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SUMMARY

Optimized Schwarz methods are working like classical Schwarz methods, but they are exchanging
physically more valuable information between subdomains and hence have better convergence
behavior. The new transmission conditions include also derivative information, not just function
values, and optimized Schwarz methods can be used without overlap. In this paper, we present a new
optimized Schwarz method without overlap in the 2D case, which uses a different Robin condition for
neighboring subdomains at their common interface, and which we call two-sided Robin condition. We
optimize the parameters in the Robin conditions and show that for a fixed frequency ω, an asymptotic

convergence factor of 1− O(h
1
4 ) in the mesh parameter h can be achieved. If the frequency is related

to the mesh parameter h, h = O( 1

ω
γ ) for γ ≥ 1, then the optimized asymptotic convergence factor is

1 − O(ω
1−2γ

8 ). We illustrate our analysis with 2D numerical experiments. Copyright c© 2000 John
Wiley & Sons, Ltd.

key words: Schwarz; domain decomposition; transmission conditions; Helmholtz equation; acoustics

1. INTRODUCTION

The classical Schwarz algorithm was invented by Schwarz more than a century ago [25]
to prove existence and uniqueness of solutions to Laplace’s equation on irregular domains.
The convergence properties of the classical Schwarz methods are well understood, see for
example the books [26, 24, 28, 23]. Over the last fifteen years, people have looked at different
transmission conditions for the classical Schwarz method, since without overlap the method
does not converge. Robin conditions with a real parameter have been proposed in [18] to
obtain a convergent algorithm for a positive definite model problem. For Helmholtz problems,
Robin conditions with a complex parameter were first proposed and analyzed in [8], and later
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Figure 1. Geometry of the global domain Ω on the left, and decomposition of the domain Ω into two
non-overlapping subdomains Ω1 and Ω2 on the right.

in [9, 5, 7, 10, 6, 2]. The name optimized Schwarz methods was introduced in [13] to denote
the class of Schwarz methods with improved transmission conditions that has been developed
over the previous years in [4, 17, 20]; for an up to date historical review, and complete results
for the positive definite case, see [15]. For Helmholtz problems, optimized Schwarz methods
were studied and analyzed with one-sided Robin transmission conditions, and second order
transmission conditions in [14, 22, 21]. A different approach using perfectly matched layers was
proposed in [27]. In this paper, we relax the constraint that from both sides on the interface
the same Robin condition has to be used, as done in [15] for positive definite problems and
in [19] for heterogeneous media. This leads to a new zeroth order optimized Schwarz method
with enhanced performance for the Helmholtz equation. We find that the new algorithm has
for fixed frequency parameter ω an asymptotic convergence factor of 1 − O(h

1
4 ) in the mesh

parameter h, in contrast to earlier optimized zeroth order Schwarz methods with a performance
of 1−O(h

1
2 ), see [14]. The new factor is as good as the best factors obtained so far with second

order optimized Schwarz methods [11]. If the frequency is related to the mesh parameter h,

h = O( 1
ωγ ) for γ ≥ 1, then the optimized asymptotic convergence factor is 1 − O(ω

1−2γ
8 ).

We illustrate our analysis by 2D numerical examples on a model problem and a large scale
problem.

2. PROBLEM DESCRIPTION AND GENERAL RESULTS

We study in this paper an optimized Schwarz method for the Helmholtz equation,

Lu := (−ω2 − ∆)u = f in Ω, (1)

where Ω is a bounded domain in two dimensions, and ω is a strictly positive real number. As
a model problem we consider the geometry given in Figure 1 on the left. We impose Dirichlet
boundary conditions on the horizontal boundaries, and Robin boundary conditions on the
vertical boundaries,

u = 0 on Γ̃j , (∂nj
+ sj)u = gj on Γj , j = 1, 2. (2)

