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Shot Noise Current-Current Correlations in Multi-Terminal Diffusive Conductors

Ya. M. Blanter and M. Büttiker
Département de Physique Théorique, Université de Genève, CH-1211, Genève 4, Switzerland.

(February 1, 2008)

We investigate the correlations in the current fluctuations
at different terminals of metallic diffusive conductors. We
start from scattering matrix expressions for the shot noise
and use the Fisher-Lee relation in combination with diagram
technique to evaluate the noise correlations. Of particular
interest are exchange (interference) effects analogous to the
Hanbury Brown–Twiss effect in optics. We find that the ex-
change effect exists in the ensemble averaged current corre-
lations. Depending on the geometry, it might have the same
magnitude as the mean square current fluctuations of the shot
noise. The approach which we use is first applied to present a
novel derivation of the 1/3-suppression of shot noise in a two-
terminal geometry, valid for an arbitrary relation between the
length and wire width. We find that in all geometries corre-
lations are insensitive to dephasing.

PACS numbers: 72.70+m,73.23.Ps,73.50.Td

I. INTRODUCTION

The shot noise in mesoscopic systems [1] continues to
attract the attention of both theorists and experimen-
talists. For diffusive conductors, which are considered
here, the two-terminal shot noise is quite well studied.
The spectacular 1/3-suppression of the shot noise with
respect to the Poisson value,

S(ω = 0) =
1

3
eGV

(here, as usual, S(ω) is the Fourier transform of the
current-current correlator, S(t) = 〈∆I(t)∆I(0)〉, while
G and V are the conductance of the wire and the applied
voltage, respectively; ∆I = I(t) − 〈I〉), was derived in
three different ways: from the distribution of transmis-
sion eigenvalues in a wire [2], semi-classically from the
Langevin equation [3], and through a microscopic cal-
culation of local current densities [4]. Later, Nazarov
[5] claimed that this 1/3 suppression holds for an arbi-
trary two-terminal geometry (not necessarily quasi-one-
dimensional). Subsequent to experiments by Liefrink et
al [6], which demonstrated shot-noise suppression close
to 1/3 even for conductors much longer than the de-
phasing length, de Jong and Beenakker [7] provided
a semi-classical discussion which showed that the 1/3-
suppression is insensitive to dephasing. More recent ex-
periments by Steinbach et al [8] demonstrated the tran-
sition from the 1/3-suppression regime in wires short
compared to an inelastic length through an interaction-
dominated regime [9,10] to a regime where shot noise

is suppressed by inelastic scattering [2,11,12]. A macro-
scopic metal exhibits no shot noise [13].

Here we investigate the shot noise in mesoscopic diffu-
sive conductors in a multi-terminal geometry. Primarily,
we focus on the interference experiment [14], analogous
to the experiment of Hanbury Brown and Twiss in op-
tics [15]. Namely, we consider conductor, connected to
four reservoirs α, β, γ, and δ at equilibrium (Fig. 1), and
discuss three types of experiments. In the experiment A
current is incident from the probe β, i.e. µα = µγ = µδ;
µβ − µα = eV , µλ being the chemical potential of elec-
trons in the reservoir λ. In the experiment B current is
incident from the probe δ: µα = µβ = µγ ; µδ −µα = eV .
Finally, in the experiment C current is incident from both
probes β and δ: µα = µγ ; µβ = µδ; µβ − µα = eV . The
current correlation in probes α and γ is measured in all
the experiments, Sj(t) = −〈∆Iα(t)∆Iγ(0)〉, j = A, B, C.

The general analysis of Ref. [14] allows to express these
quantities in terms of scattering matrices ŝλν , with in-
dices λ and ν labeling the probes. Thus, for zero fre-
quency and temperature [16] one obtains







SA

SB

SC







=
e2

π
e|V |







Ξ1

Ξ2

Ξ1 + Ξ2 + Ξ3 + Ξ4







, (1)

with quantities Ξi defined as follows,

Ξ1 = Tr(s+αβsαβs+γβsγβ);

Ξ2 = Tr(s+αδsαδs+γδsγδ);

Ξ3 = Tr(s+αβsαδs+γδsγβ);

Ξ4 = Tr(s+αδsαβs+γβsγδ), (2)

the scattering matrices are evaluated at the Fermi sur-
face, and the trace is taken with respect to channel in-
dices.

Thus, SC 6= SA + SB: experiments A and B are not
additive due to the interference terms Ξ3 and Ξ4. It was
shown in Ref. [14] that these terms have different signs for
fermions and bosons; hence we will call them exchange
terms. We define an exchange contribution as

∆S = SC − SA − SB.

