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Traffic congestion is one of the main issues in the study of transportation planning and management. It creates different problems
including environmental pollution and health problem and incurs a cost which is increasing through years. One-third of this
congestion is created by cars searching for parking places. Drivers may be aware that parking places are fully occupied but will
drive around hoping that a parking place may become vacant. Opportunistic services, involving learning, predicting, and exploiting
Internet of Things scenarios, are able to adapt to dynamic unforeseen situations and have the potential to ease parking search
issues. Hence, in this paper, a cooperative dynamic prediction mechanism between multiple agents for parking space availability
in the neighborhood, integrating foreseen and unforeseen events and adapting for long-term changes, is proposed. An agent in
each parking place will use a dynamic and time varying Markov chain to predict the parking availability and these agents will
communicate to produce the parking availability prediction in the whole neighborhood. Furthermore, a learning approach is
proposed where the system can adapt to different changes in the parking demand including long-term changes. Simulation results,
using synthesized data based on an actual parking lot data from a shopping mall in Geneva, show that the proposed model is

promising based on the learning accuracy with service adaptation and performance in different cases.

1. Introduction

The problem of traffic congestion in urban cities has been
one of the very distressing issues. In order to arrive to a
destination people need to start their trip well ahead of their
scheduled program and will be forced to spend more time on
the way. In addition, it has economical impact with incurring
significant amount of cost. For example, in USA, studies show
that traffic congestion costs about 124 billion US dollar (USD)
annually with an expectation of rising to 186 billion USD in
2030 [1], while it was about 48 billion USD in 1990s [2].

It is also one of the major players in air pollution [3].
The emission of different air pollutants degrades air quality
significantly [4]. This pollution in turn results in health
problems including worsening asthma symptoms, asthma
development in children, lung cancer, and heart disease [4].
Health problems, which are not related to the air pollution,

are also reported including psychophysiological stress of the
drivers [5, 6].

Studies suggest that on average one-third of the traffic jam
is created by cars searching for a parking place [7, 8]. Hence,
the study of parking problems and their corresponding
solution methods have been one of the major issues for
researchers in the field. Price based controlling approach for
the parking demand by analyzing different pricing strategy
where the cost increases when the number of available
parking spaces decreases has been one method proposed
[8]. However, organizations, like universities, develop an
optimization model of the problem and try to optimize the
parking slot allocation, thus helping with proper planning
and design of parking spaces [9].

In busy centers or part of a city, drivers are not well
aware of the parking situation and availability. This gap of



information can be bridged using a proper statistical pre-
diction approach based on previous experience and a multi-
agent-based service to communicate among parking places
in the neighborhood and with drivers. Prediction approaches
have been one of the essential tools used to analyze and
forecast different scenarios based on limited information. It
has been used in different areas including financial market,
agriculture, environmental issues, and engineering [10-14].
With the rapidly growing studies on transportation planning
and management [15-17], prediction is playing a vital role.
Markov chain theory can be useful for learning based
prediction purposes. The Markov property is when one can
make predictions for the future of the process based solely
on the knowledge of its present state. It has been used for
prediction in different applications. Hence, in this paper,
based on previous data transition matrices of the Markov
chain will be constructed and used to predict the next state of
the available level of parking space. The states will be the level
of available parking places. Since the demand for parking
place varies and depends on different issues, a time varying
Markov chain will be used. In addition, the transition matrix
will “learn” through iterations and adapt itself for long-term
changes in the demand for parking. An opportunistic space-
and time-related multi-agent-based service then compiles all
these predictions, generates a cumulative prediction for a
neighborhood of interest, and supports and answers drivers
queries for parking space availabilities. This will relax the
traffic jam as the drivers will no longer wander around
looking for vacant parking slot. To summarize, the main aims
and objectives of this paper are (1) to propose an approach of
constructing a dynamic time varying Markov chain approach
based on previous data for parking availability prediction, (2)
to use the Markov chain based approach for the prediction of
parking availability in a given parking place, (3) to use mul-
tiagent systems in order to construct a cumulative prediction
of the neighborhood of multiple parking places, and (4) to
introduce a learning approach where the Markov chain or the
prediction can adapt for changes in the environment which
affects the parking place demand.

The paper is organized as follows. The next section
discusses related works. Section 3 presents an opportunistic
parking service based on the notion of spatial services we
developed in previous works. Section 4 discusses the parking
prediction mechanism we propose. This is followed by an
evaluation of the approach in Section 5. Section 6 provides
a discussion and possible future works.

2. Related Works

Smart commercial solutions for dynamically finding parking
places usually involve sensors reporting parking occupancy
to a central server gathering all this information. Drivers
are then provided with dynamic notifications, active route
guidance, or an overview map of available parking spaces
(http://www.mobility.siemens.com/mobility/global/en/
urban-mobility/road-solutions/integrated-smart-parking-
solution/pages/integrated-smart-parking-solution.aspx).
These sensors can be either overhead radar sensors, or
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on the ground sensors located at the different parking
places reporting their current occupancy. Such services can
be combined with others services to provide multimodal
solutions (e.g., mixing public and private transport solutions).
Advanced research solutions involve the use of agent-based
systems for negotiating parking spaces in advance, or
vehicular communication to provide information within
a parking lot [I8]. Solutions can be central solutions,
opportunistic, aiming at searching parking spaces, guiding
drivers towards such spaces, or providing e-payment
solutions [19].

Some studies suggest a mechanism of current parking
availability information delivery to the user. Reference [20]
discusses information manipulation and delivery, with objec-
tives including walking distance, thus aiming at decreasing
the emission of toxic gases. Space availability information
delivery mechanism is based on what they call PARC (parking
access and revenue control) [21]. It is useful, especially when
the parking garage is huge, to use information management
delivery systems to locate vacant spaces. However, still it tells
the current situation and it does not predict the likelihood
of the parking situation in the future. Hence, the best way to
address this problem is to couple these ideas with appropriate
prediction system.

Hence, the development of parking space prediction
approaches has also been one of the research focus areas. A
number of studies have been reported on parking availability
prediction. Based on the turnover rate for each parking lot,
a parking demand was generated in [22]. The land use per
unit area is used to forecast a cumulative demand value which
may be useful for road and parking management, but not for
guiding drivers according to their parking needs. Calibrated
discrete choice model was used for parking space prediction
with a parking reservation mechanism, in [23].