Here nj is the unit outward normal to the boundary, and sj is a complex number. We first
define the weak solution of (1,2). Let ‖ · ‖ be the norm in L2(Ω) and let V (Ω) be the space of
functions in H1(Ω) such that the traces on Γ̃j vanish. Since the Poincaré inequality holds in
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this case (see [16]), V can be equipped with the norm ‖v‖V (Ω) = ‖∇v‖. We define in V (Ω) the
sesquilinear form

a(u, v) =

∫

Ω

∇u · ∇v̄dx dy − ω2

∫

Ω

uv̄dx dy +

2
∑

j=1

sj

∫

Γ̃j

uv̄dy (3)

and the antilinear form

l(v) =

∫

Ω

f v̄dx dy +
2

∑

j=1

∫

Γj

gj v̄dy. (4)

The weak formulation of problem (1), (2) is to find u in V (Ω) such that

a(u, v) = l(v) ∀v ∈ V (Ω). (5)

Theorem 2.1. Suppose f is in V (Ω)′ and gj is in L2(Γj). If Im s1 × Im s2 > 0, then
problem (5) has a unique solution u in V (Ω), which is also solution of the strong form of
(5),

−ω2u − ∆u = f in Ω,

u = 0 on Γ̃j ,
(∂nj

+ sj)u = gj on Γj .
(6)

Proof The proof uses the Fredholm alternative and can be found in [6].

In order to define our algorithm, we need more regularity. We define H̃s(Γj) to be the space
of all g defined on Γj such that the extension of g by 0 outside Γj is in Hs(R).

Theorem 2.2. If f is in L2(Ω) and gj is in H̃1/2(Γj), then the variational solution u is in
H2−ǫ(Ω) for any positive ǫ.

Proof To prove this result, we compute the solution explicitly in the vicinity of a corner and
analyze its singularity. The complete proof will appear in [12].

3. DEFINITION AND CONVERGENCE OF THE ALGORITHM

We decompose the domain Ω into two non-overlapping subdomains Ω1 and Ω2, as illustrated
in Figure 1 on the right, and consider an optimized Schwarz method with Robin transmission
conditions,

−ω2un
1 − ∆un

1 = f in Ω1, −ω2un
2 − ∆un

2 = f in Ω2,

un
1 = 0 on Γ̃1

j , j = 1, 2, un
2 = 0 on Γ̃2

j , j = 1, 2,
(∂n1

+ s1)u
n
1 = 0 on Γ1, (∂n2

+ s2)u
n
2 = 0 on Γ2,

(∂n1
+ s12)u

n
1 = (∂n1

+ s12)u
n−1
2 on Γ12, (∂n2

+ s21)u
n
2 = (∂n2

+ s21)u
n−1
1 on Γ12.

(7)

Here, ∂nj
denotes the outward normal derivative in Ωj , for j = 1, 2. The parameters sj are

complex numbers and correspond to approximations of the radiation condition, of the form
−iω + aj , aj > 0, see [3]. The other parameters s12 and s21 will be used to optimize the
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performance of the algorithm. In view of Theorem 2.1, we assume that Im sij < 0. Suppose

we are given h0
j in H̃1/2(Γ12). We initialize the algorithm at step 0 by

−ω2u0
1 − ∆u0

1 = f in Ω1, −ω2u0
2 − ∆u0

2 = f in Ω2,

u0
1 = 0 on Γ̃1

j , j = 1, 2, u0
2 = 0 on Γ̃2

j , j = 1, 2,
(∂n1

+ s1)u
0
1 = 0 on Γ1, (∂n2

+ s2)u
0
2 = 0 on Γ2,

(∂n1
+ s12)u

0
1 = h0

1 on Γ12, (∂n2
+ s21)u

0
2 = h0

2 on Γ12.

(8)

By Theorem 2.1 and Theorem 2.2, the initialization (8) defines {u0
1, u

0
2} in

∏2
j=1 V (Ωj) ∩

H2−ǫ(Ωj). This in turn gives h1
j = (∂nj

+ sji)u
0
i in H̃1/2(Γ12) and permits to define the

algorithm with un
j in V (Ωj) ∩ H2−ǫ(Ωj), and (∂nj

+ sji)u
n
i in H̃1/2(Γ12).