It follows from the unitarity of matrices sλν that the
quantities Ξ1 and Ξ2, which represent the classical result,
are positively defined [17]. At the same time, traces Ξ3

and Ξ4 can have either sign. This means that exchange-
interference may either suppress or enhance the classical
value.
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In a disordered system all these quantities should be
averaged over impurity configuration. Naively, one might
think that due to the phases contained in the quantities
Ξ3 and Ξ4 these will average to zero, and thus the av-
erage of the exchange term 〈∆S〉 vanishes (here angular
brackets are used to indicate the disorder average). Be-
low we explicitly calculate disorder-averaged correlation
functions Sj , and demonstrate that it is not the case.
The average exchange correlator 〈∆S〉 generally has a
nonzero value. An analysis of the exchange correlator
for chaotic cavities, reported elsewhere [18], leads to a
similar conclusion.

δ

y

x

a)

α

β

γ

δ b)

x

x

x

x

α α

β

β

γγ

δ
FIG. 1. Four-terminal conductors; the disordered area is

shaded.

The paper is organized as follows. First, we inves-
tigate disorder averages of scattering matrices starting

from Eqs. (2) and using the Fisher-Lee relation which
connects scattering matrices and Green’s functions. We
then use diagram techniques developed for disordered
systems to find the ensemble averages. As a simple check
of the method developed, we give a novel derivation of
the 1/3-suppression of the two-terminal shot noise for an
arbitrary (not necessarily quasi-one-dimensional) geom-
etry, thus confirming the result by Nazarov [5]. Then
we turn to exchange-interference experiments and con-
sider the two particular four-terminal geometries, shown
in Fig. 1. We demonstrate that the geometry of Fig. 1a
implies a negative exchange correlation, with the quan-
tity ∆S being of the same order of magnitude as correla-
tors SA and SB themselves. In contrast, the cross geom-
etry of Fig. 1b shows a strong suppression of exchange
effects, and gives a positive sign of the latter, provided
the motion through the center of a cross is ballistic. Oth-
erwise the exchange effect is governed by the scattering
inside the cross center only.

In the calculations below we disregard electron-
electron interaction. The latter is known not to produce
an essential effect on two-terminal shot noise [9,10] pro-
vided the wire is short in comparison with the inelastic
scattering length. We will show that the origin for this is
that in the ensemble averaged quantities the effect is local
and electron trajectories enclosing a large area are sup-
pressed. This explains why the shot noise is not sensitive
to dephasing. Hence, we believe that electron-electron
interactions are not important for the exchange effects
in shot noise. Note, however, that non-linear noise is
affected by interactions, as was shown recently [19]. In-
teractions are also expected to affect the frequency de-
pendence of the shot noise power.

II. GENERAL FORMALISM AND

TWO-TERMINAL SHOT NOISE

We consider a disordered two-dimensional system, con-
nected to reservoirs by ideal leads. Transverse motion of
electrons in each lead is quantized, and we assume that all
leads are wide, i.e. the number of transverse channels at
the Fermi surface in the lead λ is large, Nλ = pF Wλ ≫ 1.
Here pF is the Fermi momentum, while Wλ is the width
of the lead.

General relations [20–22] allow one to express scatter-
ing matrices for an arbitrary geometry through retarded
and advanced Green’s functions of the system. The stan-
dard procedure [22] is as follows. One chooses arbitrary
cross-sections of the leads Cλ, and introduces local co-
ordinates related to these cross-sections (Fig. 2). Since
nothing depends on the choice of these cross-sections, it
is convenient to choose them as boundary between disor-
dered region and leads. One obtains
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FIG. 2. Contact of a disordered region (shaded) with an
ideal lead λ.

sλν
mn(E) = −

i

4M2(vmvn)1/2

∫

Cλ

dyλ

∫

Cν

dyνGR
E(rλ, rν)

× (Dλn̂λ)(Dνn̂ν) exp(−ikmxλ − iknxν)

× χm(yλ)χn(yν) (3)

and

s+λν
nm (E) =

i

4M2(vmvn)1/2

∫

Cλ

dyλ

∫

Cν

dyνGA
E(rν , rλ)

× (Dλn̂λ)(Dνn̂ν) exp(ikmxλ + iknxν)

× χm(yλ)χn(yν). (4)

Here vm = km/M , M being the effective electron mass.
The longitudinal wavevectors in the lead λ are

km =
[

p2
F − (πm/Wλ)

2
]1/2

,

and those in lead ν are denoted by kn. Furthermore, n̂λ

is the unit vector in the direction xλ, while χm and χn

are wavefunctions of transverse motion in the leads λ and
ν respectively; for simplicity we choose them to be real.
Finally, D denotes a double-sided derivative,

fDg = f∇g − g∇f.

In principle, Eqs. (3) and (4) allow one to average
arbitrary combinations of scattering matrices over disor-
der, using the standard diagram technique [23]. It seems
that the approach outlined here has not so far been used
for the (analytical) calculation of any physical properties.
However, it is rather close to the Hamiltonian approach,
employed extensively for the calculation of conductance
and conductance fluctuations [24–28]. Below we demon-
strate that our formalism reproduces the 1/3-suppression
of two-terminal shot noise; in particular, as a simplest
check, we also reproduce the Drude formula for conduc-
tance.

