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Résumé

Les services d’appareils mobiles deviennent de plus en plus utiles aux utilisateurs
en automatisant bon nombre des tâches qu’ils auraient normalement à effectuer
manuellement. Cela est facilité par l’amélioration continue de la sophistication
des services et des capacités des appareils. De l’évolution du simple rappel à
une multitude d’actions automatisées qui sont soit définies par l’utilisateur, soit,
dans un avenir proche, apprises par les dispositifs/services eux-mêmes.

L’appareil mobile moyen comprend plusieurs capteurs standard : un accéléro-
mètre (pour savoir quand l’écran tourne), une boussole (pour le positionnement),
un GPS (pour le positionnement), un capteur de lumière (pour régler la lumi-
nosité de l’écran), un microphone et une caméra. D’autres dispositifs peuvent
inclure différents types de capteurs comme la température, la qualité de l’air, la
fréquence cardiaque, etc. De plus, un téléphone mobile équipé de tels capteurs
se déplace avec son propriétaire et peut être utilisé pour collecter des informations
contextuelles en leur nom. Cela peut provenir d’une demande explicite, en sup-
posant une participation et une coopération humaines actives dans la détection
du contexte - ce que l’on appelle la détection participative.

Il est souvent essentiel de recueillir des données (température, qualité de l’air,
utilisation du téléphone, etc.) afin de créer des modèles réalistes qui pourraient
nous aider à comprendre et à prédire le monde ou à vérifier les théories et les
modèles développés en laboratoire. En supposant que les modèles et les algo-
rithmes prédictifs sont en place, le niveau d’automatisation n’est limité que par sa
capacité d’accéder aux flux de données et d’information ; cependant, le partage
de plus en plus de données personnelles augmente le risque que la vie privée d’un
utilisateur soit compromise en révélant son identité. Bien que des lignes directri-
ces et des comités d’éthique aient été mis en place pour protéger les utilisateurs
quant à la façon dont ces données sont recueillies et utilisées, il y a encore des
préoccupations en matière de protection de la vie privée qui doivent être abordées
dans les mécanismes fondamentaux par lesquels ces données sont recueillies et
diffusées. Dans cette thèse, nous montrons que la façon la plus sûre de protéger
la vie privée dans la détection opportuniste est de ne pas partager les données
qui constituent une menace pour la vie privée provenant du dispositif lorsque le
service ou la tâche peut très bien être exécuté sur le dispositif lui-même. Nous
montrons que la plupart des données des capteurs d’un appareil doivent être ma-
nipulées avec prudence en raison de leur potentiel de menace pour la vie privée
et proposons des solutions d’autoapprovisionnement des services pour mesurer
l’information de localisation par triangulation sans aide et le contexte de localisa-
tion en utilisant des traces d’identification cellulaire. Lorsque les données doivent
absolument parvenir à une tierce partie, nous montrons que des stratégies de
mélange opportunistes peuvent en effet être efficaces, mais pas nécessairement
efficaces dans le temps, pour anonymiser la source des données, mais que les
données elles-mêmes doivent être protégées des attaques d’inférence en utilisant
des méthodes supplémentaires de brouillage.
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Abstract

Mobile device services are increasingly becoming more and more useful to users
by automating many of the tasks that users would normally have to perform man-
ually. This is facilitated by the on-going improvements of the sophistication of
services and capabilities of devices. From the evolution of the simple reminder
to a multitude of automated actions that are either defined by the user or, in the
not-so-far future, learned by the devices/services themselves.

The average mobile device includes several sensors as a standard feature:
accelerometer (to know when the screen rotates), compass (for positioning), GPS
(for positioning), light (to adjust the display brightness), audio (microphone), and
image (camera). Other devices may include different types of sensors like tem-
perature, air quality, heart rate, etc. Moreover, a mobile phone with such sensors
roams with its owner, and can be used to collect context information on their be-
half. This can originate in an explicit request, assuming an active human partici-
pation and cooperation in context sensing – denoted as participatory sensing. It
is often vital to collect data (temperature, air quality, phone usage, etc.) in order
to create realistic models that might help us understand and predict the world or
verify theories and models developed in lab environments. Assuming that the pre-
dictive models and algorithms are in place, the level of automation is only limited
by the ability to access data streams and information; however, sharing more and
more personal data increases the chance of a user’s privacy being compromised
by revealing their identity. Although ethical guidelines and committees have been
put in place to protect people in terms of how this data is collected and how it is
used, there are still privacy concerns that need to be addressed in the fundamen-
tal mechanisms by which this data is collected and disseminated.

In this thesis we show that the most secure way to proceed with privacy in
opportunistic sensing is to not share data that is a privacy threat from the de-
vice when the service or task can very well be performed on the device itself.
We show that most of the sensor data on a device should be handled with cau-
tion due to their potential to be a privacy threat and propose solutions for service
self-provisioning for measuring location tracking information through unaided tri-
angulation, and location context by using cell ID traces. When data absolutely
needs to reach a third party, we show that opportunistic mixing strategies can in-
deed be effective, but not necessarily time-efficient, in anonymizing the source of
the data, however the data itself needs to be shielded from inference attacks by
using additional obfuscation methods.
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Chapter 1

Introduction

Mobile device services are increasingly becoming more and more useful to users
by automating many of the tasks that users would normally have to perform man-
ually. There has been an exponential increase in computation, communication,
and storage capacities available on personalized mobile and miniaturized devices
such as smartphones [1–3]. A simple reminder service on a calendar or agenda
has evolved to not only take temporal context such as the time to be triggered
but other contextual cues have been integrated such as location. This enables a
use case where someone can be reminded to buy a spare light bulb when they
enter the store to buy something unrelated (a Google reminder service already
available to consumers). Smart home ecosystems such as Google Home or Ama-
zon Echo are already available to consumers to control connected things in their
home using their devices. All these connected things, which fall into the Inter-
net of Things (IoT) nomenclature, collect and consume data in order to provide
some convenience to the user. The smart features of the modern reminder and a
multitude of other automated actions has been supported mostly by manual def-
initions that the user enters (for example, adding a location context manually for
a reminder) but more recently, the capability of software to suggest actions which
are automatically learned by the devices/services themselves is emerging.

What does it take to achieve such automation? Data and data mining. Data
mining encompasses any method or algorithm in which knowledge is produced
from the data. This includes but not limited to pattern recognition and machine
learning. Actionable knowledge can then be used to implement services that pro-
vide task automation. It is worth noting that in research, it is often vital to collect
data (temperature, air quality, phone usage, etc.) in order to create realistic mod-
els that might help us predict and understand the world or verify theories and
models developed in lab environments. Assuming that the predictive models and
algorithms are in place, the level of automation is only limited by the ability to ac-
cess data streams and information; however, sharing more and more personal
data increases the chance of a user’s privacy being compromised by revealing
their identity.

Data can be obtained through many types of sensors or surveys. Already,
the average mobile device includes several sensors as a standard feature: ac-
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celerometer (to know when the screen rotates), compass (for positioning), GPS
(for positioning), light (to adjust the display brightness), audio (microphone), im-
age (camera), and others. Other devices may include different types of sensors
like temperature, air quality, heart rate, etc. Moreover, a mobile phone with such
sensors roams with its owner, and can be used to collect context information on
their behalf. This can originate in an explicit request, assuming an active human
participation and cooperation in context sensing – denoted as participatory sens-
ing [4–6]. This participatory approach usually relates to urban sensing campaigns,
where mobile users manually tag specific locations with campaign-specific data,
for example, uncollected garbage. In contrast, the opportunistic sensing concept
builds upon sensing in an autonomic, continuous but unobtrusive way for the in-
dividual, for example, to generate air pollution maps throughout a city or provide
other essential services to the user [7].

In an opportunistic setting, where the data collection is managed autonomously,
user privacy must be taken into consideration. Opportunistic networks are a form
of mobile ad hoc networks that exploit the human social characteristics, such as
similarities, daily routines, mobility patterns, and interests to perform message
routing and data sharing. In such networks, the users with mobile devices are
able to form on-the-fly social networks to communicate with each other and share
data objects. Although the sensing phase can be opportunistic, there are strate-
gies for the data reporting phase which may not be opportunistic in nature. For
example, there may be a centralized entity which is used to anonymize the data
before the data collector receives it. As such, it is important to distinguish this kind
of semi-opportunistic sensing from a fully opportunistic one where all parts of the
sensing approach (mainly sensing and reporting) are achieved opportunistically.
Since the users do not have complete control over what/when data is being col-
lected and used, it can become a very intrusive strategy and as a result, users
will be reluctant to participate in such a setting in order to keep control of their
data and privacy. Thus, there is a need for a methodology of data collection that
can also provide privacy guarantees to the users. Although ethical guidelines and
committees have been put in place to protect people in terms of how this data
is collected and how it is used, there are still privacy concerns that need to be
addressed in the fundamental mechanisms by which this data is collected and
disseminated. Sensitive data such as location must be abstracted or obfuscated
in such a way that it cannot be linked back to a specific user while still retaining its
utility.

What is Privacy? In this thesis we will adopt the definition of privacy, in the
context of information technology, described by the Common Criteria Recognition
Arrangement [8] (CC), a multinational arrangement. They describe privacy as
user protection against discovery and misuse of identity by other users. We also
adopt definitions described in Pfitzmann et al. [9] which closely resemble the ones
of CC. According to CC, guaranteeing privacy requires the following:

Anonymity A user may use a resource or service without disclosing a user’s
identity. Other users or subjects are unable to determine the identity of a
user bound to a subject or operation.
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Pseudonymity A pseudonym is an identifier of a subject other than one of the
subject’s real names. It requires that a set of users and/or subjects are
unable to determine the identity of a user bound to a subject or operation,
but that this user is still accountable for its actions.

Unlinkability It ensures that a user may make multiple uses of resources or ser-
vices without others being able to link these uses together. In general,
Unlinkability of two or more items of interest (IOIs, for example, subjects,
messages, actions, ...) from an attacker’s perspective means that within
the system (comprising these and possibly other items), the attacker cannot
sufficiently distinguish whether these IOIs are related or not.

Unobservability It ensures that a user may use a resource or service without
others, especially third parties, being able to observe that the resource or
service is being used. In general, unobservability of an item of interest (IOI)
means undetectability of the IOI against all subjects uninvolved in it and
anonymity of the subject(s) involved in the IOI even against the other sub-
ject(s) involved in that IOI. Where undetectability of an item of interest (IOI)
from an attacker’s perspective means that the attacker cannot sufficiently
distinguish whether it exists or not.

1.1 Motivation

Privacy has been a hot topic in recent years. The availability of automatic data
collection methods and tools, propelled by continuous and rapid improvement of
machine learning techniques poses a threat to the privacy of everyday users. More
and more meaningful personal information can be inferred or derived from seem-
ingly unimportant data. A malicious entity can use the data to target users in both
the physical and digital world. They can sell the data to unethical organizations
that use it to exploit users or criminals can gain access to the data in order to
understand a user’s daily routine and to plan a burglary or other criminal acts.
Service providers that collect data may not only provide the intended services
but some may also sell it to advertising entities and as a consequence potentially
increase the vulnerability to malicious attacks that can compromise the user’s se-
curity and even their well-being. This deters privacy-conscious users from using
certain services that they deem to be too intrusive; it becomes a balancing act
between the data they are willing to share and the services they want. It is more
apparent in the phone usage case, but even the ambient light sensor can poten-
tially be used to reveal features of a person’s daily routines. At the same time,
it is increasingly useful and important for societies and policy-makers to perform
crowdsourced studies to understand population trends (for example, epidemiol-
ogy) as well as to provide improved automated services to users. For example,
it might be useful to understand if the introduction of safer cycling paths had an
effect on the frequency of physical exercise in the population. It is also useful to
understand when to show certain notifications to the user during their daily rou-
tines (for example, traffic information for the work commute, weather information
for a trip, etc.).
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1.1.1 The Mishandling or Malicious Use of Personal Data

Why care about privacy? A breach of privacy and anonymity in the data of in-
dividuals or populations can have social, political, and economical implications.
Several authoritarian regimes implement diverse mechanisms for the dismissal of
both privacy and anonymity to monitor their citizens ideologies and keep the sta-
tus quo [10]. There have been revelations that show some of these mechanisms
implemented even in regions such as the USA and Europe. The most infamous
case of such mechanisms were revealed by the Snowden leaks and brought to
light that the National Security Agency (NSA) in the USA was essentially spying
on their citizens [11]. Besides governments, the power of large corporations can-
not be dismissed. We see this with the recent Cambridge Analytica acquisition of
millions of user’s Facebook data was allegedly used to influence the USA presi-
dential elections in 2016 [12]. Overall, privacy and anonymity is important not only
for sustaining moral values such as freedom of speech but also individual safety.
Corporations have an extraordinary amount of data on their users and are often
targeted by malicious persons or entities seeking to gain access to such informa-
tion by exploiting vulnerabilities in the security infrastructure that is put in place
to protect this data. Other times corporations may provide a social feature that
inadvertently puts their users at risk. This was the case with Strava, a fitness ap-
plication, which created a public heatmap of running paths to aid users in finding
a good and tested path to run on. The problem became apparent when running
paths and patrol routes on military bases around the world, where soldiers also
used fitness trackers, were shown on the public heatmap. This caused major se-
curity concerns but the issue was mitigated by adjusting personnel policies and
the default settings of the application [13].

The ubiquitous nature of location-aware devices that we carry makes it possi-
ble for location-based services to function and collect location data from us. Even
if this data is anonymized, it is relatively simple to find out who it belongs to and
reveal user behaviour, preferences, and beliefs. The subsequent danger to user
safety and autonomy is substantial [14]. Location is used for a variety of tasks
ranging from high utility such as navigation or fitness tracking, which require a
relatively high degree of accuracy, to lower utility such as social media (sharing
current location) or location-based notifications, which most often do not require
an accuracy better than 50 meters. In every smartphone the location is deter-
mined using a location service such as Google Location which will provide the
geographic location in the form of GPS coordinates to any application that has
the appropriate permissions. This is necessary when we consider navigation ap-
plications but it is excessive for applications that do not need exact coordinates
but instead need contextual location information, like an abstract place such as
home or work or tracking information like the total distance traveled. Giving such
sensitive information to any application regardless of what the application actually
requires to function poses an immense risk to user privacy. Google could easily
expand its location service API to provide geographic location, contextual loca-
tion, or tracking information separate from each other but it is not the case for the
moment. Many solutions to provide such services exist in the literature but they
are mainly used as research tools rather than a commercial solution and are often
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for very specific situations. A generic and well rounded location service with the
aforementioned features is yet to be made available to consumers.

1.1.2 The Value and Exploitation of Personal Data

The explosion of data in the age of information has inevitably led to its moneti-
zation and exploitation which has been called the ”new oil” [15]. In an article on
Financial Times by Emily Steel et al. [16] they analyzed the data broker industry
and created a tool to estimate the value of an individual’s data based on certain
life milestones or general facts about them and on what data points are avail-
able. General information about a person like age, gender, and location (postal
code) cost a mere $0.0015 while getting more and more specific about marital
status, ethnicity, consumer habits, and especially health can increase the cost
significantly (for example, a data point that indicates the individual has asthma in-
creases the cost to $0.2615). Although these are the costs associated with buying
and selling personal data, they do not reflect the increased revenue that results
from properly utilizing this data for advertising and market research. For exam-
ple, advertisers can pay Facebook to show a certain ad to a specific demographic
or people meeting some specific criteria. This strategy of targeted advertising is
what creates a big portion of the personal data revenue. Another way that com-
panies can capitalize on personal data is through market research. This strategy
allows a company to gage the acceptance and usability of ideas or products on
the consumers before it is made or during its initial release in order to make future
improvements.

The data monetizing strategies that we mentioned allow companies such as
Facebook, and Google to provide services to consumers without a subscription or
other forms of monetary payment. The business model relies on consumer data
to make money through various means such as advertising and, as a result, the
phrase ”if you’re not paying for a product, then you are the product” is often cited.
Companies with as much influence as Facebook and Google have the upper hand
but as consumers start to question their data practices, these companies may fi-
nally be impacted enough to act. Indeed, consumers are becoming more aware of
this fact after recent news of data breaches or malicious use of personal data and
more importantly they are becoming aware of the value of their own data and pri-
vacy. Can companies and consumers find a compromise? A couple of solutions
might help to find a middle ground. The most straightforward is to directly pay
users for the use of their data. A portion of the advertising profits could be passed
along to consumers. Other pricing strategies are presented by Li et al. [17] and
Gkatzelis et al. [18]. Another way to find a compromise is to allow users to pay
a fee for privacy. Although this might seem convoluted in the sense that privacy
is seen as a fundamental right and no one should have to pay for it, a consumer
often-times agrees to relinquish it in exchange for signing up for a ”free” service.
Companies could safeguard consumer privacy by requiring a fee for the service
they provide. The price a consumer is willing to pay may vary significantly depend-
ing on the utility of the service and how companies frame the choices available to
them [19–21]. This latter point must be addressed because it can manipulate con-
sumer behaviour towards privacy in negative ways. A similar strategy is already
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applied to some smartphone applications, websites, and software which gives the
users a choice between receiving advertisements or paying a fee. Such a strategy
can easily extend to give users a choice between the service or website collect-
ing user data for targeted advertising or paying a fee to support the creators and
maintainers of the service or website.

Although users are aware of privacy issues with some data like location [22]
they may still choose to share it. This disparity between user privacy attitudes
and actual behaviour is known as the privacy paradox. Many studies have been
performed to understand the dynamics of this phenomenon and the general con-
sensus is that the immediate rewards of sharing private information (for example,
in social networks, applications) outweigh the privacy concerns [23, 24]. Further-
more, ignorance about which data may compromise privacy is another important
factor which determines if the user is comfortable sharing some data as was the
case with anonymized audio recordings [22].

In an effort to mitigate some privacy threats, the EU has introduced the Gen-
eral Data Protection Regulation (GDPR). This regulation provides rules for data
handling and dissemination. It puts significant restrictions on privacy sensitive
data such as medical records and special restrictions for data of underage per-
sons. Many of these restrictions are relaxed or simply do not apply in the context
of scientific research. Furthermore, although there are specific rules for how data
should be handled by corporations, there are not many restrictions on what they
can collect. The major impact of GDPR is with how entities inform users about
their data, how much control the user has over this data, and with restricting the
dissemination of the data to entities which the user has not expressly allowed.

1.2 Research Questions

This thesis aims to answer the following research questions:

1. Considering all the different sensor data that can be collected on a mobile
ubiquitous device, both data collectors and participants must be made aware
of what privacy threats come with sharing this data. For that, we must an-
swer the question: Which sensor data originating from a mobile ubiqui-
tous device has the potential to uniquely identify a person or to other-
wise reveal sensitive personal information?

2. With the current trends on mobile ubiquitous device processing power and
storage, the option to migrate tasks from the cloud to the edge to process
data and derive useful and actionable information can be seriously consid-
ered. Is it feasible to do data mining and provide basic services, like
localization, to users without transmitting sensitive data to a cloud ser-
vice from the mobile device or otherwise rely on a third party?

3. Opportunistic crowd-sensing leverages the mobility of participants in order
to opportunistically collect data from the environment. Some such crowd-
sensing schemes break from the opportunistic paradigm when it comes to
privacy measures during data reporting. Other schemes utilize the paradigm
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throughout the entire crowd-sensing framework, which includes the privacy-
related tasks of data reporting. Even so, they fail to prove that such an
opportunistic scheme can work in a real environment with real mobility data.
Can fully opportunistic crowd-sensing still be carried out for scientific
research without compromising the privacy of individual participants?

1.3 Methodology and Contributions

To answer our research questions we performed a literature review for privacy is-
sues concerning sensor data, we implement some of our own algorithms for loca-
tion self-provisioning, and we evaluate the efficacy of common mixing techniques
in a fully opportunistic environment.

Unless otherwise stated, we focus on devices which operate on the Android
OS. Our reasoning is that the vast majority of mobile devices are Android devices
and the well documented API of the operating system enables us to take a closer
look at all the features and capabilities of a device.

For the first research question, we look into the hardware capabilities of mod-
ern smartphones and into the Android OS API to see what sensor information can
be accessed by an application. Then, for each sensor, we look in the literature for
how it can be used to reveal private information.

For the second research question, we first look into the technological trends
of mobile devices in terms of power and storage. We review secure multi-party
computation techniques that can be used for data mining. Then, we propose
three algorithms in order to enable service self-provisioning for location data and
location-based services. One is designed to localize a person using trilateration
with the Cell IDs without knowing their locations. The other two use Cell IDs to
detect the location context of a person by either using graph based approach or a
relative distance matrix approach.

We answer the third question by accumulating the answers and discussions
of the previous two questions and also evaluating mixing strategies with real data
by proposing a simple multi-party shuffling scheme in a fully opportunistic set-
ting. The Mobile Data Challenge (MDC) data is used to analyze the interactions
between users and the effectiveness of shuffling the data in an opportunistic way.

1.3.1 Publications

Parts of this thesis have been submitted, published, and presented at scientific
journals and conferences. Table 1.1 lists these publications and the chapters
which they contributed to.
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Publication Title Authors Conf./Journal Status Chap.

Lightweight Clustering of Cell
IDs into Meaningful Neighbour-
hoods

M. Fanourakis,
K. Wac HetNets 2013 Published [25] 5

ReNLoc: An anchor-free lo-
calization algorithm for indirect
ranging

M. Fanourakis,
K. Wac WoWMoM 2015 Published [26] 4

mQoL: Experiences of the ’Mo-
bile Communications and Com-
puting for Quality of Life’ Living
Lab

K. Wac, M.
Gustarini, J.
Marchanoff,
M. Fanourakis,
C. Tsiourti,
M. Ciman, J.
Hausmann, G.
Pinar

HealthCom
2015 Published [27]

Differences in smartphone us-
age: Validating, evaluating, and
predicting mobile user intimacy

M. Gustarini, M.
P. Scipioni, M.
Fanourakis, K.
Wac

Journal of Per-
vasive and Mo-
bile Computing
2016

Published [28] 5

Using Cell ID Traces to Discover
Meaningful Places

M. Fanourakis,
M. Gustarini, K.
Wac

Under review 5

Efficacy evaluation of oppor-
tunistic data mixing with real mo-
bility data

M. Fanourakis,
K. Wac Under review 6

Privacy Threats from Smart-
phone Sensor Data

M. Fanourakis,
K. Wac Under review 3

Table 1.1: Publications.

1.4 Thesis structure

The structure of this thesis is as follows:
In chapter 2 we will present previous work that is relevant to this thesis. There,
we will present some data driven services, summarize the privacy metrics that are
commonly used, the strategies to attack or safeguard user privacy, and the strate-
gies to obfuscate data with the goal of having a privacy-conscious database. We
also take a look at the technological trends of mobile ubiquitous devices. In chap-
ter 3 we analyze sensor data collected from mobile devices in order to answer
the first research question of this thesis and provide some insights for the second
and third research questions of this thesis. In chapters 4 and 5 we describe meth-
ods to self-provide location or location context, one of the most difficult contexts
to self-provide without the use of third party services or battery-draining sensors
like a GPS. These chapters provide ample proof that service self-provisioning is
achievable for a multitude of situations thus answering the second research ques-
tion of this thesis. In chapter 6 we present a simple strategy for safeguarding user
privacy during the data reporting phase in order to evaluate the efficacy of some
data mixing techniques in the literature for opportunistic settings, which, in con-
junction with other described state of the art methods, answers the third research
question of this thesis.



Chapter 2

Related Work

This chapter will give an overview of topics that affect or are affected by our work
in this thesis as well as present the current state of the art on the problems that
we plan to address. In section 2.1 we will give an overview of how data is being
used in almost every service. In section 2.2 we will summarize the state of the
art of how privacy is measured. In section 2.3 we present the current popular
methods to obfuscate data in such a way as to provide certain levels of privacy. In
section 2.5 we will describe the latest techniques that provide privacy during the
data collection phase. In section 2.4 we give an overview of privacy attacks that
can be used on data. In section 2.6 we present the advantages and limitations
of secure computation and machine learning (i.e. homomorphic encryption). Fi-
nally, in section 2.7 we describe the edge computing paradigm and note the rapid
advancement of the resources available on smartphone devices throughout the
years.

2.1 Data-dependent Service Provisioning

Various data can be used to provide a service. Step count can be used by an
application that motivates the user to be more active. An application can use ac-
celerometer data to count the number of repetitions during some exercise. There
are also applications that keep track of the user’s menstrual cycle and predict
the next occurrence. A navigation application will use your location to calculate a
route to your desired destination. These, and countless more, fundamentally rely
on some data to perform their intended task. We focus on localization and location
context since it is more relevant to the content of this thesis (see chapters 4 and
5).