To analyze the dependence of the algorithm on the parameters in the transmission
conditions, we consider now the Helmholtz equation (1) in the domain Ω = R × (0, L)

with Sommerfeld radiation conditions at infinity, limx→±∞
√

|x|
(

x
|x|∂xu − iωu

)

= 0. We

decompose the domain into two non-overlapping subdomains Ω1 = (−∞, 0) × (0, L) and
Ω2 = (0,∞)× (0, L). For the analysis it suffices to consider by linearity the case f = 0 and to
analyze convergence to the zero solution. Expanding in a Fourier series in the y direction,

un
j (x, y) =

∞
∑

l=1

ûn
j (x, l) sin(kly), kl =

lπ

L
, (9)

we obtain for l ≥ 1 the Fourier transformed algorithm
(

ω2 − k2
l

)

ûn
1 + ∂2

xxûn
1 = 0 x < 0,

(∂x + s12)û
n
1 = (∂x + s12)û

n−1
2 , x = 0,

(

ω2 − k2
l

)

ûn
2 + ∂2

xxûn
2 = 0, x > 0,

(−∂x + s21)û
n
2 = (−∂x + s21)û

n
1 , x = 0.

(10)

We denote by λ(k) the root of the characteristic equation λ2 +
(

ω2 − k2
)

= 0 defined by

λ(k) =
√

k2 − ω2 for |k| ≥ ω, and λ(k) = −i
√

ω2 − k2 for k < ω. Since the Sommerfeld
radiation condition excludes growing solutions as well as incoming modes at infinity we obtain
the solutions ûn

1 (x, l) = ûn
1 (0, l)eλ(kl)x and ûn

2 (x, l) = ûn
2 (0, kl)e

−λ(kl)x. Using the transmission
conditions and the fact that ∂nj

ûn
j = λ(kl)û

n
j , we obtain over one step of the Schwarz iteration

ûn
1 (x, l) =

s12 − λ(kl)

s12 + λ(kl)
eλ(kl)xûn−1

2 (0, l), and ûn
2 (x, l) =

s21 − λ(kl)

s21 + λ(kl)
e−λ(kl)xûn−1

1 (0, l).

Evaluating the second equation of the algorithm at x = 0 for iteration index n and inserting
it into the first equation, we get after evaluating again at x = 0, ûn

1 (0, l) = ρ(kl)û
n−2
1 (0, l),

where the convergence factor ρ is defined by

ρ(k) =
s12 − λ(k)

s12 + λ(k)
· s21 − λ(k)

s21 + λ(k)
. (11)

Setting the two complex parameters s12 = p1 − iq1 and s21 = p2 − iq2, with pj and qj in R,
and inserting s12 and s21 into the convergence factor (11), we find after simplifying

|ρ(p1, q1, p2, q2, k)|2 =











p2
1+(q1−

√
ω2−k2)2

p2
1
+(q1+

√
ω2−k2)2

p2
2+(q2−

√
ω2−k2)2

p2
2
+(q2+

√
ω2−k2)2 k2 < ω2

q2
1+(p1−

√
k2−ω2)

2

q2
1
+(p1+

√
k2−ω2)

2

q2
2+(p2−

√
k2−ω2)

2

q2
2
+(p2+

√
k2−ω2)

2 k2 ≥ ω2.
(12)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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OPTIMAL ASYMPTOTIC PERFORMANCE OF AN OPTIMIZED SCHWARZ METHOD 5

Theorem 3.1. For any pj , qj > 0, and any ω > 0 such that ω 6= kl, l ∈ N
+, the convergence

factor ρ(kl) is strictly less than one in modulus and the algorithm converges in
∏

L2(Ωj).

Proof With the assumptions on the coefficients, (12) shows that |ρ(p1, q1, p2, q2, kl)| < 1
for kl 6= ω. By induction, û2n

j (x, l) = ρ2nû0
j(x, l), and to show convergence in

∏

L2(Ωj), we

compute the L2-norm,

‖u2n
j ‖2 =

1

2

∞
∑

l=1

‖û2n
j (·, l)‖2

L2(R
−

) =
1

2

∞
∑

l=1

|ρ(kl)|2n‖û0
j(·, l)‖2

L2(R
−

).

If the initial guess u0
j is in L2, the series with general term ‖û0

j(·, l)‖2 converges, and |ρ(kl)|2n

tends to zero as n −→ ∞. So by Lebesgue’s Theorem, u2n
j tends to zero in L2(Ωj). The same

holds for odd iterates.

