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The lymphatic system comprises a network of lymphoid tissues and vessels that

drains the extracellular compartment of most tissues. During tumor development,

lymphatic endothelial cells (LECs) substantially expand in response to VEGFR-3

engagement by VEGF-C produced in the tumor microenvironment, a process known

as tumor-associated lymphangiogenesis. Lymphatic drainage from the tumor to the

draining lymph nodes consequently increases, powering interstitial flow in the tumor

stroma. The ability of a tumor to induce and activate lymphatic growth has been

positively correlated with metastasis. Much effort has been made to identify genes

responsible for tumor-associated lymphangiogenesis. Inhibition of lymphangiogenesis

with soluble VEGFR-3 or with specific monoclonal antibodies decreases tumor spread

to LNs in rodent models. Importantly, tumor-associated lymphatics do not only operate

as tumor cell transporters but also play critical roles in anti-tumor immunity. Therefore,

metastatic as well as primary tumor progression can be affected by manipulating

tumor-associated lymphatic remodeling or function. Here, we review and discuss our

current knowledge on the contribution of LECs immersed in the tumor microenvironment

as immunoregulators, as well as a possible functional remodeling of LECs subsets

depending on the organ microenvironment.

Keywords: lymphatic vessels, anti-tumor immune response, metastasis, lymphangiogenesis, tumor

microenvironment

INTRODUCTION

Over the last few years, immunotherapy has evolved into a very promising new approach
for fighting tumor progression. However, the proportion of cancer patients that positively
respond to these treatments is still limited. Indeed, tumor cells foster mechanisms to escape
immunosurveillance either by inducing poorly immunogenic tumors (immunoselection) or by
setting up a tolerogenic environment that inhibits immune effector cells (immunosubversion)
[reviewed in (1–3)]. Therefore, manipulations aiming at boosting anti-tumor immune cell
responses and in particular tumor-specific T cell priming currently represent an extensive axis
of investigations.
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During tumor development, lymphatic endothelial cells
(LECs), the principal components of lymphatic vessels
(LVs), undergo active modifications that facilitate metastatic
dissemination, and induce immunoregulation. LEC phenotype
and functions are strongly altered by inflammation or infections,
which may directly influence on-going immune responses (4).
In particular, it has been suggested that LECs immersed in the
tumor microenvironment (TME) can act as immunoregulators
of the anti-tumor T cell response (5). In vitro studies have
further shown that, tumor derived LECs exhibit altered gene
expression profiles compared to dermal derived LECs (6) and
upregulate PD-L1 to inhibit T cell activation (7, 8). On the
other hand, a recent study has suggested that tumor-associated
(TA) LVs might be beneficial for the efficacy of anti-PD-1
immunotherapy (9). Therefore, depending on the stage of
tumor progression and on the immunological settings (immune
evasion/immunosubversion or immunotherapy), LV might
display positive and/or negative effects on tumor immunity. It is
thus urgent to decipher precisely the roles for LVs in tumor cell
dissemination and anti-tumor T cell immunity. In this review, we
discuss the ability of LECs to shape tumor development through
their contribution to tumor cell spreading and regulation of
anti-tumoral T cell responses.

LYMPHATIC VESSELS AS
IMMUNOREGULATORS IN
NON-TUMOR CONTEXT

LVs develop as a hierarchical vasculature facilitating a
unidirectional drainage system of fluid and cells from tissues
toward draining lymph nodes (LNs) (10). They interlace
the blood vessel circulation and play a crucial role in lipid
absorption, tissue fluid homeostasis and immunity (11). The
lymphatic system is a linear and blind-ended circuit. Initial
lymphatic capillaries are composed of a single layer of LECs with
minimal basement membrane and are not covered by pericytes
or smooth muscle cells. This particular organization of LECs
is highly permeable for the uptake of cells, macromolecules
and interstitial fluids (12). Lymphatic capillaries drain to
collecting lymphatics defined by pericyte and smooth muscle cell
coverage, continuous basement membrane with “zipper-like”
junctions, and a system of valves preventing retrograde flow
(12, 13). Our knowledge of multiple LV functions has quickly
evolved, based on the identification of LEC markers such as the
transcription factor Prox-1 and the surface protein LYVE-1,
that are not expressed by others endothelial cells. Prox-1 is
primordial for the development and the maintenance of LECs
(14–16). LYVE-1 is enriched in lymphatic junctions, highly
expressed in initial lymphatics, but mostly absent from LV
collectors [reviewed in (12)]. This molecule is implicated in
dendritic cells (DCs) trafficking within LVs (17). LECs also
express GP38 (podoplanin) and platelet endothelial cell adhesion
molecule (PECAM-1 or CD31) that are markers shared with
fibroblastic reticular cells (FRCs) and blood endothelial cells
(BECs), respectively. An important function of lymphatics is
to transport immune cells from peripheral tissues to LNs and