Several solutions exist for providing user location context to mobile devices, all
requiring data. A GPS based method in Sila-Nowicka et al. [29] identifies signifi-
cant places by looking at frequency of re-occurrence and amount of time spent in
a detected stop segment of a user’s GPS trajectory. Using the GPS, which pro-
vides direct geographical location, is a sure way to detect such places, however,
as we have mentioned previously, we consider that the GPS is off-limits due to its
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power consumption and poor performance in indoor environments.
PlaceLab [30] is a commonly used database that maps radio frequency (RF)

beacons like cell towers and WiFi APs to geographical locations. One can per-
form localization by comparing the beacons in range against the database and
thus estimate a probable location. CellSense [31, 32] is a fingerprint based tech-
nique to map Cell IDs into locations in two phases: an offline phase where data
is collected at certain positions such as Cell IDs in range and their signal strength
(RSSI), and the localization phase where a reading of neighboring Cell IDs and
their RSSI is mapped to an estimated position. Similar fingerprinting techniques
are not uncommon, however, they are not scalable since they require a data col-
lection phase and do not account for network infrastructure changes. Using either
PlaceLab, CellSense, or any other localization technique requires some further
analysis in order to determine significant places. A spatial clustering technique
can be used to cluster locations near each other into places, or a time-based clus-
tering technique can be used such as in Kang et al. [33] where they localized using
PlaceLab. This technique uses both the distance and the time between location
measurements to cluster them into places.

Kim et al. [34] remedy the issues in fingerprinting techniques such as CellSense
with SensLoc. They use the beacon fingerprints directly (without localization) to
determine significant places. Kim et al. compare beacon fingerprints in a sliding
window using the Tanimoto similarity measure and are able to detect entrance
and departure from a place as well as revisited places. Chen et al. [35] use an
electromagnetic (EM) propagation model to determine the distance of WiFi APs
from their RSSI in InferLoc. Using the calculated AP distances they then com-
pare them in moving windows to determine similarities and places by doing some
additional clustering. Both SensLoc and InferLoc use WiFi AP measurements in
order to determine significant places. The shorter range of WiFi can provide good
granularity indoors but unless there is at least one WiFi AP in range this algo-
rithm becomes unreliable. These algorithms may be able to benefit from using
Cell ID data in addition to WiFi, however the vastly different signal profile between
indoors and outdoors may pose issues, especially with InferLoc which relies on
an EM propagation model more suitable for outdoor environments. Furthermore
the WiFi transceiver of mobile devices consumes significantly more power than
the GSM transceiver. A survey of fingerprint based methods (signal based and
motion based) by Vo et al. [36] gives an overview of such techniques and we
can conclude that although some can provide relatively accurate estimations, the
use of some or a combination of GPS, WiFi antenna, accelerometer, compass is
common and some may use the camera.

There are techniques which rely solely on Cell ID data (Cell ID and times-
tamp tuples) to reveal significant places. Yadav et al. [37] make use of Cell ID
oscillations for PlaceMap to determine graph edges and then cluster Cell IDs into
significant places using an oscillation threshold parameter which is based on edge
weight and another threshold parameter to identify star topology in the graph.

WSN localization. It is relevant to look at wireless sensor network (WSN) lo-
calization as well when it comes to localization in the context of ad-hoc self-
localization. In a typical scenario there are mobile nodes which can measure
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their distance to other nodes or to other anchor points and use this information to
localize themselves.

In cases when the resources available do not allow for range measurements (or
angle measurements), range-free techniques can be applied such as the LHDV-
HOP algorithm [38] where number of hops were used as a distance measure with
an assumption that the network was uniformly distributed. Another technique is
the APIT algorithm [39] which localizes nodes by checking the triangular regions
that the nodes reside in to infer a smaller region from intersections of those re-
gions.

Many algorithms rely on anchor or beacon nodes which have knowledge about
their absolute or relative position from either sensors such as a GPS or a database
like PlaceLab [30]. In Ramadurai et al. [40] a probabilistic approach is described
that localizes nodes by utilizing range measurements from several anchor nodes.
In Srinath et al. [41] they have devised a method that only requires one mobile
anchor node in order to localize neighboring nodes and in turn uses in-ranging
technique to then localize nodes that are not directly communicating with the an-
chor node. In Doherty et al. [42] they model the network as a graph and use con-
vex optimization techniques to localize unknown nodes with respect to anchors.
Carter et al. [43] used semi-definite programming technique to create an accurate
highly scalable distributed localization algorithm that also has a dependency on
anchors. Such localization algorithms may need several anchors to localize which
makes the setup more difficult and less adaptable. Furthermore, anchor nodes
need to actively communicate their locations to other nodes, something that is not
always possible.

A very interesting tool is multidimensional scaling (MDS), a technique from
mathematical psychology. MDS can be used to calculate relative maps of nodes
based on distances between the nodes. From a graph of a network one can esti-
mate a distance matrix by calculating the shortest path between all pairs of nodes
and then apply classical MDS on the distance matrix. In Shang et al. [44] they
use MDS to build relative maps and then improve the estimations of the relative
map by using a few anchors to perform linear estimation. They later modified their
algorithm to be more efficient and scalable in their next work by breaking up the
network into subproblems [45]. In general, MDS is commonly used for building rel-
ative maps for localization in conjunction with anchors as seen in Ahmed et al. [46]
and Cheng et al. [47] among others.

In order to make a more adaptable solution some have developed completely
anchor-free algorithms to localize nodes. One way to do this is to make assump-
tions about the distribution of the nodes. Fang et al. [48] assume that the nodes
are deployed in clusters that are distributed as a Gaussian distribution. They local-
ize the nodes by using a combination of maximum likelihood estimation or small
area search in conjunction with gradient descent method. Velagapalli et al. [49]
adapted this algorithm for applications in non-flat terrain. Although this approach
is anchor-free, it needs the assumption of the distribution of the nodes which is not
always representative of their true configuration. Another approach in Jin et al. [50]
is using Ricci flow which overcomes many of the problems of MDS, however this
is limited to 2D cases. In Wen et al. [51] they use particle filters and Markov chain
Monte Carlo methods to localize, however it requires that all sensors are at fixed
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locations and that all links between sensors are bidirectional.

2.2 Privacy Metrics

There are several measures of anonymity for data content and in this section we
will summarize the most widely used.

k-anonymity. A protected data set is said to satisfy k-anonymity for k > 1 if, for
each combination of key attributes, at least k records exist in the data set sharing
that combination. It is able to prevent identity disclosure but, in general, is may fail
to protect against attribute disclosure. For example, Imagine that an individual’s
health record is k-anonymized into a group of k patients with k-anonymized key
attributes values Age =“30”, Height =“180cm” and Weight =“80kg”. Now, if all k
patients share the confidential attribute value Disease =“AIDS”, k-anonymization
is useless, because an intruder who uses the key attributes (Age, Height, Weight)
can link an external identified record (Name =“JohnSmith”, Age =“31”,
Height =“179”, Weight =“81”) with the above group of k patients and infer that
John Smith suffers from AIDS (attribute disclosure) [52–55]. An attempt to miti-
gate this shortcoming was made by introducing p-sensitive k-anonymity [56], how-
ever, it makes the assumption that each confidential attribute takes values uni-
formly over its domain and when this is not the case it may cause huge data utility
loss [55].

l-diversity. A data set is said to satisfy l-diversity if, for each group of records
sharing a combination of key attributes, there are at least l “well- represented”
values for each confidential attribute [57]. Some criticisms of l-diversity are pointed
out by Li et al. [58]. As with p-sensitive k-anonymity, it may be difficult to achieve
with low utility loss. Furthermore, a skewness attack or a similarity attack can be
used against it.

t-closeness. A data set is said to satisfy t-closeness if, for each group of records
sharing a combination of key attributes, the distance between the distribution of
the confidential attribute in the group and the distribution of the attribute in the
whole data set is no more than a threshold t [58]. It solves the attribute disclosure
vulnerabilities of l-diversity (skewness attack, similarity attack), however, there is
no clear computational procedure to enforce the t-closeness property and it limits
the utility of the data severely [55]. Li et al. [59] attempt to mitigate this shortcoming
by further introducing (n, t)-closeness which offers a way to relax the criteria and
increase the utility.

Others. There are several other anonymity measures [60,61] that are either new
or enhancements of the above mentioned, however there is little consensus in
the literature about which should be used. The two most commonly used are k-
anonymity and l-diversity, despite their shortcomings, because they are easier to
implement and verify than other more complicated measures.
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2.3 Privacy for Personally Identifiable Data

There has been substantial research and development efforts to provide certain
guarantees about data privacy being collected from mobile service users. En-
cryption implies encoding of the original data in such a way, that only authorized
parties can read it is relatively straight-forward to integrate but does not necessar-
ily guarantee privacy. Besides encryption, common strategies involve mixing the
data between multiple users, which we will describe in more detail in section 2.5,
or an introduction of some form of spatio-temporal noise or abstraction to add fur-
ther privacy. Additionally, in some implementations, there is the need for a trusted
central entity, i.e., trusted third party (TTP) that performs certain data anonymiza-
tion or abstraction tasks before the data is forwarded to the other parties. Using
TTPs means that a user has to trust that the TTP (server) is secured against out-
side threats and that it is not malicious in any way. There are also implementations
that do these tasks in a distributed ‘peer to peer’ manner without the need for a
TTP with additional strategies to mask the data [62–66].

Data perturbation techniques such as additive random noise, multiplicative
noise, and random projections are widely used to safeguard privacy by modifying
the original data. Although these techniques impact the utility of the data (some
more than others), this trade-off is normally accepted in exchange for increased
privacy [67–70]. Some of these techniques are vulnerable to various privacy at-
tacks which we will summarize in section 2.4.

Rule-based sharing like the one described by Choi et al. [71,72] allows a user
define their own privacy rules specifying whether they want to allow or deny shar-
ing of data based on conditions such as current context, location, timestamp, data
consumer, and sensor data themselves. This concept is a valuable addition to
frameworks that aim to preserve privacy since each user may have a different
sense of privacy and it allows them to personalize it. That being said, basic pri-
vacy rules should always be in place since not all users are aware of how their
data can compromise their privacy.

Privacy preserving queries in databases storing population data are also a
topic of interest when it comes to the privacy preservation of individual users con-
tributing their data to these databases. When an entity wishes to retrieve some
data from a database, techniques such as differential privacy are used in order
to preserve the anonymity of the retrieved user data from the perspective of that
query entity [73,74]. Although such a technique is mainly applied when a central-
ized server is involved, it can also have applications in a distributed setting.

Location privacy. One of the most privacy sensitive types of data is location
[14, 75–77] so it is not a surprise that a great majority of the research on privacy
preservation focuses on it. Using a variety of obfuscation and location abstraction
techniques, k-anonymity or l-diversity can be achieved. Some of these techniques
include adding artificial noise to the data so that the locations of different users are
more likely to intersect and provide some anonymity in numbers (increasing the
number of individuals having the same data reduces the probability of identifying
a user from a set of data, for example, One person who frequents a specific ice
cream parlor vs. multiple people being on the same street as the ice cream par-
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lor) [62]. There are other techniques that provide anonymity in numbers such as
geographic tessellation, where a geographical space is divided in regions that are
visited by at least some number of users and then these regions are used instead
of the actual locations. Rounding techniques or even peer to peer de-centralized
methods to provide k-anonymity are also implemented [78–83]. Other techniques
rely on mapping the location into an abstract space, which does not resemble the
real world but retains some geographic properties like relative distances. Such a
technique is the mapping of a space with a Hilbert curve [84,85].

2.4 Privacy Attacks

Having applied one of the techniques of data obfuscation does not necessarily
mean that the data is safe from attacks. There exists several methods to coun-
teract data perturbations. We will describe the most widely known attacks in this
section.

To counteract additive noise perturbation of the form Y = X + R one can use
several methods. Eigen-Analysis can be used when the degree of correlation be-
tween the original data attributes is high relative to the noise added. MAP estima-
tion can be used if the data and noise arose from a normal distribution. Distribution
analysis can be used if there is knowledge of the distribution of the un-perturbed
data. For matrix multiplicative data perturbation of the form Y = MX different
techniques can be used. If the attackers has knowledge of some unperturbed
data and their perturbed counterparts (known I/O) and M is orthogonal they can
use linear algebra and measure theory to estimate the real data. If there is known
I/O and the entries of M are generated independently from a 0 mean normal dis-
tribution then the attacker can use MAP estimation. If the attacker knows some
of X and M is orthogonal they can use Eigen-analysis. If M has rank n and the
data attributes are largely independent and at most one is Gaussian then the at-
tacker can use independent component analysis (ICA). The same technique can
be used if M is n × n and there is weak known I/O [86]. Some more techniques
are summarized by Okkaliogly et al. [87].

Anonymized location traces are vulnerable to inference attacks. An attacker
can find a person’s home location with relatively high accuracy and doing a reverse
lookup can identify some of the participants’ names. Although spatial cloaking,
noise, and rounding can be used to prevent such attacks, the utility of the data
can be significantly reduced and render it unusable [88,89].

Even differential privacy can be attacked somewhat. Coarse properties of the
population taken together can combine to build a model that can be applied to
individuals with high accuracy although this does not violate the privacy promises
of differential privacy [90].

2.5 Privacy in Data Reporting

If only aggregate information is needed from a set of data, privacy-preserving data
aggregation schemes have been proposed in order to safely provide aggregate
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information such as value averages, minimums, and maximums about the un-
derlying data using homomorphic encryption or other techniques [91–96]. These
aggregate values cannot be used by a researcher or other entity to train machine
learning models like neural networks or SVMs which most often require the data
to not be aggregated. It is advantageous to do the least amount of manipulation
on the data in order to retain as much utility as possible.

A common practice when performing studies is to use pseudonyms for the
participants while keeping the data at its pure form. However it has been shown
overwhelmingly that this does not necessarily guarantee the privacy of the partic-
ipants [66, 77, 97]. Other approaches use mix networks or mix zones to reassign
pseudonyms to the participants or to mix data. These methods have been shown
to be an effective way to protect the participant’s identity by decoupling the data
from the user who collected it [79,98,99]. Mix networks are well studied and quite
robust at what they are designed to do, which is to shuffle the batches of data (i.e.
permuting the order of the batches with respect to the pseudonyms). The limita-
tion of this approach is that the participants who generate the data often have to
trust the mix network and additionally, for many mix network designs, individual
data entries remain in the original batch so that when the identity of the participant
is discovered for one piece of data from a batch then the rest of the batch can
be assumed to belong to that same participant. Mix zones are fixed in space and
require that participants enter these zones to satisfy certain privacy aspects like
k-anonymity by guaranteeing that the data is mixed among k participants making
them unsuitable for opportunistic settings.

A novel approach to data privacy is slicing and mixing. First developed for
wireless sensor networks, it partitions the data horizontally and then mixes it be-
fore aggregating values (SMART) [100]. It has been adapted for privacy in data
publishing for human-generated data by partitioning the data both vertically and
horizontally where in the former, care is taken to group highly correlated attributes
together. Then these slices are permuted in order to break the linking between
different columns [101]. Many works have extended slicing to be used in partici-
patory sensing scenarios for privacy-preserving data aggregation [91] but only a
few have looked into how the mixing might perform in real world environment with
mobility data from real people (for example, Qiu et al. [96, 102] use taxi traces
to simulate participants) and none to our knowledge do an analysis of the ef-
fectiveness of mixing when it comes to opportunistic peer to peer (P2P) mixing
scenarios.

2.6 Secure Computation Using Homomorphic En-
cryption

A very promising direction in privacy is that of performing computations on en-
crypted data. This can be realized using a special kind of encryption called homo-
morphic encryption. Depending on the computational capabilities, homomorphic
encryption can be categorized as partially homomorphic, somewhat homomor-
phic, and fully homomorphic. Partially homomorphic encryption allows for addition
or multiplication operations but not both. Somewhat homomorphic allows for mul-
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tiple operations but a limited number of them. Finally, fully homomorphic allows for
an unlimited number of additive and multiplicative operations on encrypted data.

The first fully homomorphic encryption scheme was proposed by Gentry in
2009 [103], making it a fairly recent development. Since then many more have
been developed following the basic concepts of Gentry’s initial breakthrough, how-
ever there are still several challenges to overcome to fully realize an efficient and
robust fully homomorphic encryption scheme [104–107]. The three main chal-
lenges that keep fully homomorphic encryption from being practical are the large
size of the ciphertext in relation to the raw data, the resulting processing time
required to compute the operations, and the decryption time to retrieve the re-
sults. These issues are exacerbated as the amount of data to be computed in-
creases making it highly impractical for data mining applications in big data (or
even medium data).

On the other hand, partial homomorphic encryption can be used relatively effi-
ciently for applications that require simple operations like addition or multiplication
(but not both). Indeed, it has found its way into secure aggregation schemes for
crowd sensing and data mining [108,109].

Dowling et al. [110] have implemented CryptoNets, a neural network for optical
character recognition that works on encrypted data using homomorphic encryp-
tion. They use a ”leveled” homomorphic encryption which allows for multiplication
and addition operations but requires that one knows in advance the complexity of
the arithmetic circuit that will be applied on the data. Although the prediction time
takes 250 seconds per prediction, several prediction can be performed in parallel
resulting in a much higher throughput.

2.7 Edge Computing

The edge computing paradigm is a step forward toward privacy. The idea is that
data can be kept at the edge of the network (user devices) rather than the core.
Processing of the data and services can be realized at the edge and very few
information needs to be communicated towards the core. On the contrary, cloud
computing, collects the data towards the core of the network and most processing
and services are realized there. The latter is the current state of commercial
computing. Most services accessible through smartphone devices utilize the cloud
architecture in order to free up resources on the device (thus extending battery
life) and to keep information properly synchronized between different devices of
the same user. Keeping such massive amounts of data in the cloud makes it
vulnerable to data breaches as we have previously mentioned. Spreading the
data out to where it would be more accessible to the devices that need it greatly
reduces the chances of a data breach by increasing the effort and reducing the
reward of such actions.

As mobile devices are becoming more and more capable in terms of process-
ing and storage, the barriers that prevent the edge computing paradigm from being
realized are becoming easier to surpass. We only need to look at the specifi-
cations of various smartphone devices throughout the recent past to notice this
progress. Below, in table 2.1, we list the Google flagship phones since 2010. We
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choose this line of smartphones because it is a good indicator of the performance
of medium to high-end devices in the market.

Release Date Model CPU Storage RAM

January 2010 Nexus One 1GHz 512MB+ 512MB
December 2010 Nexus S 1GHz 16GB 512MB
November 2011 Galaxy Nexus dual-core 1.2GHz 32GB 1GB
November 2012 Nexus 4 quad-core 1.5GHz 16GB 2GB
October 2013 Nexus 5 quad-core 2.26GHz 32GB 2GB
October 2014 Nexus 6 quad-core 2.7GHz 64GB 3GB
September 2015 Nexus 5x hexa-core 1.8GHz 32GB 2GB
September 2015 Nexus 6p octa-core (4x1.95GHz, 4x1.55GHz) 128GB 3GB
October 2016 Pixel quad-core (2x2.1GHz, 2x1.6GHz) 128GB 4GB
October 2017 Pixel 2 octa-core (4x2.35GHz, 4x1.9GHz) 128GB 4GB

Table 2.1: Google flagship phones throughout the years.

It is clear that there is a steady improvement on the processing and storage of
this line of smartphones and we can be confident that they will keep improving in
the near future. Furthermore, we can expect improvements in battery technology,
especially considering the increasing popularity of electric vehicles which rely on
them. These improvements will enable the migration of many services from the
cloud to the edge.
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Chapter 3

Privacy Threats from
Smartphone Sensor Data

3.1 Introduction

An average smartphone is equipped with an abundance of sensors to provide a
variety of vital functionalities and conveniences. For example, the basic telephony
antenna which enables the smartphone to connect to the cellular network, or the
ambient light sensor which helps to automatically adjust the screen brightness to
a comfortable level. The data that these sensors provide pose no threat when
used for their intended purpose.

With the advent of crowd sensing, this data is collected indiscriminately in order
to find trends or discover interesting correlations in the data and are often kept in
large databases where malicious entities can use it for nefarious purposes by
revealing the identity of the persons who generated this data. For this reason,
there has been a noticeable effort in the research community to develop methods
and strategies to protect the privacy of the users while still being able to collect
usable data from them. These methods can introduce limitations in the utility of the
data and in, some cases, a non-negligible overhead in the overall data collection
and data mining processes, therefore, it is advantageous to know which data has
the potential to be a threat to a user’s privacy so that only that data and no other
is treated with the privacy-preserving methods that have been developed.

3.1.1 Contributions

In this chapter, we seek to identify what types of sensor data can be collected on
a smartphone and which of those types can pose a threat to user privacy. We
identify the data types by first looking at the hardware specifications of a typical
smartphone and then looking at the Android API to see what information can be
retrieved from this hardware. To determine the threat level of each type we look
into the literature for how this data can be used (for example, in behavioural bio-
metrics, inference attacks, behaviour modeling, etc.). Considering the large scope



20 Chapter 3. Privacy Threats from Smartphone Sensor Data

of the topic we choose to focus on novel or recent work which is based on or im-
proves upon older work.

3.2 Smartphone Data Types and Privacy

After analyzing hardware information of popular smartphones by Samsung,
Google, LG, HTC, and Huawei we present in this section the most common sen-
sors and data available. The information is presented in no particular order.

For certain data types we equate their potential for a privacy breach with their
usefulness as authentication modalities. Our reasoning is that if a particular data
type is unique enough to be used for authentication purposes, then it is certainly
unique enough to identify a person in a large dataset. Furthermore, if a particular
data type is significantly correlated with another data type which was evaluated to
be a privacy threat, then we conclude that this particular data type must also be a
privacy threat to some level.

Sampling Types For each data type we also note the type of sampling that
is required to derive useful information. In table 3.1 we define several sampling
types that can be used to collect information from sensors. We can use these
sampling types to qualify the threat-sensitivity of a particular sensor’s data. For
example, if some sensor only requires Type A sampling, where a single sample
is enough to derive some feature, then we can conclude that it a sensor which
can easily compromise an individual’s privacy and should avoid sharing any of its
data or be extremely selective over which data to share and to whom. On the
other hand, if a sensor requires Type F sampling, several samples can be shared
without compromising the privacy of an individual.

Type ID Sampling Type Description

Type A Single sample is enough to derive feature confidently

Type B Single sample is enough to derive feature somewhat confidently
while several samples can improve confidence

Type C Sampling only if there is a significant change is enough to derive
feature confidently

Type D Sampling at regular intervals during a day are enough to derive fea-
ture confidently

Type E Continuous sampling for the duration of the action is enough to derive
feature confidently

Type F Continuous sampling without limitations is needed to derive feature
confidently

Table 3.1: Sampling types.
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3.2.1 GPS and location

The Android API package android.location is a comprehensive package that in-
tegrates GPS, WiFi APs, and Cell Identity information in a proprietary method to
provide an accurate location estimate. The Location class in this package ex-
poses methods to provide longitude with getLongitude(), latitude with getLatitude,
the accuracy of the estimate with getAccuracy(), the altitude with getAltitude(), the
bearing with getBearing(), and even the speed with getSpeed().

Location data has received a significant amount of attention from the research
community in the context of privacy. It is seen as a major threat to individual pri-
vacy and at the same time its utility is undeniable as evidenced by the vast number
of location-based services available. Krumm [81] has outlined some of the threats
posed by location data. Someone can infer significant places like home and work,
and more recently, Do et al. [111] were able to reliably characterize 10 categories
of places of a person’s everyday life, these included home and work as well as
friend’s home, transportation, friend’s work, outdoor sport, indoor sport, restau-
rant or bar, shopping, holiday. Krumm shows examples of how pseudonymized
or anonymized location data can still be used to identify the people in the data.
Other information such as mode of transportation (bus, foot, car, etc.), age, work
role, work frequency, and even smoking habits can also be inferred from location
data. The evidence for the privacy risks of location data is overwhelming. For the
GPS sensor, Type A sampling is enough to reveal the location while type C and D
is enough for detecting personal and significant places.

3.2.2 Telephony

The network antenna is used to connect to the cellular network (GSM, edge,
HSPA, LTE, etc.). The Android API android.telephony package can be used to
get information such as the identity of the cell tower which the phone is connected
to (Cell ID) and the signal strength to this cell using the method getAllCellInfo()
from the TelephonyManager class. This class can also provide the service state
with getServiceState(), network type with getNetworkType, call state with getCall-
State(), and data state with getDataState().

