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I. Context  

For a study about the size of the garment industry in Bangladesh, a data base about the garment 

factories in this country have been built by The Center for Business and Human Rights (NYU – 

STERN). The data base contains information about 7169 factories. Although, the database contains 

information about the structure, locations, size (etc.) of the factories, the aim of this report is a 

statistical analysis of the number of factories in the country. 

Indeed, these factories are observed from 5 professional lists: BGMEA, DIFE, BKMEA, ACCORD and 

ALLIANCE. It is clear that only a part of the factories have been observed and that a potentially very 

large number remains hidden. 

The methodology of the estimation, namely the Multiple Systems Estimation, and main definitions are 

presented in Section II. Section III presents descriptive statistics and the results from MSE database. 

Section IV is a short discussion of the results. Further technical results can be found in the Appendix 

and in the Reference section. 

II. Methodology  

A. Multiple Systems Estimation (MSE) 

The problem is to estimate the unseen part of a population the garment factories. These factories are 

partially observed in lists but a part is still hidden. The total population size is called the abundance. 

Actually, this kind of problems is fairly common in ecology where the abundance estimation is of 

interest. The problem can be illustrated with the well-known problem of fish abundance estimation.  

Assume that N, the number of fishes in a lake, is to be estimated. A first catch is made and n1 fishes 

are being caught, marked, and released back in the lake. At that moment, the proportion of marked 

fishes in the lack is n1/N. Another catch is made: n2 fishes are caught, among them n12 are marked. 

Assuming that the chance of capturing a given fish is the same between the two catches, then the 

proportion of marked fishes in the second catch should be the same as the one in the whole lake, that 

is n1/N = n12/n2. One concludes that N=n1*n2/n12, which is the estimate of the fish abundance in 

the lake. This is called a capture-recapture experience. 

This simple theoretical experience has been extended in complexity and applied to the field of survey 

on human beings. The idea is not to compare men to fishes, but to recognize that the problem is 

mathematically the same. If two independent but equivalent lists count the number of addict people in 

a city, not seeing them all, then we may expect that the proportion of addict people in the second list 

also seen in the first list (n12/n2) is the same as the proportion of addict people in the population 

seen in the first list (n1/N). Thus N is estimated by N=n1*n2/n12, the same way as for capture-

recapture. In that context, the methodology is called Multiple Systems Estimation. A good review can 

be found in (Lum, Price, & Banks, 2013). 

The formula extends to more lists in more complex mathematical way. However the complexity here is 

not in the math. It is in the fact that, even if we have a formula to estimate N, we have a huge 

uncertainty on that estimate. This has nothing to do with the math and its complexity. This has to do 

with the fact that the experiment, in fact, contains very few information about the abundance. This 

difficulty cannot be solved by math or stats whose role is to reveal an existing information from data, 

not to create new information.  
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This can be illustrated by the formula itself N=n1*n2/n12. If N is very large, then it is unlikely that 

someone is seen on the two independent lists. On the other hand, a large n12 (relative to N) is the 

sign that N is not large and that almost all the individuals have been seen in n1 and n2. Of course, all 

this is true when the two lists are independent. If the two lists are very dependent1 then it is very 

likely that the two lists contains almost the same individuals, even when N is very large. In such a 

case, the formula is not valid anymore, and a correction term should be included in the numerator n12 

to take into account for the dependence between the two lists. Ultimately, when the two lists are the 

same, then we have only one list from which no meaningful estimate of N can be obtained.  

We see that the initial assumption that the two lists are independent or not conveys a lot of 

information about the abundance estimate. The fact is that, either we know N and can estimate the 

dependence between the two lists, or we know the dependence and then we can estimate N. No 

mathematical model in the world can overcome this without incorporating a prior information about N 

or about the dependence between the lists explicitly or implicitly2.  

Fortunately, when more than two lists are available, the number of observations increases, bringing 

more information. It should be noted that the number of parameters to estimate also increases. For 

example, with three lists the dependence between each pair of lists should be estimated (p12, p13, 

and p23)3 but also the triple dependence factor (p123). Thus the problem again cannot be completely 

solved. However, it is intuitively easier to assume some form of independence between the three lists 

altogether than between any two lists4.  