Recently, based on queuing theory and Laplace trans-
form a parking prediction approach was proposed [24].
They combined real time cloud-based analysis and historical
data trends that can be integrated into a smart parking
user application. A multivariate autoregressive model for
parking prediction is also proposed in [25]. They used both
temporal and spatial correlations of parking availability. The
spacial and temporal aspects of parking prediction were also
addressed in [26]. Back-end model is used to learn historical
models of parking availability which can be stored in the map
in the vehicle.

Neural network is another method used in the domain.
Prediction of parking occupancy mainly by studying the
relationship between aggregating parking lots and predicting
parking occupancy, using feedforward neural network, is
studied in [27]. Similarly, [28, 29] use neural network coupled
with Internet of Things (IoT) for predicting parking avail-
ability with backpropagation. Another research on parking
availability prediction using neural network is done in [30].
They develop a prediction mechanism for sensor enabled
cars using regression tree, neural network, and support
vector regression. Their analysis is based on calculating
the occupancy rate of a parking, which is the ratio of the
number of slots occupied by the number of slots which are
operational.


http://www.mobility.siemens.com/mobility/global/en/urban-mobility/road-solutions/integrated-smart-parking-solution/pages/integrated-smart-parking-solution.aspx
http://www.mobility.siemens.com/mobility/global/en/urban-mobility/road-solutions/integrated-smart-parking-solution/pages/integrated-smart-parking-solution.aspx
http://www.mobility.siemens.com/mobility/global/en/urban-mobility/road-solutions/integrated-smart-parking-solution/pages/integrated-smart-parking-solution.aspx
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FIGURE 2: Overview of the intelligent parking space system.

Unlike the success of Markov chain analysis in different
prediction applications, a limited number of researches are
reported which use Markov chain for parking availability
prediction. Queuing theory and continuous Markov chain
are used in [31] to predict the parking availability before the

arrival of the driver. However, they did not propose a way of
applying the method for different situations or times where
the demand fluctuates. Reference [32] used a continuous
time Markov chain to predict the available parking spaces
through communication between the parking garage and



m

FIGURE 3: A communication scenario between three parking places
represented by P and a user represented by a star. The red circle
is the place of interest for the user whereas the yellow rectangles
are the parking in the neighborhood where the user needs to get
information from.

the navigation system of the cars. The demand for parking
depends on different issues including time of the day and day
of the week. Hence, the discussions and models used are not
considering these issues. Furthermore, a system which adapts
with the change in the environment has not been explored,
which is one of the contributions of this paper.

3. Smart Opportunistic Parking Service:
Overview

The opportunistic parking service we propose is based on the
notion of spatial services we developed in previous works, as
will be discussed below.

3.1. Spatial Services. Spatial services are new generation of
services that exploit spatially distributed data, enable smart
environments, or exploit Internet of Things (IoT) scenarios.
This is a new category of decentralised services based on
data propagation among stationary or mobile devices and
where the functionality of the service is provided as a
result of the collective interactions among multiple entities,
involving processes and calculations taking place across sev-
eral geographically distributed computational nodes. Spatial
services are built and composed on demand. When users
query to retrieve the closest vacant parking place in a smart
city, sensors, connected objects, and services spontaneously
collaborate to query the spatially distributed data and to
provide the answer, going well beyond traditional location-
based services requiring a central server gathering all data
and providing the computation.

The systems are composed of several agent-based entities,
geographically distributed across the city, each with their
local perception and learning and predicting capabilities,
exploiting their own locally available data. They work in a
decentralised manner and their functionality is the result
of the collective interactions among multiple agent-based
entities, possibly spatially (geographically) distributed across
several stationary or mobile nodes [33].

In our case, each parking lot agent interacts with its
neighboring parking lot agents or any other connected agent-
based objects, propagating away information about itself (i.e.,
its predictions) or gathering information about other parking
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lots (e.g., using spreading or gossip mechanisms) or any traffic
or road network disturbance in the traffic or route network.

3.2. Smart Parking Service. To illustrate our discussion, we
consider a smart parking service guiding drivers across
the city towards a parking lot close to their destination. It
takes into account parking spaces availability as well as any
unforeseen circumstance (road works, accident) blocking the
access and preventing the use of a predetermined route or
predetermined parking lot. The place in question will be
connected to the system and injects data in the system (e.g.,
hole in the ground, closed path). The smart parking service
aggregates data spatially and delivers the information to the
driver.

Figure 1(a) shows the case of a parking service in the area
of Balexert (the biggest shopping mall of the French speaking
area of Switzerland) in Geneva. The Balexert shopping mall
has 3 parking spaces (https://www.balexert.ch/parkings/,
https://www.geneve-parking.ch/fr/parkings/pr-balexert): P1
occupies the whole first basement of the shopping mall and
P2 occupies the same space at the second basement both with
two other entrances, and P3 is outside with 4 levels. P1, P2,
and P3 have capacities of 925, 890, and 348 parking places,
respectively. The parking service we envision is composed of
different parts.

3.2.1. Parking Lot: Learning and Prediction of Availability.
Each parking lot (e.g., public garages, park and ride, airports
or trains stations, and street parking areas) predicts, through
a permanent learning activity, its availability patterns for
each time-period of the day, for each day of the week. This
learning phase brings in and adapts to three aspects: (a)
learning of on-going availability based on actual occupancy
of parking places; (b) adaptation to seasonal changes (e.g.,
school holidays period or developments taking place in the
area); (c) adaptation to sudden changes in availability due to
weather changes (e.g., snow falling, heat wave); (d) foreseen
changes (e.g., conference with 5000 participants).

3.2.2. Propagation of Driver Query and Parking Space Predic-
tion. A driver queries for a suitable parking lot, specifying
the likely arrival time in the area (e.g., in 5 mins or 40 mins).
Connected urban furniture (e.g., lamp posts, traffic lights)
propagates the driver query across the different connected
objects in the environment, using a gradient or spreading
spatial service. Objects sensitive to the query (i.e., those
matching with parking availability requests, in our case
devices linked to P1, P2, and P3 entrances) inject in the
system their predicted availability corresponding to the time
the driver will arrive in the area (e.g., availability in the next
15 mins). Figure 1(b) shows the propagation of a driver query
across connected urban furniture.

Figure 1(c) shows how predicted availability of a given
parking lot propagates across different connected objects,
reaching along the way the other parking lots, as well as the
driver itself. At the different parking lots, data aggregates to
provide parking space availability over the whole Balexert
area. To do so, the different nodes involved send the answer


https://www.balexert.ch/parkings/
https://www.geneve-parking.ch/fr/parkings/pr-balexert
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FIGURE 4: Simulation results for different initial states.

to the driver. This information evaporates and spontaneously
disappears from the involved computation nodes after a while
depending on user profile and length of route.

