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Abstract

In the UniProt Knowledgebase (UniProtKB), publications providing evidence for a
specific protein annotation entry are organized across different categories, such as
function, interaction and expression, based on the type of data they contain. To provide
a systematic way of categorizing computationally mapped bibliographies in UniProt,
we investigate a convolutional neural network (CNN) model to classify publications
with accession annotations according to UniProtKB categories. The main challenge of
categorizing publications at the accession annotation level is that the same publication
can be annotated with multiple proteins and thus be associated with different category
sets according to the evidence provided for the protein. We propose a model that
divides the document into parts containing and not containing evidence for the protein
annotation. Then, we use these parts to create different feature sets for each accession
and feed them to separate layers of the network. The CNN model achieved a micro
F1-score of 0.72 and a macro F1-score of 0.62, outperforming baseline models based
on logistic regression and support vector machine by up to 22 and 18 percentage points,
respectively. We believe that such an approach could be used to systematically categorize
the computationally mapped bibliography in UniProtKB, which represents a significant
set of the publications, and help curators to decide whether a publication is relevant for
further curation for a protein accession.
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Introduction

Due to the deluge of research data created at ever-increasing
rates, the scientific community is shifting towards and
relying on curated resources [1]. Biocurated resources
provide scientists with structured, computable-form know-
ledge bases extracted from unstructured biological data,
particularly published manuscripts, but also other sources,
such as experimental data sets and unpublished data
analysis results [2]. The UniProt Knowledgebase (UniPro-
tKB) aims to collect functional information on proteins
with accurate, consistent and rich annotation. In addition
to capturing the amino acid sequence, protein name,
taxonomic data and citation information, it includes
literature-based information about different topics, such
as function and subcellular location. UniProtKB combines
reviewed UniProtKB/Swiss-Prot entries, to which data
have been added by expert biocurators, with unreviewed
UniProtKB/TrEMBL  entries, which are annotated by
automated systems, including rule-based [3]. The reviewed
section represents <1% of the knowledgebase. Biocurators
select a subset of the available literature for a given
protein, representing the landscape of knowledge at a given
time [4].

Given the extent of the datasets processed by biocura-
tors, commonly in the range of thousands to millions of
publications, the scalability of biocuration in life sciences
has often been scrutinized [5]. Text mining [6] has been
proposed as one solution to scale up literature-based cura-
tion, especially to assist biocuration tasks via information
retrieval, document triage, named entity recognition (NER)
and relation extraction (RE) and resource categorization
[7, 8, 9, 10]. Textpresso Central, for instance, provides a
curation framework powered with natural language pro-
cessing (NLP) to support curators in search and annotation
tasks in WormBase and other databases [11]. Similarly,
BioReader focuses on the classification of candidate articles
for triage [12]. Providing positive and negative examples,
the framework is able to automatically select the best clas-
sifier among a range of classification algorithms, including
support vector machine (SVM), k-nearest neighbours and
decision tree. Tagtog leverages manual user annotation in
combination with automatic machine-learned annotation
to provide accurate identification of gene symbols and gene
names in FlyBase [13]. Text mining has also supported
more specific curation tasks, such as protein localization.
LocText, for example, implements a NER and RE for
proteins based on SVM, achieving 86 % precision (56% F1-
score) [14]. To address the common issue of class imbalance
in biocuration, an ensemble of SVM classifiers along with
random under-sampling were proposed for automatically
identifying relevant papers for curation in the Gene Expres-
sion Database [15].

More recently, with the success of deep learning in image
and text processing applications [16], deep learning models
have been increasingly applied to biocuration. Deep learn-
ing classification and prediction models for text—the main
use-cases in biocuration—are heavily supported by neural
language models, such as word2vec [17] and Global Vectors
(GloVe) [18], and lately by Embeddings from Language
Models (ELMo) [19] and Bidirectional Encoder Represen-
tations from Transformers (BERT) [20]. Lee et al. used a
convolutional neural network (CNN) model, supported by
word2vec representations, in the triage phase of genomic
variation resources, outperforming the precision of SVM
models by up to 3% [21]. This approach increased the
precision by up to 1.8 times when compared to query-based
triage methods of UniProtKB. Similarly, Burns et al. use a
combination of CNN and recurrent neural network (RNN)
models to scale up the triage of molecular interaction
publications [22].