therefore to participate to immune response initiation (18–21).
Transcriptomic analysis of ex vivo LN stromal cell (LNSC)
subsets in distinct immunological situations established that
FRCs, BECs, and LECs express a multitude of immune mediators
and growth factors that may influence the immune system.
LNSCs are strongly modulated by inflammation or infections,
and may contribute as active participants of on-going immune
responses. In addition, a more precise characterization of
these cells within distinct conditions suggested that LNSCs are
specialized for their unique microenvironment (4). This might
reflect a functional specialization of LNSC subsets depending
on the organ microenvironment. Apart from their effect on
tissue drainage and immune cell migration, LECs regulate T cell
responses through different mechanisms (22). First, different
studies in mice showed that steady-state LN LECs participate to
peripheral T cell tolerance by presenting endogenously expressed
tissue-restricted antigens (17, 18) through MHC class I (MHCI)
molecules and eliminating autoreactive CD8+ T cells (23–25).
LN LECs can also cross-present exogenous antigens onto MHCI
molecules, and further drive the apoptosis of antigen-specific
CD8+ T cells (26). Whether LN LECs have an impact on
peripheral CD4+ T cell responses in different immunological
settings remains largely unknown and controversial. On the
one hand, Rouhani et al. showed that LECs were unable to load
MHC class II (MHCII) molecules with antigenic peptides due
to their lack of H2-M expression at steady-state (27). However,
LECs express the promoter IV (pIV) of CIITA, the master
regulator for MHCII molecule expression (28). CIITA pIV
being inducible by IFN-γ (29), LECs might require exposure
to IFN-γ to upregulate H-2M molecules and be capable of
MHCII-restricted antigen presentation. On the other hand, we
published that surface MHCII expression on LNSCs results from
the combination of both endogenous and acquired molecules.
In vitro and in vivo, LNSCs further present peptide-MHCII
complexes acquired from DCs to CD4+ T cells to induce their
dysfunction. In particular, LECs specifically induce CD4+ T
cell death, whereas LECs, BECs and FRCs all induce T cell
anergy (28). Moreover, our recent studies demonstrate that the
loss of MHCII expression on LNSCs in murine LNs impairs
peripheral CD4+ T cell tolerance, and alters regulatory T cell
populations, resulting in signs of spontaneous autoimmunity
in elderly (30). Their lack of costimulatory molecules could
explain LNSC implication in T cell tolerance. By releasing the
sphingosine 1-phosphate (S1P), LECs play also an important
role in the egress of activated T cells from LNs (31, 32). In
addition, LEC-derived S1P is involved in naïve T cells survival,
its signaling further providing sufficient energy to maintain
their steady-state recirculation (33). LECs are also capable of
preventing T cell activation and proliferation in a negative
regulatory feedback process. Indeed, LECs from LNs produce
nitric oxide in response to inflammatory signals (IFN-γ and
TNF) produced by T cells, inhibiting back T cell activation (34).
Finally, during inflammation, LECs present in collecting LV
or in the skin suppress DC maturation via a Mac-1/ICAM-1
dependent mechanism (35), or through prostacyclin synthesis,
respectively (36), leading to subsequent dampening of T
cell activation.
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TUMOR-ASSOCIATED
LYMPHANGIOGENESIS AND METASTASIS