3.2.3. Answer to Query. Predicted availability of a given
parking lot and that of larger areas propagate across different
connected objects, eventually reaching the driver car. The
driver’s car matches the answer to the query it injected. The
corresponding agent then informs the driver and a route is
calculated. Figure 1(d) shows the case where P3 provides the
closest availability for our driver. It is interesting to note that
the system works independently of the actual objects along
the route or whether or not they move.

3.2.4. Spatial Service Announcing Unforeseen Events or
Changes in Network. Figure 2(a) shows further interactions

involving closed roads or unexpected events. A new con-
nected object (red node) spreads information about road
works and informs about a closed path. This information
spreads around using the gossip spatial service (interact-
ing nodes share their respective information and update
their local information accordingly). If other such objects
would convey information about the state of the routes, that
information would be aggregated as they reach the different
intermediary nodes. Finally, in Figure 2(b), the driver agent
eventually receives both parking availability predictions and
closed path information and is able to calculate a new route
(e.g., to reach P2 from the open road section).
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TaBLE 1: Collected and synthesized data for P2 of Balexert parking with average number of available parking spaces.

Time 7h55 8h00 8h05 8h10 8hl5 8h20 8h25 8h30 8h35 8h40 8h45 8h50 8h55

Data collected 775 769.5 — 754 739.5 — — — — 685 669 — —

Interpolation results 775 769.5 762 754 739.5 698 692 690 688 685 669 580 521

TABLE 2: States from the data set.

States S1 S2 S3 S4 S5 S6
Number of available parking spaces 0 [1-178] [179-356] [357-534] [535-714] [715-890]
Percentage of available parking 0% 0%-20% 20%-40% 40%-60% 60%-80% 80%-100%

Number of errors in 50 iterations

Bundled iteration

—— §; as initial state
—— S, asinitial state
--— 83 asinitial state

—— 8, as initial state
—— S5 as initial state
S as initial state

FIGURE 5: Error in iterations bundled in 50 for different runs with
different initial states.

4. Parking Availability Prediction

A Markov chain or Markov model consists of countable
family of random variables, S_s also called states, that satisfies
the Markov property. That is, the probability of the next state
depends only on the current state but not on previous states.
The collection of these probabilities of transition from one
state to another can be represented in a matrix form, called
transition matrix, where the rows represent current state and
the columns represent the next state.

4.1. Properties of Parking Demand. Since a single transition
pattern is not valid all the time and parking demand depends
on different conditions, a homogenous Markov chain is not
suitable for predicting parking place availability. Parking
demand depends on the day of the week and the time of
the day. The demand of parking place, and consequently
availability of parking place, may vary on week days and
weekends. Furthermore, in considering a specific day of
the week, the demand varies through time. For instance,
according to city of Portsmouth transportation report in 2012
[34], the demand in the city increases around midday (12 pm)
and evening (8 pm) on working days and in the evening (6-8
pm) on weekends. This is similar to what we observed with
the Balexert shopping mall. Similarly, the demand is seasonal.
That is, the parking availability changes based on the season

or period of the year. If it is a holiday season the demand near
a recreation center increases whereas the demand around
work places will more likely decrease [35]. Weather can
be another factor which the parking demand depends on.
Furthermore, the development of the neighborhood (e.g.,
construction of a new or the closure of an old parking place)
and relocation of people in the neighborhood affect the
parking demand.

In addition to those mentioned, other short term circum-
stances can affect the demand. These can be categorized into
two categories as foreseen and unforeseen circumstances.
Foreseen circumstances include planned events like interna-
tional or national conferences, meetings, and similar events.
The information regarding the number of participants is
known or can be estimated, which again gives sufficient
information to estimate the additional increase in the parking
demand. On the other hand due to different unexpected cir-
cumstances, unforeseen circumstances, the parking demand
may also be affected and the availability of parking place
can change. In this category we can mention events like
international events which come rarely without sufficient
information about the additional demand for parking and
road block due to different reasons including road works,
accidents, and the like.

A reliable prediction system needs to incorporate all these
concepts and update itself with the dynamic changes of the
environment. A driver at a particular time may want to ask
three basic questions: (1) is there available parking place
in a particular location? (2) Will there be available parking
place soon (when I arrive)? (3) What about other parking
places near the place of interest? The first question is a direct
question and can easily be answered by counting the actual
available places. The second question needs a prediction
approach based on current state of parking availability for
a particular parking garage. The third question can be
solved by communicating with other parking garages in the
neighborhood and providing the requested information to
the user.

4.2. Parking Availability Prediction Setup. The probability of
changing states depends on the demand for parking. Hence,
the prediction model is a function of the season, the day of the
week, the time of the day, and the weather condition. There
are as many matrices as different combinations of days, time,
season, and weather.
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TABLE 3: Data for P1 of Balexert parking with average number of available parking spaces.

Time 7h55 8h00 8h05 8h10 8hi5 8h20 8h25 8h30 8h35 8h40 8h45 8h50 8h55
Parking 905 883.5 878 874 864 854 844 834 825 823 816 788 700
TaBLE 4: Neighborhood prediction. The 1st column indicates the initial states for P1 and P2.

Time 8h00 8h05 8h10 8h15 8h20 8h25 8h30 8h35 8h40 8h45 8h50 8h55
S1 S1 S3 S3 S6 S6 S6 S6 S6 S6 S6 S6 S5
S2 S3 S3 S4 S6 S6 S6 S6 S6 S6 S6 S6 S5
S3 S3 S4 S6 S6 S6 S6 S6 S6 S6 S6 S6 S5
S4 S4 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S5
S5 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S5
S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S5
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FIGURE 8: Smart parking for Balexert (two entrances for each of P1
and P2).

The following three steps are used to develop a Markov
chain model.

Discretizing Time. For a given day, the time horizon needs
to be discretized to accommodate the change on the demand
through different times of the day. Let At be the time width
used for this purpose. That means a given parking demand
situation will be represented by a given transition matrix
for At duration of time and replaced by another. Some
researchers used five minutes of time width [27]. The smaller
the time window the better the prediction results, however an
increase in complexity.

