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Characterizing quantum nonlocality in networks is a challenging, but important problem. Using
quantum sources one can achieve distributions which are unattainable classically. A key point in
investigations is to decide whether an observed probability distribution can be reproduced using
only classical resources. This causal inference task is challenging even for simple networks, both an-
alytically and using standard numerical techniques. We propose to use neural networks as numerical
tools to overcome these challenges, by learning the classical strategies required to reproduce a dis-
tribution. As such, the neural network acts as an oracle, demonstrating that a behavior is classical
if it can be learned. We apply our method to several examples in the triangle configuration. After
demonstrating that the method is consistent with previously known results, we give solid evidence
that the distribution presented in [N. Gisin, Entropy 21(3), 325 (2019)] is indeed nonlocal as con-
jectured. Finally we examine the genuinely nonlocal distribution presented in [M.-O. Renou et al.,
PRL 123, 140401 (2019)], and, guided by the findings of the neural network, conjecture nonlocality
in a new range of parameters in these distributions. The method allows us to get an estimate on
the noise robustness of all examined distributions.

I. INTRODUCTION

The possibility of creating stronger than classical cor-
relations between distant parties has deep implications
for both the foundations and applications of quantum
theory. These ideas have been initiated by Bell [1], with
subsequesnt research leading to the theory of Bell non-
locality [2]. In the Bell scenario multiple parties jointly
share a single classical or quantum source, often referred
to as local and nonlocal sources, respectively. Recently,
interest in more decentralized causal structures, in which
several independent sources are shared among the parties
over a network, has been on the rise [3–6]. Contrary to
the Bell scenario, in even slightly more complex networks
the boundary between local and nonlocal correlations be-
comes nonlinear and the local set non-convex, greatly
perplexing rigorous analysis. Though some progress has
been made [7–23], we still lack a robust set of tools to
investigate generic networks from an analytic and nu-
merical perspective.

Here we explore the use of machine learning in these
problems. In particular we tackle the membership prob-
lem for causal structures, i.e. given a network and a
distribution over the observed outputs, we must decide
whether it could have been produced by using exclusively
local resources. We encode the causal structure into a
neural network and ask the network to reproduce the
target distribution. By doing so, we approximate the
question “does a local causal model exist?” with “is a
local causal model learnable?”. Neural networks have
proven to be useful ansätze for generic nonlinear func-
tions in terms of expressivity, ease of learning and ro-
bustness, both in- and outside the domain of physical
sciences [24–28]. Machine learning has also been used
in the study of nonlocality [29, 30]. However, while the
techniques of Ref. [30] can only suggest if a distribution
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FIG. 1. (a) Triangle network configuration. (b) Neural net-
work which reproduces distributions compatible with the tri-
angle configuration.

is local or nonlocal, the method employed here is genera-
tive and provides a certificate that a distribution is local
once it is learned.

In our approach we exploit that both causal structures
and feedforward neural networks have their information
flow determined by a directed acyclic graph. For any
given distribution over observed variables and an ansatz
causal structure, we train a neural network which re-
spects that causal structure to reproduce the target dis-
tribution. This is equivalent to having a neural network
learn the local responses of the parties to their inputs.
If the target distribution is inside the local set, then a
sufficiently expressive neural network should be able to
learn the appropriate response functions and reproduce
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it. For distributions outside the local set, we should see
that the machine can not approximate the given target.
This gives us a criterion for deciding whether a target
distribution is inside the local set or not. In particular, if
a given distribution is truly outside the local set, then by
adding noise in a physically relevant way we should see a
clear transition in the machine’s behavior when entering
the set of local correlations.

We explore the strength of this method by examin-
ing a notorious causal structure, the so-called ‘triangle’
network, depicted in Fig. 1. The triangle configuration
is among the simplest tripartite networks, yet it poses
immense challenges theoretically and numerically. We
use the triangle with quaternary outcomes as a test-bed
for our neural network oracle. After checking for the
consistency of our method with known results, we exam-
ine the so-called Elegant distribution, proposed in [31],
and the distribution proposed by Renou et al. in [20].
Our method gives solid evidence that the Elegant dis-
tribution is outside the local set, as originally conjec-
tured. The family of distributions proposed by Renou et
al. was shown to be nonlocal in a certain regime of pa-
rameters. When examining the full range of parameters
we not only recover the nonlocality in the already known
regime, but also get a conjecture of nonlocality from the
machine in another range of the parameters. Finally, we
use our method to get estimates of the noise robustness
of these nonlocal distributions, and to gain insight into
the learned strategies.

