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Abstract. Pencil beam scanned (PBS) proton therapy of lung tumours is hampered

by respiratory motion and the motion-induced density changes along the beam path.

In this simulation study, we aim to investigate the effectiveness of proton beam tracking

for lung tumours both under ideal conditions and in conjunction with a respiratory

motion model guided by real-time ultrasound imaging of the liver. Multiple-breathing-

cycle 4DMRIs of the thorax and abdominal 2D ultrasound images were acquired

simultaneously for five volunteers. Deformation vector fields extracted from the

4DMRI, referred to as ground truth motion, were used to generate 4DCT(MRI) data

sets of two lung cancer patients, resulting in 10 data sets with variable motion patterns.

Given the 4DCT(MRI) and the corresponding ultrasound images as surrogate data, a

patient-specific motion model was built. The model consists of an autoregressive model

and Gaussian process regression for the temporal and spatial prediction, respectively.

Two-field PBS plans were optimised on the reference CTs, and 4D dose calculations

(4DDC) were used to simulate dose delivery for (a) unmitigated motion, (b) ideal 2D

and 3D tracking (both beam adaption and 4DDC based on ground truth motion), and

(c) realistic 2D and 3D tracking (beam adaption based on motion predictions, 4DDC

on ground truth motion). Model-guided tracking retrieved clinically acceptable target

dose homogeneity, as seen in a substantial reduction of the D5-D95 % compared to the

non-mitigated simulation. Tracking in 2D and 3D resulted in a similar improvement

of the dose homogeneity, as did ideal and realistic tracking simulations. In some
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Ultrasound-guided lung tumour tracking 2

cases, however, the tracked deliveries resulted in a shift towards higher or lower dose

levels, leading to unacceptable target over- or under-coverage. The presented motion

modelling framework was shown to be an accurate motion prediction tool for the

use in proton beam tracking. Tracking alone, however, may not always effectively

mitigate motion effects, making it necessary to combine it with other techniques such

as rescanning.

Keywords: 4DMRI, liver ultrasound, motion modelling, Gaussian process regression,

proton therapy, proton beam tracking, pencil beam scanning, lung tumours

Submitted to: Phys. Med. Biol.
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Ultrasound-guided lung tumour tracking 3

1. Introduction

In the treatment of thoracic or abdominal tumours, the advantages of pencil beam

scanned (PBS) proton therapy are challenged by respiratory motion. Not only lateral

target miss but also interplay between the delivery dynamics and the moving tumour can

strongly deteriorate the quality of the initially optimised 3D treatment plan (Phillips,

Pedroni, Blattmann, Boehringer, Coray & Scheib 1992, Bert & Durante 2011). In order

to ensure a safe and effective treatment for tumours affected by respiratory motion

employing appropriate motion mitigation strategies is compulsory (Zhang, Huth, Weber

& Lomax 2018). Indeed, scanned proton deliveries lend themselves to tumour tracking

by nature, because each beam position could be adapted in real-time to follow the

tumour motion. This probably being the most elegant motion mitigation concept, it is

also the most challenging technique to be implemented clinically (Rietzel & Bert 2010).

From a motion modelling point of view, the full 3D deformation of the patient’s anatomy

needs to be known in real-time; motion trajectories of the tumour’s centre of mass are

not sufficient due to the sensitivity of the proton beam with respect to any changes

in tissue density (Bertholet, Knopf, Eiben, McClelland, Grimwood, Harris, Menten,

Poulsen, Nguyen, Keall et al. 2019). From a technical point of view, the delivery system

needs to support fast changes in the spot position and the proton energy (Grözinger,

Bert, Haberer, Kraft & Rietzel 2008).

A technical implementation of beam tracking in a particle scanning system was presented

and validated by Bert, Gemmel, Saito, Chaudhri, Schardt, Durante, Kraft & Rietzel

(2010). The authors showed that their system is capable of adapting the carbon ion

beam in real-time both laterally and in energy and with high accuracy. This was achieved

by using the scanning magnets and including a down-stream wedge degrader. In order to

extract the target motion during treatment, Prall, Kaderka, Saito, Graeff, Bert, Durante,

Parodi, Schwaab, Sarti & Jenne (2014) and Schwaab, Prall, Sarti, Kaderka, Bert, Kurz,

Parodi, Günther & Jenne (2014) indicated the potential of ultrasound (US) guidance for

such a tracking system. They performed tracking deliveries for scanned ion beams and

found a substantial improvement of target coverage. All of the above studies, however,

only considered rigidly moving geometries in a water phantom. Deformable respiratory

motion of a real patient geometry has been addressed by Zhang, Knopf, Tanner, Boye

