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A comparative review of sequence dissimilarity

measures

Matthias Studer Gilbert Ritschard

LIVES and IDEMO, University of Geneva

Abstract

This is a comparative study of the multiple ways of measuring dissimilarities
between state sequences. For sequences describing life courses, such as family life
trajectories or professional careers, the important differences between the sequences
essentially concern the sequencing (the order in which successive states appear),
the timing, and the duration of the spells in the successive states. Even if some
distance measures underperform, it has been shown that there is no universally
optimal distance index and that the choice of a measure depends on which aspect we
want to focus on. This study also introduces novel ways of measuring dissimilarities
that overcome the flaws in existing measures.
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1 Introduction

Since Andrew Abbott (1983) stressed the relevance of sequence methods to the social sci-
ences, sequence analysis, and particularly the so-called optimal matching analysis (Abbott
and Forrest, 1986; Abbott and Hrycak, 1990), has become popular. Sequence analysis is
now a key method used to study the spans of life trajectories and careers (e.g. (Bras
et al., 2010; Widmer and Ritschard, 2009; Schumacher et al., 2012)). The strength of the
sequence approach is the holistic view it provides by dealing with whole trajectories. This
allows us to determine trajectory patterns that account for all states of interest experi-
enced during the considered period. This contrasts, for instance, with survival or event
history analysis, which, by focusing on the hazard of—or time to—a specific event, does
not give an overall view of how the trajectories are organised.

The so-called optimal matching analysis measures pairwise dissimilarities between
sequences, and then identifies ‘types’ of patterns by clustering the sequences based on these
dissimilarities. Beneath clustering analysis, other dissimilarity-based methods have also
proven useful when investigating sequence data. For instance, Abbott (1983) mentions
multidimensional scaling, Massoni et al. (2009) use self-organising maps, Studer et al.
(2011) show how to run ANOVA-like analyses and to grow regression trees on sequence
data, and Gabadinho and Ritschard (2013) search for non-redundant typical patterns
with the densest neighbourhoods.

Despite often being referred to as ‘optimal matching analysis’, so named by Abbott
and Forrest (1986) after the edit distance they used, dissimilarity-based analysis is in
no way restricted to optimal matching (OM) distances. The methods also work with
other ways of measuring dissimilarity, and, as we will see, many different distances have
been proposed. For example, there are Chi-square distances adapted for sequence data
that essentially measure differences in state distributions, distances based on counts of
common attributes (e.g. matching states or subsequences), and multiple variants of editing
dissimilarity measures, such as OM, which evaluates differences according to the cost of
‘editing’ one sequence into the other.

Measuring the dissimilarity between sequences (i.e. a pairwise comparison of the se-
quences) is the common and crucial starting point for all dissimilarity-based sequence
methods. Therefore, the choice of a dissimilarity measure deserves special attention, and
it is important that we understand what we want to account for before quantitatively
evaluating the difference between two sequences. This study aims to contribute to this
understanding by identifying the various aspects (e.g. constituting states, sequencing, tim-
ing, and duration) in which sequences may differ, and studying how various dissimilarity
measures account for these aspects. This study of dissimilarity measures comprises an
organised descriptive review, and is original in that it focuses on those aspects of sequence
differences that matter in the social sciences. In addition, we conduct a simulation study
to examine how these measures behave with respect to those aspects. Lastly, we also
propose novel dissimilarity measures, either because there is a lack of existing measures
that can consistently account for some aspect, or as variants of existing measures to fix
some of their weaknesses. We thus introduce a new edit measure—OM between sequences
of spells—to consistently account for differences in the time spent in the distinct succes-
sive states (DSS). We also propose an original solution to set data-driven indel costs.
Among the improvements to existing measures, we suggest using the Gower distance to
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determine the substitution costs for a mix of quantitative and qualitative attributes of
the states. In addition, we propose defining substitution costs as a Chi-square distance,
stressing the similarity between states that share the same future. This is an alternative
to the questionable derivation of substitution costs based on transition rates. Lastly, we
propose solutions that drastically reduce the number of control parameters in the OM of
the sequences of transitions introduced by Biemann (2011).

The remainder of this paper is organised as follows. We first set the framework by
specifying the kinds of sequences we consider, the different aspects we may want the dis-
similarity measures to reflect, and by recalling distance-related notions of interest. We
then present the dissimilarity measures we wish to consider, as well as their theoretical
properties. In the following section, we examine the behaviour of the measures using arti-
ficially generated data, and empirically study how the measures are related to each other.
Finally, we conclude the paper by providing guidelines on how to select an appropriate
measure.

All measures presented in this paper are available in the latest version of the TraMineR
R library. See Appendix A for a brief explanation of how to compute these measures.

2 Sequences and distances

Definitions and notation. We consider categorical sequences, defined as an ordered
list of successive elements chosen from a finite alphabet, Σ. In demography or sociology,
and more generally, for sequences describing life trajectories, the elements in the sequences
are in chronological order. In addition, in discrete-time state sequences, the position in
the sequence conveys time information so that the difference between two positions defines
a duration. For example, assuming positions correspond to ages in years, knowing that
an individual is in state ‘Full-time work’ from positions 20 to 29, we would conclude that
the individual worked full time for ten years.

The natural way to encode a state sequence is to list the successive elements. For
example, the trajectory of someone who is 2 years ‘Junior Manager’ (JM) and then 3
years ‘Senior Manager’ (SM) is represented as JM-JM-SM-SM-SM. We can also encode
the sequence in a more compact way as JM2-SM3. In other words, we simply list the
DSS and add a duration stamp—in this case, as the subscript—indicating the number of
successive positions in that state (i.e. the length of the spell in the state). Apart from
being compact, the latter form also facilitates comparing the sequencing and the duration
of spells in the same state. In the remainder of this paper, we shall use the term spell to
refer to the whole spell spent in the same state.

Differences between sequences. State sequences are complex objects that provide
many different pieces of information, such as total and consecutive time spent in each
state, the timing of states, and the state order. Kruskal (1983, p. 207) distinguishes
four different ways—in fact transformation operations—in which sequences may ‘differ’:
substitutions, deletions and insertions (indels), compression and expansions, and trans-
positions or swaps. These transformation-based distinctions make sense in fields such
as biology, computer science, and speech research, and motivated the basic operations
considered in edit distances. In the social sciences, the life trajectory of one individual
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can hardly be considered to be the result of a transformation of the trajectory of another
person. Therefore, the interest when comparing sequences is not in the transformation of
one sequence to another, but more directly in how the sequences differ in socially mean-
ingful aspects. In line with the distinctions made by Settersten and Mayer (1997) and
Billari et al. (2006), we identify the following important aspects.

The first basic aspect of interest when comparing the trajectories of two individuals
is the list of distinct states each experiences. This is what Dijkstra and Taris (1995) and
Elzinga (2003) implicitly refer to when stating that two sequences with no common state
are maximally dissimilar.1 The notion of experienced states is also related to the quantum
defined by Billari et al. (2006) as the count of experienced events. In addition to the list
of experienced states, we may want to examine the total time spent in each distinct state.
This tells us the distribution of the states within each sequence. Knowing the distribution
is useful, for example, when studying the impact of total exposure times. For instance,
we may want to examine the effect of the total amount of time spent as unemployed on
the person’s health status at retirement. However, differences in the presence/absence
of states, or in the distribution of the states within the sequences do not account for
how the states occur along the longitudinal axis. Therefore, in a sequence analysis, these
differences should be used in conjunction with other dimensions.

The timing of the states (i.e. the age—or date—at which we are in a given state) or the
time events occur, such as the start of a spell (Settersten and Mayer, 1997) in a given state,
is a sociologically important aspect. Life course literature often stresses, for instance, the
role of age norms in the construction of life trajectories (Widmer et al., 2003). Moreover,
the social reality reflected by a state often depends on its position in the trajectory. For
example, Rousset et al. (2011) observe that the impact of unstable employment on the
professional insertion trajectory increases with age. In addition, Lesnard (2010) claims,
in his study on the way couples use time, that differences between ‘no partner working’
and ‘only one partner working’ reflect a very different reality when observed during the
day or night. Spell duration, the consecutive time spent in the same state, is another way
to account for time (Settersten and Mayer, 1997).2 Instead of the precise timing, spell
duration refers to the time that elapses between the start and the end of a significant spell.
The spell durations, such as the time lived alone before getting married, or the duration
of a joblessness episode, are important aspects within people’s life courses. Spell duration
is different to the information provided by the state distribution in that it gives the
consecutive exposure time, rather than the total—not necessarily consecutive—exposure
time. Unlike the state distribution, the spell duration allows us to, for example, distinguish
between long-term joblessness and multiple short-term unemployment episodes.

Finally, sequencing, the order in which states (or events) are experienced, is another
socially sound dimension. The role of sequencing norms in the construction of life tra-
jectories is at least as important as the role of age norms, and has been emphasised by,
for example, Hogan (1978). Experiencing childbirth before or after marriage reflects dif-
ferent ways of life. Abbott (1990) identifies sequencing as the key concept in sequence
analysis, and Billari et al. (2006) emphasise its importance in conjunction with timing

1Note that this claim would not hold if some states can be considered to be more similar than others.
2Settersten and Mayer (1997) even consider the more general concept of spacing to refer to the time

between any two events or transitions.
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and quantum for demographic life course analysis.
To summarise, we can distinguish at least five socially sound aspects on which two

sequences may differ, namely:

1. Experienced states: the distinct elements of the alphabet present in the sequence

2. Distribution: the within-sequence state distribution (total time)

3. Timing: the age or date at which each state appears

4. Duration: the spell lengths in the DSS

5. Sequencing: the order of the DSS.

In the discussion that follows, we denote occupational sequences as comprising educa-
tion (E), unemployment (U), full-time work (F), and part-time work (P).

The five aforementioned aspects are not independent of each other. For example, by
changing the sequencing, we also change timing, and changing consecutive times in the
states implies changes in the within-sequence distribution, and possibly in the sequencing
as well. Likewise, modifying the within-sequence distribution by changing the distinct
present states affects the sequencing and durations. From the reverse point of view, two
sequences that are similar on one aspect may be quite different on another. For example,
the sequences EUUUUF and EUUFUU are similar in terms of the involved states and the
within-sequence distribution. However, they differ in the consecutive time spent in the
DSS and in the sequencing and timing of F and one U. Table 1 summarises the dependence
relationships between the five facets of sequence differences. The list of ‘States’ found in
the sequences automatically follows from the non-zero frequencies in the ‘Distribution’ of
the states, as well as from the sequencing of states (DSS). In addition, ‘Durations’, the
consecutive time spent in the states, and ‘Timing’ only make sense when associated with
the relevant sequence of DSS. Specifying the sequencing—the DSS—together with either
the timing or the duration of the DSS entirely defines the sequence.

Table 2 gives examples of pairs of sequences that look similar from one point of view,
but differ from another. For instance, for a given distribution, we still have degrees of

Table 1. Dependence relationships between sequence characteristics (‘States’ stands for
experienced states, ‘Distribution’ for the state distribution within the sequence, ‘Sequenc-
ing’ for the order of the DSS, ‘Durations’ for the consecutive times spent in the distinct
states, ‘Timing’ for the position of the states in the sequence, and ‘Sequence’ for a wholly
characterised sequence)

Distribution → States
Sequencing → States
Durations → Distribution
Sequencing + Durations → Sequence (States, Distribution, Timing)
Sequencing + Timing → Sequence (States, Distribution, Durations)
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Table 2. Examples of pairs of sequences similar from one point of view, but different from
another. The ‘=’ sign indicates that when the sequences have the same row characteristic,
they cannot differ in the column characteristic

Different in

Same Distribution Spell Durations Timing Sequencing

States

States + Distribution =

Sequencing =

Sequencing + Distribution = =

freedom on spell durations, timings, and sequencings. The professional career of someone
having experienced 12 months of joblessness may reflect greater instability when the 12
months of unemployment are split into several short unemployment periods than when
the 12 months are contiguous. In that case, measuring only the differences in distributions
would be insufficient. Likewise, focusing only on the state order—the sequencing—leaves
room for different durations and timings, which we may actually want to consider.