II. ENCODING CAUSAL STRUCTURES INTO
NEURAL NETWORKS

The methods developed in this work are in principle
applicable to any causal structure. Here we demonstrate
how to encode a network nonlocality configuration into
a neural network on the highly non-trivial example of
the triangle network with quaternary outputs and no in-
puts. In this scenario three sources, α, β, γ, send infor-
mation through either a classical or a quantum channel
to three parties, Alice, Bob and Charlie. Flow of infor-
mation is constrained such that the sources are indepen-
dent from each other, and each one only sends informa-
tion to two parties of the three, as depicted in Fig. 1.
Alice, Bob and Charlie process their inputs with arbi-
trary local response functions, and they each output a
number a, b, c ∈ {0, 1, 2, 3}, respectively. Under the as-
sumption that each source is independent and identically
distributed from round to round, and that the local re-
sponse functions are fixed (though possibly stochastic),
such a scenario is well characterized by the probability
distribution p(abc) over the random variables of the out-
puts.

If quantum channels are permitted from the sources
to the parties then the set of distributions is larger than
that achievable classically. Due to the nonlocal nature
of quantum theory, these correlations are often referred

to as nonlocal ones, as opposed to local behaviors arising
from only using classical channels. In the classical case,
the scenario is equivalent to a causal structure, otherwise
known as a Bayesian network [32, 33].

For the classical setup we can assume without loss of
generality that the sources each send a random variable
drawn from a uniform distribution on the continuous in-
terval between 0 and 1. Given the network constraint,
the probability distribution over the parties’ outputs can
be written as

p(abc) =

∫ 1

0

dαdβdγ pA(a|βγ)pB(b|γα)pC(c|αβ). (1)

We now construct a neural network which is able to
approximate a distribution of the form (1). We use a
feedforward neural network, since it is described by a di-
rected acyclic graph, similarly to a causal structure [32–
34]. This allows for a seamless transfer from the causal
structure to the neural network model. The inputs are
the hidden variables, i.e. uniformly drawn random num-
bers α, β, γ. The outputs are the conditional probabilities
pA(a|βγ), pB(b|γα) and pC(c|αβ), i.e. three normalized
vectors, each of length 4. So as to respect the commu-
nication constraints of the triangle, the neural network
is not fully connected, as shown in Fig. 1. We evaluate
the neural network for Nbatch values of α, β, γ in order to
approximate the joint probability distribution (1) with a
Monte Carlo approximation,

pM (abc) =
1

Nbatch

Nbatch∑
i=1

pA(a|βiγi)pB(b|γiαi)pC(c|αiβi).

(2)

In our implementation each of the three conditional prob-
ability functions is modeled by a multilayer perceptron,
with rectified linear or tangent hyperbolic activations, ex-
cept at the last layer, where we have a softmax layer to
impose normalization. Note, however, that any feedfor-
ward network can be used to model these conditional
probabilities. The cost function can be any measure
of discrepancy between the target distribution pt and
the neural network’s output pM , such as the Kullback–
Leibler divergence1 of one relative to the other, namely∑
abc pt(abc) log

(
pt(abc)
pM (abc)

)
. In order to train the neu-

ral network we synthetically generate uniform random
numbers for the hidden variables, the inputs. We then
adjust the weights of the network after evaluating the
cost function on a minibatch of size Nbatch, using con-
ventional neural network optimization methods [34]. The
minibatch size is chosen arbitrarily and can be increased

1 We observed that for many target distributions our implemen-
tation worked well also when using the mean squared error or
mean absolute error. However, the Kullback–Leibler divergence
worked well with all examined distributions.
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in order to increase the neural network’s precision. For
the triangle with quaternary outputs an Nbatch of several
thousands is typically satisfactory.

