
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 1998 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

Languages and Tools to Specify Hypertext Views on Databases

Falquet, Gilles; Nerima, Luka; Guyot, Jacques

How to cite

FALQUET, Gilles, NERIMA, Luka, GUYOT, Jacques. Languages and Tools to Specify Hypertext Views

on Databases. In: International Workshop WebDB′98 The World Wide Web and Databases. Atzeni,

P. & Mendelzon, A. & Mecca, G. (Ed.). Valencia (Spain). Berlin : Springer, 1998. p. 136–151. (Lecture

Notes in Computer Science (LNCS)) doi: 10.1007/10704656_9

This publication URL: https://archive-ouverte.unige.ch/unige:46603

Publication DOI: 10.1007/10704656_9

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:46603
https://doi.org/10.1007/10704656_9

Languages and Tools to Specify
Hypertext Views on Databases1

G. Falquet, J. Guyot, L. Nerima

Centre universitaire d’informatique, University of Geneva, Switzerland
falquet | guyot | nerima @cui.unige.ch

http://cuiwww.unige.ch/db-research/hyperviews

Abstract. We present a declarative language for the construction of hypertext
views on databases. The language is based on an object-oriented data model and
a simple hypertext model with reference and inclusion links. A hypertext view
specification consists in a collection of parameterized node schemes which spec-
ify how to construct node and link instances from the database contents. We show
how this language can express different issues in hypertext view design. These in-
clude: the direct mapping of objects to nodes; the construction of complex nodes
based on sets of objects; the representation of polymorphic sets of objects; and
the representation of tree and graph structures. We have defined sublanguages
corresponding to particular database models (relational, semantic, object-orient-
ed) and implemented tools to generate Web views for these database models.

1 Introduction

The hypertext navigation paradigm [4] has proven highly efficient for easily sharing and
accessing information without having to learn any specific query language or having to
know the information storage structure (see for example most of the on-line help sys-
tems of recent software products or the World-Wide-Web global information system 4.).
Moreover, database systems become universally used for storing, retrieving, and pro-
cessing large amounts of data in an efficient and secure way. This lead to the develop-
ment of so-called “database publishing” tools which make the content of a database
accessible through a Web interface or to data browsing tools.

A hypertext view is a (virtual) hypertext derived from the database relations or class-
es. From the view concept it borrows the idea of a view definition language that specifies
how to compute the view. But instead of producing a derived database element (class)
it produces nodes and links that form a hypertext. The aim of a hypertext view are:

• to represent a part of the content of a database and

• to replace traditional query operations (selections, joins, projections) by a
reasonable number of navigation steps in the hypertext.

The last goal implies that the hypertext structure must be carefully designed. For in-
stance, it is not sufficient to simply map each database object onto a hypertext node and

1. This work was partially supported by the Swiss National Science Founda-
tion, grant no. 21-45791.95

each object relationship to a hypertext link. We have defined a language and implement-
ed tools to simplify and study the task of producing hypertext views.

The rest of this paper is organized as follows: In the next section we present our hy-
pertext view definition language for object-oriented databases. In section 3 we analyze
several issues that arise when designing hypertext views and we show how they can be
handled with our language. In section 4 we present the formal syntax and semantics of
the language and in section 5 we compare our approach with others.

2 The Models and the Hypertext View Definition Language

Building hypertext views consists essentially in mapping database objects to hypertext
objects. We chose simple database and hypertext models to base the view definition lan-
guage on. These models can then be easily mapped to other database and hypertext
models to build concrete tools. For instance, we have implemented concrete tools for
viewing relational databases and O2 databases on the Web.

2.1 The Database Model

The database model is an object-based model which is a subset of the O2 database mod-
el [11][1]. In this model each object has an identity (oid) and a value. We only consider
objects whose value are tuples [name1: value1, name2: value2, …, namen: valuen] where
each namei is an attribute name and each valuei is either: an atomic value (of typein-

teger , boolean , float , string , etc.); or a reference to another object; or a collection
of references (set, list, bag). Adatabase schemais a set of class definitions which are
composed of a class name and a type (we do not consider methods) and an inheritance
relationship. The type of a class constrains the values of its objects. Adatabase instance
is a set of objects and a set of named collections. Each object is an instance of a class
and its value belongs to its class type. A named collection is a set (or list) of objects
which are instances of a class or of one of its subclasses.

