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Plasma lipid profiles discriminate 
bacterial from viral infection in 
febrile children
Xinzhu Wang1, Ruud Nijman1, Stephane camuzeaux2, Caroline Sands  2, Heather Jackson  1, 
Myrsini Kaforou  1, Marieke emonts3,4,5, Jethro A. Herberg1, Ian Maconochie6, 
Enitan D. carrol7,8,9, Stephane C. Paulus  8,9, Werner Zenz10, Michiel Van der Flier11,12, 
Ronald de Groot12, Federico Martinon-Torres  13,14, Luregn J. Schlapbach15, 
Andrew J. pollard16, Colin Fink17, Taco T. Kuijpers18, Suzanne Anderson19, Matthew R. Lewis2, 
Michael Levin1, Myra McClure1* & EUCLIDS consortium†

Fever is the most common reason that children present to Emergency Departments. Clinical signs 
and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive 
test for the accurate diagnosis of infection. The ‘omics’ approaches to identifying biomarkers from 
the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried 
out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) 
and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection 
produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, 
lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, 
while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide 
and bilirubin were lower in the confirmed virus infected group when compared with confirmed 
bacterial infected group. A combination of three lipids achieved an area under the receiver operating 
characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential 
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of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile 
children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics.

Fever is the one of the most common reasons that children present to Emergency departments in hospitals, 
especially in children under 5 years of age, in England1 and in the US2. Serious bacterial infection accounts for 
5–15% of the febrile children presenting3–5 and most cases originating from a viral aetiology are self-limiting. 
Currently bacterial infection is confirmed by positive microbiological culture of a sterile sample (blood, clean 
catch urine or cerebrospinal fluids (CSF)). However, this can take 24–48 hours and is compounded by having a 
high false-negative4,6 and false positive7 rates by contaminating pathogens. Molecular detection of specific patho-
gens is an option but results can be confounded by co-infections and samples need to be obtained from the site of 
infection which can be both invasive and impractical8. Because it is challenging for paediatricians to differentiate 
between bacterial and viral infection in acute illness, antibiotics are often prescribed as a precautionary measure, 
contributing to the rise of antimicrobial resistance.

It is clear that reliable biomarkers are urgently needed that distinguish bacterial from viral infection for the 
purpose of good clinical management and reducing antibiotic use. Host biomarkers, i.e. the physiological changes 
of the host in response to a specific pathogen, have untapped diagnostic potential and their discovery can be 
accelerated by the advances in ‘omics’ research, especially in the field of transcriptomics9–12 and proteomics13–15. 
Metabolomics has the added advantage that it is considered to most closely reflect the native phenotype and 
functional state of a biological system. One In vivo animal study revealed that distinct metabolic profiles can 
be derived from mice infected with different bacteria16 and several similar studies focusing on meningitis have 
shown that metabolic profiling of CSF can differentiate between meningitis and negative controls17, as well as 
between viral and bacterial meningitis18. Mason et al.19 demonstrated the possibility of diagnosis and prognosis 
of tuberculous meningitis with non-invasive urinary metabolic profiles. Metabolic changes in urine can be used 
to differentiate children with respiratory syncytial virus (RSV) from healthy control, as well as from those with 
bacterial causes of respiratory distress20.

Lipids are essential structural components of cell membranes and energy storage molecules. Thanks to the 
advances in lipidomics, a subset of metabolomics, lipids and lipid mediators have been increasingly recognised 
to play a crucial role in different metabolic pathways and cellular functions, particularly in immunity and inflam-
mation21,22. However, the potential of lipidomics to distinguish bacterial from viral infection in febrile children 
has never been explored.

In this study, we undertook a lipidomic analysis of plasma taken from febrile children with confirmed bac-
terial infection (n = 20) and confirmed viral infection (n = 20) as a proof of concept study. We show that bacte-
rial and viral infection produces distinct profiles in the plasma lipids of febrile children that might be exploited 
diagnostically.

Methods
Study population and sampling. The European Union Childhood Life-Threatening Infectious Disease 
Study (EUCLIDS)23 prospectively recruited patients, aged from 1 month to 18 years, with sepsis or severe focal 
infection from 98 participating hospitals in the UK, Austria, Germany, Lithuania, Spain and the Netherlands 
between 2012 and 2015. Plasma and other biosamples were collected to investigate the underlying genetics, pro-
teomics and metabolomics of children with severe infectious disease phenotype.

