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Study of MEMS-based Inertial Sensors Operating in
Dynamic Conditions

Yannick Stebler, Stéphane Guerrier, Jan Skaloud, Roberto Molinari, Maria-Pia Victoria-Feser

Abstract—This paper aims at studying the behaviour of the
errors coming from inertial sensors when measured in dynamic
conditions. After proposing a method for constructing the error
process, the properties of these errors are estimated via the
Generalized Method of Wavelets Moments methodology. The
developed model parameters are compared to those obtained
under static conditions. Finally an attempted is presented to find
the link between the encountered dynamic of the vehicle and
error-model parameters.
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I. INTRODUCTION

The integration of a strapdown Inertial Navigation System
(INS) with satellite-based systems (GNSS) using Bayesian
techniques, usually the Extended Kalman Filter (EKF), is a
standard approach to reliably estimate the navigation states
of a vehicle at any time (i.e. position, velocity and attitude
in space). The INS comprises an Inertial Measurement Unit
(IMU) formed by a triad of usually orthogonally mounted gy-
roscopes and accelerometers observing angular rate or change,
and specific force, respectively. After initialization, these sig-
nals are integrated with respect to time to yield attitude,
velocity and finally position. During periods of poor GNSS
signal quality or when no GNSS solution can be computed
by the receiver, inertial navigation operates in coasting mode,
i.e. the navigation states are estimated independently from the
satellite data. In such cases, the overall navigation performance
becomes strongly dependent on the errors corrupting inertial
signals. These errors are integrated in the INS making their
impact grow with time. Correct error modelling and estimation
of their systematic part is thus essential for enhancing and
correctly predicting its quality.

Inertial sensors are corrupted by errors (scale factors, biases)
of deterministic and stochastic nature. For the latter errors,
deterministic models do not apply and stochastic processes
must be considered and which are assessed and estimated,
in the context of this paper, by the Generalized Method
of Wavelet Moments (GMWM) recently introduced in [1].
However, it is generally assumed that the error process is
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independent of the dynamics of the platforms on which the
inertial sensors are positioned. To the authors’ knowledge, not
much work has been developed concerning dynamic-dependent
error analysis in navigation, aside some preliminary work in [2]
in which some dynamics dependent error behaviour affecting
a tactical-grade and low-cost IMU was highlighted. The aim
of this paper is to develop a technique for observing the errors
coming from the low-cost MEMS inertial sensors in dynamic
conditions and, secondly, estimate their characteristics (i.e.
model parameters) and study the relation between error pro-
cesses and the dynamics of the platform.

II. METHODOLOGY AND EXPERIMENTAL FRAMEWORK
A. Error construction

To investigate the impact of the dynamic conditions on
the modelling of the error process it is of course necessary
to construct the error process itself. To do so, a Reference
Inertial Measurement Unit (R-IMU) was rigidly mounted on
the same platform as the IMU under study (S-IMU). The data
was collected from three functioning XSens MTx MEMS-based
IMUs and the reference signals were issued from an Ixsea
Airins navigation-grade INS logging at 100 Hz (noise < 0.0015
deg/+/Hr, drift < 0.01 deg/Hr), combined with a geodetic grade
Javad Alpha L1/L2 GPS rover receiver (sampling at 10 Hz),
and a Topcon Hiper Pro L1/L2 GPS base receiver (sampling at
5 Hz), both used for computing a double-differenced carrier-
phase GPS solutions. The reference data was post-processed
through Kalman filtering yielding compensated inertial signals.

One of the main issues that is addressed within this study
is the estimation of the spatial relations between the triads
forming the IMUs. Consider the R-IMU and the S-IMU rigidly
mounted on the same platform. Assume that the b-frame is
equivalent to the R-IMU instrumental frame, and that the S-
IMU provides observations in his instrumental s-frame. The
b-frame and s-frame origins are separated by a vector rZ .
called inter-IMU leverarm, and their relative orientation is
expressed by the Cj direction cosine matrix, called inter-
IMU boresight. The relationship between Cj, and the estimated
boresight, denoted as Cs, may be expressed in terms of
misalignment errors as

C=I+¥)C

where ¥ = [y’ x] is a skew-symmetric matrix containing
the misalignment error angles W% , = [y, v.]" between
the b-frame and the s-frame. The (3 x 1) observed S-IMU
angular rate @j; and specific force f* vectors must be corrected
by boresight Cj and lever-arm rZ _,, effects. Both quantities can



either be known a priori or estimated. Considering possible
determination of rZ _,, by other means (e.g. calliper), the
C; needs to be estimated indirectly. For instance, an EKF-
based estimation techniques can be considered with the EKF
navigation states defined as

