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A gram-positive bacterium with antagonistic activity towards soilborne fungal pathogens has been isolated
from the mycorrhizosphere of Sorghum bicolor inoculated with Glomus mosseae. It has been identified as
Paenibacillus sp. strain B2 based on its analytical profile index and on 16S ribosomal DNA analysis. Besides
having antagonistic activity, this bacterium stimulates mycorrhization.

In recent years, several types of microorganisms have been
reported to be associated with the rhizospheres of different
host plants colonized by arbuscular mycorrhizal (AM) fungi.
These have been identified as associative N2-fixing bacteria
(13), plant growth-promoting rhizobacteria (17), phosphate-
solubilizing bacteria (15), and antagonists of plant pathogens
(4). AM fungi are a ubiquitous component of most agroeco-
systems and play an important role in key rhizosphere pro-
cesses (14), including plant protection against soilborne dis-
eases (1, 5). Associated microorganisms may complement
mycorrhizal activities, particularly in biological control in ag-
ricultural systems. However, few data on the compatibility be-
tween these microorganisms and AM fungi are available.
There are reports that biocontrol agents, like gram-negative
Pseudomonas strains, do not have inhibitory effects on AM
formation (2, 11). We report the isolation and identification of
a gram-positive bacterium from the mycorrhizosphere of sor-
ghum and describe its activity towards root pathogens and AM
fungi in vitro and in vivo.

Eight morphologically different bacteria (B1 to B8) were
isolated from the mycorrhizosphere of sorghum plants (Sor-
ghum bicolor L. var. Esquirol) inoculated with the AM fungus
Glomus mosseae (Nicol et Gerd) Gerdemann et Trappe (BEG
12) (obtained from the Banque Européenne des Glomales
[1a]). Seeds of sorghum were surface sterilized (30 min in 7%
calcium hypochlorite with a few drops of Tween 20, followed
by 30 min in 4% chloramine-T), and sporocarps of G. mosseae
were surface sterilized as previously described (3). Plants were
grown in a sterilized clay loam soil-calcined clay (Oil Dry Type
III; OIL z DRI, Limited, Wisbech, United Kingdom) mixture
(1:1) in sterile Sunbags (catalog no. 7026; Sigma) under con-
stant conditions (22 to 24°C, 16-h photoperiod, 300 mmol of
photons/m2/s, and 70% relative humidity) for 12 weeks. All the
components (soil-clay mixture sporocarps, seeds, and water)
were extensively checked for the absence of contaminants by
incubation in malt agar medium. Bacteria were isolated from

the growth substrate of G. mosseae-inoculated plants according
to the method described by Zuberer (18) and were selected by
colony characteristics: shape, size, edge morphology, surface,
and pigment. No bacteria were obtained from the growth sub-
strate of plants not inoculated with G. mosseae sporocarps.
Bacteria were screened in vitro for their antagonistic activity
towards Phytophthora parasitica isolate 204 by measuring the
radial colony growth of the fungus and the zoosporangium
production in the absence and presence of the bacteria accord-
ing to the methods of Dal-Soo et al. (6). Zoospore germination
on Millipore filters left unsaturated or saturated with the fil-
tered supernatant of a B2 culture was evaluated, and the in
vivo antagonism of the bacteria in terms of plant growth and
the percentage of necrosed roots, in the presence or absence of
G. mosseae, was assessed as described by Cordier et al. (5). AM
development was determined according to the method of
Trouvelot et al. (16). In vitro experiments were performed with
five replicates for each experiment and were repeated at least
twice. A randomized block design was used for in vivo growth
room experiments, with seven replicates per treatment. Per-
centages were arcsine transformed prior to analysis. All data
were analyzed by one-way analysis of variance and the New-
man-Keuls test at a P value of ,0.05. Results are given for one
representative experiment.

