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Abstract

Aims: Darapladib, a potent inhibitor of lipoprotein-associated phospholipase A2 (Lp-PLA2), has not reduced risk of

cardiovascular disease outcomes in recent randomized trials. We aimed to test whether Lp-PLA2 enzyme activity is

causally relevant to coronary heart disease.

Methods: In 72,657 patients with coronary heart disease and 110,218 controls in 23 epidemiological studies, we

genotyped five functional variants: four rare loss-of-function mutations (c.109þ2T>C (rs142974898), Arg82His

(rs144983904), Val279Phe (rs76863441), Gln287Ter (rs140020965)) and one common modest-impact variant

(Val379Ala (rs1051931)) in PLA2G7, the gene encoding Lp-PLA2. We supplemented de-novo genotyping with information

on a further 45,823 coronary heart disease patients and 88,680 controls in publicly available databases and other

previous studies. We conducted a systematic review of randomized trials to compare effects of darapladib treatment

on soluble Lp-PLA2 activity, conventional cardiovascular risk factors, and coronary heart disease risk with corresponding

effects of Lp-PLA2-lowering alleles.

Results: Lp-PLA2 activity was decreased by 64% (p¼ 2.4� 10–25) with carriage of any of the four loss-of-function

variants, by 45% (p< 10–300) for every allele inherited at Val279Phe, and by 2.7% (p¼ 1.9� 10–12) for every allele

inherited at Val379Ala. Darapladib 160 mg once-daily reduced Lp-PLA2 activity by 65% (p< 10–300). Causal risk ratios

for coronary heart disease per 65% lower Lp-PLA2 activity were: 0.95 (0.88–1.03) with Val279Phe; 0.92 (0.74–1.16) with

carriage of any loss-of-function variant; 1.01 (0.68–1.51) with Val379Ala; and 0.95 (0.89–1.02) with darapladib treatment.
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Conclusions: In a large-scale human genetic study, none of a series of Lp-PLA2-lowering alleles was related to coronary

heart disease risk, suggesting that Lp-PLA2 is unlikely to be a causal risk factor.
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Introduction

Lipoprotein-associated phospholipase A2 (Lp-PLA2),
an enzyme expressed by inflammatory cells in athero-
sclerotic plaques, is carried in the circulation bound
predominantly to low-density lipoprotein (LDL).1,2

Lp-PLA2 (also called platelet-activating factor acetyl
hydrolase) hydrolyses oxidized phospholipids to yield
pro-inflammatory products implicated in endothelial
dysfunction, plaque inflammation and formation of
necrotic core in plaque.1 Observational3 and
experimental studies in humans and animals have
suggested that Lp-PLA2 could be a valid therapeutic
target, postulating this enzyme to link oxidative
modification of LDL and development of inflamma-
tory responses to arterial intima.1 Previous studies
have investigated genetic variants altering Lp-PLA2

function in relation to coronary heart disease
(CHD) risk.4,5 However, these studies have generally
yielded inconclusive, or conflicting results,4,5 perhaps
due to limited statistical power and due to limited
knowledge about variants altering Lp-PLA2 function
(e.g. previous studies have been able to consider only
one loss-of-function variant in PLA2G7, the gene
encoding Lp-PLA2).

However, two phase 3 randomized trials of darapla-
dib, a potent inhibitor of Lp-PLA2 activity, have not
shown reductions in cardiovascular risk.6,7 These
results could, at least in part, have been due to features
of the trials. One of the phase 3 trials was restricted to
patients recently hospitalized with acute coronary syn-
dromes,6 yet many cardiovascular events occurring
early after acute coronary syndromes may relate to
thrombotic mechanisms and not be modifiable through
Lp-PLA2 inhibition. Trials used statins as background
therapy, so any Lp-PLA2 inhibition achieved with sta-
tins could have reduced any incremental benefits of
darapladib. Trials could not assess the effects of pro-
longed Lp-PLA2 inhibition because they recorded only
about 3–4 years of median follow-up.6,7

An alternative explanation is that darapladib did not
reduce cardiovascular risk because Lp-PLA2 is not a
causal risk factor in cardiovascular disease. We tested
this possibility by investigating natural loss of Lp-PLA2

activity. Studies of Lp-PLA2-lowering alleles should
complement randomized trials of darapladib because
genotypes are fixed at conception, avoiding potential

distorting effects of pre-existing disease and medication
usage. Furthermore, Lp-PLA2-lowering alleles should
produce lifelong, rather than shorter-term, Lp-PLA2

inhibition.
In over 260,000 participants of European, South

Asian, or East Asian ancestries, we studied five
functional variants in PLA2G7. We compared effects
of Lp-PLA2-lowering alleles on soluble Lp-PLA2 activ-
ity, conventional cardiovascular risk factors and CHD
risk with corresponding effects of darapladib, using
results from randomized trials.