The mortality linked to solid tumors is mainly associated
with their capacity to disseminate to distant organs in a
process known as metastasis (37). LVs are essential in tumor
cell spreading as they function as “highways” connecting
primary tumors to secondary lymphoid organs. The process
of lymphatic proliferation, sprouting and enlargement during
tumor progression, known as tumor lymphangiogenesis, and its
implication in the spread of the disease has been studied for
many years. TA-lymphangiogenesis correlates with metastasis
and poor prognosis in several cancer types [as depicted in (10)],
illustrating the relevance of lymphatic vasculature to cancer
biology. A retrospective analysis of melanoma patients with lung
metastases showed that high LV density and lymphatic invasion
in metastatic regions were associated with poor prognosis (38).
Moreover, LVs and immune cell infiltrates positively correlate
in human metastatic cutaneous melanoma and colorectal
cancer (39, 40). Therefore, therapies aiming at blocking
tumor lymphangiogenesis are being considered as promising
approaches for the treatment of such malignancies [as discussed
in (41)]. Importantly, several inhibitors targeting distinct actors
of lymphangiogenesis have been developed in murine tumor
models and could be translated into clinic to reduce metastasis.
Accordingly, the inhibition of the prolymphangiogenic VEGFR-
3 signaling by using VEGFR-3 blocking antibodies or VEGF-C/D
trap reduces LN, and/or distant organ metastasis in different
tumor mouse models (42–45). Conversely, overexpression of
two lymphangiogenic factors VEGF-C and VEGF-D increases
metastasis dissemination to sentinel LNs (46–49). In particular,
molecules or antibodies blocking VEGF-C/VEGFR3 signaling
have been tested in clinical trials, some have gone one to be
approved for cancer treatment (10, 50) [as reviewed in (10)].
However, although blockade of VEGFR3 has no noticeable
effect on established lymphatics, VEGF-C signaling has been
described to promote homeostasis of intestinal and brain
meningeal LVs (51, 52). Therefore, it would be crucial to develop
treatment that specifically target pro-tumorigenic LEC functions
in order to exclude any potential intestinal or neurological
side effect.

In mice, LECs from tumors present a distinct molecular
profile compared to dermal LECs. Altered pathways
include chemokines, extracellular matrix, cell adhesion,
and inflammatory responses (6). These observations reflect
significant levels of LEC plasticity that is highly regulated by the
tissue microenvironment.

Pro-Lymphangiogenic Factors and Tumor
Cell Spreading
The TME is composed of cancer cells, the extracellular matrix
(ECM), stromal cells, and various immune cell types, impacting
both tumor cell development and anti-tumor immunity.
All these cells produce many factors that lead to the
establishment of an intratumoral environment characterized by
chronic inflammation, immunosuppression, angiogenesis, and

lymphangiogenesis, the latter being the focus of this review
(Figure 1.1).

The proliferation, migration and survival of LECs depend
mainly on VEGFR2/3 signaling axis, which is driven by VEGF-
C and VEGF-D (Vascular Endothelial Growth Factors –C and
–D) (53, 54) produced by many different cell types, including
tumor cells and immune cells. VEGF-C and VEGF-D, considered
to be major drivers of tumor lymphangiogenesis, are associated
with LN and/or distant organ metastasis (38, 46–48, 55–57)
(Figure 1.1). Using orthotopic spontaneous metastasis models
in nude mice, it has been shown that VEGF-C expression
by tumor cells favors metastatic propagation in distal organs
(57). Moreover, a recent study indicated that, in a transgenic
mouse model with increased lymphangiogenesis in the lung, TA-
LVs contribute to the dissemination of metastases to distant
organs (38). In vitro studies have deciphered the molecular
mechanisms implicated in the activation of VEGF-C/D signaling
pathway. Following VEGFR-3 engagement, the protein kinase
C is activated, leading to the phosphorylation of AKT, and
subsequent LEC migration, survival and proliferation (53).
Neuropilin 2 (Nrp-2), an additional receptor for VEGF-C,
is also expressed by LECs, and contributes to lymphatic
sprouting (58, 59).

In several human cancer, VEGF-C and COX-2 (cyclo-
oxygenase 2, an enzyme implicated in prostaglandin pathway)
expression are associated with LV density and LNmetastasis (60–
63). Interestingly, preclinical and clinical trials using different
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), blocking
COX-2 and subsequent prostaglandin production, have reported
a decrease in cancer incidence, tumor cell dissemination, and
finally global cancer morbidity. These observations suggest
that NSAIDs could be applied for the treatment of metastasis
(64–66). In mice, beside a direct effect on LECs, VEGF-C/D
increases the levels of prostaglandins in the TME, further
promoting TA-lymphangiogenesis. VEGF-D indeed inhibits the
enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH),
therefore enhancing LEC exposure to prostaglandins in collecting
lymphatic vessels (67). The engagement of EP3 signaling
(prostaglandin E2 receptor 3) on tumor-associated stromal cells
promotes lymphangiogenesis (68). Moreover, increased amounts
of prostaglandins amplify the production of VEGF-C by tumor
and immune cells, contributing to lymphangiogenesis and tumor
cell dissemination (62, 63).