By encoding the causal structure in a neural network
like this, we can train the neural network to try to repro-
duce a given target distribution. The procedure gener-
alizes in a straight-forward manner to any causal struc-
ture, and is thus in principle applicable to any quan-
tum nonlocality network problem. We provide specific
code online for the triangle configuration, as well as for
the standard Bell scenario, which has inputs as well (see
Section VI). After finishing this work we realized that
related ideas have been investigated in causal inference,
though in a different context, where network architec-
tures and weights are simultaneously optimized to repro-
duce a given target distribution over continuous outputs,
as opposed to discrete ones examined here [35].

III. RESULTS

Given a target distribution pt, the neural network pro-
vides an explicit model for a distribution pM , which is,
according to the machine, the closest local distribution
to pt. The distribution pM is guaranteed to be from the
local set by construction. The neural network will almost
never exactly reproduce the target distribution since pM
is learned by sampling a distribution a finite number of
times, and additionally the learning techniques do not
guarantee convergence to the global optimum. As such,
to use the neural network as an oracle we could define
some confidence level for the similarity between pM and
pt. It is, however, more robust and informative if instead,
we search for transitions in the machine’s behavior when
giving it different target distributions from both outside
the local set and inside it. We will typically define a fam-

Local set
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Local set
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v=0
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(b)

FIG. 2. Visualization of target distributions pt(v) leaving the
local set at an angle θ for a generic noisy distribution (a) and
for the specific case of the Fritz distribution with a 2-qubit
Werner state shared between Alice and Bob (b). The grey
dots depict the target distributions, while the red dots depict
the distributions which the neural network would find. In
the generic case we depict the distance d⊥ := d(pt(v), pt(v

∗))
introduced in Eq. 3, for the special case of v = 1, as well
as d⊥ sin θ. Given an estimate for v∗, the distance d⊥ can
be evaluated analytically, which (for an appropriate θ) allows
us to compare d⊥ sin θ with the distance that the machine
perceives.

ily of target distributions pt(v) by taking a distribution
which is believed to be nonlocal and adding some noise
controlled by the parameter v, with pt(v = 0) being the
completely noisy (local) distribution and pt(v = 1) being
the noiseless, “most nonlocal” one. By adding noise in
a physically meaningful way we guarantee that at some
parameter value, v∗, we will enter the local set and stay
in it for v < v∗. For each noisy target distribution we
retrain the neural network and obtain a family of learned
distributions pM (v). Observing a qualitative change in
the machine’s performance at some point is an indication
of traversing the local set’s boundary. In this work we
extract information from the learned model through

• the distance between the target and the learned
distribution,

d(pt, pM ) =

√∑
abc

[pt(abc)− pM (abc)]
2
,

• the learned distributions pM (v), in particular by ex-
amining the local response functions of Alice, Bob
and Charlie.

Observing a clear liftoff of the distance dM (v) :=
d(pt(v), pM (v)) at some point is a signal that we are leav-
ing the local set. Somewhat surprisingly, we can deduce
even more from the distance dM (v). Though the shape
of the local set and the threshold value v∗ are unknown,
in some cases, under mild assumptions, we can estimate
not only v∗, but also the angle at which the curve pt(v)
exits the local set, and in addition gain some insight into
the shape of the local set near pt(v

∗). To do this, let us
first assume that the local set is flat near pt(v

∗) and that
pt(v) is a straight curve. Then the true distance from the
local set is

d(v) =

{
0 if v ≤ v∗

d (pt(v), pt(v
∗)) sin(θ) if v > v∗,

(3)

where θ is the angle between the curve pt(v) and the lo-
cal set’s hyperplane (see Fig. 2 for an illustration). In
the more general setting Eq. (3) is still approximately
correct even for v > v∗, if pt(v) is almost straight and
the local set is almost flat near v∗. We denote this an-
alytic approximation of the true distance form the local

set as d̂(v). We use Eq. (3) to calculate it but keep in
mind that it is only an approximation. Given an esti-
mate for the two parameters v∗ and θ this function can
be compared to what the machine perceives as a distance,
dM (v). Finding a match between the two distance func-
tions gives us strong evidence that indeed the curve pt(v)

exits the local set at v̂∗ at an angle θ̂, where the hat is
used to signify the obtained estimates.