State Characterization. One possible way of state character-
ization is using the exact number of available parking slots.
However, it increases the complexity especially in cases where
there are hundreds of parking spaces. Therefore, another
possible way to overcome this limitation, is to determine
different classes of parking space availability and classify
the situation. One possible way is based on percentage of
available parking space; for example, more than 40% available
parking places result in no traffic congestion, then one class
or state can be more than 40% parking places available, and
the rest of the states can be 0%, from 0% to 20%, and so on
available parking places. Suppose, in general we have 7 states,
say $;,S,,...,S,,.
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Transition Matrix Construction. Once the time width and
the states are defined, the transition matrix needs to be con-
structed for each time duration of interest. It is constructed
using previous experience (i.e., collected data) and expected
knowledge of the situation when data is not sufficient.
Consider current time is in the duration [t;,t;,;). Let us call
the state at t; an entering state and at t;,, a leaving state. From
the previous same time of similar days (i.e., similar refers to
the same season, the same day of the week, and the same
weather condition) a data will be summarized based on the
available parking slots at times t; and t;, ;. Data is summarized

in a matrix form with entries p_jk(’), representing the number
of times the state changes from j to k in the given interval (i.e.,
attimei the stateis jand at time i+1 the state is k). There could
be cases in which one of the states never occurs in the data of
the initial states. In such cases the initial data can be generated
using previous experience and rule of thumb and through
nonconventional data collections [36] from users (i.e., drivers
who regularly use the parking lots are asked regarding the
parking situation for the particular scenario of interest). It will
later update itself and evolve based on the initial values and
learning from experience.

Hence, in the constructed matrix ﬁ(i), each row and

column represent the states where the entries p_jk(’) represent
the number of times the state changes from state j to state
k in the given time interval. This matrix will be normalized
row-wise (i.e., the summation of entries in each row will be 1
and each entry is nonnegative, to construct the final transition
matrix, p).

4.3. Learning Mechanism. Since the model can be affected
by gradual and long-term changes like relocation of people,
a learning mechanism needs to be used. That is, the system
needs to be adaptive by incorporating the newly read data.
That can be done by adding additional data to reconstruct
or update the transition matrix. One of the possible ways to
do that is to record previous data and replace old data by a
new one in each iteration. However, saving all previous data
used to construct the transition matrix is memory expensive.
Hence, based on a parameter called the learning window, the
new information can be magnified over the rest. Suppose N



Journal of Advanced Transportation

is the learning window and the current state is j; then the
learning is done by multiplying the jth row by N, adding 1 to
the entry corresponding to the leaving state, and normalizing
the row by dividing each entry by N + 1. The resulting matrix
will be the new transition matrix.

The degree of learning depends on the parameter N. If N
is set to be large, it means the updating is highly affected by
old and outdated data and the new entry will have a small or
negligible effect, producing slow learning. On the other hand
ifit is set to be very small, it means it will highly be affected by
current conditions. However, different changes can happen
due to different nonrepeating reasons and the learning to be
affected in a higher degree for such changes may produce
unreliable results. However, if proper tuning of this learning
window is set, the matrix will adapt itself easily to long-term
changes.

In the other case, if there is a nonrepeating demand fluc-
tuation which is planned ahead, like organized conferences or
meetings, a user modification needs to be involved to update
the transition matrix accordingly. This also includes accidents
and unplanned big events. In such cases as user feed inputs
will be used for the prediction or warning information system
needs to be set up.

4.4. Parking Availability Prediction. Suppose at t; the state is
j; then the probability of the next state at £, , to be k is pjy.
For simplicity let us represent At by a unit; hence t;, 5, = t;44
and t;,,,; = t;,, for any n. k with the highest probability
Pji shows that state k has the highest probability to be the
next state. If we are interested to make a prediction not at
t;.; butatt;,,,, then the transition matrices will be multiplied
consecutively from ¢; up to t;,,, to produce a single matrix
predicting the next state at ¢;,,,. However, if the current state
is known, rather than multiplying the whole matrix it will be
easier and more efficient to multiply the corresponding row of
the current transition matrix by the next matrix and continue
like that. That is, if the current state is known and is, say,
k, then the probability of the occurrence of the other states
after m time duration can be computed simply by multiplying
the kth row vector of the current transition matrix by the
next transition matrix which will produce a row vector and
multiply that by the next transition matrix and so on. The
resulting vector of probabilities tells us the probability of the
state after the m time intervals.

4.5. Cooperation of Prediction Agents. A user requesting the
prediction on the availability of parking in a given parking
place or garage may be informed that the place is likely to be
full in the next couple of time intervals. In this case, a driver
may be interested to know the situation in the neighboring
parking places. Hence, the parking places communicate with
each other to produce the necessary information.

A parking place is powered with an autonomous agent
that controls its information, collects new information,
updates its matrix, sends predictions, and interacts whenever
necessary with other agents in its neighborhood. A neigh-
borhood for a given parking garage is a set of other parking
garages where it can send and receive information. Suppose

d is the distance a driver can compromise to park away from
the place of interest. Hence, the agent communicates with
other agents which are at most d distance from itself, provided
there are no other constraints that prevent the driver to park
there. Agents communicate with other agents and produce a
cumulative prediction regarding parking availability situation
in its neighborhood. Suppose there are Q — 1 agents, say
Ay As,..., A, in the neighborhood of agent A}, and the
parking availability in each of these agents is jy, j,, ..., jo at
a given time. Suppose A, is the place of interest of the driver.
When a request by agent A is sent to collect information to
produce a cumulative prediction, each of the other agents will
send the row of their transition matrix corresponding to their
state prediction in the requested time; that is, an agent A q will

send pq(:) = [p?ql p?qz o p]q‘q”]'

This row vector gives the probability of occurrence of each
of the states from the current state j,. This means the nonoc-
currence can be given by Py(q) = 1 - p,(:). Hence, there will
be Q nonoccurrence vectors, say Py(1), Py(2),..., Py(Q).
The nonoccurrence cumulative vector can be computed
by applying an entry-wise multiplication of these vectors,
resulting in a vector, say Py.. Hence, the cumulative prediction
vector will be the normalized vector of P = 1 — Py;.

It should be noted that, in some cases, the states in
one parking garage may not be the same with the other.
For example, in one of the parking spaces there could be
a total of 100 parking places and 500 in the other. If a
percentage representation is used in the state construction
stage, state i will have different parking capacity in the two
parking garages. This problem can be dealt with in the state
construction step by having similar states for all parking
places and assigning zero probabilities for nonexisting states
in some of the parking places.

Figure 3 shows a communication scenario where a user is
situated at the black cross point requesting the status of park-
ing places around the red parking place. The red parking place
communicates with the neighboring blue parking places,
computes the cumulative prediction, and communicates back
with the user.