In addition to the listed aspects, we may be interested in higher-order characteristics,
such as the transitions between states. We can then compare sequences of higher-order
characteristics using the same criteria, when applicable. For instance, spell durations are
not applicable to transitions. As an example, the transition-based distance proposed by
Biemann (2011) attempts to evaluate the dissimilarity between sequences of transitions
rather than directly from the state sequences from which they are derived.

Measuring dissimilarity. A measure of dissimilarity is a quantitative evaluation of
the level of mismatch between two sequences. This level of mismatch gives an idea of
the (lack of) resemblance between the sequences and, therefore, is useful for comparing
sequences.

Dissimilarity measures can be roughly classified into three classes: i) Distances between
distributions; ii) Measures based on the count of common attributes between sequences;
and iii) Edit distances, which measure the cost of the operations necessary to transform
one sequence into the other. By specifying the distributions or the attributes used to count
the (mis)matches, the two former classes more or less explicitly specify the aspect they
focus on. For example, by comparing state distribution within sequences, the focus is on
durations, while counting position-wise mismatches focuses on the exact timing equality
of matching states. In contrast, the focus is less evident for edit distances, which are
based on elementary transformation operations that may impact the timing, duration, or
order of the states.

One additional concern is whether the measure should account for the involved ele-
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ments or be based uniquely on the count of matches and mismatches. For example, should
we consider FFUUU as more different to EEUUU than to PPUUU? The simple count of
position-wise mismatches is insensitive to which tokens do not match, and would lead to
the same dissimilarity for any pair of the sequences FFUUU, EEUUU, and PPUUU. On
the other hand, accounting for distances between states renders dissimilarities sensitive
to which of the elements do not match. Considering P and F as more similar than E and
F, FFUUU would be closer to PPUUU than to EEUUU.3

Distance-related mathematical notions. To correctly interpret the outcome of dissimilarity-
based methods, for instance, to be sure a cluster solution minimises the within-discrepancy
or to ensure the non-negative definiteness of the matrix to be diagonalised in multidimen-
sional scaling, dissimilarity measures usually need to be distances, or even Euclidean
distances. Therefore, it is worthwhile recalling these mathematical properties here.

A dissimilarity measure, d(x, y), between two sequences, x and y, is a distance if
and only if it fulfills the following conditions: d(x, y) ≥ 0, d(x, y) = 0 if and only if
x = y, d(x, y) = d(y, x) for any x, y (symmetry), and d(x, y) ≤ d(x, z) + d(z, y) for any
x, y, z (triangle inequality). Discrepancy analysis and most clustering algorithms require
symmetrical dissimilarities. The triangle inequality ensures coherence between computed
dissimilarities. Without the triangle inequality, the actual dissimilarity between x and y
could be smaller than the measured d(x, y) because of a third sequence, z. In this case, the
actual dissimilarity would depend on the other sequences present in the data set (Elzinga
and Studer, 2013).

In a Euclidean space with n real coordinates, the Euclidean distance between two

points, x and y, is defined as d(x, y) =
√

∑n
i=1(xi − yi)2, and corresponds in two dimen-

sions to the distance that would be measured with a ruler.
As defined above, sequences do not, in their original form, have real coordinates, so

we cannot directly apply Euclidean distances to them. Two strategies are then possible.
The first one characterises each sequence using a series of numerical attributes and

then computes the distance between those vectors of attributes. In such approaches,
known as kernel methods (Lodhi et al., 2002), the attributes are often only theoretically
defined, and the distance is computed in an efficient way without the need to actually
determine the individual values of the attributes. However, by definition, we know the
distance is Euclidean. A distance between any kind of objects is Euclidean if and only if
we can map the objects onto real coordinates such that the Euclidean distance between
any of the resulting numerical points reproduces exactly the distance between the ob-
jects they represent (Gower, 1982). The Euclidean property is of particular interest in
multidimensional scaling.4

3The latter approach has been used for multichannel sequences, which can be viewed as single-channel
sequences made up of states resulting from the combination of states from the different channels. For
example ‘Married and working full time’ combines a state from the family life with a state from the
occupational channel. Some authors (e.g., Pollock, 2007) define state-dependent multichannel distances
using dissimilarities between combined states, themselves derived from the state dissimilarities within
each single channel.

4For non-Euclidean distances, multidimensional scaling produces complex coordinates associated with
negative eigenvalues. These (usually ignored) complex coordinates reflect the distortion incurred by
embedding sequences into a Euclidean vector space. Therefore, it may be worth studying them (see for
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The second strategy is to define an ad hoc dissimilarity measure—e.g. using optimal
matching—that accounts for specific aspects of sequence differences. Such dissimilarity
measures may be more in phase with the domain of the analysis, but they might not be
Euclidean, or could even violate the symmetry and/or triangle inequality requirements.

3 Overview of dissimilarity measures

In this section, we briefly describe the main measures, stressing their aims and properties,
and how we can expect them to behave with respect to differences in timing, duration, and
sequencing. We start by addressing distances between within-sequence state distributions,
then consider measures based on the count of common attributes, and, lastly, discuss OM
and other related edit distances.

3.1 Distances between probability distributions

Distances between state distributions. The first approach used to measure the dis-
similarity between sequences, propounded by adepts of the French school of data analysis
(Deville and Saporta, 1983; Grelet, 2002), focuses on the longitudinal state distribution
within each sequence—in other words, on the time spent in each state within the se-
quences. For example, if the alphabet is {E,F,P,U}, the state distribution of the sequence
EFEFFUU is (2/7, 3/7, 0, 2/7). Given these distribution vectors, the dissimilarity between
sequences is measured by the distance between the vectors using either the Euclidean dis-
tance or the Chi-square distance. The former accounts for the absolute differences in
the proportion of time spent in the states. The squared Chi-square distance weights the
squared differences for each state by the inverse of the overall proportion of time spent in
the state, which, for two identical differences, gives more importance to a rare state than
to a frequent state. Letting pj|x be the proportion of time spent in state j in sequence
x, and pj the overall proportion of time spent in state j, the squared Chi-square distance
reads as follows:

d2chi(x, y) =
|Σ|
∑

j=1

(pj|x − pj|y)
2

pj

. (1)

This first distribution-based measure is, by definition, sensitive to the time spent
in the states. However, it is insensitive to the order and exact timing of the states.
Following Deville and Saporta (1983), we can overcome this limitation by considering the
distribution in K successive—possibly overlapping—periods. Denoting the subsequence
of x over period k as xk, and the overall proportion of time in state j in the kth interval
as pj|k, the period-dependent Chi-square distance becomes

d2chi,K(x, y) =
K

∑

k=1

|Σ|
∑

j=1

(pj|xk
− pj|yk

)2

pj|k

. (2)

In other words, the distance is the sum of the Chi-square distances for each period. At
the limit, when K is equal to the length, ℓ, of the sequences, the value of each pj|xk

can

example Laub and Müller, 2004).
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only be 0 or 1, and the distance corresponds to a weighted count of mismatching states.
The latter case will be very sensitive to non-matching timings and, as a result, gains some
sensitivity to sequencing.

Distance based on conditional distributions of subsequent states. A related
measure, defined as the sum of the position-dependent distances computed at successive
positions, was proposed by Rousset et al. (2012) to measure the dissimilarity between
sequences describing professional integration trajectories. The aim of this measure is to
stress the similarity of the sequences likely to lead to the same future. For example, two
different educational trajectories will be considered similar if they are both likely to lead
to the same stable professional position. Here, the distance between states at position
t is itself defined as the Chi-square distance between the vectors of the—weighted and
normalised—transition rates from the state observed at t to the states observed at the
subsequent positions, t + 1, t + 2, ....

Formally, the distance between two sequences, x and y, is the sum,
∑ℓ

t=1 dt(xt, yt), of
the distances between the pairs of states xt and yt observed at the successive positions,
t. Let at be state a ∈ Σ at t (what the authors call ‘situation at’), and pat

be the vector
collecting the ℓ|Σ| weighted and normalised transition rates, p̃(bt′|at), from at to bt′ , for
all t′ = 1, ..., ℓ and b ∈ Σ. Each transition rate is weighted by a decreasing function of the
time interval, t′ − t (e.g. 1/(t′ − t+ 1)), and the weighted rates are normalised to sum to
one over b and t′, such that

∑ℓ
t′=1

∑

b∈Σ p̃(bt′|at) = 1. The distance dt(xt, yt) at t is the Chi-
square distance between the normalised-weighted vectors p̃xt

and p̃yt
corresponding to the

states in x and y at position t. The role of the weight is to give more importance to the
near future than the far future when evaluating the distance between the states at position
t. For example, the probability of being a manager one year after high school when aged
25 will get a higher weight than the probability of being a manager 10 years later. The
normalisation is necessary for the vectors pxt

to look like probability distributions. This
is in spite of the weights and the values being constrained to be null when, as in Rousset
et al. (2012), only transitions to future states are considered and all transition rates from
t to t′ < t are assumed to be zero.

Since the distance defined by Rousset et al. is the sum of position-wise distances,
it should, like the position-wise Euclidean and Chi-squared distances, be sensitive to
non-matching timings and differences in sequencing. However, we can expect that the
introduced link to the future will smooth this sensitivity somewhat.

The Chi-square distances are Euclidean, as is the sum of the Euclidean distances
over positions. Therefore, all three distances are Euclidean and have all the desired
mathematical properties. However, the distances defined as the sum of the position-wise
distances between states only apply to pairs of sequences of same length.

3.2 Distances based on counts of common attributes

The number of common attributes, A(x, y), between sequence x and y measures proximity.
In other words, a larger value of A(x, y) implies that the sequences are closer together. A
common way of turning such a proximity into a dissimilarity measure is as follows:

dA(x, y) = A(x, x) + A(y, y) − 2A(x, y). (3)
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Simple Hamming distance. Hamming (1950) proposed measuring the dissimilarity
between two sequences by the number of positions with non-matching states. The Ham-
ming distance, dH(x, y), can be expressed in the form of Eq. 3 by setting A(x, y) as half
the number of mismatches between x and y.5 Since the Hamming distance proceeds by
a position-wise comparison, it applies only to pairs of sequences of the same length and
is very sensitive to timing mismatches. The square root of the measure is Euclidean and,
in its original formulation, is independent of the mismatching tokens.

The length of the longest common prefix, suffix, and subsequence. Distances
derived from the length of the longest common prefix or suffix are further typical examples
of squared Euclidean distances based on the count of common attributes (Elzinga, 2007).
The length of the longest common subsequence (LCS; e.g. see (Bergroth et al., 2000))
corresponds to the number of elements in one sequence that can be uniquely matched
with elements occurring in the same order in the other sequence. The derived dLCS

distance is obtained by setting A(x, y) to the number of elements matching in this way.
Since the position in the other sequence with which an element is matched varies with the
other sequence, dLCS is not Euclidean. Moreover, since it is not based on position-wise
matches, the LCS distance should not be too sensitive to timing. In this case, we can
expect a stronger dependence on differences in the state distribution and the sequencing,
especially the order of the most frequent states and, to a lesser extent, to differences in
the consecutive times spent in the distinct states.

