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ALMOST SURE RATES OF MIXING FOR
[.I1.D. UNIMODAL MAPS

By ViviaANE BALADI, M IcHAEL BENEDICKSAND
VERONIQUE MAUME-DESCHAMPS

ABSTRACT. — It has been known since the pioneering work of Jakobson and subsequent work by
Benedicks and Carleson and others that a positive measure set of quadratic maps admit an absolutely
continuous invariant measure. Young and Keller—Nowicki proved exponential decay of its correlation
functions. Benedicks and Young [8], and BaladidaViana [4] studied stality of the density and
exponential rate of decay of the Markov chain associated to i.i.d. small perturbations. The almost sure
statistical properties of the sample stationary measures of i.i.d. itineraries are more difficult to estimate than
the “averaged statisticsAdapting to random systems, on the drand partitions associated to hyperbolic
times due to Alves [1], and on the other a probabidisoupling method introduced by Young [26] to study
rates of mixing, we prove stretched exponential upper bounds for the almost sure rates of mixing.
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RESUME. — On sait depuis les travaux de Jakobson d’abord, de Benedicks et Carleson et d’autres auteurs
ensuite, que les transformations quadratiques de l'intervalle admettent une mesure de probabilité invariante
absolument continue pour un ensemble de parametres de mesure de Lebesgue positive. Young et Keller—
Nowicki ont montré la décroissance exponentielle des fonctions de corrélation correspondantes. Benedicks
et Young [8], Baladi et Viana [4] on¢tudié la stabilité de la densité invariante et du taux de décroissance
exponentiel de la chaine de Markov associée a de pettearpations i.i.d. Les propriétés statistiques
presque slres des mesures échantilées des itinéraires aléatoiremisplus difficiles a estimer que les
“statistiques moyennisées”. En adaptant aux systemes aléatoires, d’'une part une partition associée aux
temps hyperboliques d'Alves [1], d’autre part umé&thode de couplage probabiliste introduite par Young
[26] pour étudier la vitesse de mélange, nous obtenons des bornes supérieures sous-exponentielles pour la
vitesse de mélange presque sdre.

0 2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

An important class of discrete-time deterministic dynamical systems (given by a transforma-
tion f on a Riemann manifold) are those which are both “chaotic” (i.e., satisfy some sensitive-
ness of initial conditions property) and statisticallggictable, i.e., there is an (ergodic) invariant
measure, so that, for each integrable observabld_ebesgue almost every poing has a time
average converging to the space average:

n—1

1 )
(1.1) nlgrgoﬁ;tp(f (o)) —/tpdu-
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78 V. BALADI, M. BENEDICKS AND V. MAUME-DESCHAMPS

A stronger ergodic property is mixing. if is mixing, we haveconvergence to equilibrium

(1.2) lim <p0f”dLeb:/apdu,
and more generally, for any pair of square integrable observables we demay of the
operational correlations

(1.3) nllrrgo(/wof"zﬂdLeb—/wdu/zﬁdLeb) —0.

(Essentially equivalently, the classical correlations tend to zero, which is the same as
lim, oo [(po f")pdu= [¢du [+ du. The proofs below apply to both notions, and we con-
centrate on the operational correlations, more sgibée experimentally.) When (1.2) and (1.3)
hold, a natural question is: “how fast does theaergence take place?” Such quantified infor-
mation onrates of mixingnay sometimes be obtained for smooth enough observables, and often
yields a central limit theorem for them. See, e[85] and references therein for a discussion of
this class of problems and some specific examples of uniformly and nonuniformly hyperbolic dy-
namical systems where the rate of mixing is exponential. One of these examples is the quadratic
family = — a —2? on the interval for “good” (so-called Collet—~Eckmann or Benedicks—Carleson)
values of the parameter or more generally unimodal maps satisfying certain axioms.

Our present object of study is small random perturbations of dynamical systems. Since our
results are for independent identically distried perturbations of good unimodal maps, we
can be a little more specific without being too technical:/let R be a compact interval and
let f:1 — I be a smooth transformation witA(7) a subset of the interior of. For small
e >0, letv. be a probability measure dr-c, c]. We may consider two models for the random
compositions off + wo with wy selected if—e, ] following the laww. .

1.1. Markov chain

In words, we are averaging over all possibledam realisations. Because of the i.i.d. setting,
this can be done by averaging at each time-sképre formally, this means considering the
Markov chain{ X,,}>° , with transition probabilities (here; € I and E' C I with characteristic
functionyg)

(1.4) Prob(X,41 € F| X, =x) = /XE (f(2) 4+ wo) dve (wo).

Under rather weak assumptions, it is possible to show that the Markov chain adumiguee
invariant probability measure, i.e., a measureon I with

uE(E)://XE(f(x)—I—wo) dve (wo) dpe ().

writing f.,(z) = f(z) + wo for w € [—¢,¢]% and by inductionf”(z) = 2! o f.,(x), where
(ow)r, = wi41 One defines operational correlation functions

n—1

(1.5) /wfg;ydLebH dve (w;) —/apdpg/d;dLeb.

=0
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ALMOST SURE RATES OF MIXING FOR L.1.D. UNIMODAL MAPS 79

forthe Markov chain. Itis of obvious interest to stustpchastic stabilityi.e., whethep,. — u (at
which speed? in which topology&nd whether the rate of decay of correlations is stabie-ad).

1.2. Random skew product

Alternatively, we may wish to state “almost sure” results. Formally, we consider the skew
product?’: I x Q — I x Q, with Q = [—¢,¢]?,

(1.6) T(z,w) = (fu(z),0(w)), where(ow)y =wyi1.

The natural objects of study are the invariant probability measuresifasf the form

piw Leb(dz) P(dw) with P = vZ, in particular those for which almost eagh, is absolutely
continuous with respect to Lebesgue measure. In the present i.i.d. setting such a family of
absolutely continuousample stationary measurgs = h,, Leb (which satisfy( f,, )« tw = flow)

may be obtained by disintegrating a natural extensiqn.of v WithZy ={neZ|n >0}).

Itis natural in this context to consider both thture (“aiming at a moving target”), and thmast
ratesof convergence to equilibrium:

1.7) R () =|(12), Leb) — o

and R (n)=|(fr.,), (Leb) — |,

where| - | denotes the total mass of a signed measure. We may also consider the “future” and
“past” random operational correlations:

— /((pofg)djdLeb—/@dugnw/l//dLeb ;

c ) ‘/ @o fi,,)dLeb— /(pduw/deeb

The goal here is to obtain far-almost alkv, upper bounds of the typ&,, - p(n) or Cy, , Co,, - p(n)
on the expressions (1.7) respectively (1.8), where) — 0 at a certain rate, independently.of
(In general it is not immediate to obtain bouraisthe future random correlation functions from
estimates on the past random correlation functions, and vice versa.) Asymptotic bounds on

(1.8)

(1.9) P({w]|Cy >n})

are also desirable. The stochastic stability questions mentioned in the framework of the Markov
chain may also be asked here.

Obviously, controlling (1.5) is not enough totisate (1.8). In the other direction, av-
eraging estimates (1.8) yield corresponding bounds for (1.5) whenever the control in (1.9)
is enough to guarantee that, € L'(P). (In fact, some additional information is needed
— and often available — to estimate expressions of the typg(c"w)ps(w)dP:(w) —

J d1(w)dP:(w) [ ¢2(w)dP-(w).) Also, it may be argued that a control of “almost all random
itineraries” with information of the type (1.9) is more relamt to an actual physical experiment
(e.g.) than bounds for the the averages (1.5). After all, only finitely many experiments may be
actually realised!

Before we state our main new results, let negall previously known facts. For smooth
expanding (in any dimension) or piecewise smooth and piecewise expanding one-dimensional
maps, the Markov chain was studied byl&#—Young [5] who proved exponential decay of
correlations and strong stochastic stability. Baladi—Viana [4] then extended these results to a
positive measure set of honuniformly expanding unimodal maps, for which Benedicks—Young
[8] had previously obtained a weaker form of stochastic stability. (We also refer to results of

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



80 V. BALADI, M. BENEDICKS AND V. MAUME-DESCHAMPS

Katok and Kifer [18] for more general perturbations, but under a Misiurewicz assumption, as
well as to work of Collet [15].)

Let us now discuss random skew products forahha large body of literature is available (in
particular by Kifer, and the school of L. Arnold in Bremen), we restrict to results related to the
physical measures of small random perturbations of strongly mixing discrete-time dynamics.
Bogenschitz [10] and Baladi et al. [3] studied random correlations for smooth expanding
dynamics, proving exponential decay of future amdtcorrelations together with a strong form
of stochastic stability (this was done by using ayveaive idea: all transfer operators in play
map a given function cone strictly inside itself). We mention also the work of Khanin and Kifer
[19] who were interested in more general gitpuium states for random compositions of maps
expanding in average (they studied neither stability nor rates of mixing). More recently, Buzzi
[13,14] considered random compositions of pigise monotone interval maps (not necessarily
close to a fixed map) having some expansion in average property. He showed existence of
absolutely continuous sample stationary nuegas and exponential decay of both future and past
correlations, using a probabilistic approach.

1.3. Informal statement of results

Starting from a “good” unimodal mag (our assumptions are stated in an axiomatic way,
see (H1)—(H4) in Section 2, they apply to a positive measure set of parameters of the quadratic
family) and an atomless probability measuteon [—¢, ] (the precise assumption is given in
(2.1), we consider for small enoughthe i.i.d. compositions of + wy. We show that for almost
everyw € €

(1) There is a unique family of absolutely continuous sample stationary medsurgd.cb
forn € Z.

(2) We havestretched exponential decdgr the rates of mixing. More precisely, there are
0<u<1,v>1,C(e) >1,andarandom variablg, with P({w | C,, > n}) < C(e)/n"
such that for all Lipschitz test functions ¢, there isC(p, ¢), depending only on their
Lipichitz constants so that wit” (n) R? (n), CL{;M”)’ Ci’j)w7¢(n) asin (1.7), (1.8)
we have

max (R (n), RV (n),CY)  (n),C) (n)) < C(e)CuClp0)e™, VneZ,.

In fact, we can prove the bounds for the universal expomentl/16 if we allow a factor
C(e) > 1 asfollows:

- _pl/16
max (R&f)(n), R (n), Ci{;w(n), C’U(f;’w(n)) <C(e)C, C(p,)e /€,
We believe that this is the first time that estimates have been obtained for the almost sure rates
of mixing in a concrete nonuniformly hyperbhodynamical setting. We hope that they may be
used to prove a random central limit theorem (see Kifer [20]).

Since the bound od’fuf;f)w is integrable, averaging our results on the random correlations

gives that the Markov chain correlation decays faster thane " for some0 < u < 1, a

result not as good as the exponential decay obthim¢4]. Note also that our upper bounds for

the various constants, (), C'(g) blow up whens — 0. (In particular, we dmotaddress in the
present paper the question of stochastic stability.) In view also of the fact that the transition from
exponential (Lemma 7.8) to stretched exponential bounds occurs rather late in the proof (it is a
consequence of the waiting times interferinighthe combinatorial bounds, e.g., in the proof of
Proposition 8.3, see below for more details), it is not clear whether the subexponentiality is an
artifact of our proof.
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ALMOST SURE RATES OF MIXING FOR L.1.D. UNIMODAL MAPS 81

One of the advantages of this work as contrasted to the previous studies ([4,5,8], etc.) of the
Markov chain approach is that it is naturally suited to extensions to the non-autonomous case.
More precisely, instead of assuming full i.i.d., thatfis= vZ, we could suppose thét, P) is
“strongly” mixing, and try to implement a variant of the geometric construction of Viana [24] to
replace, e.g., Lemma 7.4.

The basic idea in our proof is to construct a random version of the towers of Young [26],
showing that the coupling method she introduced can be randomised. The first difficulty here
is to modify the standard partition (see, eJ@5]) and obtain good estimates on points with
large return times. Here, a beautiful idea dué\tees [1] was instrumental. He studied (maps
close to) a deterministic skew produf(z,f) = (a — 2? + €0, D6 mod 1) where D > 1
gives a “strongly mixing” deterministic dynamical system on the circle. In order to construct
absolutely continuous invariant measurefoon the cylinder, Alvesritroduced good partitions
into rectangles, involving a crucial notion of “hyperbolic times” (an abstraction of the escape
times relevant for unimodal or Hénon maps, which was later applied by Alves—Bonatti—Viana
and Castro to analyze partially hyperbolic systems). He also exploited bounds on “exceptional
sets” previously obtained by Viana [24], who was the first to study this skew product model
and proved that it possesses two positive Lyapunov exponents. Although we consider a slightly
more general framework than the Misiurewicz setting in [1] and [24], many properties become
easier to prove in our i.i.d. setting (see Lemma 7.4, where we obtain exponential estimates, to be
contrasted with the stretched exponential bounds in [24]). The key observation then is that the
bounds obtained on the setwfuch that a givem behaves well by following [1,24] are uniform
in z, so that a careful application of Fubini’s theorem allows us to exchargedw (up to a
zero-measure residue of bads which may be excluded). On the other hand, we are forced to
introduce “waiting times” (see Lemma 7.7) whicdnder the coupling argument more intricate
and make us lose exponential bounds. (This lassics first in Proposition 8.3, when we ensure
that the return map to the basis is Markov. See in particular the ckoic/¢ which is optimal
because we use the rough estimate (8.7).

Finally, one surprising fact was that an estimate of Young (see the “choieg’ah [26,
Lemma 1]) which was a trivial consequence of the mixing property of the measure, becomes
more troublesome in the random case. To deal with this, we bootstrap from the mixing property
of the Markov chain on the tower (which follows from mixing of the random skew product in
Section 4) applied in (yet) another large deviation argument (Sections 5-6) within the coupling
estimates.

1.4. Sketch of contents

The article is organised as follows. In Section 2 we give precise statements of our hypotheses
and results, including an application to random countable Markov chains.

Sections 3—6 constitute Part | of the proofhieh is an abstract random analogue of the
coupling method on towers in [26]: In Section 3, we formulate a set of axioms for random
towers endowed with a reference measure, and show that they ensure the existence of absolutely
continuous sample stationary measures. Section 4 is devoted to general remarks on random
mixing and random exactness, followed by a proof that the skew product associated to the
dynamics on random towers is exact (and thus mixing) if the greatest common denominator
of the return times to the basis is equal to one. These remarks are used in a large deviations
argument in Section 5, where the coupling method of [26] is implemented on the towers from
Section 3 to study the rate of decay of the “futurerrelation function. Finally, in Section 6 we
further adapt the coupling method to study the “past” correlations.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



82 V. BALADI, M. BENEDICKS AND V. MAUME-DESCHAMPS

In Part Il, we show that our random unimodal maps fit in the abstract framework of Sections 3—
6. Section 7 is devoted to constructing randorrtipians of the interval, and estimating random
return times to a well-chosen subinterval (adapting the hyperbolic times techniques in [1], and
the bounds in [24]), after suitable “waiting tam”. Section 8 is centered around Proposition 8.3
which gives upper bounds on the random recurrence asymptotics. These bounds enable us to
construct random towers satisfying the axioms in Section 3 and to complete the proof of our
main theorem in Section 9.

To keep the length of this article within reasonable bounds, we put the emphasis on those of
our arguments which are new or differ nontrivially from previous ones, giving precise references
to published computations (in particular in [1,8,24,26]).

2. Setting and statement of results

LetI = [L, R] be a compactinterval containifgn its interior andf : I — I be aC? unimodal
map (i.e.,f is increasing oL, 0], decreasing ofo, R]) satisfyingf”(0) # 0, sup; | f’| < 8, and,

H1) There aré < oo < 1 and1 < A < 4 with 200« < (log A)? so that
( g

@) |(f™)'(f(0))| = A", forallneZy.
(i) |f™(0)| =e o™ forallneZ,.

(H2) For each small enough> 0, there isM = M (§) € Z. for which

() If z,..., fM=1(x) ¢ (—0,0) then|(fM) (z)] = \M.
(i) Foreachn, if z,..., f*~Y(z) ¢ (—6,8) andf™(z) € (=04,6), then|(f™) (x)| = A\™.