Methods

Study design

Figure 1 summarizes the study approach. Table 1
provides definitions and sources of data used. First,
we identified four loss-of-function mutations and one
missense variant in PLA2G7 suggested by previous
experimental and bioinformatics studies, thereby
developing an allelic series for Lp-PLA2 activity.
Second, we assessed associations of these variants –
both singly and in combination – with soluble
Lp-PLA2 activity, conventional cardiovascular risk fac-
tors and CHD risk in people of European, South Asian
or East Asian ancestries. Third, we compared associ-
ations of Lp-PLA2-lowering alleles with the aforemen-
tioned traits and CHD risk with the effects of
darapladib treatment through a systematic review of
randomized trials.

Genetic variants

We defined loss-of-function variants as non-synon-
ymous variants with in vitro or in vivo evidence demon-
strating complete lack of Lp-PLA2 activity or sequence
changes expected to abolish Lp-PLA2 function (e.g.
nonsense variants or mutations in essential splice
sites). We selected variants through a systematic
search for loss-of-function variants using the UniProt
database,8 the Exome Aggregation Consortium data-
base (Cambridge, MA, USA; URL: http://exac.broad-
institute.org (accessed November 2014)),9 studies of
site-directed mutagenesis10-12 and results from targeted
gene sequencing.13 Among the full set of variants iden-
tified (Supplementary Material online Table 1),
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we selected the following variants that could be
detected in the 1000 Genomes14 or the NHLBI
Exome Sequencing Project15 projects (and, hence,
potentially studied at the population level): the splice
site mutation 109þ2T>C (rs142974898); two non-
synonymous variants – Arg82His (rs144983904) and
Val279Phe (rs76863441); and the nonsense variant
Gln287Ter (rs140020965). These loss-of-function vari-
ants are rare in European and South Asian ancestry
populations, whereas carriage of 279Phe is common
in East Asian ancestry populations and abolition of
Lp-PLA2 activity is well documented.16 Additionally,
we studied Val379Ala (rs1051931), a functional variant
common in European ancestry populations, which
lowers Lp-PLA2 activity only modestly,10,17 in contrast
with the much stronger Lp-PLA2-lowering achieved by
the loss-of-function variants described above.

Samples and data for genetic studies

We aimed to maximize study power and comprehen-
siveness by using the following complementary
approaches to generate new data on, as well as to col-
late systematically existing relevant information about,
the PLA2G7 variants mentioned above: (1) we con-
ducted de-novo genotyping for 72,657 CHD patients
and 110,218 controls (the majority of whom also had

information available on some cardiovascular risk fac-
tors); (2) we accessed non-overlapping summary-level
data from the only known global genetics consortium
of CHD,18 yielding information on a further 35,735
CHD patients and 73,481 controls; (3) we conducted
a systematic review (supplemented by provision of
tabular data from each study investigator) of published
East Asian CHD studies of Val279Phe because these
studies were not represented in the global CHD consor-
tium, yielding information on a further 10,088 CHD
cases and 15,199 controls; (4) we accessed summary-
level data from the largest available global genetics con-
sortium on each of several relevant cardiovascular risk
factors (e.g. Lp-PLA2 activity, conventional lipids,
blood pressure), yielding information on 489,045 par-
ticipants. Each of these sources of information is sum-
marized below and in Table 1, with a key in Table 1’s
legend denoting the level of data detail available for
each source (e.g. individual-participant data versus
tabular study-level results).

