: B/(v) —
B! of # to B/(v) is clearly an isomorphism of simplicial complexes. Moreover,

Sal= | J B'(v).

vev (M)

Consider the map p: Sal — Sal(&/) which sendsfb(d:, v) onto ®(¢, p(v))
for every simplex ¢ of B/ and every vertex v of I'. It is clearly a simplicial

map and sends every simplex of Sal onto a simplex of Sal(%/) having the same
dimension.

Theorem 3.7. The map p: Sal — Sal(%/) is the universal cover of Sal(%/). In
particular, Sal has the same homotopy type as M.

Remark. Using the same ideas as in the proof of Theorem 3.3, one can show
directly that Sal has the same homotopy type as M. Namely, for every facet
F of & and every chamber C, we have U(w(F, C)) € M(C). Thus, if
F e &) and v € V(f') , then there exists a unique open “convex” set
U(@(F , v)) € M(v) such that g(U(@(F,v))) = U(w(F, p(v))). One can
show that U(a(F, vl)) = U(w(F;, v2)) 1f O(Fy, v) = o(F, v,), the set

= {U(®)|d € V(Sal } is a covering of M havmg Sal as nerve, and every
nonempty intersection of elements of Z is “convex”. Nevertheless, we present
here a different proof which may be more complicated but which carries more
information; for example, we will give explicitly a homotopy equivalence be-
tween Sal and M.

The following Lemma 3.8 is a preliminary result to the proof of Theorem
3.7.

For (r + 1) distinct points pg, p;, ..., pr of a real vector space, we set

A(Po, P1y-..5Dr) —{Zt,p,[0<t,5 1 and Zt,— 1}

=0 i=0
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Consider the map 1: Sal(&/) — V¢ which sends a simplex
O =w(F,C)Vu(F,,C)V---Vw(F,, C)

of Sal(%/) onto A(z(Fy, C), z(F;, C), ..., z(F,, C)). This maps sends
o(F, C) onto z(F, C) for every facet F of & and every chamber C. It is
obviously well defined.

Lemma 3.8. (i) Let ¢ be a simplex of B!, and let C be a chamber of &/ . Write
¢ =x(F)Vx(F)V---Vx(F) with Fp < Fy <--- < F,. Then 1(®(¢, C)) C
(F, +iCg). In particular, 1(Sal(¥/)) C M(¥).

(i) The map 1 is injective.

(iii) The map 1: Sal(&') — M (%) is a homotopy equivalence.

Proof. (i) Let ¢ be a simplex of B/, and let C be a chamber of & . Write
¢=x(F)Vx(F)V---Vx(F) with Fp < Fy <---< F,. Pick z=(x+1iy) =
YicoAiz(Fi, C) € 1(®(¢, C)). We have A(x(Fp), x(F),...,x(F)) € F,
thus x = Y /_ 4;x(F;) € F,. On the other hand, y(Cr) € Cr, C Cf, for
i=0,1,...,r,thus y =3 ,A4¥(Cr) € Cr, (since Cf, is convex).

(ii) Let ¢ and w be two simplexes of B/, andlet C and D be two chambers
of & . Write ¢ = x(Fo)Vx(F)V---Vx(F,) with < Fi <---< F,,and y =
x(Go)Vx(Gy)V---Vx(Gs) with Gy < G < --- < Gs. Let us prove, by induction
on r, that, if 1(®(¢, C))Ni(P(y, D)) # @, then ®(¢, C) =DP(y, D).

Pick z = (x +iy) € 1(P(¢, C)) N1(D(y, D)). Write z=3_ot;z(F;, C) =
> i-0tjz(G;, D), where 0 <¢;,t; <1 and }j_ot; = Yj_ot; = 1. Recall that
{x(F)|F € & (&)} is the set of vertices of a triangulation of B/. Since x =
Yicotix(Fi) = Yo tjx(Gj), we have r =5, F; = G; (for i =0,1,...,7)
and ¢, =1¢; (for i=0,...,r). In particular, ¢ = y. Moreover,

2 #1(D(p, C))N1(P($, D)) C (Fr +iCfr)N (Fr +iDF,),
thus Cg, N Dg, # @, therefore Cr, = D, . It follows that

r—1 -1
7z = (Z t,') (z—-tz(F, C))
i=0

r—1 -1
- (2 z,-) (z - ,2(F,, D)) € (@', C) N1(®(#', D)),
—0

where ¢' = x(Fy) Vx(F;)V---V x(F,_). By the inductive hypothesis, we have
d(¢', C) =d(¢p, D), therefore ®(¢, C) = ®(¢p, D) =P(y, D).