To capture the breadth of publications about proteins
and make it easily available to users, UniProt compiles addi-
tional bibliographies from three types of external sources—
databases, community and text mining—which comple-
ments the curated literature set with additional publica-
tions and adds relevant literature to entries not yet curated
[4, 23]. UniProtKB publications in reviewed entries are
categorized on 11 pre-defined topics—Expression, Family
& Domains, Function, Interaction, Names, Pathology &
Biotech, PTM/Processing, Sequences, Structure, Subcellular
Location and Miscellaneous—based on the annotation they
contribute to the protein entry, e.g. a paper that is the
evidence source for a protein’s catalytic activity will be
included in the category Function (Figure 1). On the other
hand, to automatically categorize additional publications,
UniProtKB uses the information from the underlying exter-
nal sources (usually, databases). For example, the literature
provided by the iPTMnet database is under the PTM/Pro-
cessing category. Nevertheless, this approach is limited as it
does not optimally cover all types of evidence available for
the specific protein in the publication, other than PTM/Pro-
cessing in this case. In fact, in publications imported from
a number of sources, such as model organism databases, it
is not possible to categorize unless the source provides the
information.

In contrast to classical text classification problems, it
is often the case in biocuration where the same document
can be associated with different class sets depending on the
biological entity considered. For example, in UniProtKB,
the same publication can be categorized into an entry set of
the knowledge base for a Protein A and into another entry
set for Protein B based on the evidence contained for each
protein in the document. Standard document classification
models cannot be generalised to this scenario as the input
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Figure 1. UniProt Knowledgebase annotation process. Manually protein-annotated documents (Swiss-Prot) are associated with UniProt entry
categories (Function, Name & Taxonomy, etc.) according to the type of information available in the publication, improving the organization of
the annotations within the knowledge base. A much larger set of publications (TrEMBL) is then automatically annotated according to their source

characteristics.

features are the same (i.e. the document) while the output
classes are different (i.e. the entry set). To provide a sys-
tematic way to categorize the set of additional publications
available in UniProtKB, in this paper we propose a multi-
label multi-class classification model based on CNN that
classifies publication-protein pairs into the 11 UniProtKB
entry topics. We use candidate evidence sentences, selected
based on availability of protein information, to create dif-
ferent feature sets out of a unique document. These feature
sets are then embedded into a continuous word represen-
tation space and used as input for a deep neural network-
based classifier. We compare the effectiveness of the deep
learning-based model with baseline classifiers based on
logistic regression and SVM models.

Materials and methods

To classify publications into the UniProtKB protein entry
categories, we developed a text mining pipeline based on a
CNN model, so-called UPCLASS. The UPCLASS classifica-
tion model was trained and evaluated using a large expert
curated literature dataset available from UniProtKB. In this
section, we describe the methods used to automatically and
systematically classify scientific articles in the knowledge
base.

Candidate sentences for annotation evidence

A key challenge for classifying publications according to the
UniProtKB entry categories is that, for the same document,
a few to thousands of proteins can be annotated with
different categories based on the evidence provided in the

text. For example, as shown in Figure 2, if for Protein A
there is evidence in the article for the Sequence and Function
categories, and for Protein B, there is evidence only for
the Function category, the publication will be annotated
with different class sets for the different protein entries
in knowledge base. However, since only a few articles are
expert annotated per protein, usually with little redundancy
on the type of information they bring to the knowledge base
(i.e. an UniProtKB entry category), the protein itself cannot
be directly used as a learning feature for a category because
it is not an informative feature. In a classical document
classification scenario, in which a label set is associated
with a single document or to a document—accession pair,
the classifier would always receive as input the same set of
informative features (i.e. the document) independent of the
labels associated with the pair document-accession. Thus,
the classifier would not be able to learn the actual classes
associated with the document—accession pair, as the triplet
“document—accession — categories” tends to appear only
once in the knowledge base.

To overcome this limitation, we developed a model
where a document is divided into ‘positive’ and ‘nega-
tive’ sentences, based on whether they provide or do not
provide evidence for the protein entry classification. Pos-
itive sentences are then concatenated to create a ‘posi-
tive’ document for the respective protein annotation. The
remaining sentences, i.e. the negative sentences, are similarly
concatenated to create a ‘negative’ document. Hence, as
shown in Figure 3, different feature sets can be created out
of a single document for each document—accession pair
and be properly associated with their specific annotation
categories.
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Quasi architecto beatae vitae dicta sunt, explicabo et

[:(oJ -8 Nemo enim ipsam voluptatem, quia voluptas sit,
aspernatur aut odit aut fugit, sed quia consequuntur
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PROT B nesciunt. Neque porro quisquam est, qui dolorem ipsum,
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reprehenderit, qui in ea voluptate velit esse, quam nihil

molestiae consequatur, vel illum,

qui dolorem eum fugiat, quo voluptas nulla pariatur?

Figure 2. Synthetic annotation example illustrating how a single publication can be associated with different sets of UniProtKB entry categories.