Coronary heart disease outcomes. For CHD outcomes, we
had access to data for a total of 92,995 patients and
162,228 controls. For 182,875 of these participants
(72,657 CHD patients, 110,218 controls), we did de-
novo genotyping of the four loss-of-function variants
(c.109þ 2T>C, Arg82His, Val279Phe, Gln287Ter)

Genetic inhibition 
of Lp-PLA2

• Four loss-of-function variants
• One missense variant

Soluble Lp-PLA2 activity

Coronary disease events

Conventional cardiovascular 
risk factors (eg, lipids)

UniProt/Swissprot database
1000 Genomes project
NHLBI ESP
ExAc consortium

Results from de-novo genotyping, global 
consortia and systematic literature reviews

Pharmacological 
inhibition of Lp-PLA2

• Darapladib (160mg)

Systematic review of RCTs 

(a)

(b) PLA2G7 gene coding exons 
1 2 3 4 5 6 7 8 9 10 11

rs144983904 
Arg82His

rs142974898
c.109+2T>C

rs76863441 
Val279Phe 

rs140020965 
Gln287Ter

rs1051931 
Val379Ala

Loss-of-function variants Modest impact variant

Figure 1. Summary of study design. (a) Flow chart of study design. (b) Exonic structure of the PLA2G7 gene and location of variants

used in this study.

ExAc: Exome Aggregation consortium; NHLBI ESP: National Heart Lung and Blood Institute Exome Sequencing Project; Lp-PLA2:

lipoprotein-associated phospholipase A2; RCT: randomized controlled trial; UniProt/Swissprot: manually annotated and reviewed

section of the Universal Protein resource database.
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and Val379Ala using customized Exome arrays
(Illumina, CA, USA) by technicians masked to the
phenotypic status of the participants’ samples. For
35,829 CHD cases, 44,948 controls in eight studies,
we had access to individual-participant data. The
eight studies were: the Bangladesh Risk of Acute
Vascular Events Study,19 Copenhagen City Heart
Study,20 Copenhagen Ischemic Heart Disease/
Copenhagen General Population Study,20 European
Prospective Investigation into Cancer and Nutrition-
Cardiovascular Disease Study (EPIC-CVD),21

MONICA Risk, Genetics, Archiving, and Monograph
(MORGAM) study,22,23 Pakistan Risk of Myocardial
Infarction Study,24 Pravastatin in elderly individuals at
risk of vascular disease (PROSPER) trial25 and the
West of Scotland Coronary Prevention Study26 (these
eight studies are collectively called the ‘CHD Exomeþ

consortium’). For 15 additional studies (collectively
called the ‘MICAD consortium’) we used similar geno-
typing methods to those described above but did not
genotype c.109þ2T>C and had access only to study-
level data. We supplemented de-novo data on
Val379Ala with non-overlapping consortium-level
results from a further 35,735 CHD patients and
73,481 controls in the transatlantic Coronary Artery
Disease Genome-wide Replication and Meta-analysis27

and Coronary Artery Disease Genetics28 consortia
(Table 1). We obtained tabular data on Val279Phe
from seven East Asian studies involving a total of
10,088 CHD cases and 15,199 controls, identified
through systematic review (text and Table 5 in
Supplementary Material online). About 90% of CHD
patients in our genetic analysis had myocardial infarc-
tion or other major acute coronary events; the remain-
der had angiographic evidence alone (e.g. >50%
coronary stenosis; Supplementary Tables 2 and 5).

Lp-PLA2 activity. For 13,835 participants, we had infor-
mation on functional variants in PLA2G7 and Lp-
PLA2 activity, using data from de-novo genotyping in
MORGAM22,23 and PROSPER,25 supplemented by
published data from the CHARGE Consortium (i.e.
from the Atherosclerosis Risk in Communities
study,29 Cardiovascular Health Study,17 Framingham
Heart Study17 and Rotterdam study,17 and from 12
East Asian studies identified through the systematic
review described above (Table 1; Supplementary
Material text, Figure 1 and Tables 2 and 3).

Conventional cardiovascular risk factors. For 177,343 par-
ticipants, we had information on functional variants
in PLA2G7 and conventional cardiovascular risk fac-
tors and several other traits, including circulating con-
centrations of LDL-cholesterol, high-density
lipoprotein (HDL)-cholesterol, triglycerides, glucose,

insulin and C-reactive protein, and values of systolic
and diastolic blood pressure, body-mass index and esti-
mated glomerular filtration rate. Again, we supple-
mented data from our de-novo genotyping, with
information from existing global genetics consortia
(Table 1; Supplementary Tables 2 to 4).

Randomized trials of darapladib

To compare genetic associations with effects of
pharmacological Lp-PLA2 inhibition, we conducted a
systematic review to identify randomized placebo-
controlled trials of darapladib that had reported on
Lp-PLA2 activity, conventional risk factors and/or
CHD events (Supplementary Material). CHD events
in the trials were defined as fatal CHD, myocardial
infarction or urgent revascularization, as recorded in
STABILITY (Stabilization of Atherosclerotic Plaque
by Initiation of Darapladib Therapy) and in SOLID-
TIMI 52 (Stabilization of Plaque Using Darapladib-
Thrombolysis in Myocardial Infarction 52).6,7 We
pooled results across trials by fixed-effect inverse-
variance weighted meta-analysis (Supplementary
Figures 2 and 3; see Supplementary text for details of
the methods used).