(iii) Let (fw)wer(say be a partition of the unity subordinated to the cover-
ing {U(w)|w € V(Sal)} of M(&) (see the proof of Theorem 3.3). Namely,
(fo)wev(say: M(&) — [0, 1] is a collection of maps with

(1) fu(z) >0 if z€e U(w) and f,(z) =0 if z ¢ U(w), forall z € M()
and all w € V(Sal),

(2) Yowevsayfo(z) =1 forall ze M(¥).

Let k: M(&/) — Sal(/) be the map defined by k(z) = 3, ey (sa) So(2)®,
for all z € M(&). Since the covering {U(w)|w € V(Sal)} has Sal(¥/) as
nerve, k is well defined. Moreover, by [We, p. 143], ¥ is a homotopy equiva-
lence.
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We are going to prove that id ) and ik are homotopic. This implies that
1 is a homotopy inverse of x, and thus is a homotopy equivalence.
Consider the homotopy (60;)o</<1: M(¥') — V¢ defined by

0:(z) =tz + (1 - t)(ix)(2).

Let us prove that 6,(z) € M(%/) forall z € M(&/) and all ¢ € [0, 1]. This
shows that (6;)o</<1: M (&) — M(&/) is a homotopy connecting idys ) With
IK .
Pick z=(x+iy)e M(¥).

Case a. Assume x =0.

Let C be the chamber of & such that y € C. The only vertex @ of Sal
such that z € U(w) is w = w({0}, C). We have z = (x +iy) € ({0} + iC)
and ix(z) = z({0}, C) € ({0} + iC), thus 6,(z) € ({0} +iC) C M(&) (since
({0} + iC) is convex) for all ¢ € [0, 1].

Caseb. Assume x #0.

There is a unique simplex ¢ of S/~! such that x € K(¢) .Write ¢ = x(F})V
-V x(F) with {0} # Fi <--- < F,. Set Fy = {0}. Since K(¢) C F,, there is
a chamber D, of %g| with y € D,. On the other hand, if there is a chamber
D;_, of ¥f,_,| with y € D;_;, then there is a chamber D; of % with y € D;

and D;_, C D;. It follows that there existsa j € {0, 1, ..., r} such that
(1) there is a chamber D; of f, containing y forall i=j,...,r,
(2) there is no chamber of % containing y forany i=0,...,j—-1,

(3) DjCDjy C---CD,.
Choose a chamber C of & such that Cr, = D;. We obviously have Cr, =
D; for i = j,...,r. The set of vertices w of Sal such that z € U(w) is
{w(Fj, C), w(Fjt1, C), ..., o(F, C)}. Write ® = w(F;, C)V---Va(F, C).
We have z = (x +iy) € (F, + iCfg) and 1k(z) € 1(®) C (F, + iCg,), thus
0,(z) € (F;+iCp) C M(%) (since (F,+iCf,) is convex) forall t€[0,1]. O

Proof of Theorem 3.7. Recall that, for every chamber C of &,

g'MC)= | M),
vep~1(C)

this union is disjoint (Lemma 2.7), and g sends M (v) homeomorphically onto
M(C) = M(v) for every vertex v € p~!(C). Furthermore, for every simplex ¢
of B/ and every chamber C of ./ , we have 1(®(¢, C)) C M(C) (see Lemma
4.8(1)).

S(il)l)ce 1: Sal(&/') —» M(&) is injective, 1(Sal(2/)) can be viewed as a geomet-
ric realisation of Sal(%/), so ¢~!(:(Sal(%/))) can also be seen as a geometric
realization of a simplicial complex (since g is a cover). Let us denote by W
the set of vertices of ¢~'(1(Sal(%/))). The application i: V(§a1) — W which
sends @(F,v) onto e(F,v), for every F € (&) and every v € V(§al),
is, by the definition of ¥(Sal), a bijection. It is easy to see that i can be
extended to an isomorphism i: Sal — g~ '(1(Sal(#/))) of simplicial complexes
which sends ®(¢, v) onto the lift of 1(P(¢, C)) into M\(v) , where C = p(v),
for all simplexes ¢ of B/ and all vertices v of T.
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The following diagram commutes:

—

Sal —' M

L
Sal(%/) —— M(«)

the map ¢ is a cover, 1 and i are injective, and ¢~!(1(Sal(%/))) = i(§al) , thus
p is a cover. Furthermore, ¢: M — M(&/) is the universal cover of M (%)

and ! is a homotopy equivalence, thus p: Sal — Sal(&/) is the universal cover
of Sal(&/) and i is a homotopy equivalence. 0O

4. TOPOLOGY OF SIMPLICIAL ARRANGEMENTS OF HYPERPLANES

Recall that an essential arrangement &/ of hyperplanes is called simplicial
if every chamber of &/ is an open simplicial cone. Our goal in this section is
to prove that if &/ is a simplicial arrangement of hyperplanes, then M(/) is
a K(n, 1) space.