The Cell ID can be used in conjunction with publicly available data of their
locations to localize a person as demonstrated by LaMarca et al. [30]. Although
a single sample is usually enough to determine an approximate location, several
samples might be needed to increase confidence (Type B sampling). As such,
the same privacy threats as location can be applied here. However, even without
knowing the location of the Cell IDs, one can infer places such as home and work
as done by Yadav et al. [37] as well as our own work [25]. Furthermore, since a
person’s connection traces to Cell IDs is directly related to the person’s location
traces, the Cell ID traces can be thought of as a quasi identifier much like location.
For this, Type C or D sampling is required.
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3.2.3 Bluetooth

The bluetooth antenna is used to connect to nearby bluetooth devices such as
wireless headphones or a smartwatch. The Android API android.bluetooth.le
package can be used to get a list of nearby bluetooth devices using the
startScan(...) method of the BluetoothLeScanner class. This method returns a
list of class ScanResult which includes the hardware ID of the bluetooth devices
with the getDevice() method and the signal strength with the getRssi() method.

Bluetooth connections to personal devices such as headphones and smart-
watch are, in general, unique to each individual, as such, they can be used as
identifying information. Bluetooth devices in range (not necessarily connected to)
are not as unique but provided that some of those Bluetooth devices are geo-
graphically stationary then a frequent Bluetooth device scan can also be used to
cruedly localize a person as demonstrated again by LaMarca et al. [30]. Type B
sampling is recommended for localization, while Type C or D is required to detect
personal or significant places.

3.2.4 WiFi Antenna

The WiFi antenna is used to connect to WiFi networks. The Android API an-
droid.net.wifi package can be used to get a list of WiFi access points (APs) using
the startScan() method from the WifiManager class. This method returns a list of
class ScanResult which include the AP identity in the BSSID public field and the
signal strength in the level public field.

WiFi connections to personal access points (APs) such as someone’s home
or work, much like Bluetooth, can be unique for each individual. It has also been
demonstrated that WiFi APs in range and their signal strength can be used to
localize a person by LaMarca et al. [30] and Redzic et al. [112] among many
others [36,113]. The same sampling requirements as Bluetooth apply for WiFi.

3.2.5 Touchscreen

The touchscreen is the main input method on a smartphone, it is used to se-
lect items on the screen, to type text, or other gestures which are out of the
scope of this work. The Android API package android.view includes the class
View.OnTouchListener which can be used to capture touch events. For security
reasons the location of the touch is only available to the application on the fore-
ground, but the touch event itself can still be useful information.

The dynamics of touch events (time between touches, duration of touch, pres-
sure, etc.) are categorized as keystroke dynamics and they have been researched
heavily for authentication and user recognition for hardware computer keyboards
and more recently for smartphones [114–116]. Frank et al. [117] show that touch-
screen data like navigational strokes (a subset of keystroke dynamics since they
do not include typing) cannot be reliably used for authentication as a standalone
but provides useful authentication features nonetheless and using this kind of data
for authentication is ultimately feasible. Antal et al. [118] and Roh et al. [119]
among others [120] have shown that keystroke dynamics along with additional
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features that can be collected on a smartphone (accelerometer, pressure, fin-
ger area) can be used to improve the performance of authentication. Continuous
sampling for the duration of the keystrokes is required for their detection (Type E
sampling).

3.2.6 Microphone

The microphone is used to capture audio to facilitate a phone call or to record
audio. The Android API android.media package includes the class AudioRecord
which can be used to capture the audio from the microphone. For the below
mentioned exploitation methods of audio signals, continuous sampling is required
for the duration of the action in order to apply the methods (Type E sampling).

The audio of someone speaking can be used to recognize them. Speaker
recognition is a well researched topic, low level features like short-term spectrum
and mel-frequency cepstral coefficients, voice source feature estimation, formant
transitions, prosodic features, and high level features such as lexicon have been
used in models like vector quantization (VQ), Gaussian mixture models (GMM),
support vector machines (SVM), and neural networks [121]. More recently, with
the advent of deep learning, more complex and robust modeling techniques have
emerged [122, 123]. Speaker recognition has reached a high enough technolog-
ical maturity level that it has found commercial applications in automated home
assistants such as the Google Home.

Many human activities produce characteristic sounds which can be used to
recognize them. Activities such as cooking, brushing teeth, showering, washing
hands, urinating, shaving, drinking, etc. have been shown to be recognizable by
the sounds they produce by several researchers [124–126]. More impressively,
not only can someone recognize the activity of typing on a physical keyboard but
also recognize what is being typed solely from the data of a microphone [127–
129].

Environmental noise features from audio recordings can be used to identify the
location of the recording. Acoustic environment identification (AEI), as it is com-
monly known, is mostly limited to room or enclosed space environments where the
geometry of the room can have noticeable effects on the reverberation of the au-
dio. The main applications of AEI are in audio forensics where an estimation of the
reverberation and background noise from a recording can be used to identify the
room or even the location inside a room where the audio was recorded [130–133].
Prior measurements or estimates of the impulse response of the rooms are re-
quired for these methods since they describe how the sound reverberates in that
room.

Since the room geometry can affect the audio reverberation patterns of a room,
someone could use an audio recording of a sharp noise (like a hand clap) to es-
timate the impulse response of a room and then estimate the dimensions or even
the shape of the room [134–136]. These methods are often tested under con-
trolled environments and with specialized audio equipment so it is unclear whether
a recording from a smartphone microphone would be sufficient for meaningful re-
sults.
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3.2.7 Camera

There are often two cameras on a smartphone, the front facing camera and the
main camera on the backside of the phone. They are used to take pictures, video,
and to facilitate video calls. The Android API android.hardware.camera2 package
provides the necessary methods to retrieve data from the camera.

Pictures or video from a camera can be used in a several different ways to
reveal information about the user even without the use of the file metadata. The
most obvious is if the subject of the picture is the user themselves or of people
related, in the social sense, to the user. If the subject of the picture is a city, a
street, or a landmark, algorithms can be used to match the pictures to a location
provided there is a database of prior pictures in that location [137–139]. There
are also algorithms that can recognize the style of an image and match it to a
known photographer [140, 141]. Since a single picture is used in these cases,
Type A sampling is enough. Videos can also be used with the aforementioned
techniques by treating them as sequences of still images. In addition, analyzing
the device movement from a video can also be used to identify the user similar to
gait recognition in other behavioural biometric identification schemes [142]. Type
E sampling is required for this.

3.2.8 Environmental and Activity Sensors

There is a variety of environment and activity sensors on smartphones. Their data
is exposed in the Android API android.hardware package with the classes Sen-
sorManager, Sensor, and SensorEvent. Each sensor type is assigned an integer
identifier constant with an appropriate name. Among these sensors are software
sensors, that is, sensors that do not have a direct hardware counterpart but are
calculated from the outputs of one or more hardware sensors. These sensors
do not require any special permissions to be accessed which makes it easy for a
rogue application or website to get this data without the user’s knowledge.

Many of these sensors are based on microelectromechanical systems (MEMS)
technology which has been shown to be vulnerable to sensor fingerprinting [143–
147]. The accelerometer, gyroscope, magnetometer, and barometer are all based
on MEMS technology. The idea behind sensor fingerprinting is that minor manu-
facturing defects give each sensor a unique output which is composed of the true
reading (acceleration, magnetic field strength, etc.) plus the bias caused by the
manufacturing defect. This makes it so that someone can discriminate the de-
vices which produce a given sensor output. To achieve this, Type E sampling is
required. In the sections below we will take a look at each individual sensor for
their respective privacy threats which are additional to the aforementioned sensor
fingerprinting.

Accelerometer The accelerometer (TYPE LINEAR ACCELERATION) is a hard-
ware sensor that measures linear acceleration. It’s main uses include adjusting the
display orientation to match the orientation of the physical display and as a step
counter among others. To derive other more interesting information besides the
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orientation of the device, Type E sampling would be required. The accelerome-
ter can be used in a variety of ways to become a threat to one’s privacy. It has
found uses in indoor localization systems where GPS is not available. Together
with gyroscope and/or magnetometer readings it can help to accurately track the
movement of a person [112, 148, 149]. It is often used for activity recognition
as well (sitting, walking, running, biking, cleaning, shopping, sleeping, cooking,
etc.) [150–153]. Its applications also extend into behavioural biometrics where
gait recognition uses the accelerometer to recognize a person based on how they
walk or move [115,116,154]. When coupled with touch event detection it has even
been used to detect what is being typed on the touch screen [155]. Therefore the
accelerometer can reveal not only location, but activity patterns throughout one’s
daily life, the identity of someone based on how they walk, and in some cases,
even what they type on their smartphone. It has been shown that auditory vi-
brations can be picked up by the accelerometer on modern smartphones like the
iPhone 4 or a Samsung Galaxy S4 and can be used to detect hotwords (short
keywords or phrases that are often used to activate voice assistants) or even what
is being typed on a physical keyboard nearby [156,157].

Gyroscope The gyroscope (TYPE GYROSCOPE) is a hardware sensor that
measures the rotation or twist of the device. It is often used in conjunction with
the accelerometer to measure the orientation of the device and to aid in naviga-
tion/localization schemes. Michalevsky et al. [158] show that sounds can affect
the measurements of a gyroscope to such a level that private information about
the phone’s environment can be revealed such as who is speaking and to some
extent, what is being said. Type E sampling is required for these methods.

Magnetometer The magnetometer (TYPE MAGNETIC FIELD) is a hardware
sensor that is mainly used to measure the Earth’s magnetic field for the purpose
of navigation. It has found uses in indoor localization schemes by comparing the
magnetic field to previously collected magnetic field fingerprints to localize a per-
son [159–161]. These methods require Type E sampling and prior data collection
to map the fingerprint to specific locations. It is not applicable for outdoor en-
vironments since these methods rely on the structural supports of building and
rooms which produce these magnetic fingerprints. For outdoor environments it
can only reliably measure the orientation of the smartphone with respect to the
Earth’s magnetic field.

Barometer The barometer (TYPE PRESSURE) is a hardware sensor that mea-
sures the atmospheric pressure. Not all devices are equipped with this sensor.
Barometric pressure varies depending on the weather and on altitude. Baring ex-
treme weather events, the rate of change of barometric pressure due to weather
is relatively slow (less than 0.04hPa per hour for steady weather, less than 0.5hPa
per hour for slow weather changes, and up to 3hPa per hour for rapid weather
changes). While in a city like Geneva, Switzerland where the highest altitude is
457m and lowest is 370m, one can expect a change of approximately 0.115hPa
per meter of altitude change. Based on these crude estimates it is no surprise
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that the barometric pressure is often used as an altimeter and with its inclusion
in smartphones it has aided in indoor navigation algorithms to determine the floor
that the person is on [148, 162–164]. As such, someone with access to barom-
eter data can learn about the altitude or floor in which a person lives and works
as well as altitude variations during their commute. The specific methods vary in
their sampling from Type B to Type F. For a city with many altitude variations like
Geneva, it does not seem out of the realm of possibility to be able to reconstruct
the commute path of a person based on barometric data, it is something worth
looking into.

Proximity The proximity sensor (TYPE PROXIMITY) is a hardware sensor that
measures distance. It is mainly used to detect when the user places the device
next to their ear during a phone call so that the screen can be turned off in order
to save power. In most cases the sensor has a very limited range of up to 5cm
and only tells you if there is something near it (less than 5cm). As such, it is only
useful to know if the phone is in a pocket, bag, or next to your ear when taking a
call. It does not appear to have any immediate implications to privacy.

Ambient light The ambient light sensor (TYPE LIGHT) is a hardware sensor
that measures the intensity of light. It is mainly used to automatically adjust the
screen brightness to a comfortable level. Ambient light during daytime varies sig-
nificantly for indoor and outdoor locales, therefore, someone can easily detect this
during the daytime using this sensor [165]. Type C or D sampling would be enough
to detect when the user changes from indoor to outdoor throughout the day. Kay-
acik [166] and Micallef et al. [167] created temporal and spatial models for light
sensor readings among other sensors and their results show that the light sensor
readings are among the sensors with the highest similarity between users. Based
on their results they conclude that, on its own, the light sensor is not sufficient
for authentication. An interesting exploit of the ambient light sensor was revealed
by Spreitzer [168] where they showed that by using variations in the ambient light
due to slight tilting of the smartphone while inputting a PIN they can improve their
chances of correctly guessing it. They used a corpus of 50 random PINs and
allowed themselves 10 guesses and managed to have an 80% success rate com-
pared to 20% if they randomly guessed. Type E sampling during the PIN entry was
used. The ambient light sensor has also found a use in indoor localization. If one
has control of the LED lighting in a room they can send detectable light variations
to the phone and help it to localize itself in the room [169]. Mazilu et al. [170] have
also shown that it is feasible to detect room changes solely based on the ambient
light sensor readings. Both of these indoor localization methods require Type E
sampling.

Gravity The gravity sensor (TYPE GRAVITY) is a software sensor that provides
the direction and acceleration due to gravity. It most commonly uses the readings
of the accelerometer and the gyroscope. It is directly correlated with the physical
orientation of the device. The main use of this software sensor is to remove the
gravity component from raw accelerometer measurements and be able to use
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those measurements for other tasks that require only the linear acceleration. On
their own, the gravity measurements have very little utility and therefore do not
pose any apparent threat to privacy.

Step The step sensor (TYPE STEP COUNTER, TYPE STEP DETECTOR) is a
software sensor that detects when the steps a user makes when walking. It uses
the accelerometer readings to derive the steps. When stride length is known (dis-
tance after one step) or accurately estimated from the height of a person, step
counts can be used to estimate the distance that a person has walked [171–174].
Since only one sample is needed to derive the distance, Type A sampling is
enough. Although there is significant error depending on what device is being
used or even depending on the speed that a person is walking, someone can
roughly determine the distances to nearby destinations where the user walks to.
There are no significant privacy concerns for this data since the accuracy of these
measurements can have significant errors over longer distances or even at differ-
ent walking speeds.
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3.2.9 Summary

In table 3.2 we summarize the possible threats of each sensor noting the type of
sampling that is required. Location and location features seem to be a common
type of threat for most sensors. In table 3.3 we summarize the literature which
was used.

Sensor Threat Summary Sampling Reqs

GPS location and personal places [81,111] Type A for location, Type C and
D for personal places

Cell ID location and personal places [25,30,33] Type B for location, Type C and
D for personal places

Bluetooth location and personal places [30], identity
(from connections to personal devices)

Type B for location, Type C
and D for personal places and
identity

WiFi
location and personal places [30, 36, 112,
113], identity (from connections to personal
devices)

Type B for location, Type C
and D for personal places and
identity

Touchscreen identity (keystroke dynamics [114–120]) Type E

Microphone

identity (speaker recognition [121–123]),
activity [124–126], keylogger (for physi-
cal keyboard [127–129]), location features
(AEI [130–133], room characteristics [134–
136])

Type E

Camera
location and location features [137–139],
identity (selfies, gait recognition from video
[142], author recognition [140,141])

Type A for static pictures, Type
E for video

All MEMS identity (MEMS sensor fingerprinting [143–
147]) Type E

Accelerometer
(MEMS)

location (indoor navigation [112,148,149]),
activity [150–153], PIN [155], identity (gait
recognition [115, 116, 154], speaker recog-
nition [156,157])

Type E

Gyroscope
(MEMS) identity (speaker recognition [158]) Type E

Magnetometer
(MEMS)

location (indoor localization via fingerprint-
ing [159–161]) Type E

Barometer
(MEMS)

location features (floor detection [148,162–
164]) Type B up to Type F

Proximity None

Ambient light
location features (indoor vs outdoor [165],
indoor navigation [169], room detection
[170]), PIN [168]

Type C and D for in-
door/outdoor/room features,
Type E for navigation and PIN

Gravity None

Step distance walked (estimated from number of
steps [171–174]) Type A

Table 3.2: Summary of sensors and corresponding privacy threats
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Citation Sensors used Derived information

[111] GPS, WiFi, Bluetooth, App Location of home, work, other personal
places

D
et

ai
ls Ground truth: User annotated data.

Methodology: Random forest classifier.
Accuracy & Limitations: GPS features alone gave 70.3% accuracy,
adding Wifi features to previous 71.7%, adding Bluetooth features to
previous 74.6%, adding app features to previous 75%. Infrequently vis-
ited places are not reliably recognized.

[30] WiFi, Bluetooth, Cell ID Map of radio beacons, location of user

D
et

ai
ls

Ground truth: GPS war-driving or institution databases with location of
radio beacons.
Methodology: tracker component that models signal propagation and
takes into account physical environment (for example, buildings). A
probabilistic Bayesian particle filter can be used to increase accuracy.
Accuracy & Limitations: lower accuracy than GPS.

[33] GPS, WiFi, Bluetooth, Cell ID Location personal places

D
et

ai
ls Ground truth: user annotated data.

Methodology: GPS or PlaceLab estimated location was used to col-
lect traces. Time based clustering was used on location traces to find
personal places.
Accuracy & Limitations: Does not label the personal places.

[25] Cell ID Detection of personal place

D
et

ai
ls Ground truth: GPS and user annotated data.

Methodology: graph based clustering of Cell IDs using Cell ID transi-
tion matrix populated by Cell ID oscillation events. Duration of stay in
clusters and time of day indicating home or work.
Accuracy & Limitations: limited to urban environment with relatively
dense cellular tower deployment. Does not detect places with shorter
durations of stay.

[112] WiFi indoor location

D
et

ai
ls Ground truth: ground truth.

Methodology: Fingerprinting of RSSI of WiFi access points at spe-
cific calibration points (CPs) and using naive Bayes to identify the three
nearest CP, then using interpolation driven by the likelihoods to find the
location of the user in the vicinity of those CPs (even using as few as 2
of them).
Accuracy & Limitations: Accuracy is around 2 meters which can be
significant in indoor environments even though they showed that this
method is better than many others. Requires calibration measurements
in advance.

[117] touchscreen (navigational
strokes) user identity

D
et

ai
ls

Ground truth: 41 users read text and compare images on an android
phone to produce natural navigational strokes.
Methodology: 30 behavioural touch features (for example, mid-stroke
area covered, direction of end to end line, start/end x, start/end y, and
more). From sets of highly correlated features, only one was selected.
Used kNN and SVM classifiers.
Accuracy & Limitations: 0% to 4% error (false negative and false pos-
itive combined) which is not ideal for authentication purposes. More
subjects needed to improve feature selection. Differences of screen
sizes of devices needs to be taken into account.

Continued on Next Page. . .
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Citation Sensors used Derived information

[118] touchscreen user identity

D
et

ai
ls

Ground truth: 42 users. Android application with its own keyboard.
Nexus 7 tablet (37 users) and LG Optimus L7 II p710 phone (5 users).
Users input a password 30 times (same for all).
Methodology: features: time between key press and release, time be-
tween consecutive key presses, time between key release and next
press, pressure of press, finger area of press, averages of previous
values. WEKA machine learning software was used. Analyzed several
classifiers.
Accuracy & Limitations: Best classifier was random forest with
82.53% accuracy using only time based features, and 93.04% accuracy
using time based features and touchscreen based features together.

[120] touchscreen, accelerometer,
gyroscope, magnetometer user identity

D
et

ai
ls

Ground truth: 100 users typing 3 answers of at least 250 words under
sitting or walking conditions. Sensor sampling at 100Hz.
Methodology: Scaled Manhattan (SM), scaled Euclidean (SE), SVM
verifiers using hand movement, orientation, grasp (HMOG) features, tap
and keystroke dynamics features.
Accuracy & Limitations: Best verifier was SM with Equal Error Rate
of 10.05% for sitting and 7.16% for walking. Including HMOG features
improved accuracy over only tap or keystroke dynamics. Cross-device
interoperability and varying walking speeds were not explored.

[125] microphone Human activity (cleaning, brush teeth,
walk, drink water, etc.)

D
et

ai
ls Ground truth: Sound recordings of each activity

Methodology: 5 random segments of 1.5 second from recording were
used. Mel Frequency Cepstral Coefficients (MFCC) were extracted for
each segment. Discrete time warping was used to get closest match.
Accuracy & Limitations: Average accuracy of recognizing each of the
14 activities was 92.5% (80% lowest, 100% highest). Sound samples
were recorded in a controlled environment, realistic data would improve
argument.

[129] microphone text typed on physical keyboard

D
et

ai
ls Ground truth: 10 minute recording of user typing in English

Methodology: Compute Cepstrum features of each keystroke. For
training, use clustering technique to separate into classes and language
model correction based on HMM to label and then train a classifier. For
recognition, use classifier and language model correction.
Accuracy & Limitations: 90% of 5-character passwords in fewer than
20 attempts, 80% of 10-character passwords in fewer than 75 attempts.
Classifiers user: linear classification, Gaussian mixtures, or Neural Net-
work.

[132] microphone environment (room)

D
et

ai
ls

Ground truth: 30 audio recordings in 6 different acoustic environments
(big classroom 1 and 2, small classroom, small seminar hall, seminar
hall, small room)
Methodology: Blind de-reverbaration was used to extract reverberant
component of audio. Impulse response was estimated via hand-clap
method. MFCCs were used as features, a multiclass SVM was used for
classification.
Accuracy & Limitations: 4 rooms identified with 100% accuracy, 2
rooms above 80% accuracy. Need to measure impulse response of
rooms separately. Environments were based only on university campus.

Continued on Next Page. . .
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Citation Sensors used Derived information

[135] microphone room dimensions

D
et

ai
ls Ground truth: simulations of rectangular and L-shaped room.

Methodology: Defined a cost function robust against wrong matches of
TOAs. Genetic algorithm was used to minimize cost function and derive
room dimensions.
Accuracy & Limitations: room dimensions for rectangular room are
within 10cm of actual size, for L-shaped room within 70cm. Should be
repeated in real room. Room shape known a priori.

[139] camera (photo) location

D
et

ai
ls Ground truth: 126M photos with Exif geolocations from the web.

Methodology: Used convolutional neural network (CNN) to train with
91M images, the rest used for validation. 237 geotagged Flickr photos
used to measure accuracy of model.
Accuracy & Limitations: When using any type of photo accuracy is
8.5% for 1km radius, 24.5% for 25km, 37.6% for 200km, 53.6% for
750km, 71.3% for 2500km. Using other contextual info increased ac-
curacy.

[142] camera (video) identity

D
et

ai
ls

Ground truth: 32 users recorded two 7 minute sequences with head-
mounted cameras.
Methodology: optical flow vectors computed for each frame. CNN with
2 hidden layers for classifier.
Accuracy & Limitations: 77% accuracy for 4 second of video, 90%
accuracy for 12 seconds of video. Stabilizing the video deteriorated
results. Requires that camera be mounted on person. Should consider
hand-held camera.

[144,146,147] MEMS (accelerometer, gyro-
scope, magnetometer) device identity

D
et

ai
ls

Ground truth: 3 devices on a robotic arm and moved in a predeter-
mined pattern. For magnetometer, 9 devices were tested, a solenoid
was placed around each device and a predetermined signal was pro-
duced.
Methodology: SVM classifier was used with different kernel functions.
Accuracy & Limitations: Over 95% accuracy to distinguish between
different models, over 65% accuracy overall. The inputs to the sensors
were controlled. This might not be possible to apply with data collected
in the wild.

[151] accelerometer
human activity (walking, jogging, as-
cending stairs, descending stairs, sitting,
standing)

D
et

ai
ls

Ground truth: 29 users performing each activity several times while
carrying a smartphone.
Methodology: Split data into 10 second segments, each segment ex-
tracted features like average acceleration, standard deviation, time be-
tween peaks, etc. WEKA with decision trees (J48), logistic regression,
multilayer neural networks (NN) with default settings.
Accuracy & Limitations: NN is best with an average of 91.7% accu-
racy. Up/down stairs had the worst accuracy as low as 44.3% and were
most often confused with each other or walking. Activity set is limited,
different carrying patterns of device not taken into account.

Continued on Next Page. . .
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Citation Sensors used Derived information

[155] accelerometer, gyroscope smartphone keyboard input

D
et

ai
ls

Ground truth: 10 users using a custom application for tapping icons
and typing text (each letter 50 times, 19 different pangrams, and 20
times the same pangram).
Methodology: Detect taps and extracts features of each tap (time
domain and frequency domain). kNN, multinomial logistic regression,
SVM, random forests, bagged decision trees are all used together in an
ensemble classifier.
Accuracy & Limitations: 90% accuracy for inferring tap locations, 80%
accuracy for letters. The classifier is resource heavy and could have
redundancies.

[156] accelerometer text typed on physical keyboard

D
et

ai
ls

Ground truth: iPhone placed on same surface as keyboard. Sentences
typed were selected from the Harvard Sentences corpus.
Methodology: Features from keypress data were used like root mean
square, skewness, variance, kurtosis, FFT, MFCCs. Two neural net-
works were trained with with a difference in features used.
Accuracy & Limitations: Tested with and without dictionary knowledge
and with a news article from a newspaper. As much as 80% accuracy
of typed content with the use of dictionary. Orientation of device, desk
surface material, typing speed, ambient vibrations can affect the perfor-
mance.