The rest of the Section is devoted to the two-terminal
geometry — a diffusive wire of the length L and width W ,
connected to two ideal leads α and β; L, W ≫ l, with l
being the mean free path. For a moment we assume also
L ≫ W , a restriction, which eventually will be lifted.
We introduce an axis x̂ directed along the wire, 0 ≤ x ≤
L, and an axis ŷ directed across the wire. The general
expressions (3), (4) can be rewritten as

sαβ
mn(E) =

i

4M(kmkn)1/2

∫

Cα

dy1χm(y1)

∫

Cβ

dy2χn(y2)

×[−∂x1
+ ikm][−∂x2

− ikn]GR
E(r1, r2)|

x1=0,
x2=L (5)

and

s+αβ
mn (E) = −

i

4M(kmkn)1/2

∫

Cα

dy1χn(y1)

∫

Cβ

dy2

× χm(y2)[−∂x1
− ikn][−∂x2

+ ikm]

× GA
E(r2, r1)|

x1=0,
x2=L . (6)

Two-terminal shot noise power S ≡ S(ω = 0) can be
conveniently expressed through scattering matrices eval-
uated at the Fermi level [29,30],

S =
e2

2π
eV 〈Tr

[

s+αβsαβ
]

− Tr
[

s+αβsαβs+αβsαβ
]

〉. (7)

Note that the first trace on the rhs is related to the con-
ductance,

G =
e2

2π
〈Tr

[

s+αβsαβ
]

〉.

It is convenient to calculate both traces separately.

A. Evaluation of 〈Tr
[

s+αβsαβ
]

〉.

Using Eqs.(5) and (6), we find for the conductance

g ≡ 〈Tr
[

s+αβsαβ
]

〉 =
1

(4M)2

∑

mn

1

kmkn

×

∫

Cα

dy2dy3χn(y2)χn(y3)

∫

Cβ

dy1dy4χm(y1)χm(y4)

× [ikm − ∂x1
] [−ikn − ∂x2

] [ikn − ∂x3
] [−ikm − ∂x4

]

×〈GA(r1, r2)G
R(r3, r4)〉|

x1=x4=L,
x2=x3=0 , (8)

where the Green’s functions are taken at the Fermi en-
ergy. Since the averaged Green’s functions decay on
scales of the mean free path, the average product of two
Green’s functions, each of them taken in remote points,
is only due to the diffusion (see e.g. [31]):

〈GA(r1, r2)G
R(r3, r4)〉 =

∫

dradrb〈G
A(r1, ra)〉

×〈GA(rb, r2)〉〈G
R(r3, rb)〉〈G

R(ra, r4)〉P (ra, rb). (9)

The diffusion propagator P (r, r′) is a solution of the
equation

− D∇2
rP (r, r′) = (2πντ2)−1δ(r − r′) (10)

with appropriate boundary conditions (P = 0 at the con-
tact to the ideal leads; n∇P = 0 at the walls). Here
ν = M/2π, D = vF l/2 and τ are density of states, diffu-
sion coefficient, and elastic lifetime, respectively. Under
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the assumption L ≫ W the diffusion can be considered
to be one-dimensional, and the diffusion propagator does
not depend on y,

P (x, x′) = (Mτ2DWL)−1

{

x(L − x′), x < x′

x′(L − x), x > x′ . (11)

4,m

A

R R

A
2,n

3,n

1,m

FIG. 3. Diagram for the conductance. The double dashed
line represents the diffusion propagator. The position and
the transverse channel number of the points on the surfaces
Cα (x = 0) and Cβ (x = L) are shown. For example, the
transverse wavefunction χm is taken at the point y1.

Now we insert Eq. (9) into Eq. (8). The diagram for g
is shown in Fig. 3. One can approximate the short-ranged
Green’s functions as follows,

〈GR(r, r′)〉 = −
iM

pF
exp

[(

ipF −
1

2l

)

|x − x′|

]

× δ(y − y′). (12)

Then, integrating over transverse coordinates, we obtain

g =
M

16Dτ2LW

[

∑

m

1

km

(

1 +
km

pF

)2
]2

∫ L

0

dxadxb

× exp[−xa/l] exp[−(L − xb)/l]xa(L − xb). (13)

Taking into account that

∑

m

1

km

(

1 +
km

pF

)2

= 2W,

we obtain

g =
l

2L
pF W. (14)

Multiplied by e2/2π, Eq. (14) gives the Drude formula,
as it should be.

B. Evaluation of 〈Tr
[

s+αβsαβs+αβsαβ
]

〉.

The trace of a product of four scattering matrices can
be written as

t ≡ 〈Tr
[

s+αβsαβs+αβsαβ
]

〉 =
1

(4M)4

∑

klmn

1

kkklkmkn

×

∫

Cα

dy2dy3dy6dy7χl(y2)χl(y3)χn(y6)χn(y7)

×

∫

Cβ

dy1dy4dy5dy8χk(y1)χm(y4)χm(y5)χk(y8)

× [ikk − ∂x1
] [−ikl − ∂x2

] [ikl − ∂x3
] [−ikm − ∂x4

]

× [ikm − ∂x5
] [−ikn − ∂x6

] [ikn − ∂x7
] [ikk − ∂x8

]

×〈GA(r1, r2)G
R(r3, r4)G

A(r5, r6)

×GR(r7; r8)〉|
x1=x4=x5=x8=L,
x2=x3=x6=x7=0 . (15)

Employing Eq. (9) again, we find the diagrams shown
in Fig. 4. We omitted all diagrams containing a single
electron line connecting two different leads, since these
are exponentially small; the diagrams (a) and (e) contain
also counterparts, similar to (c) and (d).