Number of matching subsequences. Elzinga (2003, 2005) introduced a dissimilarity
measure, dNMS, based on the number of matching subsequences. The general idea of the
measure is that the more often a given ordering of tokens in one sequence is observed in
the other sequence, the closer the two sequences are to each other. Letting embz(u) be
the number of times subsequence u is embedded in sequence z, the number of matching
subsequences, ANMS(x, y), between x and y is

ANMS(x, y) =
∑

u∈S(x,y)

embx(u) emby(u),

where S(x, y) denotes the set of distinct common subsequences. For each embedding of u
in x, we count how many times it can be matched with a different embedding of u in y.
The measure has been extended in different ways, for instance, by weighting the length

of the subsequence u and/or considering the minimal shared time in the pair of embed-
ded subsequences (Liefbroer and Elzinga, 2012). The last and most general evolution of
this measure is the subsequence vector representation-based metric (SVR), introduced by
Elzinga and Studer (2013). The SVR allows us to weight each matched subsequence u by
its length ℓu, or a transformation ℓa

u of it, as well as to account for the duration of each
embedding. Each subsequence, u, is weighted by the product of the sums of the durations
of the embeddings, u, in each of the two sequences. For example, the sum of the durations
of the subsequence E-U in the sequence E5-U4-F6 is 5+4 = 9, but is (7+2)+(7+1) = 17
for the sequence E7-F2-U2-F3-U1. The subsequence E-U will therefore receive a weight

5The Hamming distance also corresponds to the Gower distance with equally weighted states and
positions, as considered by Wilson (2006).
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of 9 · 17 = 153 when comparing the two sequences. Elzinga and Studer (2013) propose
fine-tuning the weights with a parameter b using a transformation, tb, instead of the spell
duration, t. A higher b should give comparatively more weight to longer spells. In addi-
tion to these weighting mechanisms, the SVR can also account for state proximities. This
is the version we shall consider as the dSVRspell distance in Section 5.
Both the original distance, dNMS, and dSVRspell, accounting for the duration, are Eu-

clidean distances. By construction, we should expect both distances to be very sensitive
to differences in sequencing. The measures should also be sensitive to differences in du-
rations. The original version, because the duration extension increases the number of
embeddings of concerned subsequences. The second form does so by explicitly consid-
ering the duration of spells. Computing dNMS between the sequences of DSS—which is
equivalent to dSVRspell with b = 0—should, in contrast, be insensitive to differences in
timing and durations.

With the exception of the SVR metric, the above distances, based on the count of
(mis)matching features or differences between distributions, do not account for the level
of dissimilarity between the specific involved states. In contrast, as we show below, the
edit distances naturally allow for state-dependent solutions that can be controlled using
the individual costs of basic edit operations.

3.3 Optimal matching

Since Andrew Abbott (Abbott and Forrest, 1986; Abbott and Hrycak, 1990) popularised
optimal matching analysis in the social sciences, OM has become the most common way
of computing dissimilarities between sequences describing life trajectories. The method
borrows from other fields—Kruskal (1983) details nine different application fields—that
use similar edit approaches, such as the Levenshtein distance (Levenshtein, 1966; Yujian
and Bo, 2007) in computer science and sequence alignment in bioinformatics.

3.3.1 OM principles and special cases

OM measures the dissimilarity between two sequences, x and y, as the minimum total cost
of transforming one sequence, say x, into the other sequence, y, by means of indels—either
inserts or deletes—of tokens or substitutions between tokens. Each operation is assigned
a cost, which may vary with the involved states. The main criticism of OM is the lack of
sociological meaning of these operations and their costs (Abbott and Tsay, 2000; Abbott,
2000; Levine, 2000; Wu, 2000; Aisenbrey and Fasang, 2010; Lesnard, 2010).

Using the formalism of Yujian and Bo (2007), the OM distance can formally be de-
fined as follows. Let Σ be the alphabet—the list of elements that can appear in the
sequences—and λ be the null character. The following are valid transformations (ba-
sic edit operations): substituting a with b (a → b), deleting a (a → λ), and inserting a
(λ → a), with a, b ∈ Σ and a Ó= b. Let T j

x,y = T j
1 . . . T j

ℓj
be a sequence of ℓj transformations

that turns sequence x into y and γ(T j
i ) be the cost of each elementary transformation,
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T j
i . The OM dissimilarity is then

dOM(x, y) = min
j

ℓj
∑

i=1

γ(T j
i ). (4)

Let Γ be the (|Σ| + 1) × (|Σ| + 1) matrix of the substitution and indel costs. For
consistency, the costs, Γ, should define a metric between the admissible states. In other
words, the costs should be symmetric, should fulfil the triangle inequality, and be zero
only for the substitution of an element with itself. If the triangle inequality is not satisfied,
at least one substitution cost will not make sense because there will be a path allowing the
same substitution result at a lower cost. For example, in Table 3, the value γ(a → c) = 10
is inconsistent because we can achieve the same substitution by deleting a and then
inserting c for a total cost of only 2. Moreover, existing algorithms, such as the dynamic
programming algorithm of Needleman and Wunsch (1970), used to compute the OM
distance, all assume the costs satisfy the metric properties. Therefore, they could well
return a solution that does not reflect the minimum cost if these properties are violated.

Unless the cost matrix is inconsistent, the OM dissimilarity is necessarily a metric. The
OM distance is zero if and only if the two sequences are identical, since every change has
a non-zero cost and the cost of no changes is zero. The symmetry of the OM dissimilarity
results from the symmetry of the indel and substitution costs. The triangle inequality
follows from the definition of the OM distance as a minimum cost, meaning there is no
other sequence of transformations that will turn one sequence into the other at a lower
cost. As the solution to a minimisation process, the OM distance cannot be expressed as a
kernel and, therefore, is not Euclidean (Elzinga, 2007). As a result, OM distances cannot
usually be equated to distances between sequence representations on real coordinates.

The parameterisation of OM using the costs of the elementary operations makes it
a very flexible dissimilarity measure that can cope with many different situations. For
instance, setting arbitrarily high indel costs renders the dissimilarity extremely time sen-
sitive. In contrast, low indel costs—with respect to substitution costs—downweight the
importance of time shifts in sequence comparisons. Costs also allow for state-dependent
dissimilarities between sequences. On the other hand, the lack of definitively sound so-
ciological rules for setting the costs is one of the more criticised aspects of OM (Levine,
2000; Wu, 2000). Furthermore, the high number of indel and substitution costs may be
seen as an overparameterisation (Wu, 2000).

To understand the impact of the costs, we investigate two special cases of OM.

Table 3. A Γ matrix violating the triangle inequality

a b c λ
a 0
b 2 0
c 10 2 0
λ 1 1 1 0
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Generalised Hamming distance. The simple Hamming distance is equivalent to OM
with all substitution costs equal to one and no indels. The generalisation allows for state-
dependent substitution costs and is therefore OM without indels. The generalised Ham-
ming distance is the weighted sum of position-wise mismatches between two sequences.
Table 4 illustrates the Hamming distance. Simple Hamming corresponds to constant

costs of 1, in which case the distance between x and y is 3. If we consider b and c to be
twice as close as a and c, we can set the cost of the substitution b → c, and c → b by
symmetry, as 0.5. The generalised Hamming distance is then 2 instead of 3.

Table 4. Substitution costs: Example

Sequence x a a c b c
Sequence y a c b b b
Constant Cost 0 1 1 0 1 Dist = 3
State-dependent Costs 0 1 0.5 0 0.5 Dist = 2

Levenshtein II. In contrast to the Hamming distance, which does not allow for indels,
we can discard substitutions and measure the distance by counting the number of indels
necessary to transform one sequence into another. The resulting measure is known as the
Levenshtein II distance. This distance measure is equivalent to the LCS distance. The
total number of indels required is the sum of the elements in each sequence that are not
involved in the LCS, (|x| − ℓLCS(x, y)) + (|y| − ℓLCS(x, y)), where ℓLCS(x, y) is the length
of the LCS. Indels allow for a time warp in sequence comparisons. A time warp should
permit us to find similarities between sequence patterns that differ only in timing and/or
state durations, for example, between EFEFFUU and EEFEFFU.

Table 5 illustrates how to align two sequences using only indels. The row ‘Operations’
indicates the required delete, d, and insert, i, operations on x necessary to turn this
sequence into y. We first delete one of the leading states, a, and the c occurring after the
b. Then, we append two bs at the end. This is a total of four operations. The LCS is a-c-b
and is of length 3. Since both sequences have length 5, we have dLCS(x, y) = 5+5−2·3 = 4.
In other words, dLCS is, as expected, equal to the Levenshtein II distance.

Table 5. Distance of Levenshtein II: Example

Sequence x a a c b c - -
Operations d d i i
Sequence y - a c b - b b
Cost 1 0 0 0 1 1 1 Dist = 4

Instead of a single indel cost, it is possible to make the costs state-dependent in the
Levenshtein II distance and, more generally, in OM distance. For example, in her study
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of lynching in the Deep South, in which she uses OM, Stovel (2001) sets the indel costs
as a linear function of the number of yearly lynchings, and gives the lower cost of 1 to the
most common ‘0 lynching’ state. Hollister (2009) also suggests assigning a relatively low
cost to inserting or deleting what could be considered a normal or default state.

General OM example. Table 6 shows an example of how to compute an OM distance.
Using the state-dependent substitution costs from Table 4, with a fixed indel cost of 0.5,
the depicted operations yield a minimum cost of 1.5. By deleting the first a in x, we shift
the first sequence left, which aligns the subsequence a-c-b within both sequences. Then,
by inserting b, we match the second b in y. Finally, substituting b for c, which costs less
than inserting b and deleting c, we match the last b in y. The obtained distance is thus
linked to the partially matched subsequence a-c-b-(bc), where (bc)—the substitution—
reflects a partial match between states b and c. From a sociological point of view, the
partially matched subsequence a-c-b-(bc) can be interpreted as a ‘common backbone’, or
‘common narrative’ between trajectories (Elzinga and Studer, 2013). In other words, the
OM distance is based on the subsequence the two trajectories have in common.

Table 6. OM distance: Example

Sequence x a a c b - c
Operations d i s
Sequence y - a c b b b
Cost 0.5 0 0 0 0.5 0.5 Dist = 1.5

To summarise, an OM distance is the sum of two terms, a weighted sum of time shifts
(indels) and a weighted sum of the mismatches (substitutions) remaining after the time
shifts. Indel costs essentially allow us to control for admissible time warps in a sequence
comparison, while substitution costs reflecting state dissimilarities serve as weights for the
remaining mismatches. This is the general principle. The crucial question then becomes
the choice of the indel and substitution costs.

3.3.2 Strategies for setting costs

We first examine methods for choosing substitution costs, and then discuss how to choose
indel costs.

Substitution costs. There are essentially three types of strategies when choosing sub-
stitution costs (e.g., Abbott and Tsay, 2000; Hollister, 2009).

Theory-based costs The first strategy is to determine the costs on theoretical
grounds. A priori knowledge often provides an order of magnitude of the similarity of
two states, which allows us to rank possible replacements. For example, full-time working
looks closer to part-time working than to joblessness. The idea is then to set the costs to
reflect the partial order stemming from this sort of theoretical background. This approach
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Table 7. Two attributes of working statuses

Status Responsibility Level Jobless
Senior Manager (S) 4 no
Manager (M) 2 no
Employee (E) 1 no
Unemployed (U) 0 yes

Table 8. Substitution costs derived from state attributes using the Gower distance

S M E U
Senior Manager (S) -
Manager (M) 0.250 -
Employee (E) 0.375 0.125 -
Unemployed (U) 1.000 0.750 0.625 -

is used, for example, by Stovel et al. (1996) and McVicar and Anyadike-Danes (2002).
To illustrate, assume careers coded using the following four statuses: Senior manager (S);
Manager (M); Employee (E); and Unemployed (U). From the nature of the states, S is
closer to M than to either E or U. To reflect this hierarchy, we could, for instance, set the
cost of replacing S with E as 1.5 times the substitution cost between S and M. In doing
so, we account for the order between the states, although the exact values chosen for the
ratios between the substitution costs remain quite arbitrary.