[157] accelerometer hotword detection (for example, ”okay
Google”)

D
et

ai
ls

Ground truth: 10 users recorded saying ”Okay google” and 20 common
short phrases 10 times each. Each recording played through phone
speakers 10 times for training at 70dB.
Methodology: 2 second window is used and time domain and fre-
quency domain features are extracted. For mobile scenario, a high pass
filter with 2Hz cutoff is used to remove effects due to movement. A de-
cision tree classifier is used.
Accuracy & Limitations: 85% in static scenario, 80% in mobile sce-
nario. The mobile scenario is very limited with just a controlled walking.
More complicated movements make it vastly more difficult to recognize
the hotwords.

[158] gyroscope identity, speech

D
et

ai
ls

Ground truth: Nexus 4, Nexus 7, Samsung Galaxy S III were used.
A loudspeaker at 75dB. TIDIGITS corpus was used (recordings of 10
users speaking the 11 digits twice each).
Methodology: 10-30ms sliding windows with time domain features and
MFCCs and Short Time Fourier Transform (STFT). SVM, GMM, DTW
were used as classifiers.
Accuracy & Limitations: Over 80% accuracy for gender ID using SVM.
Speaker ID ˜50% accuracy using DTW with Nexus 4 but 17% with Sam-
sung. Speaker-independent word rec performed poorly, but improved
to 65% using DTW with speaker-specific models. Results varied signif-
icantly between devices.

[160] magnetometer location (indoor)

D
et

ai
ls

Ground truth: Magnetic field map data collected by following serpen-
tine pattern in a room on x-axis and then on y-axis. Test data collected
following a well defined straight line, or circle path.
Methodology: Magnetic field map data was used to generate a map of
the field in the room. Test data was then matched to the map using a
particle filter.
Accuracy & Limitations: Within 0.7m of ground truth. Wi-Fi was used
to get coarse location as initial condition for particle filter.

Continued on Next Page. . .
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Citation Sensors used Derived information

[161] magnetometer location (indoor)

D
et

ai
ls

Ground truth: 2 users with HTC Nexus One phone. Magnetic finger-
prints collected in hallways of campus buildings as users walked along
the walls and pillars.
Methodology: Magnetic field fingerprints were collected and then DTW
was used on test data to match to the fingerprints.
Accuracy & Limitations: Hallways were detected with over 90% accu-
racy after only less than 5 meters of walking. Users were instructed to
walk close to objects that influence magnetic fields like pillars.

[164] barometer location (floor in building)

D
et

ai
ls

Ground truth: 63 trials at 5 different tall buildings in New York City
where barometric pressure was recorded and random floors were se-
lected. The user could choose either the staircase or elevator.
Methodology: Calculated the change in height based on the interna-
tional pressure equation. To resolve to a floor number they used calcu-
lated clusters derived from data of all visits to building (floor height could
be estimated).
Accuracy & Limitations: 65% accuracy when floor height is not known
and a default 4.02m was used (98% within 1 floor), 100% accuracy if
floor height has been previously estimated.

[170] ambient light sensor location (indoor room detection)

D
et

ai
ls

Ground truth: 3 users with Samsung Galaxy S4 collected data in their
homes. Users logged room label each time they entered a new room
on paper-based diary. Total of 132 hours of data
Methodology: If sensor data feature was higher than a fixed threshold
then a room change was detected. Decision trees (C4.5) were used for
room identification.
Accuracy & Limitations: Using only light sensor, accuracy was around
50%, with additional sensors like temperature and humidity the accu-
racy was above 60%. Random guess was 25% accuracy at best. Time
of day, weather, and open windows affected the performance.

[168] ambient light sensor PIN

D
et

ai
ls

Ground truth: Samsung Galaxy SIII was used. 29 test runs by 10 users
who entered 15, 30, or all 50 of the random PINs from 3 to 10 times.
Methodology: Multiclass logistic regression, discriminant analysis, and
K-nearest neighbor methods were used on the collected data with only
light intensity and with additional RGBW information which modern light
sensors include.
Accuracy & Limitations: 80% success after 10 guesses from a set of
50 PINs. The set of 50 PINs is unrealistic as there many more possible
combinations.

Table 3.3: Summary of selected state of the art

3.3 Discussion

After reviewing each data type in section 3.2 we conclude that most of them can
be used on their own to reveal something about a user be it small (for example,
the floor on a building) or big (for example, the location of their home and work).
Combining different data types can enhance the precision, or accuracy, or both as
evidenced by several of the surveyed research in table 3.3.

On the Android OS there is a permission framework to enable an application
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to explicitly request from the user if a certain data type can be used or not. Per-
missions that have a protection level of normal are automatically granted by the
system while those that have protection level dangerous require the user’s explicit
permission to be allowed. In the older versions of the Android OS, the permissions
were requested in batch when installing an application but on the latest Android
OS version the permissions are requested individually and on an as-needed ba-
sis during the runtime of the application (i.e. until the application needs to use
the microphone it will not ask for permission). Furthermore, on the latest Android
OS version, a user can adjust the individual data type permissions in the settings
for each application after the fact. Consequently, the user is informed about the
various data types that an application uses. The permission framework does not
cover the sensors in section 3.2.8 at this moment and it is unclear if it will in the
future.

Data type permission prot. level comments

Location (precise) ACCESS FINE LOCATION dangerous
Location (approximate) ACCESS COARSE LOCATION dangerous
Network Cell ID ACCESS COARSE LOCATION dangerous
Bluetooth APs BLUETOOTH ADMIN normal
WiFi APs ACCESS WIFI STATE normal

Touchscreen No permissions are required N/A

Touch event
only outside
application
window or
touch loca-
tion available
only to the
application in
foreground

Microphone RECORD AUDIO dangerous
Camera CAMERA dangerous
Accelerometer No permissions are required N/A
Gyroscope No permissions are required N/A
Magnetometer No permissions are required N/A
Barometer No permissions are required N/A
Proximity No permissions are required N/A
Gravity No permissions are required N/A
Step No permissions are required N/A

Table 3.4: Data types and corresponding Android OS permission requirements
and protection level

Christin et al. [66] summarize countermeasures to several privacy threats: tai-
lored sensing and user preferences, pseudonymity, spatial cloaking, hiding sen-
sitive locations, data perturbation, data aggregation, among others. They also
present important research challenges in this field that have yet to be fully ad-
dressed.

This and most such privacy research are concerned with threats in the context
of data collection campaigns for research and data mining but similar principles
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must also be applied to commercially available smartphone applications. Each
year Google has to remove more and more malicious applications from their mar-
ketplace amounting to hundreds of thousands of applications [175,176]. Although
a lot of malicious applications are automatically filtered, some may still slip through
and become available for millions of people to install. Some of these can easily
collect data such as location from unsuspecting users even if they have to request
the specific permission from the user. So many applications require the location
permission that a user might not think twice about allowing it. In table 3.5 we list
25 of the top installed Android applications [177] along with some of the relevant
permissions that are required to fully operate them [178]; the location permission
is very common.

Application Category Permissions

Facebook Social Location, Camera, Microphone, WiFi
WhatsApp Communication Location, Camera, Microphone, WiFi
Messenger (Facebook) Communications Location, Camera, Microphone, WiFi
Subway Surfers Game Arcade WiFi
Skype Communication Location, Camera, Microphone, WiFi
Clean Master Tools Location, Camera, Microphone, WiFi
Security Master Tools Location, Camera, Microphone, WiFi
Candy Crash Saga Game Casual WiFi
UC Browser Communication Location, Camera, Microphone, WiFi
Snapchat Social Location, Camera, Microphone, WiFi
My Talking Tom Game Casual Microphone, WiFi
Twitter News & Magazines Location, Camera, Microphone, WiFi
Viber Messenger Communication Location, Camera, Microphone, WiFi
LINE Communication Location, Camera, Microphone, WiFi
Pou Game Casual Microphone, WiFi
Super-Bright LED Flashlight Productivity Camera
Temple Run 2 Game Action WiFi
SHAREit Tools Location, Camera, WiFi
imo free video calls and chat Communication Location, Camera, Microphone, WiFi
Microsoft Word Productivity Camera, WiFi
Flipboard: News For Our Time News & Magazines
Clash of Clans Game Strategy WiFi
Spotify Music Music & Audio Camera, Microphone, WiFi
Shadow Fight 2 Game Action WiFi
Pokemon GO Game Adventure Location, Camera

Table 3.5: Top downloaded apps excluding pre-installed and system applications.
Only the following permissions were noted: Location, Camera, Microphone, and
WiFi.

Users should always question if an application really needs a specific permis-
sion to function. For example, location can be used for navigation, to check-in
to places in social media, to show local weather, to share your location with a
contact, for fitness tracking, to show location-based notifications, and many more.
The issue arises when an application does not need a precise location (for exam-
ple, a weather application) or only needs some tracking information (for example,
a fitness application). A user should not need to give more information than is
needed for an application to function much like when a stranger asks for your
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contact information you have the choice of giving them any of the following in-
formation depending on the intimacy level: first name, last name, email address,
phone number, home address, work address, friend’s address, parents’ address,
frequented bars, frequented shops, parents’ first and last names, etc. Technically,
all of these pieces of information can be considered contact information but you
would not give out all of them if you only need to give out a first name and an
email address for example. Sharing more than is necessary can feel highly in-
trusive. Therefore, a weather application should only get a meteorological region
instead of exact coordinates, and a fitness application should only get distance
and speed instead of the exact coordinates of the path you ran. There is currently
no mechanism on Android OS or any other popular smartphone operating system
that provides this level of abstraction when it comes to location information, loca-
tion context information, or most other types of data that can be collected on a
smartphone device.

This chapter reviewed the privacy threats of many data types available on a
smartphone but there are still more that need to be scrutinized. Examples include
other sensors like CPU temperature, and battery state data or application usage,
screen state (on/off), TCP connection information. Furthermore, it is important to
analyze current privacy measures to determine if they are enough to protect users
from each of the threats described here or additional measures are required.



Chapter 4

Location Tracking Service
Self-Provisioning

4.1 Introduction

Localization has many uses in both wireless sensor networks and ubiquitous com-
puting. In wireless sensor networks it is often desired to know the locations of
nodes in the network for several reasons: routing information efficiently through
the network, mapping sensor readings and building models, navigating robots in
unknown terrain, and others. One can expect similar uses in ubiquitous computing
as well as some specific uses such as enabling location-aware services, tracking
movement behaviors, modeling social interactions, and more. Almost all of these
tasks are realized through the use of the GPS sensor available in the majority of
personal ubiquitous devices, like smartphones, but several of these tasks do not
require geographic location traces such as the ones provided by the GPS. For ex-
ample, an application which is tracking the distance that a user has walked or ran
only needs the distance travelled and not the precise geographic path the the user
took. A common solution to this is to use a step counter to estimate the distance
traveled which has the additional advantage of not requiring much power but dis-
tance estimation from step count has many variables that can result in large errors
(gait distance of individuals, walking speed variations, and more). There are also
situations where the GPS is not a reliable localization method such as when the
user is indoors. This problem has motivated many different solutions, as we have
previously seen in chapter 2, which are designed considering factors such as ef-
fectiveness, accuracy, power consumption, reliance on infrastructure, robustness,
and ease of deployment. Very few address the aspect of privacy and none of them
address privacy, ease of deployment, and power consumption simultaneously.
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4.1.1 Contributions

In this chapter we introduce ReNLoc(Relaid raNging Localization), a range-based
self-localization algorithm that addresses the issues of power consumption, re-
liance on infrastructure, and ease of deployment while keeping the number of
assumptions about the network to a minimum. At the same time we satisfy ba-
sic privacy requirements regarding location since no geographic data needs to be
communicated for the non-distributed version of this algorithm; a singular mobile
node can use its own measurements to self-localize without any additional infor-
mation. ReNLoc operates in an environment with three or more stationary base
nodes where one or more mobile measuring nodes, able to measure their dis-
tance to base nodes and only to base nodes, use all the measurements collected
from all the measurement nodes (centralized version) or only their own and neigh-
boring measurements (distributed version) to localize themselves and the base
nodes. Section 4.2.1 describes the setup of ReNLoc in detail. In section 4.3.2
we describe the methodology for the estimations in ReNLoc. In section 4.3.4 we
describe the ReNLoc algorithm. In section 4.4 we show the results of simulations
with ReNLoc. Lastly, in section 4.5 we make our conclusions and describe future
work areas.

4.2 ReNLoc

4.2.1 Problem definition

Our approach in this chapter is tailored to networks that have two types of nodes,
base nodes and measuring nodes. We wish to localize the measuring nodes,
however, these nodes cannot measure their range to other measuring nodes but
only to the base nodes. In the approaches that we described in chapter 2 section
2.1, nodes can communicate and range indiscriminately to any other node. In
that sense, the nodes are of the same type in these approaches. Our approach
is especially convenient in ubiquitous computing settings where we can readily
relate the mobile ubiquitous device to the measuring nodes and the access points
(APs) to the base nodes.

Let there be stationary base nodes and mobile measuring nodes that can
measure their distance to the base nodes but not to other measuring nodes. The
base nodes can only communicate with measuring nodes and differ from the stan-
dard anchor nodes in that they have no knowledge about their position aside from
being stationary. The goal is for the measuring nodes to localize themselves rela-
tive to each other.
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Figure 4.1: Three base nodes B1, B2, and B3 along with the measuring node X
for which we have distance measurements at X1, X2, and X3.

The assumptions and requirements of our problem setup are as follows:

1. The base nodes are stationary (do not move)

2. There is a way to measure the distance between the measuring nodes and
the base nodes

3. There are at least 3 non-colinear base nodes (for 2 dimensional problem) or
4 non-coplanar base nodes (for 3 dimensional problems)

4. There are at least 3 non-colinear measurements (for 2 dimensional problem)
or 4 non-coplanar measurements (for 3 dimensional problems)

Let there be a total of N measurement instances and K base nodes. Let the
matrix Y be an N × K matrix that holds the distances between the measuring
nodes Xn and all stationary base nodes B at different measurement instances of
Xn:

Y =


‖X1 −B1‖ ‖X1 −B2‖ · · · ‖X1 −BK‖
‖X2 −B1‖

...
. . .

‖XN −B1‖ ‖XN −BK‖

 (4.1)

We will treat each measurement instance of measuring node Xn as a separate
node, i.e. the mth measurement of node Xn will be treated as a node Xw. So
then Yn,i is the distance of the base node Bi from measurement node Xn. Each
row of the matrix Y corresponds to one measurement instance, so lets denote
then Yn as the nth row of Y which represents the nth measurement instance. The
matrix Y is the only information we have about this problem.
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4.3 Distance estimates from a consensus of Y

Assuming that the base nodes are stationary, it becomes possible to calculate the
distance between any pair of base nodes using only the distance measurements
between each base node and the moving node X.

For example lets calculate Dn
i,j the distance between Bi and Bj using mea-

surement Xn:

Dn
i,j =

∥∥∥∥Yn,i − Yn,j [cos(θ)sin(θ)

]∥∥∥∥
=
√
Y 2
n,i − 2Yn,iYn,jcos(θ) + Y 2

n,j

(4.2)

Since we do not know the angle θ we cannot calculate the distance between any
pair of base nodes, but we can give a possible range of the distance by taking the
minimum and the maximum of the result in this equation, giving us:

Dminni,j = min(Dn
i,j) = |Yn,i − Yn,j | (4.3)

Dmaxni,j = max(Dn
i,j) = |Yn,i + Yn,j | (4.4)

Putting all inter-base node minimum and maximum distances in a matrix for each
measurement n:

Dminn = |(Yn ⊗ 1M )′ − (Yn ⊗ 1M )| (4.5)

Dmaxn = |(Yn ⊗ 1M )′ + (Yn ⊗ 1M )| (4.6)

Yn denotes the nth row of matrix Y which contains all node to base node distances
from measurement n. It is important to note that Dminn and Dmaxn are symmet-
ric matrices and the values on the diagonal can be replaced by zeros since the
distance of anything to itself is zero.

Aggregating these ranges from all the measurements can decrease the possi-
ble distance range and make the estimation more accurate:

Dmini,j = max(Dminni,j) for all n (4.7)

Dmaxi,j = min(Dmaxni,j) for all n (4.8)

Putting these values in two (symmetric) matrices Dmin and Dmax:

Dmin =



0 Dmin1,2 · · · Dmin1,M

Dmin2,1
...

...
. . . DminM−1,M

DminM,1 · · · DminM,M−1 0



(4.9)



4.3. Distance estimates from a consensus of Y 41

Dmax =



0 Dmax1,2 · · · Dmax1,M

Dmax2,1
...

...
. . . DmaxM−1,M

DmaxM,1 · · · DmaxM,M−1 0



(4.10)

Where Dmini,j denotes the minimum distance between base node i and base
node j and Dmaxi,j denotes the maximum distance between base node i and
base node j.

4.3.1 More constraints with the triangle inequality

The triangle inequality states that, for any triangle, the sum of the lengths of any
two sides must be greater than or equal to the length of the remaining side. Sup-
pose we have a triangle with side lengths A1, A2, and A3 then:

A1 ≤ A2 +A3 (4.11)

In our case, lets define a triangle of base nodes i, j, and k. Then we have the
inter-base node distance ranges Dmini,j to Dmaxi,j , Dmini,k to Dmaxi,k, and
Dmink,j to Dmaxk,j . Using the triangle inequality we can say the following:

Dmaxi,j ≤ Dmaxi,k +Dmaxk,j

Dmaxi,k ≤ Dmaxi,j +Dmaxk,j

Dmaxk,j ≤ Dmaxi,j +Dmaxi,k

(4.12)

And

Dmini,j ≥ max(|Dmaxi,k −Dmink,j | , |Dmaxk,j −Dmini,k|)
Dmini,k ≥ max(|Dmaxi,j −Dmink,j | , |Dmaxk,j −Dmini,j |)
Dmink,j ≥ max(|Dmaxi,j −Dmini,k| , |Dmaxi,k −Dmini,j |)

(4.13)

4.3.2 Applying the geometric constraints

By looking at disparities between pairs of measurements Yn we can get some
information about the location of the base nodes relative to the measurement po-
sitions and the location of the measurements in relation to each other.
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Calculating the inter-measurement distances

To do this we first calculate the distance range for each pair of measurements,
the distance between measurement node Xn and Xm. We will label this distance
Rn,m and the set describing its possible values as Rn,m.

Rn,m = ‖Xn −Xm‖ =

=

∥∥∥∥Yn,i − Ym,i [cos(θ)sin(θ)

]∥∥∥∥ =

=
√
Y 2
n,i − 2Yn,iYm,icos(θ) + Y 2

m,i

Rn,m = [|Yn,1 − Ym,1| , Yn,1 + Ym,1] ∩ · · ·
· · · ∩ [|Yn,K − Ym,K | , Yn,K + Ym,K ]

(4.14)

Where we notice that min (Rn,m) is greater than or equal to 0.
If min (Rn,m) is equal to 0 then this indicates that the two measurements Yn and
Ym are the same and therefore we can discard one of them for the equations in this
section where Rn,m is on the denominator. This will guarantee that min (Rn,m)
will always be strictly greater than 0, an important point which allows for a solution
to a few of the equations in this section.

Calculating the γ angles

Now we can find where the base node measurements agree for each pair (Yn, Ym)
as we move Xm from min (Rn,m) to max (Rn,m). This will allow us to calculate
the possible range of the angle γn,m,i, the angle between the base node Bi and
the node-to-node vector ~Vn,m given by nodes Xn and Xm. Given Rn,m, in order
to determine γn,m,i we first find where the measurements Yn,i and Ym,i intersect:

fn,m,i(r) =
Y 2
n,i − Y 2

m,i + r2

2r
(4.15)

And then use the inverse cosine:

γn,m,i(r) = ±cos−1
(
fn,m,i(r)

Yn,i

)
(4.16)

Yn,i
Ym,i

~Vn,mRn,m

fn,m,i(Rn,m)

γn,m,i

⊥ ~Vn,m

Figure 4.2: Two intersecting measurements,Yn,i and Ym,i.
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Let ḟn,m,i(r) and f̈n,m,i(r) be the first and second derivatives of fn,m,i(r), respec-
tively. Then,

ḟn,m,i(r) =
1

2
−
Y 2
n,i − Y 2

m,i

2r2

for sufficiently small r: f ′n,m,i(r) < 0

f̈n,m,i(r) =
Y 2
n,i − Y 2

m,i

r3

∀r > 0 : f̈n,m,i(r) > 0

Given the range of Rn,m calculated from equation 4.14, we are guaranteed
that for r ∈ Rn,m the measurements Yn,i and Ym,i intersect. Therefore, we can
find Gn,m,i, the set containing all possible γn,m,i, by using equations 4.15 and 4.16.
Let G+n,m,i = {γ|γ ≥ 0, γ ∈ Gn,m,i}, and G−n,m,i = {γ|γ ≤ 0, γ ∈ Gn,m,i} then,

G+n,m,i =cos−1
(
fn,m,i(Rn,m)

Yn,i

)
G−n,m,i =− cos−1

(
fn,m,i(Rn,m)

Yn,i

)
Gn,m,i =G+n,m,i ∪ G−n,m,i

(4.17)

Given the range of Rn,m, in order to determine the range of γn,m,i we must find the
minimum and maximum values of equation 4.15 with the appropriate constraint:

r ∈ Rn,m (4.18)

Case 1: Yn,i > Ym,i
In this case, we are guaranteed to have one minimum of equation 4.15 because
it is a convex function for all r > 0. Given that equation 4.15 is convex, to find the
minimum, we first calculate the derivative:

ḟn,m,i(r) =
1

2
−
Y 2
n,i − Y 2

m,i

2r2
(4.19)

Then set it equal to 0 and solve for r:

ḟn,m,i(rn,m) = 0

rn,m =
√
Y 2
n,i − Y 2

m,i

(4.20)

Applying the constraints on r described in 4.18 and keeping in mind that equation
4.15 is convex:

rmin =

 rn,m if rn,m ∈ Rn,m
min (Rn,m) if rn,m < min (Rn,m)
max (Rn,m) if max (Rn,m) < rn,m

(4.21)



44 Chapter 4. Location Tracking Service Self-Provisioning

Therefore:

min(fn,m,i(r ∈ Rn,m)) = fn,m,i(rmin) (4.22)

And max(fn,m,i(r)) then must occur at either rmax = min (Rn,m) or rmax =
max (Rn,m):

max(fn,m,i(r ∈ Rn,m)) =

max(fn,m,i(min (Rn,m)), fn,m,i(max (Rn,m))
(4.23)

Case 2: Yn,i ≤ Ym,i
In this case, the derivative of equation 4.15 (equation 4.19) is positive for all r > 0.
This means that for r ∈ Rn,m equation 4.15 is monotonically increasing and that
the minimum and maximum must be at the constraint edges:

min(fn,m,i(r ∈ Rn,m)) = fn,m,i(min (Rn,m)) (4.24)

And,

max(fn,m,i(r ∈ Rn,m)) = fn,m,i(max (Rn,m)) (4.25)

Now we can explicitly give the range of γn,m,i in the set Gn,m,i. Let G+n,m,i =

{γ|γ ≥ 0, γ ∈ Gn,m,i}, and G−n,m,i = {γ|γ ≤ 0, γ ∈ Gn,m,i} then,

G+n,m,i =[
cos−1

(
max(fn,m,i(r))

Yn,i

)
,

cos−1
(
min(fn,m,i(r))

Yn,i

)]
and

G−n,m,i =[
−cos−1

(
min(fn,m,i(r))

Yn,i

)
,

−cos−1
(
max(fn,m,i(r))

Yn,i

)]
giving

Gn,m,i = G+n,m,i ∪ G−n,m,i

(4.26)
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Figure 4.3: The possible configuration of the base nodes B1, B2, and B3 (solid
sections of circles) relative to X1 using the measurement pair (Y1, Y3).