4. OPTIMIZATION OF THE TRANSMISSION CONDITIONS

We want to determine the two complex parameters s12 = p1 − iq1, and s21 = p2 − iq2

to get the best performance of algorithm (7). Previous optimized Schwarz methods with
Robin transmission conditions reduced the number of free parameters by setting s12 = s21.
This led in [14, 22, 21] to an optimized Schwarz method with asymptotic convergence factor

ρ = 1 − O(h
1
2 ), where h denotes the mesh parameter. Here, we do not make this simplifying

assumption, and we say that the algorithm is using two-sided Robin transmission conditions.
This leads to an algorithm which is more efficient both initially and asymptotically than the
earlier one with one-sided Robin transmission conditions. To find the best choice for s12 and
s21, without knowing which frequencies kl will be present in the errors in the transformed
optimized Schwarz method (10), the idea is to minimize |ρ(kl)|2 in (12) for all kl that could
be present in the iteration. From the Fourier series (9), we see that the lowest frequency is
kmin := k1 = π

L . Now for the continuous problem, the highest frequency would be k∞ = ∞, but
in a discretization with mesh parameter h, the largest frequency supported by the numerical
grid is kmax = C

h , where the constant C can be estimated by C = π, since the highest
possible oscillation on a grid with spacing h is to oscillate between the values 1 and −1 at
each node. It suffices therefore to minimize |ρ(kl)|2 for integers l such that kl ∈ [kmin, kmax].
We approximate here the minimization on the discrete spectrum by the minimization on two
continuous intervals,

min
pj ,qj∈R

(

max
k∈(kmin,k

−
)∪ (k+,kmax)

|ρ(p1, q1, p2, q2, k)|2
)

, (13)

where k− = ⌊ωL
π ⌋ π

L and k+ = ⌈ωL
π ⌉ π

L . As we have seen in Theorem 3.1, we need ω 6= k for
convergence, since for k = ω, the convergence factor ρ(p1, q1, p2, q2, k) = 1, independently of
what one chooses for the parameters pj and qj . The frequency k = ω represents however only
one single mode in the spectrum, and a Krylov method will easily take care of this when the
Schwarz method is used as a preconditioner. We therefore choose in that case k− = ω− π

L and
k+ = ω + π

L , and still optimize by solving (13).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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6 M.J. GANDER, L. HALPERN, F. MAGOULÈS

The complete study of the best approximation problem (13) is beyond the scope of this
short paper and will appear in [12]. By an asymptotic analysis of (13), we obtain however the
following result:

Theorem 4.1. Let ω be fixed, and let kmin < k− < ω < k+ < kmax = C
h . Then for h small,

the parameters

p1 = q1 =
C

3
4 C

1
8
ω

h
3
4

, p2 = q2 =
C

1
4 C

3
8
ω

2h
1
4

, (14)

lead to the asymptotic convergence factor

max
k∈(kmin,k

−
)∪(k+,kmax)

|ρ(p1, q1, p2, q2, k)|2 = 1 − 4C
1
8
ω

C
1
4

h
1
4 + O(h

1
2 ), (15)

where Cω = ω2 − k2
− if 2ω2 ≤ k2

− + k2
+, and Cω = k2

+ − ω2 otherwise.

Proof It suffices to insert the parameter choice (14) into the modulus of the convergence
factor ρ(p1, q1, p2, q2, k) in (12), to expand for h small, and to verify.
In practice however, other limits are of interest as well. A rule of thumb says that one needs
about ten points per wavelength resolution, which means that the mesh parameter h is coupled
with the frequency of the problem ω, through the relation h = Ch

ω = π
5ω . Furthermore, it has

been shown in [1] that for an accurate discretization when ω becomes large, one even needs
more points per wavelength, namely h = Ch

ωγ , γ > 1. Here, γ depends on the discretization, for
example γ = 3

2 for a P1 finite element method.