(H3) f(I)is asubset of the interior df.
(H4) f is topologically mixing on(£2(0), £(0)].

Examples of unimodal maps satisfying (H1)—(H4) are quadratic maps? for a positive
measure set of parametergSee, e.g., [4] for notations similar to those of the present paper; the
estimate200a < (log \)? used here in Lemmas 7.1-7.4 corresponds in [4}to< \.) Condition
(H2) is in fact implied by the existence 6f> 0 andM € Z_.. such that (H2)(i)—(ii) hold. See the
remark in Section 7.1.

Fixing 9 > 0 small enough to guarantgéx) + ¢, € I for all z € I, we assume that we are
given a constant’ > 0 and for each) < ¢ < ¢ a probability measure. on [—¢, ] such that for
any subintervall C [—¢,¢],

ClJ]

-

(This is used in Lemma 7.4.) Assumption (2.1) may be relaxed, but we do not pursue this
aim here. It cannot be completely suppressed since there are open intervals of parameters
corresponding to periodic attractors arbitrarily closeztcAssumption (2.1) holds if. has a

density with respect to Lebesgue which is bounded abové'by. It doesnot imply that 0

belongs to the support of .

For fixed e > 0, we write Q = Q. = [—¢,¢]%, 0:Q — Q for the shift to the left, and
P = P. = vZ. Our aim is to study theandom compositions of mags, (z) = f(z) + wo with
w € Q following the lawP. Forn > 1 we write f7(z) = f.,,_, o---o fu,(x). Denoting Lebesgue
measure on by Leb, and|u| for the total mass of a signed measure, our first main result is
stretched exponential bounds for the speed of agagreo equilibrium (as usual, the test functions
o andv can be assumed to be Holder instead of Lipschitz):

(2.1) ve(J) <

4€ SERIE— TOME 35— 2002 -N° 1



ALMOST SURE RATES OF MIXING FOR L.1.D. UNIMODAL MAPS 83

MAIN THEOREM (Stretched exponential mixing for i.i.d. unimodals)f- is small enough
(depending ory) then for P.-almost eaclw € (). there is a sample stationary measuig Leb.

There existC(e) > 1 and, for almost everw € €., c = Cf,l)(e) > 0 such that for each
Lipschitz functionp: I — C,and alln > 1,

(2.2) [(£7-.) . (9 Leb) — (hy, Leb)| < O Lip e~ "*/C(ED,

o "w

Additionally, for almost every € €, there areC? >0, ¢ > 0 such that for each Lipschitz
function: I — C and every bounded functiop: I — C, the “past” and “future” random
correlation function satisfy for ath > 1

/wofgfnwdeeb—/@hdeeb/deeb

(2.3) < O sup || Lipye /@),
and

’/Qpof:jdeeb—/aphgndeeb/z/JdLeb

(2.4) < C) sup || Lip e/,

There areC'(¢) andv > 1 so that the maximur@,, = max(Cf,l), c?, C’S’)) satisfies

(2.5) P{weQ.|C,>n}) < —=, foralln>1.

C(e)
n'U
Finally, there isO < u < 1/16 so that the factoe—(""""*/C()) in (2.2)+(2.4)may be replaced
bye "".

Remarks—

(1) Our proof gives the same upper estimates for the “classical” correlations.

(2) See, e.g., [3] for the operatial significance of, and expmental access to, the rates in
(2.2)—(2.4).

(3) By the work of Bahnmiuiller [2] (who extended previous work of Ledrappier and Young
[21] to noninvertible situations), the Pesin formula holds for the random skew product
invariant measuré,, Leb P.

(4) If (H4) does not hold, a result of Blokh—Lyubich [9] says thatis renormalisable,
i.e., that there is a cycle of interva{d; }", f:I; — Lit1, I, = Ip, where{I,;} have
disjoint interiors. This is reflected in the greatest common denomigabdreturn times
satisfyingG # 1, also for the random towers (see the axiom (A.VI) in Section 3.2 and
(8.10). Our proof yields setched exponential decay of correlation and speed of mixing
for the Gth iteratef9 of the random system.

A simplification of the results in Sections 3—6 yields a result on random countable Markov
chains with estimates on the recurrence times (after waiting times) which we were unable to
locate in the literature. The setting is the following: LetQ — Q, with Q =[], E, where
(E,v) is a probability space, be a two-sided Bernosliift (preserving the probability measure
P=][,v). Let x5 be a random Markov chain fqw, Q) on the countable state spaZe
given by the random trasition probabilities

Prob (X" =5 | X[V =i) = pijonw, YnEZ,.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



84 V. BALADI, M. BENEDICKS AND V. MAUME-DESCHAMPS

(In particular, for almost allv and all4, ¥3°,p;;., = 1.) We say that a family of probability
measureq /i, } on Z, are sample stationary probability measure} Jf 1., (1)pij,w = tow(J)
forall j € Z, and almost allv. In this case, we write fon € Z, w € Q, andp, ¢ € £>°(Z)

E[p(X{N)] =B [p(X)] = > w(jn)<Hpm+l,akw>uw({jo}h
k=0

(Jose-esin ) €L

El(x0)(xO )= Y mnww(ﬁpjkjk+],gkw)uw<{jo}>.
k=0

(Goyemsdn)EZTT!
We shall assume that the M@ chain has the followindgrreducible tower structureon a
subsetA of Z.: On the one hand, for ajl € Z there are € A andk € Z with
Prob(X(" =i; X¥) = j) >0,

and on the other hand for alle A and P-almost everyw € ) there is a (first return time)
R, (i) > 1 so that

Prob(X") ¢ A,Vk=1,...,R,(i) — 1| X" =i) =1,

Prob(X/«® =4 | X0 =i) >0 ifandonlyif jeA.
In particular, there are three ways of expresdiidi):

1+ maxgso{Prob(X® ¢ A Ve =1,... 0] X =i)=1},
R, (i) = { mings {Prob(XF ¢ A, vk =1,....0| X =i) =0},
S yo1 Prob(XEY ¢ A VE=1,...,0| X =1).

Also, Y. Prob(XJ“™ = j | x{) = i) = 1 forall i € A. We say that the chain &periodicif
the return times satisfy (A.VI) in Section 3.1 below.

MAIN COROLLARY (Application to i.i.d. countable Markov chains)Letij") be a random
Markov chain for(o,Q2) on Z., with irreducible tower structure orh. Assume that there is
a (referencg probability mesurem on A, with m; = m({:i}) > 0 for all i € A, so that for
P-almost everyw € Q

oo

SN miProb(x Y, ¢ AvE=1,.. 0] X", =i) <,
{=114i€A
Jim > m(i€ A Ryeg-e,(i) =€) =0.

>0

Then there is a unique famify.,, } of sample stationarympbability measures orZ. .
Assume further that the chain is aperiodic and that theretateu’,v' < 1 andn; : Q — Z
with

P({w|ni(w) >n}) < e
such that forP-almost every € Q

(2.6) > miProb(XF ¢ A Vk=1,... 0| X[V =i) < et W (v).
ISHN

4€ SERIE— TOME 35— 2002 -N° 1



ALMOST SURE RATES OF MIXING FOR L.1.D. UNIMODAL MAPS 85

Then, there ard) < u < v’ and cth > 1 such that for eaclp and ¢ in ¢>°(Z.), the “past
random correlations” satisfy

E[p(x, ) (X2, )] — Elp(X ) E[w(x2,)]|
(2.7) < CV sup [|sup|ple "

Finally, there arev > 1, C' > 1 so that
P{we|C§ >n})<—nv.

Remarks—

(1) Obviously one may formulate the main corollary for future correlations, approach to
equilibrium, etc. The main corollary can be also expressed as a result on speed of
convergence to the maximal eigenvectoraxfdom products of stochastic matrices having
a “tower structure”. The cumbersome exeedss left to the reader. We refer to the papers
of Hennion [17] and the book of Bougerol and Lacroix [11, especially Chapter A.llI]
for references on the classical work of Furstenberg, Kesten, Guivarc’h, Ledrappier, and
others, on applications of the Oseledec theorem yielding exponential bounds for the
speed of convergence to the maximal eigenvector of random produati®stochastic
matrices, under assumptions guaranteeing that the maximal Lyapunov exponentis simple.

(2) Adapting Sections 5 and 6 similarly as the corresponding proofs of Theorem 2(Il) of [26],
we may also obtain exponential (respectively polynomial) estimates in (2.7) if we change
the assumptions accordingly.

Open questions-

(1) As mentioned in the introduction, by adapting Kifer's methods in [20], we expect that it
is possible to prove a random central limietirem in the setting of the present paper.

(2) We also pointed out already that it is of obvious interest (and, in view of [24], probably
feasible while retaiimg stretched exponential bounds) to generalise our i.i.d. setting to
weaker forms of mixing. One could also attempt to study non-additive perturbations.

(3) We have restricted ourselves to perturbations of exponentially mixing maps. It would be
interesting to see if our approach can be extended to unimodal maps with slower rates of
mixing. See the recent study by Bruin, Lutpa and van Strien [12], based on Young's
coupling argument [26].

Part |. Random recurrencetimesand rates of mixing
3. Random tower swith waiting times

3.1. Abstract setting

Suppose we are given a finite measure sp@ten) and for each smalk > 0 a two-
sided Bernoulli shifto: Q. — Q. whereQ. =[], E., with (E.,v.) a probability space, and
P. =], v. is ac-invariant probability measure. (We supprestom the notation whenever
possible.)

For eache and P-almost eachw, suppose there are a countable (moduld partition

A =;Aj(w) and a “return-time” function?,, : A — Z, U {oo}, constant on each;(w).
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Define the random towers for eactand almost every by

A, = {(x,() EAXZ; |x€ UAJ(J%M)’ 0€Zy, 0L Ry—r() — 1}.
J

(l.e., layerR, () — 1 disjoint copies ofA;(w) in Pisa tower fashion.) Denote hy,, , the ¢th
level of the tower{(x,¢) € A, }. We sometimes slightly abuse notation and identify , with
{r € A| Ryt (x) > L} ={x]| (x,f) € A,};in particularA,, o = A for all w. A will denote the
famlly {Aw}wEQ-

Assume that for each and almost everys we are given a return mag?: A — A The
dynamicsF,, : A, — A, consists in hopping from one tower to the next aboyd), stopping
at level R, (z) — 1 if R, (x) < oo, and falling down to the zeroth level & &, ), using the
return map. In other words, we set

B (e 0)— (x, 0+ 1), if {4+1<R,—r(z),
W(x7 )_ ( f—lw(x)70)> ifg""_l:Ra*"w(x)'
(In particular,Ff o , = f5[A)
For eacl¥ we consider the countable partitiaf, , of A, , induced bij Aj(a“w)

Ape= U Aj(o™tw),

ds bRy (gt >+

we also letZ,,, Z be the corresponding partitions 4f,,, respectivelyA.

Without risk of confusion, denote by the lift of the reference measurneon A, (suppressing
the dependence anfrom the notation). Observe thaip_, m(A,) is not necessarily finite (this
plays arole, e.qg., in the proof of Proposition 5.6, (5.5)—(5.6)).

Next, we extendR, to A, (keeping the same notation without risk of confusion) by
setting R, (x,¢) = Ry, (x,0) — L. (l.e., R,(z,¢) is the first positive integen for which
FLL(I, g) S Aa’"w,O-)

Finally, for alImost eachv, we introduce &eparation times, : A, x A, — Z4 U {oo}

sw(z,y) =min{n > 0| F}(z) andF(y) lie in distinct elements of }.
3.2. Axioms

We shall assume that our random towers satisfy the following axioms:
(A.l) [Return and separation times] R, :A, — Z. is constant on each interval of the
partition Z,,; with R, > po(e). If (z,¢) and(y, ¢) are both in the same interval of the
partition Z,,, thens,,((z,0), (y,0)) > £. For any(z, 0), (y,0) in the same interval og,,,

Suw ((x, 0), (v, 0)) = Ry (2,0) + 5570 (u) (FRW(””’O)(QJ, 0), FRW(y’O)(y, O))

(A.I) [Markov property] For each element,, of Z,,, the mapF %« |, :J, — A is abijection.

(A.I) [ Weak forward expansion] The partitionZ,, is generating for, in the sense that the
diameters of the partition‘q?:0 F 7, Z,tendto zero as — oc.

(A.IV) [Bounded distortion] There areC(s) > 1 and0 < 3 < 1 (8 is independent ot)
such that for allw and each elemenf,, of Z,, the mapF%~|; and its inverse
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are nonsingular with respect to Lebesgue measure, and, writii~ > 0 for the
corresponding jacobian, we have for eacly € .J,, writing s for s, a., =

w)1

< COle) BES (@,0),FJ (y,0))

JEE (y)

(A.V) [Return times asymptotics] There are constant§'(¢) > Cs(e) > 1, a full measure
subsef); C 2 and random variables; on 4, so that for eachy € €;:

(32) m({z € A| Ry,(z) >n}) < Ce= /01D | yp > ny(w),
' P({m(w) >n}) < Ce=("/"/C2(e)), V.

For the existence, respectively mixing, of finite invariant sample stationary measures the
following two “summability” assumptions suffice: For almostall

(3.3) m(Ay) =Y m({Ry-e, >1}) < 0.
fEZJr
(3.4) For almost allv, ‘“hin“bzg M(A yt00¢) = 0.

(A.VI) [Ged(Returntimes) =1 (mixing)] There areNy(¢) > 1, a full measure subset, C Q4
and{t; € Zy, i=1,..., Ny} with g.c.d.{¢;} = 1 such that for allv € Q, alln € Z all
1<i< Nowehaven({z € A|R,(z)=1t;})>0.

Remark3.1. — Axiom (A.V), (3.2) implies that for each fixedl € 7., there are constants
1< Cy(e) < C1(e), afull measure subsét; C 2, andns: Q3 — Z. so that

ni(o~tw) <4 andnl(oﬁMw) <, VU Zns(w),

{z €Ay | Ru(z)>n}) < Ce= /O m(A,), Yn>nsw),
Au) =2z, M{Bo-e, > 1}) <ns(w) +C(e),

P({ns(w) >n}) < Ce=(""/C2() vy,

m(
3.5
(3.5) (

m

In particular, (3.2) implies (3.3) and (3.4). (For (3.4), use thatyit> n3(w) > na(w) then
n1 (N +ow) < ¢y by definition ofns, so that

D (A sieg,) < Cle)e™

>0

for somew > 0 by (3.2).) R
To show (3.5), we first prove that there die C €2y, of full measure, and a random variable
ng = nyi on€ly, so that

(3.6) { n1(0~w) < Landn (6N Hw) <6, VS np(w),

P({naw) > n}) < Co—(n//€2(@) | vy,

Indeed, just sets(w) =inf{f = ni(w) | Yn =¥, n1(c"w) < n andnl(oﬁJr”w) < n},and use
that
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P({ng >f} ZP {n1 ) >n}) —|—ZP({n1 (UﬁJr"w) > n})

n>~ n>{
ZP {n1(w) >n}) +ZP {n1(w) >n}).
n>~ n>4
Now, if w € Q;
e e e, > <no(w)+Cle (1@ £ o,
(3.7) Leb(A,) =Y Leb({Ry-v, > (}) (W) +Cle) Y e
LEL £>n2(w)

This proves our claim, up to taking slightly larger constants Cs (¢) < Cy(g): just let
nsg(w) = min{m > na(w) |Vn = mandve > 0,n9 (szw) <n+ E}.
3.3. Dynamical Lipschitz and bounded random function spaces

Consider the following “dynamical Lipschitz” space of densities&dnwith 5 < 1 as in
(AIV)):

Fy = {%:Aw —C|3C, >0, VJ, € Z,, eitherp,|;, =0,

or ¢y, >0and

log P () ’ < Cwﬁs”(m’y), Y,y € Jw}.
Pu(y)

For a random variabl&, : Q — R, with infg £, > 0 and
(3.8) P({w| Ky >n}) < P({w|ns(w) >n/3}) < C(e)e_("1/4/02(5)),

we introduce on the one hand a space of random Lipschitz functions:
]-"éc““ = {(pw:Aw—>(C|EIC@ >0,

|0u(2) = 0w (y)] < CoKuB Y, Jpu (@) < CoKu, Y,y € Ay},
and on the other, a space of random bounded functions:

={pu:A, = C[3C, >0, sup |p,(z) <CLK,}.
TEA,

Note for further use (in Section 5) that (3.8) together with (A.V) give tift, and thusfgu,
is a subset of.2(A,m).
Slightly abusing language (see Lemma 9.1) we refer to the smallest paSsiloeC’, as the

Lipschitz constantr supremumof ¢ in or}‘Zf“’, respectivelyCX« . Clearly,}‘éfw and Lk«
with the normg|p|| 7 = C,,, respectively¢|| ... = C;, are Banach spaces.