1,k

a)

A

R

A

R

2,l

3,l

6,n

7,n 8,k

5,m

4,m

b)

c)

d)
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e)
FIG. 4. Diagrams for the quantity t in the same notations

as in Fig. 3. The single dashed line with a cross represents
impurity scattering.

The diagrams (b), (c) and (d) turn out to give the
leading contribution, whereas others carry small fac-
tors. Thus, for diagram (a) points y1 and y4 should
lie not further apart than a mean free path, which due
to the orthogonality of transverse wavefunctions implies
k = m. Therefore, the contribution of this diagram is
suppressed by a factor (pF W )−1 ≪ 1. The diagram (e),
which is topologically equivalent to (b), is suppressed as
(pF W )−3. Taking into account the explicit form (11)
for the diffusion propagator, and integrating over coor-
dinates yi and over one of two pair of coordinates in the
diffusion propagators (those lying close to one of the ends
of the wire), we arrive at the expression

t =
l8

2(4Dτ2WL)4

[

∑

m

1

km

(

1 +
km

pF

)2
]4

∫

dradrbdrc

× drd(L − xa)(L − xc)xbxdF (ra, rb, rc, rd). (16)

Here F is the Hikami box [32]. It is short-ranged (all
points ra, rb, rc, and rd should be close to each other),
and in the Fourier-space has the form

F (qa, qb, qc, qd) = −Mτ5v2
F (2π)2δ(qa + qb + qc + qd)

× [2(qaqc + qbqd) + (qa + qc)(qb + qd)] . (17)

Integration of the Hikami box over the cross-section of
the wire yields

∫

F (ra, rb, rc, rd)dyadybdycdyd = Mτ5v2
F W [2∂xa

∂xc

+2∂xb
∂xd

+ ∂xa
∂xb

+ ∂xa
∂xd

+ ∂xb
∂xc

+ ∂xc
∂xd

]

×δ(xa − xb)δ(xa − xc)δ(xa − xd). (18)

Inserting Eq. (18) into Eq. (16) and performing the
remaining integrations, we obtain

t =
l

3L
pF W = 2g/3 (19)

which immediately gives the 1/3-shot noise suppression.

C. Universality

Now we lift the requirement L ≫ W , but still consider
a diffusive system, W, L ≫ l. The result (14) for g =
〈Tr[s+αβsαβ]〉 is equivalent, in fact, to the Drude formula,
and is therefore valid for an arbitrary relation between W
and L. In the derivation of t = 〈Tr[s+αβsαβs+αβsαβ ]〉 we
should now take into account that the diffusion is not one-
dimensional any more, and write the diffusion propagator
in the form

P (r, r′) =
1

Mτ2D

∑

q

1

q2
φq(r)φq(r′), (20)

instead of Eq. (11). Here φq(r) and −q2 are eigenfunc-
tions and eigenvalues of the Laplace operator with appro-
priate boundary conditions. In our particular geometry
one obtains

q = (
π

L
nx,

π

W
ny),

with integers nx > 0 and ny ≥ 0. It is easy to see
that the integration over y1 and y8 in the diagrams of
Fig. 4 (b),(c),(d) places a constraint on the wavevec-
tor n1y of the diffusion propagator connecting these two
points, n1y = 2k (unless n1y = 0). In the same way, the
other integrations over yi imply other constraints, which
due to the δ-function in the expression for the Hikami box
(17) yield a constraint on the channel indices k, l, m, n.
Therefore all terms with non-zero transverse harmonics
are small as (pF W )−1. Up to terms proportional to this
small parameter the result (19) is exact. Thus, the 1/3-
shot noise suppression is, indeed, universal, and does not
depend on the ratio W/L, provided the system is diffu-
sive, in accordance with the conclusion of Ref. [5].

To conclude this section, we compare the method used
above with other derivations of the 1/3-shot noise sup-
pression [2–4]. As is well known, there exist two princi-
pally different methods of calculating conductance. One
can first evaluate conductivity (which is a local quan-
tity), starting from the Kubo formula, and then, after
integration over a cross-section one obtains the conduc-
tance. Alternatively, one can calculate conductance di-
rectly, starting from the Landauer formula. (In fact, our
derivation of the quantity g given above is of this kind).
Both derivations are equivalent, although at intermediate
stages they have not much in common.