We also get information out of the learned model by
looking at the local responses of Alice, Bob and Charlie.
Recall that the shared random variables, the sources, are



4

0.0 0.2 0.4 0.6 0.8 1.0
v

0.00

0.01

0.02

0.03

0.04

0.05

di
st

an
ce

Analytic v * = 1
2

, = 90
Machine

(a)

FIG. 3. Fritz distribution [5] results. (a) Plot of the distance perceived by the machine, dM (v) and the analytic distance d̂(v)

for v̂∗ = 1/
√

2 and θ̂ = 90◦. (b) Visualization of response functions of Bob as a function of α, γ for v = 0, 0.44, 0.71, 1, from
top left to bottom right, respectively. Note how the responses for v > v̂∗ are the same.

uniformly distributed, hence the response functions en-
code the whole problem. We can visualize, for example,
Bob’s response function pB(b|α, γ) by sampling several
thousand values of {α, γ} ∈ [0, 1]2. In order to capture
the stochastic nature of the responses, for each pair α, γ
we sample from pB(b|α, γ) thirty times and color-code the
results b ∈ {red, blue, green, yellow}. By scatter plotting
these points with a finite opacity we gain an impression
of the response function, such as in Fig. 3.

These figures are already interesting in themselves and
can guide us towards analytic guesses of the ideal re-
sponse functions. However, they can also be used to
verify our results in some special cases. For example,
if θ = 90◦ and the local set is sufficiently flat, then the
response functions should be the same2 for all v ≥ v∗,
as it is in Fig. 3. On the other hand if θ < 90◦ then we
are in a scenario similar to that of the Fig. 2(a) and the
response functions should differ for different values of v.

A. Fritz distribution

First let us consider the quantum distribution pro-
posed by Fritz [5], which can be viewed as a Bell sce-
nario wrapped into the triangle topology. Alice and Bob

2 For any target distribution the closest local response function is
not unique, so response functions could vary above v∗. However
after running the algorithm for the full range of v, for each v
we check whether the models at other v′ values perform better
for pt(v). This smooths the results and gives more consistent
response functions.

share a singlet, i.e. |ψ〉AB = |ψ−〉 = 1√
2

(|01〉 − |10〉),
while Bob and Charlie share either a maximally entan-
gled or a classically correlated state with Charlie, such
as ρBC = 1

2 (|00〉〈00| + |11〉〈11|) and similarly for ρAC .
Alice measures the shared state with Charlie in the com-
putational basis and, depending on this random bit, she
measures either the Pauli X or Z observable. Bob does
the same with his shared state with Charlie and mea-
sures either X+Z√

2
or X−Z√

2
. They then both output the

measurement result and the bit which they used to de-
cide the measurement. Charlie measures both sources in
the computational basis and announces the two bits. As
a noise model we introduce a finite visibility for the sin-
glet shared by Alice and Bob, thus we examine a Werner
state,

ρ(v) = v|ψ−〉〈ψ−|+ (1− v)
I
4
, (4)

where I/4 denotes the maximally mixed state of two
qubits. For such a state we expect to find a local model
below the threshold of v∗ = 1√

2
.

In Fig. 3 we plot the learned (dM (v)) and analytic

(d̂(v)) distances discussed previously for θ̂ = 90◦ and
v̂∗ = 1√

2
. The coincidence of the two curves is already

good evidence that the machine finds the closest local
distributions to the target distributions. Upon examin-
ing the response functions of Alice, Bob and Charlie, also
in Fig. 3, we see that they do not change above v̂∗, which
means that the machine finds the same distributions for
target distributions outside the local set. This is in line
with our expectations. Due to the connection with the
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FIG. 4. Elegant distribution [31] results. (a) Comparison of the distance perceived by the machine, dM (v) and the analytic

distance d̂(v). Both visibility and detector efficiency model results are shown. Inset: The target (gray) and learned (red)
distributions visualized by plotting the probability of each of the 64 possible outcomes, for detector efficiency v = 1 and
v = 0.84. Note that for v = 0.84 most gray dots are almost fully covered by the corresponding red dots. (b) Responses of
Charlie illustrated as a function of α, β. Detector efficiency values (top left to bottom right): v = 0.5, 0.72, 0.76, 1.

standard Bell scenario (where the local set is a polytope),
we believe the curve pt(v) exits the local set perpendicu-
larly, as it is depicted in Fig. 2(b). These results confirm
that our algorithm functions well.