4.6. A Numerical Example. To demonstrate the approach
proposed, consider a scenario with two parking places,
namely, parking places a and b. Suppose the there are three
defined states, S;, S,, and S;, where S; represents a parking
situation where the number of available parking spaces is
between ((i — 1)/3)100% and (i/3)100%. At t = t, when the
state is S; the number of times it changes to S, S,, and S,
based on the fifty data items collected is 40, 10, and 0 times,
respectively. Similarly if the initial state (the state at ¢;) is S,
it is 10, 25, and 15, respectively, and if it is S;, 0, 15, and 35,
respectively. Hence, the data can be summarized as follows:

40 10 0
10 25 15 |. 1)
0 15 35

——(to)

Pa " =
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Similarly, a collected set of data for the next time intervals
is given as
45 5 0
=252 5 |,

a
10 25 15

)
45 5 0

2 =30 15 5
15 30 5

Similarly, suppose the data for the second parking place
is given as follows:

45 5 0
2 =12030 0 |,
10 20 20

50 0 0
Y =13020 0 |, 3)
20 25 10

50 0 0
2 =135 15 0
20 25 5

After normalizing, the final transition matrices for the
two parking place can be given as follows:

0.8 02 0

02 05 03 ],
0 0307

() _
a

09 01 0
0.5 04 0.1
0.2 0.5 0.3

09 01 0
0.6 0.3 0.1>,
0.3 0.6 0.1

0.9 0.1 0
P = <0.4 06 0

(4)

02 04 04

1 0 O
06 04 0 |,
0.4 0.5 0.1

1 0 O
07 03 0
0.4 0.5 0.1

Journal of Advanced Transportation

The prediction at ¢, t,. and t, can be done by using p*®’

a

(10) p1) and plio) p) p®2) | yising matrix multiplication as
given below:
0.82 0.16 0.02
pp = [ 049 037 0.14 |,
0.29 047 0.24
()
0.84 0.142 0.018
plptpt) = | 0.705 0.244 0.051
0.615 0.314 0.071
Similarly for the second parking place, we have
096 0.04 O
pip® = 076 024 0 |,
0.60 0.36 0.04
(6)

0.988 0.012 0
0.928 0.072 0
0.868 0.128 0.004

(to) (1) (&)
Pbopblpbz =

Based on the initial state a prediction can then be made.
For example if the state at ¢, in parking a is S; then there is
a high probability that the state at ¢, t,, and t5 is S5, S,, and
S;, respectively. As mentioned earlier, it is worth noting that
if the initial state is known, rather than multiplying the whole
matrix, the corresponding row vector to the current state can
be used to multiply the matrices in the next time stamp to do
the prediction.

In addition to a prediction by one of the parking places,
consider the initial state of the parking place a is S; and for
parking place b is S,. By the end of the third time interval,
that is, at t = ¢, the prediction by parking places a and b is
given by p, = [0.6 0.36 0.04] and p, = [0.928 0.072 0],
respectively. The nonoccurrence vectors will be py(a) = 1 -
p. = [04 0.64 0.96]and py(b) = 1-p, = [0.072 0.928 1].
The entry-wise multiplication of these two vectors will be
py = pnl@) = py(b) = [0.0288 0.5939 0.96]. Hence,
1 - py = [0.9712 0.4061 0.04] and its normalized value
becomes [0.6853 0.2865 0.0282]. Therefore the cumulative
prediction is S; with highest probability of 0.6853.

5. Evaluation of the Proposed Approach

5.1. Data Set. As discussed in Section 3.2, Balexert shopping
mall has three parking places labeled as P1, P2, and P3.
Data was collected between 19 December 2016 and 9 January
2017 on Monday mornings. However, since the data was not
complete a linear interpolation method is used to compute
the missing data, as given in Table 1.

5.2. Time Discretization and Simulation of Parking Occupancy.
Time is discretized based on a time width of 5 minutes, as
done by [27], with ¢, = 7h55, a data span for one hour, and a
final time at ¢,, = 8h55.
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The states are constructed based on the percentage of
available parking. We then have six states as shown in Table 2.

The data only tells that there is a high probability of
moving from S, to itself in the first four time intervals. In the
collected data, the initial state is state 6. Hence, to construct
the complete transition matrix addition data or information
where the starting state is different from 6 is needed. Based
on informal data collection gathered from enquiries with
some drivers as well as parking management personnel, the
pattern of arrival of cars does not depend on the availability
of parking or the initial state. Hence, final transition matrices
are given below, for the first four time intervals and the fifth
time interval in (7) and for the next six intervals and for the
last time interval in (8).

0.45 0.25 0.15 0.1 0.05 0
0.1 025 035 0.1 01 O
. 0 0.15 04 035 01 0
o0 = ,
0 0 0.15 04 025 0.2
0 0 0.05 0.15 03 0.6
0 0 0 0.05 0.15 0.8
%)
0.45 0.35 0.15 0.05 0.05 0
03 04 02 0.1 0 0
@ 0 0.35 035 0.25 0.05 O
P = :
0 0 035 04 02 0.05
0 0 005 04 03 0.25
0 0 0 0.05 0.6 0.35
0.45 0.25 0.15 0.1 0.05 O
0.1 025 035 0.1 01 0
(i 0 02 04 03 01 0
P = :
0 0 025 04 025 0.1
0 0 005 02 045 0.3
0 0 0 0.05 0.3 0.65
(®)
0.8 0.15 005 0 0
04 04 01 01 O
12
P02 —

0 01 04 03 0.1
0 005 02 06 0.15

0

0

005 04 04 0.1 005 0
0

0

0 0 0.05 0.15 045 0.3
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fori=0,1,2,3and j =5,6,7,8,9,10, 11.

5.3. Prediction Results of a Single Agent. To run the sim-
ulation, simulation parameters need to be set, including
algorithm parameter. Hence, the learning window N is set to
be 100. Big number of algorithm runs gives reliable results
and hence the algorithm runs for 500 iterations with initial
random state.

1

In order to check the performance of the simulation,
the arrival of cars or parking demand is also randomly
generated based on the transition matrix. It is done by using a
normal distribution where the entries of the states with high
probability in the transition matrix will have high probability
of occurrence. We tested three types of performance: con-
secutive prediction (the performance on consecutive time),
prediction ahead, (the performance in the future predictions,
not in consecutive time), and learning property (performance
by injecting a demand change and simulating long-term
changes).

Consecutive Predictions. Based on the transition matrix of the
corresponding states, normal distribution is used to generate
the number of cars arriving to the parking place. Based on
that the prediction error is computed. Figure 4 shows the
percentage of correctness of the prediction. It is computed
based on the eleven predictions done in a day for the 500 days.