& Lomax (2013) and Zhang, Knopf, Tanner & Lomax (2014), where online fluoroscopy

in beam’s-eye-view in combination with a principal component analysis (PCA) based

motion model were used to estimate liver deformations. Motion of either implanted

markers or the diaphragm were extracted to infer the full patient geometry in form of

dense deformation vector fields (DVFs). The first study showed that both the implanted

markers and the diaphragm are appropriate surrogates for estimating the applied 4D

dose distribution with high dosimetric accuracy (Zhang et al. 2013). In a further study,

the same setup was used to simulate tumour tracking of the liver for proton PBS (Zhang

et al. 2014). It was found that indeed, full DVFs are necessary to safely apply proton

beam tracking to liver tumours. Moreover, abdominal US imaging was proposed as
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surrogate signal before both for respiratory motion modelling of the liver (Preiswerk,

De Luca, Arnold, Celicanin, Petrusca, Tanner, Bieri, Salomir & Cattin 2014) and for

lung tumour tracking (Mostafaei, Tai, Gore, Johnstone, Haase, Ehlers, Cooper, Lachaine

& Li 2018). While the former infers dense DVFs of the liver from a population-based

model, the latter predicts the tumour trajectory in superior-inferior direction on a

patient-specific basis. However, both studies do not investigate the dosimetric impact

of the motion predictions.

Recently, we have introduced a respiratory motion model that uses Gaussian process

regression (GPR, Williams & Rasmussen (2006)) to estimate dense DVFs, i.e. defined

on every voxel, of the lung using abdominal US images as input (Giger, Krieger,

Jud, Duetschler, Salomir, Bieri, Bauman, Nguyen, Weber, Lomax, Zhang & Cattin

2020). This framework was used to retrospectively reconstruct the delivered 4D dose

distributions by taking into account variable motion patterns. In order to bring

tracking treatments closer to clinical implementation, a temporal prediction of the

patient motion is imperative. It is important to consider the system latency induced

by the time required for US image processing, motion inference, and proton beam

adaption. In conventional radiotherpay, the system latency ranges from 50 ms and

115 ms for the VERO system (Depuydt, Verellen, Haas, Gevaert, Linthout, Duchateau,

Tournel, Reynders, Leysen, Hoogeman et al. 2011) and the Cyberknife (Hoogeman,

Prévost, Nuyttens, Pöll, Levendag & Heijmen 2009), respectively, up to several

hundreds of milliseconds for multileaf collimator tracking systems (Krauss, Nill, Tacke

& Oelfke 2011, Poulsen, Cho, Ruan, Sawant & Keall 2010). Similarly for proton

beam therapy, fast energy changes in range of 80 ms for typical range steps of 5 mm

were reported (Pedroni, Meer, Bula, Safai & Zenklusen 2011, Safai, Bula, Meer &

Pedroni 2012). For the US-based tracking system mentioned above (Prall et al. 2014),

a latency of 200 ms was reported. However, the major portion of the latency was

introduced by non-optimised image processing steps. To compensate system latencies,

various motion prediction models were proposed and compared, among which are linear

predictors, support vector regression, atlas-based approaches, Kalman filters, and neural

networks (Arnold, Preiswerk, Fasel, Salomir, Scheffler & Cattin 2011, Krauss, Nill &

Oelfke 2011, Ernst, Dürichen, Schlaefer & Schweikard 2013, Preiswerk et al. 2014).

While one comparison study reported relatively small differences in prediction accuracy

for the different approaches (Krauss, Nill & Oelfke 2011), another study suggests that

machine learning methods tend to outperform linear models for increased prediction

horizons (Ernst et al. 2013). Yet, the differences between the various prediction models

have primarily been discussed from a mathematical point of view. The benefits of

more advanced motion predictors on the resulting dose distribution is not clear (Knopf,

Stützer, Richter, Rucinski, da Silva, Phillips, Engelsman, Shimizu, Werner, Jakobi

et al. 2016).

In this study, we extend our previously presented motion model (Giger et al. 2020) with

a linear autoregressive (AR) model (Giger, Jud, Nguyen, Krieger, Zhang, Lomax, Bieri,

Salomir & Cattin 2019) which allows forecasting of the motion information to account for
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Ultrasound-guided lung tumour tracking 5

system latency. We simulate various treatment scenarios for proton beam tracking and

investigate the performance of the spatio-temporal motion prediction model in terms of

dose restoration. We compare the resulting dose distributions based on the predicted

motion to ideal tracking where perfect knowledge of the respiratory motion is assumed.