Calculating the α angles

Let αn,m,l be the angle between ~Vn,m and ~Vn,l. We can find a range for α by using
the R values Rn,m, Rn,l, and Rm,l. Provided that the selected R values satisfy the
triangle inequality:

Rn,m ≤ Rn,l +Rm,l

Rn,l ≤ Rn,m +Rm,l

Rm,l ≤ Rn,m +Rn,l

(4.27)

Then we can use the law of cosines to calculate the angle αn,m,l:

Fc (Rn,m, Rn,l, Rm,l) =
R2
n,m +R2

n,l −R2
m,l

2Rn,mRn,l
=

= cos(αn,m,l)

(4.28)

Since we do not have exact values for R we can use the set R. We can check
all the partial derivatives of equation 4.28 to get an idea about the minimum and
maximum values:

∂Fc (Rn,m, Rn,l, Rm,l)

∂Rn,m
=
R2
n,m −R2

n,l +R2
m,l

2R2
n,mRn,l

∂Fc (Rn,m, Rn,l, Rm,l)

∂Rn,l
=
−R2

n,m +R2
n,l +R2

m,l

2Rn,mR2
n,l

∂Fc (Rn,m, Rn,l, Rm,l)

∂Rm,l
=− Rm,l

Rn,mRn,l
< 0

(4.29)
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From 4.29 we notice that the maximum of the cosine (minimum of the angle) must
occur at min(Rm,l) and the minimum of the cosine (maximum of the angle) at
max(Rm,l) since the particular partial derivative is strictly negative. It is not as
simple for Rn,m and Rn,l, but we can make some observations about the cosine
from equation 4.28 and applying the triangle inequality:

1. Rn,m −Rn,l ≥ Rm,l Fc (Rn,m, Rn,l, Rm,l) = 1
2. Rn,l −Rn,m ≥ Rm,l Fc (Rn,m, Rn,l, Rm,l) = 1
3. Rn,m +Rn,l ≤ Rm,l Fc (Rn,m, Rn,l, Rm,l) = −1
4. R2

n,m +R2
n,l = R2

m,l Fc (Rn,m, Rn,l, Rm,l) = 0

(4.30)

And some additional observations about the gradients in equation 4.29:

1. R2
n,m −R2

n,l > R2
m,l

∂Fc(Rn,m,Rn,l,Rm,l)
∂Rn,m

> 0

2. R2
n,l −R2

n,m > R2
m,l

∂Fc(Rn,m,Rn,l,Rm,l)
∂Rn,l

> 0

3. R2
n,l +R2

n,m < R2
m,l

∂Fc(Rn,m,Rn,l,Rm,l)
∂Rn,m

> 0
∂Fc(Rn,m,Rn,l,Rm,l)

∂Rn,m
> 0

4. Rn,l = Rn,m

∂Fc(Rn,m,Rn,l,Rm,l)
∂Rn,m

=

=
∂Fc(Rn,m,Rn,l,Rm,l)

∂Rn,m
> 0

(4.31)

For R values in R as defined in equation4.14, lets define four significant pairs:

P1 = (min (Rn,m) ,min (Rn,l))
P2 = (min (Rn,m) ,max (Rn,l))
P3 = (max (Rn,m) ,min (Rn,l))
P4 = (max (Rn,m) ,max (Rn,l))

(4.32)

Now, from the observations in equations 4.30 and 4.31 and letting
Rm,l = min(Rm,l) we can calculate the minimum of the angle minR(αn,m,l) using
equation 4.28: Letting Rm,l = max(Rm,l) we can calculate the maximum of the
angle using equation 4.28: Lets denote the set of possible αn,m,l derived from R
values as ARn,m,l:

ARn,m,l = [minR(αn,m,l),maxR(αn,m,l)] (4.33)

We can further limit the range of α by using the previously calculated γ angle
ranges. Lets denote the set of αn,m,l derived from γ values as Aγn,m,l, then:

Aγn,m,l = {α|α ∈ [0, π] ,Gn,m,i ∩ (Gn,l,i + α) 6= ∅ ∀i} (4.34)

Putting ARn,m,l and Aγn,m,l together to get An,m,l:

An,m,l = ARn,m,l ∩ Aγn,m,l (4.35)

Note that An,m,l = An,l,m
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Algorithm 1: Algorithm to calculate the minimum of the α angle according
to R.

Data: R
Result: min (α)

1 if P2 and P3 satisfy 4.30.1 or 4.30.2 then
2 minR(αn,m,l) = 0
3 else

4

minR(αn,m,l) =
min (arccos (Fc (P1, Rm,l)) ,

arccos (Fc (P2, Rm,l)) ,
arccos (Fc (P3, Rm,l)) ,
arccos (Fc (P4, Rm,l)))

5 end

Algorithm 2: Algorithm to calculate the maximum of the α angle accord-
ing to R.

Data: Y measurements
Result: R, G, A, B, X

1 if P1 satisfies 4.30.3 then
2 maxR(αn,m,l) = π

3 else if min (Rn,m)
2 ≤ Rm,l or min (Rn,l)2 ≤ Rm,l then

4 maxR(αn,m,l) = arccos(Fc(P1, Rm,l))
5 else if min (Rn,m) > min (Rn,l) then

6 rn,l = min
(√

min (Rn,m)
2 −R2

m,l,max (Rn,l)
)

7 and

8 max
(√

min (Rn,m)
2 −R2

m,l,min (Rn,l)
)

9 maxR(αn,m,l) = arccos (Fc (min (Rn,m) , rn,l, Rm,l))

10 else if min (Rn,m) < min (Rn,l) then

11 rn,m = min
(√

min (Rn,l)2 −R2
m,l,max (Rn,m)

)
12 and

13 max
(√

min (Rn,l)2 −R2
m,l,min (Rn,m)

)
14 maxR(αn,m,l) = arccos (Fc (rn,m,min (Rn,l) , Rm,l))
15 maxR(αn,m,l) = arccos (Fc (P1, Rm,l))
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Determining the direction of An,m,p

An,m,p describes the magnitude of the angle between ~Vn,m and ~Vn,p and An,m,p ⊆
[0, π]. In order to calculate the base node configuration we need to also determine
the direction Cpn,m,l of An,m,p (i.e., if the sign should be positive or negative) given
that the direction of An,m,l is positive.
Let

R̃p+n,m,l =

∥∥∥∥rl [cos(θl)sin(θl)

]
− rp

[
cos(θp)
sin(θp)

]∥∥∥∥ =

=

∥∥∥∥rl − rp [cos(θp − θl)sin(θp − θl)

]∥∥∥∥ =

=
√
r2l − 2rlrpcos(θp − θl) + r2p

R̃p−n,m,l =

∥∥∥∥rl [cos(θl)sin(θl)

]
− rp

[
cos(−θp)
sin(−θp)

]∥∥∥∥ =

=

∥∥∥∥rl − rp [cos(−θp − θl)sin(−θp − θl)

]∥∥∥∥ =

=
√
r2l − 2rlrpcos(θp + θl) + r2p

For all rl ∈ Rn,l, rp ∈ Rn,p, θl ∈ An,m,l, and θp ∈ An,m,p

(4.36)

Then,

Cpn,m,l =



{1} if
Rl,p ∩ R̃p+n,m,l 6= ∅
Rl,p ∩ R̃p−n,m,l = ∅

{−1} if
Rl,p ∩ R̃p+n,m,l = ∅
Rl,p ∩ R̃p−n,m,l 6= ∅

{−1, 1} if
Rl,p ∩ R̃p+n,m,l 6= ∅
Rl,p ∩ R̃p−n,m,l 6= ∅

∅ if
Rl,p ∩ R̃p+n,m,l = ∅
Rl,p ∩ R̃p−n,m,l = ∅

(4.37)

In the case when Cpn,m,l = {−1, 1} or Cpn,m,l = ∅, one can interchange l with

any p̂ ∈ P where P =
{
p̂
∣∣∣Cp̂n,m,l = {1} , Cp̂n,m,l = {−1}

}
and recalculate Cpn,m,l as

Cpn,m,l = Cp̂n,m,lC
p
n,m,p̂. One can perform this step until all p̂ have been exhausted

or until Cpn,m,p̂ = {1} or Cpn,m,p̂ = {−1}. Consequently Cpn,m,l = Cp̂n,m,lC
p
n,m,p̂.
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Determining the location of base nodes

We can use An,m,l, Gn,m,i and the measurement configuration Cpn,m,l in order to
get the base node configuration D:

For any l 6= n,m and Cpn,m,l 6= ∅
D+
n,m,i = Gn,m,i ∩

(
Gn,1,i + C1n,m,lAn,m,1

)
∩ · · ·

· · · ∩
(
Gn,N,i + CNn,m,lAn,m,N

)
or the mirrored

D−n,m,i = Gn,m,i ∩
(
Gn,1,i − C1n,m,lAn,m,1

)
∩ · · ·

· · · ∩
(
Gn,N,i − CNn,m,lAn,m,N

)
(4.38)

B±n,m,i = Yn,i

[
cos(D±n,m,i)
sin(D±n,m,i)

]
(4.39)

Determining the location of measurement nodes

The location of the measurement node Xp with respect to nodes Xn, Xm (node
at angle 0), and Xl (non-colinear node at positive A) X pn,m,l can be calculated as
follows:

X±pn,m,l = Rn,p
[
cos(±Cpn,m,lAn,m,p)
sin(±Cpn,m,lAn,m,p)

]
(4.40)

4.3.3 Coordinate system stitching

Suppose there are two measurement nodes Xa and Xb that each have access
to two different measurement sets which have three common measurement in-
stances Yc, Yd, and Ye. With those measurements they can each estimate X (a),
B(a) and X (b), B(b) respectively. Since they have the common measurements of
Yc, Yd, and Ye one can stitch the coordinate system of Xb to the coordinate system
of Xa by rotating and translating X (b)pc,d,e such that there is maximum overlap of
the transformed X (b)cc,d,e, X (b)dc,d,e, X (b)ec,d,e and any other common nodes with
X (a)cn,m,l, X (a)dn,m,l, X (a)en,m,l and the others. The rotation and translation values
can then be used on B(b) to stitch in the locations of any new beacons as well.
Lets denote the stitched coordinate systems as X̂ and B̂.

4.3.4 The ReNLoc algorithm

In this section we will describe two variants of the ReNLoc algorithm, one central-
ized and one distributed.

Centralized ReNLoc

The centralized ReNLoc uses all measurements Y together to localize all nodes
with respect to each other:
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Algorithm 3: The centralized ReNLoc algorithm
Data: Y measurements
Result: R, G, A, B, X

1 Calculate R from the Y measurements
2 Calculate G from Y and R
3 Calculate A from G and R
4 Calculate B and X

Distributed ReNLoc

The distributed algorithm relies on communicating measurements and current co-
ordinate system models between neighbors and thus propagates coordinate infor-
mation throughout the entire network. Each node performs the following algorithm
to localize all nodes with respect to itself:

Algorithm 4: The distributed ReNLoc algorithm
Data: Y measurements
Result: R, G, A, B, X

1 Get Y measurements, X̂c,d,e, and B̂c,d from neighbors. Where c, d, and e
are three common measurements of the current node with each neighbor

2 Calculate R from the Y measurements. Calculate G from Y and R
3 Calculate A from G and R
4 Calculate B and X
5 forall neighbors do
6 Perform coordinate stitching with X̂
7 use metrics of coordinate stitching to stitch B̂
8 end

4.4 Results Discussion

In order to assess the accuracy of our algorithm we performed simulations for N
measuring nodes and K base nodes ranging from 3 to 30 in increments of 3. For
each case, we measured the mean square error (MSE) in Rn,m and the mean
square error (MSE) in An,m,l for 100 trials of randomly placed base nodes and
measuring nodes in a 100m × 100m area. We compare with multidimensional
scaling (MDS) using the same parameters. Recall from chapter 2 that MDS is a
technique from mathematical psychology, it can be used to calculate relative maps
of nodes based on distances between the nodes. From a graph of a network one
can estimate a distance matrix by calculating the shortest path between all pairs
of nodes and then apply classical MDS on the distance matrix. An important
aspect of ReNLoc to keep in mind is that it gives possible ranges of values for
the estimates. In figures 4.5 and 4.9 we used the mean of the possible values
(mean(Rn,m) and mean(An,m,l)).
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For ReNLoc, the estimates of R were calculated as described in section 4.3.2.
For MDS the R estimate was calculated as the euclidean distance between the
points generated from the MDS algorithm using the shortest path distance. An
overview of the MSE of R with different values of N and K can be seen in figures
4.4 and 4.5, note the scale of the color graph on the right hand side.
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Figure 4.4: The MSE of R for MDS.
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Figure 4.5: The MSE of R using the mean of each R estimate from ReNLoc.

The error of the range estimates R decreases as we increase the number of
base nodes K as can be seen in figure 4.6. The reason behind this is that as
we increase the number of base nodes we increase the number of constraints
when calculating the R estimates in equation 4.14. Using the mean values of
the R estimates from ReNLoc results in a significantly smaller MSE than MDS. In
figure 4.7 the number of measuring nodes seems to have very little effect on the
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accuracy of ReNLoc as opposed to the accuracy of MDS which decreases with
larger N . We also notice that for K = 30 even the worst ReNLoc estimates are
comparable to MDS while the mean ReNLoc estimates remain well below 15.

Since ReNLoc was built with this particular network architecture in mind (mea-
suring nodes and base nodes), we can expect it to have an advantage. In fact,
MDS uses the shortest path distanceR for its computations. In this setup however,
there are always 2 hops between measuring nodes when it comes to range mea-
surements which has a significant effect on the accuracy of such estimates. This
fact accounts for the lower accuracy of MDS when it comes to the R estimates.
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Figure 4.6: Comparison of the MSE of R at N = 3.

In figure 4.6, it is interesting to note that the values of the MSE for K = 30 are
30.04, 40.89, and 9.94 for MDS, worst ReNLoc, and mean ReNLoc respectively.
This is a significant improvement over MDS especially when we see that the MSE
of mean ReNLoc is well below 30 (at 22.75) starting at K = 15 where MDS is in
fact at an MSE value of 65.31 at the same point.
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Figure 4.7: Comparison of the MSE of R at K = 30.

For ReNLoc, the estimates ofA where calculated as described in section 4.3.2.
The estimates of A for MDS where calculated using the law of cosines equation
(equation 4.28) with the R estimates. An overview of the MSE of A with different
values of N and K can be seen in figures 4.8 and 4.9, note the scale of the color
graph on the right hand side and also that the angles were calculated in radians
(0 rad = 0◦, π rad = 180◦).
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Figure 4.8: The MSE of A for MDS.
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Figure 4.9: The MSE of A using the mean of each A estimate from ReNLoc.

For the angle estimates A, ReNLoc once again has much smaller MSE than
the MDS algorithm. In figure 4.10 we notice that ReNLoc has an optimal number
of base nodes with respect to the angle accuracy at around K = 6, but with MDS
the error increases as K increases. We have not fully investigated the cause of
this for ReNLoc, however we suspect that it is due to error accumulation from the
rapidly increasing number of angles that need to be estimated with the addition of
each base node K. The effects of the number of measuring nodes N has very
little effect in ReNLoc, but in MDS we notice a gradual improvement in the MSE
as N increases all the while staying well above the relatively low MSE of ReNLoc
for the range of N that was simulated (figures 4.11 and 4.12).
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Figure 4.10: Comparison of the MSE of A at N = 3.
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Figure 4.11: Comparison of the MSE of A at K = 3.
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Figure 4.12: Comparison of the MSE of A at K = 30.

In general we notice that using the mean of the ReNLoc estimates is much
more accurate than MDS in all cases. Furthermore, the number of measuring
nodes N has little effect on the accuracy for ReNLoc but we notice that in MDS
the MSE of A has a slight improvement. The number of base nodes K has a clear
positive effect on the MSE (figures 4.4,4.5,4.8,4.9).

In figure 4.13 we see a sample of how ReNLoc results can be interpreted.
Since ReNLoc outputs possible ranges of values for R and A, we can define re-
gions where the measuring nodes and the base nodes are guaranteed to be in.
Using the mean values of each estimate of R and A will produce a point with
relatively small MSE in each region.
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Figure 4.13: From the setup of figure 4.1 here we illustrate X1,3,2 and B1,3. Con-
figuration is in black, blue is mirrored and orange is overlapped regions.

4.5 Discussion

In this chapter we have presented ReNLoc (Relaid raNging Localization), an al-
gorithm that localizes mobile nodes that can only range to base nodes and not
between themselves. We have shown that this algorithm can also be used in a
distributed manner by using coordinate stitching techniques. Simulations of the
centralized version of this algorithm performed significantly better compared to
MDS, a commonly used algorithm for such situations.

We have addressed common issues such as power consumption, reliance on
infrastructure, ease of deployment, and most importantly, privacy. Power con-
sumption was addressed by removing the need of anchors or beacons (nodes
with knowledge about their absolute position) because these nodes often rely ei-
ther on sensors such as GPS, which require a significant amount of power, or on
databases of the anchor node locations, making it a less adaptable solution and
more prone to privacy leaks to third parties. Reliance on infrastructure is minimal
since no specific setup is needed for ReNLoc making it very easy to deploy. For
ubiquitous computing applications, cities may already have the necessary infras-
tructure in place by using GSM towers or other access points (i.e. WiFi, bluetooth)
to cover the need of base nodes. It can easily be deployed in areas in which we
have no knowledge about the topology of the base nodes where solutions such
as PlaceLab [30] would take a non-negligible amount of effort to build the loca-
tion database. In general, the infrastructure can be easily deployed by means of
randomly or crudely dispersing base nodes in the desired area by means of a
beacon airdrop without requiring any information about the network configuration
or locations of base nodes.

Since our algorithm provides a range of possible configurations for the nodes
and not exact coordinates like other techniques we are able to provide bounds on
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the location of each of the nodes and understand in which direction and how far
any errors might occur. Algorithms that provide exact coordinates might only give a
radius of accuracy which approximate the error while ours gives exact dimensions
and shape of the possible errors.

Our evaluation of ReNLoc relied on ideal conditions where exact distance mea-
surements to base nodes were possible. Although it can give us a general under-
standing of the performance when compared against other algorithms, the results
should be taken with a grain of salt. The significant improvement over MDS in the
same ideal conditions leads us to believe that it could also show at least some
improvement in a realistic simulation but until these test are performed we can-
not be certain. Furthermore, our algorithm, in its current state, has many more
computational steps compared to MDS which may affect power consumption on
mobile devices. Nevertheless, the increasing computational power and efficiency
of modern devices may give us some more room for complexity than previously
possible.

4.5.1 ReNLoc application areas

Relative localization of nodes is very beneficial for many services in a range of
application areas and the particular solution proposed here could be leveraged
for localization of nodes in Wireless Sensor Networks [179], localization of mobile
devices/nodes for authorization purposes [180] or localization of mobile robots
with respect to obstacles [181], as well as for augmented and mixed-reality ser-
vices [182] or services based on indoor localization [113], human mobility and
tracking, for traffic management [183] or meaningful place discovery [184].

Measurement nodes in ReNLoc may measure distances using several meth-
ods: radio signals ( [185] via cellIDs or WiFi APs), optically (laser beam or an
infrared reflection principle), thermally or acoustically (measuring sound [186]).
Measurements can also be done by using images of a scene from different per-
spectives [187]. We have designed and implemented this algorithm with ubiqui-
tous computing in mind. Although no real world tests have been performed yet to
evaluate the performance of ReNLoc in the wild, we propose that it can be used to
measure several location-related features such as distance traveled, speed, and
path structure as well as to detect significant places of users with the mobile de-
vice acting as the measuring node and GSM cell towers acting as the base node.
As we have stated earlier, ReNLoc is not accurate enough to determine exact
location of a user, but since it can be used with only the GSM antenna, without
requiring to activate the on-board GPS sensor or use the accelerometer of the
device, the power usage of the device is conserved to a minimum and can be al-
ways active as opposed to activating only at specified time intervals. Such coarse
localization from ReNLoc can therefore estimate the general direction of a user’s
movement to some course significant places which can be used to track a user’s
movements between those places. Location based services relying on significant
places (home, work, leisure, etc. ) can therefore always be on or active with-
out making such a big sacrifice in the battery life of the mobile device. Services
like fitness tracking which require information such as distance and speed could
also be realized using our algorithm. The actual application areas depend on the
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performance of our algorithm in a realistic environment which includes inaccurate
ranging and other noise.

In order to somewhat reduce the computational complexity of our algorithm
it might be beneficial to analyze the procedure and find efficient computational
analogies for some of the steps. Although approximations could be used to reduce
complexity, we would like to avoid that as it would nullify some of the benefits of
our current setup. We can then run tests to validate our assumption that ReNLoc
has the potential to be used in the wild to track location-related information such
as distance traveled, speed, path structure, and to detect significant places.



Chapter 5

Location Context Service
Self-Provisioning

5.1 Introduction

Location context is a commonly used feature for location based services (LBS)
and context aware services alike. For these services, location is often provided by
either the use of GPS, for an accurate outdoor location, or a location service (for
example, Google location services) that provides an approximate location with
the help of access point (AP) map database such as WiFi and cell tower loca-
tions, or localization algorithms that rely on other sensors available on the phone
like accelerometer [188]. Although the aforementioned approaches may provide
a satisfying user experience in terms of location estimation, they are not always
the best solution when it comes to energy consumption or privacy. From a pri-
vacy perspective, applications which only require location context should not be
receiving exact GPS coordinates of the location but rather receive location context
information from some service able to do so. Furthermore, location service in-
terruptions, although rare, can propagate to the LBS and context aware services.
For these reasons, we explore self-provisioning of location context information in
order to address the issue of privacy and to complement or even replace, when
possible, existing location services in the domain of context. Of course, location
context can be readily derived using GPS traces but this would have a noticeable
effect on the power consumption of the device. Therefore it would be desirable to
provide location context without the use of the GPS.

Even though the majority of mobile phone devices are equipped with a mul-
titude of sensors, the mobile connectivity antenna sensor is guaranteed to be
installed. The accelerometer and compass are also fairly common sensors, how-
ever, their utility as localization tools suffer from drift errors (when dead reckoning
is used) and power consumption due to the sampling rate and calculations neces-
sary to provide useful results. The Cell ID is a unique identifier for the cell tower
that the mobile device is currently connected to — it is ’free’ information since
there is no cost for the OS to provide it. Additionally, the processing of Cell ID data
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streams is far less demanding than other high frequency sensor streams. Cell ID
maximum handover rate is less than 10Hz in our experimental data compared to
accelerometer sampling rate which can range from 10Hz to 1600Hz. One main
issue concerning the use of Cell IDs is the difference in cell tower deployment
density between urban and rural areas. For example a typical urban area has
a cell tower deployment with an average per-tower coverage radius of less than
500 meters whereas a rural area each tower can have a coverage radius in the
kilometer range which is too large to derive meaningful information [189,190].

5.1.1 Contributions

In this chapter, we aim to show that it is feasible to use the Cell ID traces alone
to detect meaningful places for a mobile user, without the need for GPS, other
sensor data, or a location service. We do this by implementing two very different
clustering techniques: one based on the graph connectivity of Cell IDs with our
own definition of what it means for two Cell IDs to be connected, and one density
based clustering where we also define the distance metrics that can be used. We
assume an urban environment with a sufficiently dense deployment of cell towers
in order to impose a clear range limit on the Cell IDs.

5.1.2 Structure

The structure of this chapter is as follows: We first describe the data which we
are using to validate our algorithms in section 5.2 so that we can present relevant
results incrementally as we describe different parts of our approach. We define
and describe Cell ID similarity measures in section 5.3. Namely, we describe how
we can detect a Cell ID oscillation, we define a Cell ID adjacency matrix, and we
describe how to estimate pairwise distances and how to make sure that those es-
timates fall into a metric or euclidean space. In section 5.4.3 we describe various
techniques to derive Cell ID clusters that describe meaningful places. Specifically,
in section 5.4.1 we formalize and improve upon a previously developed clustering
technique that utilized Cell ID oscillation events to cluster Cell IDs. We also de-
scribe another clustering technique that utilizes Cell ID oscillation events in section
5.4.3. Finally we conclude about this work in section 5.5 and present an applica-
tion of one of the clustering techniques.

5.2 Data summary

The data used in this chapter was collected from the Android OS devices of two dif-
ferent users for approximately two weeks each. Both of the devices were Google
Nexus 5X. A data point was collected each time that the mobile device underwent
a handover to a different Cell ID and each data tuple included the following in-
formation: Cell ID timestamp, Cell ID, location timestamp, location (from Google
location service), and location accuracy (from Google location service). For user
1 there were a total of 825 handover events between 69 different Cell IDs. For user
2 there were a total of 513 handover events between 84 different Cell IDs. Both
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users were in Geneva, Switzerland, for the 2 week duration of the data collection.
We removed location information which had an accuracy larger than 200 meters
(as estimated by the Google location service) as it could skew the velocity esti-
mates later on. Besides that, we did not manipulate the raw data in any other way
(no additional filtering or normalization).