Costs based on state attributes A solution advocated by Hollister (2009) to
make the choice less arbitrary is to specify the list of state attributes on which we want
to evaluate the closeness between states. By specifying the values of the attributes for
each state, we can then derive the pairwise substitution costs from the distances between
all pairs of attribute vectors. This distance could be the Euclidean distance when all
attributes are numerical. More generally, in the case of nominal, ordinal, and symmetric
or asymmetric binary characteristics, or even in the presence of a mix of variable types,
we can use the Gower (dis)similarity coefficient (Gower, 1971).
Table 7 depicts the responsibility level and a joblessness indicator variable for the four

working statuses. The Gower dissimilarities between the rows of the table are shown in
Table 8.6 These values can be used as substitution costs in an OM situation. Besides
explicitly rendering the state comparison criteria, the approach also has the advantage of
generating costs that surely satisfy the triangle inequality. Any concave transformation—
such as the square root—of the distance between the states would also fulfil the triangle
inequality.

6For the Gower distance between M and U, the contribution of responsibility level is the ratio between
the difference and the range ( 2−0

4−0
= 0.5), and that of jobless is 1 because the state is different. The

resulting distance is 0.5+1

2
= 0.75.
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Data-driven costs A third strategy is to rely on data-driven methods. Here, a
popular solution is to derive the substitution costs from the observed transition rates. The
idea is to assign higher costs for substituting between states when the transitions between
them are rare, and a low cost when frequent transitions are observed. The transition
rate between two states, a and b, is the probability p(b | a) of switching from state a to
state b between two successive positions. Assuming time invariance, the transition rate is
estimated as

p(b | a) =

∑L−1
t=1 nt,t+1(a, b)
∑L−1

t=1 nt(a)
, (5)

where L is the maximum observed sequence length, nt(a) is the number of sequences with
state a at position t that do not end in t, and nt,t+1(a, b) is the number of sequences with
state a at position t and state b at position t + 1. The symmetrical substitution cost is
defined as7

γtr(a, b) = 2− p(a | b)− p(b | a). (6)

However, deriving the substitution costs from the transition rates is questionable, as
there is no reason for transition rates to reflect state similarities. For example, ‘Single’ and
‘Divorced’ may be seen as close states, but, by definition, we cannot switch from ‘Divorced’
to ‘Single’. In addition, switching from ‘Single’ to ‘Divorced’ would suppose that marriage
and divorce occur during the same unit of time, which is highly unlikely. Practically,
observed transition rates are generally low and the resulting substitution costs are all close
to 2. Therefore, the OM distances based on transition-rate costs produce results close to
those obtained using fixed state-independent costs. A solution that generates somewhat
higher and more diversified transition rates is to consider the transition between the state
at t and the state q (> 1) periods ahead, rather than using the transition between two
consecutive time units. Such a generalisation is easily achieved by replacing t + 1 with
t + q, and L − 1 with L − q in the above equation. Whatever the time lag, q, the
transition-rate-based substitution does not ensure the triangle inequality.
A conceptually better approach, in the spirit of the work by Rousset et al. (2012)

described earlier, considers the two states a and b to be close when the chance that
both states will be followed by a common state, c, q units of time later is high, i.e.,
when both states share a common future. For instance, although switching between High
Education and High Vocational School is generally unlikely, both states may be seen as
similar because they both have high probability of leading to a managerial position, and a
relatively low probability of leading to joblessness. We propose operationalising this idea
by defining the substitution cost between a and b as the Chi-squared distance between
the cross-sectional state distributions expected k time units after the occurrence of state
a and state b,

γ(a, b) =
∑

e∈Σ

(

p(e+q | a)− p(e+q | b)
)2

∑

f∈Σ p(e+q | f)
, (7)

where p(e+q | f) is the probability of moving from f to e over q units of time.8

7Since we can arbitrarily substitute a to b in the first sequence or b to a in the second sequence, it
would make sense to derive the cost from the highest transition rate only. In other words, we could also
define γtr(a, b) as 2(1 − max{p(a|b), p(b|a)}). This would give us values less close to 2.

8Using a negative k value, we can similarly determine costs in terms of a common past.
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Another alternative to deriving costs from data was proposed by Gauthier et al. (2009).
This approach is an ‘optimisation’ procedure based on methods used in biology (e.g.
Henikoff and Henikoff, 1992). The principle is to consider two states as close—and assign
them a low substitution cost—when they tend to jointly occur in pairs of similar sequences,
and to consider them as dissimilar—and assign them a high cost—when they rarely co-
occur in pairs of similar sequences. The method works iteratively. At each step, it
successively computes each cost by keeping the others unchanged and iterates until the
costs converge. Experimenting with the implementation of the method in T-COFFEE
(Notredame et al., 2006), we faced serious issues, such as obtaining negative costs and, as
a result, negative dissimilarities. Therefore, we did not include this method of computing
substitution costs in our simulation study.

Indel costs. Despite the importance of indel costs for controlling time warp, choosing
indel costs has, with the noticeable exception of Hollister (2009), received far less attention
than substitution costs.

Single indel cost Indel is often seen as a gap insertion operator and so most ap-
plications use the same indel cost irrespective of the inserted or deleted state. The only
choice then concerns the level of this fixed indel cost. Earlier, we established that, to
obtain consistent distances, the extended Γ matrix of indel and substitution costs must
fulfil the triangle inequality. This implies that a unique indel cost should not be smaller
than half the maximum substitution cost. On the other hand, if we want indels to serve
only to adjust sequence lengths, the fixed indel cost should be set equal to or greater than
half the maximum substitution cost multiplied by the sequence length. Choosing an indel
cost above the latter threshold would have no effect other than to severely penalise the
differences in sequence lengths. For a fixed indel cost of cI within the range:

γmax
2

≤ cI ≤ L
γmax
2

, (8)

where γmax is the maximum substitution cost and L is the maximum sequence length, the
combination of optimal indel and substitution operations will depend on the compared
sequence patterns.

However, in some situations, we may be tempted to reduce the indel penalty below
the lower threshold to allow for more time warp in a sequence comparison. For instance,
Abbott and Tsay (2000) advocate using a low indel cost and suggest a value in the vicinity
of 0.1 times the maximum substitution cost. However, as pointed out by Hollister (2009),
using such a low value ‘throws out much of the careful consideration a researcher puts
into creating substitution costs in the first place’, because an insert and a delete would
be used in place of any substitution costing more than twice the indel cost.

State-dependent indel costs Little attention has been paid to state-dependent
indel costs, which is surprising because it would seem that the elements we delete and
insert should be as important as elements we substitute. One of the rare applications
that has used state-dependent indel costs is the already-cited study of sequences of yearly
numbers of lynchings by Stovel (2001), where the indel cost is 1 for zero or one lynching,
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and is otherwise equal to the number of lynchings. In this case, a greater number of
lynchings is considered more of an exception, and the more exceptional a state, the more
expensive it should be to insert or delete. This principle could serve as a general strategy
for setting state-dependent indel costs. Like the resemblance between states, we can
determine how exceptional a state is theoretically, based on the state’s attributes, or
derived from the data. As a data-driven solution, we propose defining the indel cost of
state a as a monotonic function—such as a logarithm or square root—of the inverse of the
overall observed frequency of the state a, or equivalently, of the inverse mean time spent
in state a. An alternative could be to use the mean time not spent in a. Such data-driven
solutions for indel costs avoid the criticisms of transition-rate-based substitution costs.
An alternative to the latter method could be to set substitution costs as the sum of the
indels of the two involved terms.

3.4 Variants of OM

Despite the high flexibility of OM with state-dependent costs, several authors (Elzinga,
2003; Hollister, 2009; Halpin, 2010; Elzinga and Studer, 2013) have pointed out that OM
distances are essentially driven by differences in durations. There are two main reasons
for that. First, sequences are, in social sciences, typically made of a few long spells and,
therefore, the longest common subsequences typically include these longest spells or long
portions of them (Elzinga and Studer, 2013). Second, OM operations are independently
applied on each symbol in the sequence, regardless of the context. OM equally weights
the insertion of state a in sequence aa and in sequence bb. In the first case, the insertion
only affects the time spent in the spell in state a, whereas in the second case, it changes
the sequencing (Hollister, 2009; Halpin, 2010). Lesnard (2010) observes that OM does
not consider the position—age or date—when transformation operations are applied.

The OM variants discussed below aim to make edit operations more context sensitive
by making them depend either on the position in the sequence where the operation applies,
or on the surrounding patterns at that position. We do not discuss a proposition with
similar aims by Dijkstra and Taris (1995) because, as shown by van Driel and Oosterveld
(2001), the proposed algorithm does not produce the expected results.

Dynamic Hamming distance (DHD). State similarities in time-use analyses—for
example, between sleeping and commuting—can hardly be assumed to remain the same
all day and distinct timings reflect important differences in behaviour. As a result,Lesnard
(2010) focused on OM without indels, such as generalised Hamming, and proposed that
substitution costs should depend on the position t in the sequence.9 He operationalises
the idea by deriving the substitution cost at t from the transition rates cross-sectionally
observed between t − 1 and t and between t and t + 1. The DHD time-dependent cost,
γt(a, b), at position t is thus

γt(a, b) = 4 − pt(b | a) − pt(a | b) − pt+1(b | a) − pt+1(a | b), (9)

9Allowing for indels in addition to position-dependent substitution costs would make the problem far
more complex by making the minimal cost for transforming one sequence into another depend on the
order in which the edit operations are applied.
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where pt(b | a) is the probability of switching from a to b between t − 1 and t and is
estimated as nt−1,t(a, b)/nt−1(a).
The DHD shares the strong timing sensitivity of the Hamming distance. Several

criticisms can be pointed out. First, criticism of the validity of transition-rate-based
substitution costs applies here, too. Second, the number of transition rates to estimate is
very high, potentially leading to overparameterisation. Finally, if the meaning of a state
a changes with the time when it occurs, it would perhaps be preferable to consider state
a at time t and state a at time t′ Ó= t as two distinct states at and at′ .

Localised OM. The OM extension proposed by Hollister (2009) aims to make indel
costs dependent on the two adjacent states. The motivation is that inserting or deleting
a state similar to its neighbours would only change the length of the spell in that state,
without affecting the sequencing. However, an indel of a state different to its neighbours
has much more important consequences and should therefore be charged a higher cost.
Formally, the cost cI(z|a, b) of inserting z between a and b is defined as

cI(z|a, b) = eγmax + g
γ(a, z) + γ(b, z)

2
, (10)

where γ() indicates the substitution cost, γmax is the maximum substitution cost, and
e and g are user-defined costs. The first term in Eq. 10 is similar to a fixed indel cost
and e can be interpreted as a spell expansion cost or time-warp penalisation. The second
term penalises differences with surrounding states, parameter g serving to control the
importance of the penalisation. For indels at one of the sequence ends, the average
between the costs of the substitutions with the two surrounding states is replaced by the
cost of the substitution with the sole adjacent term.

As long as the parameters e and g fulfil the constraint 1 − 2e ≤ g, the method
also prevents the OM from using a pair of indels instead of a substitution, and thus
provides a way to allow for important time warps while preserving the effectiveness of
substitution costs. In her experiments, Hollister (2009) got the best results with a small
shift penalisation, e, and a g close to 1 − 2e.

Although she does not specify it in her paper, in the code she provided to us, Hollis-
ter computes the indel costs for each state at each position once at the beginning, and
keeps them fixed during the alignment process. In other words, the indel costs remain
unchanged, even after surrounding states are changed. This may generate dissimilarities
that violate the triangle inequality, as shown in Table 9. It would make more sense to

Table 9. Localised OM distance between three sequences using a fixed substitution cost
of 1, e = .1 and g = .8

aabb abbb bbbb
x aabb 0.0
y abbb 0.2 0.0
z bbbb 2.0 1.0 0.0

adapt the indel cost after each operation. Consider sequences x and z in Table 9. Once
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we have substituted a for b at the first position in z (cost=1), inserting a second a in
front of the substituted a should cost 0.1. Then, deleting one of the last bs (cost=.1), we
would obtain x for a total cost of 1.2 (instead of 2). In that case, the triangle inequality
would be respected. However, adapting the indel cost after each operation raises com-
putational issues since the total cost would vary with the order in which the successive
transformation operations are applied. For instance, if we start by replacing the second
b with an a in z, we would not end with the minimum cost of 1.2. Finding the minimum
cost would require that we check all possible paths of transforming one sequence into the
other, which quickly becomes intractable when the sequence length increases.10

By construction, the localised OM should be less sensitive than the classical OM to
differences in spell length, while being more sensitive to changes in sequencing. Remember,
however, that localised OM can generate dissimilarities that do not satisfy the triangle
inequality.