Theorem 4.2. Let k− = ω − δk−, k+ = ω + δk+, and let h = Ch

ωγ . If γ = 1 and π >
√

2Ch,
then for ω large, the parameters

p1 = q1 = (2δk)
1
8
(C2 − C2

h)
3
8

C
3
4

ω
7
8 , p2 = q2 = (2δk)

3
8
(C2 − C2

h)
1
8

2C
1
4

ω
5
8 , (16)

lead to the asymptotic convergence factor

max
k∈(kmin,k

−
)∪(k+, kmax)

|ρ(p1, q1, p2, q2, k)|2 = 1 − 4(2δk)
1
8

C
1
4

h

(C2 − C2
h)

1
8

ω− 1
8 + O(ω− 1

4 ), (17)

where δk = max(δk+, δk−). If γ > 1, then for ω large, the parameters

p1 = q1 = (2δk)
1
8
C

3
4

C
3
4

h

ω
6γ+1

8 , p2 = q2 = (2δk)
3
8

C
1
4

2C
1
4

h

ω
2γ+3

8 , (18)

lead to the asymptotic convergence factor

max
k∈(kmin,k

−
)∪(k+,kmax)

|ρ(p1, q1, p2, q2, k)|2 = 1 − 4(2δk)
1
8
C

1
4

h

C
1
4

ω
1−2γ

8 + o(ω
1−2γ

8 ), (19)

Proof Again, it suffices to insert the parameter choice (16) and (18) respectively into the
modulus of the convergence factor ρ(p1, q1, p2, q2, k) in (12), to expand for ω large, and to
verify.
Note that the condition π >

√
2Ch in the first part of Theorem 4.2 is not restrictive, since the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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Figure 2. Convergence factor of the optimized Schwarz method with the one-sided optimized Robin
conditions and the new two-sided optimized Robin conditions as a function of the Fourier parameter

k, for ω = 10π and h = 1/50.

minimum requirement of 10 points per wavelength leads to Ch = π
5 , and thus the condition is

satisfied.
Figure 2 shows the convergence factor obtained for a model problem on the unit square

with two subdomains, ω = 10π and h = 1/50. The optimal parameter for the old one-sided
optimized Robin condition was found to be s1 = s2 = 32.462(1 − i), which gives an overall
convergence factor of ρ = 0.4416, whereas for the two-sided Robin condition the parameters
are s1 = 86.874(1 − i) and s2 = 12.130(1 − i), which gives an overall convergence factor of
ρ = 0.3664, which means 20% less iterations, at the same cost per iteration.

5. NUMERICAL EXPERIMENTS

5.1. A model problem

We show first numerical experiments on a model problem which corresponds to our analysis
with two subdomains only. We study a two dimensional cavity on the unit square Ω with
homogeneous Dirichlet conditions on top and bottom, and on the left and right radiation
conditions of Robin type. We decompose the unit square into two subdomains of equal size
and we use a uniform rectangular mesh for the discretization. We perform all our experiments
directly on the error equations, f = 0, and choose the initial guess of the Schwarz iteration
so that all the frequencies are present in the error. We show two sets of experiments: the
first one uses ω = 9.5π, thus excluding ω from the frequencies kl relevant in this setting,
kl = lπ, l = 1, 2, . . .. This allows us to test directly the iterative Schwarz method, since with
optimization parameters k− = 9π and k+ = 10π we obtain a convergence factor which is
uniformly less than one for all kl, l = 1, 2, . . ..

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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8 M.J. GANDER, L. HALPERN, F. MAGOULÈS

Table I. Number of iterations when ω does not lie on a frequency of the problem.

Iterative Krylov
h Optimized Two-sided optimized Taylor Optimized Two-sided optimized

1/50 457 322 26 16 14
1/100 126 70 34 21 17
1/200 153 75 44 26 20
1/400 215 91 57 34 23
1/800 308 112 72 43 27

10
−3

10
−2

10
−1

10
1

10
2

10
3

h

Two−sided Robin
Robin
Two−sided Krylov
Robin Krylov
h

0.5

h 0.25

h 0.25

h 0.125

it
er

a
ti
o
n
s

Figure 3. Asymptotic behavior of the optimized Schwarz method with the one-sided optimized Robin
conditions and the new two-sided optimized Robin conditions for ω = 10π.