For each Cell ID, we collect the holding times in a cumulative distribution graph
and then compare the fit of an exponential and a gamma distribution (see an
example in Fig. 5.1). For Cell IDs with more than 10 data entries, we find that
the exponential distribution fit has a mean squared error (MSE) of 0.0851 and
maximum squared error (SE) of 0.7494. The gamma distribution has an MSE of
0.0233 and a maximum SE of 0.2225. Based on our analysis we find that the
gamma distribution is more representative of the CDF of the data. Given this
information, we can conclude that the process under which the Cell IDs undergo
a handover is a Markov process with a gamma distribution. This information can
prove useful in the case when we need to estimate the holding time of a particular
cluster of Cell IDs based only on the knowledge of the holding time of individual
Cell IDs. Such a case can arise when we want to save computing resources to
calculate cluster holding times after the clusters have experienced a change (i.e.
estimating cluster holding times after any clique changes in the maximal clique
method in section 5.4.1). The theory and mathematics of how to estimate the
holding times of an aggregation of Markov states is described in a publication by
Rubino and Sericola [191].
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Figure 5.1: The holding time cumulative distribution of a Cell ID and the corre-
sponding fitted exponential and gamma distribution.
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5.3 Cell ID Similarity Measures

To cluster Cell IDs into groups that represent meaningful places we need to define
some measures for similarities, connectivity, or distance between Cell IDs. Kang
et al. [33] achieved this in their location measurements using both spatial distance
and temporal distance as their similarity metrics. Fanourakis et al. [25] and Yadav
et al. [37] achieved this by analyzing graph connectivity patterns between Cell IDs
and deriving simple similarity metrics. In this section we will describe similarity
measures that can be used when only Cell ID and timestamp observations are
available.

5.3.1 Cell ID Oscillation

The Cell ID oscillation event used by Fanourakis et al. [25] and Yadav et al.
[37] can be described as follows: assume there is a Cell ID sequence S =
{cb, c1, ..ci, ..., cj , cb}, then a possible Cell ID oscillation event is detected when two
observations of a base cell cb enclose a set of Cell IDs ci in the sequence S where
ci 6= cb. Furthermore we will define the oscillation time δb ∈ ∆ = {δ1, ..., δn, ..., δN}
of base cell cb be the time between the two observations of cb. When δb is below
a predefined oscillation time threshold τb, then this event is a Cell ID oscillation.
These events can occur even if the user is not moving out of range and back from
a particular Cell, they can be caused by network load, small time signal fading,
and inter-network (2G to 3G, 4G, etc. and vice versa) handoffs [192].

cb ci cj cb ck

t0 t1 t2 t3 t4

t3 − t0 = δb < τ

Figure 5.2: A sequence of Cell ID measurements where Cell ID cb has oscillated.

The oscillation time threshold can be the same for all cells, τ1 = τ2 = ..., τN =
τ , it can also depend on specific properties of each cell like the holding time
of that cell or it can be defined using the properties of all the cells involved in
a potential oscillation event. Let T o = {τ1, τ2, ..., τN}. Furthermore, let Hi =
{hi,1, hi,2, ..., hi,K} be the collection of holding times of cell ci where each holding
time hi,k is defined as the time it takes after each observation of ci to transition
to an other cell. Then, we can define a function fo (·) that can take as arguments
either the set of holding times of a specific cell or the sets of holding times for any
cell involved in a potential oscillation event and give us an oscillation threshold τi.
We empirically determine an appropriate function upon analysis of our data.
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1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
16
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Figure 5.3: Cell ID oscillation between cells 16, 17, and 18 in the data of user 1.
Horizontal axis represents time in minutes.

In figure 5.2 we illustrate a cell oscillation event and the parameters that are in-
volved with detecting it. In figure 5.3 we see actual oscillation events that occurred
in the data of user 1. In this figure there are oscillations between cell IDs 17 and
18, as well as 16 and 17.

5.3.2 Cell ID Adjacency Matrix

We represent the Cell ID weighted adjacency matrix as A, where Aij is equal to
the number of times that cells ci and cj have transitioned between each other. We
also define a restricted adjacency matrix Â where we use a stronger criterion to
signify an edge which better suits our problem. Specifically, we signify a graph
edge when two Cell IDs are involved in a cell oscillation event. An edge is created
between all pairs of cb and ci (i.e. {cb, c1} , ..., {cb, cj}) if δb < τb. The edge weight
between two Cell IDs is equal to the number of times that this pair of Cell IDs has
been involved in a cell oscillation event.

5.3.3 Cell ID Pairwise Distances

Unless we know the physical locations of the cell towers for the Cell IDs or the
physical location where the Cell ID was observed we cannot determine the spatial
distance between Cell IDs. Since we have restricted our available data in this work
to only Cell ID and timestamp observations (barring the use of databases such
as PlaceLab and the general lack of such location information from the network
operators) it is not possible to directly determine the spatial distance between Cell
IDs. Nevertheless, we can get some measure of distance using the temporal data.
Intuitively, the longer the time between two Cell ID observations the farther they
should be from each other so we can use the difference between the observation
times of ci and cj (|ti − tj |) as a measure. In the rest of this section we explore
different possibilities for estimating the velocity of the user between consecutive
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Cell ID observations (sections 5.3.3, 5.3.3, and 5.3.3) and then we show, in a
simple process, how to derive the distance between pairs of Cell IDs (algorithm
in figure 5). We also provide some reasoning and methods to make sure that the
resulting pairwise distances are in a metric or euclidean space (sections 11 and
11).

Velocity from holding times

If we naively assume a constant velocity v then we can calculate the physical
distance between Cell IDs by multiplying |ti − tj | with this constant v. In reality,
v can range from 0km/h when the user is stationary to over 100km/h when the
user is in a vehicle, however, we cannot directly measure this given the limited
information that we have. Our strategy to estimate the velocity relies on the holding
time h of a Cell ID which is related to the rate of change of Cell IDs. We assume
that the longer a person has stayed connected to the same Cell ID (suggesting a
lower rate of change between Cell IDs) then the slower his velocity will be when
transitioning to the next Cell ID. Therefore, to get an estimate on the velocity, we
can use an appropriate function V (t̄) with domain 0 < h < ∞, range 0 < V (h) <

vmax where vmax is the maximum velocity, and ∂V (h)
∂h ≤ 0 ∀h.

We empirically determine an appropriate function upon analysis of our data by
plotting the holding time (τ ) against the ground truth velocity (v). First we obtain
a model for the upper bound of the velocity (vup) and then a model for the lower
bound of the velocity (vlow). We conclude that the actual velocity should be within
those two bounds. The exponential model v = aebτ + cedτ was empirically found
to fit best with our data.
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Figure 5.4: 1-cell holding time vs velocity

Using this model we fit the upper bound of the velocity vup for the Cell ID
holding times with the parameters a = 11.55, b = −8.912E−5, c = 10.42, d =
−6.549E−6 and the lower bound of the velocity vlow with the parameters a = 2.019,
b = −1.367E−4, c = 9.518E−2, d = 1.246E−7.
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Velocity from adjusted holding times

Due to Cell ID oscillations, the holding time h may not accurately represent the
user’s movements. Therefore we also define an adjusted holding time h̄ that takes
this into account by extending the holding time as long as two observations of the
same Cell ID are within the Cell ID oscillation threshold τ .

Velocity from n-cell holding times

For now, we have been looking at holding times of single Cell IDs, however it may
be beneficial to look at holding times of groups of Cell IDs as well. We will call
these n-cell holding times, hn, and we define them as the amount of time that
the Cell ID has not changed from the last n Cell IDs. For example, consider the
sequence in Fig. 5.5: The 1-cell holding times for Cell ID c0 can be calculated as
h = t1− t0 and h = t4− t3, for Cell ID c1 as h = t3− t1. The 2-cell holding time for
the pair of Cell IDs {c0, c1} is calculated as h2 = t4 − t0. Determining a suitable
n can depend on several factors: density of cell tower deployment, attenuation
profile of the location where the measurements are taking place, among others.
We will empirically determine a suitable value for n upon analysis of our data.

c0 c1 c1 c0 c2

t0 t1 t2 t3 t4

Figure 5.5: A sequence of Cell ID measurements.

For the n-cell (n=5) holding times we notice again that the exponential model
is a good fit and calculate the upper bound parameters to be a = 10.31, b =
−4.832E−5, c = 9.314, d = −5.562E−6 and the lower bound parameters a = 2.006,
b = −1.548E−4, c = 9.298E−2, d = −5.812E−7. The raw data and the fitted
models are illustrated below.
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Figure 5.6: n-cell (n=5) holding time vs velocity
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Using the velocity models depicted in Fig. 5.4 and Fig. 5.6, we estimate the
velocity of the user as they experience handovers. We empirically find that using
the estimate v = 0.05vup + 0.95vlow results in the most reliable velocity estimate
and we present a small sample of the resulting velocity estimates in Fig. 5.7. Using
the standard holding times, we notice that there are many regions throughout the
Cell ID sequence where a non-zero velocity was estimated when in fact there
was no actual change in location (see a little past the middle of the graph in Fig.
5.7). The n-cell holding times with an empirically determined n of 5 seems to
filter out most of these outliers while only missing very few of the non-zero velocity
situations (see the end of the graph in Fig. 5.7). Overall, these estimates look to
be approximating the real velocity with some errors, however, as we will see in the
Cell ID distance analysis these estimates are still desirable and useful.
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Figure 5.7: The velocity estimate of a section of the data sequence where the
velocity of regions with continuous nonzero velocity are averaged.

Having estimates for velocity, we define a pairwise distance matrix D where
Di,j is the distance between ci and cj and is updated as shown in the algorithm in
Algorithm 5. We can use this pairwise distance matrix to cluster Cell IDs that are
near each other, or even map the Cell IDs using techniques such as multidimen-
sional scaling (MDS).

Metric Distance Matrix

Our pairwise distance matrix D is not guaranteed to be metric and can cause
some clustering techniques, which work best with metric distance matrices, to
have major inconsistencies or to not work at all. A metric space is defined as a
space in which the following properties hold:

1. Di,j ≥ 0

2. Di,j = Dj,i

3. Di,j = 0 =⇒ x = y
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Algorithm 5: Di,j updates
Data: Cell ID observations
Result: Cell ID Distance Matrix

1 Di,j =∞ ∀i, j repeat
2 observe cell ID ci at time t
3 ti ← t
4 estimate vi,j
5 di,j ← (ti − tj)vi,j
6 if di,j < Di,j then
7 Di,j ← di,j
8 Dj,i ← Di,j

9 end
10 cj ← ci
11 until No more observations

4. Di,j ≤ Di,k +Dk,j

Based on the algorithm in Fig. 5, for the distance matrix D, we can only guarantee
the first three properties (1-3) but not the fourth which corresponds to the triangle
inequality. Even if our distance estimates are accurate, the path from one point
to another is influenced by the city infrastructure, among other physical factors,
which can cause D to be non-metric (for example, one-way streets in Fig. 5.8).
To estimate D̂, the metric D, we can use a shortest path algorithm such as the
Floyd-Warshall algorithm which will force the triangle inequality to hold for all i, j, k
tuples.

Figure 5.8: Urban setting with one-way streets resulting in non metric distances.
The solid lines represent shortest paths (dashed lines are alternative, longer,
paths). The sum of the blue and green paths (the paths connecting the two ver-
tically and the two horizontally aligned points respectively) is shorter than the red
path (the path connecting the two diagonal points), thus failing the triangle inequal-
ity.
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Figure 5.9: The dashed diagonal red line is the Euclidean path, while the solid red
line connecting the two diagonal points is a realistic path which is not Euclidean.

Euclidean Distance Matrix

Some clustering algorithms require that the data is derived from a euclidean space
but the distance matrix D is not guaranteed to belong to such a space due to
the city infrastructure (among other factors) which can limit the available paths
between two points (see Fig. 5.9). There are a few ways to approximate D as a
euclidean distance matrix (EDM) D̃. One way, is to project the eigenvectors ofD to
a euclidean space and use these projections to re-estimate D [193]. Another way,
is to utilize the commonly used multidimensional scaling method to approximately
map the pairwise distances to a euclidean space. Yet another way, which provides
some mathematical guarantees about cluster preservation, is to use constant shift
embedding (CSE) [194]. There are several such methods in the literature, each
with its own advantages. It is often advantageous to apply these methods to the
metric distance matrix D̂ instead of D directly.

Cell ID Kernel Similarity Function

When working with similarity measures it is not uncommon to apply a kernel func-
tion in order to either normalize the data to a certain domain or to enrich the data
with some properties of the kernel. Some common kernel functions that we can

use include the Gaussian kernel, K(Di,j) = e−
D2
i,j
2σ σ > 0, or the Laplacian kernel,

K(Di,j) = e−αDi,j α > 0.
Depending on how we want to use the data after the kernel has been applied,
specific kernel functions should be preferred. A Gaussian kernel might be desired
if we require that the input data in our clustering algorithm be smooth. A Lapla-
cian kernel is much less smooth than the Guassian but has similar effect on the
data. Both are in the family of radial basis function kernels which accentuate radial
structures (circles, spheres, and hyperspheres) in the data.

Distance Matrix from data

Now that we have estimated the velocity as described above, we can estimate
the distances between Cell IDs using the process in algorithm 5 in section 5.3.3.
This way we have the shortest distance between any two Cell IDs. In Fig. 5.10,
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we show the ground truth distance matrix as calculated using the location data
in conjunction with the Cell ID sequence. All distances are in meters and blue
color indicates closeness while the yellow indicates Cell IDs being further away.
In Fig. 5.11, we show the estimated distance matrix as calculated based on the n-
cell holding times. We notice that the two have very similar structure. We see that
there are two groups of Cell IDs (first group being approximately the Cell IDs 0−30,
70 − 90 and second group in the middle with approximately the Cell IDs 30 − 70)
in both distance matrices. The boundaries of the groups are less clear in the
estimated distance matrix, however it yields very useful information nonetheless
since we can exploit the structural similarity of the estimated distance matrices
with the ground truth to derive realistic Cell ID clusters.

Cell ID True Distance Matrix
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Figure 5.10: Ground truth distance matrix from real location data
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Figure 5.11: n-cell holding time estimated distance matrix.
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5.4 Cell ID Clusters

5.4.1 Clusters From Maximal Cliques

As we have previously mentioned, graph connectivity information between Cell
IDs can be used as a similarity metric. A possible method to determine the Cell
ID clusters from graph connectivity information is to find all the maximal cliques
of the graph represented by the adjacency matrix A or Â. This method was used
in the work of Fanourakis et al. [25] with some promising results and we modify
it here with a more sophisticated cluster labeling procedure to further improve it.
We also propose a method to avoid using complicated labeling procedures.

A clique is a set of nodes (i.e. Cell IDs) where each pair of nodes in this set
is connected with an edge. A maximal clique is a clique which is not a subset of
any other clique. Since our graph has weighted edges (recall that edge weights
are determined by the number of cell oscillation events that a pair of Cell IDs
experience), we can use the edge weights to filter out possible outliers by setting
an edge weight threshold eth. The maximal clique that determines a Cell ID cluster
is a maximal set of nodes where each pair of nodes in this set is connected with an
edge of at least weight eth. Let G = {G1, ...Gm, ..., GM} be the set of all maximal
cliques of the graph (i.e. the set of all viable Cell ID clusters). It is important to
note that a single node can belong to multiple clusters as depicted in Fig. 5.12.

1 1 0 0
1 1 1 1
0 1 1 1
0 1 1 1

Figure 5.12: Example of maximal cliques in an adjacency matrix where one cell
belongs to two maximal cliques.

5.4.2 Assigning Cluster IDs

Assigning a single cluster ID to a Cell ID in the sequence is not trivial because
a Cell ID can belong to multiple clusters. Therefore, we must chose the cluster
Gm ∈ G that best represents the Cell ID and its surroundings. To do so, we need
to specify a measure representing the goodness of a cluster by assigning weights
to the recent Cell IDs in the sequence and to the Cell ID members of the clusters.
We will then use these weighted values in a similarity measure and apply that in
two versions of a self contained clustering algorithm defined in section 5.4.2.

Weights of Cell IDs in the sequence Let Gn be the set of all clusters containing
Cell ID cn. Furthermore, let C = {c1, ..., cn, ..., cN} be a list of all observed Cell IDs
(each unique Cell ID only appears once in this list) and T = {t1, ...tn, ...tN} be a
list of time in minutes since the first Cell ID measurement that each Cell ID was
observed (i.e. tn is the most recent time that Cell ID cn was observed since we
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started collecting data). Then the weight wT (ci,m) for ci ∈ C and ti < tn relative
to a cluster Gm ∈ Gn is defined similarly to a low pass filter as follows:

wT (ci,m) =
1

1 +
(
|tn−ti|
|Gm|f

)2n (5.1)

where 0 < f < 2 and n is equivalent to the order of a low pass filter. Note that
0 < wT (ci) ≤ 1. Fig. 5.13 illustrates these weights using various parameters.
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Figure 5.13: wT (ci,m) with various parameters. The size of the cluster, |Gm|,
along with f determine the 50% attenuation point while the order, n, determines
the slope around the 50% attenuation point.
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Weights of Cell IDs in the clusters To assign weights wG(ci,m) to the Cell IDs
ci ∈ Gm we use the following equation:

wG(ci,m) =
max(km(ci), 1)

k(ci)
(5.2)

where k(ci) > 0 is the number of times that Cell ID ci has been observed in total,
km(ci) ≥ 0 is the number of times that Cell ID ci has been assigned the cluster
Gm in the sequence, and 0 ≤ wG(ci) ≤ 1. Fig. 5.14 illustrates these weights using
various parameters.

Choosing the best cluster Now that we have the weights of both the Cell IDs
in the cluster and the Cell IDs in the sequence relative to each cluster size we can
calculate the similarity of each cluster to a Cell ID cn in the sequence. Let S(m)
be the similarity of Gm ∈ Gn to cn in the sequence, then the cluster assignment is
determined as follows:

arg min
m

S(m) =∑
ci∈Gm

(wT (ci,m)− wG(ci,m))
2 |Gm|−1 (5.3)

The factor of |Gm|−1 in equation 5.3 gives more importance to larger clusters.
Putting it all together, we formulate the Cell ID clustering and labeling algorithms
in Algorithm 6 and Algorithm 7 which use the cell transition adjacency matrix A
and cell oscillation adjacency matrix Â respectively.
In the pseudocode in Algorithm 6, when a Cell ID is observed (line 5), the time of
the observation is logged (line 15), then the transition matrix A is updated (lines
17-18). If there is a change in A, the new cliques are calculated (line 18). Then, to
label the Cell ID with a cluster, the similarity of the observation S(m) is calculated
against all clusters m and the most similar cluster is selected (lines 20-21). If
two sequential events are separated by more than the timeout time (line 16) then
there may have been some information loss and therefore we should not associate
those two events.

In the pseudocode in Algorithm 7, when a Cell ID is observed (line 5), the
time of the observation is logged (line 16) and the time since the last observation
of that Cell ID is calculated (line 15). If there is a cell oscillation event (line 18),
the special adjacency matrix is updated and then the cliques are updated as well
(lines 19-20). The Cell ID is assigned a cluster (lines 22-23) in the same way as
in the pseudocode in Algorithm 6. Note that τn ∈ T o from the pseudocode in
Algorithm 7 is less than or equal to the timeout from the pseudocode in Algorithm
6.

Assigning Cluster IDs After Cluster Merging To simplify the labeling process
we can merge similar or overlapping clusters together such that a Cell ID can only
belong to one cluster. The procedure for merging the clusters is simple: any two
or more clusters containing one or more Cell IDs which are the same are merged
into one cluster. Labeling the Cell ID in the sequence with these updated clusters
becomes trivial since a Cell ID can only belong to one cluster.
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Algorithm 6: Clustering and labeling w/ transition matrix
Data: Cell ID observations
Result: Cluster-labeled sequence

1 C, T ,S,G ← ∅
2 A← R0×0

3 eth ← z ∈ Z≥0
4 repeat
5 observe Cell ID c̃ at time t̃
6 if c̃ /∈ C then
7 C ← {C, c̃}
8 A←

[
A 0
0 0

]
9 T ←

{
T , t̃

}
10 G ← {G, c̃}
11 end
12 c̃ ≡ cn ∈ C
13 S ← {S, c̃}
14 tn ∈ T ← t̃
15 if tn − tk < timeout then
16 An,k ← An,k + 1
17 update G
18 end
19 m← arg min

m
S(m)

20 assign cluster ID m to c̃ ∈ S
21 k ← n

22 until No more observations
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Algorithm 7: Clustering and labeling w/ oscillation matrix
Data: Cell ID observations
Result: Cluster-labeled sequence

1 C, T ,S,∆, T o,G ← ∅
2 Â← R0×0

3 eth ← z ∈ Z≥0
4 repeat
5 observe Cell ID c̃ at time t̃
6 if c̃ /∈ C then
7 C ← {C, c̃}

8 Â←
[
Â 0
0 0

]
9 T ←

{
T , t̃

}
10 ∆← {∆, 0}
11 T o ← {T o,−1}
12 G ← {G, c̃}
13 end
14 c̃ ≡ cn ∈ C
15 S ← {S, c̃}
16 δn ∈ ∆← t̃− tn
17 tn ∈ T ← t̃
18 update τn ∈ T o
19 if δn < τn then
20 Ân,k ← Ân,k + 1 ∀k | tn − δn ≤ tk ≤ tn
21 update G
22 end
23 m← arg min

m
S(m)

24 assign cluster ID m to c̃ ∈ S
25 until No more observations
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5.4.3 Clusters From Oscillation Paths

Consider an oscillation event in the sequence; we can say that all cells involved
in this oscillation event can form a cluster together. In the case when multiple
oscillation events are intertwined with each other then all the cells involved are a
cluster as well. For example, let S = {ca, cb, cc, cd, cb, ce, cd, cf , cg} be a part of the
Cell ID sequence. We notice that there are two oscillation events, one involving
cell cb and another involving cell cd. We also notice that these two events overlap.
Thus, we define an oscillation path as the combination of overlapping oscillation
events. In our example this would result in an oscillation path starting from the
first occurrence of cell cb and end at the last occurrence of cell cd and the resulting
cluster would contain the cells cb, cc, cd, and ce.

The same labeling techniques used in the maximal clique method can also be
used here.

ca cb cc cd cb ce cd cf
first oscillation event

second oscillation event

overlap

oscillation path

Figure 5.15: An example of an oscillation path.

5.4.4 Clusters From Pairwise Distances

There are many clustering methods in the literature that rely on pairwise distance
information. In this section we will summarize a few of the most popular methods
and techniques that can be used with the pairwise distance matrices D, D̂, and D̃
that we defined in a previous section.

Agglomerative Clustering A ”bottom-up” approach of hierarchical clustering
where each observation (in our case Cell ID) starts as its own cluster, and pairs of
clusters are merged as one moves up the hierarchy. Different distance measures
can be used to determine the distance between two clusters (not necessarily the
distance between two Cell IDs but rather two groups/clusters of Cell IDs).
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Figure 5.16: A dendrogram where clusters are connected depending on a cluster
distance measure.

Density-Based Clustering Using the distance matrix that was estimated in sec-
tion 5.3.3, we can use a density based clustering method to cluster Cell IDs that
are in close proximity to each other and thus may represent a single place that the
user has visited. A widely used and built-upon density-based clustering method is
DBSCAN [195]. Given a set of points in some space, it groups together points that
are closely packed together (points with many nearby neighbors) , marking as out-
liers points that lie alone in low-density regions (whose nearest neighbors are too
far away). It requires two parameters to be provided: ε specifying the maximum
distance for two points to be considered as neighbors, and MinPts specifying the
minimum number of neighbors that a point needs to have in order to be considered
as a core point. This and other density-based clustering methods are versatile and
work well with oddly shaped clusters (for example, rings, crescents, etc.). Further-
more, it is a trivial matter to apply DBSCAN to the pairwise distance matrices that
we have defined in this work.

Figure 5.17: DBSCAN algorithm was used to determine the clusters. A cluster
represented by black points and another by red points. Gray points are outliers.
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Spectral Clustering These techniques make use of the eigenvalues of a simi-
larity matrix such as D. A common spectral clustering technique is the normalized
cuts algorithm which uses the symmetric normalized Laplacian of D and then
computes the eigenvalues and eigenvectors, finally k-means can be used to find
clusters in this spectral space.

Figure 5.18: On the left the result of the k-means clustering algorithm of some
data (black data points belong to one cluster and red data points belong to another
cluster) and on the right the result of the k-means clustering algorithm performed
on the spectral domain of the same data (and then plotted back into the original
domain).