We hypothesize that the evidence for annotations is
provided in the k-nearest sentences to the sentence where
the protein (or its coding gene) is mentioned. Indeed, as
shown by Cejuela et al. [14], the k—1 sentences accounts
for 89% of all unique relationships in the case of pro-
tein location evidence. To identify the candidate evidence
sentences, occurrence of protein features, such as acces-
sion identifier, protein name (recommended, alternative
and short), gene name and their synonyms, are searched
for in the sentences. For example, for the accession num-
ber 095997, we search in the publication sentences for
the strings ‘PTTG1_HUMAN’ (accession), ‘Securin’ (rec-
ommended name), ‘Espl-associated protein’ (alternative
name), ‘Pituitary tumor-transforming gene 1 protein’ (alter-
native name), ‘Tumor-transforming protein 1’ (short name),
‘hPTTG’ (short name), ‘PTTG1’ (gene name), ‘EAP1’ (gene
synonym), ‘PTTG’ (gene synonym) and “TUTR1’ (gene
synonym). If at least one match is found, the sentence is
added to the positive pool. Subsequent sentences are further
concatenated to form the ‘positive’ document for the entry
with accession number O95997. These proteins features are

available directly from the ‘Names & Taxonomy’ section of
the UniProtKB for each accession number.

Classification model

As illustrated in Figure 4, we use a three-layer CNN
architecture for our machine learning classifier. The model
has two branches, which receive the positive and negative
documents separately. The architecture comprises three
main building blocks: (i) an input block (light blue),
composed by an embedding layer (width=1500), which
receives the document tokens and the pre-trained word
vectors from a paragraph2vec model trained on 10°
Medline pre-processed abstracts with protein information;
(ii) a CNN block (orange), composed by three CNN layers
with 128 channels, kernel width equal to 5 and ReLU
activation, followed by a batch normalization layer, which
exposes a max pooling output followed by a drop-out layer
(drop-out rate of 50%); and (iii) a dense block (dark blue),
composed by two dense layers, the first layer (width=128)
receives the concatenated output of the CNN branches

PROTEIN PUBLICATION CATEGORY
PROT A Quasi architecto beatae vitae dicta sunt, explicabo et

PROTA

PROT A PROT B iqle]elel(-X=3

’ a!: tempora inci[di]dunt,-

> >

dolore magnam aliquam quaerat voluptatem.

PROT B Modi tempora mc:(dl]dunt NI p: ut laboreet  \ N -uNCTION

dolore magnam aliquam quaerat voluptatem.

Figure 3. Positive passages extracted from annotations in Figure 2. k-nearest (k=0) sentences containing candidate evidence for the protein
annotation are concatenated to create a ‘positive’ document. Similarly, sentences that do not contain evidence for the category are concatenated to

create a ‘negative’ document (not shown).
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Figure 4. Outline of the UPCLASS CNN-based classification architecture with an embedding layer, three CNN layers followed by two dense layers.
The ‘positive’ sentences (accession in) are concatenated and fed to one branch of the model (‘in’ branch). The leftover sentences (accession out) are
used to create the ‘negative’ document and fed to the other branch of the model (‘out’ branch).

as input, followed by an output layer (width=11) with
a Softmax activation function. The outputs of the CNN
branches are then concatenated and fed to the dense layer.
The model was trained in 50 epochs with early stopping
set for five consecutive epochs without improvement in the
validation set. The model was implemented using the Keras
framework in Python 3.

Training and test collection

To train our model, we used an expert annotated collection
of ~483 k examples available from UniProtKB. In total,
the collection contains ~201 k unique manuscripts with
an average of 2.4 proteins annotated per article (min=1,
max = 9329). The training collection was divided randomly
in 76.2% for the training set (~368 k samples), 11.7% for
the validation set (~56 k samples) and 12.1% for the test
set (~58 k samples). The division took into account the
constraint that a publication should not be split in different
sets, as it is commonly the case when a protein is annotated
for a category in a publication, other proteins share the
same annotation. Full text publications were extracted from
PubMed Central when available; otherwise, MEDLINE
abstracts were used. In total, 96% of the collection was
composed only by abstracts, with 5% of full-text articles in
the training set, 6% in the validation set and 8% in the test
set. The data used in the experiments is available at https:/
doi.org/10.5281/zenodo.3672781.

In Table 1, the distribution of examples per category
in the training collection is presented. As previously dis-
cussed, the number of unique examples labelled per pro-
tein accession varies on average from 1.2 for the Names
category to 2.2 for the PTM / Processing category. On
the other hand, for categories like Names, PTM/Processing
and Sequences there is less than one unique document
per accession, i.e. it is often the case that a few proteins
for these classes are annotated in the same publication.
Moreover, we can notice that there is a concentration of
samples in some classes, in particular Sequences, which is
present in more than 45% of the examples, while Structure,
Names and Family & Domains are present in 5% or
less.