Table I shows the number of iterations needed for different values of the mesh parameter
h for one-sided optimized Robin conditions (see [14, 22]), and the new two-sided optimized
Robin conditions (see Theorem 4.1), and compares the results with Taylor conditions (i.e.
s12 = s21 = iω, see [8]) in the case of Krylov acceleration (without, Taylor conditions do
not lead to a convergent algorithm, because for all frequencies k > ω, the convergence factor
equals 1). The Krylov method used in this subsection is GMRES. Note that the two-sided
optimized Robin condition decreases the number of iterations by almost a factor of two over
the one-sided optimized Robin transmission condition at h = 1/100 and by almost a factor
of 3 at h = 1/800, at the same cost per iteration. When Krylov acceleration is used, one still
gains a factor of about 1.6.

Figure 3 shows the asymptotic behavior of the methods considered. The asymptotic analysis
is confirmed for the iterative version of the optimized methods. In addition one can see that

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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OPTIMAL ASYMPTOTIC PERFORMANCE OF AN OPTIMIZED SCHWARZ METHOD 9

Table II. Number of iterations when ω lies precisely on a frequency of the problem and thus Krylov
acceleration is mandatory.

Krylov
h Taylor Optimized Two-sided optimized

1/50 24 15 13
1/100 35 21 17
1/200 44 26 20
1/400 56 33 23
1/800 73 43 27

Table III. Number of iterations when ω increases and hω is held constant.

Krylov
ω Taylor Optimized Two-sided optimized

10π 24 15 13
20π 33 21 18
40π 43 24 20
80π 53 27 21
160π 83 44 32

the Krylov method improves the asymptotic factor, but a bit less than an additional square
root. Note the outlier for h = 1/50, which is due to the discrepancy between the spectrum of
the continuous and the discrete operator: ω = 9.5π lies precisely in between two frequencies 9π
and 10π at the continuous level, but for the discrete Laplacian with h = 1/50 this spectrum is
shifted to 8.88π and 9.84π and thus the frequency 9.84π falls into the range [9π, 10π] neglected
by the optimization. Note however that this is of no importance when Krylov acceleration is
used, so it is not worthwhile to consider this issue further.

Now we put ω directly onto a frequency of the model problem, ω = 10π, so that the
iterative methods can not be considered any more, since for that frequency the convergence
factor equals one. The Krylov accelerated versions however are not affected by this, as one can
see in Table II. The number of iterations does not differ from the case where ω was chosen to
lie between two frequencies, which shows that with Krylov acceleration the method is robust
for any values of ω.

Now we fix hω = const to see how the optimized Schwarz method behaves for higher and
higher values of ω, which corresponds to Theorem 4.2. Table III shows the number of iterations
as ω is increased, and shows that the method also behaves well in that case.

We finally tested for the smallest resolution of the model problem how well Fourier analysis
predicts the optimal parameters to use. Since we want to test both the iterative and the Krylov
versions, we need to put again the frequency ω in between two problem frequencies, and in this
case it is important to be precise. We therefore choose ω to be exactly between two frequencies
of the discrete problem, ω = 9.3596π, and optimized using k− = 8.8806π and k+ = 9.8363π.
Figure 4 shows the number of iterations the algorithm needs to achieve a residual of 10−6 as a
function of the optimization parameters p1 and p2, on the left in the iterative version and on
the right for the Krylov accelerated version. The Fourier analysis shows quite well where the
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Figure 4. Number of iterations needed to achieve a given precision, as function of the optimization
parameters p1 and p2 in the two-sided Robin transmission conditions, on the left for the iterative
algorithm and on the right for the Krylov accelerated one. The star denotes the optimized parameters

found by our Fourier analysis.

optimal parameters lie, and when a Krylov method is used, the optimized Schwarz method is
very robust with respect to the choice of the optimization parameters.