5.4.5 Cell ID Clusters in the Data

We first filtered out transitional Cell IDs, that is Cell IDs that are only observed for
brief instances while the user is moving from one place to another, from the data
since they could not represent a significant place. Through empirical observation,
we conclude to label a Cell ID as transitional if its maximum holding time is less
than 5 minutes, and if its median holding time is less than 2 minutes. This meant
that for user 1, 16 of the Cell IDs were transitional and for user 2, 20. To recover a
ground truth for the clusters, we used the DBSCAN algorithm to find the clusters
from the ground truth distance matrix (the one calculated from the location data).
We empirically find that setting the parameter ε to 100 (meters) and MinPts to
4, results in a good clustering. The DBSCAN algorithm gives us two clusters,
one with Cell IDs in the regions 1 − 17, 73, and 81, and the other with Cell IDs
in the region 56 − 58 (seetable 5.1) which confirms our earlier observation about
possible groups of Cell IDs when we looked at the distance matrix. Inspecting
the locations where these Cell IDs were detected, and by cross checking with the
user, we conclude that the two clusters represent the user’s work place and home
respectively.
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Method Clusters Difference

Ground truth {1, 2, 4, 6, 8, 10, 12, 13, 14, 15, 16, 73, 81}
{56, 57, 58} N/A

Distance matrix {1, 4, 6, 8, 10, 12, 13, 14, 73, 81}
{56, 57}

{−2,−15,−16,−73}
{−58}

Graph
{1, 10}

{4, 6, 8, 12, 13, 14, 73, 81}
{56, 57}

{+1,+10}
{−1,−2,−10,−15,−16}

{−58}

Table 5.1: Comparison of clusters

Performing DBSCAN, with the same parameters as before, on the n-cell esti-
mated distance matrix we find that the resulting clusters are in the same regions
(see table 5.1). However, there are 4 Cell IDs missing from the first cluster and 1
from the second cluster compared to the ones found using the ground truth dis-
tance matrix. Since we used the same clustering algorithm and parameters, we
suspect that discrepancies in the distance matrix calculation due to inaccuracies
in the velocity estimates are the cause of these differences in the cluster. We can
also compare the clusters from the ground truth distance matrix with those dis-
covered using the maximal clique method in section 5.4.1. We notice that, when
compared with the ground truth, the first cluster is split into two clusters with the
second cluster missing only 3 Cell IDs. The last cluster is identical with the n-cell
clusters.

5.5 Discussion

Although cloud services and cloud computing are gaining traction in recent years,
they can be major sources of privacy concerns for users. The continuous improve-
ments in processing power and memory in mobile devices allows us to perform
many privacy sensitive tasks on the device itself with little compromise. In this
chapter we defined similarity metrics to describe Cell ID distances in a privacy-
conscious manner. We then used these metrics in order to estimate clusters
which represent significant places for a user in a real life study. Based on our
results we can conclude that the similarity metrics that we described are useful
since they yield clusters that are similar to the ones produced when using real dis-
tance measures obtained through the location service of the mobile device. Using
our distance metrics we identified the same number of clusters as when using
the real distance measures (two clusters) and these clusters were almost identical
(a maximum difference of 4 Cell IDs). Our estimated distance matrix, although
the distances were overestimated, had a very similar structure to the ground truth
distance matrix, i.e. a constant scaling of the estimated distance matrix would re-
sult in an accurate representation of the Cell ID pairwise distances. The maximal
clique method produced similar results. The main reason one might choose the
maximal clique method over the distance based method would be because the
maximal clique method is more lightweight in terms of computations and memory,
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however, one might want to use the distance based method because it provides
distance estimates. Finally, we show that it is possible to introduce such a privacy-
conscious technique to provide important location context information to location
based services in a realized application.

The most significant cause of errors is a direct result of the inaccuracies of
the velocity estimates. In our future work we plan to further improve the velocity
estimates by using more sophisticated models that take into account not only the
holding time at that instant but also other more long term metrics about the holding
times and their patterns, therefore improving the clustering accuracy. Considering
that the Cell ID clusters are not an indicator of geographical position but rather
a signifier of an abstract place where a mobile user is in (such as home, work,
etc.), the application of this research is limited to services which need a loca-
tion context input without compromising the user’s privacy or using a significant
amount of resources on the device. Such services include but are not limited to:
automatic user interface modification to match the location context of the user,
tracking of time spent in home, work, or other significant place, providing reminder
notifications based on location context. Other, research-oriented applications of
automated location context discovery are abundant such as in Stals et al. [196]
where they correlated user emotions with the places they visited.

The maximal clique method was deployed in a mobile phone application with
the aim of serving as an additional feature to be used in a machine learning al-
gorithm that can detect the intimacy state of the user in the work of Gustarini et
al. [28]. The application used semantic location and time spent in that location.
The maximal clique algorithm was used to determine the semantic location (home,
work) of the user instead of using the GPS sensor so as to conserve battery us-
age and preserve user privacy. Overall, the maximal clique algorithm along with
the time spent in the detected clusters helped to define intimate vs non-intimate
environments. Since intimacy detection should not invade user privacy (it is coun-
terintuitive to invade intimacy to detect it) the use of this algorithm, which did not
require access to the user’s location data (a very intimate set of data), helped
achieve the goals of the experiment.
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Chapter 6

Efficacy Evaluation of
Opportunistic Data Mixing

6.1 Introduction

Mobile crowd sensing leverages the number of user-companioned devices, in-
cluding mobile phones, wearable devices, and smart vehicles, and their inherent
mobility to collect information such as location, personal and surrounding context,
noise level, and more [197]. The users, acting as sensors, have a certain expecta-
tion of privacy about the data they might be sharing and often do not trust that is it
possible to hide their identity while at the same time provide usable data [22]. Pro-
viding data privacy in crowd sensing or other participatory data collection context
has been an important task that ensures that the participants privacy is protected
(for example, data cannot be traced to the individual) while the data is being col-
lected at large scales without bias stemming from privacy-aspects (for example,
participants switching off their phone in certain contexts).

There are several elements of the data collection process that can be exploited
to reveal sensitive information about the participants: the data communication
channel, the reporting of the data, and the data itself. The communication chan-
nel can be exploited by man in the middle attacks where someone can intercept
the message, read it and potentially manipulate it, and then relay it to its origi-
nal destination. Securing the communication channel from third parties that might
want to intercept the data can be achieved using data encryption techniques. In
the reporting stage, each participant sends their data to the entity collecting the
data (a researcher or a company), from here on referred to as the data collector.
As a result, the data collector can easily know which data belongs to each par-
ticipant by looking at which of the participants sent it. Giving pseudonyms to the
participants can help mitigate this but it is still not completely safe. The data col-
lector will still know that a certain batch of data belongs to a certain pseudonym
which can be compromising depending on the content of the data. Even one
piece of identifiable data will allow the data collector to know that all the data in
that batch with the same pseudonym belongs to the same user. For this reason,
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mix networks were introduced in the data reporting process. These networks mix
the batches of data from each participant and send it to the data collector which
then has no way to directly trace the source of a batch of data. The data itself
can be used in inference attacks where an attacker analyzes the data and is able
to cross reference with public data or maliciously obtained data (ex. spying) in
order to identify the participant who generated this data. For this, there has been
a lot of research in data obfuscation which provides some level of anonymity (k-
anonymity, l-diversity, t-closeness, and others). Chapters 2.2 and sec 2.3 describe
privacy metrics and data obfuscation techniques in more detail and provide more
information and shortcomings of the currently available anonymity measures.

A generic data collection scheme is shown in figure 6.1 where users collect
data in some environment and then send the data through an optional mix network
that can either be a geographical zone in their environment or a separate network.
The data is eventually communicated to the data collector who may chose to use
data obfuscation techniques to provide privacy to the users. The communication
channel is represented by arrows.

user

data collector

user

user

user

user

user

user

environment

mix network

data obfuscation

sensor

DB

Figure 6.1: A diagram of a generic data collection scheme.

Other privacy and security related requirements are outlined by Giannetsos
et al. [63] however, these are out of the scope of this chapter. These include
privacy-preserving resilient incentive mechanisms and fairness (users should re-
ceive credits and rewards for their participation without associating themselves
with the data or the tasks they contributed), communication integrity confidentiality
and authentication (all entities should be authenticated and their communications
should be protected from any alteration and disclosure to unauthorized parties),
authorization and access control (participating users should act according to the
policies specified by the sensing task), data-centric trust (Mechanisms must be in
place to assess the trustworthiness and the validity of user submitted data), and
accountability (entities should be held accountable for actions that could disrupt
the system operation or harm users).
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6.1.1 Contributions

This chapter concerns itself with enhancing the privacy of participants during the
reporting phase of a data collection scheme. Although mix networks have helped
in this regard, they often rely on some centralized entity or specific location in order
to mix the batch of data. The concept of slicing and mixing, which is described in
chapter 2.5, allows for novel mixing strategies that can be implemented in an op-
portunistic sense but there is little proof as to their performance and effectiveness
with real world data.

We will focus specifically on evaluating the efficacy of mixing the data, as part
of a slicing and mixing strategy, in a fully opportunistic way with the goal of achiev-
ing a uniform distribution of the data among all participants. We assume that
participants are mobile and generate data by using sensors or answering surveys
and that they regularly cross paths with at least one other participant in order to
exchange data in a peer to peer manner. Furthermore, we require that all partici-
pants together form a connected graph with respect to who they meet. The mixing
strategy we use is very basic so as to provide baseline results that can later be
used to evaluate more complex strategies.

In section 6.2 we introduce and describe our data mixing scheme, in section
6.3 we verify the mixing scheme in a simulated environment. Finally, in 6.4 we
summarize the results and provide design implications.

6.2 Privacy-conscious Data Shuffling

From here on we will refer to the participants (users in Figure 6.1) who are gen-
erating the data as sensor nodes or just nodes. A simple opportunistic mixing
scheme consists of the following steps:

1. Nodes perform their normal daily routines while also collecting data.

2. At some point all the nodes have finished collecting data.

3. Nodes continue performing their normal daily routines, this time without
collecting data.

4. Node i comes into communication range with another node j.

5. Each node randomly selects a subset of their data which will be sent to the
other.

6. The nodes exchange the data between each other.

7. Keep performing steps 3 through 6 until certain stopping criteria is reached.

Note that steps 2 and 3 can be removed, however, in order to keep our evaluations
manageable we will keep them. Furthermore, as we mentioned earlier, we require
that the nodes form a connected graph so that the entirety of the data can be
uniformly shuffled. If there are any disconnected subsets of nodes the data will
have no way to be communicated between those subsets, only within them.
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In contrast, other schemes which use mix networks instead of opportunistic
peer to peer slicing and mixing, either compress steps 3 to 7 in one step where
the nodes send their data to a centralized mix network, or require that in step 4
the exchange occurs in a predefined area where at least k nodes regularly enter
at some point of their routine.

In figures 6.2 through 6.5 we illustrate a simple scenario with two participants.
In this example scenario, a researcher wants to collect noise pollution data in a
region of a city but it would be too costly to install sensors throughout this region.
The researcher’s solution is to equip a small number of citizens with a noise and
GPS location sensor that automatically collects data and let the participants go
about their daily routine.

Home 1

Work 1

Commercial Center

Bar

Restau.

Figure 6.2: An example of a participant who collects data (solid dots) while they
are moving along paths (lines) performing their regular routine.

In figure 6.2 a participant commutes between a set of places like home, work,
commercial center, bar, restaurant. The red lines represent the paths they use to
go between those places during their daily routine. At the same time, the partic-
ipant is collecting data. The solid red dots represent the places where they have
collected data.

Work 2

Commercial Center

Bar

Restau.

Home 2

Figure 6.3: An example of another participant.
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In figure 6.3 we see the paths and data points of another participant. If each
of the participants would directly send their individual data, the researcher could
easily figure out where each participant lives, works, shops, and goes out to. To
solve this privacy issue, it would help if the data were mixed together so that the
researcher does not know which specific participant collected a certain data point.

Work 2

Commercial Center

Bar

Restau.

Home 2Home 1

Work 1

Figure 6.4: The paths of the two participants displayed on the same map. Circled
areas indicate regions where they might be able to exchange data.

In order to mix the data, the participants could send it to a trusted entity whose
purpose would be to mix the data before reporting it to the researcher. But what
if the participants do not trust such a solution? In figure 6.4 we overlayed the
paths that the two participants take in their daily routines. We notice that there
are certain regions (circled areas) where they come into relatively close proximity
with each other. We can take advantage of this to implement an opportunistic
mixing strategy where the users mix their data between each other whenever they
are close enough that they can wirelessly transmit their data. The detection of
proximity and transmission of data would be managed automatically by the sensor
device software so that the participants do not have to actively perform this task
or even be aware of it.

Work 2

Commercial Center

Bar

Restau.

Home 2Home 1

Work 1

Figure 6.5: Data ownership after mixing.
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After a thorough mixing of the data, each participant can then transmit their
data to the researcher. In figure 6.5 we see which data each participant sent to
the researcher, red for the first participant, and blue for the second participant. As
we can see, the researcher will have a good sample coverage of the region and
also have a much harder time to figure out where each of them lives, works, etc.
Because we only used two participants in this example scenario, the researcher
can still deduce some sensitive information. For example, they can claim that one
of the participants lives in ”Home 1” with a 50% probability. This is why it is also
important to involve an adequate number of participants in any scientific study.

6.2.1 Data exchange

When two nodes come within communication range of each other, each node
randomly selects half of the total number of data, M , that they have in their pos-
session to exchange with the other. This value can be adjusted individually on
each node to adjust their data exposure and either reduce or increase the poten-
tial amount of personal data that they might share at each transaction depending
on the privacy requirements and/or trust metrics. The specifics of this adjustment
are not explored in this paper and we keep the amount of data that each node
exchanges at M

2 as it is optimal for reaching a uniform distribution of data in the
least number of shuffles. This fact can be easily verified by looking at the number
of ways there are to choose k data from M given by the binomial coefficient which
can be calculated using the equation below:(

k
M

)
=

M !

k! (M − k)!
(6.1)

Each shuffle becomes more random as the binomial coefficient increases in value.
If we set k to be some fraction x ∈ [0, 1] of the total data M , k = xM , then we can
analytically verify that the value of x which maximizes the result in the equation
above is 1

2 .

6.2.2 Stopping criteria

There are two different stopping criteria that can be used to signify that the data
has been sufficiently shuffled (uniformly distributed) and that it is safe to send it to
the data collector. The first one is based on each nodes perception of how well the
data is mixed. Each node can keep track of the data that they come into contact
with and measure the probability that they encounter some specific piece of data.
Since the data may be encrypted, the nodes must keep track of the encrypted
data or a shorter hashed version of the encrypted data which can come paired up
with the encrypted data. Once the probability is close to being uniform across all
data, then they can stop the shuffling process since this indicates a near uniform
mix. This might work well when there are not many nodes, but as the number of
nodes increases, the time it takes to verify the uniformity of the mix also increases.
The second set of stopping criteria is based on the properties of the graph like
closeness centrality. If, in addition to data, the nodes exchanged information about
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their graph connections (nodes that they have previously encountered) or there is
prior knowledge about the graph, then they can estimate the number of exchanges
that they need to perform before the data is near uniformly mixed.

Closeness centrality to estimate stopping criteria. Closeness centrality is a
measure of the degree to which an individual node is near all other nodes in the
network. In order for each node to calculate its closeness centrality it needs to
know its distance to all other nodes. This is trivial when there is global knowl-
edge about the graph, however, it may not always be the case, especially when
there is no trusted party to provide this information. When there is no prior graph
knowledge, each node i needs to communicate its personal adjacency matrix Ai

in addition to the data at each exchange. Ai should initially indicate which nodes
are directly connected (one hop) along with the edge weight as it is calculated by
the node (in this case, edge weight is equivalent to the number of times that the
node has encountered each of its one hop neighbors). Then the node can update
Ai by combining all the personal adjacency matrices it has acquired (Aj , Ak, etc.)
from other nodes. To update Ai when the node receives another node’s personal
adjacency matrix Aj we perform the following operation:

Algorithm 8: Procedure to combine Ai with Aj

Data: Ai, Aj
Result: updated Ai

1 if Aik,l = ∅ and Ajk,l 6= ∅ then
2 Aik,l ← Ajk,l
3 end
4 if Aik,l 6= ∅ and Ajk,l 6= ∅ then

5 Aik,l ← min
(
Aik,l, A

j
k,l

)
6 end

Finally, performing a shortest path algorithm such as the Floyd-Warshall or
Dijkstra algorithm can reduce the redundancies and update the paths in Ai. The
process is illustrated in figure 6.6

The closeness centrality can then be calculated for each node and by each
node using the information in their respective adjacency matrix. The stopping
criteria for the number of exchanges necessary to sufficiently mix the data can
then be estimated from the adjacency matrix and closeness centrality information
using empirical data which we will show in section 6.3. It is important to note that
if the graph of the nodes is known to everyone, encrypting the communication
channel becomes even more vital for the protection of the security and privacy of
nodes against malicious nodes.
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Figure 6.6: Left: two personal adjacency matrices. Right: the combined outcome
where overlapping weights are assigned the minimum of the two values. Grey
values indicate unmeasured values calculated by the shortest path algorithm.

6.3 Experiment and Results

6.3.1 Experimental setup

To verify our data mixing scheme, we perform simulations using artificial param-
eters as well as simulations using real mobility data from the MDC dataset. The
data mixing occurs in shuffling rounds that consist of either a group of markov
chain state transitions (representing data exchanges) based on the transition ma-
trix or a full day (24 hours) of proximity events in the real mobility data simulations.

At each time t, a node i will exchange data with a node j either with a probabil-
ity based on the Ai,j element of the transition matrix A for the artificial parameter
simulations or based on the proximity of the two nodes in the real mobility data
simulations. At each shuffle we take note of what data each node has.

In order to get representative probability distributions of the data, we run 30000
trials of the simulation with each of the parameter sets (a parameter set consists
of the following: the number of nodes, data size per node, and the transition matrix
or proximity events). This number was selected because it gives us a confidence
level of 99% based on the equation n ≥ log(a)

log(1−p) to calculate the number of trials
necessary given the probability of the occurrence of an event p and the confidence
level 1 − a that we require. In our case we seek to be confident of events that
occur with a probability of at least p = 0.00015, that is to say that our probability
distributions in our results will have a granularity of 0.00015. We choose 1 − a =
0.99 which is equivalent to being 99% confident in our results.

For our experiments, the total number of nodes, N , and the amount of data
items, M , that they start with is selected as described in section 14. To keep track
on how the data flows throughout the network we make sure that each node’s
initial data is uniquely identifiable by labeling them with integers. For example, if
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we set the number of data to 6, then node 1’s data will consist of the numbers from
1 to 6, node 2’s data will consist of the numbers from 7 to 12, etc. In this way we
can easily check how uniformly the data has been distributed by evaluating the
probability distribution of each number being in any specific node at the end of the
shuffle.

Artificial Parameter Simulations Setup

Initially, we performed simulated experiments with artificial parameters to illustrate
and validate the data shuffling procedure. Node mobility is artificially simulated by
using three different Markov models where each one is defined by a transition ma-
trix A. The three models consist of a best case scenario transition matrix (equiv-
alent to a group of co-workers or students enrolled in the same course), an inter-
mediate case scenario (equivalent to shift-based co-workers), and a worst case
scenario transition matrix (equivalent to otherwise unrelated commuters crossing
paths on their way to their individual workplaces). The specifics of the transition
matrices are described in section 14.

Real Mobility Data (MDC) Simulations Setup

We use real user mobility traces from the data of the Mobile Data Challenge (MDC)
which include GPS traces of real mobile users [198, 199]. The data we used
included 191 users and spanned over a year of data for some of the users. To
normalize and be able to compare with the artificial cases, we define one shuffling
round as a single day and we analyze up to 100 contiguous days (i.e. 100 shuffling
rounds) of GPS traces for each trial.

For some users, we might have less than 100 days of data, when we reach the
end of the data without having completed the 100 shuffling rounds we cycle from
the beginning until we reach the desired number. For example, if a user set only
has 50 days worth of data, we will go though his GPS data twice to complete the
100 day trial.

In most cases we have more than 100 days of data for each user set. In
this case, since we limit our simulations to 100 shuffling rounds consisting of 100
contiguous days, we make sure that we select 100 contiguous days when the user
set is sufficiently active based on two criteria in order of priority: the median of the
number of proximity events between all pairs in the user set, and the total number
of proximity events.

We assume an exchange of data between two users can be performed under
the following conditions:

• They are within 50 meters or less of each other. We call this a proximity
event since they are within direct communication range of each other.

• They have not exchanged data between each other in the past 30 minutes.

In these experiments we do not consider the bandwidth or throughput of the data
transmission and assume that it can be instantaneously exchanged when two
users are within communication range.



90 Chapter 6. Efficacy Evaluation of Opportunistic Data Mixing

For each of the 30000 trials for the MDC data simulations, a random subset ofN
users was selected from the 191 in such a way that they formed a connected graph
with a minimum edge weight of 10 (in this case, edge weight indicates the number
of exchanges between two users during the entire duration of the study). With this
random selection, when we use N = 10 the average number of hops between the
two most remote users was 9 and the median number of hops between any two
users was 3 (which resembles a line topology). The user set was unique in each
trial of our simulations, i.e. no two trials had the same set of 10 random users.

We ran an additional simulation with the MDC dataset in which instead of se-
lecting N random users, we selected N users that formed a clique (i.e. a fully
connected topology with maximum distance of one hop between any two users).
Again, we limited the edge weight to be equal to or above 10. During our experi-
ments we discovered that there were not enough cliques of size≥ N in the dataset
to justify doing 30000 trials. The total number of maximal cliques (cliques that are
not subsets of larger cliques) in the dataset is 890 and the number of cliques with
size of at least N is often much smaller than that. It is redundant to perform more
trials than there are number of cases because this means that the same case will
need to be repeated several times to reach the desired amount of trials. However,
to get meaningful statistics it was necessary to do a much larger number of trials
than there were number of cliques. To remedy this, we relaxed the requirement
for the cliques and allowed ourselves to combine cliques to form a set of N users.
The exact procedure by which we combined the cliques is described in Algorithm
9. This algorithm allowed us to generate much more than 30000 different user sets

Algorithm 9: Procedure to combine cliques
Data: The user cliques
Result: A well connected user set

1 userSet← ∅
2 while size(userSet) < N do
3 cliq ← randomclique
4 if size(cliq) < 0.5 (N − size (userSet)) then
5 go to line 3
6 end
7 userSet← userSet ∪ cliq
8 if size(userSet) > N then
9 userSet← select N users ∈ userSet

10 end
11 end
12 if userSet not connected then
13 go to line 1
14 end

as evidenced by the results in our simulations where for N = 10 there were no two
trials with the same user set in all of the 30000 trials. Furthermore, N = 10 resulted
in user sets with the average number of hops between the two most remote users
at 4 and a median number of hops between any two users of 1.
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Sim. type Transition Matrix {# of Nodes, # of Data}
best case fully connected topology w/ prob

of no transaction 0 and prob of
transation with each of the other
nodes 1

N−1

{10,6} {30,6} {10,20}

intermediate case line topology w/ prob of no trans-
action 0.5 for edge nodes and 0
for all other nodes

{10,6} {30,6} {10,20}

worst case line topology w/ prob of no trans-
action 0.8 for edge nodes and 0.6
for all other nodes

{10,6} {30,6} {10,20}

MDC data random GPS traces of a random selec-
tion of users

{10,6}

MDC data cliques GPS traces of cliques of users {10,6}

Table 6.1: Simulations performed showing total nodes and total amount of data
per node for each simulation. There are 11 simulations in total.

Parameter Sets

The number of nodes and number of data items for the MDC data simulations
was selected after the artificially simulated cases where we verified that the num-
ber of data items did not significantly affect the number of shuffles needed since
we always exchange half of a node’s total data (as per the protocol discussed in
section 6.2.1). We chose to simulate only 2 representative cases with the MDC
dataset: choosing a connected set of random users, or choosing users that form
cliques in the adjacency matrix. Other cases would be redundant since we already
show the effects of changing the number of nodes and data items with the artificial
parameter simulations. All simulations are summarized in Table 6.1.

