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Regular Article

IMMUNOBIOLOGY
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Key Points

• ALPS DNT cells and their
putative precursors reveal high
proliferative activity in
vivo, which is associated
with hyperactive mTOR
signaling.

• Rapamycin therapy controls
mitotic activity and abnormal
differentiation of ALPS DNT
cells and reduces CD41 or
CD81 precursor DNT cells.

Autoimmune lymphoproliferative syndrome (ALPS) is a humandisorder characterized by

defective Fas signaling, resulting in chronic benign lymphoproliferation and accumula-

tion of TCRab1 CD42 CD82 double-negative T (DNT) cells. Although their phenotype

resembles that of terminally differentiated or exhausted T cells, lack of KLRG1, high

eomesodermin, andmarginal T-bet expressionpoint instead to a long-livedmemory state

with potent proliferative capacity. Here we show that despite their terminally differenti-

ated phenotype, human ALPS DNT cells exhibit substantial mitotic activity in vivo.

Notably, hyperproliferation of ALPS DNT cells is associated with increased basal and

activation-induced phosphorylation of serine-threonine kinases Akt and mechanistic

target of rapamycin (mTOR). The mTOR inhibitor rapamycin abrogated survival and

proliferation of ALPS DNT cells, but not of CD41 or CD81 T cells in vitro. In vivo, mTOR

inhibition reduced proliferation and abnormal differentiation by DNT cells. Importantly,

increasedmitotic activity and hyperactivemTOR signaling was also observed in recently

defined CD41 or CD81 precursor DNT cells, and mTOR inhibition specifically reduc-

ed these cells in vivo, indicating abnormal programming of Fas-deficient T cells before

theDNTstage. Thus, our results identify themTORpathwayas amajor regulator of lymphoproliferation andaberrant differentiation in

ALPS. (Blood. 2016;128(2):227-238)

Introduction

The autoimmune lymphoproliferative syndrome (ALPS) is a human
disorder of dysregulated lymphocyte homeostasis resulting from
defects in the Fas signaling cascade. The majority of patients with
genetically defined ALPS harbor heterozygous germline or somatic
FAS mutations or a combination of both.1-3 Defective Fas signaling
results in chronic benign lymphoproliferation with often massive
splenomegaly and lymphadenopathy, autoimmunemanifestations, and
an increased risk for lymphoma.2,4,5 Although absolute numbers of
total T and B cells are increased in most patients with ALPS, the
pronounced lymphoproliferation has mainly been attributed to the

pathognomonic accumulation of TCRab1 CD42/CD82 double-
negative T (DNT) cells. DNT cells have for a long time been assumed
to arise from chronically activated CD81 T cells accumulating as a
result of defective Fas-mediated elimination. Indeed,DNT cells exhibit
some features of terminally differentiated effector-memory cells re-
expressing CD45RA (TEMRA), a subset of end-stage or senescent
T cells with poor proliferative capacity, low telomerase activity, and
short telomeres. Moreover, DNT cells express inhibitory receptors and
fail to respond to mitogen or TCR stimulation in vitro similar to
senescent T cells.6-8
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However, several findings are not compatible with this concept
of DNT cell ontogeny and accumulation. Early immunohisto-
chemical studies revealed that many cells in the lymph node
paracortex, which is heavily infiltrated by DNT cells in patients
with ALPS, stain positive for Ki67.8 Although the lineage and
phenotype of theseKi671 cells were not analyzed in detail, this was
a first indication that DNT cells are not merely senescent cells,
which cannot die, but that they actively proliferate in vivo. In addition,
we and others have found that ALPS DNT cells have a unique differ-
entiation pattern differing from terminally differentiated CD41 or
CD81Tcells.7,9Although theirCCR72/CD45RA1/CD1272/CD571

phenotype suggests terminal differentiation, lack of killer-like
receptor G1 (KLRG1) and expression of costimulatory receptors
CD27 and CD28, as well as the high eomesodermin (Eomes) to
T-bet expression ratio, are characteristics of long-lived memory
T cells with potent proliferative capacity.9,10 Of interest, subsets
of CD41 and CD81 T cells also show this unusual differentiation
pattern and most likely represent direct precursors of DNT cells.9

Thus, DNT cells can presumably arise from CD41 or CD8 T1

cells, and their abnormal differentiation occurs before the DNT
stage.