This section is divided in two subsections. In the first one we define a property
on real arrangements of hyperplanes: the property D, and we prove that if &7 is
a simplicial arrangement of hyperplanes, then &/ has the property D (Theorem
4.1). We do not know if, for an essential arrangement &/ of hyperplanes, to
have the property D is equivalent to being simplicial. We will give a simple
example of a supersolvable arrangement which does not have the property D. It
is well known that, if &/ is a supersolvable arrangement of hyperplanes, then
M) isa K(m, 1) space (see [Te2]).

In the second subsection we prove that if &/ has the property D, then Sal
is contractible (Theorem 4.6). Since Sal has the same homotopy type as the
universal cover M of M (&) (Theorem 3.7), the space M is contractible if
& is simplicial; thus, in this case, M (%) isa K(n, 1) space.

4A. Property D. Throughout this subsection, % is an arrangement of hy-
perplanes in a real vector space V', and (I'(&/), ~) is the oriented system
associated with &7 .

Let A and B be two chambers of &/ . We say that a chamber C of &
is between A and B if there exists a positive minimal path f = a;---a, of
I'(&7) beginning at 4, ending in B and such that C =end(q, ---a;) for some
i=0,1,...,n. In other words, C is between A and B if there exists a
minimal gallery (4 = Gy, Cy, ..., C, = B) of & such that C = C; for some
i=0,1,..., n. We denote by Bet(4, B) the set of chambers of &/ between
A and B.

From now on, for every pair (4, B) of chambers of & , we fix a positive
minimal path m(4, B) of I'(&/) beginning at 4 and ending in B . Note that,
by the definition of the identification ~ of I'(&/), the equivalence class of
m(A, B) with respect to ~ does not depend on the choice of m(4, B). We
obviously have C € Bet(4, B) if and only if m(4, C)m(C, B) ~m(A, B).

Let f and g be two positive paths of I'(&/) with end(f) = end(g). We
say that f ends with g if there exists a positive path 4 of I'(%/) such that

f~hg.
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FIGURE 4

Let f be a positive path of I'(&/). Write B = end(f). We say that f
has the property D if there exists a chamber 4 of &/ such that f ends with
m(C, B) if and only if C € Bet(4, B), for every chamber C of & .

We say that &/ has the property D if every positive path of I'(&/) has the
property D.

Theorem 4.1. If &7 is a simplicial arrangement of hyperplanes, then &/ has the
property D.

Example. Consider the arrangement .% = {H,, H,, H3, Hy, Hs} in R? shown
in Figure 4. Let us show that &/ does not have the property D.

Let f be the positive path of I'(%/) corresponding with the gallery (4, 4,,
A, A3, As, C) of & . One can verify that f ~ g and f ~ h, where g is the
positive path of I'(&/) corresponding with the gallery (A4, 4,, A, A3, A2, C)
and 4 is the positive path of I'(%7) corresponding with the gallery (4, B, B,
B3, B, C) of & . Thus f ends with m(A44, C), with m(4,, C) and with
m(B,, C).

Suppose that f has the property D. Then there exists a chamber D of &
such that f ends with m(B, C) if and only if B € Bet(D, C). We have
Aq4, Ay, By € Bet(D, C), thus the hyperplanes H,, Hy, H, separate D and C
(see Lemma 4.3), therefore D = —C . It is easy to see that f cannot end with
M(-C, C) (it does not “cross” Hs), so we have a contradiction.

The following Lemmas 4.2-4.5 are preliminary results to the proof of The-
orem 4.1. Lemmas 4.2 and 4.3 are well-known results. A proof of Lemma 4.2
and Lemma 4.3(i) can be found in [Br, p. 14]. (ii) and (iii) of Lemma 4.3 are
immediate corollaries of Lemma 4.3(i).

Lemma 4.2. Let G = (Cy, Cy, ..., C,) be a gallery of &/ . Let H; be the
hyperplane of &/ which separates C;_y and C; for i =1, ..., n. The gallery
G is minimal if and only if H; # H; for i # j.
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Corollary. Let f = a,---a, be a positive path of T'(&/). Write C; = end(a;- - -a;)

for i=0,1,...,n. Let H; bethe hyperplane of &/ which separates C;_, and
Ci for i=1,...,n. The path f is positive minimal if and only if H; # H;
for i#£7j.
Lemma 4.3. Let G = (Cy, Cy, ..., C,) be a minimal gallery. Let H; be the
hyperplane of &/ which separates C;_y and C; for i=1,...,n.

(i) The hyperplanes of &/ which separate Cy and C, areexactly H,, ... ,H,.