OM sensitive to spell length. The localised OM distinguishes between indels that
start/end a spell in a state and those that just expand or contract a spell. Moreover, it
does not affect substitution costs. The OM variant proposed by Halpin (2010) accounts
more explicitly for the spell length and makes indel and substitution costs depend on
the spell length. The method can be formalised by distinguishing a state a in a spell of
length t from a state a in a spell of length t′ Ó= t. Letting at denote any state a in a spell
of length t, its indel cost cH

I (at) is determined as the basic indel cost cI , corrected by a
decreasing factor of t, and the substitution cost of, say, states at1 and bt2 as the basic
substitution cost γ(a, b) multiplied by a factor decreasing with both t1 and t2. Using 1/th

with 0 ≤ h ≤ 1 as the exponent time weight, the costs are

cH
I (at) =

cI(a)

th
, (11)

γH(at1 , bt2) = γ(a, b)
1

max{th
1 , th

2}
. (12)

Halpin (2010) also suggests using an arithmetic or geometric mean of the inverse time
length instead of the inverse of max{th

1 , th
2} in Eq. 12. Whatever the solution retained for

the exponent time weight, the resulting substitution costs, γ(at1 , bt2), could violate the
triangle inequality and, therefore, generate unpredictable results.11

Decreasing the indel cost with the spell length produces the expected effect of favouring
indels in longer spells instead of, for instance, indels which would create or suppress spells.
The decrease of substitution costs with the lengths of the implied spells has, however, the
reverse effect of encouraging the splitting of long spells. These contradicting effects make it
difficult to predict the sensitivity of the measure to spell lengths. Although the considered
time lengths are not fixed a priori for all edit operations, as they are for the localised OM,
there remains the question of whether we should consider the lengths of the spells before
or after each indel or substitution operation.

10One other solution to render Hollister’s method consistent could be to make substitution costs depend
on surrounding states as well.

11For example, for γ(a, b) = 1 and h = 1, the substitution cost γH(a1, b1) is 1, while we get the same
substitution at a cost of .5 by first substituting a2 to a1 (cost 0) and then substituting b1 to a2 (cost .5).
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OM between sequences of spells. For overcoming the limitations of the two former
context-sensitive dissimilarities, we propose, in the spirit of the localised OM and the OM
sensitive to spell lengths, to measure the OM distance between sequences of spells. The
general idea is to consider, for each different value of t, a spell in state a during t units of
times as a distinct element, denoted at, of the alphabet. Doing so considerably increases
the alphabet size and, as a consequence, the number of indel and substitution costs to
be considered. However, the number of parameters can easily be limited by expressing
the cost cS

I (at) of the indel of spell at, as well as the substitution cost γS(at1 , bt2) between
spells, at1 and bt2 , in terms of the basic indel and substitution costs (cI(a) and γ(a, b)) of
the constituting elements a and b and a correction factor function of the spell length. For
instance, letting δ ≥ 0 be a weight factor for the spell length, the costs can be defined as

cS
I (at) = cI(a) + δ · (t − 1) (13)

γS(at1 , bt2) =

{

δ · |t1 − t2| if a = b
γ(a, b) + δ · (t1 + t2 − 2) otherwise.

(14)

The parameter δ can be seen as the cost of extending or compressing a sequence by one unit
of time, and the substitution between two spells γS(at1 , bt2) as the cost of compressing each
spell into a one-unit-long spell, plus the substitution between the two concerned states,
a and b. For δ < cI(a), inserting an a in an existing spell at costs less than creating a
new spell in a. The method therefore favours the expansion (or compression) of existing
spells. Unlike the method by Halpin, it does not, however, encourage breaking long spells.
Moreover, as defined by Equations 13 and 14, the costs cS

I () and γS() satisfy the triangle
inequality as long as cI() and γ() verify the inequality. Interestingly, for δ = 0, the OM
of spell sequences becomes the OM distance between the sequences of DSS.

The OM between sequences of spells is, by construction, sensitive to differences in
the duration of spells. It is also sensitive to sequencing by accounting for the sequence
of DSS, and allows some control for the time warp through the expansion/compression
penalty factor, δ.

OM between sequences of transitions. Another way of accounting for the context,
as described by Biemann (2011), is to compute the OM distances between the sequences
of transitions. The transitions in a state sequence are characterised by its successive two
long subsequences obtained by joining each state with its previous state, for example, the
transitions in aabb are aa-ab-bb. Possibly, we could also specify the start of a sequence by
a transition from the start to the first state and, likewise, the end of the sequence by a
transition to the end.

As noted by Biemann (2011), by considering transitions instead of the states, we
considerably increase the size of the alphabet and, hence, the number of indel and sub-
stitution costs to be considered. To overcome this limitation, we propose, similarly to
what we have done for sequences of spells, to express the indel cB

I (a → b) and substitu-
tion γB(a → b, c → d) costs of transitions in terms of the indel and substitution costs of
states. Considering that a transition a → b is made of an origin state a and a type of
transition (e.g. a transition to the same state or transition to another state), we express
the cost of inserting (substituting) a transition as a linear combination of the cost of in-
serting (substituting) the origin state and the cost cT (a → b) of the concerned transition
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type. Formally, we define the indel and substitution costs as follows:

cB
I (a → b) = wcI(a) + (1− w)cT (a → b) (15)

γB(a → b, c → d) = wγ(a, c) + (1− w)
(

cT (a → b) + cT (c → d)
)

, (16)

with cI(a) the (possibly normalised) indel cost of the origin state, a, cT (a → b) the
transition type cost, γ(a, c) the (possibly normalised) substitution cost between the origin
states a and c, and w ∈ [0, 1] a coefficient for controlling the trade-off between the
cost related to the origin state and the cost related to the type of transition. A simple
parameter-free solution for the cT (a → b) function is to set it to 0 when a = b, and 1
otherwise. An alternative, which would make cT (a → b) state dependent without the
need for any additional parameters, is to set cT (a → b) as the substitution cost, γ(a, b),
between a and b. Both of these solutions generate cB

I () and γB() costs satisfying the
triangle inequality when the basic costs cI() and γ() themselves verify the inequality.
The OM of sequences of transitions is, by construction, sensitive to differences in

sequencing. With our formulation of the indel and substitution costs of the transitions,
we obtain the classical OM for w = 1, and the measure shares the properties of OM in
that case. Otherwise, by reducing w, we can increase the sensitivity to sequencing. Time
warp can be controlled through the origin state indel cost, cI(a).

4 Recapping the dissimilarity measures

Given the multiplicity and diversity of dissimilarity measures surveyed above, it is worth
summarising the different propositions and their relationships.
Table 10 recaps the characteristics of the main ways of measuring the dissimilarity

between state sequences. The first column gives short names, which will be used later
when presenting the results of our empirical evaluations. The next three columns corre-
spond to the typology we adopted for the above overview, with ‘Dis’ denoting measures
of differences between probability distributions, ‘Att’ measures based on the counts of
common attributes, and ‘Edt’ the edit distances. The column ‘Description’ provides a
short description.
The next five columns indicate the properties of the measures: ‘Metric’ denotes mea-

sures fulfilling the mathematical conditions of distances (required for most applications
and especially for sample-based studies, as shown in Section 2), ‘Eucl’ for Euclidean
distances (interesting property for multi-dimensional scaling), ‘T.warp’ for measures al-
lowing for time warp in sequence comparison, ‘S.dep’ for state-dependent measures (i.e.
for measures that allow for differences between states varying with the involved states),
and ‘Ctxt’ for measures that consider the context of the states.
These properties may help to sharpen the set of potentially useful distances. For

example, we may want to discard OM with the so-called optimised costs (OMopt) because
of the possible negative values it can generate, but also non-metric measures such as OM
with transitions-based costs (OMtrate), localised OM (OMloc), and dynamic Hamming
(DHD), with costs derived from transition rates because of the unexpected behaviour that
may result from the possible violation of the triangle inequality. Also, as already stated,
non-Euclidean distances can lead to complex—non-real—coordinates in multidimensional
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Table 10. Summary of dissimilarity measures between state sequences

Type Description Properties Parameters

Measure DisAttEdt Metric Eucl T.warp S.dep Ctxt Subst. Indels Others

CHI2, EUCLID x Distance between per period state
distributions

x x x Number of periods K

CHI2fut (Rousset) x Position-wise state distances based on
shared future

x x x Time-lag weighting function

NMS (Elzinga) x Based on number of matching
subsequences

x x x x

SVRspell x Based on number of matching spell
subsequences with spell-length weights

x x x x x User Subsequence length weight
a, spell duration weight b

HAM (Hamming) x x Number of mismatches x xb

generalized x Sum of mismatches with
state-dependent weights

xa xb,c x User

DHD (Lesnard) x Sum of mismatches with position-wise
state-dependent weights

x x Data

OM x Minimum cost for turning x into y

using theoretically defined costs
xa x x User Mult

LCS / OM(1,2)
/ Levenshtein-II

x x Based on length of LCS / Number of
indels

x x

feature x Costs based on state features x x x Features Single State features

future x Costs based on similarity between
conditional state distributions q periods
ahead

x x x Data Single Forward lag q

trate x Costs based on transition rates x x Data Single Transition lag q

optna(Gauthier) x Costs adjusted to increase similarity
between similar sequences

n x x Data Single Similarity rate

indels, indelslog x State dependent indels based on inverse
or log inverse state frequencies.

x x Auto

OMloc (Holister) x Context dependent indel costs x x x User Auto Expansion cost e, Context g

OMslen (Halpin) x Costs weighted by spell length x x x x User Multna Spell length weight h

OMspell (new) x OM between sequences of spells xa x x x User Multna Expansion cost e

OMstran (new) x OM between sequences of transitions xa x x x User Mult Origin-transition trade-off

w, Transition indel cost

function

a If costs fulfil the triangle inequality. b Squared Euclidean distance. c If costs are squared Euclidean distances. na Not available in TraMineR. n Can generate

negative dissimilarities.
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OM (single indel)DHD

OM(fut)

HAM

HAMgen

OMloc

OMspell

OM on DSS

OM

OMslen OMstran

OM(opt)OM(trate)OM(feat)LCS

Contextualized indelsSC SC

Spell

Indels

SC e=0

SC Position dependant SC

No indel

g=0

TransitionsSingle indel w=1

No SC SC

Single SC Spell length

Figure 1. Relationships between OM variants. Node colours refer to the history of the
measures: First-generation measures are green, second-generation measures are violet,
and propositions made in this paper are orange. Red arrows represent extensions (with
new aspects shown as labels) and blue arrows indicate specialisations (with corresponding
constraint or parameter value given as labels). SC stands for substitution costs and SC
alone refers to the specific way of setting values of state-dependent substitution costs.