3.4. Constructing the absolutely continuous stationary measures

We may now show how to obtain sample stationary measures absolutely continuous with
respect to the reference measute

THEOREM 3.2 (Sample measure)let {F,:A, — A,,} satisfy Axioms(A.l)—(A.IV)
together with the smmability condition(3.3) in (A.V). Then there is for almost each €
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an absolutely continuous samptationary pobability measure:,, = h,m on A, i.e., so that

(Fw)*(uw) = How-
Additionally,{h,,} € ]-"g. If (3.2)holds then there is a random variabfé, satisfying(3.8)so

that bothh,, and1/h,, belong toF}~ c LK.
From now on/C,, will refer to the random variable from Theorem 3.2.

Proof of Theorem 3.2. ket Ff': Ay 0 — U,,5,,A0mw,0 denote the return mapf(x,0). If

the meaning is clear, we just wrifé”.
ForanyE C A (recallA, -, o = A for all w andn)

[(FRY ' (B) = {(2,n) € Ayniyo X Z | Rynyy(x) =n andFE., (z,0) € E}.
We define[(F*)~7],(FE) by induction, and foiprobability measure$v,—»,, | n € Z; } on
Unez, Do-nw,0, We SeU([(FR)]0).v(E) = 32, Vo-no((FF) 7]w(E) N Ag-nyyo)-
Letm, be the probability measure|a,, ,/m(Au,0) ONA, 0 = A.
Now, let A C ||, e, Agni o With A € \/jZ[(F7) =4, Z,, and set

814 = ([(F)],). mo ] ).

For z,y € A, 0, letting /.y’ € A be such that’ € [(FT)77],(x), v € [(F?)77],(y), and
settingn to be so thatt’,y" € A,—»,, o, we find by (3.1) in (A.IV) that for a suitable sequence
0<ng<n,

$j.(y) (J(FE, V) &8 JEE. (FR., )'@)

IOg zlog# — IOg o Mw o Me—1y
¢j.a(x) JEE. ))& CJFE,, (FE.  Y))
j—1
(3.9 < ZC(E)QSM(LZJ)+U*Z)*1 < O(e)B5~ @),
=0

which is uniforminj, A, andw. As a consequence, for eaglthe sequence

n—1

b= S ([(FP)],). (mo)

Jj=0

is relatively compact in.>° (A, m) (see [26, Proof of Theorem 1]). We sit to be a measure
whose density is an accumulation point of ihg,,. (By construction, this density is bounded
from above and from below oA and it belongs toF} (A).)

Then, we saturate (see, e.g., the proof of Theorem 1 in [25] or [26]) to construct a measure on

UZeZ Aoew:

oo

ﬂw - Z(F‘ffew')*(ﬁafew | RU*Zw > f)
£=0

Assumption (3.3) in (A.V) implies

fw(AL) < sz({erw > (}) < oo.
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In particular,ji,, can be normalised to get an absolutely continuous probability measuiés
density satisfies the conditions needed to b@j“n(which only involve ratios).

The upper and lower bounds for the densityigfand its Lipschitz constant translate into
bounds for that ofi,, -, depending o throughns(c~"w), and we get the final claim in the
theorem by settingC,, to be the maximum of the upper bounds fgrand its Lipschitz constant,
and the corresponding bounds foth,,. O

4. Mixing for the skew product: random exactness

In the previous section, we constructed an absolutely continuous sample stationary measure
for the random tower mapF,, : A, — A, }. We shall now study its mixing properties, after
introducing further notation.

The random skew produds the fibered mapF’ = (F,)wcq on A. Let B, be the Borel
c-algebra ofA,, and let3 be the family ofs-algebrass,,. In Theorem 3.2 we constructed
absolutely continuous fibered invariant measuyes)..cq. Let u be the corresponding invariant
measure for the random skew produgtA) = [, 11 (A,) dP(w), for A € B. Let L*(11) be
the Hilbert space of = (¢,, : A, — C),eq such thatp, € L?(B.,, u,,) for almost allw, and
Jo Ja | |? dpp, dP(w) < o0o.

Forn € Z, we denote byt~ (B) the family ([F,n-1,, 0+ 0 F,] 1 (Bynw))wen and by
the compositiong .1, 0---0 F,,.

We recall definitions which are stdard for deterministic dynamics:

DEFINITIONS (Random exactness, mixng

(1) The random skew produtF’, i) = (F.,, w)wen 1S €xact if eachB € B which belongs to
all F~"B, n € Z is trivial. (l.e., for almost allv, eitheru,, (B,) =0 or u,(B,) =1.)

(2) The random skew produ¢F’, 1) is mixing if for all » and in L?(p),

hm‘//wwoF o dji AP(w //%dude ) [ [ vodneap) <o

Q A,

Remark— In our particular case of random towers, instead of a random dynamical system, we
may consider a skew-product mapacting onA x Z x 2, endowed with the invariant measure
=, X P, wherep, has supportom\,, C A x Z; x {w}. Then the definition reduces to the
usual notions of exactness and mixing.

The following proposition may be proved as in the deterministic case (see, e.g., [22]):
PROPOSITION 4.1. —If I is exact then it is mixing.

The following result is less standard. We shall not need it (our main theorem says much more),
but we include it for completeness:

LEMMA 4.2 (Forward fibered mixing). Assume that the random skew prodyét 1) is
exact. Then for allp such that

sup / ol iy < oo,
w

and all+ in L?(uz), we have for almost alb € Q:

lim ‘/(pgnwoF:}~wwduw— / Yonw dltony, /1/)wd,uw
Ay Ay

oMw
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Proof of Lemma 4.2. Fhis goes along the lines of the classical proof of Proposition 4.1 (see
[22]). Indeed, exactness implies that for almost.gll

L*(By, pw) D L*(F, ' Bow) D+ D L*(F,"Bonw) D -+ D C.

Choose(k2, a € Z, } an orthonormal basis df?(B,,) © L*(F; ' B,.,), then{k% o F,,a € Z, }
is an orthonormal basis df?(F, ' Bow) © L*(F;*By2y,), and{k?;, o Fi,a € Zy,j € Z4}is
an orthonormal basis df?(B,,) © C. Writing .., andi,, in these bases, we get:

/ Ponw © FLLL ’(/}w dﬂw - / Ponw d,uanw / '(/}w dﬂw
A Ay

n

w o

/ |onwl® dpions Y

Agnyg, J,

w

2

n—oo

—0.

O

/ &0 I, dp

PrROPOSITION 4.3 (Exactness of random map)Let (F, ) satisfy (A.I)—=(A.IV) and the
summability condition§3.3), (3.4) from (A.V), with ; from Theoren8.2 If (A.VI) holds then
(F, i) is exact and thus mixing.

Proof of Propogion 4.3. —We first give a proof assuming the following property, stronger than
(A.VI1), and which will hold in the application to random unimodal maps. Suppose that there is
N (¢) so that for almost alb and each > N (c) we havem{z € A | R,(z) =1} > 0 (take N
in (3.2) to be this integer). First we prove: if, for evety> 0 and almost allv, there exists an
integert(r,w) such thatn(F/ (A, 0)) > 1 — &, thenF'is exact.

We adapt Young's proof ([26, Theorem 1(iii)]) to our random setting. Het (), F~"B.
Fixing w such thafu, (A, ) > 0, we are going to prove that for any> 0, 1., (A,) > 1 — k. Let
t(r/2,w) be given by hypothesis. For eaghe Z . we haved,, = (F""*)~Y(Bgn++,,) and

How (Aw) = /J'U"thw(BU"“w) = Honttw (Fa"w ° Fn (A ))

Now, the nonsingularity ofF, , the absolute continuity ofi,~+:, with respect tom on
A n+ty,, and the definition of imply the existence of (x,w,t,n) > 0 such that

m(Ao-nwp \ Do’"w) <V = Ugntty, (an D ) >1—k.

Thus, if we can findh € Z such thatm(Ayn, 0 \ F¥(Ay)) < v, then we shall conclude that
tw(Ay) > 1 — k. Let us prove the existence of such an integer

Since we assumed that,(A,,) > 0, we may choos€,, € Z,,(¢"w) with F(£,) = Agnw,o
andm(A, N&y) /m(&,) >1—v/2. If nis large enough we may assume thatc , is large
enough so thaf'(¢)5% < v. Then, the bounded distortion estimate (3.9) gives

m(F](AyN&)) m(Ay Nw)
m(AU"w,O) m((w)

Finally, we prove that for any > 0 and allw € 2, there exists an integeé(x,w) such that
m(F!(Ay,0)) > 1 — k, following ideas from Markov chains. By the hypothesis that all return
times afterNV occur,m(Ayo N F Aty 0)) > 0forall ¢t > N. Letly > max|[N, ns(w)], the
tower structure gives

>(1—w) >1—2v.

FNo(A,05 [ A 4

GNJFZOw,Z.
<ty
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Now, for fixede and almost allo we can mak§:£> 0, M(A arbitrarily small by taking

oj\\hreow,f)
large enougli, by (3.4). R

If we replace the assumption that all return tin3esV occur with positive probability by the
weaker ‘g.c.d. = 1" assumption, we may use the following argument: Define

U={teZy|Vwe,m(Auon (F)) " (Agiwo)) >0}

The Markov property (A.ll) of the tower gives that is stable under addition, and it follows
from the assumption in (A.VI) that g.c.d. = 1. Then, Lemma A.3 in Seneta [23] gives that
contains all but a finite number of positive integers, so that there gxistsch that for alk > ¢
and allw

m(Aw,o N Fw_t(Aatw,O)) > 0.

ReplacingZV by ¢y in the previous paragraph completes the argument.

5. Random coupling argument, “future’ correlations
5.1. Largedeviationsand joint returnsto the basis

Let (F, u) satisfy (A.)—(A.1V) from Section 3, and conditions (3.3), (3.4) from (A.V), wjth
from Theorem 3.2. Adapting Young's definitio(f26, §3.3]) to our random setting, we introduce
stopping times;” and gointreturntimeT,, onA,, x A, for P-almost eaclhv andz, z’ € A x A,
as follows. Set

v (z,2') = inf{n > | Fl(x) € Agnw,o},
75 (z,2") =inf{n > by + 71 (z,2") | F}(2") € Agnawo },
75 (z,2') = inf{n >l + 715 (z,2") | FlN(x) € A(,nw’o},
and so on, with the action alternating betweesndz’. Define theril, (z, 2’) to be the smallest
integern > £, such that F” (z), F* (z")) belongs taA 0 X Agng 0.
For fixedw and;j € Z.., consider also the partitiof? of A, x A, into maximal subsets on
which ther (x, 2’) are constant fob < i < j.

In order to make use of the random mixing properties, #ar Z.., consider the random
variable:

VL =m(Buo N F 4 (Au)) = /(XAUHM o FY) - xa. o dm.
Recall thaty, is the invariant measure for the Markov chain akd, = A for all w. For small

~v> 0, to be chosen later, sindéis mixing by Propositions 4.1 and 4.3, there exigtsuch that
for all £ > ¢, the expectation of satisfies

(5.1) Vo dP(w) = m(A) - pe(A)] <.
Q

(In order to deduce (5.1) from mixing @f, we also used that" - ya_ , belongs taL?(x). This
follows from Theorem 3.2.)
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For anyq € Z; and each fixed sequence of integefs=0 < 7, < --- < 7, such that
Tit1 — Ti = éo, define:

q
St w)y=> Vi
i=1

LEMMA 5.1 (Large deviations fo,S}”}). —There existp > 0 and 0 < x < 1 such that for
eachgandalltg =0 <7 <--- <74 such thatr 1 —7; = £,

(5.2) P({S{(w) < gp}) <k

Proof of Lemma 5.1. Fhe random variabl&‘ depends only owy, . .. ,w,_1, SOV andV¥,

olw
are independent provided> /. In particular,S}“} is a sum of independent random variables.
For anyv > 0 andt > 0,

P{5I7) (W) <t}) < / explu(t - 517 ()] dP(w)
<e“'t/exp[—vS(‘1{”}(w)] dP(w)
q—1
Levt H /exp [—vVi T '] dP(w) (byindependence)
=0

We have) < V2 <m(A) and, by (5.1),[ VAdP(w) = m(A) - pe(A) — ~, provided! > ¢. Now,
since0 <oV Tt <1,

oTi—1ly

2U

/exp[—vV;i;gzl] dP(w)<1-w {m(A)uE(A) —~v—m(A) 5| = a(v,y).

Choosev < 2. (A) and theny > 0 small enough so th&t< a(v,v) < 1. We get
P({SimH(w) <qp}) < (e - a(v,y))" < K7,
for some0 < x < 1 by choosing) < p < Llog(1/a(v,v)). O

We shall now use Lemma 5.1 to perform yet another parameter exclusion which will be
useful later on to estimate the joint return time Anx A. First observe that the lemma may be
reformulated as follows: For eaghand every fixed sequence of integeys=0 <7 <--- <7

such thatri .y — 7 > (o, there is a setV/{™ c Q@ with P(M{™) < k¢ and such that if
wé M thenS{™ (w) > ¢ p. Next define

M, = {(w,x,x/) € U ({w} x Ay x Ay) |we M;Tiw(m’m/)}}.
weN
COROLLARY 5.2. —Assume additionall{3.2) anAd/IetICw be given by Theore®.2. There is
0 < k < 1 such that for each large enougtthe set), C € defined by
(5.3) M, = {w €N ’ / xarz (w, ,2') K2 (dm x dm) (z, ) > nq/z}
AL XA
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has P-measure smaller thar?/4. Furthermore, there is a random variablg defined on a full
measure se®, C Q and such that

n = ng(w) :>w§é]/V7n,

4 { P({ns(w) >n}) < Cr™/2.

Proof of Corollary 5.2. -The first claim is a Fubini argument. IndeedAAifq had P-measure
greater tham?/4, then

/ / Xz (w, z,2') K2 dm x dm(z,2") dP(w) > K12 x K14,
J\Z; AL XA,

However, denoting b the finite measure o) ,.,({w} x A, x A,,) defined by:

P(A) = / / xa(w,z,2') K2 dm x dm(z,2") dP(w),
Q ALXA,

using (3.3) and (3.8), we find for large enough
P(M!)= /XM; (w,z,2") K2 dm x dm(z,2") dP(w)

q
= Z P(Méﬂ{ﬁ’(x,x'):n,i:l,...,q})
T1<-<Tq
< kKT sup Z K2 -mxm((Aw x Ay) N {7 (z,2") =73,i})

wENy p
< <7
(K2 m(Aw)?)<e=/s ’

+ P({lCim(Aw)2 > /@_Q/S})
<R,
a contradiction. Settin§, = {w | In4(w) so thatvn > n4(w), w ¢ M,}, a large deviations

argument as in Lemma 5.1 together with the first claim of the corollary gives the second
claim. O

5.2. Estimateson stopping times and joint return times

From now to the end of Section 6, the notations\’, A will be used to denote probability
measures, absolutely continuous with respeetton A or m x m on A x A. There should be
no confusion with the constantfrom (H1)—(H2) which will not reappear until Section 7. We
shall writeIl,, : A, x A, — A,, for the projection on the first factor. Before proving the main
estimate of this section (Proposition 5.6), watsttwo lemmas which are randomised versions
of Lemmas 1 and 2 in [26].