As such, this is the first study which quantifies the feasibility of the proposed US-guided

respiratory motion model when applied to PBS proton tracking of lung tumours in terms

of 4D dose distributions. The presented simulation study is based on comprehensive and

realistic motion patterns taking into account dense anatomical deformations.

2. Methods

The motion modelling pipeline presented in this simulation study follows a typical

approach (McClelland, Hawkes, Schaeffter & King 2013):

(i) In a pretreatment phase, motion information and surrogate data are acquired

simultaneously to ensure temporal correspondence between the two modalities.

(ii) The motion model is formulated and its parameters estimated to approximate the

relationship between the motion estimates and the surrogate signal.

(iii) During the simulated treatment delivery, only the surrogate data is available and

the motion model predicts the corresponding motion.

In order to investigate the dosimetric effects of the motion model, further image

processing tools are required. In this study in particular we use:

• time-resolved volumetric MRI (4DMRI) of the lungs to extract the respiratory

motion in form of dense DVFs,

• 2D abdominal imaging to extract the respiratory surrogate signal, and

• CT volumes of lung cancer patients to incorporate the relative proton stopping

power for the dosimetric analysis.

The main image processing tools and data sets used here have been described in detail in

our preceding study (Giger et al. 2020). Although the principal concepts and methods

are presented below, certain information has been omitted for conciseness. Interested

readers are referred to Giger et al. (2020) for more details.

2.1. Image data sets

Simultaneous abdominal US and 4DMRI of the lungs were acquired of five healthy

volunteers under free respiration using two different 4DMRI sequences (Celicanin, Giger,

Bauman, Cattin & Bieri 2017, Jud, Nguyen, Sandkühler, Giger, Bieri & Cattin 2018).

Intercostal US imaging of the liver was performed with the US probe held in place by

means of a strap and a custom made casting (Santini, Gui, Lorton, Guillemin, Manasseh,

Roth, Bieri, Vallée, Salomir & Crowe 2020). B-mode US imaging was performed at

3.3 MHz and case-specific acoustic power. The hybrid data acquisition was performed for

Page 5 of 22 AUTHOR SUBMITTED MANUSCRIPT - PMB-110591.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Ultrasound-guided lung tumour tracking 6

up to 11 min with frame rates of 1.25 to 2.25 Hz and 15 Hz for 4DMRI and US imaging,

respectively. The two imaging modalities were temporally aligned using the optical

output trigger of the MRI scanner and signal post-processing. The proposed approach

does not require a spatial co-registration of the US and the MRI images. Voxel-wise

DVFs were extracted from the 4DMRI data sets using deformable image registration of

all motion frames with respect to a reference full-exhale frame (www.plastimatch.org

and Sandkühler, Jud, Andermatt & Cattin (2018)).

Synthetic 4DCT(MRI) data sets (Krieger, Giger, Weber, Lomax & Zhang 2020, Boye,

Samei, Schmidt, Székely & Tanner 2013) were generated by warping two lung cancer

patient CTs with the DVFs of the volunteers, resulting in 10 combinations of CT

geometry and 4DMRI motion patterns, hereinafter referred to as geometry / motion

cases. The patient CTs were chosen to differ considerably in terms of position, size,

and motion characteristics as shown in figure 1 and figure 3. Figure 1 shows the motion

patterns of the clinical target volume (CTV) in superior-inferior (SI) direction for all

data sets. In this study, the motion amplitude in SI direction tends to be larger for

CT geometry 1 (smaller tumour) when compared to CT geometry 2 (larger tumour).

Further information on the motion characteristics for each geometry / motion case

can be found in Appendix A. The differences in signal properties, such as duration,

missing US frames, or number of states needed for treatment delivery, are induced by

the different 4DMRI sequences and synchronisation setups for motions 1 and 2 on the

one hand (Celicanin et al. 2017), and motions 3 to 5 on the other hand (Jud et al. 2018).

2.2. Motion modelling

It is imperative to predict the motion vectors into the future since any tracking system

inevitably experiences latency, e.g. due to signal processing and transport or time needed

to change the spot position and energy. For this reason, the motion model employed

in this study is split into two parts: first, the US-based surrogate signal is forecast to

some time points ahead using an AR model (Giger et al. 2019); second, a voxel-wise

DVF of the lungs is predicted using the forecast surrogate signal and a correspondence

model based on GPR (Giger et al. 2020). Principal component analysis (PCA) of both

the US images and the DVFs was performed in order to reduce the dimensionality of

the motion model. By retaining a reduced number of principal components only, the

model is less prone to over-fitting and is rendered computationally more efficient, which

is important for the online application of such a model. A schematic of the complete

motion modelling framework is shown in figure 2.