Although some patients with ALPS do not require treatment,
others need medical support, especially with regard to autoim-
mune cytopenia. First-line treatment of ALPS includes high-dose
corticosteroids and intravenous immunoglobulins. However, as
a result of the extensive adverse effects of long-term steroid
treatment, other immunosuppressive drugs such as mycophenolate
mofetil (MMF) and rapamycin are successfully used as second-line
therapies.11 MMF is metabolized to the active compound mycophe-
nolic acid, which inhibits lymphocyte proliferation by blocking
purine synthesis. Rapamycin inactivates the serine/threonine protein
kinasemechanistic target of rapamycin (mTOR), thereby inhibiting
cell growth and differentiation. Interestingly, clinical studies have
shown that rapamycin but not MMF treatment of patients with ALPS
efficiently reduced lymphoproliferation and numbers of circulat-
ing DNT cells.11-13 Although it is not clear whether rapamycin
affects expansion or induces apoptosis of DNT cells or both,14 its
therapeutic efficiency suggests specific signaling requirements of
DNT cells.

In this study, we sought to analyze the proliferative activity,
stimulatory requirements, and underlying signaling pathways of
DNT cells in patients with ALPS. We demonstrate that abnormally
differentiated DNT cells are the predominant cell population
undergoing cell division in patients with ALPS. Enhanced mitotic
activity of ALPS DNT cells was associated with hyperactivation of
the mTOR pathway and could be reverted by rapamycin treatment.
Importantly, increased proliferation and mTOR signaling also occurred
in CD41 or CD81 DNT putative precursor cells. Collectively, our
data highlight the crucial role of the mTOR pathway in controlling
lymphoproliferation and abnormal differentiation in human FAS
deficiency.

Materials and methods

Patients

We analyzed 19 untreated patients with ALPS (n 5 8 ALPS-FAS; n 5 5
ALPS-sFAS; n 5 6 ALPS-FAS-sLOH; mean age, 16 years [range, 2-62
years]), 11 patients with ALPS treated with rapamycin (n5 3 ALPS-FAS;
n5 4 ALPS-sFAS; n5 4 ALPS-FAS-sLOH; mean age, 10 years [range, 2-
20 years]), 3 patients with ALPS treated with MMF (ALPS-FAS), and 12

healthy volunteers (mean age, 23 years; range, 15-36 years). All procedures
were based on standard of care, and established clinical guidelines were
followed. Untreated patients had not received any medication for at least
4 weeks. The study was approved by the ethics committee of the University
of Freiburg (protocol number 40/09) and theUniversity Erlangen-Nuremberg
(protocol number 4554-CH). Written informed consent was obtained from
patients and controls. The study was conducted in accordance with the
Declaration of Helsinki.

Flow cytometry

Peripheral bloodmononuclear cells (PBMCs)were separated bydensity gradient
centrifugation and stained according to the manufacturer’s recommendations,
usingfluorochrome-coupled antibodies (supplemental Table 1, available on
the Blood Web site). Intracellular staining was performed using Fixation/
Permeabilization Kit (BD Biosciences). Forward scatter/side scatter and
single-cell gating were used to exclude dead cells from all analyses. For
detection of phosphorylated proteins, blood samples were incubated with
anti-CD3 and anti-CD28 monoclonal antibody (mAb; eBioscience) on ice,
washed with ice-cold PBS, and cross-linked with goat anti-mouse mAb.
Cells were stimulated at 37°C for 15 minutes and fixed and permeabilized
with Perm Buffer 3 (BD Biosciences) according to the manufacturer’s
recommendations. Cells were washed twice with PBS containing 2%
fetal calf serum and incubated with fluorochrome-conjugated mAb for
30 minutes at room temperature. Baseline levels of phosphorylation were
determined by fixation and permeabilization of untreated cells. Data acqu-
isition was performed on a fluorescence-activated cell sorter Canto II and a
fluorescence-activated cell sorter LSRFortessa (BD Biosciences). Y-axis of
histogram overlays was normalized to mode. Data were analyzed with
FlowJo, v10 (Tree Star, Inc.).