(ii) Let F be a facet of & . If F iscommonto Cy and C,, then H; contains
F forevery i =1,

(iii) Let F be a facet of & . If (Co)r = (Cp)F, then H; does not contain F
forany i=1,...,n.

Corollary 1. Let f =a, ---a, be a positive minimal path. Write
Ci=end(a;---a;) fori=0,1,

Let H; be the hyperplane of &/ which separates Ci;_, and C; for i=1,...,n
(i) The hyperplanes of &/ which separate Cy and C, areexactly H,,... ,H,.
(ii) Let F be a facet of & . If F iscommonto Cy and C,, then H; contains

F forevery i=1,

(iii) Let F bea facet of & . If (Co)r = (Cy)F, then H; does not contain F
forany i=1,

Corollary 2. Let A and B be two chambers of &/ . Then m(A, Bym(B, —A)
is a positive minimal path of T'(¥/).

Let % be the smallest equivalence relation on the set of positive paths of
I'(&7) such that:

(1) if fH# g, then begin(f) = begin(g) and end(f) = end(g).

(2) if fH#g,then (hfhy)F# (h gh,;) for any two positive paths 4, and A,
such that end(h;) = begin(f) = begin(g) and begin(h;) = end(f) =
end(g).

(3) if f and g are two positive minimal paths of I'(%/) with the same
begin and the same end, then f#g.

Note that, if f# g, then f ~ g and length(f) = length(g).

Let f and g be two positive paths of I'(%/) such that end(f) = end(g).
We say that f #-ends with g if there exists a positive path 4 of I'(%) such
that fZ#(hg).

For any chamber 4 of & , we write hy = m(A4, —A)m(—A, A) and (hy)" =
hqhyg---hy (r times).

Lemma 4.4. Let f and g be two positive paths of T'(&) such that f ~ g.
Write A = begin(f) = begin(g). Then there exists an integer r > 0 such that
(ha) fZ (ha) &
Proof. We denote by (—a) = (—A4, —B) the opposite arrow of an arrow a =
(A, B) of I'(&).

For every arrow a = (A4, B) of I'(&/) set p(a) =a and

p(a')=m(B, -B)ym(-B, 4),
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and for every path f = af'---a;* set p(f) = p(a]')---p(a;"). It is clear that
p(f) is a positive path of I'(%/), that p(fg) = p(f)p(g), and that p(f) = f
for every positive path f.

Assertion. Let f and g be two paths of I'(&) such that f ~ g. Write
A = begin(f) = begin(g). Then there exist two integers r, s > 0 such that
(ha)'p()Z (ha)'pP(8)-

This assertion proves Lemma 4.4; indeed, if f and g are two positive
paths of I'(&/) with f ~ g, then there exist two integers r, s > 0 such that
((ha)" /)#((h4)°8) . Since length((h4)"f) = length((h4)°g) and length(f) =
length(g) (because weight(f) = weight(g)), we have r =s.

Proof of the Assertion. Let a = (A, B) be an arrow of I'(%/). We have, by
Corollary 2 of Lemma 4.3,

m(A, —A)ym(—A, A)a# m(A, —A)(-a)ym(—B, A)a
E m(A, —A)(-a)m(-B, B)
K am(B, —A)(—a)ym(-B, B)
F# am(B, —B)m(-B, B).

Thus, if f is a positive path of I'(&/) beginning at 4 and ending in B, then
((ha)' NF(f(hp)") for every integer ¢t > 0.

Let fi and f, be two paths of I'(%/) beginning at the same chamber A
and ending in the same chamber B. Let g and 4 be two paths of I'(&/), g
ending in A and 4 beginning at B. Write C = begin(g). Assume there exist
two integers r, s > 0 such that ((hy) p(f1))Z((h4)’p(f2)). Then

(hc) ' p(gf1h) = (hc)'p(8)P(f1)p(h)
Z p(g)(ha) p(f1)p(h)
Z p(8)(ha)’p(f2)p(h)
Z (hc)*p(gf2h).

It follows that, in order to prove the Assertion, it suffices to consider the fol-
lowing cases:

(a) f and g are positive minimal paths with the same begin and the same
end.

(b) f=f"'! and g = g’~!, where f' and g’ are positive minimal paths
with the same begin and the same end.

(c) f=aa"! and g = A, where a = (A4, B) is an arrow of I['(%/).

(d) f=a"'a and g = B, where a = (4, B) is an arrow of I'(&/).

(a) Is trivial.

(b) Let f = a;---a, be a positive minimal path of I'(%/). Write 4 =
begin(f) and B = end(f). Let us prove, by induction on the length n of f,
that

p(f~)Z#(hg)""'m(B, ~B)m(~B, A).