2.2 The hypertext model

We consider a simple hypertext model whose structural part is composed of nodes, an-
chors, and links.

Eachnode has a unique identity and a content.
Thecontentof a node is a sequence ofelementswhich may be character strings, im-

ages, etc.
An anchoris an element or a sequence of elements within the content of a node, it

serves as a starting or ending point of a link.
A link is defined by its starting and ending anchors and by its category which is ei-

ther ‘reference’ or ‘inclusion’. Reference links are intended to create a navigation struc-
ture within the nodes. Inclusions links are intended to create nested structures that
represent complex contents (structured documents).

This model can easily be mapped to the Web model. The only problem comes from
inclusion links because, in HTML, the <A HREF...> tag corresponds to reference links
and there are no inclusion links (except for images, with the IMG tag). The approach
we took when creating tools for the Web, was to represent in a single HTML page the
content of a node and of all its subnodes and to use embedded list tags to show the in-
clusion structure (Fig. 2 shows an example).

2.3 The Hypertext View Definition Language

A hyperview specification consists of set of node schemes which specify the collection
from which the node’s content is to be drawn; the selection and ordering criteria; the
elements that form the content; and links to other nodes. A node definition takes the fol-
lowing form:

node <node-name> [<parameters>] is
<field-list>

from <collection>
selected by <expression>
ordered by <expression>

Each<field> of the<field-list> can be either a literal constant (string, inte-
ger, etc.) or an attribute name. Fields may contain presentation functions (bold(), ital-
ic(), break(), paragraph(), heading1(), etc.) which generate markup tags for the target
hypertext system.

Content of a node.The content of a node is based on a collection specified in thefrom

<collection> clause. The sequence of fields specifies how to construct the elements
that represent every selected object. For example, letemployeesOfDept be defined as:

node employeesOfDept[d: Department] is
" No: ", bold(no), " => " ,
bold(name), break(),
" Hire date: ", hire_date

from EMP selected by dept = d
ordered by emp_name

The content of a node instanceemployeesOfDept[sales] is obtained by
• selecting all the objects in the collection EMP which have the valuesales

for their attributedept

• ordering these objects according to the values of attributename

• for each object creating the sequence of elements corresponding to: the
string“No: “ , the value of attributeno (surrounded by and tags),
the string“=>” , etc.

It will appear as shown in Fig. 11

Reference Links.Links are specified through thehref statement. The starting point
(anchor) of a link is always a field. The anchor text will form an active element in the
starting node which can trigger the navigation to the referenced node. A link specifica-
tion refers to a node through its schema name and a list of parameter values. It is an ex-
pression of the form:

href <schema_name> [<value>, ...] <field>

For instance, consider the following node definition:

node dept_in[loc: String] is
no, ": ", bold (name), " ",
href employeesOfDept [self] " Employees: "
...

from DEPT selected by location = loc
ordered by no

(Note: the pseudo variableself iterates over the sequence of selected objects).

The representation of each selected departmentd will have an anchor text “Employ-
ees:” that is the starting point of a link to the nodeemployeesOfDept[d] .

Inclusion Links. An inclusion link between two nodes determines a compound-com-
ponent relationship between these nodes. The target node is to be considered as a sub-
node of the source node of the link. This fact should normally be taken into account by
the hypertext interface system which should present inclusion links in a particular way
(generally by including the sub-node contents within the node presentation). Inclusion

1. Illustrations are snapshots of Web pages dynamically generated with the
LAZY system. A description of this implementation can be found in http://cui-
www.unige.ch/db-research/hyperviews/

Figure 1. A simple node instance

links are particularly useful to create multi-level hierarchical nodes to represent com-
plex entities.

The figure below shows an instance of a nodedept_in2 which has the same defi-
nition asdept_in except for the reference link which is replaced by the inclusion link
include employeesOfDept[self] " Employees:"

The content of an included node may depend on a distance parameter. By definition,
a node is at distance 0 from itself and a node included in a node at distance i is at dis-
tance i + 1. A visibility can be associated with each field of a node schema to indicate
the maximum distance from which this field is visible. The content of a node at distance
d is composed of all the fields with a visibility greater or equal to d. As we will see in
the next section, this mechanism has useful applications such as:

• avoiding infinite inclusion structures (at a given maximum distance all in-
cluded nodes become empty);

• including summaries or outlines of nodes to reduce the number of navigation
steps.