Cell culture and proliferation assays

CD41, CD81, and DNT cells were isolated from PBMC by cell sorting, using
a MoFlo XP cell sorter (Beckmann Coulter). Allogeneic dendritic cells (DCs)
were generated from human blood monocytes from healthy volunteers, as
describedpreviously.15Todetermine cell proliferation, sortedCD41, CD81, and
DNT cells were labeled with carboxyfluorescein diacetate succinimidyl ester
(CFSE; Sigma-Aldrich) andwashed twicewith serum-containingmedium.Cells
(4 3 104/well) were stimulated with plate-bound anti-CD3 antibody (0.2 mg/
well), phytohemagglutinin (PHA; 2.5 mg/mL, Sigma-Aldrich), allogeneic DC,
or anti-CD3/CD28 coated beads (13 104/well; Life Technologies) in complete
medium (RPMI 1640, 10% human AB serum) plus IL-2 (100 IU/mL; Novartis
Pharma). After 6 days, cells were stained with indicated antibodies and analyzed
by flow cytometry. The compound 7-amino-actinomycin D was used to
determine cell viability. For rapamycin treatment, CFSE-labeled T cells were
stimulated with anti-CD3/CD28-coated beads and IL-2. Rapamycin was
added once at the beginning of cell culture in the presence of rapamycin (final
concentration, 1 nM-10mM). After 6 days, proliferation and viability of cells
were determined by flow cytometry.

Quantitative PCR

TotalRNAwas isolated from indicated cell populations, usingRNeasyMicroKit
(Qiagen). Reverse transcription was performed using SuperScript II Reverse
Transcriptase (Life Technologies). cDNA was quantified by real-time PCR on
a Rotor Gene Q platform, using QuantiTect SYBR Green (Qiagen). Relative
gene expression was determined by normalizing target gene expression to
b-2 microglobulin. The following primers and probes were used (Qiagen):
Hs_B2M_1_SG QuantiTect Primer Assay (QT00088935), Hs_KLF2_1_SG
QuantiTect Primer Assay (QT00204729), and Hs_IL10_1_SG QuantiTect
Primer Assay (QT00041685).

Enzyme-linked immunosorbent assay

Serum levels of IL-10were determined by enzyme-linked immunosorbent assay,
according to manufacturer’s instructions (OptEIA; BD Biosciences).
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Statistical analysis

Data were analyzed with Prism software (GraphPad). Populations were
compared using Mann-Whitney U test; Spearman’s rank test was used for
correlation analysis; P, .05 was considered significant.

Results

Abnormally differentiated DNT cells of patients with ALPS are

highly proliferative in vivo

On the basis of the high proliferative activity of interfollicular cells
observed in lymph node sections of patients with ALPS,8,16 we aimed
to characterize the mitotic activity of circulating lymphocyte subsets in
more detail.We studied a group of patients with ALPSwith somatic or
germline FAS mutations and variable DNT cell frequencies (supple-
mental Figure 1A). We first analyzed expression of the nuclear protein
Ki67, which is present during active phases of the cell cycle (G1 toM).
A proportion of circulating DNT cells and a small fraction of single
positive CD41 or CD81 T cells from most patients with ALPS highly
expressed Ki67, although it was absent in all 3 cell populations from
healthy donors (Figure 1A). Moreover, we found a significant cor-
relation of Ki67 expression and DNT cell frequency in patients with
ALPS (supplemental Figure 1B). Reflecting their activated state,
DNT cells highly expressed HLA-DR (supplemental Figure 1C). To
confirm that Ki67 expression is associated with cell division, we
determined the presence of proliferating cell nuclear antigen and cyclin
A, which are expressed during S and G2 phase of the cell cycle.17,18