This clearly implies the Assertion in the case b.
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Write 4; =end(a,---a;) for i=1,2,...,n.

m(—A, —B)m(—B, A) is positive minimal

= (—a1)(—a3)--- (—a,)m(—B, A) is positive minimal

= (—ay)---(—ap)m(—B, A) is positive minimal

= m(-A,, —-B)m(—B, A) is positive minimal

= m(—-A,, -B)m(-B, A)#m(—A;, A).

It follows that
p(f™") =pla;"---a;p(a; ")
Z (hg)""*m(B, —B)m(—B, A\)m(A,, —A;)m(—A;, A)
Z (hg)"*m(B, —B)m(—B, A;)m(A,, Bym(B, —A,)
m(—A;, —B)ym(—B, A)

& (hg)">m(B, —B)m(—B, Bym(B, —-B)m(-B, A)
# (hg)"'m(B, —-B)m(-B, A).

(c)
p(f)=am(B, —-B)m(-B, A)
Fam(B, —A)(—a)m(—B, A)
Em(A, —A)ym(—A, A) = hy = hyp(8).

(d)
p(f)=m(B, -B)m(-B, A)a
Zm(B,—-B)m(—B, B)=hgp(g). O

Lemma 4.5. Assume & to be simplicial.

(i) Let f, f» and g be three positive paths of I'(&) such that end(g) =
begin(f1) = begin(f2). If (8/1)#(812), the L f>.

(ii) Let fi, f and h be three positive paths of T'() with begin(h) =
end(f}) = end(f2). If (1h)Z(fah), then LZ f>.

(iii) Let f be a positive path of T'(/). Write B = end(f). There exists
a chamber A of & such that f F#-ends with m(C, B) if and only if C €
Bet(A4, B).
Proof. See [De, Proposition 1.19]. O

Proof of Theorem 4.1. Assume & to be simplicial. Let f and g be two
positive paths of I'(&/). If f# g, then obviously f ~ g. On the other hand,
if f ~ g, then there exists an integer r > 0 such that ((h,)" ) FZ((h4)"8)
(Lemma 4.4), where 4 = begin(f) = begin(g), therefore, by Lemma 4.5(i),
fRg. Thus f ~ g if and only if fH# g. In particular, a positive path f of
I'(2/) ends with a positive path g if and only if f #-ends with g. Then
Theorem 4.1 easily follows from Lemma 4.5(iii). O

4.B. Property D and the topology of Sal. Thrgughout this subsection, &
is an essential arrangement of hyperplanes, p: (I', ~) —» (I'(&/), ~) is the
universal cover of the oriented system (I'(&/), ~) associated with &, and

p: Sal — Sal(.¢/) is the universal cover of Salvetti’s complex Sal(%/) as defined
in §3.
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Theorem 4.6. If &/ has the property D, then Sal is contractible.

Corollary. If & is a simplicial arrangement of hyperplanes, then M(%/) is a
K(m, 1) space.

The following Lemmas 4.7-4.12 are preliminary results to the proof of The-
orem 4.6.

Lemma 4.7. Let X be a simplicial complex. We denote by V(X) the set of
vertices of X. Let W C V(X) be a subset. Let Y be the subcomplex of X
generated by W (i.e., Y is the union of the simplexes of X having their vertices
in W), and let Z be the subcomplex of X generated by V(X)—- W .

Then Y is a strong deformation retract of (X — Z).

Proof. We have to define a continuous family (6;)o</<i: (X —Z) - (X — Z)
of maps such that

(1) 6p(x)=x,forall xe (X -2),

(2) i(x)e Y, foral xe (X -2),

(3) 6/(x)=x,forall xeY andall ¢t €0, 1].

Let @ be a simplex of X includedin (X—-Z2). Let wp, w;, ..., @, be the
vertices of ®. Via the canonical embedding ® — R’*! | every element x € ®
can be written in a unique way

r
X = Z liw;,
i=0

with 0 <¢; <1 for i=0,1,...,r,and Y ot;=1. Since ® C (X - Z),
there is at least one vertex of ® included in W . Assume wg, w;, ..., ws to
be the vertices of ® included in W . The restriction of 6, to ® is defined by

It is clear that 6, is well defined and satisfies (1), (2), and (3). O

A wall of a chamber 4 of & is the support of a face of A4 (i.e., of a 1
codimension facet of A).

Lemma 4.8. Let A be a chamber of & , and let Hy, ..., H, be r distinct walls
of A. Consider the subcomplex A of S!=! generated by the vertices x(F) of
S!=! included in Ui (Hi)} . Then A is a strong deformation retract of B’.