3 Designing Hypertext Views

Hypertext design is a complex problem, which has attracted many research (see [21] for
instance). More recently, methodologies have been developed to design hypertext views
of databases [2][9][8]. In the case of hypertext views of databases the design can take
advantage of the data semantics expressed in the database schema but, as mentioned in
[2], the distance between the database schema and the hypertext structure is great. For
instance, a good database structure should minimize data redundancy to avoid update
anomalies. On the contrary, redundancy may help the hypertext user by reducing the
number of navigation steps to reach some information. In database design, the length of
logical access paths is not important since the database is generally accessed through
application programs or high level interfaces (e.g. forms). In hypertexts, since the basic

Figure 2. A node with an inclusion link

action is the navigation step, the number of links to traverse is an important criterion to
determine the usability of the system.

In this section we will show how our language can be used in several design cases.

3.1 Direct Object Mapping

The most straightforward way to map database entities to a hypertext structure consists
in taking each object o of the database to create a hypertext node node(o). In this situa-
tion, the attributes with an atomic value form the content of the node. An attribute that
refers to another object o' gives rise to a reference link to node(o'). A multivalued at-
tribute generates a link to an index node which in turn points to the nodes representing
the individual objects. Thus the structure of the hypertext view is isomorphic (in terms
of graph) to the database structure.

The direct object mapping can be specified in the following way: for each collection
C of type c with attributes a1, …, ak (atomic), s1: D1, …, sr: Dr (single valued referenc-
es), and m1: set(E1), …, mt : set(Et) (multi-valued references) define a node schema:

node C [me: c] is
a1, …, a k
href D 1[s 1],
…,
href D r [s r]
include E 1Index[m 1],
…,
include E t Index[m t]

from C selected by self = me ordered by 1

Each instance of this node schema represents a single object of the collectionC. Sin-
gle valued attributes yield references to the node representing the referred object. Mul-
tivalued attributes yield inclusions of index nodes which point to all the referred objects.
The index nodes have the following schema:

node E i Index [e: set E i] is
href E i [self]

from e

3.2 Mapping Homogeneous Sets of Objects to Nodes

In order to reduce the number of navigation steps, the hypertext designer may wish to
present several (or all) objects of a collection in a single node. This type of presentation
is directly supported by the language since each node represents a subset of a collection
(from <collection>) specified by a predicate (selected by <predicate>).

For instance, a node instanceemployeesOfDept[s] (defined in 2.3) represents all
the employees of departments (from EMP selected b y d = dept) . Thus a ref-

erence link toemployeesOfDept[s] can lead in a single step from a node represent-
ing departments to a node representing all its employees.

3.3 Derived Links

Since the selection predicate of a node is not limited to reference attributes, it is possible
to create new (computed) links that do not appear explicitly in the database schema.
This is shown on the following example:

node CitiesNear[c: Coordinates] is
name, ...

from CITIES selected by
location.distance(c) < 100

node City is
name, population, ...
href CitiesNear[location] "nearby cities"

from CITIES ...

The reference link fromCity to CitiesNear leads from a node representing a city c
to a node representing all the cities which are less than 100km from c.

3.4 Mapping Sets of Heterogeneous Objects to Nodes

In the previous section we have shown how to define nodes by selecting sets of objects
from the same collection. We now consider aggregation nodes which are made of ob-
jects coming from different collections. In this case grouping occurs along the inter-col-
lection axis instead of the within-collection axis.

This type of node construction is particularly useful to reconstruct complex entities
which have been decomposed and represented as several interrelated objects stored in
different collections. It is natural to group all the objects that represent a complex entity
in a single hypertext node. The node’s content can be organized hierarchically to reflect
the structural composition of the complex object. The main advantage of this mapping
lies in its compact presentation of related information, thus avoiding navigation opera-
tions among the different components of the complex entity.

To create aggregation nodes we use inclusion links that point to subnodes. The fol-
lowing example shows the construction of a complex node with a nested structure to
represent courses stored in a university database.

