
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 2016 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

Beacon Authpath: Augmented Human Path Authentication

Huseynov, Emin; Seigneur, Jean-Marc

How to cite

HUSEYNOV, Emin, SEIGNEUR, Jean-Marc. Beacon Authpath: Augmented Human Path Authentication.

In: Proceedings of the 2016 International Conference on Computational Science and Computational

Intelligence. [s.l.] : IEEE, 2016.

This publication URL: https://archive-ouverte.unige.ch/unige:91452

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:91452

Beacon AuthPath
Augmented Human Path Authentication

Emin Huseynov

Faculté des Sciences de la Société

University of Geneva

 Geneva, Switzerland

emin@huseynov.com

Jean-Marc Seigneur

CUI, ISS & Medi@LAB, Faculté des Sciences de la Société

University of Geneva

Geneva, Switzerland

seigneuj@gmail.com

Abstract— BLE (Bluetooth Low Energy) beacons are being

deployed in smart cities, especially to augment the shopping

experience of customers in real outlets. Thus, humans as they

walk in cities pass by different beacons and the sequence of

beacons form a path. In this paper, we present how those

augmented paths can authenticate a user in a secure way

whereby the users can prove they have passed by a path, even

with current unsecure beacons. We have built a prototype to

validate this new authentication scheme with unsecure Estimote

beacons. In addition, as an alternative to BLE, a similar system

utilizing Wi-Fi to detect user proximity is reviewed as well.

Index Terms— Authentication, Physical security, Augmented

Reality.

I. INTRODUCTION

As per Stajano [1] and Dey [13], ubiquitous computing

with all its sensors embedded in the environment and carried

out by humans has open the door for novel context-aware

authentication schemes. Determining exact geographic

location of a person is always seen as a way of proving

identity. While there are obvious ways of implementing this,

such as determining coordinates using a space-based system,

such as Global Positioning System (GPS) or getting location

information based on Internet connection used, they are not

accurate and trustworthy: IP address based information’s

accuracy is generally limited to determining a

city/village/neighborhood, GPS’s can only be used outdoors

and in areas with direct satellite coverage. Furthermore, both

methods are relatively easy to forge, jam or spoof.

In this paper, we present how augmented paths can

authenticate a user in a secure way whereby the users can

prove they have passed by a path, even with current unsecure

beacons. In Section II, we survey related work. Section III

details our new scheme: its model, use-cases and alternative

implementations. In Section IV, we present how we have

validated this new authentication scheme with unsecure

Estimote beacons.

As the technology is based on the new Bluetooth standard

(4.0), older devices will not be supported [3]. As an alternative,

in one of the use-cases, we will replace BLE based broadcast

with Wi-Fi SSID based broadcasts. This will help overcome

the limitations of Bluetooth 4.0.

II. RELATED WORK

Electronic geo-fencing [2] is a technique that has been

proposed to ensure that people, devices and machinery are

accessed in or from authorized physical locations only. In

contrast, our scheme focuses on secure paths with currently

deployed BLE technology.

Authentication using a virtual iBeacon as a second factor

has been used in the product offered by SAASPASS [15]- the

application installed on a user’s smartphone automatically

transmits the generated onetime password to a special

connector (a BLE listener daemon- currently only available for

MacOSX). This connector searches for BLE packets

transmitted in the near or immediate range and if the packet

parameters match, passes the values gathered to the application

(e.g. a browser) emulating keyboard keys.

The same idea, but using hardware BLE Beacons has been

researched by van Rijswijk-Deij [16]. The main concept is to

replace the static BLE device identifiers by dynamically

changing attributes that can serve as one-time passwords to be

used for authentication.

IT security is not the only area where BLE beacon

technology may appear; Bluesmart [12], marketed as a “smart

suitcase” relies on BLE beacon technology for physical

security: the owner can open the suitcase by just approaching

or tapping on an app installed.