Proof. Apply Lemma 4.7to X =S'~! and W the set of vertices x(F) of S/~!
included in U]_,(H,)%. We have X - Z = §'~!'n (Ui_,(H)}) and Y = A.
It follows that A is a strong deformation retract of §/~!'n (U_,(H,)%). Since
S n (U (H)Y) = 71 = (Ni_,(H:)j) is contractible (where (H;), is the
closed half-space of V' bordered by H; and not containing A4), the subcomplex
A is contractible, thus is a strong deformation retract of B’ (see [LW, Theorem

3.1, Chapter IV], for example). O

Fix a vertex vy of I'. We denote by V(IA")+(vo) = V(IA"),r the set of vertices

~

v of T such that there exists a positive path in I" beginning at vy and ending in
v . We denote by V(I'),(vg) = V(I'), the set of vertices v of I" such that there
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exists a positive path in T of length < n beginning at vy and ending in v.
Note that, if f and g are both positive paths of r beginning at vy and ending
inve V(I/:‘)+ , then f ~ g (Proposition 2.2), thus length(f) = length(g). For
v E V(i:‘)+ , we denote by d(vg, v) the length of a positive path of r beginning
at vo and ending in v.

We denote by §al+(v0) = §al+ the subcomplex of Sal generated by the
vertices of Sal having the form @&(F,v) with F € (&) andv € V(f)+.
We have

Sal, = |J B'(v)
vev (D),

We denote by §al,,('u0) = §al,, the subcomplex of Sal generatedPy the vertices
of Sal having the form @(F, v) with F € ¥ (&) and v € V(I'), . We have

Sal, = |J B'(v)

veV Dy

Lemma 4.9. Assume M to have the property D. Fix a vertex vy of T. Let
v,wE€ V(l"),,+1 - V( Yo With v #w. Then

B/(v) n B'(w) C Sal,.

Proof. Let @ be a vertex of Sal included in B/ (v)NB!(w) . Write p(v) = A and
p(w) = B. There exist two facets F and G of & such that & = @(F, v) =
&(G,w). By Lemma 3.4, F=GC Z(v, w) and Ar = Br.

Let C be the chamber of &/ such that F is afacetof C and Cr = —Afr =
—Br . The set Z(v, w) is a union of facets of ./, it is an open subset of V',
FCZ(v,w),and C > F,thus C C Z(v, w). Therefore there exists a vertex
u € Z(v)NX(w) such that p(u) =

Let m(v, u) be a positive path of T beginning at v and ending in u, and
let m(w, u) be a positive path of r beginning at w and ending in u. Since
u € X(v) N Z(w), one can assume p(m(v, u)) = m(4, C) and p(m(w, u)) =
m(B, C).

Pick a poiitive path f of T beginning at vy and ending in v, and a positive
path & of I' beginning at vy and ending in w. Write

(i) f=p(f) and g =p(g),

(ii) ﬁ,—fm(v u) and g =gm(w, u),

(iii) fo=p(fo)=/sm(4,C) and g = p(2)=gm(B, C).

Note that fo and 2, have the same begin v, and the same end u, thus fy ~ &
(Proposition 2.2), therefore fy ~ go.

Recall that &/ has the property D. There exists a chamber Cy of & such
that fo ends with m(D, C) if and only if D € Bet(Cp, C). Choose a positive
path 4 of I'(&) such that fy ~ hm(Co, C). Let h be the lift of & into T’
beginning at vo. Write uo = end(h).

Let us prove that u, € V(f),, and that @ = @(F, up). This shows that
e §al,, , thus ends the proof of Lemma 4.9.
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First, let us prove that Cy # A. If not, then

~

n+1=length(f) (since v € V(D)psy = V(Dn)
= length( fy) — length(m(Cyp, C)) (since Cy = A)
= length( fo) — length(m(Cy, B)) — length(m(B, C))

(since B € Bet(Cyp, C))
= length(g) — length(m(Cy, B)) (since fy ~ &)
=n+1—length(m(Co, B)) (since w € V(D)ns1 — V(D).

It follows that 4 = Cy = B, thus m(4, C) = m(B, C), therefore m(v, u) =
m(w , u). This contradicts the fact that v # w.
Now,
d(vo, uo) = length(h)
= length(h)
= length( fo) — length(m(Cy, C)) (since fy ~ hm(Cy, C))
= length( fo) — length(m(Cy, 4)) — length(m(A4, C))
(since 4 € Bet(Cy, C))
= length(f) — length(m(Cyp, A))
=n+ 1 —length(m(Cy, A)) (since v € V(f),,H - V(f‘),,)
<n (since Cy # A).

~

This shows that uy € V(I'), .