Database schema:

class Course(class Offering(
code : String, code : String,
title : String, course : Course,
credits : Int, semester : String
description : String,)
prerequisites : set(Course))

class Professor(class Teaching(
name : String, offering : Offering,
... professor : Professor

))

COURSES : set(Course); OFFERINGS : set(Offering);
TEACHINGS : set(Teaching); PROFESSORS : set(Professor);

Node schemes:

node Course [c : Course] is
 heading1(code, " * ", title),
 "credits: ", credits,
 heading3("Description"),
 description,
 heading3("Prerequisites"),
 include Prereqs [prerequisites] ,
 heading3("Offerings"),
 include Offerings[self]
from COURSES
 selected by self = c ordered by code

node Prereqs [pre : set Course]
 list_type: enumeration(" ")
 is
 href course[self] code, " (", title, ")"
from pre

node Offerings[c : course]
 list_type: definition
 is
 bold(code), " (", semester, ") ",
 include Teaching[self]
from OFFERINGS
 selected by course = c order by code

node Teachings[o : Offering]
 list_type: enumeration(" ")
 is
 include ProfessorName[professor]
from TEACHINGS
 selected by offering = o

node ProfessorName [p : Professor]
 list_type: none
 is
 href Professor[self] name
from PROFESSORS

TheCourse node is the top of the nested structure, it contains data coming directly
from Course objects (credits, description) and it includes nodesPrereqs andOffer-

ings which contains the lists of prerequisites and offerings respectively. The nodeOf-

ferings displays information about particular offerings for this course (code,
semester). It includes a node Teaching which displays the list of professor names for this
offering. Note that the “list_type” statement allows to specify different types of presen-
tations (bullet lists, definition lists, enumerations with a separator character, etc.). Fig-
ure 3 shows a typical instance ofCourse .

Aggregation can also occur on objects which are not related in the database. For
instance, a university home page may point to courses, research, and social events which
are not related entities of the database.

3.5 Recursive Inclusions (Static and Dynamic)

The following node schema is recursive since it has an inclusion link to itself

node EmpWithMgr [e : Emp] is
" No: ", bold(no), " => " , bold(name),
break(), " Hire date: ", hire_date,
include EmpWithMgr [manager]

from Employees selected by self = e
ordered by empno

However this does not generate a cyclic inclusion structure at the instance level since
the graph of themanagerrelation is acyclic (i.e. there is no cycle at the data level). Fig.
4 shows an instance of that node schema.

Figure 3. A node with a nested structure

When there are cycles in the data, the visibility distance mechanism prevents the cre-
ation of recursive inclusions at the instance level. Since each field in a node definition
has a maximum visibility distance, it implies that there is a level of inclusion from
which all the included nodes become empty.

Thus, recursive inclusion can be employed to specify hypertext views that represent
data having a tree or graph structure. This representation may significantly reduce the
number of navigation steps, compared to the direct object mapping.

3.6 Representing Specialized Entities (Union Nodes)

Collections may contain objects of different classes which are subclasses of the collec-
tion’s class. To represent such polymorphic sets one can use the inclusion mechanism.
A top node is used to represent the common attributes, it has inclusion links to specific
nodes used to represent the specific parts. Each specific node selects only the objects
which have a given type.

// generic node
node emp [e: employee] is

name, address, ... // common attributes
include driver[self]
include secretary[self]

from EMP

// specific nodes
node driver [e: employee] is

max_km, license_no, ...
from EMP/Driver selected by self=e

node secretary[s: employee] is
...

from EMP/Secretary selected by self=s

An expression of the formcollection/classrepresents all the objects incollection
which are instances ofclass or instances of a subclass ofclass.

Figure 4. Recursive inclusions of nodes

3.7 Previewing and Outlining Linked Nodes [10]

Previewing a node M from a node N consists in including in N part of the content of M
and a reference link to M. The partial inclusion can be obtained with the visibility mech-
anism (some field must have visibility 0). The aim of previewing is to give information
about the content of a node without having to navigate to it.

4 Formal Semantics of the Language

The definition of the semantics is quite similar to the specification of database query
languages but it must also take into account the notion of node identity which is neces-
sary to specify the semantics of links. The identity of a node instance is a triple (schema
name; actual parameter values, inclusion level). This differs from the semantics of usu-
al query languages which do not create new objects as the result of a query.

To formally define the semantics of the definition language we must specify, for a
given database instance, how to interpret a node instance expression in terms of nodes,
links, anchors and contents (the complete syntax of the language is given in appendix).
To keep the description small, we will suppose that the semantics of arithmetic and logic
expressions is given and we will not take into account presentation functions.