Although the use Wi-Fi as a proximity base was already

researched [17], transmitting OTPs as a part of Wi-Fi SSID

seems to be a new idea; we were not able to identify any

related or similar work in this area.

III. BEACON AUTHPATH MODEL

In this section, we describe our new Beacon AuthPath

model including two use-cases. The model is based on

authenticating a user’s physical path by checking proximity to

a set of geographic locations (checkpoints) in a predefined

order with proximity distance varying depending on

technology used. When the user with a mobile device running

the AuthPath application approaches a checkpoint, the

application records various parameters, such as current time

and the data broadcasted by the beacon device (beacon data)

the checkpoint is equipped with. The same procedure repeats

on with other checkpoints the path consists of. This data then is

transferred to a validation server, which checks the submitted

data using predefined algorithms and accepts or denies the

person as an authenticated user.

The first case is based on a system with standard beacons;

other two use-cases will utilize enhanced beacons, called

“smart beacons”, based on BLE and Wi-Fi SSID broadcast to

transmit the security context information to the mobile

application.

The security level of the first use-case is low as the beacon

data for all checkpoints are static and therefore the use-case is

vulnerable to replay attacks: the beacon data may be passed

from a user physically present in the checkpoint to any remote

user, allowing the latter to forge the authentication path. In the

same time, the low cost and availability of standard beacon

devices make this use case very easy to implement, therefore

this use-case may still be of an interest in scenarios where low

security level is tolerable (e.g. if authentication path is used as

a second factor or in augmented sports etc.)

The other two use cases use dynamic beacon data,

periodically changing similar to one-time password

mechanisms, therefore the attack window per every checkpoint

is very narrow. With a large number of checkpoints used in an

authentication path and very short beacon data rotation period

(even 1 second is possible if system times of all devices are

correctly synchronized), the replay attacks become practically

impossible.

A. “Beacon AuthPath” with standard beacons

1) Standard BLE-based beacons

One of the possible use-cases can be a system for verifying

a path passed by a person within a wider geographical area,

such as a smart city. Standard BLE beacons transmit radio

packets consisting of four main pieces of information: “UUID”

– a 16-byte unique identifier of the device, “Major” and

“Minor” - 2-byte string and “TX Power” – value used to

determine the distance between devices [3].

Fig. 1. AuthPath sequence diagram

The mobile application used in this use case will detect this

information, save locally together with current timestamp, and

transfer the harvested data to the server at the final checkpoint.

To protect from the replay attack (e.g. generating a virtual

beacon with the same parameters) the mobile device then

initiates changing the value of “Major” variable of the BLE

device to a random value using a special SDK built in the

application. The app sends the new value to the server after it

assigning it to the beacon device. However, this is only

possible if the SDK of BLE device allows such manipulation;

the availability and mechanism of this feature is purely on

manufacturer’s’ discretion and is not defined in iBeacon or any

other specifications.

Fig. 2. Beacon AuthPath data flow

This use case makes use of standalone BLE beacons that

can be managed via Bluetooth using an SDK call, and with no

security mechanisms in place. Estimote beacon [4] is an

example of such device and is planned to be used in the proof-

of-concept implementation.

2) Security analysis

The model with standard beacons provides limited security,

as the beacon broadcasts are publicly visible. With the scenario

where the app uses SDK calls to modify beacon’s parameters,

the risks of “replay” attacks are minimal (as the server

generates and sends new values only to the last user passing the

checkpoint). However, as the Estimote’s SDK provides no

protection, the authentication sequence is insecure. This is a

major obstacle to using the given scenario in systems requiring

higher level of security.