scaling, and Euclidean distances may be preferred when finding principal coordinates is
a concern.
The last columns in Table 10 show the available tuning parameters. ‘Subst’ stands for

the possibility of accounting for state-dependent substitution—or proximity—costs, with
‘User’ meaning that the costs are set by the user, ‘Data’ that they are data driven, and
‘Features’ that they are based on state features. The ‘Indels’ column indicates whether
there is a single state-independent indel cost (‘Single’), whether state-dependent user-
defined indel costs are allowed (‘Mult’), or if the indel costs are automatically set by the
measure itself (‘Auto’).
Considering state proximities or substitution costs is of special interest when some

states should obviously be considered closer than others. Such distinctions occur, for
instance, when the states are ordinal, such as the education level or the number of experi-
enced childbirths, or result when some states share a higher number of common attributes
than others. Possibility to consider state-dependent substitution costs is also of interest
for the multichannel case. For example, the method adopted by Pollock (2007) for mea-
suring distances between multichannel sequences consists of deriving the multichannel
costs from the costs available for each individual channel, and generates costs that would
at least vary with the non-matching channels.
A large majority of the surveyed dissimilarity measures are related to OM and it is

instructive to look at how they are connected to each other. Figure 1 depicts the relation-
ships between the many variants of OM distances. The figure reveals which dissimilarity
measures generalise others, such as ‘OMstran’ (OM of sequences of transitions), which
includes the classical OM as a special case, ‘OMstran’ being equivalent to ‘OM’ when the
trade-off parameter w is set equal to 1, which puts all the focus on the transition origin
state.
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5 Simulation study

We have so far overviewed a great number of possibilities for measuring the dissimilarity
between sequences. Table 10 lists no less than 11 types of distance measures and, for the
OM distance, seven ways of setting the values of the costs. Moreover, many dissimilarity
measures depend on user-defined parameter values and thus define families of measures.
Varying parameter values provides some control on the behaviour of the measure. For
instance, playing with the indel value, we can control the indel–substitution cost ratio of
OM and, thereby, its sensitivity to timing. Altogether, we dispose of a huge number of
possibilities of measuring dissimilarity and face the crucial question of choosing among
them.
To help in that choice, this section provides empirical insights on how dissimilarity

measures behave with regard to the three relevant aspects for comparing state sequences
describing life trajectories, namely, sequencing, duration, and timing. We ran a series of
simulation strands, and report the main outcomes below.
The reported simulations provide an original view of the ability of the dissimilarity

measures to render differences in each of sequencing, duration, and timing dimensions,
and differ in this way from other attempts to empirically compare dissimilarity measures.
Several authors (see Robette and Bry, 2012, for a review) have analysed how results—most
often the clusters derived from the dissimilarity values—change with the used dissimilarity
measure. Such approaches permit us to assess the robustness of the outcome of the
dissimilarity-based analyses against the used dissimilarity measure. However, outcome-
oriented simulation analyses do not stricto-sensu provide indications on the behaviour
of the measures, and the generalisation of their findings to other data sets and analysis
methods—clustering algorithms—is subject to debate. The approach by Robette and Bry
(2012), based on correlations between dissimilarities computed on artificial data is more
illuminating from that point of view. Nevertheless, while the Mantel tests of correlations
used by those authors prove useful in identifying measures that behave similarly, they do
not say to what the measures are sensitive.

5.1 Simulation design

The simulation study consists of different strands, each for studying the sensitivity of the
dissimilarity measures to one specific aspect among timing, duration, or sequencing. Each
strand may itself contain a series of simulations run with different specifications of the
tested differences.

The general principle of each series of simulations is to generate, in a controlled man-
ner, two groups of sequences that differ in a selected single aspect of interest. In each
group, the evaluated characteristic—sequencing, duration, or timing—is kept fixed for
all sequences in the group, while the other aspects are randomly changed across the se-
quences so as to also allow for non-systematic differences between sequences on those
other non-evaluated aspects. Doing so, the compared sequences differ systematically in
the evaluated aspect, but also randomly differ on all other aspects. We can thus evalu-
ate the relative importance given by the dissimilarity measures to the selected aspect in
the presence of discrepancies on the others, and, hence, evaluate how good each of the
measures is in rendering differences of the studied aspect.
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Let us illustrate with an example. For measuring the sensitivity to sequencing, we
generate two groups of sequences with a different unique sequencing pattern for each
group. While the order of the states remains identical for all sequences inside a group,
the timing and time spent in each distinct successive state are randomly changed within
the groups. Therefore, a dissimilarity measure more sensitive to differences in duration
than in sequencing will probably take similar values for pairs of sequences belonging to
the same group as for pairs with a sequence from each of the two groups. In contrast,
measures highly sensitive to sequencing will typically take higher values for dissimilarities
between groups than within groups.

The sensitivity to the considered criterion is measured with the pseudo R2 defined
in Studer et al. (2011) for measuring the proportion of the discrepancy of the sequences
explained by a categorical covariate. In our case, the covariate is the two-group variable.
The discrepancy of the sequences is evaluated from the pairwise dissimilarities in the
same way as the variance of a series of values can be derived from the pairwise differences
between the observed values. A high R2 value will reflect a strong sensitivity to the
considered systematic difference between the two groups. In other words, it is able to
discriminate between the groups. In contrast, a low R2 value indicates that the measure
poorly accounts for the tested dimension. In order to ensure stable R2 values, 1, 000, 000 of
sequences per group were generated in each series of simulations. All simulated sequences
are of length 20.12

For each series of simulations, we obtain an R2
d for each considered dissimilarity mea-

sure, d. The R2
d values can be compared across dissimilarity measures within each series,

where all R2
d are computed on the same set of sequences. They are not comparable,

however, between series or strands, since the total variability and the mean R2 differ sig-
nificantly across series. We therefore report the standardised value, namely, the score Sd

defined as the standardised R2
d given by Equation (17), where R2 and sR2 are, respectively,

the mean value and standard deviation of the R2
di
s in the series.

Sd =
R2

d − R2

sR2

. (17)

The score reflects the sensitivity of each dissimilarity measure, d, in comparison with
the overall sensitivity of all considered measures. The score is positive for dissimilarity
measures more sensitive than the average to the tested dimension, and negative otherwise.

5.2 Random sequence generation

We ran two sets of simulations, each with a different sequence-generating model. For the
first set, we directly generated the state sequences, while for the second, we postulated
assumptions on the occurrences of events and then derived the states from the occurred
events.

For clarity and owing to space constraints, we report only a subset of all the—
sometimes more sophisticated—series of simulations we tried (see Studer, 2012). However,

12Despite the huge number of sequences, all computations could be done relatively quickly by con-
sidering only unique sequences and weighting them by their counts. Each set of 1,000,000 simulated
sequences contained between 80 and 800 unique sequences, except for one set that had around 3,000
unique sequences.
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the experiments reported can be considered representative in that they render all salient
findings of the complete set of tried simulations.

5.2.1 State-based generating process

The direct generating process is based on the duration-stamped spell representation of
sequences. It first determines the sequence x = (x1, ..., xℓdss

) of the ℓdss DSS, and then
the durations t = (t1, ..., tℓdss

) of the successive distinct states. The order—the DSS—
is randomly chosen from a list of possible sequencings, and the durations are randomly
set assuming uniform distributions. For each series, the control of the tested aspect is
achieved by means of constraints on the generating process.
We report three strands of state-based simulations whose characteristics are sum-

marised in Table 11. Each strand comprises several series of simulations. The first strand
evaluates the sensitivity to sequencing by completely controlling the order in each of the
two groups in each series. The second strand evaluates the sensitivity to timing. The
order patterns are randomly selected and durations randomly set, while controlling the
start of the spell in state c in each of the two groups. Several series of simulations have
been run by varying the difference in the start time in c between the two groups. Finally,
the third strand evaluates the sensitivity to duration by controlling the total consecutive
time spent in a given state for each group.

Table 11. Designs for evaluating sensitivity to order, timing, and duration of states

Tested Description Group One Group Two

Dimension

Sequencing Order patterns controlled in each group, and duration in each
consecutive state left random under the constraint of the fixed
sequence length.

‘abc’ ‘cba’

‘abca’ ‘acba’

‘abcda’ ‘adcba’

‘abca’ ‘abda’

‘abab’ ‘baba’

‘abc’ ‘abd’

‘abc’ ‘acb’

‘abcd’ ‘cdab’

Timing Sequences randomly follow one of the patterns ‘abcde’ or
‘edcba’, and the start time t of the spell in state ‘c’ is
controlled.

t = 7 t ∈ {9 . . . 15}

t = 15 t ∈ {7 . . . 13}

Duration
Sequences randomly follow one of the patterns ‘abc’ or ‘cba’
and duration d of the spell in state ‘b’ is controlled.

d = 4 d ∈ {6 . . . 14}

d = 14 d ∈ {4 . . . 12}

We ran an additional strand of simulations to evaluate the sensitivity of the measures
to small perturbations (see Table 12). The same order is retained for the two groups, but
in group 2, the sequences are perturbed by randomly changing the state of an element in
the sequence, either for any element or for one element among those at the junction of
two successive spells.
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Table 12. Designs for evaluating sensitivity to a random change of state

Description Order Pattern State Change in Group Two

Controlled order pattern and random durations.
Sequences in second group derived from the sequences of
the first group by randomly changing one of their
elements.

‘abc’ anywhere

‘abc’ or ‘cba’ anywhere

‘abc’ start/end of spells

‘abc’ or ‘cba’ start/end of spells

5.2.2 Event-based generating process

The aim of this second group of simulations is to evaluate the sensitivity of the measures
to the underlying events that provoke the change in states.
We consider the occurrences of successive events and define the consequent new state

after each event. For example, let l be leaving home, m be marriage, and c be first
childbirth. Before any of those three events occurs, we are in the initial state i (living
with parents). Then, depending on the first event experienced, we switch to one of the
states ‘having left home’, ‘being married’, or ‘having a child’, which we denote using the
symbols of the corresponding events l, m, or c. State m therefore means ‘married without
having left home’. When the second event occurs, we would, in the same way, switch
to one of the states lm, lc, or mc, where lm, for instance, means ‘having left home and
married’. Eventually, after all three events have occurred, we would be in state lmc.
For our simulations, we consider three events. Each sequence is then characterized

by the occurrence times of the three events e1, e2, e3. The sequences are simulated by
generating the occurrence times with an independent uniform distribution over the period
of observation for each of the three events.
Three strands of event-based simulations are considered. The first one aims at evalu-

ating the sensitivity to the order of occurrences of the events. We impose that the first
event occurs before the second one in group 1, and after the second one in group 2. The
second strand evaluates the sensitivity to the timing of the events by controlling the oc-
currence time of event 1 in each group. To evaluate sensitivity to the duration between
two events, we control, in the last strand, the elapsed time between the first two events.
The occurrence time of the third event is left completely random in all cases. Table 13
summarizes the three strands of simulations based on event occurrences.
When comparing event-based sequences, we can, for state-dependent measures, define

the state dissimilarities—substitution costs—using the number of unshared underlying
events. For example, the substitution cost between state ‘has experienced event e2 only’
and state ‘has experienced all three events’ is 2 since two events distinguish these states.
We use this principle to test the behaviour of measures parameterized with features-based
costs.

5.3 Analysed dissimilarity measures

Most of the dissimilarity measures recapitulated in Table 10 have been included in the
simulation study. For distances that can be parameterized, we have considered a selection
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Table 13. Simulations evaluating the sensitivity to the order and timing of events, and to
duration between events

Simulation Description Group one Group two

Order Random occurrence times e1 < e2 e1 > e2

Timing Date e1 of event 1 is fixed. e1 = 4 e2 ∈ {6 . . . 14}

e1 = 14 e2 ∈ {4 . . . 12}

Duration Fixed duration between events e1 and e2 e2 − e1 = 2 e2 − e1 ∈ {4 . . . 12}

e2 − e1 = 12 e2 − e1 ∈ {2 . . . 10}

of parameter configurations so as to explore the effect of the parameters and the range of
behaviours that can be covered. The complete list of dissimilarity measures and parameter
configurations studied in the simulations is given in Table 15, and the meaning of the
parameters used in that table and in the following figures is specified in Table 14.