ALPS DNT cells expressed both cell cycle regulators, indicating these
cells progress through cell cycle (Figure 1B). Phenotypic analysis of
proliferating lymphocytes in patients with ALPS revealed that most
Ki671 cells are of the DNT cell phenotype, whereas gd T cells, NK
cells, NKT cells, andB cells displayed lowmitotic activity (Figure 1C).
The majority of ALPS DNT cells are CCR72/CD45RO2/CD45RA1/
CD571, an expression pattern of terminally differentiated cells.7,9

Further analysis revealed a linear relationship between the percentage
of DNT cells showing a CCR72/CD45RA1 differentiation state and
the fraction of DNT cells with mitotic activity (Figure 1D). More
specifically, Ki67 expression was limited to DNT cells showing the
unusual CD571/CD271/CD281 differentiation state (Figure 1E) we
have recently defined for ALPS DNT cells.9 Thus, in contrast to
CCR72/CD45RA1/CD571 terminally differentiated T cells of healthy
individuals, which are generally associated with poor proliferative
potential and lowKi67expression,19,20ALPSDNTcells expressing the
same markers are highly proliferative in vivo.

Proliferation of ALPS DNT cells can be induced by

costimulatory signals in vitro

To address potential cellular signals controlling the mitotic activity of
ALPS DNT cells, we isolated CD41, CD81, and DNT cells and
cultured them in vitro in the presence of different stimuli. ALPS
DNT cells are known to rapidly die ex vivo in the absence of
stimulation.21 Addition of IL-2 or the homeostatic cytokines IL-7 or
IL-15 did not enhance survival nor induce proliferation of ALPS
DNT cells (data not shown). We next asked whether TCR ligation
induces proliferation of ALPS DNT cells. ALPS DNT cells failed
to respond to anti-CD3 stimulation or PHA (Figure 2A-B), whereas
DNT cells from healthy donors proliferated vigorously. In contrast,
proliferation of ALPS DNT cells could be induced by anti-CD3/CD28
stimulation or with allogeneic DC. CD41 and CD81T cells from both
healthy controls and patients with ALPS exhibited potent proliferation

on stimulation with anti-CD3 or PHA, which cannot be enhanced
by additional costimulation (Figure 2B; supplemental Figure 2; data
not shown).

ALPS DNT cells show hyperactive mTOR signaling

As ALPS DNT cells vigorously proliferate in vivo, express
costimulatory receptors CD27 and CD28, and require costimulation
to proliferate in response to TCR stimulation in vitro, we considered
that signal transduction downstream of costimulatory receptors might
be crucial for accumulation of DNT cells in ALPS. An important
molecule activated downstream of CD28 is mTOR, which plays a key
role in regulating cell proliferation and effector differentiation.22 We
therefore analyzed the phosphorylation status of protein kinase Akt at
Ser473, mTOR at Ser2448, and its downstream target ribosomal
protein S6 at both phosphorylation sites Ser235/6 and Ser240 in T cells
from patients with ALPS ex vivo. Intriguingly, ALPS DNT cells
showed enhanced basal and activation-induced phosphorylation of
Akt, mTOR, and S6 compared with ALPS bulk CD41 and CD81

T cells or the respective cell populations from healthy controls
(Figure 3A-B; supplemental Figure 3A-B). The percentage of Ki671

lymphocytes positively correlated with phosphorylated Akt in ALPS
DNTcells (datanot shown).Themainnegative regulator ofAkt-mTOR
signaling is the lipid phosphatase PTEN (phosphatase and tensin
homolog), which dephosphorylates phosphatidylinositol-3,4,
5-triphosphate into phosphatidylinositol-4,5-bisphosphate, and thereby
opposes PI3K activity.23,24 Of note, ALPS DNT cells showed in-
creased expression of PTEN compared with CD41 or CD81 T cells
(supplemental Figure3C).Moreover, hyperphosphorylationofmTOR
signaling molecules was lost after resting PBMC in PBS (data not
shown), suggesting that external signals and/or nutrients are required
for maintenance of this activated state.