Statistical methods

We defined effect alleles as those associated with lower
Lp-PLA2 activity and assumed an additive model. For
participant-level data, we assessed associations of Lp-
PLA2-lowering alleles with CHD using the genome-
wide efficient mixed model analysis, an approach that
models each genetic variant as a fixed-effect, but
includes both fixed-effect and random-effects of genetic
inheritance30 to account for population stratification
and relatedness among participants (Supplementary
Material). The four rare loss-of-function variants were
tested jointly within each study by counting the number
of loss-of-function alleles carried by each participant.
Log odds ratios and standard errors were meta-ana-
lysed across studies using fixed-effect meta-analysis.
For studies contributing only study-level data, we per-
formed a similar test by conducting a combined burden
test across studies using the R package seqMeta v1.2
(http://cran.r-project.org/web/packages/seqMeta/).

We calculated associations of Lp-PLA2-lowering
alleles with soluble Lp-PLA2 activity and conventional
risk factors using linear regression within each study,
and then combined the regression coefficients using
fixed-effect meta-analysis. When data were missing,
we used information on rs1805018 as a proxy for
Val279Phe and information on rs7756935 or
rs3799277 as proxies for Val379Ala (Supplementary
Material). To account for population stratification,
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we adjusted for the first principal component of ances-
try (Supplementary Material). We calculated risk ratios
for CHD with decrements in Lp-PLA2 activity, dividing
the log transformed risk ratio and confidence interval
(CI) by the effect on Lp-PLA2 activity of the instrument
(i.e. the genetic variant).31 We investigated heterogen-
eity using the I2 statistic. We used Stata 13.1.

Results

Of the 261,950 total participants in this analysis, we
studied 195,715 individuals of European ancestry,
34,221 individuals of South Asian ancestry and 32,014
individuals of East Asian ancestry. In people of
European or South Asian ancestry without CHD, the
frequency of alleles in PLA2G7 that lower Lp-PLA2

activity was 0.005% at c.109þ 2T>C, 0.04% at
Arg82His, 0.04% at Val279Phe and 0.025% at
Gln287Ter (i.e. in aggregate, 0.2% of the European
or South Asian participants in the current study carried
one of these loss-of-function alleles, although no one
carried more than one of these variants), and about
80% at Val379Ala. In people of East Asian ancestry
without CHD, the frequency of Val279Phe was about
15% and about 2% of the individuals were homozy-
gous carriers of the 279Phe allele.

Soluble Lp-PLA2 activity

Compared with non-carriers, homozygote carriers of
the 279Phe allele had 94% lower Lp-PLA2 activity
(p< 10–300). For each 279Phe allele inherited, Lp-
PLA2 activity decreased by 45% (1.59 SD, 95% CI:
1.61–1.57; p< 10–300). In Europeans who inherited
any one of the four rare Lp-PLA2 loss-of-function
alleles, Lp-PLA2 activity decreased by 64% (2.25 SD,
2.68–1.83; p¼ 1.6� 10–25). For each 379Ala allele
inherited, Lp-PLA2 activity decreased by 2.7% (0.096
SD, 0.122–0.069; p¼ 1.9� 10–12). By comparison,
160mg once-daily darapladib reduced Lp-PLA2 activ-
ity by 65% (2.26 SD, 2.31–2.21; p< 10–300). Study-level
estimates are provided in Supplementary Figure 2.

Cardiovascular risk factors

None of the Lp-PLA2-related variants we studied was
significantly associated with values of LDL-cholesterol,
HDL-cholesterol, triglycerides, systolic or diastolic
blood pressure, body-mass index, estimated glomerular
filtration rate, glucose, insulin and C-reactive protein
(Figure 2). By comparison, in previous randomized pla-
cebo-controlled trials, darapladib did not significantly
affect concentrations of LDL-cholesterol or log trigly-
cerides, but could have slightly increased systolic
blood pressure and HDL-cholesterol values and

slightly decreased C-reactive protein concentration
(Figure 2).