A similar situation happens in the calculation of shot
noise. On one hand, one can calculate the microscopic
correlator of currents, and upon integration over a cross-
section obtains the shot noise power. The derivation of
Altshuler, Levitov and Yakovets [4] is exactly of this type
[33]. It can be generalized to an arbitrary geometry,
and, in principle, can be used for a broad class of prob-
lems. The local current correlator contains more infor-
mation than is necessary for the calculation of the shot
noise power. The method of Nagaev [3] and de Jong
and Beenakker [7], who employ the quantum Langevin

5



equation, is somewhat similar, although the equivalence
between these two approaches is not evident. The gen-
eralization of the latter approach for a multi-terminal
geometry does not seem to be quite obvious.

The derivation of Beenakker and one of the authors
[2], as well as the present method, belong to another,
scattering (or Landauer) type of approaches. Ref. [2]
derives the shot-noise power with the use of the distri-
bution of transmission eigenvalues of diffusive wire. This
proof seems to be the most elegant. However, one should
not forget that the distribution of transmission eigenval-
ues itself is derived by sophisticated methods such as the
DMPK equation [34]. Although Nazarov [5] succeeded
in extending this derivation to the case of an arbitrary
two-terminal geometry, most probably it can not be gen-
eralized to multi-terminal case: for conductors with four
(or more) probes the shot noise is not expressed through
eigenvalues of the scattering matrix s+s. The derivation
given in this paper is more general, and self-contained; it
does not require the distribution of transmission eigen-
values, and hence allows a generalization to an arbitrary
scattering geometry. We repeat that it differs from the
microscopic calculation of ref. [4]. Certainly, although
these two approaches can not be easily compared at in-
termediate stages, in the end they should lead to identical
results for arbitrary scattering geometries.

III. MULTI-TERMINAL SHOT NOISE

Now we turn to the exchange–interference experiment
described in the Introduction. We consider a four-
terminal geometry (examples are shown in Fig. 1; for
convenience, we still use the coordinates of Fig. 2), and
calculate the current correlation for experiments A, B,
and C.

The quantity Ξ1 = Tr(s+αβsαβs+γβsγβ) is determined
by diagrams of Fig. 4, where now points y1, y4, y5, y8

belong to the contact with lead β; points y2, y3 and
y6, y7 belong to the contacts with leads α and γ, re-
spectively. Therefore the diagram (e) is exponentially
small, while the diagram (a) is suppressed in the param-
eter (pF Wβ)−1. Hence, the quantity Ξ1 is given by the
same diagrams (b),(c), and (d), as the quantity t. Us-
ing Eq. (12) and integrating over the cross-section of the
leads, we obtain (Fig. 5)

Ξ1 =
1

2

(

M

4

)4
∑

klmn

1

kkklkmkn

(

1 +
kk

pF

)2 (

1 +
kl

pF

)2

×

(

1 +
km

pF

)2 (

1 +
kn

pF

)2 ∫

Cα

dyfχ2
l (yf )

∫

Cβ

dyadyc

×χ2
k(ya)χ2

m(yc)

∫

Cγ

dyhχ2
n(yh)

∫ 0

−∞

dxadxcdxfdxh

× exp((xa + xc + xf + xh)/l)

∫

dra . . . drhP (ra, rb)

×P (rc, rd)P (re, rf )P (rg, rh)F (rb, re, rd, rg). (21)

Here the points ra, rc, rf , rh are given in the coordinates
of the contacts β, β, α, γ, respectively.

h

2,l

3,l

6,n

7,n 8,k

5,m

4,m

1,k

γ β

α
ab

cd

ef

g

FIG. 5. Typical diagram for the quantity Ξ1.

In the same way, for the quantity Ξ3 one obtains

Ξ3 =
1

2

(

M

4

)4
∑

klmn

1

kkklkmkn

(

1 +
kk

pF

)2 (

1 +
kl

pF

)2

×

(

1 +
km

pF

)2 (

1 +
kn

pF

)2 ∫

Cα

dyfχ2
l (yf )

∫

Cβ

dyaχ2
k(ya)

×

∫

Cγ

dyhχ2
n(yh)

∫

Cδ

dycχ
2
m(yc)

∫ 0

−∞

dxadxcdxfdxh

× exp((xa + xc + xf + xh)/l)

∫

dra . . . drhP (ra, rb)

×P (rc, rd)P (re, rf )P (rg, rh)F (rb, re, rd, rg), (22)

and the points ra, rc, rf , rh are given in the coordinates
of the contacts β, δ, α, γ, respectively. Expressions for
the quantities Ξ2 and Ξ4 can be obtained from Eqs. (21)
and (22), respectively, by interchanging β ↔ δ.

Expressions (21) and (22) are valid for an arbitrary
four-terminal geometry and can be used for numerical
calculations. It is important that not only traces Ξ1 and
Ξ2, as one could expect, but also quantities Ξ3 and Ξ4

are phase insensitive. Indeed, the electron motion which
Eqs. (21) and (22) imply is just the diffusion between
different leads. No closed paths are formed, except for
ballistic motion due to the scattering described by the
Hikami box somewhere in the middle of the sample. Since
the size of this loop is very small, of order of the mean
free path, dephasing is not expected to have an effect
on the exchange noise. Certainly, some effects similar to
weak localization exist, however, as for conductance [31],
they are relatively weak (as (pF l)−1) in comparison with
the main effect. We do not discuss these effects here.