For each of the runs with different initial state, the
prediction becomes stable in final iterations. The error of
the simulation results within every 50 iterations is given in
Figure 5. As expected, we observe better results when the
initial state is in line with data used for building the matrix
(i.e., State 6).

Prediction Ahead. Based on each initial state, the prediction
is done at the end of all of the time intervals. The accuracy of
the prediction is then compared with the actual situation (i.e.,
based on random car arrivals from a normal distribution as
discussed) until the last time interval (as shown in Figure 6).
Due to consecutive matrix multiplications, errors accumulate
along the computation, and results tend to be less accurate
than for the case of consecutive predictions. Again, the case
of 86 as initial state provides better predictions.

Adaptation to Long-Term Changes. The learning mechanism
plays a role in adapting to long-term changes. We tested a
scenario where the demand for parking occupancy increases
after 200 iterations (i.e., 200 days) by about 100 more parking
demands. We use the same initial transition matrix for
prediction. We simulate a parking occupancy similar to the
previous case up to 200 iterations and then added an increase
of 100 in the parking demand. The approach runs for 1000
iterations and results are provided in Figure 7.

We observe a loss in the accuracy of predictions when a
new data is added (iteration 200), followed by an adaptation,
and a success rate of the prediction returned to the top around
iteration 400. The learning window N is 100, we observe that,
after 200 iterations, the system has finished adapting to the
new conditions.

5.4. Smart Parking Service

5.4.1. Data Set. As presented in Figure 8, there are three
parking places in Balexert. Suppose the place of interest for
a driver is parking P2. Let the neighborhood radius d be as
given in Figure 8.
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The agent in parking P2 communicates with the agent
in parking P1, which is in its neighborhood (radius area
including both P1 and P2). The total number of parking
places under consideration in P1 is 925. Table 3 provides the
data for parking place P1.

5.4.2. Simulation and Evaluation. One of the steps after
discretizing the time is to define the states. Note that the
states in the two parking places need to be the same. Since
the number of parking places in P1 and P2 differs only by 35
slots, let S6 be the number of available parking places more
than 713. This makes the states used for both parking places
be the same. The transition matrix for P1 at time interval i,
p is the same with p' (used for P2), for all i except the last
matrix p*?. For p1?, it is equal to the fifth interval matrix of
P2, that is, p® of P2.

Based on the collected data at 7h55 of the day, the
parking places will be in state S6. When a driver sends a
request to P2 where the center of interest is located, agent
at P2 will request information on parking places availability
prediction to other parking places in its neighborhood with
radius d (i.e, to P1). Since the agents are predicting the
situation by the end of the first interval or the beginning of
the second interval their first matrix will be used. That is,
in both cases, row (0,0,0,0.05,0.15,0.8) corresponding to
state 6 of p" will be used. The agent then compute the
nonoccurrence of the row given; that is, Py(1) = Py(2) =
1-p =(1,1,1,0.95,0.85,0.2). The nonoccurrence cumulative
vector is computed applying an entry-wise multiplication,
producing Py = (1,1,1,0.9025,0.7225,0.04). Finally, the
normalized cumulative prediction vector P = 1 — Py =
(0,0,0,0.0730,0.2079, 0.7191). Therefore, the prediction for
the neighborhood parking availability at 8h00 is S6 with
highest probability of 0.7191.

Suppose the prediction is needed at 8h05. In that case the
agent at P2 will request the agent at P1 its prediction at 8h05.
It also computed its own prediction; its prediction will be the
row vector of the current matrix, p'") multiplied by p®. The
nonoccurrence vector for both agents will then be 1 - (0, 0,
0.0150, 0.0825, 0.1775, 0.7400) = (1, 1, 0.9850, 0.9175, 0.8225,
0.2600). The product of these nonoccurrence vectors will be
(1, 1, 0.9702, 0.8418, 0.6765, 0.0676). Hence the cumulative
prediction will be (0, 0, 0.0206, 0.1096, 0.2241, 0.6458).

Suppose a driver, who is 30 minutes away from the target
parking place (P2), requests parking availability information
at the current time; let it be 7h55. The prediction vector
30 mins ahead, calculated by the agent in P1, will be (0.0009,
0.0082, 0.0478, 0.1293, 0.1996, 0.7029).

In a similar way the agent at P2 will produce the vector
(0.0021, 0.0167, 0.0976, 0.2033, 0.3668, 0.3632). The cumu-
lative nonoccurrence vector will be (0.9970, 0.9753, 0.8592,
0.6936, 0.5069, 0.1892). Hence, the cumulative prediction will
be (0.0030, 0.0247, 0.1408, 0.3064, 0.4931, 0.8108). Hence after
30 minutes, at 8h25, the prediction for the neighborhood
parking availability will be in state S6 with a probability of
0.8108.

Journal of Advanced Transportation

5.5. Results. With similar argument, Table 4 presents the
prediction for the neighborhood parking availability around
P2. The table is computed with the same initial state for both
P1 and P2.

Note that even though Table 4 shows both parking places
starting with the same states, they can possibly start with
different states. For example, parking place P1 starts with S1
and P2 with S2; the resulting prediction for the given time
interval from 8h00 to 8h55 will then be S1, S3, $4, S6, S6, S6,
Se, S6, S6, S6, S6, and S5.

We performed a simulation generating random initial
states for the two agents. Different scenarios can be recorded.
For example, the predicted states for the first and the second
agent can be k; and k,, and the combined prediction can
be k. To evaluate the simulation result we define the success
of a prediction. Since the parking availability increases with
the state number, we consider that a cumulative prediction
of state k is better than individual predictions by the agents,
say k, and k,, if either of these predictions is greater than
or equal to k, that is, k;, > k or k, > k. Based on random
initial states, a prediction is performed for 500 iterations;
in each iteration, the prediction for all the time interval is
compared against the demand which is randomly generated
based on the transition matrix. Hence, in each iteration there
will be 13 predictions and their accuracy is checked if it agrees
with random demand. The result as presented in Figure 9 is
promising with high success rate.

6. Discussion and Conclusion

6.1. Summary. An agent-based service combined with a
learning and prediction system, as a solution to ease parking
place search and thus relieve traffic congestion, is proposed.
Agents predict the parking availability in a given parking
garage and communicate with other agents to produce
a cumulative prediction. Each agent uses a time varying
Markov chain to predict parking availability of an individual
parking garage based on actual situation using a transition
matrix constructed from previous data. Transition matrices
are constructed for each time interval, for each weekday,
season, and weather condition, based on previous experience
and gathered information. Transition matrices vary through
time to represent long-term changes in demand and thus
adapt with changes in the neighborhood. A multi-agent-
based spatial service collects and propagates queries and
predictions in the whole neighborhood.