To further confirm hyperactivity of the mTOR pathway in ALPS
DNT cells, we determined expression of important transcription
factors that are positively (hypoxia-inducible factor 1a [HIF1a]) or
negatively (Kruppel-like factor 2 [KLF2]) regulated by mTOR.
Indeed, we observed increased expression of HIF1a and reduced
expression of KLF2 in ALPS DNT cells (Figure 3C-D). Together,
these data support the finding that mTOR signaling is enhanced in
DNT cells from patients with ALPS, but not from control donors,
which likely contributes to proliferation and accumulation of these
abnormally differentiated cells in vivo.

Rapamycin reduces abnormally differentiated DNT cells in vitro

and in vivo

The mTOR inhibitor rapamycin has been successfully used to treat
lymphoproliferation and autoimmune cytopenias in patients with
ALPS.11-13 To further understand the effects ofmTOR inhibition in this
disease, we built on our above observations and addressed the question
of whether the sensitivity to rapamycin is linked to the particular
differentiation state of ALPS versus control DNT cells. We first
investigated how rapamycin affects proliferation and survival of
ALPS DNT cells in vitro. Notably, addition of rapamycin to anti-
CD3/CD28 stimulated DNT cells reduced the mitotic activity of
DNT cells from patients with ALPS, but not from healthy donors
(Figure 4A; supplemental Figure 4A). In contrast, bulk CD41 or
CD81 T cells from both groups were resistant to the antiproliferative
effects of rapamycin across a large dose range. We also observed an
increased rate of apoptosis in rapamycin-treated ALPS DNT cells,
suggesting cell death contributes to the antiproliferative effect of
rapamycin (Figure 4B).
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Wenext monitored the effects of rapamycin on ALPSDNT cells in
vivo.Consistentwithprevious studies,12,25 the percentage ofDNTcells
was dramatically reduced in patients with ALPS under rapamycin
therapy (Figure 4C-D). Of interest, rapamycin treatment did not in-
crease frequency of FoxP31 regulatory T (Treg) cells, suggesting the
effect of mTOR inhibition on disease phenotype is unlikely to be
mediated by Treg cells (Figure 4E). A more detailed analysis revealed

that rapamycin specifically affected ALPS DNT cells displaying the
abnormal differentiation phenotype (Figure 4F). In addition, mitotic
activity (Ki67, cyclin A, proliferating cell nuclear antigen) and
expression of HLA-DR and Eomes was greatly diminished among
ALPS DNT cells remaining after treatment with the mTOR inhibitor
(Figure 4C, G; supplemental Figure 4B-E). We further analyzed the
effect ofMMF treatment onALPSDNT cells. In contrast to rapamycin
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therapy, MMF did not affect differentiation, proliferative activity, or
Eomes expression of ALPS DNT cells.

We then asked whether rapamycin therapy is able to control
hyperactive mTOR signaling in vivo. DNT cells from rapamycin
treated patients with ALPS demonstrated phosphorylation levels of
Akt(Ser473) and S6(Ser240) similar to those of CD41 and CD81

T cells (Figure 5A). Moreover, HIF1a and KLF2 expression of
DNT cells in rapamycin-treated patients with ALPS were similar
to healthy controls (Figure 5B-C). These data suggest that the effect
of rapamycin is linked neither to the absence of CD4 or CD8
coreceptor expression (as healthy donor DNT cells are not affected)
nor to the impairment of FAS signaling (as normally differentiated
DNT cells in patients with ALPS are not affected), but is closely
linked to the abnormal differentiation pattern. To elucidate the
effect of mTOR inhibition on DNT cell functionality, we analyzed
expression of IL-10 in sorted T-cell populations of untreated and

rapamycin-treatedpatientswithALPS. In linewithprevious studies,26,27

ALPS DNT cells highly expressed IL-10, whereas ALPS CD41 and
CD81 T cells or DNT cells from healthy controls showed low IL-10
expression (Figure 5D). Notably, rapamycin therapy abolished
expression of IL-10 in ALPS DNT cells, resulting in decreased serum
IL-10 levels after therapy onset (Figure 5D-E). Together, our data
indicate that mTOR inhibition in human ALPS specifically controls
mitotic activity, aberrant differentiation, and dysregulated cytokine
expression of DNT cells.