B. Elegant distribution

Next we turn our attention to a distribution which is
more native to the triangle structure, as it combines en-
tangled states and entangled measurements. We examine
the Elegant distribution, which is conjectured in [31] to
be outside the local set. The three parties share singlets
and each perform a measurement on their two qubits, the
eigenstates of which are

|Φj〉 =

√
3

2
|mj ,−mj〉+ i

√
3− 1

2
|ψ−〉, (5)

where the |mj〉 are the pure qubit states with unit length
Bloch vectors pointing at the four vertices of the tetra-
hedron for j = 1, 2, 3, 4, and | −mj〉 are the same for the
inverted tetrahedron.

We examine two noise models - one at the sources
and one at the detectors. First we introduce a visibil-
ity to the singlets such that all three shared quantum
states have the form (4). Second, we examine detec-
tor efficiency, in which each detector defaults indepen-
dently with probability 1 − v and gives a random out-
put as a result. This is equivalent to adding white noise
to the quantum measurements performed by the parties,

i.e. the positive operator-valued measure elements are
Mj = v|Φj〉〈Φj |+ (1− v) I

4 .
For both noise models we see a transition in the dis-

tance dM (v), depicted in Fig. 4, giving us strong evi-
dence that the conjectured distribution is indeed nonlo-
cal. Through this examination we gain insight into the
noise robustness of the Elegant distribution as well. It
seems that for visibilities above v̂∗ ≈ 0.80, or for detec-
tor efficiency above v̂∗ ≈ 0.86, the distribution is still
nonlocal. The curves exit the local set at approximately

θ̂ ≈ 50◦ and θ̂ ≈ 60◦, respectively. Note that for both
distribution families, by looking at the unit tangent vec-
tor, one can analytically verify that the curves are almost
straight for values of v above the observed threshold.
This gives us even more confidence that it is legitimate to

use the analytic distance d̂(v) as a reference (see Eq. (3)).
In Fig. 4 we illustrate how the response function of Char-
lie changes when adding detector efficiency. It is pecu-
liar how the machine often prefers horizontal and vertical
separations of the latent variable space, with very clean,
deterministic responses, similarly to how we would do it
intuitively, especially for noiseless target distributions.

C. Renou et al. distribution

The authors of [20] recently introduced the first dis-
tribution in the triangle scenario which is not directly
inspired by the Bell scenario and is proven to be nonlo-
cal. To generate the distribution take all three shared
states to be the entangled states |φ+〉 = 1√

2
(|00〉+ |11〉).
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FIG. 5. Renou et al. distribution [20] results. (a) The distance perceived by the machine, dM , as a function of u2, with no
added noise. Inset: The target (gray) and learned (red) distributions visualized by plotting the probability of each of the 64
possible outcomes, for u2 = 0.63 and u2 = 0.85. These u2 values approximately correspond to the two peaks in the scan. Note
that most gray dots are almost fully covered by the corresponding red dots. (b) Noise scans, i.e. the analytic d̂(v) (see Eq. (3))
and the learned dM (v), for the target distribution of u2 = 0.85, for the detector efficiency and visibility noise models.

Each party performs the same measurement, character-
ized by a single parameter u ∈ [ 1√

2
, 1], with eigenstates

|01〉, |10〉, u|00〉+
√

1− u2|11〉,
√

1− u2|00〉 − u|11〉. The
authors prove that for u2max < u2 < 1 this distribution is
nonlocal, where u2max ≈ 0.785 and also show that there
exist local models for u2 ∈ {0.5, u2max, 1}. Though they
argue that there must be some noise tolerance of the dis-
tribution, they lack a proper estimation of it.