TNF-α interaction with its TNF receptor 1 (TNFR-1) triggers
VEGF-C secretion by tumor-associated macrophages (TAM),
amplifying LV expansion and metastasis (69). On the other
hand, TNF-α signaling in LECs directly favors their proliferation
and their migration, without however being sufficient to
constitute a fully competent lymphatic network (69). Indeed,
TNF-α induced lymphangiogenesis completely depends on the
VEGF-C/VEGFR3-induced LEC tip formation. Similarly, VEGF-
C/VEGFR3-induced LEC tip formation is required to trigger
fibroblast growth factor (FGF2) induced lymphangiogenesis and
foster tumor metastasis in mice (70). In contrast, proangiogenic
factors such as platelet derived growth factor B (PDGF-
BB) (71) and angiopoietins (ANGPTs) (72) can act as direct
lymphaniogenic factors by binding, respectively, PDGF-BB
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FIGURE 1 | Lymphatic vessel functions during tumor progression. (Left) Tumor-associated lymphatics facilitate tumor cell spreading. Soluble factors produced in the

tumor microenvironment (TME) induce LEC remodeling and interstitial flow increase (1), resulting in enhanced tumor cell migration into lymphatic vessels (LVs) (2).

(Right) Tumor-associated lymphatics regulate anti-tumor immunity. Tumor associated (TA-) LECs actively promote DC migration toward draining lymph nodes (LNs)

(3). DCs further present tumor-antigens to naïve T cells, leading to initiation of adaptive anti-tumor immunity. In tumor-draining LNs, VEGF-C exposed LEC

cross-present tumor-antigens (Ags) and induce the deletion of anti-tumor CD8+ T cells (4). Intratumorally, naïve and activated T cells are weakly restimulated by local

DCs, due to the immunosuppressive TME. The TME favors in particular the infiltration of Treg and naïve T cells through a CCL21-dependent pathway. TA-LECs also

express high levels of PD-L1 in response to IFN-γ produced by effector T cells (5). Upon anti-PD-1 immunotherapy, TA-LEC mediated immunosuppression might be

abrogated, contributing to enhanced T cell activation and tumor cell elimination (6). Drawing designed by Rémi Jeandenand.

receptors and receptors Tie1/2 expressed by LECs.Whether TGF-
β enhances (73, 74) or inhibits (75) lymphangiogenesis depends
on tumormodels, rendering difficult the targeting of this cytokine
for the regulation of LEC remodeling in tumors.

Mechanism of Metastasis Dissemination
Emerging evidence suggest that lymphatic vessels undergo
several changes in response to lymphangiogenic factors during
the course of metastasis. In addition to promoting tumoral cell
transportation, LVs deliver lymphangiogenic factors produced
by the primary tumor to condition sentinel LNs prior to the
arrival and seeding of cancer cells (56, 76–78). In the mouse
B16F10 melanoma model, LVs from distant metastatic regions,
such as LNs and lungs, attract chemoresistant CD133+CXCR4+

melanoma cells by secreting CXCL12 (79).
TA-LVs were for long described as passive conduits

for tumoral cell spread toward sentinel LNs and distant

organs. However, several studies highlighted that the tumor
microenvironment actively modifies LV features of primary
tumor and draining LNs to further promote metastasis. VEGF-C
acts in an autocrine manner to improve metastasis dissemination
by favoring proteolytic activity and motility of tumor cells (80).
Besides its direct effect on tumoral cells, VEGF-C modulates the
expression of integrins and chemokines by LECs to facilitate
tumor invasiveness. The integrin α4β1 (or VLA-4), which is
considered as a marker of activated and proliferating LECs in
human and murine tumors (81), is activated by the VEGF-
C/PI3Kα pathway in LECs to promote lymphangiogenesis
and tumor metastasis in LNs. Therefore, the blockade or the
genetic deletion of this integrin on LVs prevents LEC migration
and invasion, and inhibits VCAM-1 mediated adhesion of
tumoral cell to LECs (82). The secretion of CCL21 by LECs,
which drives CCR7-dependent tumor migration through LVs,
is also enhanced in response to VEGF-C (80). Moreover,

Frontiers in Immunology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 720



Garnier et al. Tumor Lymphatic Vessels in Immunity

CCL21-dependent recruitment of innate lymphoid cells results
in the production of CXCL13 by tumoral stromal cells, which
in turn induces metastasis through RANK/RANKL signaling
(83). Transmural flow modulates LEC function by promoting
the expression of CCL21 and by downregulating VE-cadherin
and PECAM-1, two adhesion molecules crucial for cellular
junctions (84). Modification of interstitial flow influences CCR7
ligand secretion by tumoral cells, providing an autologous
chemotactic gradient (85). In human, CCR7 expression by tumor
cells is associated with LN metastasis in several cancers (86–88)
(Figure 1.2).