Clinical CHD outcomes

Compared with non-carriers, the odds ratio for CHD
was 0.99 (0.95–1.03) in 279Phe heterozygotes, and 0.93
(0.82–1.05) in 279Phe homozygotes (i.e. nearly com-
plete loss of Lp-PLA2 function: Figure 3). For each
loss-of-function (279Phe) allele inherited, the odds
ratio for CHD was 0.97 (0.91–1.02; I2¼ 30%;
pHeterogeneity¼ 0.2). In Europeans and South Asians
who inherited one of the four rare Lp-PLA2-loss-of-
function alleles, the odds ratio for CHD was 0.92
(0.74–1.16; I2¼ 0%; pHeterogeneity¼ 0.8; Figure 3). For
each 379Ala allele inherited, the odds ratio for CHD
was 1.00 (0.98–1.02; I2¼ 0.0%; pHeterogeneity¼ 0.5;
Figure 3). Study-level results are provided in
Supplementary Figure 3. In sensitivity analyses, odds
ratios with each loss-of-function variant were similar to
the odds ratio that combined information across the
four loss-of-function variants we studied. There was
no evidence of heterogeneity in odds ratios between
European and South Asian ancestry populations
(Supplementary Figure 4).

Genetic risk ratios for CHD per 65% lower Lp-
PLA2 activity (i.e. the reduction achievable with dara-
pladib treatment) were: 0.95 (0.88–1.03) with
Val279Phe in East Asians; and 0.92 (0.74–1.16) with
carriage of any one of the four rare variants studied
in Europeans and South Asians; and 1.01 (0.68–1.51)
with Val379Ala (Table 2). By comparison, the risk ratio
for CHD with darapladib treatment (i.e. also per 65%
lower Lp-PLA2 activity) was 0.95 (0.89–1.02; Table 2).

Discussion

In a large-scale analysis of human genetic data, we
tested whether Lp-PLA2 enzyme activity is causally
relevant to CHD by studying five functional alleles
that produce widely differing (i.e. small, moderate or
large) degrees of reduction in Lp-PLA2 activity. We
found that none was related to CHD risk, suggesting
that Lp-PLA2 enzyme activity is unlikely to be causally
relevant to CHD, a conclusion concordant with results
from two phase 3 trials of a pharmacological Lp-PLA2

enzyme inhibitor.
Three features of our study merit comment. First, we

studied almost 20 times more CHD patients than the
previous largest study of loss-of-function PLA2G7
alleles, thereby providing the first robust genetic evalu-
ation of effect sizes of Lp-PLA2 inhibition relevant to
phase 3 trials such as relative risk reductions for CHD
of 20%. For example, for the Val279Phe variant we
had >99% power to detect a 20% risk reduction in
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CHD for a 65% genetic reduction in Lp-PLA2 activity
(i.e. an effect on Lp-PLA2 activity similar to that
achieved by darapladib).

Second, our study has provided the first investiga-
tion in CHD of a series of functional alleles that each
reduce Lp-PLA2 function via different molecular mech-
anisms. Specifically, we studied five different Lp-PLA2-
lowering alleles: three of the alleles were coding variants
that produced different amino acid substitutions; two
of the alleles produced protein truncations (one due to
a nonsense mutation; the other due to a splice-site
mutation). Because we observed null and broadly con-
cordant findings for CHD risk across these alleles that
each changed the enzyme in a different way (and to a
different extent), we can more confidently conclude
there is no material cause-and-effect relationship. By

contrast, when the initial phase 3 trial of darapladib
was launched in 2008, only two of the five alleles we
studied had yet been identified: data on Val379Ala, a
weak effect missense variant, were inconclusive because
CHD studies were under-powered;32 data on
Val279Phe, a loss-of-function variant, and CHD risk
were sparse and restricted to East Asian populations.

A third feature was our study’s analysis of large-
scale data from three different major ethnic groups:
Europeans, South Asians and East Asians. This
ethnic diversity enhanced the generalizability of our
results.

Our study had potential limitations. To maximize
comparability of CHD endpoints used in clinical
trials with those used in human genetic studies, we
restricted analysis of phase 3 darapladib trials to
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Figure 2. Mean per allele differences in Lp-PLA2 activity and cardiovascular risk factor levels by Lp-PLA2-lowering alleles or with
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To enable comparison of the magnitude of associations across several different markers, analyses were undertaken with standardized

units of measurement for each marker. Associations are presented as per allele change in the biomarker expressed as standard

deviations. Numbers of participants are provided in Table 1. Details of contributing studies are provided in Supplementary Material

Tables 2 and 3 online.