Pre-processing and word embeddings

In the pre-processing phase, we pass the training collection
and the protein features (name, gene, etc.) through an NLP
pipeline. First, sentences are split using a Punkt sentence
tokenizer. Then, stopwords are removed, characters are
converted to lowercase and non-alphanumerical characters
are suppressed. The resulting tokens are stemmed and stem
words smaller than two characters are removed. Finally,
numerical sequences are replaced by the token _NUM-
BER_. Table 2 shows an example of the resulting sentences
after passing the manuscript through the pre-processing
pipeline.
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Table 1. Distribution of categories in the manually annotated training collection from UniProtKB

UniProtKB entry category Examples Unique accessions Unique documents
Expression 53274 35128 34446
Family & domains 4910 3807 3310
Function 105417 49896 72674
Interaction 60252 28318 30646
Names 11334 9130 1100
Pathology & biotech 39870 23573 32410
PTM/Processing 69080 31142 17335
Sequences 217879 130288 109333
Structure 25569 14257 19553
Subcellular Location 48876 31866 28793
Miscellaneous 111454 52724 16812
Total 483159 163913 201358

Examples: number of document-accession examples annotated with a category in the training collection. Unique accessions: number of unique accessions annotated with a category in the
training set. Unique document: number of unique publications annotated with a category in the training set

Table 2. Resulting sentences after passing through the pre-processing pipeline

Original text Pre-processed sentences

YddV from Escherichia coli (Ec) is a novel globin-coupled yddv escherichia coli ec novel globin coupl heme base oxygen sensor

heme-based oxygen sensor protein displaying diguanylate protein display diguanyl cyclas activ respons oxygen avail
cyclase activity in response to oxygen availability. In this studi quantifi turnov number activ fe iii _'NUMBER_ min fe ii fe ii co
study, we quantified the turnover numbers of the active _NUMBER_ min fe iii fe iii protoporphyrin ix complex fe ii fe ii
[Fe(III), 0.066 min(-1); Fe(I[)-O(2) and Fe(II)-CO, 0.022

min(-1)] [Fe(IlI), Fe(Ill)-protoporphyrin IX complex; Fe(II),

protoporphyrin ix complex inact form fe ii fe ii _NUMBER_ min
yddv first time

Fe(I)-protoporphyrin IX complex] and inactive forms
[Fe(IT) and Fe(IT)-NO, &lt;0.01 min(-1)] of YddV for the

first time.

The word embedding weights were pre-trained in a
pararaph2vec to model using the training collection [24].
In addition to adapting to the pre-processed text, the moti-
vation was that locally trained word embeddings provide
superior word representation, as shown by Diaz et al. [25].
Two paragraph2vec models were trained—DBOW (Dis-
tributed Bag of Words) and DMC (Distributed Memory
Concatenated)—through 100 epochs with word and doc-
ument vector size of 200 and window of 10, the optimal
values found during the training phase for the classification
models. The gensim Python library was used to train the
pararaph2vec models.

Evaluation criteria

Results are reported using standard multi-label classifi-
cation metrics—Precision, Recall and F1-score—and are
compared to a baseline model based on logistic regression.
Student’s ¢ test is used to compare the classifier models,
and results are deemed statistically significant for P value
< 0.05. As most of the publications contain more than one
annotation per protein and they are often classified into the

same classes, e.g. a paper containing structure information

for several proteins, the predictions might not be indepen-
dent for each sample. Thus, we report results for real cura-
tion use-cases but also consider only one unique random
annotation per publication. Finally, it is also important to
notice that a system that provides automatic annotations to
knowledge bases should aim first at high precision. Never-
theless, in our case, we expect the classifier to go beyond the
coverage provided by standard provenance classification,
and, hence, demonstrate also high recall.

Results

Table 3 shows the performance of the classification mod-
els used to categorize document—protein accession pairs
according to UniProtKB entries. Three classification mod-
els were assessed—logistic regression (baseline), SVM and
CNN—in two versions: ‘not tagged’ and ‘tagged’. The ‘not
tagged’ version of the logistic regression and SVM clas-
sifiers received as input a 400-dimensional feature vector
created from the concatenated output of the DBOW and
DMC paragraph2vec models applied to a pre-processed
publication. The ‘tagged’ version received as input an 800-
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Table 3. Micro and macro average results for the not tagged and tagged models obtained from the test set of 58k records