Infections in Children in the Emergency Department (ICED) study aimed to define clinical features that 
would predict bacterial illness in children and patterns of proteomics, genomics and metabolomics associated 
with infections. This study included children aged 0–16 years at Imperial College NHS Healthcare Trust, St Mary’s 
Hospital, between June 2014 and March 201524.

The population consisted of children (≤17 years old) presenting with fever ≥38 °C, with diverse clinical symp-
toms and a spectrum of pathogens. Both studies were approved by the local institutional review boards (ICED 
REC No 14/LO/0266 approved by NRES Committee London – Camden & Islington; EUCLIDS REC No 11/
LO/1982 approved by NRES Committee London – Fulham). Written informed consent was obtained from par-
ents and assent from children, where appropriate. All methods were performed in accordance with the relevant 
guidelines and regulations. For the EUCLIDS study, a common clinical protocol agreed by EUCLIDS Clinical 
Network and approved by the Ethics Committee was implemented at all hospitals.

Patients were divided into those with confirmed bacterial (n = 20) and confirmed viral (n = 20) infec-
tion groups. The bacterial group consisted exclusively of patients with confirmed sterile site culture-positive 
bacterial infections, and the viral infection group consisted of only patients with culture, molecular or 
immunofluorescent-confirmed viral infection and having no co-existing bacterial infection.

Blood samples were collected in tubes spray-coated with EDTA at, or as close as possible to, the time of pres-
entation to hospital and plasma obtained by centrifugation of blood samples for 10 mins at 1,300 g at 4 °C. Plasma 
was stored at −80 °C before being shipped on dry ice to Imperial College London for lipidomic analysis.

Lipidomic analysis. Lipidomic analysis was carried out as previously described25. Briefly, 50 µl of water were 
added to 50 µl of plasma, vortexed and shaken for 5 min at 1,400 rpm at 4 °C. Four hundred µl of isopropanol 
containing internal standards (9 in negative mode, 11 for positive mode covering 10 lipid sub-classes) were added 
for lipid extraction. Samples were shaken at 1,400 rpm for 2 hours at 4 °C then centrifuged at 3,800 g for 10 min. 
Two aliquots of 100 µl of the supernatant fluid were transferred to a 96-well plate for ultra-performance liquid 
chromatography (UPLC) –mass spectrometry (MS) lipidomics analysis in positive and negative mode.

https://doi.org/10.1038/s41598-019-53721-1
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Liquid chromatography separation was carried out using an Acquity UPLC system (Waters Corporation, 
USA) with an injection volume of 1 µl and 2 µl for Positive and Negative ESI, respectively. An Acquity UPLC BEH 
column (C8, 2.1 × 100 mm, 1.7 µm; Waters Corporation, USA) was used for the purpose. Mobile phase A con-
sisted of water/isopropanol/acetonitrile (2:1:1; v:v:v) with the addition of 5 mM ammonium acetate, 0.05% acetic 
acid and 20 µM phosphoric acid. Mobile phase B consisted of isopropanol: acetonitrile (1:1; v:v) with the addition 
of 5 mM ammonium acetate and 0.05% acetic acid. Flow rate was 0.6 ml/min with a total run time of 15 min and 
the gradient set as starting condition of 1% mobile phase B for 0.1 min, followed by an increase to 30% mobile 
phase B from 0.1 to 2 min, and to 90% mobile phase B from 2 min to 11.5 min. The gradient was held at 99.99% 
mobile phase B between 12 and 12.55 min before returning to the initial condition for re-equilibrium.

MS detection was achieved using a Xevo G2-S QTof mass spectrometer (Waters MS Technologies, UK) and 
data acquired in both positive and negative modes. The MS setting was configured as follows: capillary voltage 
2.0 kV for Positive mode, 1.5 kV for Negative mode, sample cone voltage 25 V, source offset 80, source tempera-
ture 120 °C, desolvation temperature 600 °C, desolvation gas flow 1000 L/h, and cone gas flow 150 L/h. Data were 
collected in centroid mode with a scan range of 50–2000 m/z and a scan time of 0.1 s. LockSpray mass correction 
was applied for mass accuracy using a 600 pg/ µL leucine enkephaline (m/z 556.2771 in ESI+, m/z 554.2615 in 
ESI−) solution in water/acetonitrile solution (1:1; v/v) at a flow rate of 15 µl/min.