Aberrant CD41 and CD81 “DNT-like” putative precursors

exhibit increased mitotic activity and mTOR signaling

We have previously shown that a small subset of ALPS CD41 and
CD81 T cells exhibit the abnormal (CD45RA1/CD571/CD1272/
KLRG12/CD271/CD281) differentiation pattern of DNT cells, and
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presumably represent theirdirect precursors.9Theabove considerations
would predict that this subset should also show hyperproliferation and
hyperactivemTOR signaling. Therefore, we analyzedKi67 expression
in naive (CD45RA1/CD572), terminal differentiated (TEMRA,
CD571/CD272/CD282), and “DNT-like” (CD571/CD271/CD281)
ALPS CD41 and CD81T cells. Indeed, mitotic activity was markedly
enhanced in CD41 and CD81 T cells with a “DNT-like” phenotype
compared with conventional naive or TEMRA cells (Figure 6A).

We further examined the phosphorylation status of ALPS CD41

and CD81 T-cell subsets. Consistent with the increased proliferative
potential, “DNT-like” CD41 and CD81 T cells showed enhanced

phosphorylation of Akt (Figure 6B). To test the effect of rapamycin on
this putative DNT cell precursor population, we aimed to determine
putative precursors in patients with ALPS before and under rapamycin
treatment. Notably, “DNT-like”CD41 and CD81 T cells clearly
declined during therapy (Figure 6C). Moreover, remaining abnormal
CD41 andCD81T cells showed decreasedmitotic activity, suggesting
thatmTOR inhibition is able to control not onlyDNTcells but also their
putative progenitors. In summary, these data indicate that absence of
Fas signaling leads to abnormal differentiation and highmitotic activity
ofTcell subsets resulting fromhyperactivemTORsignaling,whichcan
be pharmacologically reversed by rapamycin therapy (Figure 7).
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Discussion

This study demonstrates that pathognomonic DNT cells, as well as a
subset of CD41 and CD81 T cells in patients with ALPS are highly
proliferative in vivo associated with a hyperactive mTOR pathway.
In combination with our recent findings on their similar, unusual
phenotype with expression of bothmemory (CD27/CD28/Eomes) and
senescence (CD45RA/CD57/PD1)markers,9 these observations imply
that abnormal signaling and differentiation occurs in a subset of T cells
before they reach the DNT stage. Active proliferation of a subgroup of
Fas-deficient T cells paradoxically showing signs of senescence,
either caused or supported by hyperactive mTOR signaling, may
thus be a key driver of the lymphoproliferative manifestations in
patients with reduced Fas signaling.

On the basis of the role of Fas in the induction of apoptosis, the
accumulation of DNT cells in patients with ALPS was initially
considered to result from impaired death of senescent cells at the end
of their life cycle. Indeed, lack of CCR7, CD62L, and CD127 and
expression of CD45RA by ALPS DNT cells are features of a TEMRA
phenotype.7,9 A senescent phenotype was further supported by high
expression of CD57 and failure to respond to mitogen or TCR
stimulation in vitro.6,8 In apparent contrast to thesefindings, a previous
report has shown that many cells in the lymph node paracortex, which
is heavily infiltrated by DNT cells in patients with ALPS, express the

proliferation marker Ki67.8 Our analysis of Ki67 expression on a per
cell basis demonstrates that the proliferative activity in vivo is
restricted to DNT cells and their putative precursors and represents a
key feature of these cells. Thus, there is a clear dissociation between a
terminally differentiated, senescent phenotype and active prolifera-
tion, which has not been observed in other disease contexts so far.

What is the basis of this proliferative activity? Our data show that
not only humanALPSDNT cells but also their putative precursors had
increased phosphorylation of Akt, mTOR and ribosomal protein S6,
indicating hyperactivity of both mTORC1 (which phosphorylates S6)
and mTORC2 (which phosphorylates Akt on Ser473). The mTOR
pathway has been well defined as a critical regulator of T-cell growth,
survival, and differentiation,28,29 rendering a link between this pathway
and proliferative activity plausible. Because of the effect of the mTOR
inhibitor rapamycin on lymphoproliferation and DNT cell accumula-
tion in both lprmice andALPSpatients13,14 provides a strong argument
for a causal association, we analyzed the effect of this treatment on the
abnormally differentiated ALPS T cells in more detail.