=[ &l ov, €

with 8rl =[8¢ SA G&h]” the errors in latitude ¢, longitude
A and height h, 8v. = [Svy Svg Svp]” the errors in
North, East and Down (NED) Velocity components, and the
misalignment angles € = [ey e &p]” expressing the attitude
errors with respect to the NED /-frame. The 5’ and S@! are
vectors of size (3 x 1) each accounting for accelerometer and
gyroscope biases, respectively. The 0x, vector contains inter-
IMU calibration states that will be described in the next two
sections.
The position error model is:

5t Seb ox. |

Sl = —@!, xrl 4+ 50 x v, +8v]

with 60 the misalignment vector of computer c-frame [3] with
respect to [-frame as a consequence of position error:

=[ 8Acos¢ —0¢ —OAsing }T
The velocity error model is:
Svl = f x e — (a)fe+a)§l> x 8V
— (50)56 + 5(051) x v, + CLSt + 5g'.
The attitude error model is

2 [
¢ =0 xe +50,-Clsal.

B. Bore-sight estimation via inertial measurement aiding

One possibility to estimate the components and parameters
of these models (especially Cj), is to feed the Kalman Filter of
MEMS-IMU with attitude updates from the reference system
[4]. If the S-IMU is of poor quality, as it is our case, the
solution provided by the S-IMU/GNSS filter may be consider-
ably affected by the imperfections of initialization stage. For
this reason we suggest to work with the R-IMU/GNSS filter
and use less precise @j; and f* measurements from S-IMU to
jointly estimate the Cj and rZ e

The relation between @, and a)f?b is given by

=Cih (1

which is true under the conditions that Ci =0 and i‘b =0

If Q@ = [@,x] and Q}), = [@), %], the relation between f” and
f* can be written as [5]
= Cb (fb + lerbﬁs + Q lerbﬂs) (2

in which lerb _,, and Qb lerb _,, represent centrifugal and
Coriolis forces, respectively

Under the condition that v, ¥, and y; are small, we have

~I—W¥. By denoting ®;; and f* respectively as z¢ and z,
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Fig. 1: Result of the inter-IMU boresight angle estimation for
one XSens MTx IMU using inertial measurements from an
Ixsea Airins navigation-grade IMU.

the linearized measurement models given in Eq. (1) and (2)
are

Zo = h(x:) + Vo =~ QL¥) Vo 3)
and
zr =h(X.) + vt
~ = (%) + Q)X + Q[ <) WEs (4
+C; (@00, + Q) 817, +ve
where

= W) W) ]

are the augmented calibration states. The design matrix Hy for
the whole state vector can be deduced from Eq. (3) and (4),
yielding

03x15T 03515 ,
m— | (9h) | (F1x-Qbahi x]- @y x]) )
033 (CY (Qi’bﬂ +Qrb>)

Fig. 1 depicts the estimated smoothed inter-IMU angles
lilg _s; With i = 1,2 for one of the XSens MTx IMUs (measuring
in its s; instrumental frame) with respect to the reference
signals provided by a the Ixsea Airins IMU. The data were
collected on a vehicle during a 15 minutes long trajectory.
The final boresight angles are estimated as a weighted mean
(considering the smoothed variances).
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Fig. 2: Typical XSens MTx gyroscope (top panel) and ac-
celerometer (bottom panel) error signals computed from the
reference IMU under dynamics.

Having checked for time alignment, the sensor error is
simply the difference between the transformed S-IMU signals
and the reference signals. The error of the Z-axis gyroscope
and accelerometer over the complete run is depicted as a
representative example in Fig. 2.

C. Analysis of the IMU errors

Once the error process from the IMUs is constructed, a first
step which can be taken in investigating the behaviour of the
errors with respect to the dynamics is a basic scatterplot. The
scatterplot in Fig. 3 shows some of the errors measured on the
x-axis of the gyroscope and on the z-axis of the accelerometer
against some of the quantities representative of dynamics such
as acceleration and jerk. The errors indeed seem to form some
ellipsoids with the latter measures, indicating that there appears
to be a correlation between these quantities.

To confirm this analysis, a linear regression was performed
on the gyroscope errors to test the statistical significance
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Fig. 3: “Scatter” plot between the errors of the gyroscope on
the axis x, the angular velocity, acceleration and jerk on the
same axis, the errors of the accelerometer on the axis z and
the linear acceleration and linear jerk for the same axis.

of these linear relationships. Denoting by Q; the vector of
dynamics measurements on all three axes (i.e. angular rate,
angular acceleration, angular jerk, specific force, linear jerk)
for the k-th error yy, the linear model was the following

Y= B+é& (6)

with B being the 15 coefficients related to each dynamic mea-
surement and &, being the residual error following a Gaussian
distribution with null expectation and a certain variance o7.
Table I collects the general results of this regression analysis
and shows, for each regression, the coefficient of determination
(i.e. R?) and p-value associated to the F-test based on the
following hypotheses:

H()Z ﬁ:()
Hy: B#0.