Only one strain, B2, out of the eight isolated showed a
significant antagonistic activity towards P. parasitica in vitro
(Table 1). The antagonistic effect was also obtained with par-
tially purified (by ion-exchange chromatography after heat
treatment) media from a B2 bacterial culture, indicating that
the strain secretes an antifungal factor (data not shown). The
effect of antagonistic B2 bacteria was also tested in vivo on
tomato plants grown in the presence or absence of G. mosseae
and/or the bacterial strain B2 and subsequently inoculated with
P. parasitica. Root necrosis caused by P. parasitica was reduced
by 32, 53, and 63% when plants were inoculated with B2, G.
mosseae, and B2 and G. mosseae, respectively (Table 2). The
presence of B2 increased the root and shoot fresh weights of
the mycorrhizal tomato plants, and together with G. mosseae it
abolished the negative growth effect of P. parasitica. Inocula-
tion with the bacteria also stimulated root colonization by G.
mosseae (Table 2).

The bacterial strain B2 (gram positive) was characterized by
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using the analytical profile index (API) system (BioMérieux,
Marcy l’Etoile, France) with API 50 CHB galleries and by
sequence analysis (sequencing by Genome Express, Grenoble,
France) of the small ribosomal subunit (16S ribosomal DNA
[rDNA]) after PCR amplification with the eubacterial primers
27f (59-AGA GTT TGA TCM TGG CTC AG-39) and 1492r
(59-TA CGG YTA CCT TGT TAC GAC TT-39) and cloning.
Of the 1,510 nucleotide bases of the DNA sequence obtained,
1,410 were aligned with those of the most closely related iso-
lates by the Clustalx program. Phylogenetic distances were
calculated according to the neighbor-joining method with
Kimura parameters (7). A consensus tree obtained from 1,000
bootstrap replicates was drawn with Treeview (10). The API of
strain B2 differed from that of Paenibacillus polymyxa only by
the use of 3 carbohydrates (methyl-D-glucoside, melezitose,
and D-tagatose) out of 49. Phylogenetic comparison of the 16S
rDNA sequence with those of other Paenibacillus isolates (Fig.
1) confirmed the high similarity to P. polymyxa. Strain B2 was
grouped with P. polymyxa, Paenibacillus peoriae, and Paeniba-
cillus azotofixans in 100% of the trees obtained after bootstrap
analysis, with its highest similarity being to the last species.
However, the reference strain P. azotofixans P3 L-5 (DSM
5976T) did not show any antagonistic activity towards P. para-
sitica (Fig. 2).

The occurrence of unidentified antagonistic bacteria in pot
cultures of G. mosseae on strawberry has recently been re-
ported (4). In the present study, such antagonistic bacteria
were found in pot cultures of S. bicolor inoculated with sporo-
carps of G. mosseae, one strain of which (B2) strongly inhibited
the in vitro and in vivo development of P. parasitica. Charac-
terization of this bacterium with the API system and sequence
analysis of the 16S rDNA indicated a close relationship to P.
polymyxa and P. azotofixans. However, it differed from these
species in carbohydrate use and antagonistic activity, respec-
tively. These data indicate that the B2 isolate represents a new
strain of Paenibacillus, and we propose that this bacterium be
called Paenibacillus sp. strain B2.

Paenibacillus sp. strain B2 and its metabolites not only sup-
press the in vitro mycelial growth of P. parasitica but also
inhibit sporangium production, zoospore germination, and
germ tube elongation by the pathogen. This is very important
since such effects can hinder the completion of the life cycle of
the plant pathogen in vivo. In addition to inhibiting the in vitro
growth of P. parasitica, Paenibacillus sp. strain B2 also reduced
the hyphal growth of other pathogenic fungi: Fusarium oxy-
sporum Foeu1 (FPSS) (reduced by 35.0%), Fusarium culmo-
rum Fcul 1 (35.7%), Aphanomyces euteiches 502 (50.0%), Cha-
lara elegans 84.1 (82.6%), Pythium sp. strain 0P 4 (36.0%), and
Rhizoctonia solani AG3 (53.0%). This suggests that this bacte-
rium has a broad spectrum of antagonistic activity. Interest-
ingly, Paenibacillus sp. strain B2 stimulates AM fungal root
colonization and also appears to be compatible with the ger-