The data sets were split into three parts as shown in figure 1. The first 300–750 US

frames were used to train and validate the AR model, while the last 33–270 US/MR

image pairs represented the test set and, thus, were excluded from any model training.

The size of the test set was governed by the number of states needed to deliver the

respective treatment plan. The remaining data was used for GPR modelling and, for

this purpose, split into a training set and a fixed-sized validation set consisting of the
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(a) CT geometry 1
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(b) CT geometry 2

Figure 1: SI motion of the CTV for all geometry / motion cases. The data sets are split

into three parts as highlighted by the vertical dashed lines: AR training and validation

sets (blue), GPR training and validation sets (black), and treatment delivery (red). The

evaluation of the motion model and tracking algorithms was performed for the last part

only (red). Solid line: median, shades: 10th to 90th percentile of all CTV voxels. For

motions 3 to 5 some US images were lost due to the synchronisation setup as indicated

by the gray areas.
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Ultrasound-guided lung tumour tracking 8

Figure 2: Illustration of the respiratory motion model.

last 50 US/MR image pairs. A detailed overview of all data sets is given in table 1.

The DVFs predicted by this model framework are referred to as predicted motion, while

the DVFs as extracted from the 4DMRI are referred to as the ground truth motion. It

is important to note that our ground truth DVFs do not necessarily represent the real

patient motion patterns. Due to uncertainties in image acquisitions as well as deformable

image registrations, the actual patient motion is not known exactly. However, the DVFs

extracted from the 4DMRI which were used for both model training and the 4D dose

calculations represent a valid ground truth to evaluate the model performance and the

resulting dose distributions.

The frame rate of the US acquisition was an order of magnitude higher when

compared to the frame rate of the 4DMRI (15 Hz vs. 1.25 to 2.25 Hz). Since the AR

model used for the temporal prediction only depends on US images, substantially more

training data was available. The GPR model for the spatial prediction relies on US/MR

image pairs and, therefore, the data available for training is limited by the frame rate of

the 4DMRI. However, for the online application of the correspondence model, the frame

rate of the surrogate signal is relevant.

Autoregressive model The autoregressive model used in this study has been described

previously (Giger et al. 2019) and, therefore, is only briefly summarised here.

Let αt ∈ Ru describe the vector of the u most dominant principal components of the

US image acquired at time t. Furthermore, let αj
t denote the jth element of the vector

αt. The AR model of order p is applied element-wise and its parameters are estimated

using ordinary least squares:

αj
t = ϑj

0 +

p∑
i=1

ϑj
iα

j
t−i + εt ∀j ∈ {1, ..., u} ,
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Ultrasound-guided lung tumour tracking 9

Table 1: Overview over the different data sets used for motion modelling. For AR, all

US frames are considered, whereas for GPR, only US/MR image pairs are used.

AR GPR

Training Validation Training Validation Test

Geometry 1

Motion 1 280 20 595 50 33

Motion 2 280 20 659 50 33

Motion 3 600 150 730 50 60

Motion 4 600 150 750 50 60

Motion 5 600 150 720 50 60

Geometry 2

Motion 1 280 20 482 50 146

Motion 2 280 20 546 50 146

Motion 3 600 150 520 50 270

Motion 4 600 150 540 50 270

Motion 5 600 150 710 50 270

with model parameters ϑj =
[
ϑj
0 . . . ϑ

j
p

]T
and noise εt. In order to perform a n-step-

ahead forecasting, the model is repeatedly applied.

In this study, the US images were reduced to u principal components such that the

explained variance ratio was 10 %. The autoregressive model was of order p = 5 and

the principal components α̃t were predicted n = 2 steps ahead, resulting in a prediction

horizon of 133 ms for the given acquisition parameters.

Gaussian process regression The correspondence model based on GPR has been

described in detail in (Giger et al. 2020). Analogously, let βt ∈ Rv denote the vector of

the v most dominant principal components of the DVF at time t. However, in contrast to

the previous work, here the input to the correspondence model is the forecast surrogate

signal, α̃t. The number of principal components v was chosen such that 75 % of the

explained variance was retained. The parameters of the applied Gaussian covariance

function were empirically chosen to be θ0 = 30, θ1 = 35, and σ2
n = 1 for all data sets

as introduced in Giger et al. (2020). The computation time needed for performing the

PCA and estimating the model parameters was in the range of 52 to 108 min on an Intel

Xeon CPU E5-2620 v3 @ 2.40 GHz for the given data sets. Given the p = 5 preceding

US images, motion prediction was performed on average in (126.9± 36.3) ms.