Let D be the node definition:

nodeN [p1:T1, p2: T2, …, pk: Tk]
f1, …, fn
from C
selected byS(self, p1, p2, …, pk)
ordered by O(self, p1, p2, …, pk)

where each fieldfj is

level lj [(href | include) N'j[expr'1, expr'2, …, expr'sj]] ej

The interpretation of a node instance expressionE = N[expr1, expr2, …, exprk] at a
given inclusion depthd is composed of anode identityI id(E, d), a node contentIC(E,
d), and aset of linksI L(E, d).

The identity of a node consists of the node’s name, the value of its parameters and
its inclusion depth.

I id(E, d) = (N, [I (exp1), I (exp2), …, I (expk)], d).

In order to define the content of the node, we first define the set of objects from
which the content will be drawn:

S0 = {o ∈ C | I (S)(o, I (expr1), I (expr2), …, I (exprk)) = true}.

It is the set of objects o that belong to C and satisfy the predicate S.

ThenS1 is a sequence <o1, o2, …, or> such that

oi ∈ S1 <=> o i ∈ S0 and

I (O)(oi, I (expr1), I (expr2), …, I (exprk)) ≤ I (O)(oi+1, I (expr1), I (expr2), …, I (exprk)).

ThusS1 is the setS0 ordered by the expressionO.
The contentIC(E, d) of the node is the sequence of elements obtained by concate-

nating the sequences <IC((f1, oi, d), …, IC(fn, oi, d)> (i = 1, r) whereIC(fj, oi, d) is the
content of fieldfj for objectoi at depthd. It is defined as follows:

– IC (level lj <link-specification>ej, oi, d) = <empty> if the visibility levellj is less
thand,

– IC (level lj <link-specification>k, oi, d) = k if k is a constant,

– IC (level lj <link-specification>a, oi, d) = oi.a.toString()if a is an attribute name
(wheretoString is a method that maps an object to its string representation).

The set of linksI L(E, d) is the union of the sets {I L((f1, oi, d), …, I L(fn, oi, d)> (i =
1, r) where

– I L(level lj ej, oi) = the null link

– I L(level lj href N'j[expr'1, expr'2, …, expr'sj] ej, oi) is a reference link with
starting node id:I id(E, d) (the id of this node instance),
ending node id:I id(N'j[expr'1, expr'2, …, expr'sj], d),
starting anchor: (i–1)n + j (the sequence number of this element),

– I L(level lj include N'j[expr'1, expr'2, …, expr'sj] ej, oi) is an inclusion link with
starting node id:I id(E, d)
ending node id:I id(N'j[expr'1, expr'2, …, expr'sj], d+1)
starting location: (i–1)n + j

5 Comparison with Related Work

Database publishing.Several ways have been explored to publish the content of data-
bases on the Web. The procedural approach consists in writing database programs that
generate HTML pages (e.g. Oracle Web Server [14], CGI scripts, Java/JDBC server-
side applications, etc.). Another approach consists in automatically generating HTML
pages from the database schema (e.g. O2Web [23]).

This last approach corresponds to the direct object mapping described in section 3.1.
It can be improved by defining a collection of views over the database and generating
the hypertext from these views; it is also possible to overload generic methods with spe-
cific ones. However, it is not clear that features like (recursive) inclusion links can be
easily expressed with this technique.

Toyama and Nagafugi [18] define and extension of the SQL query language to
present the result of a query as a structured document (e.g. HTML, LaTeX). They intro-
duce connectors and repeaters in place of the SQL target list of a query.

Virtual documents. The virtual document approach consists in extending a document
definition language with database querying features. For instance, database queries can
be embedded into HTML pages [13]. In [15] Paradis and Vercoustre propose a prescrip-
tion language to specify the static and dynamic content of a virtual document. The static
content is expressed with the usual HTML tags. The dynamic content is obtained by
evaluating queries on (heterogeneous) data sources. The language has operators to se-
lect and combine information from different query results.

Web site management.In [8], Fernandez et al. describe a system to produce a Web-site
(a set of HTML pages) from different data sources integrated through a graph based data
model. A specific query language (STRUQL) is used to query the data graph and con-
struct a graph that forms the content of the Web-site. A second language (HTML-tem-
plate language) is used to specify the presentation of each object.