Model Micro Macro
Precision Recall F1-score Precision Recall F1-score

Logistic not tagged 0.63 0.42 0.50 0.55 0.42 0.50
Logistic tagged 0.55 0.66 0.60 0.48 0.60 0.53
SVM not tagged 0.74 0.43 0.54 0.56 0.28 0.37
SVM tagged 0.75* 0.38 0.50 0.64 0.25 0.36
CNN not tagged 0.67 0.76* 0.71 0.68* 0.46 0.55
CNN tagged 0.69 0.74 0.72* 0.60 0.63* 0.62*

Highest results are shown in bold. Asterisk denotes statistically significant improvement

dimensional feature vector, 400 for the positive document
and 400 for the negative document, created by tagging pro-
tein features against the publication sentences. Similarly, the
CNN ‘not tagged’ model received a 1500 token vector per
document in the embedding layer while the CNN ‘tagged’
model received a 1500 token vector for each branch of the
model (positive and negative). The token weights for the
embedding layer of the CNN models were provided by the
trained DBOW document embedding model.

Overall, the CNN tagged model achieved the highest per-
formance in terms of the F1-score metrics, outperforming
all the other models for both micro and macro averages
(P <0.05). It outperformed the baseline logistic regression
classifier in absolute values by 12% and by 9% for the
micro and macro Fl-score metrics, respectively. The SVM
tagged model achieved the highest micro precision and
the CNN not tagged model achieved the highest macro
precision (P < 0.05), both at the expense of recall. Similarly,
recall performance varies depending on how the results
are aggregated. Micro recall is highest for the CNN not
tagged model, and macro recall is highest for the CNN
tagged model. Since some of the categories had relatively
few examples in the training set, the macro average metrics
provide better insights on how the models are able to deal
with class imbalance, as the macro metrics treat all classes
equally, independent of their frequency in the training set.
To this end, the CNN tagged model has an outstanding
performance, increasing the F1-score metric by 7% when
compared to the CNN not tagged model.

As publications are often annotated for several proteins
(thousands in some cases), the document-accession pairs
are not necessarily independent samples. Thus, we modified
the test set to contain only one sample of a document per
unique category set. Accessions with the same annotation
for a publication were randomly suppressed from the collec-
tion. This resulted in a test set of ~26 k records, a reduction
of 55% when compared to the original set of ~58 k
samples. The results of these tests are shown in Table 4.
There was a relevant drop in performance for the CNN
models, e.g. 4 and 6% in micro average Fl-score for the

not tagged and tagged models, respectively, and an overall
relative improvement in relation to the CNN models for the
logistic and SVM models. Nevertheless, the CNN models
still outperform the baseline and SVM when considering
the Fl-score metrics. The best model in this setting is now
the CNN not tagged, with F1-scores of 0.67 and 0.54 for
the micro and macro averages, respectively. Thus, for an
individual independent classification, the CNN not tagged
classifier is likely to provide the best answer while for
a collection with the similar distribution to UniProtKB’s
categories, the CNN tagged model provides the best results.

Prediction comparison for the not tagged and
tagged models

Out of the ~22 k unique publications in the test set,
around 7 k (31%) were labelled with two or more category
sets. In Table 5, we show three non-exhaustive examples,
highlighting the different outcomes for the not tagged and
tagged CNN classifiers for such cases. For the first pub-
lication, PMID 11847227, five distinct category sets were
annotated for the different accessions. As expected, the not
tagged model associated only one type of category set to all
document—accession pairs while the tagged model changed
the predicted classes according to the accession features.
This led to an increase in the micro average F1-score from
0.37 for the not tagged to 0.73 for the tagged results. In
the second example, PMID 15326186, both models behave
similarly, providing only one set of categories, independent
of the accession information. This situation is usually seen
for the tagged model when the classifier is not able to tag
accession information in the document or all sentences in
the abstract contain a protein feature token. Thus, a unique
set of features, i.e. the publication vector, is used for classi-
fication. Finally, in the third example, PMID 10427773, the
tagged model has more false positive predictions, lowering
its precision when compared to the not tagged model by 2%
(F1-score of 0.83 and 0.81, respectively).

While the CNN not tagged model provides only one
type of output independent ofthe accession evidence in
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Table 4. Micro and macro average results for the not tagged and tagged models obtained from the test set of unique

document— categories pairs (around 26 k samples)

Model Micro Macro
Precision Recall F1-score Precision Recall F1-score

Logistic not tagged 0.56 0.68 0.61 0.45 0.56x% 0.50
Logistic tagged 0.59 0.66 0.62 0.46 0.53 0.49
SVM not tagged 0.73 0.43 0.54 0.62:x 0.25 0.36
SVM tagged 0.75% 0.45 0.56 0.61 0.27 0.38
CNN not tagged 0.64 0.71x 0.67x 0.54 0.54 0.54
CNN tagged 0.65 0.66 0.66 0.55 0.49 0.52

Highest results are shown in bold. Asterisk denotes statistically significant improvement