Spectral and statistical analysis. A Study Quality Control sample (SQC) was prepared by pooling 25 µl 
of all samples. The SQC was diluted to seven different concentrations, extracted at the same ratio 1:4 with isopro-
panol and replicates acquired at each concentration at the beginning and end of the run. A Long-Term Reference 
sample (LTR, made up of pooled plasma samples from external sources) and the SQC were diluted with water 
(1:1; v:v) and 400 µL of isopropanol containing internal standards (the same preparation as for the study samples) 
and injected once every 10 study samples, with 5 samples between a LTR and a SQC. Deconvolution of the spectra 
was carried out using the XCMS package. Extracted metabolic features were subsequently filtered and only those 
present with a relative coefficient of variation less than 15% across all SQC samples were retained. Additionally, 
metabolic features that did not correlate with a coefficient greater than 0.9 in a serial dilution series of SQC sam-
ples were removed.

Multivariate data analysis was carried out using SIMCA-P 14.1 (Umetrics AB, Sweden). The dataset was 
pareto-scaled prior to principal component analysis (PCA) and orthogonal partial least squares discriminate 
analysis (OPLS-DA). While PCA is an unsupervised technique useful for observing inherent clustering and iden-
tifying potential outliers in the dataset, OPLS-DA is a supervised method in which data is modelled against a 
specific descriptor of interest (in this case viral vs. bacterial infection classes). As for all supervised methods, 
model validity and robustness must be assessed before results can be interpreted. For OPLS-DA, model quality 
was assessed by internal cross-validation (Q2Y-hat value) and permutation testing in which the true Q2Y-hat value 
is compared to 999 models with random permutations of class membership. For valid and robust models (positive 
Q2Y-hat and permutation p-value < 0.05), metabolic features responsible for class separation were identified by 
examining the corresponding S-plot (a scatter plot of model loadings and correlation to class) with a cut-off of 
0.05.

Metabolite annotation. Short-listed metabolic features were subjected to tandem mass spectrometry in 
order to obtain fragmentation patterns. Patterns were compared against metabolome databases (Lipidmaps, 
HMDB, Metlin). Isotopic distribution matching was also checked. In addition, when possible the fragmented 
patterns were matched against available authentic standards run under the same analytical setting for retention 
time and MS/MS patterns. Annotation level, according to the Metabolomics Standards Initiative, are summarised 
in Table 1 26.

Single feature ROC curve analysis. Analysis was performed with the web server, MetaboAnalyst 4.0. 
Sensitivities and specificities of lipids and predicted probabilities for the correct classification were presented as 
Receiver Operating Characteristic (ROC) curves. The Area Under the Curve (AUC) represents the discrimina-
tory power of the lipids, with the value closest to 1 indicating the better classification.

Feature selection. An ‘in-house’ variable selection method, forward selection-partial least squares (FS-PLS; 
https://github.com/lachlancoin/fspls.git), was used to identify a small diagnostic signature for distinguishing bac-
terial and viral infections. FS-PLS identifies a small signature made up non-correlated features. The first iteration 
of FS-PLS considers the levels of all features (N) and initially fits N univariate regression models. The regression 
coefficient for each model is estimated using the Maximum Likelihood Estimation (MLE) function, and the good-
ness of fit is assessed by a t-test. The variable with the highest MLE and smallest p-value is selected first (SV1). 
Before selecting which of the N-1 remaining variables to use next, the algorithm projects the variation explained 
by SV1 using Singular Value Decomposition (SVD). The algorithm iteratively fits up to N-1 models, at each step 
projecting the variation corresponding to the already selected variables, and selecting new variables based on the 
residual variation. Projecting out the variation of selected features ensures that the final features in the signature 
are not correlated with each other. The FS-PLSprocess terminates when the MLE p-value exceeds a pre-defined 
threshold (pthresh). The final model includes regression coefficients for all selected variables. First, FS-PLS was 
applied to the abundance values for the short-listed metabolic features identified through OPLS-DA analysis.