2.3. Treatment planning and 4D dose calculations

For each CT geometry, a 2-field SFUD (single field, uniform dose) plan was optimised

on the reference full-exhale CT scan using the in-house planning system described by

Pedroni, Bearpark, Böhringer, Coray, Duppich, Forss, George, Grossmann, Goitein,

Hilbes, Jermann, Lin, Lomax, Negrazus, Schippers & Kotrle (2004). This gantry

features a fast, upstream energy switching of 80 ms and lateral scanning dead times

of 3 ms, see Zhang et al. (2018) (model 4) for more details. As optimisation target,
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Ultrasound-guided lung tumour tracking 10

(a) CT geometry 1, CTV volume: 18.8 cm3 (b) CT geometry 2, CTV volume:

141.9 cm3

Figure 3: Illustration of the two CT geometries and the corresponding chosen field

arrangements.

Table 2: Summary of the simulated dose deliveries. Madapt describes the motion

according to which the beam is adapted, Mcalc describes the motion that is used for

the actual dose calculation.

Name Madapt Mcalc Simulation code

Reference dose – – 4D dose calculation

4DDC – Ground truth 4D dose calculation

Ideal 2D tracking Ground truth Ground truth 2D tracking code

Ideal 3D tracking Ground truth Ground truth 3D tracking code

Realistic 2D tracking Prediction Ground truth 2D tracking code

Realistic 3D tracking Prediction Ground truth 3D tracking code

the respective CTV plus a 2 mm margin was used. Since the motion and density

variations are taken care of by the tracking simulation, they were not included in the

plan optimisation. The field arrangements are illustrated in figure 3: For CT geometry 1,

gantry angles of 160◦ and 240◦ were used, whereas for CT geometry 2, the angles were

230◦ and 270◦.

Several delivery scenarios were simulated, as summarised in table 2. First, the static

reference dose distribution was calculated by running a 4D dose calculation (4DDC, see

Boye, Lomax & Knopf (2013) and Krieger, Klimpki, Fattori, Hrbacek, Oxley, Safai,

Weber, Lomax & Zhang (2018)) without motion input. Second, the unmitigated 4D

dose distributions were calculated as ’worst case reference’ by using the ground truth

DVFs as respiratory motion. Finally, four different tracking scenarios were simulated

by considering different motion compensation approaches. Simulations were performed

for both 2D tracking (only adapting the beam laterally) and 3D tracking (adapting

the beam laterally and in energy). For both 2D and 3D tracking simulations, ideal and

realistic tracking were distinguished. Ideal tracking assumed perfect motion information

for the beam adaptation, meaning that the motion according to which the beam is
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Ultrasound-guided lung tumour tracking 11

adapted, Madapt, is equal to the ground truth motion used for the 4DDC, Mcalc. It

thus serves as a reference for the best-case capability of tracking with perfect knowledge

of the deformable motion. Under more realistic conditions, the two motion patterns

Madapt and Mcalc are not equal but rather Madapt is predicted by the model. This

scenario is referred to as realistic tracking. All simulations were performed as single

deliveries, 9× volumetric rescanning, and 9× volumetric re-tracking (van de Water,

Kreuger, Zenklusen, Hug & Lomax 2009).

In clinical practice, the start of a delivery is usually not synchronised with the respiration

of the patient. To cover the whole range of potential delivery/respiration interplays, the

simulations of each treatment field were started on arbitrary, but different, respiratory

states of the first breathing cycle of Mcalc. The number of respiratory states was in the

range of 5–11 for one field, resulting in 25–121 combinations for a full treatment plan

with two fields.

2.4. Analysis

Geometrical error The geometrical prediction error for a motion state t is defined as

the Euclidean norm of the voxel-wise vector difference between the ground truth and

the predicted DVFs. For a quantitative analysis, the 50th and 95th percentiles of this

prediction error within the CTV were calculated for each respiratory state. The results

are reported as a distribution of these percentiles over all motion states.

Dosimetric analysis The dosimetric analysis was performed by comparing the dose

volume histograms (DVHs) of the different delivery simulations and by evaluating the

target dose homogeneity in terms of CTV D5-D95 %.