6.3.2 Performance Criteria

The performance criteria that we mainly use is the Kolmogorov-Smirnov test with a
uniform distribution of 1

N as the reference distribution. With this test, we measure
the absolute error between the distribution of the data in our experiment and the
ideal uniform distribution. As a result of our experimental setup we are able to
perform this test after every shuffling round in our experiment allowing us to see
the exact number of shuffles needed to achieve a near uniform mix. For illustrative
purposes we first take a look at the probability of holding a specific data item for
each node at each shuffling round.
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6.3.3 Results

Results Using Artificial Parameters

Intuitively, the more shuffles we do then the more uniform the distribution of the
data should be. This intuition is verified in figure 6.7a where we clearly see that
the probability of holding a specific data item (as an example we use the data item
with number 3) approaches an ideal probability with amplitude 1

N as the number
of shuffles increases, where N is the number of nodes. Since node 1 is the initial
holder of the data item with number 3, it starts with the highest probability in the
initial stages and as it shares data with all the other nodes the probability evens
out.
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Figure 6.7: Results for the best case scenario for N = 10 and M = 6

The same is true for the intermediate and worst case of the line topology as
we can see in figures 6.8a and 6.9a, although, in this case it takes more than 40
shuffling rounds to reach the same ideal probability for each of the cases. Similarly
to the best case, we notice that node 1 starts out with higher probability of holding
the data with number 3, and then we notice a sharp increase on the probability of
node 2 holding it since it is the only node that is connected to node 1 (recall that
intermediate and worst case scenarios have the line topology of nodes).
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Figure 6.8: Results for the intermediate case scenario for N = 10 and M = 6
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Figure 6.9: Results for the worst case scenario for N = 10 and M = 6

Results using MDC Dataset

In figures 6.10a and 6.11a we see the results of the MDC dataset simulations. For
the MDC simulation with the random selection of users, although the connectivity
resembles that of line topology, we cannot see it in figure 6.10a (like in figures
6.8a and 6.9a) because the users are not ideally ordered at each trial to reveal the
same pattern as the artificial parameter simulation with line topology (recall that
they were randomly selected).
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Figure 6.10: Results for the MDC data with random user selection for N = 10 and
M = 6
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Figure 6.11: Results for the MDC data with clique user selection for N = 10 and
M = 6

Kolmogorov-Smirnov test of the experiment

As we can see in figures 6.7b, 6.8b, 6.9b, 6.10b, and 6.11b, the error decreases
as the number of shuffles increases. For our experimental setup, 4 shuffles is
sufficient to adequately shuffle the data in the best case scenario while more than
60 shuffling rounds are needed in order to reach a similar distribution of the data for
the worst case scenario. The MDC dataset simulation with random user selection
is comparable to the worst case scenario while with clique based user selection it
is better than the intermediate case but worse than the best case scenario.
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Simulation type # of shuffles for D < 0.035

Best case 4
Intermediate case 46
Worst case 100
MDC data random 85
MDC data cliques 40

Table 6.2: Summary of Kolmogorov-Smirnov test results for N = 10 M = 6.

Effects of varying number of nodes and number of data items

For the fully connected topology (best case), varying the number of nodes or num-
ber of data items does not seem to have an effect on performance. For the line
topology (intermediate and worst case), increasing the number of nodes also in-
creases the number of shuffles necessary. However increasing the number of data
items does not have a noticeable effect for those cases. These conclusions can
be verified in the figures 6.12,6.13, and 6.14 which show the Kolmogorov-Smirnov
statistic as function of the shuffles for different selection of total nodes N and total
data items M .
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best case scenario
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Figure 6.13: Kolmogorov-Smirnov test for different selection of N and M of the
intermediate case scenario
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Figure 6.14: Kolmogorov-Smirnov test for different selection of N and M of the
worst case scenario

6.4 Discussion

In this chapter, we evaluated a basic peer to peer opportunistic mix network in or-
der to generate a baseline of results which can later be used to compare different
strategies. We did this by opportunistically shuffling the data among the partici-
pants and showed that the number of shuffles is dependent on the properties of
the graph that represents the participant interconnections. A fully connected topol-
ogy requires only 4 shuffling rounds. On the other hand, a line topology required
significantly more shuffling rounds; 46 rounds for the intermediate case and 100
shuffling rounds for the worst case. Using real user GPS traces from the MDC
dataset we saw that the number of shuffling rounds did not exceed the worst case
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when selecting random nodes from the population but at 85 rounds it was sig-
nificantly higher than the intermediate case. Carefully selecting nodes from the
population in the MDC dataset to form a more connected topology made a signifi-
cant difference in the efficiency of the shuffling (only 40 shuffling rounds) and was
significantly better than the intermediate case.

These results can be used to define the stopping criteria for a near uniform
shuffle based on the topology of the nodes. A set of 10 nodes in a fully connected
topology (having an average closeness centrality of 1) would require at least 4
shuffles. Whereas a set of 10 nodes in a line topology (having an average close-
ness centrality of 0.3430), would require 100 shuffles. For the MDC dataset the
closeness centrality ranged from 0.3430 to 1 and from 0.6 to 1 for the random user
selection and the clique-based user selection respectively.

Opportunistic peer to peer mixing, as part of a slicing and mixing strategy, can
therefore reasonably mix the data so as to protect the identity of the source in
the context of the data routing. However, the data content itself should be further
obfuscated in order to protect the identity of the source which might be revealed
from analyzing the data content. Such techniques require the manipulation of data
entries and can reduce the quality of the data but it is often necessary to do so for
the protection of the participants.

There are several technologies that can facilitate the exchange of data in a peer
to peer manner. The most basic technology would be Bluetooth, however band-
width can be a limiting factor with a maximum of 2Mbit/s. If peers are typically
within communication range around 60 seconds, this would mean only 60Mbits or
a little over 5MBytes can be exchanged at a time. This number might be suitable
for small data collection campaigns but might not be adequate for long duration
campaigns that require data from multiple sensors. Ideally, the Wi-Fi transceiver
of the mobile device can be used to directly link two nodes without the need for
an access point or internet connection. The Wi-Fi Direct protocol enables just that
and Apple’s Airdrop performs a similar function. The bandwidth of Wi-Fi direct is
250Mbit/s; that’s more than 100 times faster than Bluetooth. Given a 60 second
timeframe, this translates to 15000Mbits or almost 2GBytes of data that can be
exchanged. That is equivalent to taking temperature readings every second for
the next 9 years at least. Suffice it to say, it would work adequately for the majority
of data collection campaigns.

Having seen a solution for the mechanism to exchange the data, the next
technical hurdle is to detect when two nodes are within communication range. A
straightforward method would be to use Wi-Fi scanning of nearby devices thereby
using Wi-Fi to solve both the data exchange and the proximity detection. The
main disadvantage of using Wi-Fi is that it would need to be on all the time and
it can use a significant amount of energy compared to other solutions. Bluetooth
Low Energy (LE) is ideal for this step due to its extremely low energy consump-
tion. Bluetooth LE can be used to detect nearby devices and perhaps send some
basic data to authenticate the users and their involvement in the data collection
campaign and then Wi-Fi direct can be used to facilitate the main exchange of the
data.

Peer trust is a topic that was not fully explored in this chapter. Since the nodes
directly exchange their data between each other they need to trust that the other
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nodes do not misuse, eavesdrop on, or otherwise manipulate the data. Fortu-
nately there are many encryption strategies that can be employed to facilitate the
exchange of data without the explicit requirement of trust. Furthermore, since the
software on the sensor devices would likely automatically handle the data collec-
tion and peer to peer data exchange we can confidently assume that the data is
not easily accessible to the nodes. Even so, given a sufficiently large number of
nodes in the scenario, if a node is able to access the data that is exchanged, they
have no way to confidently determine which node collected it in the first place.
For these reasons, the simulated experiments in this chapter ignored trust. Given
a less than ideal number of nodes trust could be a factor in the early rounds of
shuffling (when nodes hold a higher percentage of their own data). Lets recall that
the amount of data that each node exchanges upon each interaction can depend
on some privacy or trust metrics. Intuitively, we can guess that as the nodes are
mixing the data, thus each one holding data from an increasing number of differ-
ent nodes, trust will start to increase among the nodes since each data exchange
would mean sharing less of their own data. Having mentioned this, it would be in-
teresting to see how much an untrustworthy environment would affect the number
of data exchanged between the nodes and how much longer it would take to fully
mix a set of data.
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Discussion and Future Work

There are many aspects of data privacy that need to be addressed and in this
thesis we have addressed only a subset of them from a technical perspective.
We investigated the uses of all the data that can be collected from the physical
sensors of a smartphone and evaluated their potential to be a privacy threat. We
proposed self-sufficient methods to detect the location context of a user and other
location tracking information which do not need to share any data from the device.
Finally, we evaluated the real-world efficacy of implementing an opportunistic mix
network for the data reporting phase of a generic crowd-sensing scenario. Other
aspects include the user behaviour towards data privacy, privacy policies and their
ability to inform the average user, the implications of the GDPR, the commercial
impact of privacy, the many other services that could potentially be implemented
in a self-sufficient manner, blockchain solutions, specifics on secure computation,
and many more.

If we can fully address privacy from a technical level (for example, with secure
or private algorithms), we can enable developers and creators to make secure ser-
vices without worrying too much about the continuously evolving policy landscape
and at the same time increase consumer confidence. By seeking the answers to
our research questions we have come a step closer to this goal. In the following
sections we will summarize the results from this thesis and provide answers to the
research questions that we posed. We will also propose some future work that can
be done in the context of this thesis to either expand our answers to the research
questions or find answers to an expanded version of our research questions.

7.1 Results Overview

Chapter 3 result summary. In chapter 3 we saw that most hardware sensor
data on a mobile device have one or multiple privacy threats. Location can be de-
termined using most of the sensors available (GPS, Cell ID, WiFi, Bluetooth, Ac-
celerometer, Magnetometer(indoor only), Barometer(floor level only)), while other
sensors can be used to authenticate/identify a person based on their behaviour
(accelerometer, gyroscope, camera, microphone). MEMS based sensors are all
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vulnerable to fingerprinting, that is, each individual sensor has a unique bias in
their output which can be used to identify a specific device.

Chapter 4 result summary. In chapter 4 we describe an algorithm for relative
localization. Our algorithm is able to use multiple range measurements from dif-
ferent locations to stationary beacons whose locations are not known and then
determine the locations of those beacons and the locations where the measure-
ments were taken from and generate a relative map. Our algorithm is shown to
have improved accuracy under the same conditions compared to MDS. If accu-
rate range measurements of Cell IDs can be procured by a smartphone (based
on RSS for example), our algorithm can be used for location self-provisioning.

Chapter 5 result summary. In chapter 5 we introduce some algorithms to de-
termine location context based solely on Cell ID data. We show that by using Cell
Oscillation events and graph based clustering methods we can detect significant
places. We also show that we can obtain distance measurements between Cell
ID observations and create a distance matrix to which we can apply density based
clustering like DBSCAN to determine significant places. This chapter among other
work mentioned in the related work chapter 2.1 conclusively proves that location
context can be determined on the device itself.

Chapter 6 result summary. In chapter 6 we evaluate the efficacy of opportunis-
tic data mixing using real mobility data. Our results show that depending on the
time constraints of a particular data collection study, the mixing of the data can
be affected. According to our analysis, at least 40 days should be devoted in
opportunistically mixing the data if the participants are carefully selected.

7.2 Answers to Research Questions

After investigating the various uses of smartphone sensor data, developing al-
gorithms for detecting location context and for estimating other location tracking
information, and analyzing the efficacy of an opportunistic mix network for data
reporting using real mobility data, we are able to answer our research questions.

7.2.1 Research Question 1

Q: Considering all the different sensor data that can be collected on a mobile ubiq-
uitous device, both data collectors and participants must be made aware of what
privacy threats come with sharing this data. For that, we must answer the ques-
tion: Which sensor data originating from a mobile ubiquitous device has the
potential to uniquely identify a person or to otherwise reveal sensitive per-
sonal information?

A: In chapter 3 we collected evidence that the following sensors could compro-
mise a users privacy:



7.2. Answers to Research Questions 101

• GPS. Reveals location of personal places and is vulnerable to inference at-
tacks.

• Cell ID. Reveals location of personal places and is vulnerable to inference
attacks.

• WiFi. Reveals location of personal places and is vulnerable to inference
attacks.

• Bluetooth. Reveals location of personal places and is vulnerable to inference
attacks.

• Touchscreen. Reveals keystroke dynamics and can be used to reveal one’s
PIN.

• Microphone. Can be used for speaker recognition and for AEI. It can also be
used to identify keystrokes on mechanical keyboards.

• Camera. Can be used for face recognition, gait recognition, location recog-
nition, and even authorship recognition.

• Accelerometer. MEMS sensor fingerprinting can identify individual devices,
location/navigation, activity recognition, gait recognition, speaker recogni-
tion.

• Gyroscope. MEMS sensor fingerprinting can identify individual devices, can
be used for speaker recognition.

• Magnetometer. MEMS sensor fingerprinting can identify individual devices,
can reveal location from fingerprinting.

• Barometer. MEMS sensor fingerprinting can identify individual devices, can
be used for building floor detection.

• Ambient light sensor. Can reveal elements of location (indoor/outdoor, room),
Can reveal the PIN.

At first glance this may seem disappointing in terms of safeguarding privacy but
we must keep in mind that several of the experiments that were performed were
done in a highly controlled manner and current privacy preserving techniques can
mitigate some of the threats. Cell IDs, WiFi APs, and Bluetooth APs can all be
encrypted so as to mask their real identifiers and still be useful in detecting per-
sonal places while keeping their actual geographic location hidden. Nevertheless,
most services that use this data do not obfuscate it because it is easier to use
geographic location compared to using abstract location identifiers. The touch-
screen data for the location of touches in most smartphones is only available to
the application on the foreground and therefore a malicious application cannot
eavesdrop unless it is opened on the foreground. This would pose a significant
threat only if an application has its own virtual keyboard. The microphone and
camera both require the explicit permission of the user to be accessed by appli-
cations and this means that at least the user is aware that a particular application
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has such access. This does not imply that an application will only access these
resources at the user’s request. Once an application is granted access, it has the
ability eavesdrop at any moment. The accelerometer, barometer, magnetometer,
and ambient light sensors are completely open and free to be accessed without
any special permissions but machine learning methods can be used to reveal a
variety of information. The average user would not know that an application is
accessing these sensors and there is no trivial way to block an application from
accessing them which could put them at risk. This list is not complete since we
have only looked at the physical sensors of the devices and there are many more
software-related sources that can ”leak” information.

7.2.2 Research Question 2

Q: With the current trends on mobile ubiquitous device processing power and stor-
age, the option to migrate tasks from the cloud to the edge to process data and
derive useful and actionable information can be seriously considered. Is it feasi-
ble to do data mining and provide basic services, like localization, to users
without transmitting sensitive data to a cloud service from the mobile device
or otherwise rely on a third party?

A: Many demanding machine learning and data mining tasks can be somewhat
securely implemented using obfuscation techniques that were discussed in the
related work in chapter 2.3. Tasks that do not require a significant number of op-
erations can be securely computed using the secure computation methods that
were discussed in the related work in chapter 2.6. Less demanding tasks that do
not require data from multiple sources can already be performed on modern de-
vices which have ample processing power and memory. In the future, as devices
get more powerful, more demanding tasks can be performed on the devices them-
selves. Furthermore, developments in secure computation and in server technol-
ogy can help in the future to migrate more demanding tasks to a secure compu-
tation scheme. For location and location context awareness there exist methods
that are computationally efficient enough to be performed on the device itself and
were discussed in the related work (chapter 2.1). We also presented two of our
own localization and location context algorithms in chapters 4 and 5 respectively.
On the other hand, privacy for exploratory studies which often require the data
to be anonymized but as close to its original form as possible are only feasible
if the collected data can satisfy privacy measures (k-anonymity, l-diversity, etc.)
without significant obfuscation. In general, this is not a realistic assumption and
would require that the participants give their full consent after understanding the
implications of the data being collected and trusting the entity which is collecting
the data.

In summary, although not all services can be implemented without relying on a
third party, some can. Location context can be easily detected using data readily
available on the mobile device using relatively lightweight algorithms. Other lo-
cation features like distance traveled, speed, and even mode of transport can be
estimated using the on-board sensors of the device but accuracy and drift errors
should be taken into account. As such, they may not be suitable for applications
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that require high accuracy. Services that require significant use of resources, pro-
cessing or storage, like speech recognition are still better served as a cloud ser-
vice. Data mining for population studies, by nature, cannot be reliably performed
without individuals somewhat or wholly relinquishing their privacy. However, once
models exist for detecting or deriving some feature, individuals can safely use
them on their own devices if the model and method are resource-friendly. As the
smartphone gets more powerful in terms of resources, more and more compli-
cated models can be used on the device.

7.2.3 Research Question 3

Q: Opportunistic crowd-sensing leverages the mobility of participants in order to
opportunistically collect data from the environment. Some such crowd-sensing
schemes break from the opportunistic paradigm when it comes to privacy mea-
sures during data reporting. Other schemes utilize the paradigm throughout the
entire crowd-sensing framework, which includes the privacy-related tasks of data
reporting. Even so, they fail to prove that such an opportunistic scheme can work
in a real environment with real mobility data. Can fully opportunistic crowd-
sensing still be carried out for scientific research without compromising the
privacy of individual participants?

A: Using a combination of secure offloaded computation techniques, on-device
computation (considering the capabilities of modern devices), and efficient data
mixing techniques seen in the related work and evaluated with real mobility data
in chapter 6, we can conclude that yes, fully opportunistic crowd-sensing can be
carried out both for data collection and for data reporting. However, caution should
be practiced with some types of data by either obfuscating it by using one of the
techniques in the related work (chapter 2.3), or by processing it on the device it-
self before and sending only the result which again may be a privacy threat itself.
Determining which data is safe to disseminate should be dealt with in a case by
case basis and chapter 3 can serve as a guideline for some of the data types.

The main issue with the opportunistic mix network strategy is the time limita-
tions of the crowd-sensing campaign. The opportunistic mix network may take
several weeks to sufficiently mix the data unless the campaign carefully selects
participants which are highly connected with each other. Another time-saving ad-
justment to the mixing phase is to only mix data within small groups of participants,
let’s say groups of size k, instead of the entire population. This would introduce a
certain k-anonymity about the source of a particular batch of data and significantly
shorten the time required to mix the data of the entire population of the campaign.

7.3 Implications for GDPR Compliance

The GDPR applies to any entity that handles, uses, or collects ”personal data”.
In the GDPR, personal data is loosely defined as ”any information relating to an
identified or identifiable natural person (’data subject’); an identifiable natural per-
son is one who can be identified, directly or indirectly, in particular by reference



104 Chapter 7. Discussion and Future Work

to an identifier such as a name, an identification number, location data, an online
identifier or to one or more factors specific to the physical, physiological, genetic,
mental, economic, cultural or social identity of that natural person”. This defini-
tion is general enough to cover a wide range of data but for non-experts it is not
immediately obvious which data is actually covered.

Each EU member state is responsible for enforcing the GDPR rules by appoint-
ing a supervisory authority (SA) who works with other member state SAs to keep
consistency among them. The European Data Protection Board coordinates the
SAs. Individuals can submit GDPR claims to the relevant SA who will evaluate the
claim and proceed with the appropriate actions. The SA also provides some basic
guidance to businesses and organizations in order to help them comply with the
GDPR, for example, in the form of a self-assessment checklist. Still, no specific
definition is given for what constitutes personal data.

Regarding this issue, chapter 3 of this thesis can bring some clarity for smart-
phone sensor data, a rather small subset of all the possible data types out there.
In that chapter we saw that most of the sensor data on a smartphone can reveal
personal information but we can get a sense of how sensitive they are by using the
sampling types that we defined (see table 3.1) and assigned to each data type.
Data that require a sampling type A being very privacy-sensitive and data that re-
quire a sampling type F being less privacy sensitive. The main implication of the
sampling type categorization is that if an organization collects a certain data type
at a lesser sampling type than is required to derive sensitive information (see table
3.2), then they may not have to consider this data as personal.

The GDPR has provisions for certification and certification bodies (articles 42
and 43) and a list of these can be found on the European Data Protection Board
website [200]. At the time of writing of this thesis there is no official GDPR cer-
tification mechanism but we can expect that there will be in the future. A GDPR
certification (along with their seals and marks) can let individuals know about the
GDPR compliance of an organization and reassure them that their data is handled
accordingly and that they are afforded a certain control over their data. However,
such a certification would not inform an individual about the level of potential pri-
vacy loss they might incur in the case of a data breach against the organization
for example.

We can use the results of chapter 3 to aid in evaluating the potential privacy
loss of a set of smartphone sensor data. One way to go about this is to assign
numerical values to the threat posed by some type of personal information and
then combine it with the sampling type required to derive this personal information.
For example, lets suppose that a smartphone application only collects Cell ID
data. Location and personal places can be derived from Cell ID data, so we will
assume that it is a high privacy threat. The sampling type required to derive this
information is C. Combining the two measures should result in a relatively high
potential privacy loss. On the other hand, lets consider barometer data. This data,
sampled at the sampling type B level, can be used to reveal the altitude or floor
level of an individual which seems like a low privacy threat. This should result in
a low overall potential privacy loss. The specifics of this evaluation can be further
investigated in the future and a concrete methodology can be established for all
data types, not just smartphone sensor data, and organizations can display this
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score in an effort to inform the users about the level of privacy loss that a user
might incur in a worst case scenario.

7.4 Future Work

Despite our efforts, there is still more that needs to be done to fully realize the im-
plications of opportunistic crowd sensing and service self provisioning on privacy.

In order to have a complete summary of privacy threats from all mobile device
data types, more data sources need to be investigated. In this thesis we only
looked at sensor data, but there are many software sources that need to be scru-
tinized. Some of these include application usage, phone interaction (for example,
screen on/off), browsing history, instant messaging behaviour, and more.

An important subject that was not covered in this thesis was that of database
record linking. Essentially two databases with a few congruent fields can be
merged into one database that might reveal sensitive information about an indi-
vidual. The simplest example is a database with fields such as name, age, marital
status, education level,area code and another with fields age, education level,
area code, telephone number. One can try to match the congruent fields of these
two databases to narrow down the entries that could be the telephone number of
someone whose name they already know. The threats of database record link-
ing can be devastating to an individual as it could result in harassment or worse.
Many database management systems come with standard features that allow the
linking of two or more databases into one master database using rules and there
is also research into sophisticated probabilistic and machine learning methods to
do the task when the data is not easily matched. At the same time, it is very
time consuming to create rules or to verify the accuracy of automated methods for
large databases. For now, there is not a perfect solution for record linkage and
when it comes to big data the time to verify the linkage can make it unapproach-
able. However, relatively small databases can be realistically vulnerable to this
type of exploitation. Even if precautions are taken by organizations to individually
secure their databases they must pay close attention to who has access rights in
order to avoid this kind of exploitation when it is not desired. Furthermore, linkable
databases managed by different organizations can also be exploited in the same
manner. Protecting personal data at this level requires inter-organization cooper-
ation and can be difficult to manage. As interesting as this topic is, it is not in the
scope of this thesis and would be a fruitful subject for future work in the field of
privacy.

Localization techniques that do not rely on third parties need to be improved
before they can be adopted in ubiquitous devices such as smartphones. Our local-
ization algorithm in chapter 4, although minimal in requirements, can be compu-
tationally complex and still not accurate enough for wide adoption. Improvements
in dead-reckoning-based techniques where on-board sensors are used is a good
start but the research is saturated with algorithms that still cannot be reliably used
by the average smartphone user. As sensors improve and as smartphone capa-
bilities improve, a robust solution, which could appeal to the average user, is just
over the horizon.
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Location context on the other hand can be determined fairly reliably with only
minimal information on the device itself. Applications or services that require such
input still want to access the raw location of a user. We need to push for more gran-
ular control over what data these application should get. Why should they know
the geographical location of your home and not have the device automatically tell
them that the current location is indeed ”home” without revealing any geographical
information? Changes need to be made in the core interaction between applica-
tions and the operating system which provides them with the necessary data.

Location tracking information such as distance and speed should also be
treated similarly. There are two possible paths to a solution. One is that the
Google location service, for Android devices, or the equivalent location service
for other family of devices, provide an API to access location context and location
tracking information separately from GPS coordinates. Internally they can use
GPS coordinates to easily detect and calculate this information and expose it as
a separate service to developers. This requires that the location service is secure
and trustworthy. The other path is to build single purpose services that do not rely
on GPS coordinates and therefore would not directly pose a threat to user privacy.

In this thesis we showed that location context can be detected without the need
for GPS coordinates. We showed that location tracking information could theoret-
ically be measured without the use of GPS as well. Therefore, we can conclude
that it is possible to provide location context and location tracking information sep-
arately from GPS location.

It would be interesting to develop a framework that accommodates such gran-
ularity in the dissemination of sensor information, not limited to location, to third
party applications. We can imagine that there would be closed modules that have
direct access to the raw data, and then would output processed information such
as location context, activity, etc. or obfuscate the raw data ever so intelligently so
as to both protect the user and not significantly reduce the utility of the data. In
only extreme cases would an application require the use of the raw data and the
user would be warned of such a requirement and the possible threats which result.

On the side of data reporting, more studies need to be made in different types
of environments. The data used to do the analysis in this thesis was from only one
city. Data should be gathered from environments with more or with less popula-
tion density to determine the cutoff for the feasibility of opportunistic data mixing.
Furthermore, recruiting strategies should be developed such that the participants
are both representative of what is being studied but also well connected in terms
of their mobility.
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