An individual’s age and sex can impact upon their metabolome greatly. Limma27 was used for differential 
abundance analysis to identify metabolites that are associated with age or sex. Features were considered to be 
associated with age or sex if they achieved an FDR p-value lower than 0.05. FS-PLS was re-applied to the dataset 
after having removed these features and the resulting signature was compared to the signatures from the full 
dataset.

https://doi.org/10.1038/s41598-019-53721-1
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The disease risk score (DRS) was calculated for the 3 metabolite signature. The DRS translates the abundance 
values of the features in the signature into a single value, indicating the disease group of the sample11.

The sensitivity and specificity of the lipid signature were presented as a receiver operating characteristic (ROC) 
curve with the 95% confidence regions calculated through bootstrap analysis with 500 iterations.

Results
Patient characteristics. The baseline characteristics were divided into those with definitive bacterial and 
definitive viral infection, summarised in Table 2. When selecting patient samples, patient characteristics were 
matched as much as possible to ensure no particular factor would confound the model. There was no significant 
difference in ages between the two groups (p = 0.97). Both groups had similar sex split. Seven from definitive 
bacterial infection group and 6 from the definitive viral infection group were admitted to the Paediatric Intensive 
Care Unit (PICU). A range of pathogens was present in each group.

Plasma lipidome can differentiate bacterial from viral infection. PCA was conducted first to evalu-
ate the data, visualise dominant patterns, and identify outliers within populations (Fig. 1). The same outlier sam-
ple was present in both negative (Fig. 1A) and positive (Fig. 1B) polarity datasets and as such, was removed from 
subsequent analysis. SQC samples were tightly grouped together in the PCA scatter plot, indicating minimum 
analytical variability throughout the run.

OPLS-DA, a supervised PCA method, was carried out on both positive and negative polarity datasets. In the 
positive polarity mode no model was successfully built to distinguish between viral and bacterial infection groups 
(data not shown). However, in the negative polarity dataset, an OPLS-DA model separated bacterial infected 
samples from viral infected samples (with 3891 features). The robustness of the model was characterised by R2X 
(cum) = 0.565, R2Y-hat (cum) = 0.843 and Q2Y-hat (cum) = 0.412 and permutation p-value = 0.01 (999 tests). 
Cross-validated scores plot using the whole lipidome dataset indicated bacterial infected samples were more 
prone to miss-classification than viral infected samples (Fig. 2).

Lipid changes were not the same in the bacterial and viral infected groups. Metabolic features 
contributing to the separation of the model are plotted in Fig. 3 and summarised in Table 1. Some species of 

m/z
Retention 
time Annotation

Annotation 
level Ion type Neutral formula

Lipids/metabolites increased 
in bacterial infected group

279.231 2.52 FA(18:2) 2 [M − H]- C18H32O2
255.232 2.82 FA(16:0) 2 [M − H]- C16H32O2
281.247 2.96 FA(18:1) 2 [M − H]- C18H34O2
788.545 6.22 PS(18:0/18:1) 2 [M − H]- C39H74NO8P
253.216 2.35 FA(16:1) 2 [M − H]- C16H30O2
742.54 6.06 PC(16:0/18:2) 2 [M − CH3]- C42H80NO8P
716.524 6.75 PE(16:0/18:1) 2 [M − H]- C39H76NO8P
583.256 1.18 Bilirubin 2 [M − H]- C33H36N4O6
810.53 5.76 PS(18:0/20:4) 2 [M − H]- C44H78NO10P
846.624 7.23 PC(18:0/18:1) 2 [M + PO4H2]- C44H86NO8P
1068.7 7.80 LacCer(d18:1/24:1) 2 [M + PO4H2]- C54H101NO13
770.571 6.78 PC(18:0/18:2) 2 [M − CH3]- C44H84NO8P
744.556 6.60 PC(16:0/18:1) 2 [M − CH3]- C42H82NO8P
958.589 5.78 LacCer(d18:1/16:0) 2 [M + PO4H2]- C46H87NO13
718.54 6.41 PC(16:0/16:0) 2 [M − CH3]- C40H80NO8P
742.54 6.90 PE(18:0/18:2) 2 [M − H]- C41H78NO8P