To make further progress we have to solve the diffusion
equation in a given geometry with appropriate boundary
conditions. We turn now to the two different geometries,
shown in Fig. 1.
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A. Box geometry

First, we consider the geometry of Fig. 1a. We assume
all leads to be wide, Wλ ≫ l. Then points ra, rc, rf ,
and rh are typically far from the lead’s boundaries. This
means that, for example, in the integral over yf one can
replace the diffusion propagator, P (re, rf ) by another

function P̃ (re, rf ), which is also a solution to the dif-
fusion equation, but with another boundary conditions,
appropriate for an open surface,

P̃ (r, r′)|x=0 = 0.

We do not need to specify boundary conditions for
P̃ (re, rf ) on the other boundaries, since the point re

is typically in the middle of the sample. Consequently,
we may substitute for all “true” diffusion propagators P
the functions P̃ , the solution with P̃ = 0 everywhere on
the boundary, as is appropriate for an open system. The
solution P̃ is

P̃ (r, r′) =
4

Mτ2DLxLy

∞
∑

nx,ny=1

1

π2n2
x/L2

x + π2n2
y/L2

y

× sin
πnxx

Lx
sin

πnxx′

Lx
sin

πnyy

Ly
sin

πnyy′

Ly
. (23)

Furthermore, the functions P̃ vary considerably on the
scale of the size of a sample, Lx and Ly. If we assume

Wλ ≪ Lx, Ly, the function P̃ (re, rf ) in the integral over
yf may be taken independent of yf . Thus, we obtain

Ξ1 =
1

2

(

M

2

)4

WαW 2
β Wγ

∫

dyadycdxfdxh

× exp

(

−
Ly − ya

l
−

Ly − yc

l
−

xf

l
−

Lx − xh

l

)
∫

drb

×drddredrgP̃ [Xβ , ya; rb]P̃ [Xβ , yc; rd]P̃ [re; xf , Yα]

×P̃ [rg; xh, Yγ ]F (rb, re, rd, rg) (24)

and

Ξ3 =
1

2

(

M

2

)4

WαWβWγWδ

∫

dyadycdxfdxh

× exp

(

−
Ly − ya

l
−

yc

l
−

xf

l
−

Lx − xh

l

)
∫

drb

×drddredrgP̃ [Xβ , ya; rb]P̃ [Xδ, yc; rd]P̃ [re; xf , Yα]

×P̃ [rg; xh, Yγ ]F (rb, re, rd, rg). (25)

Here Yα, Xβ, Yγ , and Xδ denote the positions of the
corresponding leads.

We see already from Eqs. (24) and (25) that the re-
sults are not-universal in the sense that they depend on
the geometry of the sample. Indeed, within the approxi-
mation in which we replace P by P̃ , the quantity Ξ1 does
not contain any information on the location and width of

lead δ; at the same time, it depends essentially on the lo-
cation and width of other leads. The quantity Ξ2 contains
information of all leads except β, whereas both Ξ3 and
Ξ4 are governed by the geometry of all leads. Therefore
all ratios Ξi/Ξj depend essentially on the geometry of
the sample. This is in contrast with the case of a chaotic
cavity [18], where one obtains Ξ1 = Ξ2 = −3Ξ3 = −3Ξ4

irrespectively of geometry, provided the leads are wide
enough.

Performing the integration and taking into account
that the remaining sums are converging rapidly for Lx ∼
Ly (the case we assume from now on), one obtains cum-
bersome expressions for the quantities Ξi. In the sym-
metric case, Lx = Ly = L, Wλ = W , Yα = Yγ = Xβ =
Xδ = L/2 they simplify. We obtain

{

Ξ1 = Ξ2

Ξ3 = Ξ4

}

=

{

η1

−η3

}

pF l

(

W

L

)4

, (26)

with positive constants

η1 =
1

2 sinh3 π
(cosh π − 1)(2π coshπ − sinhπ) ≈ 0.21 ,

and

η3 =
1

sinh3 π
(2π coshπ − sinhπ) ≈ 0.03 .

It is seen that the exchange effect exists, and has a neg-

ative sign (i.e. exchange suppresses the result of exper-
iment C in comparison with the sum of the results of
experiments A and B). Although the relative value of
the effect is Ξ3/Ξ1 ∼ 0.1, the effect should be clearly
observable.

B. Cross geometry

We consider now the cross geometry of Fig. 1b. We
assume that all arms of the cross have equal [35] lengths
L and widths W . For L ≫ W we can consider diffusion
as one-dimensional. We also assume that the center of
the cross is described by a reflection coefficient R and a
transmission coefficient T = (1 − R)/3 between any two
different arms.