Table 5. Examples of prediction output for the CNN not tagged and tagged models

PMID Accession Gold standard Prediction
Not tagged Tagged
11847227 Q9BTW9 Function Function, pathology & biotech, Function
sequences
11847227 075695 Function, interaction, Function, pathology & biotech, Function, interaction
miscellaneous sequences
11847227 Q15814 Function, pathology & biotech Function, pathology & biotech, Function
sequences
11847227 Q9Y2YO0 Interaction Function, pathology & biotech, Function, interaction
sequences
11847227 P36405 Interaction, pathology & biotech ~ Function, pathology & biotech, Function, interaction
sequences
15326186 A7E3N7 Expression Expression, function Expression, function
15326186 Q8NFA2 Expression, function Expression, function Expression, function
15326186 Q672]9 Expression, function, sequences Expression, function Expression, function
15326186 Q672K1 Expression, sequences Expression, function Expression, function
15326186 Q8CJ00o Function Expression, function Expression, function
10427773 QI9SAA2 Expression Expression, sequences Expression, sequences
10427773 QI9S8X]J6 Expression, sequences Expression, sequences Expression, sequences
10427773 Q95834 Expression, sequences Expression, sequences Expression, sequences,
subcellular location
10427773 Q9X]J36 Expression, sequences Expression, sequences Expression, sequences
10427773 QI9SX]J7 Expression, sequences, subcellular ~ Expression, sequences Expression, sequences
location
10427773 Q9X]J35 Expression, sequences, subcellular  Expression, sequences Expression, subcellular
location location
10427773 P42762 Expression, subcellular location Expression, sequences Expression, sequences
10427773 P62126 Sequences Expression, sequences Expression, sequences

the publication, the tagged model attempts to predict the
categories according to the accession features. For brevity,
only unique examples of document— categories pairs are
shown

Classifier performance analyses

As shown in Figure 5, to understand the impact of the
different categories in the classifier’s performance, we anal-
ysed the precision-recall curve for the CNN tagged model
(other classifiers show similar curves). Three categories

have mean average precision (MAP) above 75%: Sequences,
Structure and Miscellaneous. On the other hand, three
categories have MAP lower than 50%: Expression, Family
& Domains and Pathology & Biotech. The correlation
between the number of examples in the training set and
the category performance is moderate (p =0.53). Indeed,
the Structure category, for example, is only present in 5%
of the training examples, however it has one of the highest
MAP. Differently, the Expression category is present in 11%
of the examples (the median value among the categories)
but has one of the lowest MAP. The Family & Domains
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Figure 5. Precision-recall curves for the UniProtKB categories obtained from the CNN tagged classification. Mean average precision is shown in
parentheses. Black horizontal dashed line: performance of a random classifier.

category, which has only 1% of the training set records,
was not learned by the classifier (MAP =0.07). However,
the Names category has 2% of the examples and a MAP
10 times higher (MAP =0.73). Hence, the class imbalance
alone is not enough to explain the difference in performance
among the categories.

In Figure 6, the classifier prediction as a result of the
input size is shown. Documents with size around 4 k bytes
contained only the abstract section and composed more
than 95% of the test set. The remaining 5% were composed
of full-text documents or those with at least some extra
sections in addition to abstract, such as figure and table
captions. The correlation of classifier performance and
size of the publication, or by proxy, between the type of
annotated publication: abstract or full text, is very weak
(p=0.09). Thus, it seems that most of the evidence for
the categories is provided in the abstract, apart from the
Expression, Family & Domains and Pathology & Biotech
categories, which have a MAP lower than 0.5.

Finally, in Figure 7 we show the micro average pre-
cision results of the CNN tagged classifier for the 19
most common organisms in the test set. For the organisms
with higher precision, Drosophila melanogaster (DROME),
Schizosaccharomyces pombe (SCHPO) and Oryza sativa
subsp. japonica (ORYS]), the majority of the protein entry
annotations belong to a few classes (median frequency
of classes of <2%). These organisms were mostly anno-
tated for Sequences and Subcellular Location categories
(~60% or more of the annotations), which had overall
high to moderate-to-high precision performance, respec-
tively, as shown in Figure 5. Conversely, organisms with
well-distributed annotations among the 11 categories in
the test set (median distribution of ~9%) had the poorest
precision scores: Arabidopsis thaliana (ARATH), Candida
albicans (CANAL) and Dictyostelium discoideum (DICDI).

Precision (Micro)
precision * logip(max_size/size)

Size (KB)

Figure 6. Classifier precision as a function of the publication size.
There is no correlation between the size of the input size and precision.
Circle size: number of publications within a size bin. Yellow points:
high precision and lower ratio between publication size and the max
publication size in the test set. Purple points: low precision and higher
ratio between the publication size and the max publication size in the
test set.