This overall problematic is in link with the model choice that is treated below. It should also be noted 

that other problems are central to this application: 

- The open/closed population assumption: all along we have assumed that the population is 
closed. This is often an approximation of the reality, sometimes quite crude. Capture-

Recapture models for open populations aim at estimating the parameters of the birth-end-

death process rather than the abundance (which is not defined). Due to the short amount of 
time between the various list surveys, in this study, it is assumed that the population is closed 

although in future researches this could be relaxed. 

- The inhomogeneity of record probabilities: it is possible that a given unit has not the same 

chance of being caught by one list rather than another. For example, when one list is 

specialized in some garment style production then the corresponding factories have higher 
chance of being caught by that list. Although this is for sure the case in the present study, it 

should be noted that available models for tackling with this are so complex that they would be 
inappropriate. In addition, in average, the inhomogeneity effect is in general lower than the 

between list dependence effect5. 

- The credibility of the record: maybe some of the records should not have been counted. The 
recognition of a given factory cannot be solely based on its name. First because it may not 

have a name, second because when it has one, this name may not be clearly defined, or 
recognizable from a western perspective. This has been tackled at the data level, with a huge 

work of human recognition. The data are assumed clean enough that the mistakes, due to 
this imperfect though very serious work, are not influencing the final result in a significant 

way (compare to the precision which is aimed at). 

 

                                                
1 A classic case of dependence is when one list is national and another is regional. 
2 The incorporation of prior information is not in itself a solution, above all when no such information 
is available. 
3 The sign p12 refers to the proportion of people seen in list 1 and 2 simultaneously. 
4 In general, this is of the form p123=p12*p3 or p123=p1*p23, etc. 
5 It is also sometimes confounded with this effect, meaning that tackling the dependence partially 

solves the inhomogeneity.  



5 │10  Estimation of the number of garment factories in Bangladesh 

B. The Poisson model family and Bayesian Model Averaging 

The analysis of five lists of counts can be done following several principles that can be found in 

(Hoeting, Madigan, Raftery, & Volinsky, 1999). The association Human Rights Data Analysis Group 

(HRDAG) has made a huge work for bringing these complex methods to an easy access. This section 

is freely inspired from the very good text in (HRDAG, 2015) (see Q14 therein). 

An appropriate family of models the Poisson generalized linear model family6. In example for 3 lists, a 

Poisson model fits the observed cell counts to a formula like 

log(m100) = a + b1 

log(m010)=a+b2 

log(m101)=a+b1+b3+b13 (etc.) 

where m100 is the count of items only seen in list 1, m010 is the count of items in list 2 only, m101 is 

the count of items seen in both list 1 and 3 (not in list 2), etc. From such a model, the estimate of the 

unseen item count m000 is  

log(m000)=a  

that is m000 is estimated by the exponential7 of a. The abundance is thus estimated by the sum of 

the seen items (in the data) and exp(a).  

In the equation, the term b13 is an interaction term. That is, it estimates the dependence between 

lists 1 and 3. Assuming b13=0 means that they are independent. In theory, there could be a triple 

interaction term b123. However, as the count m000 is not observed, this term cannot be estimated in 

the model. Thus, one often assumes b123=0. Note that one could also have chosen b12=0, and 

incorporate b123 into the model, or assume b1=0 also. This is the whole problem of model choice.  

From a pure statistical perspective, several model choices are compared using a numerical quality 

criteria8. However, in practice, the model choice is guided by the user considering for example that a 

3-way interactions (terms like b123) should not be included if the two-way interactions are absent 

(terms like b12 and b13).  