LeEmmMA 5.3 (Lower bound folP({T,, = 7;})). —Let A, X’ be absolutely continuous probabil-
ity measures o4 A, }, with densitiesp, ¢’ in ]-";. If T € ¢ is such thatl}, | T > 7,1, then,
letting V", "' be associated to thg (I"),

AXN)Y{To>7} | D) <1=VEV T/ Can(e),

Ti—14
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whereC » () > 1 depends on the Lipschitz constantscoénd ¢’. This dependence may be
removed if we consider= ig(A, \).

LEMMA 5.4 (Relating stopping times and return times).et\, \’ be absolutely continuous
probability mesures on{ A, }, with densitiesp, ¢’ in }‘;. For eachl’ € =¥, we have

()\ X )\/)w ({TiJrl — 7 >4 —|—Tl} | F) < C)\y)\/ (6)m({R0ri+eow > n}) . m(Agri+zow),

whereC' () depends on the Lipschitz constantsofy’. This dependence may be removed if
we considet > ig(A, \).

The proofs of Lemmas 5.3 and 5.4 are based on the following sublemma, which is a
randomised version of Sublemmas 1 and 2 in [26] (recall that the bounded distortion inequality
(A.IV) is uniform in w).

SUBLEMMA 5.5 (Consequences of bounded distorsion). —
() There isM, such that for alln € Z, andw € €,

d(F)«(m)

dm

< Mom(Aw)

(2) Let X be a family of absolutely coimuous probabity measures o A, }, with densitiesp
in }‘g. There isCy (¢) > 1 so that for eachw € , everyk € Z, letting" € Z*~! be such that

FF() = Agr, 0, and setting/,x, = (F). (A, | T), thenforallz, y € Ay o

by e <

dm dm

The dependence 6f, (¢) on A may be removed if the numberiof & such thatf7;, (I') C A+, 0
is greater than somgy = jo(A).

Proof of Sublemma 5.5.Fhe proof of (1) follows verbatim the proof of Sublemma 1 in [26]
(making use of (3.3)), we omit it. We sketch how to prove (2). Lgtandy, € I' be such that

Fk(x9) = x andF¥(yo) = y. Itis not difficult to check that

(pw(«ro) (Pw(yo) & .

whereC'(e) only depends on the constants from (A.IV)D

Proof of Lemma 5.3. Assume for definiteness thats even. Fol™ € ﬁi, let A, = A\, X X,
soll,, (A |T)=C - Ay | TLu(T). Let vy 1y, = Fii' " (Ao | T (T)), we have:
(A x X)w({Tw =7} F)
1 _(Ti_T'i—l)A

= . I/G-T'i—lw(Aa.T'i—lw70 ﬂng—i,lw gTiw7O).
Vafiflw(AUTiflw,O)

Sublemma 5.5(2) applies toand the result follows from the definition &7, _ 7' *

oTi—1y °

O

We omit the proof of Lemma 5.4 which is based on Sublemma 5.5(1) and (2).
The main estimate of this subsection felt®(see Proposition 5.7 for its relevance):
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PROPOSITION 5.6 (Joint return time asymptotics)lt (F,A) satisfies(A.I)—(A.VI) (in
particular, all conditions in(A.V)), then there exisCz(e) < Ci(g), a subsetls C Q3 N Qy
of full measure, and a random variablg > max(ns,n4) on€); so that

P({ns(w) > n}) < Ce™(n'/"/Ce)

and such that for every palx, \’ of absolutely continuoyzrobability mesures o A, } having
densitiesp, ¢’ in Fj N L, there isCy x (¢), so that for eactu € Q5 and alln > n;(w)

AxN)o({T, >n}) < Cyn (5)6—(n1/8/a )

Moreover,C) - depends ork and\’ only through the Lipschitz constantsgfindy’.

Proof of Propoition 5.6. —We use the notatioh = A x \'. For(0 < v < 1/4 to be fixed later,
we have, just like (8.2):

X({Tw >n}) = Z X({Tw >n}n{r’, <n<7}) +5\({Tw >n}N {T[‘jlv] <n})

i<n?

= (I) +(I1).

The key remark to estimate (I) and (l1) is that for a fixed €2, the pointyz, z’) of each element

of =) are either all good or all bad for the Conditié‘é#(m’m/)}(w) > qp. Moreover,V Tt

depends only om; for 1 < j <. Forw andi < ¢, we say that an elemehte EE“) is g-badif it
only contains points such that™ “** < gp. The otheil’ € =) are called;-good

Fixingw € Q4 N Q3, we omit the dependence &f 7', andr; onw from the notation.

Let us focus first on the term (Il). Since the densities\@nd\’ are in£X«, for n such that

n" > ny(w), Corollary 5.2 gives

) =X({Tu > n} 0 {rpy <n}) < Cor™& 4 > X{Tiy > 7} NT).
I'e Ern'”]
T [n”]—good

Now, denoting byl"; the element oﬁ‘; containingl € 2w, fori< [n¥], we may decompose

[n”]

(n"]

AT > 7} (D) = AT > 72} NT2) []

X({T > Ti} ﬂFl)
X({T > Ti—l} ﬂFi_l).

Ti—Ti—1

Therefore for eacn’]-goodI’, usingV -, "\~
we obtain from Lemma 5.3,

X({T > T[nv]} ﬂF)

associated to the corresponding stopping times,

(") "]
= ~(FQ)S\({T> 7'2} | FQ) H X({T > Ti} | {T > Ti—l} ﬂl“,) H

=3 =3

n"] (n"] %
- S A{T >7_1}NTy)
SAT) [J=Vmo /O | ] 5 :
Z:H2( )g/\({T>Ti71}ﬂFi71)

Hence (making use of the consequences®f; (A, \') in Lemma 5.3),

X({T > Ti—l} n Pl)
X({T > 7'2;1} N Fifl)
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S AT < Y Amy Y M0

= — FSCU N{T > ) NTa)
—[n?] good good
T [n"]—good

Z A{T > 7p0—1} NT)
DCTpv)-1 A({T > 7—[n”]fl} n 1—‘[n”]fl)
good
[n°]

< [T =V Caw) e Io/e,

X

where we used ¢ ]\7[”] and also the fact that

N M{T>n}nT T > 7o} NT
Z /\(FQ) Z ~({ 2} 3) _ ({ 1} ) <
FocT Iacls )\({T>T2}ﬂf2) IClp) s )\({T>T[(nru],1}ﬂl—‘nv],1)
good good good

Finally, we get (1)< Cy k"7 4 e~ [7"10/C
Let us turn our attention to the term (). Fix< ¢ < n¥ and decompose

X({T >n; Tl <n< Tl})

i—1
= Z 5\({7’1‘—7}‘_1>H—ij;Tj—Tj_lzk’j,jzl,...,i—1}>.
(k‘l...k‘ifl) j:1

ijgn

Fixing k1,...,k;_1, conditioning, using Lemma 5.4 and the asymptotics (A.V) on the return
times, we getifn > > k; + ng(o7- 1 ow) + £

i—1
X({Ti—ﬁ—l >n—zkj; 7j = Tj—1 = kj; j=1>-.~7i—1}>
j=1

—1
<JJom@a, - w,) II ol —t0]'/4/C1 = ([n= Y ks —t0]/* /1 (&)
j j=1,...i—1
kj>ng(oTi=1H0w) 40

i—1
< (H ns (077+Z°w)>e_”1/4/01 (e) (C’( ) /o (5))

3=0
(55) % e(zj[kj\kj §(0+n3(07j71+20w)]1/4/01 () .
Now, since

P({nz(w)>n}) < C’e*(”l/“/Cz(s))’

conditioning with respect to elements of the partit%[r;{u] (see the similar argument appearing
between (8.7) and (8.8) in the proof of Proposition 8.3 below for details), we gétfags < 1
a subset)s C QN Qg of full measure with the following property: Fay € €25, there exists

ns(w) = max(ng(w), ns3(w)) (with the bounds stated in Proposition 5.6) such that: ns(w),
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the A\-measure of the cylinders in (1) which violate the condition

i i—1
(56) Z(n?) (O_‘errZow))l/ll < ﬁn1/4 and H ns (JTj+Zow) < env log(ﬁn)7 Vi < nv7
Jj=0 j=0

is less thare—(n"/*"/C (),
Next, summing (5.5) over thie; such that > >~ k; + nz(o7i-1 Tow) + £y, the contribution
of those cylinders which satisfy (5.6) is not larger than
1/4

Con” en” log(n)po—(n'/*/C1) (C’elo )nve:"UZ(IJMLe’a”l/4 < C’(e)e_("l/4/al(€))

)

where the factoe”” with v < w < 1/4 comes from the different choices fk,, ..., k;).
It only remains to consider the sum over terms witkl >_ k; + nz(o7-1T%w) + £y which
may be estimated by

i—1
( H ns (JTJ"MO‘U)) (0655/4)ie_(zk;/4/01)e(zk;“\kjgfoﬁ‘ns(fffj*ﬁgow))/c
i=0

i—1 )
(T tor e Jicut e orsend i e,
7=0

So, if n > ns(w) the contribution to the sum over those terms of the cylinders satisfying (5.6) is
not larger tharCe—(""/*/C1(=)) _ Finally, we get that (1) is less than

C(e-<n1/4/a @) 4 e—(n“‘**”/a(a))).

Combining this with the estimate on (lInds the proof of Proposition 5.6 with upper bound
max(e~("/C1(e) e=(n""""/C1(e))) The optimal choice is =1/4 — v, i.e,v=1/8. O

5.3. Random coupling: matching (F). (A, ) with (F™).()\)

Let A\, ) be absolutely continuous probability measures{dn,} with densitiesy, ¢’ in
]-"; N LX< In this subsection, we shall mat¢R").. (\,) with (F*).(\.). We just summarise
the strategy, since the computations follow straightforwardly along the lines of [26, § 3.4]. The
relevant dynamical system I/S\u = (F, x F,)T» which mapsA,, x A, into A7, x Ar,. The
“matching” is done using a sequence fift) stopping timesvhich are the successive entrance
times intoA. o x A. o:
Tl,w :Twa Tn,w - n—l,w"'TUTn, Oﬁnil.

1w

Denote byé‘; the largest partition oA, x A,, on whichT} ,,...,T; ., are constant.

PrROPOSITION 5.7 (Matching, joint return times, joint stopping times)kLet \, \' be
absolutely continuouprobability mesures on{ A} with densitiesp, ¢’ in ]-"; N LK+, and

letiy (¢, ¢’) be such thatnax(C,, C,r) 3% < C. There exist® < 6 < 1 such that for aimost all
w,alli >4 andalln
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[(F2), () = (FD) ()] €200 x AL) ({Thw > n})
(5.7) +2 Z 07~ o X AL ({Tjw <0< Thin0}).

Proof of Propogtion 5.7. —Just rewrite the proofs of Lemmas 3)Y&nd 4 in [26], remarking
that the constants appearing there do not dependiarour context. O

The following lemma is proved in the same way as Lemma 5.4 (see [26, Sublemma 4]).
LEMMA 5.8 (Relating joint stopping times and joint return timesl.et A\, \’ be absolutely
continuous probaitity measures of A, } with densitiesy, ¢’ in }'Z; NLK«. Thentherei€, ./,

depending only on the Lipschitz constants-pfy’, so that for almost allv, all 4, eachl’ € .
and alln

A XN ({Ti10 — Tiw > n | T}) < Cp o (m x m) ({Tyriy, >n}).

PROPOSITION 5.9 (Matchlng) f (F A) satisfiegA.I)—(A.VI) (in particular, all conditions
in (A.V)), then there existCs(c) < Ci(e), Q¢ of full measure, and a random variable
ne: Qs — Zy With P({ng(w) > n}) < Ce~(""""/C2()) | sych that, for each pain, X' of
absolutely continuouprobability mesures on{A,} with densitiesy and ¢’ in ]-"; N LK
there isC x (¢), depending only on the Lipschitz constantseofy’, so that for eachv € Qg
andn = ng(w),

[(F1). () — (F2).(AL)] < Caxr(e)e (M 1/Gn@),

Sketch of proof ofProposition 5.9. The proof follows that of Proposition 5.6, using
Proposition 5.7 and Lemma 5.8. We just sketch h\w) is constructed.

Let0 < s < 1/8 and letns(w), p be as in the proof of Proposition 5.6. The random variable
ng(w) is characterized by the following property: Foe> ng(w) andi < n®

i—1
> (s (o™ew)) " <,
§=0

for the “good” atons of the partitionﬁf; additionally the mass of the “bad” atoms of the

partition Z is less thare—("""*""/€)_ As in the proof of Proposition 5.6, the optimal choice
isfors=1/8—s,i.e.,,s=1/16. O

5.4. Futurerandom correlations

Our key lemma is now a corollary of Proposition 5.9:

COROLLARY 5.10 (“Future” correlations). Assumd F, A) satisfiegA.I)—<(A.VI) (in partic-
ular, all conditions in(A.V)) and letXC,, be as in Theoren3.2. There areC(¢), v > 1, and
Q7 C Qg of full measure, and for each € Q; there isC(w) with

P({0w) > )< &2,

so that for eachp € LK, ¢ € }'wa, and alln
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‘/(pgn o Fl} -1, dm — /(pgn dptgne /1/1wdm‘

nl/16
<CW)CEI¢llca Pl 7e /¢

Proof of Corollary 5.10. We start by showing that for alp € Llf:, (NS ]—"[’f“ﬁ and alln, there
areC(w) (as in the statement) antd, ,,(¢) > 0 such that

(5.8) ‘/%woF Y, dm — /%n dpone /%dm‘ )Copp(€)e= P 10/CED,

Assume first that) € 7 N L5+ Proposition 5.9 applied ta., = ([ ¢w dm)_lwwm and yu,,
gives that fom > ng(w)

‘/(p(,nwoF “p,dm — /(pgn dptgne, /1/1wdm‘

= [t [ onadl(22). 00 - (22) 0]

< Onule) /w” dm - sup [pgn e~ ("1 /C)

< Ch u(e)Cym(Ay) Ky C:@/anwe_(”l/m/a).

Now, definenz(w) = inf{k > ng(w) | Ksxo, < k}. By (3.8) and the bounds ong from
Proposition 5.9, we gelP({n;(w) > k}) < e~*""*/C2) We find forn > ns(w),

‘/%nw o F" -4, dm — /%Wdugnw /% dm‘ < cwb(s)/cwne—(n””/%.
If n <nr(w),

/(po-nw o F™ - ap,dm — /aponwd,uanw /qu dm’ < C%d,(g) . C’(cu)e_(nl/m/a)7

setting

C(w):= e("G(“’)l/m/a) Ky max Kgng.

n<ny (w)

This gives (5.8) ify belongs to}‘; N LK« For nonnegative real-valuetc f}f“, remark that

VY =y + (Cy + 1)K, belongs to}‘; N LK« and apply the above estimatetto General real-
valued functions are decomposed into positive and negative parts. Complex-valued functions are
decomposed into real and imaginary parts.

Next, we prove thatC(w) has the announced behaviour. Fix< « < 1 such that

C1(e)(1 —u)/Cy(e) > 1, and use (3.8) and Proposition 5.9 again

P({C(w)>€})
P({_sup Koo > (42)) 4 P({ene*/% 5 10)) 4 P({K, > (4/2))

n<nr(w)
P({n(w)>£})+ > P({Konw > £"2}) + P({ne(w) > [(1 — u)C1 log]'°})
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+P({K, > /?})
e (%/C) 4 pe=(0"3/C(9)) 4 o~ 108)C1(1~w)/Ca] 4 o—*/5/C(e)
This proves the claim on the random variabléy), takingv = Cy (1 — u)/Ca > 1.
To conclude, it remains to show th@t, ,(¢) < C(e)||¢|l 2. ||| . We adapt to our random

setting an argument of Collet [16] based the uniform boundednessinciple. Fixy € ]-"g“
and define

(nl/“‘/a)
W _°
pn,w(‘lo) C(w)

/SDo-nwOFLL'wwdm_/@o-nwduo-nw/wwdm’.