The low-performing categories are likely to have impacted
negatively the precision of these organisms.

UniProtKB category evidence annotation

To measure the performance of the tagging method for
detecting candidate evidence sentences, we compared
sentences from 20 manually annotated abstracts with the
positive and negative sentences created by our naive string-
matching algorithm. In total, 61 sentences distributed
among 7 categories—Expression, Function, Interaction,
Pathology & Biotech, PTM/Processing, Sequence and Sub-
cellular Location—were tagged as positive. The algorithm
achieved micro precision of 0.42 (28 out of 67 sentences)
and micro recall of 0.46 (28 out of 61 sentences). For 4
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Figure 7. Micro average precision performance per organism. Higher precision for organisms happens when there is a concentration of categories.

Black dashed horizontal line: mean organism precision.

abstracts (20%), no positive sentence was detected, i.e. none
of the protein descriptors was found in the abstract using
the string matching method. In this case, the whole abstract
was considered as positive. For the other 5 articles (25%),
no true positive sentences were tagged. After assessing the
classification performance for this test set (Fl-score of
0.70), there was no correlation between the detection of
candidate sentences and the prediction of the individual
document-accession pairs (p =0.02).

Discussions

We investigated the use of a supervised CNN classifier
to automatically assign categories to document-accession
pairs curated in the UniProtKB to help scale up publication
categorization into the knowledge base entry categories.
The classifier was trained and evaluated using a collection
of 483 k document-accession pairs annotated by biocu-
rator experts. To overcome the issue of multiple category
sets associated with a single publication, we proposed an
effective strategy to tag publication sentences with protein
features and create different feature sets out of a sin-
gle document entry. Results showed statistically significant
improvements upon models that use only the publication as
a classification feature, improving the F1-score up to 12%
(micro) when compared to the logistic regression baseline
and up to 7% (macro) when compared to the not tagged
CNN version.

While for some database resources it has been shown
that expert curation can keep up with the exponential
growth of the scientific literature [4], scaling-up biocura-
tion remains a challenge. A key success factor for UniPro-

tKB’s scalability, for example, is that the set of expert
curated literature in the knowledge base focuses on non-
redundant annotations for proteins. It relies on external
sources for the contribution of additional literature and on
UPCLASS for its classification. Indeed, the implementation
of UPCLASS has enabled the classification of more than
30 million document—accession pairs according to the entry
categories, which were previously displayed as unclassified
in UniProtKB [3]. UPCLASS is publicly available as a web
service through the URL address: https://goldorak.hesge.ch/
bioexpclass/upclass/ and its code is maintained at https://
github.com/dhteodoro/upclass.

In addition to direct classification, models as provided
by UPCLASS could be used in other automatic phases of
the biocuration process, such as document triage, helping
curators to reduce the search scope. In the context of
UniProtKB curation workflow, it could be used to priori-
tize UniProtKB entries that are unreviewed proteins with
publications in the additional bibliography belonging to
some category of interest. Furthermore, UPCLASS could be
used to update reviewed entries lacking a Function anno-
tation, for example, but for which there are papers in the
additional bibliography containing functional annotation.
In [10], UPCLASS was used in a question-answer model
to classify the type of search questions and their respective
result sets in biomedical metadata repositories, e.g. search
for gene expression data or search for protein sequencing
data. While this approach did not lead to improvements
in information retrieval performance of datasets, further
investigation is needed, in particular in a context where the
type of classification material is aligned with the training
set type. Overall, given the outstanding results provided by
the CNN models when compared to the baseline model
but even to more powerful frameworks, such as SVM,
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we expect that such models could be extended to other
literature curation domains, for example, in prior art search
and classification of patents [26, 27].

Recent advances in deep learning for textual data fuelled
by recurrent models (LSTM, GRU, etc.) and contextual
embedding (e.g. ELMo, BERT) have demonstrated state-
of-the-art performance in several downstream tasks. In
this work, however, we opted for a model with lower
algorithm complexity, i.e. word2vec-based embeddings
combined with a CNN model, as our main classifier
due to the scale of the production environment found in
UniProtKB, where samples in the order of O(10°) need to
be encoded in a lower-dimensional space and classified.
As shown in several works [28, 29], the performance
of classification models varies significantly according to
the real-world tasks. Thus, by using models that are
simpler algorithmic-wise but yet are high performing, we
achieved a good compromise between processing time and

precision.