We observed both reduced proliferation and increased apoptosis
of ALPS DNT cells treated with rapamycin in vitro, suggesting that
inhibition of proliferation contributes to the reduction of DNT cells
and their putative precursors in vivo. Furthermore, mTOR inhibi-
tion abolished expression of IL-10 in ALPS DNT cells remaining after
treatment, resulting in decreased serum IL-10 levels. Among these
remaining DNT cells, we also found a reduction of abnormally
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differentiated cells and reducedmTORactivity. This couldmean that
in addition to blocking proliferation, rapamycin selectively induces
apoptosis in abnormally differentiated DNT cells. In fact, there is
evidence in the CBA-lprcg mouse model that rapamycin activates the

proapoptotic Bcl-2 family member Bad, inducing apoptosis by the
intrinsic mitochondrial pathway.14 A recent study showed increased
expression of antiapoptotic molecules Bcl-2, Bcl-xl, and Mcl-1 in
ALPSDNT cells.30 Interestingly, these molecules can be induced by
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the PI3K-Akt-mTOR signaling and attenuate intrinsic apoptosis
pathway.31-33 Alternatively, mTOR inhibition may not only eliminate
abnormally differentiated cells and reduce their proliferation but also
to some extent revert their abnormal programming. In contrast, DNT
cells from MMF-treated patients with ALPS retained the abnormal
differentiation and mitotic activity, indicating that pharmacological
regulation of the mTOR pathway might offer a superior therapeutic
option than MMF therapy.

Various studies showed that rapamycin promotes generation,
expansion, and functionality of FoxP31 Treg cells, both in vitro and
in vivo.34-36 Therefore, the benefit of rapamycin in ALPS might be
enhanced by induction or expansion of Treg cells. However, we neither
found a reduced Treg frequency in patients with ALPS nor an ex-
pansion of Treg cells after rapamycin therapy, suggesting efficacy of
mTOR inhibition is attributed to reduction ofDNTcells and not to Treg
cell expansion.

Importantly, the role of mTOR in driving the proliferative activity
of DNT cells and their putative precursors does not resolve the
discrepancy between a TEMRA-like, senescent cellular phenotype
and active proliferation of ALPS DNT cells. In normal T cells,
sustained mTOR activation leads to terminal differentiation, as well as
induction of T-bet and repression of Eomes expression.22,37,38 Such
cells show reduced proliferative capacity and defective memory
formation.19,39 The relevance of mTOR hyperactivation in terminal
differentiation has been reinforced by the recent description of patients
with PIK3CD gain-of-function mutations. CD81 T cells in these
patients are predominantly CD571/KLRG11 with pronounced
effector gene expression but poor proliferative capacity both in
vivo and in vitro.40 In patients with ALPS, hyperactive mTOR
signaling in DNT cells and putative precursors is associated with
a CCR72/CD45RA1/CD571/CD1272/CD62L-terminal differenti-
ated phenotype, but paradoxically, cells do not express T-bet and
KLRG1 and vigorously proliferate in vivo. Thus, mTOR signaling is
required for DNT cell survival and expansion but appears at least
partially uncoupled from transcriptional programming toward
terminal effector cells.