3. Results

3.1. Geometrical error

Figure 4 summarises the Euclidean geometrical prediction error of the model, as defined

in section 2.4, for all geometry / motion scenarios. The boxes describe the 50th and

the 95th percentile of all voxels within the CTV and include all motion states that were

predicted by the model and thus used for the dose calculations. It can be observed that,

except for a few outlying states, the 50th percentile error is smaller than 4 mm for all

geometry / motion scenarios. For motions 3–5, it is even smaller than 2 mm for almost

all motion states. A similar pattern is seen for the 95th percentile error: except for a few

outliers, all motion states present an error smaller than 8 mm for all geometry / motion

combinations. For motions 3–5, it is smaller than 4 mm for all motion states except

some outliers.
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Ultrasound-guided lung tumour tracking 12
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Figure 4: Spatio-temporal prediction errors for all geometries and motions. The boxplots

indicate the error percentiles of all voxels within the CTV and include all predicted

motion states. The whiskers expand to the most extreme values within 1.5 times the

inter-quartile range.

3.2. Motion mitigation efficacy of ideal tracking

DVHs for all geometry / motion scenarios for ideal tracking are shown in figures 5

and 6 for CT geometry 1 and CT geometry 2, respectively, comparing ideal 2D and 3D

tracking to either the scenario with no motion mitigation or the reference dose. Figure 7

additionally compares the CTV dose homogeneity in terms of D5-D95 % for the different

tracking scenarios.

It can be seen that for geometry 1, there is a clear under-dosage and severely

compromised dose homogeneity for non-mitigated motion cases. Tracking brings the

CTV dose homogeneity much closer to the reference dose for both 2D and 3D tracking,

with a slightly better homogeneity for 2D tracking. However, for motions 3 and 4 there is

a clear under-dosage of the CTV. In addition, rescanning leads to a smaller dependence

of the dose on the starting phase of the simulations, indicated by the more narrow band

plots. For motions 1, 2 and 4, re-tracking additionally achieves a result closer to the

reference dose compared to the single-tracking simulations. Motions 3 and 5 do not

show an improvement if rescanning is added. For geometry 2, the dose degradation

due to missing motion mitigation is much more limited, because the tumour motion

amplitudes are much smaller than for geometry 1. For this reason, tracking brings no

major improvement compared to non-mitigated simulations. Again, 2D and 3D tracking

are very similar, with a slightly improved homogeneity for 2D tracking. Rescanning

slightly reduces the dependence on the starting phase.
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Figure 5: CTV DVHs for all motion scenarios for CT geometry 1 for ideal and realistic

tracking. Blue, dashed-dotted: no tracking, orange, dashed: ideal 2D tracking, cyan,

solid: ideal 3D tracking, purple, solid: realistic 3D tracking, black, solid: reference

dose (no motion included). The shaded bands include all starting phase combinations,

whereas the solid lines represent their median. (a) No rescanning, (b) with 9×
rescanning.
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Figure 6: CTV DVHs for all motion scenarios for CT geometry 2 for ideal and realistic

tracking. Blue, dashed-dotted: no tracking, orange, dashed: ideal 2D tracking, cyan,

solid: ideal 3D tracking, purple, solid: realistic 3D tracking, black, solid: reference

dose (no motion included). The shaded bands include all starting phase combinations,

whereas the solid lines represent their median. (a) No rescanning, (b) with 9×
rescanning.
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Ultrasound-guided lung tumour tracking 15

3.3. Ideal versus realistic tracking

Figures 5 and 6 additionally compare the DVHs for ideal and realistic 3D tracking

for no rescanning as well as 9× rescanning / re-tracking for CT geometry 1 and CT

geometry 2, respectively. It is seen that there are some differences between the two

scenarios, originating from the different motion patterns used for beam adaptation.

For motion 1, realistic tracking results in lower dose homogeneity due to the larger

prediction error already seen in figure 4. This is also confirmed by figure 7. For most

of the scenarios however, there are only slight differences in homogeneity between ideal

and realistic tracking, meaning that the model provides a suitable motion prediction for

tracking, which is also reflected in the geometrical prediction error in figure 4.