Lipids/metabolites increased 
in viral infected group

465.303 2.55 Cholesterol sulfate 2 [M − H]- C27H46O4S
465.303 2.61 Cholesterol sulfate 2 [M − H]- C27H46O4S
909.551 5.56 PI(18:0/22:6) 2 [M − H]- C49H83O13P
861.55 5.75 PI(18:0/18:2) 2 [M − H]- C45H83O13P
797.655 7.78 SM(d18:1/24:1) 2 [M − CH3]- C47H93N2O6P
339.231 2.66 UNKNOWN1 4
772.529 6.49 PE1 3 [M − H]- C45H76NO7P
897.648 8.12 SM(d18:1/23:0) 2 [M + PO4H2]- C46H93N2O6P
239.157 0.87 UNKNOWN2 4
886.609 6.31 SHexCer(d42:3) 2 [M − H]- C48H89NO11S
554.346 1.86 LPC(16:0/0:0) 2 [M + CH3COO]- C24H50NO7P
799.671 8.41 SM(d18:1/24:0) 2 [M − CH3]- C47H95N2O6P
750.545 7.24 PE2 3 [M − H]- C41H78NO7P

Table 1. Metabolic features changed in bacterial and viral group. FA: fatty acid; PE: glycerophosphotidy-
lethanolamine; PC: glycerophosphocholine; PS: glycerophosphoserine; LacCer: lactosylceramide; PI: 
glycerophosphoinositol; SM: sphingomyelin; LPC: Lysophosphatidylcholine; SHexCer: Sulfatides.
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glycerophosphoinositol, monoacylglycerophosphocholine, sphingomyelin and sulfatide were higher in the viral 
group when compared to the bacterial group, while some species of fatty acids, glycerophosphocholine, glycer-
ophosphoserine and lactosylceramide were higher in bacterial infection when compared with viral infection. 
Bilirubin and cholesterol sulfate, although not lipids, were detected by lipidomic analysis, and these were higher 
in the bacterial and viral groups when compared to the other group, respectively.

Evaluation of diagnostic potential of metabolic biomarkers. ROC curve analysis was performed to 
evaluate the diagnostic potential of these lipids in distinguishing bacterial from viral infection. Out of all discrim-
inatory lipids, PC (16:0/16:0), unknown feature m/z 239.157 and PE (16:0/18:2) generated the highest AUCs of 
0.774 (CI, 0.6–0.902), 0.721 (CI, 0.545–0.871) and 0.705 (CI, 0.52–0.849), respectively (Fig. 4).

FS-PLS was initially carried out on the abundance values for all 28 shortlisted features. A signature was identi-
fied made up the following 3 lipids: SHexCer(d42:3); PC (16:0/16:0); and LacCer(d18:1/24:1). The impacts of age 
and sex on the feature selection process were explored. With a false discovery rate (FDR) of 0.05, 5 out of the 28 
features were identified as being significantly differentially abundant between samples above or below the median 
age. None of the 28 features were identified as being significantly differentially abundant between males and 
females. The 5 features that were associated with age were removed and FS-PLS was re-ran on the filtered dataset. 
The same 3-metabolite signature (SHexCer(d42:3), PC(16:0/16:0), LacCer(d18:1/24:1)) was identified, showing 
that the signature is robust to age effects.

This signature achieved an improved ROC curve with AUC of 0.911 (95% confidence interval: 0.81–0.98) 
when compared with those generated from individual lipids. The ROC curve and confidence intervals calculated 
through bootstrapping are shown in Fig. 5. Figure 6 shows the disease risk scores for definitive bacterial and 
definitive viral samples with points overlaid to indicate the sex or age (above or below median) of the sample.

Discussion
We have shown that differences in the host lipidome are induced by bacterial and viral infections. While differ-
ences in host responses between viral and bacterial infections have been previously reported, for example as dif-
ferential expression of proteins, RNAs and level of metabolites9–14,20, there have been no claims in relation to the 
lipidome changes in carefully-phenotyped samples. Although age is known to affect metabolism28, it is important 
to note the metabolic changes associated with infection described herein, were consistent among samples from 
patients whose age ranged from 1 month to 9 years old.

Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were 
higher in the confirmed virus-infected group when compared with bacterial infected group, while some species 
of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were higher in cases 
with confirmed bacterial infection when compared with viral infection.

The important effects of infection on fatty acid metabolism have been highlighted by Munger et al. who 
demonstrated human cytomegalovirus (HCMV) up-regulated fatty acid biosynthesis in infected host cells. 