It can be observed that H, is accepted for the three axes
considered in this analysis. This clearly demonstrates that the
dynamics has a statistically significant influence of the errors
of the considered IMU.

D. Model parameter estimation

Given the above results, the following step was to find an
adequate stochastic model to explain the error process and esti-
mate its parameters. To this purpose, a newly proposed method
called the GMWM was used. This method was introduced by
[1] and uses the quantity called the Wavelet Variance (WV)
to estimate the parameters of time series. Let (y,), t =1,....,T
be a realisation of the process (¥;), t € Z associated to the
parametric model Fy, with 8 € ® C R”. The GMWM takes



TABLE I: General results from linear regression fit of the errors using dynamic measurements as covariates.

Error Gyr. X Error Gyr. Y Error Gyr. Z
R? 15.42% 36.73% 2.23%
F-statistic 2.60 x 10° 7.71 x 10° 3.25 % 102
p-value ~0 ~0 ~0

TABLE II: Comparison between the XSens MTx gyroscope model constructed on a signal acquired in non-moving conditions

(static model) and in moving conditions (dynamic model).

Process Parameter Unit Static Model Dynamic Model
Gaussian White Noise GV2VN (deg/s)? 0.50552 £0.00035 0.65382 4 0.00001
First-order Gauss-Markov #1 Bi 1/s 0.00492£0.01892 0.00155£0.00082
GéMA’] (deg/s)? 0.00142 £ 0.00001 0.00981 £ 0.00005
First-order Gauss-Markov #2 B 1/s 113.51523 +£0.00404 1.68012 £0.04980
GéM’z (deg/s)? 0.05528 +£0.00051 0.00168 £ 0.00005

advantage of the implicit link between the WV v?(t;) and the
parameters 6 given by

= [

1/2

S
Sw()af = [ | PSR (s @

where the index j indicates the scale at which the WV is
considered, W are the wavelet coefficients coming from a
wavelet decomposition, Sg, (f) is the power spectral density
function associated to model Fy at frequency f and |H(f)| is
the modulus of the transfer function of the wavelet filters.

The idea behind the GMWM is therefore to estimate the
WV v2(t;) from the observed signal (y;) and estimate the
parameters @ which minimize a certain distance between the
WYV implied by Fy, denoted as ¢(0), and the estimated WV
&). Hence, the proposed methodology to estimate 0 is given
by the solution to the following Generalized Least Squares
problem

6= argmin
6cO

" T ”
(6-00) @(6-0(6))  ®
where Q is a positive definite weighting matrix (see [1] for
more details).

The GMWM is a methodology which can reliably estimate
the parameters of simple processes or composite stochastic
processes (i.e. processes made of the sum of different simple
processes).

Exploiting this methodology, a series of models were con-
sidered using the sum of a white noise process with a sum
of Gauss-Markov processes since a combination of multiple
Gauss-Markov processes can approximate many random pro-
cesses. Using the WV plots to assess the goodness-of-fit of
the different models, finally a white noise process summed
with two Gauss-Markov processes was chosen for both the
errors measured in static condition and those measured in
dynamic ones. Fig. 4 shows how the chosen model seems to fit
the estimated WV quite well. Once the models were chosen,
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Fig. 4: Wavelet variance sequence computed on the gyroscope
error signal acquired in moving conditions (black circles),
together with the wavelet variance issued from an estimated
model.

the estimated parameters for both types of errors (static and
dynamic) were collected and compared.

Table II allows this comparison and highlights how the gyro-
scope noise structure does not change but the magnitude of the
white noise and Gauss-Markov processes differ significantly
since the confidence intervals do not overlap. Hence, it appears
evident that the calibration of inertial sensors should take into
account how the dynamics in which the measurements are
made can influence the error processes and, consequently, the
precision of the navigation system.

III. CONCLUSION

We have presented a methodology that allows reliable esti-
mation of spatial differences between the reference and tested
IMUs even if the latter is of a poor quality. Applying this



method within a car experiment allowed constructing error
signal that underwent the following analysis: first we have
shown that the correlation between the observed errors and
the vehicle dynamics is statistically significant. We have then
constructed a model structure and estimate model parameters
via the GMWM methodology. When comparing this model to
that obtained under static conditions we conclude that although
the model structure did not change the model parameters
are significantly different. In future we will investigate the
relevance of the obtained model-parameter value (e.g. as used
within the Kalman Filter) on the quality of the integrated
navigation.
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