It follows from (5.8) thatsup,, ,cq, Y ., (#) < oo for all ¢ € L5~ . The uniform boundedness
principle gives a constard,;, (¢) such that

(5.9) sup pY () < Dy(e).

n,w€Q7, [l¢llcoe <1
Forn € Z,,w € Q7 andp € LK« with ||p| .. <1, set

e(nl/l6/al)

Qn,w,tp(w) = W

/@U”w © F:;L : ww dm — /‘pa"w dﬂo”w /’(/}w dm’
It follows from (5.9) that for any) € ]—"[’f“,

sup Inw,0 () < Dy (e).
n,weQ7,[|¢l o <1

Using once more the uniform boundedness principle, we conclude that there(éxistso that

sup Qn,w,cp(w) g C(E)

n,weQT[l¢ll 2o SLIIY [ #<1

This ends the proof of Corollary 5.100

6. Random coupling argument, “ past” correlations

Assume(F, A) satisfies (A.I)—(A.VI) (for Lemmas 6.1 and 6.2 we shall not require (3.2) from
(A.V)). The estimates for the “past” correlatis are obtained by recycling the arguments of
Section 5:

LEmMmMA 6.1 (Lower bound forP({T,, = 7;})). —Let A\, X’ be absolutely continuous proba-
bility measures o{ A, }, with densitiesp, ¢’ in ]-"g. For eachi, if I € Z¢ " is such that
(Ty=nw)ir > Ti-1, then, associating/;i:i:;w to I as usual,

AXXN)({To-n > 7} [TH 1=V /Crx (o),

Ti_1—mn

whereC' \ () > 1 depends only on the Lipschitz constantofy’. This dependence may be
removed if we consider= ig(A, \).
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LEMMA 6.2 (Relating stopping times and return timesh.et\, \’ be a?solutely continuous
probability measures on{ A, }, with densitiesp, ¢’ in ]-"g. For eachl’ € 7 ", we have for
all ¢

()‘ X )‘/)U*"w ({Ti"rl —Ti> 60 + f} ‘ F) < C)u/\' (E)m({Ro’"i+ZO*"w > f}) ’ m(AU""i+ZO*"w)7
whereC' () depends on the Lipschitz constantsofy’. This dependence may be removed if
we considet > ig(A, \).

PROPOSITION 6.3 (Joint return time asymptotics)Fer every pair A\, ' of absolutely
continuous probaitity measures of A, } having densities, ¢’ in ]—"g N LK« there isC) y(e)
so that for eachw € 25 and alln > n5(w)

A XN )gniy (T ne > £}) < Caxr(e) e~ @7/,

Moreover,C) x (¢) depends ork and X’ only through the Lipschitz constantsf’.

Proof of Propo#ion 6.3. —This is just Proposition 5.6 written far"w. O

PROPOSITION 6.4 (Matching). -There existCy(c) < Ci(¢), a subsetQs C Q5 of full

measure and a random variablg : Qs — Z with P({ns(w) >n}) < Ce~("""*/C2(2)) such
that for each pairA, \’ of absolutely continuougrobability mesures on{ A} with densities
@, ¢ in Fi N LK, there existsC) v (¢), depending on\ and X only through the Lipschitz
constants ob, ¢’, such that, for eaclv € Qg and alln > ng(w),

((F70) () = (Fou) (V)| < O (e)e (/0 /CED,

Proof of Propog#tion 6.4.-The proof is along the lines of that of Proposition 5.9, we
just discuss the random variable;. Let the sequence of successive joint entrance times
Doy Thws -5 IN Ay 0 X Ay o be as in Section 5. For fixed< n, let E;’*”“’ be the largest
partition of A, o x A, o onwhich thel; ,—n,...,T; ,-», are constant. Leis(w) be as defined
by Proposition 5.6. The random variabig(w), defined orf2g, is such that, on the one hand, for
i <n' (where0 < t < 1/8 will be fixed later on) and alh > ng(w)

i—1
D (s (o7 o)) 0 <

J=0

for the “good” atons of the partitiorﬁ;’*"“’, and, on the other hand, the mass of the “bad” atoms
of the partition=¢ "« is less thare—"""" "/ Chooset = 1/8 — ¢t = 1/16 to get the optimal
rate. O

COROLLARY 6.5 (“Past” correlations). ket K, be given by Theorer®.2 There areC'(e),
v>1, Q9 C Qg of full measure and a random variabf&(w) on Qg satisfying

P({C(w)>}) <C/e°,
and such that for each € £X«, ¢ € }'wa and alln
’/% OF;,%-%ﬂlwdm—/% duw/%%dm‘
<CW)CE) el lltp] e /CED.
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Proof of Corollary 6.5. -As in the proof of Corollary 5.10, we show that

’ [owo b vostm = [eudu, [vro dm‘

(6.1) < C(W)Clyyp(e)e™ 0 1CE)

and deduce the result from the uniform boundedness principle.
Lety € ]—"g N LX«. Proposition 6.4 applied tp,, and\,, = ([ ., dm)~ ¢, m implies that
for n > ng(w),

‘/ﬁpwoF;nw'ﬁ}a"wdm_/(pw dﬂw/d}a*"w dm’

< Chpule)- /wU*"w dm - sup \gow\e_(”l/m/a)

< C/\,u(E)Cll)m(AU*"w)K:U*”wC;OICw e_(nl/m/al(a))~
Now, defineng(w) = inf{k > ns(w) | K5, < k}. The properties ok, (see (3.8)) ands(w)

give P({no(w) > k}) e~ (k"/"*/Ca), B
ReplacingC, by a slightly larger positive number i (*""°/C) | we find for alln € 7y

/% o F! . Wy-ny,dm — /pr duw/wgfw dm‘ < C%w(E)C(w)e—(nl/m/C(e))’
where

C(w) :_max<le7 max e(ms(@)/1/C)

n<ng(w)

/@wOF;—nw'd}a’*"w dm_/(pw d/uw/l[}a'"wdm’)'

The claim on the distribution of’(w) is proved as in Corollary 5.10. This gives (6.1) for
(NS ]—"g N £X«. For real-valued nonnegative € ]-"5“”, remark that),, = ¢, + (Cy + 1)Ky
belongs toj’-"[}r N LX< and apply the above estimate ta Complex-valued functions are
decomposed as in Corollary 5.100

X

Part II. Random tower sfor random unimodal maps
7. Fubini and partitionsvia random hyperbolic times

From now on, we consider the concrete setting of (H1)—(H4). Our aim in Sections 7 and 8 is
to construct a countable partition of a suitable subintefval 7, with return times in order to
build a tower satisfying Axioms (A.l)-(A.VI).

7.1. Preliminary estimates

In Lemmas 7.1 and 7.3, we extend to our situation (using techniques of Benedicks and Young
[8] basic estimates from Viana [24, Lemmas 2.4 and 2.5] and Alves [1, Lemma 2.1] proved there
under a Misiurewicz assumption). Most of the ideas used go back to [6,7]. (We do not require
the topological mixing assumption (H4) at this stage.)

By (H1), we may choos& > max(1, (logsup|f’|)/(log \)) with A& < 8.
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LEMMA 7.1 (Starting in(—+/z, v/2)). —AssumégH1), (H2), and(H3). For

20
<<

log A 4’

there are a constantt’ > 1 and for each small enough> 0 an integerN (¢) with

o4 log(1/¢) <N(E) <O+ 2log(1/¢)

(K +1)log\ ~ log A

such that for allv € © and eache with |x| < 2/

{ (YO (@) > ale1+,
\fi(x)] > Ve, Vi=1,...,N(e).

In the proof of Lemma 7.4 below, it will be useful to take= log7/(4log32) for 7 > \'/°
from Lemma 7.3. This is the reason for the condition @nin (H1). The lower bound
N(g) >1log(1/e)/log32 (since X+ < 8 x 4) is also convenient in the proof of Lemma 7.4.

To prove Lemma 7.1, we shall use the following result adapted from Lemma 4.4 in [8], which
will also help to get the “large image” property in Lemma 7.10:

SUBLEMMA 7.2 (Random bound period).AssumégH1), (H2), (H3) and IetlfgA <n<1/4.
For k such thate—* < 4, let J,. . be the interval

Jre = [—e+min(f(e%), f(—e ")), £(0) +£],

and letp = p(k, ¢) be the largest integey such that

(7.1) <A Vie0,p].

U fgw(‘]’fﬁf)

weN

Then there i€ > 1, independent of, such that for all small enougt
(1) Forall we Q, all y € Jy . and each) < j < p(k,¢)

1 |(f2.) W)l
c STy GO ¢
(2)
min(2k,log(1/¢)) min(2k,log(1/¢))
O TR T Dloga SPREOISOT logh

@B)Forallwe Qandally € Ji .

1(£209)) ()] émax(e(%zn)k’glw)_

ow

Proof of Sublemma 7.2.Fhis is an adaptation of the usual “bound period estimates” of [6,7].
The starting point is the claim that thereis> 1, independent of andd, and such that for every
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Y, J€ Jpe, allw,0e,andalll <j <p(k,e)+1

(7.2) |F2o) = @] <) (1) (£(0))] - max(e™2* ).
To check (7.2), we first verify inductively that
| f2o() = Pl @) < [d; (- (da(dr + 1)) + ]CmaX(e_2k>5) =: [m;]C max (™", ¢),
whered; = |f; ()| = \f’(xi)tforsomexi e[t (), £1:51 (@)
Then, to estimaten;, we letd; = | f'(f*(0))|, and we note that sindg(0) — x;| < A~ for

1 <i<p+ 1, by definition ofp, and|o?i| > e~ /C by (H1)(ii), standard arguments involving
(H2) and using: 77198 * < ¢=29J (see [8, Lemma 1.3]) give that thered@s> 1 with

J
I d;
(7.3) C—lgnLlAgC, V1<j<plke)+1

I d
i—1 di

In fact, the proof of (7.3) also gives assertion (1) of the sublemma. (Note that the proof of
[8, Lemma 1.3] may require taking a smaller valuedoin (H2), in order to guarantee that
|£7(0)| > 6 for j < My, whereM is a large integer, making use of (H1)(ii).) Now, by definition
and (H1)(i)

mj=dj_1m; -1+ 1< dj_lmj_l (1 + C)\ij),
so that

J—1
(Hd > [T(x+cx™"),  showing our claim (7.2).
i=1

We may now prove assertions (2) and (3) of the sublemma. Assumption (H1)(i), together with
(1), that we already proved, and the fact thAt.| > max(e=2*,¢)/C, yield

max(e” 2% g) \P1

C’

<1,

so that
1

(7.9) p(k,e) < 1+ log(C min(e** 5*1))109,

showing the upper bound in (2). For the lower bound,|use | < C max(e~2*, ¢), the definition
of p(k,e) and A\ AT < \E+1,

For (3), lettingl < j < p(k,e) + 1 it follows from (7.2) that fory,y € Ji . and arbitrary
w,w € Q,

o) — £25()|
Thus, the definition op(k, ) gives

02‘( p(k, s)+1) (y)] ~max(e_2k,5) > A~ 1(e(ke)+1)
Finally (7.4) implies

APk +1) 5 o= (1108 ) [C-+log(min(e®* 7)) log A max(e”

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



106 V. BALADI, M. BENEDICKS AND V. MAUME-DESCHAMPS

and we conclude that

ow

’( p(k,s)>/(y)’ > émax(e(k")%,g*H"). 0

Proof of Lemma 7.1. Fhis will easily follow from Sublemma 7.2, taking = k(¢) € Z4+
maximal so that/z < e~*. Indeed, for anyjz| < 2,/z, writing y = f..() € Jx., and setting
N(e)=p(k(e),e) + 1 we get from (3), that for each

(7.5) |(FYEY (@)| = | (f2FEDY ()] fL ()] = Clarle™?

for some constant’, independent o€, J, w, and which may be removed by working with a
slightly smallern in Sublemma 7.2 and taking small enough
To check the second assertion, we decompose for each< N(¢)

[f2@)| = | F70)] = [£7(0) = fi()]-

Now, there are two cases. Eithgr< log(1/¢)/(4Klog)), and then by using (H1)(ii) and
Sublemma 7.2(2) (recall (7.2))

[F0)] = [7(0) = fi(@)| = e=*NO — Ce|(f) (£(0))| 2 " — Ce¥/* > VE,

sincen < 1/4, if ¢ > 0 is small enough. Thetber possibility isj > log(1/¢)/(4K log ), but
then, using (H1)(ii) and the definition pfk(¢)), we get for small enough

[FO)] = [£7(0) = fl(x)| e e300 > en(1 —e®/WKIEN) > 2 O

We now divert to verify the statement about varyinm (H2)(i), (ii).

Remark— If there is§ = §; so that (H1) holds with\; satisfying A\; > ¢?°> and (H2)
holds for a fixedd = §; and\ = Ay then for all§ = 65 < 0; (H1) and (H2)(i), (ii) hold with

1 4o

A=Xy = A}

Sketch of proof. Fake a pointr ¢ (=82, 82). If =, fz,..., f~1x ¢ (—d1, 1) there is nothing
to prove. Suppose that< M — 1 is the first index so thaf*(z) € (—ds,82) \ (—d1,61). Then
by (H2)(ii) for § = &2, |(f7)(x)| = AF. With y = f*(z) and the bound period = p(y) defined
in the usual way it is easy to verify thatf? 1) (y)| > A§5_4a)(p+1). We conclude that with

)\2 _ /\5—405’
‘(fk+p+1)’(x)‘ > )\l2~c+p+1_
Moreover with an argument similar to that in the proof of the second assertion in Lemma 7.1,
fEHi(x) will never hit (—d,,0,) for j < p. We conclude that (H2)(i) holds with
M= M((Sg) = M((Sl) +p(52).
The proof of (H2)(ii) uses the same type of arguments. Each bound period of lgngth
following a returny; to (—d1,91) \ (—d2,02) gives a derivative contribution

’ (fpi+1)/(yi)’ 2 )\gi"rl.

The derivative during the “free” period followg each bound period of this type lasting until the
next return ta—dy, 1) (and eventually td—d2, d2)) is estimated using (H2)(i) with=06,. O
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LEMMA 7.3 (“Outside” lemma).+et f satisfy (H1), (H2), and (H3) and assume
2a/log A < n < 1/10. There areC' > 1 and 7 > A\'/> > 1 such that for alls > 0, all w € Q,
zel,andkeZ,

k
eT
2—\/_ .

(7.6) \fi(@)| = Ve/2, Vi=0,...k—1 = |(f5) (@) -

There is0 < 91 < ¢ (independent of, w) such that

ok

TD|f(x)| = Ve/2, Vi=0,...,k—1 and |fi(z)]<dé = |(fj§)’(x)] > 5
Proof of Lemma 7.3. We claim that it suffices to see that there @re §; < § and7 > \1/5
such that ify/=/2 < |z| < d; then there ig(z) < C'log(1/e) with

p—1
(7.8)  [fi@)| >0, Yo<j<p—1 and []|fl(fi@)]| =7, YweQ.
j=0

Indeed, (H2)(i) and (ii) imply by a continuity argument that for small enozi¢gmd up to slightly
reducing)) for eachw andy if vy, f.(y),..., f2 1(y) ¢ (—6,9) then

(/1) ()] = Am/C

If, additionally, f(y) € (=4, 6) then|(f)'(y)| = A™. Using this fact and (7.8) (which plays the
role of Lemma 2.4(b) in [24]), Lemma 7.3 may be proved as Lemma 2.5 in [24] using ideas
going back to [6,7].

But now, (7.8) may be obtained for amy< \¢ if 2¢ < 1/2 — 7, by the arguments used to show
Sublemma 7.2(3), taking = k(¢) maximal so that/z < e~* and considering € Jy) . \ J.

with J. = [—& + f(\/£/2), f(0) + €] (see [8, Lemma 4.4(ii)]). O
7.2. Estimating bad sets

We now prepare the construction of the randdynamical partitions of the interval, in view
of checking the tower axioms of Section B/e start with the exponential partitio@ of I
(modulo zero measure sets) into intervals defined fofZ by I, = (v/ee ", /ee~ "= 1), r > 1,
L =—1_,,r<—1,If =(/z,vee), Iy =1, IT = (\/ee,1), [~ = —I".For|r| > 1 we
write I.F = I, U I, UI._1. Form > 1, we also introduce the functions, : Q2 x [ — Z., by
settingr,, (w,z) = |r| if f"(x) € I, and0 otherwise, and sets

(7.9) Gp(w,z)=G;, (w,z) = {0 <j<m|rj(w,z) > max(l, (% - 277> log é) }

Recall that(2a/log\) < n < 1/10 appeared in Lemmas 7.1 and 7.3. In view of the
proof of Lemma 7.4, we take) = log7/(4log32) for 7 > A'/®> from Lemma 7.3 (since
5-8-log(32) < 200, assumption (H1) guarantees that we may do this).