Any model carries an uncertainty on the estimate. The uncertainty on the abundance can be 

represented by a confidence interval. A confidence interval covers the true abundance value with a 

given confidence. The higher the confidence, the larger the interval. In practice, the confidence level 

is set to 95%. The construction of the confidence interval is obtained from the statistical properties of 

the model. When fitted to the data, the model brings also an estimate of the uncertainty “sa” on the 

parameter of interest here, a. Using the statistical properties of the estimate a, it is known that a 

confidence interval for a at 95% is given by the formula  

[a – 1.96*sa; a + 1.96*sa] 

The confidence interval for the abundance N is thus 

Nobs + [exp(a – 1.96*sa); exp(a + 1.96*sa)] 

                                                
6 No link with the fishes. 
7 Parameter a is the intercept of the model. 
8 The criterion is often the BIC, a tradeoff between a goodness-of-fit measure and a complexity 

measure of the model. 
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In addition to the model uncertainty, the choice of the model itself conveys an uncertainty. To take 

this into account, Bayesian Model Averaging (BMA) can be used. The method consists in weighting the 

possible models according to a compromise between a prior probability and its appropriateness to the 

data. The final estimate is then a compromise between all the possible rather than being the result of 

a single model (even if it is the best, it may be close to the second model).  

In addition, variations along the various models can be integrated into the uncertainty. Then the fact 

that choosing the model itself increase the final uncertainty is taken into account. The complexity of 

these methods exceeds that report. We refer to (Hoeting, Madigan, Raftery, & Volinsky, 1999) for full 

details. 

C. Synthesis  

The Poisson model family is used. The fact that some interaction terms expressing the dependence 

between the series are included or not into the model provides a family of model in which a selection 

should be done. The selection is performed using a selection criterion (the BIC). The selected model 

provides an estimate of the abundance and a confidence interval around it. The estimation is refined 

using a BMA to incorporate the model choice uncertainty and improve the final estimation. 

D. Tools 

The analysis is performed using the computer program R and the package BMA (R Core Team, 2015). 

The code for the analysis is reported in the Appendix. 

III. Application and results 

The count of factories per list is reported in the data table below. 

Count BGMEA DIFE BKMEA ALLIANCE ACCORD 

1569 1 0 0 0 0 

620 0 1 0 0 0 

1314 1 1 0 0 0 

1170 0 0 1 0 0 

74 1 0 1 0 0 

490 0 1 1 0 0 

87 1 1 1 0 0 

98 0 0 0 1 0 

47 1 0 0 1 0 

6 0 1 0 1 0 

110 1 1 0 1 0 

4 0 0 1 1 0 

2 1 0 1 1 0 

14 0 1 1 1 0 

5 1 1 1 1 0 

227 0 0 0 0 1 

187 1 0 0 0 1 

25 0 1 0 0 1 

494 1 1 0 0 1 

58 0 0 1 0 1 

25 1 0 1 0 1 
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97 0 1 1 0 1 

95 1 1 1 0 1 

34 0 0 0 1 1 

53 1 0 0 1 1 

6 0 1 0 1 1 

222 1 1 0 1 1 

2 0 0 1 1 1 

7 1 0 1 1 1 

15 0 1 1 1 1 

22 1 1 1 1 1 
 

For example, 1569 factories have been registered in list BGMEA alone, and 87 have been observed in 

the three lists BGMEA, DIFE and BKMEA (and not in the two others). The statistical analysis aims at 

estimating the missing row 

Count BGMEA DIFE BKMEA ALLIANCE ACCORD 

??? 0 0 0 0 0 

 

The following table reports some descriptive statistics. 

Seen in Counts 

Total  7169  

BGMEA  4313  

DIFE  3622  

BKMEA  2167  

ALLIANCE  647  

ACCORD  1569  

exactly 1 list  3684  

exactly 2 lists  2239  

exactly 3 lists  890  

exactly 4 lists  344  

exactly 5 lists  22  

 

As explained in Section II, the model selection is performed using the R package BMA functions, 

applying a selection based on the BIC criterion. For this, a set of prior probabilities has to be given 

reflecting our prior information about the fact that a given parameter (e.g. interaction) is in the model 

or not. This is a difficult task due to the lack of prior information, the number of parameters, and the 

potential influence such specification may have on the final result. The results below are presented for 

a choice made to force the inclusion of the list effects, and a dependence term between lists BGMEA 

and BKMEA. Higher order interactions are considered less likely. Further details can be found in the 

code in the Appendix.  