First we examine these distributions as a function of
u2, without any added noise. The results are depicted
in Fig. 5(a). To start with, note how the distances are
numerically much smaller than in the previous examples,
i.e. the machine finds distributions which are extremely
close to the targets. See the inset in Fig. 5 for examples
which exhibit how close the learned distributions are to
the targets even for the points which have large distances
(u2 = 0.63, 0.85). We observe, consistently with analytic
findings, that for u2max < u2 < 1, the machine finds a
non-zero distance from the local set. It also recovers the
local models at u2 ∈ {0.5, u2max, 1}, with minor difficul-
ties around u2max. Astonishingly, the machine finds that
for some values of 0.5 < u2 < u2max, the distance from
the local set is even larger than in the provenly nonlocal
regime. This is a somewhat surprising finding, as one
might naively assume that between 0.5 and u2max distri-
butions are local, especially when one looks at the nonlo-
cality proof used in the other regime. However, this is not
what the machine finds. Instead it gives us a nontrivial
conjecture about nonlocality in a new range of parame-
ters u2. Though extracting precise boundaries in terms
of u2 for the new nonlocal regime would be difficult from
the results in Fig. 5 alone, they strongly suggest that

there is some nonlocality in this regime.
Finally, we have a look at the noise robustness of

the distribution with u2 = 0.85, which is approximately
the most distant distribution from the local set, from
within the provenly nonlocal regime. For the detector ef-
ficiency and visibility noise models we recover v̂∗ ≈ 0.91,

v̂∗ ≈ 0.89 respectively, and θ̂ ≈ 6◦ for both. Note that
these estimates are much more crude than those obtained
for the Elegant distributions, primarily due to the target
distributions being so much closer to the local set and
the neural network getting stuck in local optima. This
increases the variations in independent runs of the learn-
ing algorithm. E.g. in panel (a) of Fig. 5, at u2 = 0.85
the distance is about 0.0034, whereas in panel (b), in an
independent run, the distance for this same point (v = 1)
is around 0.0055. The absolute difference is small, how-
ever the relative changes can have an impact in extracting
noise thresholds. Given that the local set is so close to the
target distributions (exemplified in the inset in Fig. 5), it
is easily possible that the noise tolerance is smaller than
that obtained here.

IV. DISCUSSION

Let us contrast the presented method to standard nu-
merical techniques. The standard method for tackling
the membership problem in network nonlocality is nu-
merical optimization. For a fixed number of possible out-
puts per party, o, without loss of generality one can take
the hidden variables to be discrete with a finite alphabet
size, and the response functions to be deterministic. In
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fact the cardinality of the hidden variables can be upper
bounded as a function of o [15]. Specifically for the trian-
gle this upper bound is o3− o. This results in a straight-
forward optimization over the probabilities of each hid-
den variable symbol and the deterministic responses of
the observers, giving 3(o3−o−1) continuous parameters
and a discrete configuration space of size 12(o3 − o)2 to
optimize over jointly. Note that this is a non-convex op-
timization space, making it a terribly difficult task. For
binary outputs, i.e. o = 2, this means only 15 continuous
variables and a discrete configuration space of 432 possi-
bilities, and is feasible. However, already for the case of
quaternary outputs, o = 4, this optimization is a compu-
tational nightmare on standard CPUs with a looming 177
continuous parameters and a discrete configuration space
of size 43200. Even when constraining the response func-
tions to be the same for the three parties, pA = pB = pC ,
and the latent variables to have the same distributions,
pα = pβ = pγ , the problem becomes intractable around a
hidden variable cardinality of 8, which is still much lower
than the current upper bound of 60 that needs to be ex-
amined. Standard numerical optimization tools quickly
become infeasible even for the triangle configuration - not
to mention larger networks!