The diffusion propagator is a solution of Eq. (10). We
move to the coordinate system of Fig. 1b and fix the point
r near the origin of the lead α, x ≃ L. We introduce

Pαλ(x, x′) = P (x, x′), if x′ lies in the arm λ,

which is proportional to the time-integrated probability
of diffusion from point x in the arm α to point x′ in the
arm λ. The solution satisfying the boundary conditions
and the condition of current conservation in the cross,

∑

λ

∂x′Pαλ(x, x′)|x′=0 = 0,
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is

Pαα(x, xα) =
1

MDτ2W

(L − x)(Lǫ + 3xα)

3 + ǫ
, x > xα

Pαλ(x, xλ) =
1

MDτ2W

(L − x)(L − xλ)

3 + ǫ
, λ 6= α. (27)

The constant ǫ, defined as the ratio of diffusion probabil-
ities,

ǫ =
Pαα(x, 0)

Pαβ(x, 0)
, (28)

is calculated in the Appendix. The result is

ǫ =

{

1 + l(LT )−1(1 − 2T ), T ≫ l/L
l(LT )−1, T ≪ l/L

. (29)

Now we substitute Eq. (27) into the general expres-
sions (21) and (22). Since the area of the cross is negli-
gible in comparison with the areas of the arms, we can
neglect the possibility of finding the Hikami box inside
the cross, and allow it to be situated only in one of the
arms. Upon integration we obtain

Ξ1 = Ξ2 =
l

3L
WpF

3(1 + ǫ2) + 4

(3 + ǫ)4
,

Ξ3 = Ξ4 =
4l

L
WpF

ǫ − 1

(3 + ǫ)4
. (30)

Thus, in the case T ≫ l/L, when the overall transmis-
sion through the sample is governed by the diffusive arms
rather than by the center of the cross, one has ǫ ∼ 1. The
quantities Ξ1 and Ξ2 are regular for ǫ = 1, and therefore
assume the finite value, Ξ1 = Ξ2 = (5/192)(pF Wl/L).
At the same time, the exchange terms Ξ3 and Ξ4 are
strongly suppressed in the parameter l/L, Ξ3 = Ξ4 =
(1/64)(pF Wl2/L2T )(1 − 2T ). In the less realistic case
T ≪ l/L (the transmission is determined by the cen-
ter of the cross) one obtains ǫ ≫ 1. All quantities Ξ1

are small, since now all channels are nearly closed (cf.
the situation for two-terminal shot noise [29,30]), how-
ever exchange terms are additionally suppressed in the
parameter ǫ−1.

Thus, in the cross geometry of Fig. 1b the exchange
noise 〈∆S〉 is suppressed in comparison with the regular
terms 〈SA + SB〉 irrespectively of the transmission prop-
erties of the center of the cross. It is also quite remarkable
that for the cross geometry the exchange contribution is
positive, although small: the total effect is enhanced by
the exchange.

IV. CONCLUSIONS

We have investigated shot noise in diffusive conductors
on the basis of Eq. (2) and the Fisher-Lee relation, which
expresses scattering matrices through advanced and re-
tarded Green’s functions. In this way, one can reduce

disorder averages of various combinations of scattering
matrices to standard diagram technique for Green’s func-
tions [31]. Although this approach resembles previously
published calculations of conductance and conductance
fluctuations [24–28], we believe it to be more transparent.
We are not aware of any applications of this approach to
noise problems.

As a check of the method, we first reproduced the
1/3-shot noise suppression in the two-terminal geome-
try and confirmed the statement of Ref. [5] that it is in
fact super-universal and holds for an arbitrary relation
between length and width of a wire, provided the system
is diffusive. Our proof bears some similarity with other
ones existing in the literature [2–4]; however, it is novel,
and a direct equivalence to any of the existing proofs is
not evident (see the discussion in the end of Section 2).

Then we turned to the multi-terminal geometry and
investigated the interference experiment, similar to the
Hanbury Brown and Twiss experiment known in optics
[15]. We obtained general expressions for scattering ma-
trix combinations (21), (22), determining noise intensi-
ties (1); then we investigated them for the two different
geometries of Fig. 1.

δ

α

β

γ

FIG. 6. Typical electron trajectories, contributing to the
quantity Ξ3. Solid lines denote ballistic propagation (de-
scribed by averaged single-particle Green’s function), and
dashed lines denote diffusive propagation (described by the
diffuson P ).

The important point we make is that the exchange
effect, even when averaged over disorder, does not van-
ish. The reason is that typical electron trajectories, con-
tributing to all averaged traces of scattering matrices,
considered above (i.e. quantities g and t for the two-
terminal geometry, and Ξi in the four-terminal case) do
not contain large closed loops. In particular, it is valid
for the “exchange” traces Ξ3 and Ξ4. A typical trajec-
tory for the quantity Ξ3 is shown in Fig. 6. It is a di-
rect translation of diagrams contributing to this quan-
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tity. The electron motion is essentially diffusion between
different leads with ballistic propagation (described by
disorder-averaged single-particle Green’s function) close
to the leads and somewhere in the middle of the sam-
ple (the later motion described by the Hikami box in
Eq. (22)). Thus, closed loops are related to ballistic mo-
tion over distances of an elastic scattering length only,
and therefore neither the shot noise in two-terminal con-
ductors nor the shot noise in multi-terminal structures
should be sensitive to dephasing.