4. Discussion

In this study, we presented a framework for proton beam tracking based on abdominal

US and a patient-specific respiratory motion model. We made use of simultaneously

acquired 4DMRI and 2D US images to train a motion model consisting of two parts: an

autoregressive model to forecast the US information ahead in time to cope with system

latency, and a Gaussian process regression model to estimate the corresponding dense

DVFs inside the lungs. These deformation fields were used to adapt the proton beam

laterally and in energy, and thus simulate various tracking scenarios. We have shown

that for large tumour motion amplitudes, 2D as well as 3D tracking can substantially

improve the target dose homogeneity as compared to a non-mitigated dose delivery

(figure 7, top row). This is true not only for ideal tracking where perfect motion

information is assumed, but also for realistic tracking which uses the model’s prediction

as input for beam position and energy adaptation. Additionally, combining tracking

with rescanning (re-tracking) may further improve the target coverage, as seen for cases

with motions 1, 2 and 5. Generally, rescanning reduces the dose variations due to

different delivery starting phases. For small motion amplitudes, the detrimental effects

of the motion were much smaller, and thus tracking as well as re-tracking brought only

minor improvements with respect to the unmitigated delivery (figure 7, bottom row).

The prediction horizon of 133 ms is in a reasonable range for tracking systems in

radiotherapy. Although no closed loop system latency for proton tracking systems is

reported here, we expect the time needed for energy adaption in the range of 80 ms

to contribute a major portion of the overall latency for 3D tracking. Thus, we further

expect the overall latency to be substantially lower for 2D tracking. It is important

to note that the current imaging processing pipeline as well as the motion model used

for the presented simulation study has not been optimised for real-time applications.

Further improvements and dedicated software solutions are required for the presented

motion modelling approach to be real-time capable. Moreover, the linear AR model

used here is only one possible prediction approach among many and without doubt

the most straightforward one (Krauss, Nill & Oelfke 2011, Ernst et al. 2013). The
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Figure 7: CTV dose homogeneity in terms of D5-D95 % for all geometry / motion

scenarios, (a) without and (b) with rescanning, in comparison to the reference dose.

Top: CT geometry 1 (larger motion amplitude), bottom: CT geometry 2 (smaller motion

amplitude). The box plots include simulation results for all starting phases.

performance of the motion predictions might in fact be further improved by enhancing

the AR model. However, the analysis of the obtained dose distributions suggests that the

linear AR model in combination with GPR substantially improves the dose homogeneity

for tumour tracking in PBS proton therapy.

Both parts of the motion model are patient-specific, meaning that they were trained

for each geometry / motion pattern separately. This enables the models to estimate

patient-specific variability better than a population-based model. However, in order to

make such models more suitable for clinical practice, the same parameters were used

for all geometry / motion scenarios. Nevertheless, the models were shown to predict
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Ultrasound-guided lung tumour tracking 17

the DVFs with reasonable accuracy. This demonstrates the strength of the applied

respiratory motion model.

However, one needs to keep in mind that all US and MRI data sets were acquired in

one session per volunteer, without any re-positioning of the volunteer or the US probe.

In order to apply this tracking framework in clinical practice, the motion models will

have to be trained on a pretreatment imaging data set, while the actual treatment,

and thus the test set of the model, will happen days or even weeks after the imaging

session and will be fractionated over several weeks. It is unclear, therefore, whether

and how the motion of a patient will change on an inter-fractional basis, rendering the

pretrained motion models less accurate. Additionally, it is impracticable to achieve the

same imaging plane of the US probe for every set-up of the patient, posing another

challenge to the model. A feasibility study has recently been presented by Giger et al.

(2019) to investigate the influence of inter-fractional positioning changes. In this study,

the volunteers were asked to stand up between two MRI scans and the US probe was

removed. Afterwards, the volunteers and the US probe were repositioned as reproducibly

as possible. The motion model trained on the first session resulted in larger prediction

errors for the second session, showing the adverse influence of the repositioning. But

even in this study, the data sets were not truly inter-fractional since they were acquired

within a few minutes after each other. A longitudinal study is therefore planned where

the volunteers will be scanned over a time frame of weeks or months. These data sets

will lead to more clinically relevant results. Also, for future data acquisition, we will

use an improved set-up to synchronise the US and MRI acquisitions, enabling longer

imaging sessions without missing US frames.