Classification performance per category,
document size and organism

We analysed the performance of the CNN tagged classifier
according to three dimensions: category, document size
and annotated organism. Despite the good performance of
the classification models, there is still room for improv-
ing precision for some of the UniProtKB classes. Several
attempts were made to increase UPCLASS outcomes using
imbalanced learning methods, such as under sampling and
Tomek links [30]. However, they did not lead to overall
improvements. An alternative would be to use a classifier
ensemble, as proposed in [15]. However, this approach is
too expensive for deep learning models due to the learning
cost. We also tried to change the number of k-nearest
sentences in the tagged models, but it did not lead to posi-
tive changes in performance either. It would be interesting
to explore the addition of expert categorization rules, in
particular of UniProtKB mapping rules, as a strategy to
increase performance while keeping the training complexity
relatively low. The analyses of the classification precision
according to the size (or type, i.e. abstract vs. full text) of
the document shows that there is no correlation between
these two dimensions. While it might be counter-intuitive,
several works have demonstrated that for classification
tasks, the performance of abstracts is at least equivalent
to full texts, if not better [31]. Yet, it could be relevant
to explore the use of different classifiers for abstracts and
for full texts. Finally, performance analyses according to
annotated organism show that better prediction outcomes
are mostly a result of high-performing class annotations
being concentrated on some organisms. Thus, it seems that

the classification precision for organisms is not related to
the way they are curated.

Correlation between correctly tagged sentences
and classification results

We used a collection of 20 manually annotated documents
at the sentence level to assess the performance of the
string-matching method based on protein features to tag
evidence sentences. When measuring the impact on the
classifier’s performance, results show that there is no cor-
relation between correctly tagged sentences and correctly
predicted categories. We have two hypotheses for this lack
of correlation. First, we believe that just splitting the sen-
tences that contain accession information would be suffi-
cient for the classifier to more effectively learn the category
features. Even if the sentences did not have exactly the
evidence used by biocurators, the most important would be
to recall sentences with protein information. Indeed, while
the correlation of the classifier’s precision with the tagging
method precision is only 0.02, the correlation between the
classifier’s precision and the number of positive tagged
sentences is 0.26. Notice that there is only a marginal
improvement from the not tagged to tagged model if we
consider micro average Fl-scores (0.71 to 0.72). Thus, the
recall increase in positive sentences would provide the edge
for the tagged model. The second and most straightforward
hypothesis is that the lack of correlation is related to the
small size and statistical power of the annotated set. To
investigate both assumptions, a larger annotated set would
be needed, and it is out of the scope of this paper.

Limitations

Abstracts compose the majority of the collection used in the
experiments. Nevertheless, a large body of the annotation
evidence is expected to be found in the methods and results
sections of full-text articles. The logistic regression and
SVM methods use the whole document albeit compressed
in a 200-vector, which was identified as the best value
during the training phase. On the other hand, for the CNN
models the documents were truncated in 1500 tokens (1500
for each branch in the tagged model) due to performance
reasons, which limits the comparison with the baselines.

In UniProtKB, a single article can be annotated for many
proteins, sometimes with the same class; hence, the predic-
tion results are not independent, biasing the assessment. We
tried to mitigate this issue by creating a test set with unique
‘document — categories’ pairs; however, examples in this
set still cannot be considered as fully independent, as one
document can be associated with class sub-sets, e.g. PMID
— [Function] and PMID — [Function, Sequences].
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To detect annotation evidence, we used a naive
approach based on string matching against a set of protein
descriptors, including name and gene, to improve algorithm
complexity. Nevertheless, more sophisticated NER models
could be used instead to detect protein mentions, for
example character-level neural network as proposed by
Gridach [32]. In particular, our approach could mismatch
some protein names, including numbered proteins, such as
1I-2 and 1I-3, depending on how they are written. Moreover,
by removing tokens smaller than two characters in the pre-
processing phase, some protein mentions might have been
excluded from the text, reducing protein/gene matching and
thus potential evidence recall.

Conclusion

To provide a systematic way of categorizing computation-
ally mapped publications in UniProtKB, in this paper we
investigated the use of a supervised CNN classifier for
assigning categories to pairs of document—protein acces-
sions. To overcome the issue of multiple category sets asso-
ciated with a single publication, we proposed an effective
strategy to tag publication sentences with protein features
and create different feature sets out of a single document
entry, which were then fed to different CNN layers. Results
showed statistically significant improvements upon models
that use only the publication as classification features,
improving the F1-score up to 22 and 12% when compared
to a logistic regression baseline for the micro and macro
averages, respectively. Moreover, our results show that text
classification supported by CNN models provided an effec-
tive way to classify publications according to the UniPro-
tKB entry categories. As future work, we will investigate
whether the classification performance for underperform-
ing classes can be improved by adding expert knowledge
into the model. Furthermore, we want to explore whether
sentences used as evidence for categorization can be relo-
cated automatically from the classifier model.
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