Patients with confirmed Bacterial infection (N = 20) Viral infection (N = 20) P value

Age, median (range), month 9 (1–102) 8 (1–93) p = 0.48

Male, No. (%) 11 (55) 10 (50) —

White race, No./total (%) 14/19 (74) 11/20 (55) —

Time from symptoms to blood 
sampling, median (range), day 2 (0–9) 3 (0–15) p = 0.16

Intensive care, No. (%) 7 (35) 6 (30) —

Fatalities, No. 1 0 —

Pathogen* (#cases)

Coliform (1)
B. pertussis (2)
E. coli (2)
S. Pneumoniae (3)
S. aureus (1)
E. cloacae (1)
N. Meningitidis (8)
K. Kingae (1)
Klebsiella oxytoca (1)
Group A streptococcus (1)**

Enterovirus (3)
Influenza A (2)
Parechovirus (1)
Respiratory syncytial virus (5)
Rhinovirus (3)
Adenovirus (4)
Human Metapneumovirus (1)
Parainfluenza virus (1)
Human herpesvirus 6 (1)
Herpes simplex virus (1)
Rotavirus (1)

Source of the samples

St. Mary’s Hospital (2)
Alder Hey Children’s NHS Foundation (3)
Poole Hospital NHS Foundation Trust (2)
Nottingham University Hospitals (2)
Medical University of Graz (1)
General Hospital of Leoben (1)
Hospital Clinico Univeritario de Santiago (5)
Hospital Universitario 12 de Octubre (2)
Complejo Hospitalario de Jaen (1)
Erasms MC (1)

St Mary’s Hopsital (11)
Newcastle Upon Tyne Hospitals NHS (1)
Cambridge University Hospitals NHS 
Foundation Trust (2)
Great Ormond Street Hospital (1)
Nottingham University Hospitals (2)
Hospital Clinico Univeritario de Santiago (2)
Erasmus MC (1)

Table 2. Demographic and clinical patient characteristic. *Some patients are co-infected with more than one 
pathogen. **The patient with Group A streptococcus was excluded from the subsequent data analysis as being an 
outlier.
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Pharmacologically inhibition of fatty acid biosynthesis suppressed viral replication for both HCMV and influ-
enza A virus29. The importance of fatty acid biosynthesis may reflect its essential role in viral envelopment during 
viral replication. Rhinovirus induced metabolic reprogramming in host cell by increasing glucose uptake and 
indicated a shift towards lipogenesis and/or fatty acid uptake30. In our study, fatty acids linoleic acid (FA 18:2), 
palmitic acid (FA 16:0), oleic acid (FA 18:1) and palmitoleic acid (FA 16:1) were lower in viral infection when 
compared to bacterial infection, and may reflect enhanced lipogenesis and fatty acid uptake in the host cell during 
viral replication.

The increase in cholesterol sulfate observed may reflect changes in cellular lipid biosynthesis and T cell signal-
ling during viral infection. Cholesterol sulfate is believed to play a key role as a membrane stabiliser31 and can also 
act to modulate cellular lipid biosynthesis32 and T cell receptor signal transduction33. Gong et al. demonstrated 
that cholesterol sulfate was elevated in the serum of piglets infected with swine fever virus34. Taken together, these 
observations indicate that this compound could be a marker of viral infection.

Higher level of sphingomyelin SM(d18:1/24:1), SM(d18:1/23:0) and SM(d18:1/24:0), and lysophosphocho-
line LPC (16:0) upon viral infection may also be linked to viral replication in infected cells. Accumulation of 
cone-shaped lipids, such as LPC in one leaflet of the membrane bilayer induces membrane curvature required 
for virus budding35. It is known that viral replication, for example in the case of dengue virus, induces dramatic 
changes in infected cells, including sphingomyelin, to alter the curvature and permeability of membranes36. 
Furthermore, the altered levels of sphingomyelin can be partially explained by elevated cytokine levels during 
bacterial infection, such as TNF-α37, which can activate sphingomyelinase, hydrolysing sphingomyelin to cer-
amide38. Hence, sphingomyelin may be a class of lipids that plays a role in both viral and bacterial infection.