If HD F, then H separates A and C (since Cr = —Af), thus H does
not separate Cp and A (since 4 € Bet(Cyp, C)), therefore (Co)r = Ar. The
vertex u is included in X(v) N Z(ug) (lift m(Co, A)m(A, C) into f’), thus
p(u)=CC Z(v,up). Since F CC,wehave F CZ(v, uy). If H separates
A = p(v) and Cy = p(up), then H does not contain F (since (Cop)r = AF).
It follows that F is not included in the border of Z (v, up) (see Lemma 2.5),
thus F C Z(v, up). By Lemma 3.4, we have & = &@(F, v) = @(F, up). O

Lemma 4.10. Assume & 1o have the property D. Fix a vertex vg of T. Let
v E€V()py1 — V(),. Write A= p(v). Then there exists a set {H,, ..., H,}
of walls of A such that B!(v) N Sal, is the subcomplex of B!(v) generated by
the vertices of B!(v) having the form &(F ,v) with F C J;_,(H)7.
Proof. Choose a positive path f of r beginning at vy and ending in v . Write
f= p(f) . Let a;, ..., a, be all the arrows of I'(%/) such that f ends with g;
(for i=1,...,r). Write 4; =begin(a;) and H; the hyperplane of & which
separates 4; and A, for i=1,...,r. Let us show that {H,, ..., H,} is the
required set of walls of 4.

Let F be a facet of & . Assume there exists an i € {1, ..., r} such that
F C (H;)}. Since f ends with a;, there exists a positive path 4 of I'(%)
such that f ~ ha;. Let h be the lift ofAh into T' beginning at vy. Write
w; = end(fz). Let us prove that w; € V(I'), and that @(F, v) = @(F, w;).
This shows that &(F , v) € B'(v) N Sal,.

d(vg, w;) = length(h) = length(h) = n,
thus w; € V(f),,.
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Since F C (H;)}, the facet F is not included in H;, thus (4;)r = Ar.
Pick a chamber C of & having F as facet. Since F C (Hi)j; and FC C,
we have C C (H;)}, thus H; does not separate 4 and C, therefore A4 €
Bet(4;, C) (by Lemmas 4.2 and 4.3(i)). This implies that there exists a vertex
u € X(v) N Z(w;) such that p(u) = C (lift m(4;, A)ym(4, C) into I'). It
follows that C C Z(v, w;), therefore F C Z(v, w;) (since F C f). The
equality (A4;)r = Ar shows that no hyperplane of & containing F separates
A; = p(w;) and A = p(v), thus, by Lemma 2.5, we have F C Z(v, w;). It
follows, by Lemma 3.4, that O(F, v) = a(F, w;). R

Now, let @ be a vertex of Sal included in B(v (v) N Sal,. There exist a
vertex w € V(I), and two facets F and G of & such that @ = @(F , v) =
&(G, w). Write B=p(w). ByLemma 3.4, F=G C Z(v,w) and Ar = Bf.

Let C be the chamber of &/ having F as facet and such that Cr = —Afp =
—Br. The set Z(v, w) is a union of facets of %, it is an open subset of
V,FCZv,w),and C > F, thus C C Z(v, w). Therefore there exists a
vertex u € X(v) N Z(w) such that p(u) = C. Let m(v, u) be a positive path
gf I' beginning at v and ending in u, and let m(w, u) be a positive path of
I' beginning at w and ending in . Since u € Z(v) N Z(w), one can assume
p(m(v, u)) =m(4, C) and p(m(w, u)) =m(B, C).

Pick a positive path f of T beginning at v, and ending in v, and a positive
path ¢ of T ‘beginning at vy and ending in w. Write

(i) £=p(f) and g =p(2),

(i) fo=fm(v, u) and g = gm(w, u),

(iii) fo=p(fo) = fm(4, C) and g = p(g) = gm(B, C).

Note that f; and g, have the same begin v, and the same end u, thus ﬁ) ~ &o
(Proposition 2.2), therefore fy ~ go.

Recall that &/ has the property D. There exists a chamber Cy of & such
that fy ends with m(D, C) if and only if D € Bet(Cy, C). Choose a positive
path & of I'(&) such that fy ~ hm(Cy, C). As in the proof of Lemma 4.9,
Jo~ go and v # w imply Cy # A . Since

ﬁ) = fm(A ) C) ~ hm(COa A)m(A » C)

indeed, 4 € Bet(Cy, C)), the path f ends with m(Cyp, A4).

Write m(Cy, A) = by---b,. Thereisan i € {1, ..., r} such that b, =a;.
Since A4 € Bet(Cy, C) and H; separates Cy and A, the hyperplane H; does
not separate 4 and C (by Lemmas 4.2 and 4.3(i)), thus C C (H;)}. This
implies F C (H;)} (since F C C), where (H,)% is the closed half-space of V
bordered by H; and containing 4. If H € &/ contains F , then H separates
A and C (since Cr = —Afp), thus H does not separate C; and A4 (since
A € Bet(Cy, C)), therefore H # H;. It follows that F C (H;)}. O

Lemma 4.11. Assume & to have the property D . Fix a vertex vy of T. Then
Sal, (vo) is contractible.