The reader is invited to check (see [24, § 2.4], and also [1, § 2]) that for suitably smal]
largeC > 1, smalle > 0, Lemma 7.1 and the definition &¥,, (w, «) imply that for each large
enoughn > C'log(1/¢) and all(w, x) for which

(7.10) Z rj(w,z) < en,

JEGS (w,x)
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we have|(f7)'(z)| > e"/“. Hint: The key step is the first of the following bounds, recorded here
for future use,

(7.11) { |(f1) ()] = exp(4cn — ZjGGn(w,m) ri(w,z) — 2log§)7
| @) <VE=1(8) @) > ep(4en = e, wn T (wr7) = 0)-

Our nextaim is to show that for alithe set ofv such that (7.10) is violated has small measure.
The i.i.d. setting together with the assumption.grgive:

LEMMA 7.4 (Estimates on bad-sets). Let ¢ be as in(7.10) There areC(e) > 1,
~v(e) > 1/(Clog(1l/e)), and for eachz € I and all n > 1 sets E,(z) C Q with
P(E,(z)) < C(e)e™7®)", such that ifw ¢ E,, () then

Z rj(w,x) < %
JEGS (w,x)
J#0
Proof of Lemma 7.4. Fhe crucial point is the fact that there afé> 0 and0 < 5 < 1
so that for small enough, there isM(e) ~ C'log(1/e), so that for each interval, with
[r| = (1/2 —2n)log(1/e), and allz, w

(7.12) P({weq| fMO(z) e }) < Ce ¥V,

(Note that an obvious upper bound(i8/c)/ee~" if r >log(1/+/¢), with C the constant from
(2.1). We need the better estimate (7.12) to deal itz — 2n) log(1/2) < r < (1/2)log(1/¢).)
See Lemmas 2.3 and 2.6, and especially the bound on line 3 of p. 77 in [24] (note that this bound
is in fact a conditional probability) for determinis analogues of (7.12), obtained using a notion
of admissible curves which we do not require.

Let us sketch how to adapt the proof of Lemma 2.6 in [24] to obtain (7.12). We start by
observing that (2.1) implies that there are const&hts> 1 andC; > 1 so that for eaclr > 0
there are subsefd; = H,(¢), Hy = Hs(¢) of [—¢, ], with v.(H;) > 1/C for i =1,2, and the
distancel(H, Hz) > ¢/C>. This immediately implies thdtf,,(x) — fz(x)| > e/Cs if wo € Hy
andwg € H,. (Thisis Lemma 2.7 in [24] witl; = 16 andC> = 100.) Then, takingM = M (e)
to be the maximum integer so tha2*(*)c < 1, we observe thatM(e) is smaller than the
constantV(e) from Lemma 7.1. Since our choice gpfand M implies

1 1
r+ Mi(e)logT — §log— >nr,
€

forall r > (1/2 — 2n)log(1/¢), we may just follow the proof of Lemma 2.6 in [24], making use
of (H1)(ii) in lieu of the finite postcritical assumption there (clearlys (log32)/4), and of our
Lemma 7.3 in place of his Lemma 2.5. (The fact that “o0%’ depends on the constant in (2.1)
and that the bound on the distortion is not necessatitydo not create difficulties if we replace
K = 400¢? in the analogue of Viana'& andk(r) by an appropriate constant dependingfon
andCs.)

Now, to deduce Lemma 7.4 from (7.12), we may simplify Viana’s large deviation argument
[24, Theorem A § 2.4]. In particular, our di. setting allows us to suppress the time-shift
“Il=m — M(e)" (with [ ~m ~ /n) in [24]. As a consequence, we get exponential bounds
(our rate depends ar) instead of the stretched exponential bound in [24].
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More precisely, we now sketch how (7.12) giveg) > C'/log(1/¢) andC > 1 so that for
each fixed small enough all « € I, and alln >> log(1/¢)

(], 5, oo ) St

0#£i€Gy (w,x)

“Large deviations” here is just the remark that for ahy 0 (we shall takes as in (7.12)) and
all0 < g < M(e)— 1 (see Lemma 5.1 for a similar computation)

P<{w ’ ‘ Z TZ'((.U,I) 2 MC—”ZE)}> ge_% / eﬁZiEGn,q(W,m) T dP(w)7
ZEG;‘L;Z(gw,x) {Ging(w0,2)£0}

whereG,, ,(w, z) is the set of thosé e G,,(w, ), i # 0, for whichi = ¢ moduloM(e). Thus,

settingy(g) = ¢/ M (e), it suffices to show

¢ Licenatn ™ dPw) < 1,

QN{Gr ¢ (w,z)#0}

for somes >0 and alle >0, z, 0 < ¢ < M(e) — 1, and n > log(1/¢). In order to
obtain the above bound, we introduce some notation. For fixed, ¢, and x, w, let
t(r,w) = t=™9(x,w) be the cardinality ofG,, ,(w,z) = {i1 <i2 < -+ <iypw)}, and set
Te = TeMApq T Tomtq = (1/2 —2n)log(1/e) andr, = 0 otherwise.

Next, it is easy to deduce from ([2) and independence that thereis> 0 so that for alle,
everyn > log(1/¢e), each0 < ¢ < M(e) — 1, everyl < ¢ < n, and any sequengg with either
pi=00rp; > (1/2 - 2n)log(1/e),

~ Ce Pt t—1 .
P({w[t=™(z,w) =t and 7o = p¢}) < f/g HP({w | f?{lﬂﬂlq(w)(m) €l,})
=1

< 26—45’ Ze Pe .
NG
(We used the trivial factl + 1) M + ¢ = (M + g + M.) Thus
Lot ™ AP(w) < S Cle e <37t R)Cle IR,
QN{Gp,q(w,2)#£0} pe t.R

where (¢, R) is the number of integer solutions of the equat@izlpg = R satisfying
pe = (1/2—2n)log(1/¢e) forall £. SinceR/t > (1/2 — 2n)log(1/e), takinge > 0 small enough
ensures that (recall< t < RandR > (1/2 — 2n)log(1/e) > 1)

D Lt R)ICTeIRLY e PNy "Re <1 O
t,R t,R R

COROLLARY 7.5 (Bad(w,x) sets). Lete, C = C(e) and y(¢) be as in Lemm&.4. For
eachn > 1 there isE,, C Q x I with (P x Leb)(E,) < Ce~7()" such that for al(w, z) ¢ E,
condition(7.10)holds.

Proof of Corollary 7.5. <Just write
E,={(w,2) |we Ey(z)} U{(w,)|ro(w,z) >cn/2}
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and use Fubini to apply Lemma 7.4:

(P x Leb)(E,) </P(En(x)) dLeb+2yze= /2. O
I

COROLLARY 7.6 (Badz sets). -LetC' = C(e) and~v(e) be asin Lemm&.4 Forw € 2, and
m>1,setE, (w)={zel]|(z,w)€ E,}. Then

P({w eqQ] Leb(En(w)) >/ Ce*W(S)”}) <V Ce(En,

Proof of Corollary 7.6. -This is Fubini again! Indeed, if

P({weQ|Leb(Ey(w)) > VCem}) > VCe 1

then(P x Leb)(E,) = [, P(En(w))dP(w) would imply (P x Leb)(E,) > vCe= 1/ Ce=",
contradicting Corollary 7. 5 D

LEMMA 7.7 (Parameter exclusion — Waiting times).ety(¢) be as in Lemm&.4. There is
C = C(e) > 1 and a full measure subsg, C 2 such that for eachv € Q there isng(w) such
that for all m > ng(w)

7(25)m

Leb(Ey, (w)) < Ce™

Additionally, there are” = C(g) > 1 andv(e) > (Clog(1/¢))~! such that the random variable
no(w) satisfies for all € Z .

(7.13) P({weQ|no(w) =n}) < Ce v,

The lower bound(w) is called awaiting time.It will have to be modified before we reach
the final waiting time functioms (w) which will play a role in the recurrence asymptotics of our
random towers (see (A.V) in Section 3.2).

Proof of Lemma 7.7. YUsingC' = C(e) from Corollary 7.6, define for eacha “bad set”
B, ={weQ|3Im>n,Leb(Ey(w)) > VCe 1},

Corollary 7.6 says thaP(B,,) < > s, C(c)e™")k/2 Therefordim,, ., P(B,) = 0. Setting
Q0 =U,(Q\ B,), and for eaclw € Q,

no(w) =inf{n € Zy |w ¢ By},
we easily get (7.13). O

DerINITION (Random hyperbolifreturn) timeg. — Fix ¢/ > ¢. We say thain is ahyperbolic
timefor (w, z) if for each0 < k <m — 1 we have

Z ri(w,z) < (m—k).

i€Gs, (w,x), k<i<m—1

(This condition depends anthroughG:,.) We say thain is ahyperbolic return timdor (w, x),
or ahyperbolic returrif m is a hyperbolic time and, additionally, (w, ) > 1.
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Forw € Q, a fixedpy () (the choice oy occurs later in Lemmas 7.9 and 9.1), andralive
define

Hp,(w) = {z € I | mis the first hyperbolic time> p, for (w,z)},
H} (w) ={x € I|mis the first hyperbolic returr> p, for (w, z)}.
Finally, we setfs;,, (w) = I\ U;—,, Hi(w).
LEMMA 7.8 (Hyperbolic return estimates)Let 0 < v(e) < v(¢)/2 be as in Lemm&.7.
There ared < ((¢) < v(e) andC(e) > 1, such that for alkw € Qg and allm > ng(w) + C(e)
we haveLeb(E?, (w)) < e ¢E)m,

Proof of Lemma 7.8. Applying Pliss’ Lemma as in [1, Proposition 2.6], we find

I\En(w)C | J He(w), ¥m>po.
k=po

Next, we shall show that there s > 1 so that the proportion of pointsin the complement of
E,(w) suchthat fm+7 (x)| < /2 for somed < j < m-Clog(1/e) is larger than — (1 —/z)™.
Of courseyn + j is then not only a return but also a hyperbolic return (use Lemma 7.8} far),
so that we get

m/(Clog(1l/e)) m m/(Clog(1/e))
Leb( U Hew)\ ( U Hiw)n U Hk(w)>> <(1—ve)™.
k=po k=po k=po

Therefore

Leb(E;, (w) \ Em(Clog(1/e) (W) < (1 — &)™,
showing Lemma 7.8 (by Lemma 7.7).

It remains to show the assertion on the proportion of good points.zLetE,, (w) and
sety = f'(x). If |y| > e thenJ. =y — e/2,y + e/2] N f2*(I \ E(w)) does not
intersect(—+/¢/2,+/¢/2). Lemma 7.3 gives > 1 andC > 1 so that if| f..,(z)| > v/&/2 for
0<j<k—1then|(fk. ) (2)] > er"/C.If (1 —¢)r > 1, there isC so that

oMy

CVeve((1— ek >2=|I fork>=Clog(1/e).

The distortionsup |(f7)'(2)/(f?) (w)|, for 0 < j < k is bounded by a constant independent of
e onJ. (use Lemma 7.3 again). Hence, the proportion of pointé.ofhich have never entered
into (—+/2, /) by the timeC'log(1/¢) is smaller thanl — /. We may iterate this procedure
m times. Pointg € f7'(I \ E,,(w)) notin J. are dealt with by a similar argument

7.3. Therandom partitions
The first step is to obtain for fixed € (2, and eachn > p, a mod9 partition of I into intervals
= Uy v U L
k=po JER | (w) LeS, (w)

The families of intervalsR,, = Ry (w) andS,, (w) are constructed inductively, simplifying the
strategy in [1, §3] (in particular the distinction betwelp andRR; does not exist here). We first
list their key properties, valid fosy < & < m (recall the definitions given before Lemma 7.4):
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(P.) Hji(w) € Ujer, () J andJ N H(w) # 0 for eachJ € Ry. (In particular, ifw € Qg

then Lemma 7.8 implies thaieb(S,, (w)) < Ce <™ if n > ng(w). As a consequence,
( Uscry () / is @ partition off modulo zero measure sets.)
(P.II) Foreach/ € Ry(w) and0 < j <k — 1, thereisl,, € Q such thatf/ (J) C I;S

(P For eachJ € Ry(w), there exish < j <k — 1 and/,, with f2(J)> I,.

(P.IV) For eachJ € S,,(w), eitherJ € Q or J is subordinateto someJ* € R, for some
¢ < m. (By definition,.J is subordinate to’* € R, if J and.J* have a common endpoint
and there ar® < j < ¢ —1andr; > 1 with f7(J) D I, 41 0r fi(J) > I, 1 where
I, C f5(J*))

Construction of theinitial partition

First step:  We first constructk,, andS,,, by using an auxiliary sequence of families
of intervals 7; for 1 < ¢ < po. For this, start with the family of intervals, = {I, € Q |
I. N Hy (w) # (}. For each/; € J1, we considerf,(J;). If it does not contain any interval
of Q we put the interval/; in 7>. Otherwise, we subdividé; into subintervals having as image
either exactly one element @ or one element o and part of either of the elements ©f
which intersect the boundary ¢f,(.J1), and we put intQ7, those intervals in the decomposition
which contain an element di (w). Then, for eachy, € 7, we considerf2(.J2), putting it into
Js if it contains no interval 0ofQ, and otherwise decomposing as in the first step and putting
into J3 those subintervals which interseflt; (w). We continue in this way until reaching the
iterate fPo~1, obtaining a family of intervalsy,,. We defineRr,,, = J,, and set

Spo =(Q\ T U {connected components &f \ U J|VJy e 71}.

TETp,

Properties (P.I-IV) are satisfied by construction 8, and S,, (we setR, = J, for
1<l < pg— 1 inthe formulation of (P.IV)).

Inductive step:  Assume thalR, po < k < m, andS,,, have been defined and satisfy (P.I—-
IV). We shall construcR,,,+1 andS,,,+1. For this, letJ,,, € S,,,. By construction,J,,, C I, € Q.
If J, NHY L (w) = () we put this interval intaS,, 1 (no subdivision has been made, so that
(P.IV) still holds). Otherwise, we observe that (P.IV) implies that therefate; < m and
I, € Q with i (Jm) D I, (indeed, if.J,,, € Q we may just takg = 0 and otherwise we apply
the definition of “subordinate”). We take the smallest sycand proceed as in the first step,
decomposing/,, into subintervals having image either exactly one eleme of one element
of Q and part of one of the adjacent element€©ofutting intoS,, 1 the connected components
of the complement of those intervald;, ; in the decomposition which contain a point in
H} . ,(w), and continuing the procedure until we exhaustjak< m with fg’(Jjn’i) o1,
defining thusR,, 1 andS,,+1. Properties (P.I-IV) hold by construction, and we are done.

DEFINITION (Uniform contraction and bounded distortipn- Letn, w and an intervall C 1
be such thaff” is injective on.J. We say thatf”| ; enjoys uniform contraction along inverse
branchesfof < <1 andC > lifforeveryz e Jandallo<j<n—1

n—1 ji—n
(7.14) [T 17 (i) > 2

C
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We say that) = f*| ; enjoys bounded distortion fa¢ > 1 if for all y € f(.J)

d/1 _
(7.15) (oo )w| 1o oo wl <k

We list for further use the key property of the partition, adapted from [1].

LEMMA 7.9 (Intermediate size — Bounded distortion — Uniform contractioifhere are
C >1,0< < 1and for eacte there arepy(¢) > 1 andC'(e) such that for alkv, eachm > po,
and everyJ € R, (w):

(1) fm|, isinjective,|f(J)| = t=27/C, and|f™(J)| intersects —+/, /2).

(2) fI*|; enjoys uniform contraction along inverse branchesgandC.