In [16] Siméon and Cluet extend the YAT system to build HTML pages. The YATL
language allows to specify graph conversions between the input data model (ODMG
objects, XML documents, …) and the output model (HTML pages) viewed as graphs.

Methodology for the Design of Web Applications.The Araneus methodology pro-
posed by Atzeni et al. [2] distinguishes three levels: the hypertext conceptual level
(Navigation Conceptual Model); the hypertext logical level (Araneus Data Model); and
the presentation level (HTML templates). It is possible to analyze our language with re-
spect to these levels. The conceptual level corresponds to node names, reference links,
base collections, and selection predicates. The logical level (internal node structure)
corresponds to the specification of node fields (constants, attributes and inclusion links).
A node with a complex ADM type can be represented by a hierarchy of included nodes
(see 3.4). Finally, the markup functions (or strings with HTML tags) define the gener-
ated document’s markup which will be used to present the document.

In [9] Fraternali and Paolini introduce the HDM-lite methodology which is an adap-
tation of the Hypermedia Design Methodology for Web applications. Their navigation
model includes navigation modes (index, guided tour, showall, …) to help navigating
within collections of objects.

6 Conclusion

Language properties.The language we have presented has several properties that are
important to develop hypertext views: it is non-procedural, it has the capacity to restruc-
ture the database information, i.e. to present it in different forms (corresponding to dif-
ferent points of view), it has the capacity to create structured node contents (complex
hierarchical nodes or structured documents), it has the capacity to create orientation
structures like indices, outlines, node previews, etc., it has a node identification scheme

that enables other applications to access the generated nodes and that permits to store
hypertext views independently of the database.

A view definition is relatively robust with respect to schema updates since every
node schema depends only on its base collection. In addition, a node schema depends
only on the name and the parameter of the node it refers to. Thus node schemes can be
changed without affecting the rest of the hypertext view.

From a more theoretical point of view, we have already shown in [7] that select-
project-outer-join queries can be represented by nodes with inclusion links. To represent
select-project-join queries it is necessary to slightly modify the semantics of inclusion
links.

Prototypes.We have developed several tools to generate hypertext views. The LAZY
system generates Web pages over a relational database, it implements a subset of the de-
scribed view language. The implementation relies on two components: a node definition
compiler and a node server connected to a HTTP server. The compiler translates node
definitions into relational views and stored procedures. The node server dynamically
generates HTML pages by querying the generated views and/or calling the stored pro-
cedures. We are currently working on a portable implementation of the node server,
written in Java and based on JDBC.

The MetaLAZY tool is an implementation of the hypertext view language for a se-
mantic data model. It translates a semantic data schema into a relational schema and
generates LAZY nodes for this schema. It uses multiple levels of inclusion to hide the
auxiliary relations that represent many-to-many relationships.

We have also developed a tool to produce materialized hypertext views over an O2
database. These views consist in sets of HTML pages that can be stored on external me-
dia (CD-ROM, etc.) independently of the database.

Future plans include the addition of navigation modes [9] to node schemes and
mechanisms to update the database through hypertext views.

Aknowledgement

We would like to thank the anonymous referees for their insightful and valuable com-
ments.

7 References

1. S. Abitboul, R. Hull, V. Vianu.Foundations of Databases, Addison-Wesley, 1995.

2. P. Atzeni, G. Mecca, P. Merialdo. “Design and Maintenance of Data-Intensive Web Sites”.In
Proc. of the EDBT’98 Conf., Valencia, 436-450, 1998

3. T. Barsalou, N. Simabela, A. Keller, G. Wiederhold. “Updating Relational Databases
through Object-Based Views”. In Proc. ACM SIGMOD, Denver, 248-257, 1991.

4. T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, A. Secret. “The World-Wide
Web”. Comm. of the ACM, Vol. 37, No. 8, 76-82, 1994..

5. S. Bobrowski.Oracle7 Server Concepts Manual, Oracle Corp., Redwood City, CA, 1992.

6. J. Conklin. ”Hypertext: An Introduction and Survey”. IEEE Computer, Vol. 20, No. 9, 17-
42, 1987.

7. G. Falquet, L. Nerima, J. Guyot. “A Hypertext View Specification Language and its Prop-
erties”. CUI Technical report #102, University of Geneva, 1996.