*Carriage of any of the four loss-of-function variants c.109þ2T>C, Arg82His, Val279Phe, Gln287Ter.

BMI: body-mass index; CI: confidence interval; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL-c: high-

density lipoprotein cholesterol; LDL: low-density lipoprotein cholesterol; LoF: loss-of-function; Lp-PLA2: lipoprotein associated

phospholipase A2; SBP: systolic blood pressure
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‘major coronary events’ and principally focused in
human genetic studies on the cognate endpoints of
myocardial infarction or other major acute coronary
events (which constituted �90% of the outcomes).
Nevertheless, although the CHD definitions used in
trials and genetic studies were similar, they were not
identical.

It could be that cardioprotective benefits of Lp-
PLA2 inhibition were obscured by pleiotropic effects
of PLA2G7 variants; for example, 279Phe is known
to produce a misfolded version of Lp-PLA2 not
secreted by cells, prompting suggestions that its car-
riage could produce ‘off-target’ effects such as increased
cell death.33,34 However, because we found null associ-
ations between four other functional alleles in PLA2G7
and CHD, each of which operates via a different
molecular mechanism, it argues against this explan-
ation. On the other hand, it is possible that darapladib
may have additional effects beyond Lp-PLA2 inhib-
ition. For example, darapladib may have had slight
effects on CRP levels and systolic blood pressure,
which we did not observe with the genetic variants.

Lifelong genetic reductions in Lp-PLA2 could result
in compensatory responses that increase CHD risk.
However, this explanation seems unlikely because it
would require any such compensation to apply simi-
larly across alleles that produce widely differing degrees
of reduction in Lp-PLA2 activity. Furthermore, any
such compensation could not operate through known
cardiovascular mechanisms because we observed no
associations between Lp-PLA2-lowering alleles and sev-
eral established and emerging cardiovascular risk
factors.

Soluble enzyme activity could be an imperfect indi-
cator of the relevance of Lp-PLA2 to atherosclerotic
plaques. However, for homozygote carriers of 279Phe,
Lp-PLA2 activity should be almost abolished across all
tissues. Finally, we studied life-long genetic reductions
in Lp-PLA2 activity in relation to first-onset CHD out-
comes rather than recurrent CHD, whereas darapladib
trials studied recurrent coronary events in patients with
stable or acute coronary disease.

The current data underscore the growing importance
of human genetic approaches to enhance the efficiency
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Placebo

Val379Ala
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Four LoF* variants
Heterozygotes vs.

common homozygotes

Val279Phe (LoF) 
Heterozygotes vs. 

common homozygotes 

Val279Phe (LoF) 
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Figure 3. Association of Lp-PLA2-lowering alleles with Lp-PLA2 activity and CHD risk.

Spectrum of functional alleles in PLA2G7 and effects on Lp-PLA2 activity (red estimates) and coronary heart disease risk (black

estimates);

*Carriage of any of the four loss-of-function variants c.109þ2T>C, Arg82His, Val279Phe, Gln287Ter.
yOne study did not provide tabular data to enable calculation of CHD odds ratios in heterozygotes or homozygotes. Hence, numbers

are less than those presented for the per allele analysis in Table 2.

CHD: coronary heart disease; CI: confidence interval; LoF: loss-of-function; Lp-PLA2: lipoprotein associated phospholipase A2.
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of development of medicines by validating (or invali-
dating) novel drug targets.35-38 Specifically, despite
beneficial effects of darapladib on surrogate markers
(e.g. intravascular imaging) of coronary atherosclerosis
in pre-clinical and clinical studies,39-41 these effects did
not translate into reduced outcomes in the large phase 3
studies. Hence, human genetic studies may be useful in
influencing prioritization of clinical outcome trials in
the future.

Our results also illustrate how human genetic evi-
dence can assist interpretation of observational epi-
demiological data. For example, we found that
functional alleles in PLA2G7 do not alter levels of
pro-atherogenic lipids (e.g. LDL-cholesterol), suggest-
ing that such pro-atherogenic lipids do not mediate
associations between Lp-PLA2 activity and CHD and
supporting the need to adjust epidemiological associ-
ations of Lp-PLA2 activity with CHD risk for
pro-atherogenic lipids (an approach which yields results
consistent with non-causality).3

In summary, we found that none of a series of Lp-
PLA2–lowering alleles was related to CHD risk, sug-
gesting that Lp-PLA2 is unlikely to be a causal risk
factor in CHD.
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