(3) fo*|s enjoys bounded distortion far(¢).

Proof of Lemma 7.9. Hjectiveness is by construction. For the rest, we require in particular
the following consequence of (P.I)—(P.11): For each J € R,,, (w) thereisz € J N H, (w) with
ri(w,z) <ri(w,2)+2, V0<i<m-—1, and
ri(w,z;) <ri(w,z;)+2, Y0<i<m—j—1,
where we setr; = fi(z), z; = fJ(z). Assertion (2) on the contraction of inverse branches is
then obtained from (7.11) (adapting the proof of Lemma 3.7 in [1]): It is not difficult to get

(see [1, Lemma 2.3], observing that— j is a hyperbolic return fofo’w, z;) becausen is a
hyperbolic return fofw, z))

m—1 m—j—1

[T IF@) = T1 1 (Fou@)]

i=j i=0
>exp| 3e(m—j)— ri(oclw, z;) — C
( i€§j ' )
(7.16) > exp(3c(m —j) — ¢ (m —j) — C) = exp(3c(m — j)/2 - C).

The claim on the length of the image falls from enhancing thbounds of [1, Poposition
4.8] by making use of the hyperbolieturns.Indeed, (P.III) implies that there 5< j <m — 1
andl,, with I, C f7(J). Then, by the mean value theorem, there s J with

= 10752) @)1
Next, applying (7.16),

|(17527) (Fa@) |z =0 /c.
It remains to obtain a lower bound fdy7(J)|. For this, it suffices to contro)l, |. By
construction, there is € J with r;(w, z) = r; and there ig; € J N H}}, (w) with

ri=rj(w,z) <rj(w,y)+2.

If j € Gy (w,y), sincem is a hyperbolic time fofw, y) we haver;(w,y) < ¢ (m — j), so that,
usingn < 1/4,
L,

J

2 \/g(eirj (“J1y)72 _ 677“]‘ (w,’y)73)
> \/E(e_l — 6—2)6—0’(m—j) >el=2n (e—l _ e—2)e—c/(m—j).
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If j ¢ G (w,y) thenr;(w,y) < (5 — 2n)log(1/¢) and

i 1=27
I, > 5 ¢ .

Finally, the distortion control (3) witld’(¢) ~ e~7/2 is obtained by a one-dimensional version
of the proof of Proposition 4.2 in [1idapting the estimates for the teriy there. (We leave the
details to the reader.)O

Let us define the basic subintervalsy on which our random towers will Abe con-
structed. For this, we partitiof—4,4) (6 as in (H2) and small enough) intglklﬂ(0 I}, with
I = (e %1 e *),I_, = —I and then we subdividj, = Uf; I1.¢ so that thel}, ; are disjoint
and \fu\ =k Ik\. (Note thate does not intervene.) We sdt. to be the rightmost and
leftmost intervals of this partition gf4, ), i.e

(7.17) Ay =Ty xz, A= k.1

We also definé\ ; to be the interval of lengtB|A , | centered at\ ,, similarly for A _.

We close this section with a lemma that will be instrumental to prove Lemma 8.1 (replacing
ideas in the joint appendix by Alves and Viana of a preprint version of [1] which circulated in
1997; we danotuse the topological mixing assumption (H4)):

LEMMA 7.10 (Large size of image).Assum&H1)~(H3) and let3 < 1 be as in Lemma&.9.
Then there isC' > 1 and for every small enough and large enoughk| there is a constant
C(k) > 1 (independent of) so that for eachw € €2, and every interval}, , there are a time

t(k) = t(Ip,w) < C|K|,

and a subinterval/,, C I}, such that

7.18) { U] > 1/C(k),

FE (0,) = A4 or A_.

Furthermoreg = f! |~ is injective and enjoys both uniform contraction on backwards branches
(7.14)for C andpg, and distortion bound§7.15)for K = C'(k).

Proof of Lemma 7.10. We shall use again the random bound period ideas from [8]. We first
state an easy consequence of Sublemma 7.2(3). For &yéry ' > n > 0 (recall thatn was
fixed in the proof of Lemma 7.4) each small enouglall w € 2, and everyfu, takingp(k, ¢)
as in Sublemma 7.2:

(7.19) | fEEEH () )| = e 2 1M
Indeed, just observe that
2R G )] 3 inf | (7Y | o
v ’ 7 C k2

o@-20)[k o—2(|kl+1)

(7.20) > >e”

& o 2n' (k|
k
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Next, we claim that there is an integet iy < C|k|, so that for somé; and/,
(7.21) FERETIT O ([ ) D Ty 0y —1 U Ty 0y Uiy 0,41, and k| <20 [K|

(with the obvious interpretation if, = 1 or /1 = k?).
To check (7.21) we first note that there is a first itergtel C|k| so that

frtae 1o ([ )N (—8,6) # 0.

Indeed, whilef5*= (], ,) stays outside of—d,5) we have, setting = qM (5) + r with
0 < r < M(0) and applying (H2)(i),

M

| frERTI ()| > ar 1889 )|

(mingz >5[ f/ ()]

qM
A 21|k

Z (i s [S @D ©

Now, if 5= (F, ) c (=6,6) U Ay UA__, whereA,, is the interval to the right of
A in an augmented partition, and__ is the corresponding interval to the left af , we set
i’ = jo, and by (H2)(ii)

(7.22) RO (D) 2 X[ RO (D) 2 X2 KL

In the other case, except‘fﬂ(k’s)ﬂﬂh (fk,g) coversf\Jr orA_ (in which case we would stop,
having proved Lemma 7.10), we replagé® <) ™1+ (7, ) by

(7.23) FREETIIO(T )\ (=6, 0)

and continue iterating until we interseGtod, d) again. The loss in length caused by (7.23) is
insignificant since there is a miniii#me between successive returngted, 6).

We may thus assume that we are in the situation (7.22) for s6me”|k| and that there is
(K',¢) with |K'| < n'|k| and
(7.24) fﬁ(k’E)HH/ (fk,e) - fk’,eul U fk',e/ U jk’,£’+1
(since otherwise (7.21) would be proved). Applying Lemma 7.2(?)017@ we get (recall (7.20))

|f£(k78)+1+i’+p(k’,€)+1(jk e =20 |kl

Continuing the procedure, we eventually find subinterv&ls- U C jkvg, an iteratei = i,
and(kl,fl) with 10 < C‘k| and\k1| < 277/‘]€|,

(7.25)  fERETITO (Uy) = Iy, 0y, fEEOTIO(U0) = Iiy 0,—1 Uiy 0, Uy 0,41,
ending the proof of (7.21). We takkg so that|/k;| is minimal with the property (7.25).

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



116 V. BALADI, M. BENEDICKS AND V. MAUME-DESCHAMPS

We may now conclude the proof of Lemma 7.10pRating the procedure leading to (7.25),
we obtain sequences

U15U27"'7[71’(72a"'7
(726) ko = k’,kl,k’g, ey with ‘km-i-l‘ < 2n’|k’m\,
10,801,892, -« -, Wlthlm<0|k’m|

The only way this can stop is that the second line of (7.18) be satisfied. The total time spent
before this happens is

S S S

t= Z (p(kn%g) +1+im) <C Z ‘km| <C Z(2n/)m‘k0‘ <C’|k0|

m=0 m=0 m=0

Sinces < s(k) < C|kol, the lower bound on the length 6f, follows from the remark and
choice just after (7.23) and (7.25). The assertions on injectivity, distortion and contraction are
immediate by construction, see in particular (7.24p

8. Escape and recurrencetimes asymptotics

Let A andA. be defined by (7.17). We take as our reference intexvalA, C I, For small
enoughe and for allw € Q we shall subdivide\ into subintervals of points having the same
return times to\, using the partition®,,, (w) andS,,, (w) from the previous section. Our aim is
to control asymptotically the measure of points having large return time. We first use Lemmas 7.9
and 7.10 to show:

LEMMA 8.1 (Covering/N\i by iteratingJ € R,,,(w)). — There areC' > 1, and for eacte >0 a
constantC'(¢) > 1 such that, for alk, all m > po, and each interval/ in R,,,(w), the following
holds

There are a subinterval ¢ f(.J) and an iteratet(.J) < C'log(1/¢) such that.J| > C(e)~!
and for whichfL... maps.J injectively onto eltherA+ orA_.

Furthermore, the restriction of) = fL.. on J enjoys both distortion bound&.15) for
K = C(e) and uniform contraction on backwards branch{&sl4)for the constanti < 1 from
Lemmar.9.

Proof of Lemma 8.1. By Lemma 7.9, the intervaf(J) has length> £!=27/C and inter-
sects(—+/z, v/€). It thus contains an interval’ C (-2./¢,2y/2) of length > ¢'=27/C, dis-
joint from (—e'=27/C,e'=27/C). Now an easy modification of the beginning of the proof
of Lemma 7.10 may be applied t&', giving an iteratet, < C'log(1/¢) and a subinterval
J" < J' with |J”| > 1/C(e) and such thaf®, (J") = I, injectively, with |k| < C'log(1/e)
minimal for this property, and good distorsion and expansion for the restrictioff tof this
toth iterate. (In particular, (7.20) is replaced by the observation [tffat,, (J’)| > el=31/0.)
We may then apply Lemma 7.10 tdikz and get a subintervall c IM and a time
t; < Clog(1l/e) so that\ftmﬂw(U)\ is exactly one of the intervals... Taket(.J) = to + t1
and.J = J” N (f.,)~1(U). The assertions on the length &f distortion, and contraction fol-
low from Lemmas 7.9 and 7.10.0

DEFINITION (Escape timg — Forw € Q, m > py andJ € R,,,(w), let¢(J) be as given by
Lemma 8.1. We say.J,w) has (equivalently(x,w) for all pointsz € J have)escapedit time
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m + t(J). (By Lemma 8.1,f™+(.J) containsA, or A_, and we have good distortion and
expansion control along the way.)

Lemmas 7.8 and 8.1 together with the rekniarProperty (P.I) immediately imply:

COROLLARY 8.2 (Basic escape time asymptoticsfor all w € Qy and m > no(w) +
2C'log(1/e)

Leb({(z,w) € I | z escapes at time= m}) < Cexp ( —((¢) <m - 2010g(1>)>.

B
Proof of Corollary 8.2. 4f m > ng(w) +2Clog(1/¢),

Leb({(z,w) € I |z escapes at timez m})

m—2Clog(1/¢)
gmb({l\ U Rk(w)}>

k=po
<Leb({Sm—2c10g(1/)(W)}) < Cexp(—¢(m — 2Clog(1/e))). O

For eachm > py, we shall define the return times of alle J € R,,,(w) abstractly (and
independently o).

DEFINITION (Return time — PartitionA;(w) — Abstract return timeR,,). — Fix w € ,
m > po(e). For z € J € R,,(w), consider the set of all those> m such thatf! maps
J injectively onto an interval containing} and for which there exists a nontrivial interval
J = J(t) C J containingz with f(J) = A and f|; enjoys bounded distortion (7.15) and
uniform contraction on inverse branches (7.14), with the constants from Lemma 8.fettiire
time R, (x) is then the minimum of thosewhich appear. It is infinite if the set is empty.

For eachw, define a countable partition df into subintervals{A; = A;(w) | i € Z4}, by
considering the connected components of theetss A | R, (z) =7} |7 = po}.

Proposition 8.3 shows in particular that fore Q, the A;(w) form a partition ofA modulo
zero measure sets, and that the return times are almost everywhere defined:

PrROPOSITION 8.3 (Return time asymptotics). Fhere exist{); C Qy of full measure, a
random variablen, (w), and constant€’(¢) > 1, Ci(g) > Ca(e) > 1 such that for allw € 4,
and all¢ > n;(w),

Leb({z € A| Ry(z) > (}) < Cle)e W/ /1@,

and
P({w]ni(w) > £}) < C(e)e™""/C=(),
We may replace the right-harsitles in both inequalities b§/(c)e =" for 0 < u < 1/4.

The fact thatCy(c) < Ci(¢) are crucial to obtain the asymptotics (2.5) fot, (see
Corollary 5.10).

__Proof of Propogion 8.3. -We first estimate auxiliary concrete-lependent) return times
R, (z), corresponding to the first moment when one of the is guaranteed by Lemma 8.1

to be “well” covered (with good expansion and distortion control). After that we shall define
second auxiliary concrete return tim&$ (z:) corresponding to the first moment whan= A .
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is well-covered and estimate them using the information orf{t(t;(ar). Since, by definition, the

“abstract” return times satisfiR,, < R, this will prove Proposition 8.3.

Good returns taA . U A _ (estimatingf%w):
Fix w € Q. For eachm > po, and J € R,,,(w), we now define the auxiliary return time

R, (z) € Zy U {oco} of all x € J inductively. Lett(J) and J be as in Lemma 8.1. Then, if
fm(z) € J,andfm(x) € Ay or A_ we set

Ry (z) =m+t(J).

If f™(x) € J, but {7+ (x) ¢ A (for all r) then

~

Ro(@) = m 4 1(J) + Romera (J1 (@),

Finally, if f™(z) ¢ .J, we set

~

Ry(x) =m+ Romy, (f7(x)).

We introduce a sequence stbpping timed; = fw AL UA- —{0,...,n} U{oo} with

~ ~

(8.1) 0=Too <Tw1(2) < Tuo() < < Ty po(a) (@) = Ro (),

such that forall, k € Z
{re Ay UA_ | Ro(x) >}
C{z €Ay UA_ k> Emax(@), 30 < kmax(@) — 1,70 i1 (z) > £}
(8.2) U{zeAy UA_ | Ry(2) > T i(x)}.

Using standard ideas, it will be easy to bound the mass of the second set in the above
decomposition by showing that the probability that, < R,, (that is,k < knax(x)) decays
exponentially fast irk. That is, we shall find = 6(¢) < 1 so that for allk € Z_. and allw € Qg

(8.3) Leb({z € Ay UA_ | Ro(2) > Tl x(2)}) < 6",

Then, using the basic bound on escape times from Corollary 8.2, we shall control the mass of the
first set. More precisely, we shall exhibit a random variahlev) on a full measure sé?; (with
controlled distribution, see (8.8)), aldt{¢) > 1, so that for! > 7, (w)

Leb({z € Ay UA_ | V€ > kyax(z) and
(8.4) i < kmax (x) — 1With T, ;11 (z) > £}) < C(e)e™VH/CE),

Putting together (8.4) and (8.3) fdr= /¢ proves that there i€3(c) > 1, so that for all
0> ﬁl(w)

(8.5) Leb ({z € Ay UA_ | Ru(z) > £}) < C(e)e V),

Let us now define the stopping times, using again the notation from Lemma 8.1. We say that

~

T,.1 is defined atr € Ay U A_ if there ism; > py and J; € R, (w) with z € J; (hence,
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F™+(Jy) containsf™*(z) and covers\, or A_). We then set

7 (x)_{m iffL”xgéj,
o m+t(J;) otherwise.

Clearly, }A%w(x) > ﬁ,yl(x), and equality is only possible in the second case: There, at time

Ti(z), part of the component offl(m)(Jl) containingffl(m)(x) returns toA; U A_. We

shall estimate the “overflowing parts” using the distortion control from Lemmas 7.9 and 8.1.
For this, let®, 1 = {r € AL UA_ | T,, 1(z) is defined. Forz € ©,1 \ {R(z) =Ti(x)}, we

say that7} is defined atz if there aremsy > py and Js € R, (Uﬁ(“:)w) with ffl(m) (x) € Ja,

setting 75 () to be eitherTy (z) + ma, or Ti(z) + my + t(Jo). For generalk > 2, we let
Ou i = {z| T x(2) is defined, and we defind, x11 0NO,, 411 C Ou i \ {Ru () = Tk (2)}

if there ismy, > po andJ, € R, (J?W”)w) with fE’“(m)(az) € Ji. The relation (8.1) (and thus

(8.2)) is an immediate consequence of the definition.