Although patients with PIK3CD gain-of-function mutations show
constitutive mTOR signaling, mTOR activation in ALPS DNT cells
and their precursors is likely to be driven by upstream signals. Because
CD28 is a potent activator of the PI3K-Akt-mTOR pathway and
is expressed by DNT cells, despite their terminally differentiated

phenotype, it may mediate relevant signals for DNT cell survival and
expansion. The survival and proliferation ofALPSDNTcells onCD28
costimulation in vitro, as well as the enhanced phosphorylation of Akt,
mTOR and S6 after anti-CD3/28 stimulation ex vivo, confirmed
functionality of this pathway. However, studies in Fas and CD28
double-deficient mice question a crucial role for CD28 signaling in
DNT cell accumulation. Although numbers of abnormal T cells were
reduced in lymph nodes of CD282/2 lpr/lpr mice, splenomegaly was
enhanced and associated with accumulation of DNT cells.41 Alterna-
tively, mTOR signaling may be enhanced indirectly by alterations of
signaling thresholds or intracellular modifiers of this pathway. Indeed,
DNT cells of lpr mice exhibit elevated inositol phospholipid turnover,
constitutive tyrosine phosphorylation, and aberrant expression of
CD45.42,43 These alterations are expected to induce a state of T-cell
activation likely associated with mTOR activation. Because KLRG1
inhibits mTOR signaling,44 lack of KLRG1 onALPSDNT cells could
further enhance this pathway. The hyperresponsive mTOR signaling
may also be a result of downregulation of the lipid phosphatase PTEN,
which could lower signaling thresholds. Indeed, targeted deletion of
Pten induced hyperactive PI3K-Akt signaling, lymphoproliferation,
impaired Fas-mediated apoptosis, and lethal autoimmunity.45 Para-
doxically, we found enhanced PTEN expression in ALPS DNT cells,
suggesting that mTOR signaling should even be suppressed in these
cells. BothCD28 signaling and lowTCR stimulation have been shown
to induce PTEN expression in human T cells, and thereby to generate a
negative feedback loop controlling PI3K activity.23,46 These data
indicate that hyperactive mTOR pathway in ALPS is a result of a
specific activation by costimulatory signals and/or TCR stimulation,
rather than continuous signaling caused by absent regulatory proteins.
Overall, furtherwork isnecessary to resolvewhether andhowupstream
signals and their effects on pathways other than the mTOR pathway
may contribute to the dissociation between cellular phenotype and
proliferative activity.

One of the key unresolved questions is the link of the abnormal
proliferative activity to impaired Fas signaling. In principle, impaired
apoptosis of a small proportion of T cells in the absence of FAS could
lead to survival of cells with enhanced mTOR activity, driving an
atypical program of terminal differentiation and uncontrolled pro-
liferation. Alternatively, or in addition, altered T-cell signaling in
the absence of FAS could result in enhanced mTOR activity. Of
interest, Fas costimulation of naive T cells has been shown to inhibit
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proliferation and cytokine production by excluding TCR-signaling
proteins from lipid raftswithout inducing apoptosis.47 Thus, lack of Fas
signaling in ALPS might affect initial T-cell activation by increasing
TCR-signaling strength, aswell as inappropriateT-cell survival resulting
from defective cell death induction.

Despite being a hallmark of disease, the functionality of ALPS
DNT cells still remains unclear. In murine transplantation models,
conventionalDNTcells havebeen shown to suppress immune responses
through Fas/FasL-mediated elimination of effector T cells48-53 Of
interest, DNT cells fromMRL/lprmice, amurinemodel of ALPS, were
shown to kill syngeneic wild-type, but not Fas-deficient, lpr CD41 or
CD81T cells, indicating that the regulatory function of DNT cells in lpr
mice is retained.48 We demonstrated recently that activation of the
mTORpathway abrogates the immunoregulatory function ofDNT cells
from healthy volunteers by reversing their anergic phenotype while
promoting proliferation.54 Because ALPS DNT cells show enhanced
mTOR signaling and increased proliferative activity, it can be argued
that a possible regulatory function of ALPS DNT cells is impaired.
However, future work will need to address the potential suppressive
properties of DNT cells in patients with ALPS.

In summary, the pathophysiological basis of lymphoproliferation
inALPS appears to bemuchmore complex than an impairment of cell
death by impairedFas signaling.Also, the activatedmTORpathway in
DNT cells and their putative precursors in combination with the effect
of rapamycin elaborated in this study does not provide the full answer.
Nevertheless, a step-by-step dissection of the molecular regulation of
T-cell differentiation andproliferationwill help usunderstand the basis
of human lymphoproliferative diseases.
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