Table 14. Meaning of parameters used in Table 15

Label Description

K Number of intervals used to compute Chi-square and Euclidean distances.

i Indel cost (single cost of 1 when not specified)

sm∗ Substitution costs: (single cost of 2 when not specified),
trate (derived from transition rates),
indelslog (derived from log-state-frequency-based indel costs),
indels (derived from inverse-state-frequency-based indel costs),
future (common future),
ec (based on count of non-shared experienced events)

e Spell expansion cost (for OMspell and OMloc)

w Weight of origin state vs. transition-type trade-off

ti Transition indel costs: (single cost of 1 when not specified),
sm (based on substitution costs),
raw (Bienmann’s method)

a Subsequence length weight exponent (0 when not specified)

b, h Spell duration weight exponent for SVRspell and OMslen, respectively
(when not specified, b = 1 and h = .5)

∗ To save space, ‘sm=’ will be omitted and therefore OM arguments without the ‘=’ sign
should be interpreted as values of the sm argument.
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Table 15. Distances included in the simulation study

Distance Configurations

Distribution-based EUCLID(K=1) (Euclidean), CHI2(K=1, 2, 4, 5, 10, 20), (χ2-distance between
distributions within K periods),
CHI2fut (metric based on distributions of subsequent states)

Hamming HAM (simple and generalized Hamming),
DHD (Dynamic Hamming)

Optimal Matching (OM) OM, OM(i=1.5), OM(trate), OM(indelslog), OM(indels), OM(future)

Localized Optimal Matching
(OMloc)

OMloc(e=0, 0.1, 0.25, 0.4)

Spell-Length-Sensitive Optimal
Matching (OMslen)

OMslen(h=1, i=1, 1.5, 5), OMslen(i=1, 1.5, 5)

Optimal Matching of Spell
Sequences (OMspell)

OMspell(e=0, 0.1, 0.5, 1), OMspell(e=0, 0.1, 0.5, 1, i=2)

Optimal Matching of Transition
Sequences (OMstran)

OMstran(w=0, 0.1, 0.5), OMstran(i=1.5, w=0.1, 0.5),
OMstran(i=5, w=0.1, 0.5),
OMstran(tm=raw)

Number of Matching
Subsequences (NMS)

NMS

Subsequence Vectorial
Representation (SVRspell)

SVRspell(b=0, 1, 2, 3), SVRspell(b=0, 1, 2, 3, a=1)

5.4 Results

Detailed results for each series of simulations are provided as an online appendix. We
summarize here the outcome of the study by opposing the mean scores achieved by each
measure for the simulations of the ‘sequencing’ strand to the mean scores obtained for the
temporality—‘timing’ and ‘duration’—strands13 on one side and the ‘duration’ scores to
the ‘timing’ scores on the other. These two axes roughly correspond to the first two robust
principal components found in Studer (2012). Unlike principal components, however, the
axes here are defined independently from the data. They also have a clearer interpretation.
The first axis is defined as temporality score minus mean sequencing score and will,
therefore, be oriented such that higher sensitivity to sequencing is on the left and higher
sensitivity to temporality dimensions on the right. The second axis is defined with higher
sensitivity to durations at the bottom and higher sensitivity to timing at the top.
Results from the state-based group of simulations are graphically displayed in Figure 2

and the results for the event-based group are in Figure 3. Figure 4 reports the results for
sensitivity to a random change of one token in the sequence. In each figure, the position
of the measures should be interpreted relatively to the other ones and does not reflect any
absolute level of sensitivity.
In order to not overload the figure with too many points, the results for each family

of measures is represented by the smallest polytope covering the scores obtained for the
different tested parameterisations. The labels of inner points are omitted and only those
of configurations associated with the vertices of the polytope are displayed. A large

13The mean temporality scores are computed as the average between the mean timing and mean
duration scores. The reported mean scores have been standardized.
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Figure 2. Scores for state-based simulations
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polytope area, such as the one for OMstran—OM of transitions—in Figure 2 indicates
that the measure allows for very different sensitivities through its parameterisation.

We can observe that the measures are distributed within a triangle in Figures 2 and 3.
This (unsurprisingly) reflects a higher contrast between duration and timing sensitivities
among measures sensitive to temporal aspects—on the right—than among measures pri-
marily sensitive to the sequencing—on the left. A noticeable general outcome in Figure 3
is that taking account of the explicit information on state proximities can significantly
affect the behaviour of the measure, e.g., HAM(ec) lies very far from HAM.

Results by distance families Let us have a closer look at each considered family
of dissimilarity measures. Two small graphs give the position each family occupies in
Figures 2 and 3.
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Figure 3. Scores for event-based simulations
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Distribution-based distances: Unsurprisingly, dis-
similarity measures based on differences between distribu-
tions over the whole period (K=1) appear to be the most
sensitive to durations. They also are the least sensitive to
differences in sequencing with R2s close to 0. The Chi-
square distance CHI2(K=1) is, among all considered dis-

tances, the most sensitive to duration differences for rare states, while the Euclidean
distance EUCLID(K=1) is the most sensitive to differences for states with high dura-
tions. When K increases, the sensitivity of the CHI2 measure shifts from duration to
timing. For K equal to the sequence length (here, 20), CHI2 gets scores similar to those
of the Hamming family regarding timing, but maintains some sensitivity to differences
in durations. The detailed results in the online appendix exhibit that the position-wise
Chi-square distance ranks better as a time-sensitive measure for small time changes than
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for large differences in timing. CHI2fut—itself a position-wise measure—is closer to the
position-wise CHI2 as compared to CHI2 versions with a smaller K.
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Hamming: All variants of the Hamming distance lie in
the top-right quadrant, meaning they are specifically sensi-
tive to timing differences. They are slightly less insensitive
to differences in sequencing than overall distribution-based
distances. This is because sequencing is partly determined
from the starting and ending states, especially when, as in

our generated sequences, the number of transitions remains low. The neutral position of
HAM and DHD on the vertical timing-duration scale for the event-based sequences is a
consequence of the much higher timing sensitivity reached by HAM(ec) using event-based
substitution costs. The HAM and DHD scores are low relatively to the score of HAM(ec).
From the simulations, the time varying costs of the DHD metric seem to relax some-
what the strong time sensitivity of pure Hamming. As with the position-wise Chi-square
distances, the Hamming distances rank better as time-sensitive measures for small time
changes than for large time differences.
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Optimal matching: The family of OM distances lies
on the right of the plot, which confirms the low sensitivity
to differences in sequencing, as pointed out, for instance, by
Elzinga (2003), Hollister (2009), and Halpin (2010). As ex-
pected, we also observe that OM with high indel—relatively
to substitution costs—is more sensitive to timing differences

(remember that HAM is OM with an arbitrarily high indel cost). Further, lowering the
indel cost increases the sensitivity to duration, and seems to reduce the insensitivity to
sequencing at the same time. The scores for OM with data driven substitution costs
remain, as expected, very close to the scores from those with a single state-independent
cost of 2, the variation in position being essentially determined by the ratio between indel
and substitution costs. For example, the data-driven costs of OM(future) are low in com-
parison with those used in other OM versions, which for the same indel value, increase the
indel/substitution cost ratio. This explains why OM(future) lies in the top-right quad-
rant. As also expected, deriving substitution and indel costs from the state frequencies
renders OM more sensitive to changes in the duration of rare events (Figure 4). Using the
log of inverse frequencies seems a better choice than raw inverse frequencies that make
OM too sensitive to rare events and small perturbations. Costs derived from the count
of non-shared lived events (ec) reduce the sensitivity to duration and ensure more im-
portance to timing differences. Interestingly, in all our simulations, OM(ec) and OM(ec,
i=1.5) get the same scores as HAM(ec), the reason being that the substitution costs are
globally so low that indels costing 1 or more are never used.
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Localized optimal matching: The distances of the
localized OM family are, with a few exceptions in the case
of costs based on the count of non-shared events, situated
in the lower portion of the plots. The horizontal position
is determined by the expansion cost e: the lower the value
of e, the more to the left is the position, with the measure

becoming highly insensitive to temporality when e approaches 0. For some simulation
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strands, the part of R2 for timing differences that is accounted for by the measure, becomes
negative. This means that with OMloc, we can get a total within-group discrepancy
greater than the overall ‘OMloc’ discrepancy. This is a consequence of the violation
of triangle inequality and makes OMloc especially unsuited for distinguishing between
groups of sequences with different timings.
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Spell-Length-Sensitive Optimal Matching: As ex-
pected by Halpin (2010), OMslen appears to be less sensitive
to differences in durations than classical OM. However, here
again, for several simulation strands (related to timing, du-
ration, and random perturbation) we got negative R2s when
h = 1.
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Optimal Matching of Spells: The family of OMspell
distances is located around a line going right to left from
OM—classical OM with a single substitution cost—to OM
of the DSS sequences, the latter corresponding to OMspell
(e=0). A high expansion cost e makes the measure more
sensitive to temporality, while low values of e give more

importance to sequencing. The sensitivity to temporality is attributable primarily to
duration rather than timing.
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Optimal Matching of Transitions: The family of OM
distances between sequences of transitions is the one that
covers the largest range of sensitivity combinations. Sensi-
tivity to temporality increases with the value of the origin-
transition trade-off parameter w. Recall that for w = 1,
OMstran is equivalent to classical OM. Lowering the value

of w significantly increases sensitivity to sequencing. As with classical OM, the vertical
position is mainly driven by the indel/substitution cost ratio. We can observe, however,
that the effect of the ratio becomes smaller when w decreases, i.e., when more importance
is given to the transition type than to the origin states.
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NMS: The NMS distance occupies a neutral position
near the centre of the plots. While such neutral positions
result in other distances exhibiting balanced positive sensi-
tivity to sequencing, temporality, and duration, this is not
the case for NMS, which appears to be more or less un-
sensitive to each of them. In Figure 4, for instance, we can

observe that NMS is the least sensitive distance to ordering. Counter-intuitively, the mea-
sure gets its best scores for sensitivity to timing. This strange behaviour is a consequence
of the extremely low proportion of subsequences that match among the huge number of
subsequences in each sequence. The NMS measure exhibits the expected sensitivity to
sequencing when applied on the sequences of DSS, which corresponds to SVRspell (b = 0).
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SVRspell: The family of SVRspell distances—also
based on matching subsequences—does not suffer from the
NMS lack of sensitivity to our three relevant aspects. The
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position of the measure is essentially linked to the spell dura-
tion exponent weight b. For b = 0 and a = 0, the SVRspell
distance becomes the NMS distance between the DSS se-

quences. This is the configuration that is the most sensitive to sequencing. Increasing
b makes the measure more sensitive to temporality. Overall, and contrarily to what we
expected, SVRspell lies in the top half of the state-based simulation plot and therefore
looks more sensitive to timing differences than to differences in durations. This behaviour
is not confirmed, however, by the event-based simulations. The effect of the a parameter
that determines the weight given to the length of the subsequences remains unclear but
limited. Looking at Figure 4, we observe that the SVRspell measures are, after the CHI2
measures, the most sensitive to small random perturbations.

Small random perturbations The sensitivity to small random perturbations is shown
in Figure 4 where the scores for a random change of one token in each sequence are plotted
against sequencing scores. We observe that the basic Euclidean and Chi-square distances
are, regardless of the breakdown of the covered time interval into periods, quite insensitive
to differences in ordering. The Chi-square distance appears to be, in our simulations, much
more sensitive to small perturbations than the basic Euclidean distance. If we exclude the
Chi-square distance, we observe that parameterisations that make measures more sensitive
to ordering, render them—at the same time—more sensitive to small perturbations. The
linear correlation between the ordering scores and the scores for random perturbation of
all but Chi-square measures is .8.

6 Choosing the right dissimilarity measure

The aim of the section is to provide guidelines for choosing from among the many different
possibilities of measuring dissimilarity between sequences. The choice is difficult because
it typically is multicriterial. In the retained social science framework, for instance, we
expect the measure to reflect differences in timing, duration, and sequencing. From the
theoretical knowledge and empirical evidence about the behaviour of the different dis-
similarity measures, there obviously is no measure that dominates all others in all three
dimensions of interest.