We evaluated our approach on the parking garages of
the Balexert shopping mall in Geneva, Switzerland. Prelim-
inary data was collected, which we synthesized based on
the observed pattern of data. We conducted four types of
simulations. The first predicts the consecutive state based on
the actual state. With an average initial prediction accuracy
of about 83% it gradually increases while learning and
adapting the matrix. The second concerns prediction beyond
the consecutive time. In this case, predictions starting from
about 34% of accuracy on average at the beginning improve
gradually. The third case illustrates long-term changes in the
demand occurring in the neighborhood. In this case also,
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the prediction adapts to the change and returns to accurate
predictions again. The last simulation considers multiple
agents and predicts the parking space availability in the
neighborhood (in total). Given the limited set of data at
our disposal, which results in a limitedly accurate transition
matrix, simulations show that the matrix gradually evolves
and gives high quality prediction.

6.2. Future Works. This paper does not consider the cost of
parking. One possible research issue for future work involves
designing a decision aiding tool for minimizing the cost based
on the prediction of parking space availability.

Different parking space categorization can also be stud-
ied. Parking spaces are designed and reserved for a group of
people like disabled, high-level management personnel, or for
specific cars (e.g., electric cars).

The time window and the time width are made fixed, in
this paper. It is worth exploring the effect of these parameters
on the speed of learning and the quality of prediction.

External learning mechanism for short duration nonre-
peating changes is not explored. Future issues can consider
possible ways of external learning, identifying parameters,
their values, and their effect on predictions.

Integrating the proposed model with an online service
like smart phone applications can also be another interesting
research issue to explore. Possibly a parallel computing
approach in computing cumulative predictions where there
are a huge number of parking places and demands can be
studied to deal with possible increase in computational time.

The work performed in this paper for parking places
availability shares many similarities with public transport
prediction of occupancy. Indeed, occupancy depends on
days, time, season, and weather and is similarly affected on
the long-term by new constructions, or new public transport
routes. Translating this work on public transport may be
worth exploring.

An additional venue for future works involves actual sim-
ulations and visualisation of spatial services propagation. A
prototyping tool supporting vehicles simulations and actual
agents code is already available for such studies [37].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was developed while the first author visited the
University of Geneva, thanks to the support from a Coimbra
scholarship 2016.

References

(1] E Guerrini, Traffic Congestion Costs Americans $124 Billion a
Year, Forbes, 2014.

[2] R. Arnott and K. Small, “The economics of traffic congestion,”
American Scientist, vol. 82, no. 5, pp. 446-455, 1994.

13

[3] E A. Armah, D. O. Yawson, and A. A. N. M. Pappoe, “A
systems dynamics approach to explore traffic congestion and air
pollution link in the city of Accra, Ghana,” Sustainability, vol. 2,
no. 1, pp. 252-265, 2010.

[4] K. Zhang and S. Batterman, “Air pollution and health risks due
to vehicle traffic,” Science of the Total Environment, vol. 450-451,
pp. 307-316, 2013.

[5] G. W. Evans and S. Carrere, “Traffic congestion, perceived con-
trol, and psychophysiological stress among urban bus drivers,”
Journal of Applied Psychology, vol. 76, no. 5, pp. 658-663, 1991.

[6] J. I Levy, J. J. Buonocore, and K. Von Stackelberg, “Evaluation
of the public health impacts of traffic congestion: a health
risk assessment,” Environmental Health: A Global Access Science
Source, vol. 9, no. 1, 2010.

[7] D.C. Shoup, “The ideal source of local public revenue,” Regional
Science and Urban Economics, vol. 34, no. 6, pp. 753-784, 2004.

[8] R. A. Waraich, C. Dobler, C. Weis, and K. W. Axhausen,
“Optimizing parking prices using an agent based approach,’
Arbeitsberichte Verkehrs-und Raumplanung, 2012, article 794.

[9] O. G. Brown-West, “Optimization model for parking in the
campus environment,” Transportation Research Record, no.
1564, pp. 46-53,1996.

[10] N. N. Goshu and S. L. Tilahun, “Grey theory to predict

Ethiopian foreign currency exchange rate,” International Journal

of Business Forecasting and Marketing Intelligence, vol. 2, no. 2,

pp. 95-116, 2016.

S.L. Tilahun and A. Asfaw, “Modeling the expansion of Prosopis

juliflora and determining its optimum utilization rate to control

the invasion in Afar Regional State of Ethiopia,” International

Journal of Applied Mathematical Research, vol. 1, no. 4, pp. 726-

743, 2012.

[12] I. Diakoulakis, D. Koulouriotis, and D. Emiris, “A review of
stock market prediction using computational methods,” Applied
Optimization, vol. 74, pp. 379-399, 2002.

[13] K. Brysse, N. Oreskes, J. O'Reilly, and M. Oppenheimer,
“Climate change prediction: Erring on the side of least drama?”
Global Environmental Change, vol. 23, no. 1, pp. 327-337, 2013.

[14] E. W. M. Lee, “Application of artificial neural network to fire
safety engineering,” Handbook on Decision Making, vol. 4, pp.
369-395, 2010.

[15] G. Davulis and L. Sadzius, “Modelling and optimization of
transportation costs,” Intelektine Ekonomika, vol. 1, 2010.

[16] S. L. Tilahun and H. C. Ong, “Bus timetabling as a fuzzy
multiobjective optimization problem using preference-based
genetic algorithm,” Promet-Traffic & Transportation, vol. 24, no.
3, pp. 183-191, 2012.

[17] X.Huang and Y. Chen, “An optimization model for multimodal
transportation decisions based on congestion information,” in
Proceedings of the 2014 11th World Congress on Intelligent Control
and Automation, WCICA 2014, pp. 610-615, July 2014.

[18] Faheem, S. A. Mahmud, G. M. Khan, M. Rahman, and H. Zafar,

“A survey of intelligent car parking system,” Journal of Applied

Research and Technology, vol. 11, no. 5, pp. 714-726, 2013.

G. Revathi and V. R. S. Dhulipala, “Smart parking systems

and sensors: A survey, in Proceedings of the 2012 International

Conference on Computing, Communication and Applications,

ICCCA 2012, February 2012.