B. “Beacon AuthPath” with “smart” beacons

1) BLE-based “Smart Beacons”

This is a slight modification of the previous use case where

standard beacon devices are replaced with compact devices

(“smart” beacons) running an operating system capable to

periodically run simple scripts. This will allow avoiding

modifying beacon values when passing the checkpoints;

instead, the major value will be regenerated automatically

every N seconds. This also removes the requirement of the

mobile device to be online, the collected beacon information

can be stored locally and uploaded to the server in bulk at any

convenient time or place, e.g. when reaching the final

destination point. Each “smart” beacon will have a secret hash

key (not visible, stored in device’s internal memory). The

Major value broadcasted by smart beacon device is generated

using TOTP [5] algorithm based on current time and the secret

hash key. When user approaches the beacon, the broadcasted

packet information (UUID and Major) is saved to mobile

devices’ memory together with current timestamp. After the

path is completed, the array of information gathered at all

checkpoints and afterwards uploaded to the server. The server

will have a copy of hash keys of all smart beacons and is able

to analyse the submitted matrix and verify whether it contains

valid “Major” values, by rerunning TOTP algorithms with the

submitted timestamps and stored hash keys, and comparing

with the submitted “Major” values.

Fig. 3. Beacon AuthPath with smart beacons data flow (online and offline)

2) Wi-Fi SSID based “Smart Beacons”

This use-case is similar to BLE Based “Smart Beacons” but

uses Wi-Fi SSID as the mean of transmitting the broadcasts

from the smart beacon to the mobile application. Using Wi-Fi

instead of BLE will allow using older hardware not supporting

BLE and/or provide redundancy in the event that Bluetooth has

been switched off on the client device.

The Wi-Fi smart beacon will emulate an access point and

broadcast an SSID in a special format that will change every 30

seconds as per TOTP specifications. The format will contain a

constant system id, location id and a one-time password;

having a constant system and location id will allow

distinguishing the SSID amongst others, whereas one-time

password will be used to authenticate the user and validate a

path. By analogy with BLE smart beacons, the location ID will

serve as device’s UUID.

Fig. 4. Wi-Fi Smart Beacon data flow

Implementing SSID broadcast is possible on any

commodity hardware including miniature systems like

Raspberry PI or even SOHO Wi-Fi routers. The routers

running any version of Linux based operating system, such as

DD-WRT are relatively easy to be reprogrammed in order to

transmit periodically changing SSID broadcasts [19].

Only SSID scan functionality of the mobile device is

utilized in this use-case, the mobile application only needs to

list down the available SSIDs and there is no need to connect to

the Wi-Fi beacon’s network. The possibility of searching for

other SSIDs broadcasted while connected to one is confirmed

and easily reproducible and this means that Wi-Fi smart

beacons can be used even while connected to a Wi-Fi network.

Once the list of SSIDs have been obtained, the application

should search the list for a specific prefix and then parse it to

obtain the location ID and the one-time password. E.g. if the

format of SSID is “WIFIBEACON_XXX_YYY_ZZZ “ , the

prefix to look for will be WIFIBEACON, and further on,

XXX- is the system ID, YYY- the location ID, and ZZZ is the

current one-time password.

Fig. 5. Wi-Fi Beacon SSID Parsing

3) Security analysis

In classic implementation, BLE beacons provide limited

level of security, primarily due to the possibility of detecting

and cloning beacon IDs. However, the model with “smart”

beacons provide higher security in comparison with previous

model. Although, the smart beacons are relying on the same

BLE technology and attackers can still intercept broadcast

packets (the same applies to Wi-Fi beacons, as the SSID is

broadcasted in plain-text as well), the risks of “replay” attacks

are minimal due to the limited time of validity of the data

broadcasted: in majority of TOTP implementations, the period

is not more than 30 seconds [5]. In addition, the app should

also determine device’s GPS coordinates and submit together

with harvested broadcast information in order to verify the

exact geographic location of the user at the time when the point

validation occurred. Additional environmental parameters,

such as temperature can be used to avoid wormhole attacks

[14]. Additionally to safely identify a device, the parameters

transferred to the validation server should be encrypted with

device specific key.

IV. BEACON AUTHPATH VALIDATION

In this section, we first detail our model implementation

with Estimote devices. Then we discuss what the validation of

this prototype has underlined including areas for extensions

and current limitations.