Another observation is that exchange corrections are
not universal, in contrast to what is found in the chaotic
case [18]: the ratio 〈∆S〉/〈SA + SB〉 depends on the ge-
ometry of a sample in an essential way. Even the sign of
the effect may change: for the box geometry of Fig. 1a
it is negative, i.e. interference suppresses the total ef-
fect, while for the cross geometry (Fig. 1b) interference
enhances the effect (although weakly).

The results obtained for the cross geometry allow us
to make predictions for experiments in real systems. In-
deed, we found that the exchange contribution is sup-
pressed strongly with respect to the average noise in-
tensities 〈SA〉 and 〈SB〉. This result was obtained by as-
suming that the intermediate scattering, described by the
Hikami box, does not happen in the center of the cross,
i.e., strictly speaking, for ballistic propagation through
the center. In more complicated situations the entire
exchange effect will be determined by properties of the
center of the cross. If the motion within the center is dif-
fusive, one can apply the results obtained above for the
box geometry. The total exchange effect is expected to
be negative. However, since the arms of the cross (which
correspond to disordered leads in the real experiments)
contribute to the intensities 〈SA〉 and 〈SB〉, but not to
the exchange contribution, the latter will still be sup-
pressed, if disorder extends far into leads. Finally, if the
center of the cross is a chaotic cavity, one may use the
results of Ref. [18]. The exchange contribution in the
chaotic cavity separated from ideal leads by high barri-
ers (disordered arms play the role of these barriers) is
positive: the interference enhances the effect.
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APPENDIX

To find the coefficient ǫ defined by Eq. (28) it is in-
structive to consider a discrete model of diffusion [36].
Each arm is modeled by a one-dimensional array of scat-
terers, placed at a distance l from each other; the total

number of scatterers in each arm is N = L/l. Each scat-
terer is described by transmission t = 1/2 and reflection
r = 1/2 probabilities. We denote the carrier flux densi-
ties in the arm α between sites n and n+1 away from the
center of the cross by an, and the flux towards the center
of the cross by bn. Corresponding amplitudes in other
arms are denoted by a′

n and b′n (Fig. 7). The total flux
at each site is given by ρn = an + bn, and ρ′n = a′

n + b′n.
The coefficient ǫ can be expressed as ǫ = ρ0/ρ′0.

1

aaa

b b b

012

2 1 0

0 1 2

a a a

b b b

0 2

FIG. 7. Discrete diffusion model.

The diffusion equation implies that all densities should
be linear functions of n; furthermore, matching condi-
tions at each scatterer require bn−1 = an; b′n−1 = a′

n.
Thus, we write

an = A + B(n − 1), a′

n = A′ + B′(n − 1), (A1)

bn = A + Bn, b′n = A′ + B′n. (A2)

The four constants A, B, A′, B′ obey four equations:
1) Boundary condition for the arm β: b′N = 0.
2) Matching conditions at the center of the cross:

a′

0 = Tb0 + 2Tb′0 + Rb0, (A3)

and

a0 = 3Tb′0 + Rb0. (A4)

The fourth equation is Eq.(10), however, it is not re-
quired for the calculation of the constant ǫ. We obtain

ǫ =
2(N + T−1) − 3

2N + 1
, (A5)

and the limiting cases given by Eq. (29) follow immedi-
ately.
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1889 (1992).

[3] K. E. Nagaev, Phys. Lett. A 169, 103 (1992).
[4] B. L. Altshuler, L. S. Levitov, and A. Yu. Yakovets,

Pis’ma Zh. Eksp. Teor. Fiz. 59, 821 (1994) [JETP Lett.
59, 857 (1994)].

[5] Yu. V. Nazarov, Phys. Rev. Lett. 73, 134 (1994).
[6] F. Liefrink, J. I. Dijkhuis, M. J. M. de Jong,

L. W. Molenkamp, and H. van Houten, Phys. Rev. B
49, 14066 (1994).

[7] M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B
51, 16867 (1995); Physica A 230, 219 (1996).

[8] A. H. Steinbach, J. M. Martinis, and M. H. Devoret,
Phys. Rev. Lett. 76, 3806 (1996).

[9] K. E. Nagaev, Phys. Rev. B 52, 4740 (1995).
[10] V. I. Kozub and A. M. Rudin, Phys. Rev. B 52, 7853

(1995).
[11] A. Shimizu and M. Ueda, Phys. Rev. Lett. 69, 1403

(1992).
[12] R. Landauer, Ann. N. Y. Acad. Sci. 755, 417 (1995);

Physica B 227, 156 (1996).
[13] R. C. Liu and Y. Yamamoto, Phys. Rev. B 50, 17411

(1994); ibid 53, 7555(E) (1994).
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