FIG. 1. Phylogenetic consensus tree based on the alignment of 1,410 bases
from the small ribosomal subunit of Paenibacillus sp. strain B2 and 15 strains
showing the highest nucleotide sequence similarities. Accession no. are as fol-
lows: Paenibacillus macerans, X57306; P. macerans2, D78319; P. polymyxa1,
X60632; P. polymyxa2, D16276; P. peoriae, D78476; P. azotofixans1, X60608; P.
azotofixans2, D78318; Paenibacillus amylolyticus, X60606; Paenibacillus macquar-
iensis1, X60625; P. macquariensis2, X57305; Paenibacillus pabuli, X60630; Paeni-
bacillus illinoisensis, D85397; Bacillus viscosus, X77792; Paenibacillus validus
DSM 3037, D78320; Paenibacillus apiarius NRRL NRS-1438, U49247; and Mari-
nococcus halophilus, X90835 (superscripts indicate different strains). M. halophi-
lus was used as an out-group. Bootstrap values higher than 99% are in heavy
lines.

TABLE 1. Effect of B2 bacteria on in vitro growth and
zoosporangium production of mycelial cultures of P. parasitica and

effect of filtered culture supernatant of B2 on zoospore germinationa

Status of
B2

Radial mycelium
growth (cm)
after 6 days

No. of
sporangia/culture

after 6 days

% Zoospore
germination

after 6 h

Absent 5.3a 1,040a 62.5a
Present 2.1 (75.0)b 0 (100)b 25.9 (58.6)b

a Values in a column followed by the same letter do not differ significantly from
each other at a P value of ,0.05. Values in parentheses are the percents inhibition.

TABLE 2. Effect of B2 bacteria on mycorrhizal colonization by G. mosseae and on damage of tomato roots by P. parasiticaa

Content of inoculum (n 5 7)
Fresh wt (g) Root colonization by G. mosseae % Necrosis by

P. parasiticaShoot Root % Colonized AA (%)b

None 16.07 bc 7.12 c
G. mosseae 16.44 b 8.08 b 32.4 b 22.6 a
B2 15.89 bc 7.90 b
G. mosseae 1 B2 17.57 a 9.06 a 43.7 a 28.4 a
P. parasitica 15.30 c 5.42 d 15.1 a
G. mosseae 1 P. parasitica 16.20 bc 7.18 c 34.2 b 22.7 a 7.2 c
B2 1 P. parasitica 15.49 bc 7.10 c 10.3 b
G. mosseae 1 B2 1 P. parasitica 17.27 a 8.88 a 45.7 a 31.0 a 5.6 d

a Values in a column followed by the same letter do not differ significantly at a P value of ,0.05.
b AA, arbuscule abundancy.
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mination and hyphal growth of G. mosseae in vitro (results not
shown). Similar data have been reported by Barea et al. (2) for
Pseudomonas strains.

There are several reports about the potential use of AM
fungi as biological control agents against soilborne diseases (1,
5, 8, 9). The discovery of a Paenibacillus strain that can act as
a biological control agent against soilborne fungal diseases
while improving AM formation opens the possibility of using
dual bacterial-fungal inoculation for ensuring the production
of high-value plants in systems compatible with the environ-
ment.

Nucleotide sequence accession number. The nucleotide se-
quence for isolate B2 was deposited in the EMBL, GenBank,
and DDBJ nucleotide sequence databases under the accession
no. AJ011687.
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FIG. 2. Antagonistic activity of Paenibacillus sp. strain B2 (B2) against P.
parasitica (Phyt) compared with those of another bacterial isolate (B1) and the
reference strain P. azotofixans P3 L-5 (DSM 5976T) (Pa). The organisms were
grown on malt agar medium at 25°C for 2 weeks.
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