The previous discussion allows us, however, to discard a few measures. These are the
NMS distance of Elzinga (2003), OMloc (the localized OM) of Hollister (2009), and OM-
slen (the spell-length-sensitive OM) of Halpin (2010). NMS lacks sensitivity to all three
aspects, OMloc has strange behaviour resulting from violation of the triangle inequal-
ity, and OMslen has counter-intuitive and hence unexpected behaviour. Although these
three measures have interesting characteristics, alternatives—SVR for NMS, OMstran
for OMloc, and OMspell for OMslen—sharing similar aims without suffering from their
drawbacks should be preferred. Further, remember that we discarded the so-called ‘opti-
misation cost’ method proposed by Gauthier et al. (2009) because of serious mathematical
problems that could lead to negative dissimilarities.

Deriving substitution costs from transition rates—OM(trate)—adds complications
and could possibly generate violations of the triangle inequality. Moreover, as shown
by the simulations, OM(trate) provides results very close from OM with a single state-
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Figure 4. Sensitivity to a random change of state vs. sensitivity to sequencing

independent substitution cost.14 The same holds for DHD, which produces results sim-
ilar to simple Hamming (HAM). Together with the questionable justification for linking
substitution costs to transition rates, the above remarks advocate against using such
transition-rates-based methods.
Now, the choice among the remaining solutions will depend on what the researcher is

interested in. For instance, when studying the destandardisation of the family life, the
focus may be on changes in the order of the successive family life events, in changes in
the age at which people experience events such as the age at marriage or the age at first
childbirth, or changes in durations such as time to first childbirth after the first union.
If the focus is on changes in sequencing, measures highly sensitive to sequencing should

14In contrast, when states are structurally organised as in our event-based simulations, taking this
information on the relationships between states into account—the ec cases—can drastically change the
outcomes.
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be preferred. Good choices are OMstran—OM of transitions—with low weight (low w
value) on the state of origin, OMspell—OM of spells—with low expansion cost e, and
SVRspell—subsequence vectorial representation metric of Elzinga and Studer (2013)—
with low b spell length weight. One of the differences between these three measures
is the sensitivity to small perturbation. If one is interested in these small differences,
such as small spells of unemployment for instance, SVRspell should be used. On the
contrary, OMstran appears to be less sensitive to this aspect, whereas OMspell shows an
intermediary position. Classical OM is definitively not suited for measuring differences in
sequencing.

If we are interested to explain changes in timing, then we need measures sensitive to
timing. Position-wise measures such as those of the Hamming family are the most time
sensitive. Using the CHI2 (Deville and Saporta, 1983) and EUCLID distances with the
number of periods K equal to the sequence length, is also a solution. This K parameter
offers the advantage of allowing a smooth relaxation of exact timing alignment. This
indeed can also be achieved by expressing the Hamming distance as an OM distance with
high indel and progressively lowering the high indel value. CHI2 is specifically interesting
when we want to give high importance on changes involving rare states.

Regarding duration, the CHI2 and EUCLID distances with K set as 1 can be rec-
ommended when the interest is primarily in the distribution over the entire period. If
importance should instead be stressed on spell lengths, then OMspell with high expansion
cost would do a better job. Indeed, LCS and classical OM distance should also reasonably
well reflect dissimilarities in spell durations. Distances of the Hamming, SVRspell, and
OMtrans families are less suited to put focus on differences in spell durations.

While the choice of a dissimilarity measure is relatively easy when the focus remains
limited to a single dimension, the choice becomes more difficult when we want to simulta-
neously take into account differences in two or three dimensions out of timing, duration,
and sequencing. Measures such as OMstran, OMspell, and SVRspell—that can cover a
large number of different mixes of sensitivities—look interesting in this multi-focus context
for the control they allow on the trade-off between the different dimensions.

In many applications, we may be interested in the specific differences attributable to
each of the timing, duration, and sequencing aspects rather than considering them si-
multaneously. It could then be useful to use three different dissimilarity measures: one
sensitive to timing, one to duration, and one to sequencing. It should then be possible to
identify distinctions stemming from each aspect by comparing the analysis outcomes ob-
tained with each of the considered measures. For example, when studying the long-term
consequences of professional insertion trajectories, we would probably look at differences
between the trajectories of those who reach stable professional situations and those who
stay more vulnerable. Finding greater differences with sequencing-sensitive measures than
with timing or duration-sensitive measures, would indicate that the impact of the unem-
ployment policy depends more on the order in the trajectory than on temporality. Simi-
larly, when studying differences in family formation trajectories across birth cohorts, we
should be able to find out whether differences are primarily due to changes in sequencing,
thereby reflecting, for instance, the emergence of new stages such as ‘cohabiting couples’,
or due to timing differences resulting from the postponement of events such as marriage
or childbirths, or due to differences in spell durations such as marriage duration or the
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delay between marriage and first childbirth.
Running cluster analyses with different dissimilarity measures should also allow us

to find out whether the trajectories are primarily structured by timing, duration, or
sequencing differences. To achieve this, we compare cluster quality measures such as the
average silhouette width of the different partitions obtained. In a discrepancy analysis,
comparing outcomes obtained with different measures may also help to identify which
covariates explain best sequencing differences, and which ones explain best timing and
duration differences.

It is worth recalling, however, that the different dimensions are not completely in-
dependent from each other. We may therefore observe only minor differences between
outcomes obtained with different measures. Nevertheless, the use of multiple measures
can provide interesting knowledge about borderline cases, and we could learn, for instance,
that a given trajectory looks more like a type A regarding sequencing and more as a type
B from the timing point of view.

7 Conclusion

Sequence analysis, in particular, dissimilarity-based sequence analysis, has gained much
popularity in life course studies in the past few years. Although OM remains the most
used dissimilarity measure, there exists many other ways of measuring dissimilarity that
have either been developed independently or have been specifically proposed to answer
criticisms addressed to OM. The end user faces, therefore, the difficult task of choosing
a suitable measure for her/his research objectives. The structured and critical review of
the literature proposed in this article together with the simulation study of the behaviour
of the many addressed variants are meant to help one make this choice. The review is
original in several respects. Firstly, it is specifically oriented towards the ability of the
measures to render timing, duration, and sequencing differences that matter for life course
studies. Secondly, it pays attention to the often overlooked mathematical properties of the
dissimilarity measures, showing, for instance, that measures that can potentially violate
the triangle inequality may have unexpected behaviours. Thirdly, the review covers a
unique list of measures including novel alternatives to fix weaknesses of existing measures
or to fill a lack of existing measures able to consistently take a specific aspect into account.

A few aspects not addressed in the paper due to space limitations deserve mention
here. For example, we did not study the ability of the dissimilarity measures to cope
with sequences of unequal length, or to cope with missing elements in the sequences.
Further, we did not consider normalised distances. There exists evidence regarding these
aspects. Measures which do not allow time shift in sequence comparison clearly are
not applicable on sequences of different length. It is also known that normalisation can
break mathematical properties such as the fulfilment of the triangle inequality (Gabadinho
et al., 2011, p 29). A finer comprehension of how dissimilarity measures behave in these
situations is still needed, and we plan to run such a study using a simulation design similar
to the one in this article.

To conclude, it is worth mentioning that the entire set of dissimilarity measures stud-
ied with simulated sequences have been implemented in the TraMineR R package. Ap-
pendix A shortly describes the function that computes them and draws the links between
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the arguments of the function and the distance and parameter notations used in this
article.
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A Computing the dissimilarities with TraMineR

Most of the dissimilarity measures considered in this article have been made available in
the latest version of the TraMineR package (Gabadinho et al., 2011), a library for sequence
analysis in R. We shortly describe here how to compute distances between sequences with
the seqdist function provided by this package.
To use seqdist, we first have to define a state sequence object with the seqdef

function. We illustrate using the mvad data set that ships with TraMineR. For each case,
the successive states forming the sequences are stored in columns 17 to 86 of the mvad

data frame. We load the library and data, and create the state sequence object with

R> library("TraMineR")

R> data("mvad")

R> mvad.seq <- seqdef(mvad[,17:86])

The matrix dis of the pairwise dissimilarities between the sequences is then obtained
with

R> dis <- seqdist(mvad.seq, method = distancename, other arguments)

where distname can be any of the measure names listed in Table 10.
The minimal arguments are the state sequence object and the method. Depending

on the method selected, additional arguments may be required to specify values of pa-
rameters. There also are optional arguments to ask for normalisation, take weights into
account, or specify a reference sequence from which to compute dissimilarities for example.
Table 16 summarizes the available arguments.
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Table 16. Arguments of TraMineR’s seqdist function
Argument Value Description

Generic

with.missing Logical If TRUE, missing values are coded as an additional state. Since some methods do
not handle missing values, TRUE may be required when the sequences contain missing
values.

refseq see description Optional baseline sequence to compute the distances from. Can be the index of a
sequence in the state sequence object (0 for the most frequent sequence), or an external
sequence passed as a sequence object with a single row.

norm Character: ’’none’’,

’’maxlength’’, ’’gmean’’,

’’maxdist’’, ’’YujianBo’’

Normalisation method (default is ’’none’’).

weighted Logical Should weights be taken into account? (Ignored when not applicable.)

full.matrix Logical If TRUE (default), the full distance matrix is returned. This is for compatibility with
earlier versions of the seqdist function. If FALSE, an object of class dist, i.e., a vector
with only values from the upper triangle of the distance matrix, is returned. Since the
distance matrix is symmetrical, no information is lost with this representation while
size is divided by 2. Objects of class dist can be passed directly as arguments to most
clustering functions. Ignored when refseq is set.

sm Character or matrix Substitution-cost matrix specifying distances between states. Can also be ’’TRATE’’

(transition-rate-based) or ’’CONSTANT’’ (single substitution cost).

Chi-square and Euclidean (method=’’CHI2’’ or method=’’EUCLID’’)

breaks Numeric An optional vector specifying the period limits.

step Numeric Length of fixed-length periods (ignored when breaks is not NULL).

overlap Logical if TRUE, overlapping intervals are built using the step value (ignored when breaks is not
NULL).

Hamming (method=’’HAM’’)

Dynamic Hamming (method=’’DHD’’)

sm 3-dimensional array Substitution-cost matrix specifying distances between states at each time point. The
third dimension is used for the position in the sequences. If omitted, substitution
costs are based on transition rates.

Optimal Matching (method=’’OM’’)

indel Vector or single value Cost for inserting/deleting a state. Either one value or a vector with a value for each
element of the alphabet.

Localized Optimal Matching (method=’’OMloc’’)

expcost Numeric Cost of expending/contracting the spell length.

context Numeric Penalisation for differences with surrounding states.

Duration Sensitive OM (method=’’OMslen’’)

h Numeric Exponent of spell length

link Character Function to compute substitution cost: ’’mean’’ (arithmetic average, default) or
’’gmean’’ (geometric mean), or ’’max’’ (maximum).

indel Vector or single value Basic indel costs.

OM between sequences of spells (method=’’OMspell’’)

indel Vector or single value Basic indel costs.

expcost Numeric Cost of expending/contracting the spell length.

OM between sequences of transitions (method=’’OMstran’’)

indel Vector or single value Basic state indel costs.

transindel Character Method to compute transition indel costs: either ’’constant’’ (all equal to 1) or
’’subcost’’ (based on substitution costs)

otto Numeric (0-1) Weight for controlling the trade-off between cost of origin state and cost of transition
type.

previous Logical If TRUE, add transition from previous state.

addcolumn Logical If TRUE, replicate first (when previous=TRUE) or last column.

Number of Matching Subsequences (method=’’NMS’’)

sm Matrix State proximities (not distances!).

Sequence Vectorial Representation Metric (method=’’SVRspell’’)

sm Matrix State proximities (not distances!).

a Vector or single value Exponent weight of subsequence length

b Numeric Exponent weight of spell length
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