5.2. Airplane noise emission

We analyze now the noise level distribution near a city located close to an airport. The main
objective of this evaluation is the synthesis of the frequency response function at the buildings
as a result of noise generated by the engine of an airplane during the landing procedure.
The initial noise can come from various mechanisms (air-borne or structural-borne vibrations)
and can be difficult to predict. We perform a two dimensional simulation on a vertical cross
section of the city, for an A340 airplane of length 63.60 meters and height 16.70 meters. We
impose Dirichlet boundary conditions along the engine of the airplane, homogeneous Neumann
boundary conditions on the plane, on the ground and on the buildings, and the Bayliss-
Gunzburger-Turkel absorbing condition on the artificial boundary. The imaginary part of the
Galerkin solution is shown in Figure 6. Table IV shows the performance of the optimized
Schwarz method. Taylor conditions, optimized one-sided Robin conditions and the new two-
sided optimized Robin conditions are compared for a series of discrete models involving 210296,
370794, and 576215 grid points respectively. Each mesh is split into sixteen subdomains of
regular shape as illustrated in Figure 6. The two-sided optimized Schwarz method described
in this paper for the case of two subdomains can be extended to the case of many subdomains,
as already shown in [20, 14] for one-sided optimized Schwarz methods. Here, the same idea is
used in the special case where each subdomain has one and only one neighboring subdomain.
It is important to mention that the corner defined on the intersection of the interface (between
the sub-domains) with the artificial boundary conditions, do not lead to particular difficulties.
Indeed, during the finite element discretization, integration along the interface is performed
and the coefficients of the elementary matrices are simply assembled.

The computations are performed in parallel on a network of PCs. The Krylov method used
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Figure 5. Domain decomposition into sixteen subdomains.

Figure 6. A340 airplane noise emission over the city.

in this subsection is ORTHODIR. We stop the iteration when the residual reaches 10−8. Table
IV clearly shows the efficiency and the robustness of the new optimized Schwarz method with
two-sided Robin transmission conditions.
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Table IV. Number of iterations when the number of unknowns increases.

Krylov
unknowns Taylor Optimized Optimized 2p
210 296 172 119 58
370 794 183 132 66
576 215 194 147 72

6. CONCLUSIONS

We introduced a new optimized Schwarz method without overlap for Helmholtz problems which
uses two-sided Robin transmission conditions, i.e. Robin transmission conditions with different
parameters depending on which side of the interface we are on. We analyzed a model problem
with two subdomains, proved convergence of the algorithm, and showed that the performance
of the new optimized Schwarz method is asymptotically better than the performance when the
same parameter is used in the Robin transmission conditions. Numerical experiments showed
that the method behaves asymptotically as predicted on a model problem, and is very efficient
on a large scale acoustic problem involving more than two subdomains. We are currently
extending the ideas presented here to three dimensional problems.
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9. B. Després. Domain decomposition method and the Helmholtz problem.II. In Second Int. Conf. on Math.
and Numer. Aspects of Wave Propagation, pages 197–206, Philadelphia, PA, 1993. SIAM.

10. C. Farhat, A. Macedo, M. Lesoinne, F.-X. Roux, F. Magoulès, and A. de la Bourdonnaye. Two-level domain
decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering
problems. Comput. Methods Appl. Mech. Engrg., 184(2):213–240, 2000.

11. M. Gander. Optimized Schwarz methods for Helmholtz problems. In Thirteenth Int. Conf. on Domain
Decomposition Methods, Lyon, France, pages 245–252, 2001.

12. M. Gander, L. Halpern, and F. Magoulès. Optimal asymptotic performance of an optimized Schwarz
method without overlap for the Helmholtz equation. Technical report, Ecole Centrale Paris, France, 2006.
In preparation.

13. M. Gander, L. Halpern, and F. Nataf. Optimized Schwarz methods. In Twelfth Int. Conf. on Domain
Decomposition Methods, Chiba, Japan, pages 15–28, 2001.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



OPTIMAL ASYMPTOTIC PERFORMANCE OF AN OPTIMIZED SCHWARZ METHOD 13

14. M. Gander, F. Magoulès, and F. Nataf. Optimized Schwarz methods without overlap for the Helmholtz
equation. SIAM J. Sci. Comput., 24(1):38–60, 2002.

15. M. J. Gander. Optimized Schwarz methods, 2006. In print.
16. P. Grisvard. Singularities in boundary value problems, volume 22 of RMA. Masson, Paris, 1992.
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