Proof. Let us s’}}ow that §al,, is a strong deformation retract of §al,,+, for all
n > 0. Since Sal, = h_r)n Sal, and Saly, = B/(vg) is contractible, this proves
Lemma 4.11.
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We have to define a continuous family (6;)o</<1: §al,,+| — §al,,+1 of maps
such that

(1) 6o(x)=x, foral x € Sal,,,

(2) 6,(x) € Sal,, for all x € Sal,,,

(3) 6,(x)=x, forall x €8Sal, andall ¢€[0, 1].

Let v € V(f),,H - V(f‘),,. Write 4 = p(v). By Lemma 4.10, there exists a
set {H,, ..., H,} of walls of 4 such that #,(B/(v)n Sal,) is the subcomplex
of B/ generated by the vertices x(F) of B’ included in J[_,(H;)}. Note
that x({0}) = 0 ¢ U'_,(H,)}. By Lemma 4.8, #,(B/(v) N Sal,) is a strong
deformation retract of B’. It follows that B/(v) nSal, isa strong deformation
retract of B/(v) (since #,: B/(v) — B/ is an isomorphism). Choose a homotopy
(67)o<i<1: Bl(v) — B!(v) with

(a) 63(x)=x, forall x € B/(v),

(b) 6?(x) € B/(v) N Sal,, for all x € B/(v),

(c) 6%(x) =x, for all x € B/(v)NSal, andall ¢ €0, 1].

Set Olgip) = 07 if v € V(D)ne1 =V ()n, and Olgiy) = idgiy) if v € V(D)n.

By Lemma 4.9, the homotopy 8, is well defined. It obviously satisfies (1),
(2)and (3). O

Recall that, for a chamber 4 of &, hy = m(A, —A)m(—A, A). Write
(hg)™" = (hg)"Y(hg)~' - (hg)~! (r times) for all r > 0.

Lemma 4.12. Let [ be a path of T'(&/). Write A =begin(f). Then there exist
a positive path g of T'(&/) and an integer r > 0 such that f ~ (hy)~"g.

Proof. Write f=aj' ---ai". Set r=|{ie{l,...,r}e; = —1}|. We are going
to prove, by induction on r, that there exists a positive path g of I'(&) such

that f~ (hy) "g.
Assume r > 0. For an arrow a = (C, D) of I'(&/), we write (—a) =

(-C,-D). Let A; = end(af'---a;') for i = 1,2,...,n. There exists a
JE€{l,...,n} suchthat ¢, =g, =---=¢j_; =1 and ¢; = —1. We have
haf ~m(A, —A)m(-A, A)a, ---a;_1a; ' a}}) - alr
(A, A)( al)m( A],A)alaz -aj- 1a‘1aj1;l‘.. aflﬂ
m(A4, —A)(—a)m(-Ay, A)ay---a;_ra; ' a} - agr

~m(d, —A)(=a)(=a2) - (=aj_))m(=A;_1, Aj_r)a; 'afy - ay

Jj+1
~m(A, —A)(—ay)--- (—aj_0)m(=A;-1, 4))a;a; a7 - air
~m(A4, —A)(~ay) - (—aj-1)m(=4j-1, 4j) jﬂ:l' -ay

~ (h4)'""g (inductive hypothesis)
where g is a positive path. Thus f~ (hy)~"g. O

Proof of Theorem 4.6. Fix a vertex vy € V(F ). Write 4 = p(vy). Let us
define, by induction on r > 0, a vertex v, € V(f‘) with p(v,) = A. Assume
v,_; to be defined. Let h, be the lift of h, into r ending in v,_;. We set
v, = begin(k,) .
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We clearly have V(). (v,_1) € V(). (v,), thus Sal,(v,_;) C Sal,(v,), for
r>0.
Let us prove that, for every vertex w € V(I'), there exists an integer r > 0

such that w € V(I),(v,). This shows that
Sal= |J B'(w)= lim Sal,(v,),

~

wev(T)

thus Sal is contractible (since, by Lemma 4.11, §al+(v,) is contractible).

Let f be a path of r beginning at vy and ending in w. Write f = p( f ).
By Lemma 4.12, there exists an integer r > 0 and a positive path g of (&)
such that f ~ (hy)~"g. The lift of (h4)~"g into r beginning at vy has the
form le‘l ---iz,"g , where £ is a positive path of r. By the definition of a
cover of an oriented system, we have f ~ ﬁf‘ --.iz,-lg, thus £ begins at v,
and ends in w = end(f), therefore w € V(f)+(v,). O
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