Lactosylceramide LacCer(d18:1/24:1) and LacCer (d18:1/16:0) were higher in bacterial infection in com-
parison to viral infection. Lactosylceramide, found in microdomains on the plasma membrane of cells, is a gly-
cosphingolipid consisting of a hydrophobic ceramide lipid and a hydrophilic sugar moiety. Lactosylceramide 
plays an important role in bacterial infection by serving as a pattern recognition receptors (PRRs) to detect 
pathogen-associated molecular patterns (PAMPs). Lactosylceramide composed of long chain fatty acid chain 
C24, such as LacCer(d:18:1/24:1) increased in our study, is essential for formation of LacCer-Lyn complexes on 
neutrophils, which function as signal transduction platforms for αMβ2 integrin-mediated phagocytosis39.

Other lipids that were changed in our study, such as sulfatides and glycerophosphocholines, may also play an impor-
tant role in bacterial infection. Sulfatides are multifunctional molecules involved in various biological process, including 

Figure 1. Principal components analysis (PCA) of lipidomics dataset. (A) Scatter plot of PCA model from 
data acquired in negative polarity mode. (B) Scatter plot of PCA model from data acquired in positive polarity 
mode. Quality control samples are shown in red, bacterial infected samples are shown in blue and viral infected 
samples shown in green.

Figure 2. The scatter plot of the cross-validated score vectors showing the clustering of definitive bacterial 
infected samples (green dots) from definitive viral infected samples (blue dots).
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immune system regulation and during infection40. Sulfatides can act as glycolipid receptors that attach bacteria, such 
as Escherichia coli41, Mycoplasma hyopneumoniae42 and Pseudomonas aeruginosa43 to the mucosal surfaces. Five glyc-
erophosphocholine species including PC(16:0/18:2), PC(18:0/18:1), PC(18:0/18:2), PC(16:0/16:0) and PC(16:0/18:1) 
werehigher in bacterial infected samples when compared with viral infected samples. Glycerophosphocholine was ele-
vated in a lipidomics study looking at plasma from tuberculosis patients44, however, the exact role of glycerophospho-
choline remains elusive. Bilirubin is detected as a consequence of breadth of lipidome coverage, and its role in infection 
is unclear. The lipid species identified in this study present an opportunity for further mechanistic study to understand 
the host responses in bacterial or viral infection.

A combination of three lipids achieved a strong area under the receiver operating characteristic (ROC) curve 
of 0.911 (95% CI 0.81 to 0.98). Similar approaches have been taken using routine laboratory parameters and more 
recently gene expression where 2-gene transcripts achieved an ROC AUC of 0.95 (95% CI 0.94-1)11. The relevance 
of our data is that they provide the potential for a rapid diagnostic test with which clinicians could distinguish 
bacterial from viral infection in febrile children.

The study has limitations. Firstly, we were unable to annotate 4 of the 29 discriminatory features, of which two 
were assigned with only a broad lipid class by identifying the head group (PE). The unknown feature with m/z of 
239.157 achieved the second highest AUC for ROC curve analysis on an individual basis. The unknown identity 
prevents this feature from being a potential marker and hinders biological understanding. This feature, however, 
was not included in the final 3-lipid panel that gave the highest AUC. Secondly, the sample size in this pilot study 
is small. Validation studies using quantitative assay are now required to confirm the findings. In addition, in larger 
validation studies, we will look into the signature of specific pathogens, and potentially co-infection by multiple 
pathogens.

Figure 3. Manhattan-style plot of the 3891 lipid features detected by lipid-positive mode UPLC-MS with 40 
features showing a significant association with infection type (as determined by model S-plot) highlighted and 
annotated. Y axis Sign(p) x P is the loadings of the OPLS-DA (i.e. modelled covariance p[1]). *Cholesterol 
sulfate – isomers due to different position of the sulfate.

Figure 4. Receiver operator characteristic (ROC) analysis based on single lipids. ROC curve analysis of top 3 
lipids PC (16:0/16:0) (A), unknown feature (m/z 239.157) (B) and PE (16:0/18:2) (C) which gave with highest 
Area Under the Curve (AUC) values.
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This is the first lipidomics study carried out on plasma taken from febrile children for the purpose of distin-
guishing bacterial from viral infection. It demonstrates the potential of this approach to facilitate effective clinical 
management by rapidly diagnosing bacterial infection in paediatrics.

Data availability
The datasets generated and/or analysed during the current study are available from corresponding author on a 
reasonable request.
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