The causal modeling and Bayesian network communi-
ties examine scenarios similar to those relevant for quan-
tum information [32, 33]. The core of both lines of re-
search are directed acyclic graphs and probability distri-
butions generated by them. In these communities there
exist methods for this so-called ‘structure recovery’ or
‘structure learning’ task. However, these methods are
either not applicable to our particular scenarios or are
also approximate learning methods which make many
assumptions on the hidden variables, including that the
hidden variables are discrete. Hence, even if these learn-
ing methods are quicker than standard optimization for
current scenarios of interest, they will run into the scaling
problem of the latent variable cardinality.

The method demonstrated in this paper attacks the
problem from a different angle. It relaxes both the dis-
crete hidden variable and deterministic response function
assumptions which are made by the methods previously
mentioned. The complexity of the problem now boils
down to the response function of the observers - each of
which is represented by a feedforward neural network.
Though our method is an approximate one, one can in-
crease its precision by increasing the size of the neural
network, the number of samples we sum over (Nbatch)
and the amount of time provided for learning. Due to
universal approximation theorems we are guaranteed to
be able to represent essentially any function with arbi-
trary precision [36–38]. For the first two distributions
examined here we find that there is no significant change
in the learned distributions after increasing the neural
network’s width and depth above some moderate level,
i.e. we have reached a plateau in performance. Regard-
ing the Elegant distribution, for example, we used depth
5 and width 30 per party. However, we did not do a rig-

orous analysis in the minimum required size, perhaps an
even smaller network would have worked. We were sat-
isfied with the current complexity, since getting a local
model for a single target distribution takes a few min-
utes on a standard computer, using a mini-batch size of
Nbatch ≈ 8000. For the Renou et al. distribution there is
still space for improvement in terms of the neural network
architecture and the training procedure. The question of
what the minimal required complexity of the response
functions for a given target distribution is in itself inter-
esting enough for a separate study, and can become a
tedious task since the amount of time that the machine
needs to learn typically increases with network size.

We have demonstrated how, by adding noise to a dis-
tribution and examining a family of distributions with
the neural network, we can deduce information about the
membership problem. For a single target distribution the
machine finds only an upper bound to the distance from
the local set. By examining families of target distribu-
tions, however, we get a robust signature of nonlocal-
ity due to the clear transitions in the distance function,
which match very well with the approximately expected
distances.

V. CONCLUSION

In conclusion, we provide a method for testing whether
a distribution is classically reproducible over a directed
acyclic graph, relying on a fundamental connection to
neural networks. The simple, yet effective method can
be used for arbitrary causal structures, even in cases
where current analytic tools are unavailable and nu-
merical methods are futile, allowing quantum informa-
tion scientist to test their conjectured quantum, or post-
quantum, distributions to see whether they are locally
reproducible or not, hopefully paving the way to a deeper
understanding of quantum nonlocality in networks.

To illustrate the relevance of the method, we have ap-
plied it to two open problems, giving firm numerical ev-
idence that the Elegant distribution is nonlocal on the
triangle network, and getting estimates for the noise ro-
bustness of both the Elegant and the Renou et al. dis-
tribution, under physically relevant noise models. Addi-
tionally, we conjecture nonlocality in a surprising range
of the Renou et al. distribution. Our work motivates
finding proofs of the nonlocality for both these distribu-
tions.

The obtained results on nonlocality are insightful and
convincing, but are nonetheless only numerical evidence.
Examining whether a certificate of nonlocality can be
obtained from machine learning techniques would be an
interesting further research direction. In particular, it
would be fascinating if a machine could derive, or at
least give a good guess for a (nonlinear) Bell-type in-
equality which is violated by the Elegant or Renou et
al. distribution. In general, seeing what insight can be
gained about the boundary of the local set from machine
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learning would be interesting. Perhaps a step in this
direction would be to understand better what the ma-
chine learned, for example by somehow extracting an in-
terpretable model from the neural network analytically,
instead of by sampling from it. A different direction for
further research would be to apply similar ideas to net-
works with quantum sources, allowing a machine to learn
quantum strategies for some target distributions.

VI. CODE AVAILABILITY

Our implementation of the method for the tri-
angle network and for the two-party Bell sce-
nario can be found at www.github.com/tkrivachy/
neural-network-for-nonlocality-in-networks.
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