The final model selection (with the highest posterior probability) is given in the Appendix. For this 

model, the abundance estimation is 

Model parameter estimate “a” 9.635 

Unobserved factories “m00000 = exp(a)” 15’286 

Abundance “N = m00000 + 7169” 22’465 
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Using the standard deviation of the estimate for this model (se = 0.123), the confidence interval at 

95% for the abundance is 

 Lower bound Upper bound 

Unobserved factories “m00000” 12’020 19’465 

Abundance “N”  19’189 26’634 

 

As discussed in the methodology, the uncertainty due to model choice may be quite high. 

Incorporating this uncertainty using BMA gives another set of (approximate) estimates as follow 

 Posterior 

expectation  

Lower bound Upper bound 

Unobserved factories “m00000” 17’050 11’557 27’829 

Abundance “N”  24’219 18’726 34’999 

 

IV. Discussion  

The total number of observed factories in the survey is 7’169, out of 5 lists. 

Using an MSE approach, an estimate of the unseen number of factories can be obtained. This 

estimate being around 15’300, or equivalently that the total number of factories is around 22’500. 

Similar estimates are obtained using various methods. Therefore, this method suggests that the 

survey would have counted about one third of the factories (between one half and one fourth when 

incorporating the uncertainty).  

In addition to these estimates, several other elements could be extracted from the statistical analysis, 

like the quantification of the dependence between the lists. For example, BGMEA and DIFE have a 

positive dependence (more common counts are observed than expected if they were independent). 

This analysis is not pursued here as it is not the aim of this study. 
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VI. Appendix 

A. The R code 

The code applies to the R object tab.grid containing the survey results. 

 

require(BMA) # package containing bic.glm 

 

## ########################## 

## Applying the selection and BMA 

## Prior probabilities are set such that main effect are kept 

## and 2-way interaction between BGMEA and BKMEA is likely 

## Higher order interaction terms are less likely 

model.bic <- bic.glm(f=count~bgmea*dife*bkmea*alliance*accord, 

data=tab.grid[-1,],  

glm.family=poisson(link="log"), strict=TRUE, maxCol=31, 

prior.param=c(rep(1,6),0.5, 0.75, rep(0.5,8),rep(0.25,14),0.1)) 

summary(model.bic) 

 

## ########################## 

## Computation using the selected model (with the highest posterior 

probability 

a.hat <- model.bic$mle[1,1] # estimate of the intercept (a) 

m00000.hat <- exp(a.hat) # estimate of the missing count (m00000) 

N.hat <- m00000.hat + sum(tab.grid[,1]) # estimate of the abundance (N) 

## Confidence interval at 95% around the abundance N 

CI.inf <- sum(tab.grid[,1]) + exp(a.hat + model.bic$se[1]*qnorm(0.025)) 

CI.sup <- sum(tab.grid[,1]) + exp(a.hat + model.bic$se[1]*qnorm(0.975)) 

 

## ########################## 

## Computation using Bayesian Model Averaging (all selected models) 

m00000.exp <- sum(exp(model.bic$mle[,1])*model.bic$postprob) # posterior 

expectation of the missing count (m00000) 
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N.exp <- m00000.exp + sum(tab.grid[,1]) # posterior expectation of the 

abundance (N) 

N.Bayes <- sum(exp(model.bic$mle[,1])^(-

1)*model.bic$postprob)/sum(exp(model.bic$mle[,1])^(-2)*model.bic$postprob) 

# lower risk Bayes estimate E(N^(-1))/E(N^(-2)) 

 

## Estimation of the posterior standard deviation of a.hat 

## Var(a.hat) = E(Var(a.hat|Model)) + Var(E(a.hat|Model)) 

Var <- sum(model.bic$mle[,1]^2*model.bic$postprob)-

sum(model.bic$mle[,1]*model.bic$postprob)^2+sum(model.bic$se[,1]^2*model.bi

c$postprob) 

SD <- sqrt(Var) 

 

## Approximate interval for N incorporating the model uncertainty 

a.exp <- sum(model.bic$mle[,1]*model.bic$postprob) 

Int.inf <- sum(tab.grid[,1]) + exp(a.exp + qnorm(0.025)*SD) 

Int.sup <- sum(tab.grid[,1]) + exp(a.exp + qnorm(0.975)*SD) 

B. The result of the selection 

The selection provides 116 models. The best five are (result of summary(model.bic)) 
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