Estimate (8.3) forR,,:

The estimate (8.3) can be restatedLad (0., ;) < 0% for somed < <1 andallk € Z,,
n € Z4,w € Q. This exponential bound will be an easy consequence of Lemma 8.1. Indeed, for
allw € Qg, n/, andpy < m, if J is an interval Ome(or"/w), the uniform distortion bounds from
Lemma 8.1 imply (using the notation there) that

- _ 1 A UA_| -
/. ty—1 + -l
Leb(L":= TN (f") i (Ay UA)) > o 5 Leb(J)
. 1 |ALUA_|
C(e)? 2

1 1 AL UA_|
C(e) C(e)? 4
(In the above boundd, may be replaced by a subintervatz J with |L| > |.J|/C, up to adapting

the constants correspondingly.)
Therefore, setting’(z) = 1,, x—1(x) for x € ©,, 1, we have

Leb(J N (f™) 5 (L) > Leb(J).

Leb(f5" " (Ou k1) N{Y € Oy | Rywr o (4) = Ty 1 (1)})
Leb(f2 " (0w x-1))

AL UA_]

e O

on

SinceB®,, ; C Oy x—1N {}A%Un/w o fg’ >T "1 © fﬁ'}, setting

AL UA_]
g—1— B0
0P

one more (inductive) application of the distortion bounds yidlds(0,, ;) < 6%, as claimed.
(Note that? is uniform inw but tends tal as|A+ UA_| —0ore —0.)

Estimate (8.4) fork,,:
We now move to the estimate (8.4). For fixéd > 1, fixed0 =10 <po <1 <12 < -+ <
7; <L, andr < ¢, definek(r) = max{0 < k <i| 7, < 7} and
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Ar(riyeo ) ={z € Ay UM | K(T) < Emax(2) = 1, Ty g(ry41(x) > 7, and
T, j(x) =5, Vr; <7}.

Applying the absolute bound in Corollary 8.2 we find that, whenemer 1 > ng(w) +
2C'log(1/e),

Leb(As,—1(71,...,m)) =Leb({z € Ay UA_ | Ty 1 (z) > 71 — 1))
< Cle—¢(n—1)—2Clog(1/e)

Forj > 2, we letL be a componentafi,, , (71,...,7;) with T“w’j_1|L =T7;_1, and decompose

L — {fzw = 71j_1} into connected componentd, L, (with possible timeSZA“j_l =m, and

m +t). We apply again the absolute bounds from Corollary 8.2 to7; and f~1(L,) and

get, using once more the distortion control in Lemma 8.1 when pulling back that whenever
7; — Tji—1 > no(c7'w) + 2Clog(1/e)

Leb(LT) —((1j—1—7j-1)—2Clog(1
Leb(LTﬂATj_1(T1,...,Ti))<C(s)me (rj—1=7j-1) g(1/2)

If 7, —7j—1 < no(c™'w) + 2Clog(1/e), we only have, by the distortion control from
Lemma 8.1, that

Leb(L,)

Leb(L, N Ar,—1(71,..., 7)) gC(E)W‘

Thus, by definition of thd.,. and A, and using the “large image” properties in Lemma 8.1, there
is C'(¢) such that for allj > 2,

Leb(Ar, _1(71,...,7i)) <
Leb(Ar, _;—1(71, .ymi))

Leb(Ar, —1(7T1,..y 7i)) . -
LCb(Aﬂ'jjlfl(Tlv 7)) < C(E) if Ty —Tj—1 — 1< 710(0 J*lw).

Cle)e == if 7y — ;1 — 1= np(071w),

Thereforeforanp < <--- <7, </

Leb(Ag(r1,..., 7)) <Cle)'e " - exp [C(E) > (7j = 7-1)]

Ti—Tj—1—1<no (07 1w)

and (we shall soon chooge= k(¢))

Leb({k 2 kma)n 31 g kmax - 17fw,i+1 > E})

k
<Z Z Leb(A((7—17-~-7Ti))

=0 0<T << <L
k i
(8.6) < Z Z C(e)'e ¢ - exp l{ Z ng (o”lw)] .
i=0 0 << <L j=1

We now estimate the last factor in (8.6), i.e., the effect of the random waiting times: This is where
we shall lose the exponential decay. Bix< p < 1. Since P({ng(w) >n}) < Ce~¢", for each
fixed1 <i<kandr,...,7,
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P({jilno(a"jlw) > pe}> <;P<{no(0”1w) > %})

(8.7) < O(e)ke=CEPt/k,

Consider the partition af into maximal atomd’,, = ', (k) on which theﬁ,yj(x) are constant
for 0 < j < k. We will say that such an atoinis (¢, k)-goodif for all « € T',, andi < k,

i o~
Z no (UT”*J'*Iw) < pl.
j=1

The other atoms are calleft, k)-bad. Defining M, C @ x I to be the set of(w,z)
such thatz belongs to an’, k)-bad T, (8.7) implies that(P x Leb)(M, ) < Cke<P!/k,
Using a Fubini argument as in Corollaries 7.5-7.6, we get that thé/get of w such that

P

J xn, . (w, ) dLeb(z) > ke~ ¥ % hasP-measure smaller tharr “5“ . Therefore, there is a set
of full measur@l C Qg such that for eaclr € ﬁl,there existsi; (w) = no(w) with the property
thatw ¢ M; , forall £ > 7, (w). Now, forw € Q; and/ > i, (w)

Leb({k 2 kma)n di g kmax - 17fw,i+1 > f})
k
<> > Leb(Ay(m,...,m)NTu)+ > Leb(I,).
i=0 0< T << <L (¢,k)-bad T,
(¢,k)-goodl',,

Therefore, takingk = /¢, applying (8.6), and using the Stirling formula we get for
1/2<v<1andl>nq(w)

Leb({k = VI = kmax, 3i < kmax, Ti > €})
< Ve [C(e)]\/zefz(lfﬂ)qs) + \/267%\/2
< C(e)e~ (Vs

Combining this with (8.3) ends the proof of the bound (8.5) for the return timesMoreover,
we may estimaté ({7 (w) > £}):

P{w|m(w)>4})<P({Fj>l|we M;,\/Z}) + P({no(w) > })

(8.8) < Ze—2<§>” Vi 4 CeSE L O(e) e (VE/Ca(@),
j>L

Note thatCy(s)~! > C5(e) L.

Good returns to\ ;. (estimatingR;’):

Forxz € AL UA_ we now consider the “concrete” return timBg (x) to A = A . As observed
in the beginning of the proof, the abstract times sat®fy(x) < R}, (z). To prove the desired
asymptotics forR’(z), following §7.6 in [25], we introduce second stopping tim&s, on
AL UA_ by settingS,, o =0, and

k(@) = Swp1(2) + Ryso s () (f55 (@)

If Zis the partitionA | UA_, and if we defin&y, (w) = 2V f 51 () V- -V fo 51 (Z), thenf S
maps each elemegitof =, (w) onto A, or A_, and f5* restricted to each sucghhas bounded
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distortion and uniform contraction in the sense of Lemma 7.9. With the help of ideas already
discussed, these two facts yield the following two claims:

() The mapffjjjw behaves like an irreducible two-state random Markov chain. Consider for
a moment the unperturbed mgpwriting R* and.S;, for its return and stopping time. Since the
intervalsA . are independent afthere are-independent return timés, and7_ with

min(Leb({x €Ay |R*(z)=Sr, (2)}),Leb({z € A_ | R*(z) = Sr_ (I)})> > 0.

Thus, ife is small enough,

. . 1
i,glefﬂl Leb{z € Ay | RL(z) = Sur. (2)} > o 0.
Hence, there ig(y > 1 so that for allu andk,
1 k
(8.9) Leb({z € A| R, > Sukk, }) < <1 - 5) :

Note also for further use that if (H4) holds, then ther&/ig f, A) so that(¢—1/C,q+1/C) C
F™(A) forall n = Ny(f,A), and thus fom > Ny (f, A), whereg > 0 is the repelling fixed point
of f. (Indeed, taked to be the interior of\ and, forB, take firstB, = (¢ — 2/C,q—1/C), and
thenBy = (¢+1/C,q+2/C).) For large enougld’ > 1, topological mixing gived.(A, C) so
that f“(A) intersects both3; and B, for all £ > L(A,C). Since f*(A) is connected, it must
contain(q — 1/C,q + 1/C) for all £ > L(A). Take Ny = L(A).) If ¢ is small enough this
consequence of (H4) also holds ftjt. Clearly, there iV, (f, A) so thatf > sends a subinterval
of (¢—1/C,q+ 1/C) injectively ontoA with bounded distorsion and uniform expansion. Thus,
if & > 0 is small enough, for alh > N = max(po(e), N1 + N2)

(8.10)  infLeb({r € A| RS (a) =S (1) =n}) > Leb({AN 7 (A)}) > 2.

(i) The tail estimate already obtained f&, givesC(e) > 1 such that for allv € Q1 z €A,
0> fy (0% * (w)), k € Zy, writing & () for the atom ofE, (w) containingz,

Leb({y € &k (@) | S k41 — Swk > £}) —(VE/C1(e))
Leb(6 (x) e '

Therefore, similarly as in the proof of (8.4), we find a Sgtof full measure ancdh, : Q; — Z
with n; (w) > 7y (w) such that for alt > n; (w) and0 < w < 1/2,

Leb({x eA ‘ Swy[[w] > f})
(8.11) < (C()"" 1re VICHEW) | (e, w)e= /B0,

Combining (8.9) fork = [¢*"/ K] with (8.11), the optimal choice being far =1/2 — w =
1/4, gives the first inequality of Proposition 8.3. The claim Bf{n,(w) > ¢}) is proved just
like the estimate o ({7 (w) > ¢}). O
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9. Completing the proof of the main theorem

Let us see how the results in Sections 7 and 8 allow us to construct random towers satisfying
the axioms in Section 3. We already have a shifon the probability spaceP =[], ve,
Q = [~¢,¢)%), for almost eachw a countable partitionA = U;Aj(w) of the subinterval
A C I endowed withm = Lebesgue measure, and a functi®p: A — Z, U {oo}. The return
map f2: A — A is just fE(z) = ) (2). Clearly, the projectionr, : A, — I defined by
(2, €) = [0, (x) satisfiesf, o m, = moy 0 F, andm, (Ay) = Ups fome, (U; A0 w)) =

o~ tw

UZZO f(f'*ew(A)'

We also denote bi.eb the lift of Lebesgue measure @k, (suppressing the dependence on

w from the notation) and by the lift to A,, of the distancel(x,y) = |z — y|.

We may now check the axioms from Section 3:

(A.I-I1) By construction.

(A.1V) [Bounded distortion] Lemmas 7.9-7.10 and 8.1 givé(s) > 1 and0 < g < 1 (B is
independent of) such that (3.1) holds.

(A.V) [Return times asymptotics] For small enoughe, Proposition 8.3 gives?; of full
measure and a random variableon €2, so that (3.2) holds for each € ;. We apply
Remark 3.1, choosingy = N(¢) from (8.10), see the proof of Proposition 4.3.

(A.VI) [Gced(Return times) = 1] By (8.10) the stronger property (that thereﬁs(e) so that
Leb{z € A| R,(z) =r} > 0 for eachr > N) holds.

In combination with Corollaries 5.10 and 6.5, Lemma 9.1, Corollary 9.2, and Remark 9.3 give
our main theorem:

LEMMA 9.1 (Lifting bounded and Lipschitz functions)There ispy(¢) so that if

infinf R, > po(e)

then for each Lipschita: I — C, the family of lifted functions,, = ¢ o 7., : A, — C belongs
to }'wa, for IC,, from TheorenB.2 Furthermore,C(; is bounded by an expression depending

only one and (linearly) on the Lipschitz constant @f. If ¢ is bounded onf theng ¢ LK+ and
supa |6 < sup|gl.
Proof of Lemma 9.1. ¥he claim on bounded functions is trivial and we concentrate on

Lipschitz functions. The statement is an immediate corollary of the following assertion: There is
C(g) > 0 so that for allx, y in A, and¢ for which

Ry, (x), Ry—e,(y) = ¢, and s(,fzw((x,O), (y,O)) >/,
we have,

d(fffzw(x), ffew(y)) < C(g) 3%t (@0), 0=t — () gse (@:0:u.0)
To check the assertion, first assume thgt.,((z,0),(y,0)) = p = Ry, (x) > L. By
Proposition 8.3, we have uniform backwards contraction: fob &llj < p andz such thatz, 0)
belongs to the same element®fas(z,0) and(y,0),

p—j 1 opj I@.j—p
‘(fg—eﬂ‘w) (fa—ew(z))’ = 0(6).
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Letz, = f4, (x),ye=ft . (y), we have

o~ tw

a2 (o), 2 ) > % A, o)

In general, decompose, ¢, ((x,0), (y,0)) = p into the sum of successive return times of
(x,0) and(y,0) to A, o, invoking uniform backwards contraction successively and assuming
that the minimal return timg, (¢) has been chosen large enough to guarante€tfaa™ (<) < 1
(where0 < g < 1 andC/(¢) are the contraction and distortion constants from Lemmas 7.9-7.10:
there is no loophole here, as increasiggvhen defining the partition for a fixeddoes not make
C(e) or g larger). O

COROLLARY 9.2 (to Theorem 3.2) (Unique absolutely continuous measures, classical
correlations). The family{(n., ).} gives the unique absolutely continuous sample stationary
measureg h,, Leb} for {f, : T — I'}. For almost allw, all Lipschitz¢y) and bounded> on I, we
have for alln € Z

/(wOfﬁ)whdeebZ/(wowonwoFﬁ)(lbom)duw

I Ay

/(<P° ;L*nw>wha*"deeb: / (90071—0.1 OF:*HW)(quWU*"w)dNJ*"w'

T A,

Proof of Corollary 9.2. -The equality(f.,): (tt.) = 1ow 1S Clear, absolute continuity follows
from ((mw)spw)(E) = 3050 ko (£ % A, (E)) and absolute continuity ofi, (using the
asymptotics (A.V) as in the end of the proof of Theorem 3.2). Note thaLeb is strictly
positive on(fg,%(o), f+-1,(0)). The two equalities follow by definition (note that they imply
the stretched exponential bounds on the past and future “classical” correlation functions by
Corollaries 5.10 and 6.5).

To obtain uniqueness, observe that the measyreeb P on I x ) is an invariant ergodic
probability measuredr the skew productz,w) — (f.xz,ow) (it is in fact mixing). If {j.,} is
an arbitrary family of absokely continuous sample stationary probability measureg for, it
also gives rise to an invariant probability measure for the skew produgt, P # h,, Leb P,
then there exist Borel set&, C [f2_. (0), fo-1,(0)] with [xg h,dLeb =0 (so that
Leb(E,) = 0) but fi,(E,) > 0 for almost allw. This would contradict the assumed absolute
continuity of the measures,. O

Remark9.3 (Convergence to equilibrium and operational correlatipnsLet m,, be the
Lebesgue measure restricted Aq, , = A x {0}. By definition, (7,).m. = Leb|a, and it
immediately follows from Corollary 5.10 and the results already shown that

(£2).(pLeb|a) = hono Leb / sdLeb
A

satisfies stretched exponential bounds, for each LipschitéThe obvious analogous result

holds for the “past” convergence to equilibriutyy Corollary 6.5.) To extend this beyond the
subintervalA, and to estimate the operational corredas, we use the following consequence of
Section 7: For each> 0 there aré) < &’ < ¢ andN (¢) € Z; so that

I'=[f20)+¢, f(0) =] ¢ fXO(),
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with only one fold, for all w. This allows us to write Lebesgue measure restricted to
[£2(0) + &', £(0) — £'] as the push forward by,, of Lebesgue measure ak,, restricted to a

union,, = FNK(IE)A %, Of elements ofZ,, such thatr, : U4, — [f(0) + €, f2(0) — €] is
bijective. We F’naufl thus éxploit the bounds in Corollaries 5.10 and 6.5 to estimate

b

‘/(z/;of:})adeeb—/whondeeb/godLeb
I T I

as well as the past correlation, for Lipschitzand bounded). The constant’ can be chosen
so that, simultaneously,” = I\ int(I") has the property thaf, (1) C int(I") for all w, with
inf | f/,| ;| bounded away from. Decomposing/; - = [}, - + [}, -, we may conclude the proof
of our main theorem.
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