Since this work is based on the same data as our previous study (Giger et al. 2020),

it inherently has similar limitations. In particular, the analysis was performed on

4DCT(MRI) data sets whose motion is restricted to the lung volume only. Consequently,

density heterogeneities proximal to the target, such as ribs, were static in all our

calculations. A previous simulation study on simple heterogeneous motion phantoms

suggests that tumour tracking in heterogeneous targets may have detrimental effects

on the dose distribution (van de Water et al. 2009). In our analysis, such effects

were considered by the tracking simulations which altered the spot positions relative

to the rib cage. Moreover, the motion extracted from the 4DMRI of healthy volunteers,

although realistic, might not perfectly represent the motion characteristics of lung cancer

patients. As such, for CT geometry 1 and motions 3 and 4, a clear under-dosage of the

CTV was observed. Similarly, for motion 5, an over-dosage was found, even though for

all cases tracking improved the dose homogeneity substantially. These changes in the

dose level are a result of tumour stretching / compression with respect to the reference

state during the delivery. If a tumour is stretched during delivery, the anatomical

parts of the tumour move further apart and thus, by applying tracking, the pencil

beams will be placed further apart as well. Since the number of protons per spot is

unchanged, this will result in a lower proton fluence and thus a lower dose. The analogue

explanation holds for tumour compression. It is, however, questionable whether such
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Ultrasound-guided lung tumour tracking 18

pronounced stretching or compression of a lung tumour represents reality. In this study,

we extracted the motion from healthy volunteers and applied it to a lung cancer case.

It is not given that a lung lesion moves in the same way as a healthy lung without

any lesion, thus the above described effect may not be an issue for a real lung tumour

motion. For this reason, it will be important to extend such a study to real patient

data sets, once they will be available. It should be pointed out, however, that the

model performance is expected to be comparable although the motion patterns have

been extracted from healthy volunteers instead of lung cancer patients since the model

parameters are subject-specific. If the respiratory motion in the pre-treatment imaging

stage is representative for the motion during the treatment, the model is expected to

be equally predictive for lung cancer patients as it is for healthy volunteers, even if the

respiratory motion patterns might differ.

Due to residual motion effects, tracking alone may not be able to reproduce the dose

conformality of the reference plan. On the one hand, deformations of the target volume

cannot be precluded in real patient data, leading to effects similar to the ones described

above. On the other hand, changes of density heterogeneities proximal to the target

will distort the shape of the pencil beams, leading to non-nominal dose distributions

which in turn can reduce the homogeneity of the total delivered dose. In addition,

non-rigid motion of the geometry will lead to inverse interplay effects. In a tracking

framework, the beam position is typically adjusted according to the target displacement

at Bragg peak depth. However, the anatomy proximal to the Bragg peak does not

necessarily move in the same way, particularly in a lung treatment where the rib cage

typically exhibits a much smaller motion than a lung tumour. This effect leads to

additional deformations of the dose distribution with respect to the patient geometry.

The above described residual motion effects could be greatly reduced by combining beam

tracking with 4D optimisation methods, as presented for example by Eley, Newhauser,

Lüchtenborg, Graeff & Bert (2014). There, the authors include a patient 4DCT in the

plan optimisation procedure and optimise the pencil beam weights by assigning each to a

certain motion phase of the 4DCT. This method leads to an additional degree of freedom

for the optimisation, potentially allowing for better target coverage and healthy tissue

sparing. Their approach however relies on a periodic respiration, which is not realistic,

as we have found in this study. Alternatively, the weight of each pencil beam could be

re-optimised in an online fashion to correct for motion effects of the previously delivered

pencil beams (Lüchtenborg, Saito, Durante & Bert 2011).

The results found in this study suggest that 2D tracking can mitigate the motion effects

similarly well as full 3D tracking, even though it does not correct for changes in water-

equivalent path length. This is of interest for the clinical implementation of tracking,

since one of the major challenges is the fast energy change needed for full 3D tracking. If

further studies confirm that 2D tracking is similarly effective as 3D tracking, this would

simplify the technical implementation of the tracking framework.
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5. Conclusion

In this paper, we demonstrated that the accuracy of the US-guided spatio-temporal

motion model was sufficient for PBS proton beam tracking, with comparable plan

quality achieved for realistic and ideal tracking. However, the dosimetric advantage

of 3D tracking in comparison to rescanning is limited, indicating the necessity of

applying online plan optimisation and/or the combination with other motion mitigation

strategies.
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Eley, J. G., Newhauser, W. D., Lüchtenborg, R., Graeff, C. & Bert, C. (2014). 4D optimization

of scanned ion beam tracking therapy for moving tumors, Physics in Medicine and Biology

59(13): 3431–3452.
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Appendix A. Motion characteristics

Figure A1 shows an overview of the CTV motion amplitude in all three directions as

well as the respiratory periods for all CT geometry/motion scenarios. The boxplots

include all breathing cycles included in this study.
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Figure A1: Top row: summary of the CTV motion amplitudes in superior-inferior (SI),

left-right (LR), and anterior-posterior (AP) direction, bottom row: motion periods.

Page 22 of 22AUTHOR SUBMITTED MANUSCRIPT - PMB-110591.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