A. Prototype Implementation with Estimote

We have developed a prototype path verification app using

Estimote Android SDK using Apache Cordova [9]. The app is

a combination of an HTML5 interface connecting to android

library using Cordova. The object passes nearby (within BLE’s

allowable distances of 10 cm – 70 meters) certain points

equipped with BLE packet emitter or harvester devices.

Prototype app has a sample path containing four checkpoints.

Two checkpoints were equipped with physical Estimote

beacons, 2 remaining checkpoints used virtual beacon apps

running on iPhone 5s devices. The interface consists of a

graphical path showing the current location of the user and a

list of checkpoints. Once a user approaches a checkpoint, the

relevant checkbox becomes checked, and the user icon

animation of moving to the checkpoint appears. The algorithm

checks the order of the beacons ranging, e.g. if checkpoint #3

has been visited before #2, the checkpoint is ignored. For the

prototype, any proximity is being considered valid (the TX

power value is not checked). The Minor value of beacons are

used as their identifications.

Fig. 6. AuthPath application interface

B. Prototype Validation Outcome Discussion

A simple implementation of an Estimote SDK based app

has demonstrated how a physical path can be validated using a

set of BLE beacons. The exact approach can be used for a real-

life application with some improvements: the identification of

BLE beacons should be based on UUID with Estimote security

enabled, and the validation should be done with integration of

Estimote Cloud API into the application. The accuracy of the

proximity authentication can be improved by checking the

transmission power of checkpoints’ BLE beacons (RSSI

value), e.g. if we want to validate a checkpoint as passed only

if the distance was below 20 meters. Although this prototype is

vulnerable to replay attacks as described in 3.1.1, it provides a

solid base for creating a more secure implementation, where

standard beacons can be replaced with smart devices and the

path validation data needs to be sent to the sever at the final

checkpoint. It is also important to include GPS coordinates in

the array of checkpoints and implement device key encryption

before submitting to the validation servers.

While the security level of the presented demo application

is disputable due to technology limitation, the app can be used

in less strict environments. A possible use area might be

Augmented Sports; namely, a smaller scale version of Amateur

radio direction finding (also known as radio orienteering) [10]

where the only equipment required would be a smartphone and

a path of BLE beacons need to be followed showing the best

speed and accuracy possible.

An alternative to Apple’s iBeacon communication protocol,

Eddystone by Google [21] should also be researched in this

context. In addition to standard BLE beacon features,

Eddystone provides a new type of packet: Eddystone-TLM,

which provides telemetry data (TLM stands for “telemetry”).

Telemetry data can help to verify the authenticity of a beacon

with further accuracy. Different from iBeacon that only

operates with numeric IDs, Eddystone can transmit data

packets in URL format, which makes it much easier to use for

application development.

As already described above, older hardware and mobile

operating systems do not fully support Bluetooth 4.0. In

addition, many users still perceive Bluetooth as a battery hog.

Therefore, for a number of real-life applications BLE might be

a less favorable option.

We are proposing the following as alternative solutions to

avoid using BLE in the use-cases researched:

1) Near field communication (NFC) [18]– a technology

similar to iBeacon working on shorter distances (~ 10 cm)

2) Signals of opportunity (SoOP) [7] based geo-location.

This solution uses no beacon devices at all and is more

accurate outdoors. However, some companies are promising to

provide better accuracy [8]

For Wi-Fi smart beacons, we have done a surface research

and it seems to be quite easy to be accomplished, however it is

not supported out of the box by Cordova/PhoneGap and a

custom plugin will need to be developed [20].

V. CONCLUSION

In this paper, we have proposed a new authentication model

based on physical location of a person wearing or passing by

BLE beacons. We have validated a part of the overall concept -

BLE Beacons based path tracking - with a real implementation

and critically evaluated its weak points and proposed potential

improvements. Future work will involve larger scale

deployment and tests in the shops of a real smart city in the

mountain, i.e., a smart ski resort. Creating prototype Smart

Beacons, both BLE and Wi-Fi based should be included as a

part of further research.