11

[19

[20] E Caicedo, “Real-time parking information management to

reduce search time, vehicle displacement and emissions,” Trans-
portation Research Part D: Transport and Environment, vol. 15,
no. 4, pp. 228-234, 2010.



14

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(29]

(30]

(31]

(32]

[36]

E Caicedo, “The use of space availability information in “PARC”
systems to reduce search times in parking facilities,” Transporta-
tion Research Part C: Emerging Technologies, vol. 17, no. 1, pp.
56-68, 2009.

C. Tiexin, T. Miaomiao, and M. Ze, “The model of parking
demand forecast for the urban ccd,” Energy Procedia, vol. 16, pp.
1393-1400, 2012.

E Caicedo, C. Blazquez, and P. Miranda, “Prediction of parking
space availability in real time,” Expert Systems with Applications,
vol. 39, no. 8, pp. 7281-7290, 2012.

J. Ma, E. Clausing, and Y. Liu, “Smart on-street parking system
to predict parking occupancy and provide a routing strategy
using cloud-based analytics,” SAE Technical Paper, 2017.

T. Rajabioun and P. Ioannou, “On-Street and off-street parking
availability prediction using multivariate spatiotemporal mod-
els;” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 5, pp. 2913-2924, 2015.

FE Richter, S. D. Martino, and D. C. Mattfeld, “Temporal
and Spatial Clustering for a Parking Prediction Service;” in
Proceedings of the 26th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2014, pp. 278-282, November
2014.

X. Chen, “Parking occupancy prediction and pattern analysis,”
Technical report, Machine Learning Final Projects, Stanford
University, 2014.

E. L. Vlahogianni, K. Kepaptsoglou, V. Tsetsos, and M. G. Kar-
laftis, “Exploiting new sensor technologies for real-time parking
prediction in urban areas,” in Proceedings of the Transportation
Research Board 93rd Annual Meeting Compendium of Papers, pp.
1614-1673, 2014.

E. I. Vlahogianni, K. Kepaptsoglou, V. Tsetsos, and M. G.
Karlaftis, “A real-time parking prediction system for smart
cities,” Journal of Intelligent Transportation Systems, vol. 20, no.
2, pp. 192-204, 2016.

Y. Zheng, S. Rajasegarar, and C. Leckie, “Parking availability
prediction for sensor-enabled car parks in smart cities,” in Pro-
ceedings of the 10th IEEE International Conference on Intelligent
Sensors, Sensor Networks and Information Processing, ISSNIP
2015, pp. 1-6, April 2015.

M. Caliskan, A. Barthels, B. Scheuermann, and M. Mauve, “Pre-
dicting parking lot occupancy in vehicular ad hoc networks,” in
Proceedings of the IEEE 65th Vehicular Technology Conference
(VTC’ 07), pp. 277-281, Dublin, Ireland, April 2007.

A. Klappenecker, H. Lee, and J. L. Welch, “Finding available
parking spaces made easy,” Ad Hoc Networks, vol. 12, no. 1, pp.
243-249, 2014.

G. Di Marzo Serugendo, J. L. Fernandez-Marquez, and E. L. De
Angelis, “Engineering spatial services: Concepts, architecture,
and execution models,” in Handbook of Research on Architec-
tural Trends in Service-Driven Computing, R. Ramanathan and
K. Raja, Eds., vol. 1, pp. 136-159, 2014.

City Portsmouth, “Parking supply and demand analysis
final report,” Tech. Rep., http://www.cityofportsmouth.com/
transportation/reportdowntownparkingfinalreport.pdf.

The TRANSPO  Group Inc, “Parking demand,
in final report, downtown  juneau parking
study, 1999, http://www.juneau.org/cddftp/

documents/JPS_PKG_Demand_Supply_Shortfalls. PDF.

P. T. Salvador, C. C. Rodrigues, K. Y. Lima, K. Y. Alves,
and V. E. Santos, “Non-conventional technologies for data
collection in brazilian dissertations and theses/tecnologias nao

[37]

Journal of Advanced Transportation

convencionais de coleta de dados em dissertagdes e teses
brasileiras/tecnologas no convencionales para recoleccién de
datos en disertaciones y tesis brasilefias,” Revista Brasileira de
Enfermagem, vol. 68, no. 2, pp. 269-277, 2015.

J. L. Fernandez-Marquez, F. L. D. Angelis, G. D. M. Serugendo,
G. Stevenson, and G. Castelli, “The ONE-SAPERE simulator: a
prototyping tool for engineering self-organisation in pervasive
environments,” in Proceedings of the 2014 8th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, SASO
2014, pp. 201-202, September 2014.


http://www.cityofportsmouth.com/transportation/reportdowntownparkingfinalreport.pdf
http://www.cityofportsmouth.com/transportation/reportdowntownparkingfinalreport.pdf
http://www.juneau.org/cddftp/documents/JPS_PKG_Demand_Supply_Shortfalls.PDF
http://www.juneau.org/cddftp/documents/JPS_PKG_Demand_Supply_Shortfalls.PDF

Journal of Advanced Transportation

Composition Comments

1. Please check and confirm the author(s) first and last
names and their order which exist in the last page.

2. There is a difference between the manuscript and the
electronic version in Figures 1(b), 1(c), and 8 and we followed
the electronic version. Please check.

3. Weincorporated the footnote into text as per journal style.
Please check similar cases throughout.

4. Please specify what the red dotted arrow, filled blue circle,
and gray circle refer to in Figure 2(a). Please check.

5. We added the highlighted part for the sake of clarity.
Please check all similar cases.

6. We added the highlighted part(s) “spaces” in Tables 1,
2, and 3 and in the paper for the sake of correctness since
“parking” is an uncountable noun. Please verify.

15



Author(s) Name(s)

It is very important to confirm the author(s) last and first names in order to be displayed correctly
on our website as well as in the indexing databases:

Author 1 Author 2
Given Names: Surafel Luleseged Given Names: Giovanna
Last Name: Tilahun Last Name: Di Marzo Serugendo

It is also very important for each author to provide an ORCID (Open Researcher and Contributor ID).
ORCID aims to solve the name ambiguity problem in scholarly communications by creating a registry
of persistent unique identifiers for individual researchers.

To register an ORCID, please go to the Account Update page (http://mts.hindawi.com/update/) in our
Manuscript Tracking System and after you have logged in click on the ORCID link at the top of the page.
This link will take you to the ORCID website where you will be able to create an account for yourself.
Once you have done so, your new ORCID will be saved in our Manuscript Tracking System automatically.