8. M. Fernandez, D. Florescu, J. Kang, A. Levy, D. Suciu. “Catching the Boat with Strudel:
Experiences with a Web-Site Management System”. In Proc. ACM SIGMOD Conf., Seat-
tle, 414-425, 1998.

9. P. Fraternali, P. Paolini. “A Conceptual Model and a Tool Environment for Developping
More Scalable, Dynamic, and Customizable Web Applications”. In Proc. of the EDBT’98
Conf., Valencia, 421-435, 1998.

10. S. Ichimura, Y. Matsushita. "Another Dimension to Hypermedia Access". In Proc. of the
Hypertext'93 Conf., Seattle, 63-72, 1993.

11. C. Lécluse, P. Richard, F. Velez. "O2, an Object-Oriented Data Model ". In Proc. ACM SIG-
MOD, Chicago, 1988.

12. J. Nanard, M. Nanard. "Shoud Anchors Be Typed Too? An Experiment with MacWeb". In
Proc. of the Hypertext'93 Conf., Seattle, 51-62, 1993

13. T. Nguyen, V. Srinivasan. “Accessig Relation al Databases from the World Wide Web”. In
Proc. ACM SIGMOD Conf., 529-540, 1996.

14. Oracle Inc. home page: http://www.oracle.com

15. F. Paradis, A-M. Vercoustre. “A Language for Publishing Virtual Documents in the Web”.
In Proc. of the WebDB Workshop, Valencia, 1998.

16. J. Siméon, S. Cluet. “Using YAT to Build a Web Server”. In Proc. of the WebDB Workshop,
Valencia, 1998.

17. J. Teuhola. “Tabular Views on Object Databases”. Tech. Rep. R-93-11, University of Turku,
Finland, 1993

18. M. Toyama, T. Nagafuji. “Dynamic and Structured Presentation of Database Contents on
the Web”, In Proc. of the EDBT’98 Conf., Valencia, 451-465, 1998.

19. C. A. Varela, C. C. Hayes. “Zelig: Schema–Based Generation of Soft WWW Database”. In
Proc. W3 Conf., 1994.

20. Special Issue: Advanced User Interfaces for Database Systems. SIGMOD Record, Vol. 21,
No. 1, 1992.

21. Special section: Hypermedia Design, CACM, Vol. 38, No. 8, 1995.

22. “The O2 System”. Comm. of the ACM, Vol. 34, No. 10, 1991

23. “O2 Web Presentation”, O2Technology, Versailles, France, 1995.

Appendix

Syntax of the LAZY language

HypertextView = define { Node-schema } end

Node-schema = node node-name ["[" Parameter-list "]"]
List-Markup
is
Field-list
from collection ["/" type-name]
[selected by Expression]
[ordered by Expression-list]

Field-list = Field { "," Field }

Field = [Level] [Link-spec] Markup-Element

Markup-element = Element | Markup "(" Markup-element ")"

Element = ε | Constant | attribute-name

Link-spec = (href | include) node-name ["[" Expression-list "]"

Parameter-list = Parameter { "," Parameter }

Parameter = [set] param-name ":" type-name

Expression-list = Expression { "," Expression }

Expression = Term | Term Op Term

Term = Atom | "(" Expression ")"

Atom = Constant | attribute-name | self

Op = "=" | "<" | ">" | "+" | "-" | and | or | ...

Constant = string | number

Markup = bold | italic | break | ... | heading1 | heading2 | …

List-markup = list_type: (ordered | unordered | definition | enumeration | none) [(sep-
arator)]

Level = level "0" | ... | "9"

	Languages and Tools to Specify Hypertext Views on Databases
	1 Introduction
	2 The Models and the Hypertext View Definition Language
	2.1 The Database Model
	2.2 The hypertext model
	2.3 The Hypertext View Definition Language

	3 Designing Hypertext Views
	3.1 Direct Object Mapping
	3.2 Mapping Homogeneous Sets of Objects to Nodes
	3.3 Derived Links
	3.4 Mapping Sets of Heterogeneous Objects to Nodes
	3.5 Recursive Inclusions (Static and Dynamic)
	3.6 Representing Specialized Entities (Union Nodes)
	3.7 Previewing and Outlining Linked Nodes [10]

	4 Formal Semantics of the Language
	5 Comparison with Related Work
	6 Conclusion
	7 References