REFERENCES

 [1] F. Stajano, “Security for Ubiquitous Computing.”

John Wiley & Sons, 2002

[2] Chen R., Guinness R. Geospatial Computing in Mobile

Devices. Artech house, 2014

[3] What is iBeacon? A Guide to Beacons | iBeacon.com

Insider [WWW Document], n.d. URL

http://www.ibeacon.com/what-is-ibeacon-a-guide-to-beacons/

(accessed 11.6.14)

[4] Estimote Beacons — real world context for your apps

[WWW Document], n.d. URL http://estimote.com/ (accessed

11.6,14)

[5] RFC 6238 - TOTP: Time-Based One-Time Password

Algorithm [WWW Document], n.d. URL

https://tools.ietf.org/html/rfc6238 (accessed 11.6.14)

[6] Bring your own device - Wikipedia, the free

encyclopedia [WWW Document], n.d. URL

http://en.wikipedia.org/wiki/Bring_your_own_device (accessed

11.6.14)

[7] Chen, R. Ubiquitous positioning and mobile location-

based services in smart phones. Hershey, PA: Information

Science Reference. 2012

[8] Merlin [WWW Document], n.d. URL

http://merlintek.com/ (accessed 11.7.14)

[9] Apache Cordova [WWW Document], n.d. URL

http://cordova.apache.org/#about (accessed 11.26.14)

[10] Amateur radio direction finding - Wikipedia, the free

encyclopedia [WWW Document], n.d. URL

https://en.wikipedia.org/wiki/Amateur_radio_direction_finding

(accessed 11.17.14)

[11] What is Secure UUID and how does it work? –

Estimote Community Portal [WWW Document], n.d. URL

https://community.estimote.com/hc/en-us/articles/204233603-

What-is-Secure-UUID-and-how-does-it-work- (accessed

11.26.14)

[12] Bluesmart: World’s First Smart, Connected Carry-On |

Indiegogo [WWW Document], n.d. URL

https://www.indiegogo.com/projects/bluesmart-world-s-first-

smart-connected-carry-on (accessed 11.26.14)

[13] Anind K. Dey. Understanding and Using Context.

Personal and Ubiquitous Computing. 2001

[14] YounSun Cho, Lichun Bao, and Michael T. Goodrich.

LAAC: A Location-Aware Access Control Protocol. In 2006

Third Annual International Conference on Mobile and

Ubiquitous Systems: Networking & Services. IEEE, 2006

[15] Computer Connector - Two-factor Authentication

SAASPASS [WWW Document], n.d. URL

https://www.saaspass.com/download/two-factor-authenticat-

computer-connector-apple-mac.html (accessed 11.17.14)

[16] van Rijswijk-Deij, Roland . Simple Location-based

One-time Passwords - bringing location to the cloud in a secure

and simple way. Radboud University Nijmegen. 2013

[17] D. Namiot and M. Sneps-Sneppe “Wi-Fi proximity as

a Service”, Think Mind SMART 2012, The First International

Conference on Smart Systems, Devices and Technologies.

2012

[18] About the Technology. NFC Forum . [ONLINE]

Available at: http://nfc-forum.org/what-is-nfc/about-the-

technology/. (accessed 23.02.15)

[19] Heldenbrand, David, and Christopher Carey. "The

linux router: an inexpensive alternative to commercial routers

in the lab." Journal of Computing Sciences in Colleges 23.1

(2007): 127-133

[20] Cordova - Can Phonegap query the wifi system and

return network names? - Stack Overflow. 2015 [ONLINE]

Available at: http://stackoverflow.com/questions/4824841/can-

phonegap-query-the-wifi-system-and-return-network-

names/6769269#6769269. (accessed 23.02.15)

[21] “Beacons | Google Developers”. 2015. [ONLINE]

Available at: https://developers.google.com/beacons/?hl=en

(accessed 23.08.15)