CCL1 secretion by LECs located in the subcapsular sinuses
of LNs is crucial to control tumor cell invasion into LNs.
Indeed, blocking the CCL1 receptor (CCR8) inhibits metastasis
by preventing tumor cell egress from collecting lymphatics into
LNs without affecting their entry into intratumoral lymphatics
(89). Recently, the screening of 810 mutant mouse strains
allowed the identification of 23 genes that, when disrupted,
alter the establishment of metastatic foci (90). Notably, they
demonstrated that the deletion of the sphingosine-1-phosphate
transporter SPNS2 in LECs decreases pulmonary metastasis and
promotes effector T cell and natural killer cell infiltration in
lungs (90).

Recently, Black et al., have shown that the pro-
lymphangiogenic factor COX-2 enhances the expression of
semaphorin 7a (sema7a) in breast tumoral cells. This leads
in turn to the activation of β1-integrin receptors on adjacent
tumoral cells and LECs, to finally increase lymphangiogenesis
and cancer cell dissemination (91). Moreover, sema7a induces
gp38 upregulation by tumor-infiltrating macrophages, therefore
promoting their adhesion to LVs and consequently boosting
lymphangiogenesis and metastasis in breast cancer (92). In
agreement, Sema7a gene expression is observed in a high
frequency in human breast cancer and correlates with metastasis
and poor prognosis (91).

Apart from their implication in metastasis dissemination,
accumulating studies indicate that LECs modulate anti-tumor
immunity. The roles of LECs in tumor spreading and anti-
tumoral immune responses are discussed below.

DUAL ROLE OF TUMOR-ASSOCIATED
LYMPHATIC VESSELS IN
ANTI-TUMOR IMMUNITY

Growing evidence highlight that, in addition to acting as drains
for soluble factors and tumoral cell transport, TA-LVs further
play important roles in shaping antitumor immunity. Therefore,
the modulation of lymphangiogenesis could impact not only
metastasis dissemination but also anti-tumor immunity and
primary tumor growth. In the context of solid tumors, lymph
flow from tumors is increased, driving intense interstitial
flow in the tumor stroma, and enhancing lymphatic drainage
to the draining LNs (93). TA-LVs are primarily required
for the recruitment of immune cells and adaptive immune
response initiation (39, 94). However, immunosuppressive
features of LECs in TME will subsequently dampen ongoing

anti-tumor immunity (5). Therefore, LVs play a dual role
on tumor immunity that might be temporally regulated.
Finally, immunotherapy approaches can be potentialized
by TA-lymphangiogenesis in melanoma tumors (9), further
highlighting the relevance of modulating LV functions during
tumor development.

Lymphatic Vessels Are Necessary for the
Initiation of Anti-Tumoral Responses
T cell activation and infiltration in tumors are key steps
of antitumor immunity. Indeed, while Treg infiltration is
associated with a poor outcome in patients, intratumoral
cytotoxic T lymphocytes are beneficial for clinical outcome
(95, 96). Although some studies have suggested that naïve T
cell could infiltrate tumors and be locally activated (97–99),
antigen transport by dendritic cells (DCs) through LVs toward
draining LNs is nevertheless crucial for the initiation of tumor-
specific T cell responses, at least in melanomas (39, 100). Indeed,
tumor drainage, DC trafficking and subsequent induction of anti-
tumor adaptive immune responses are drastically impaired in
transgenic mice lacking or with disturbed local LVs (39, 94).
Upon inflammation, LECs in afferent LVs produce CCL21 that
is necessary to DC egress from the tissue toward lymphatics (101,
102). Moreover, the expression of CLEC-2 by DCs is essential for
their migration into LNs. The activation of CLEC-2 by GP38,
which is highly expressed by LECs and FRCs, induces actin
polymerization and motility of DCs (103). In a tumoral context,
CCR7 expression by DCs is primordial for their migration into
tumor draining LNs and subsequent T cell activation (100)
(Figure 1.3).

In agreement with a role for lymphatic vasculature in the
initiation of anti-tumor immunity, lymphatic vessel density
(LVD) or lymphatic gene expression in primary tumors of
colorectal or melanomas patients positively correlates with
inflammation and immune cell infiltration (9, 39, 40, 104).

Lymphatic Vessels Suppress Effector T
Cells During Tumor Progression
The lymphangiogenic factor VEGF-C produced in the tumor
favors immunological tolerance in murine melanoma, including
the induction of tumor-specific CD8+ T cell deletion (5)
(Figure 1.4) (5, 26). This is consistent with studies in human
melanoma, where active CTLs can be found in the circulation,
while they exhibit an exhausted phenotype when localized
in tumors (105). In addition, LECs in tumor draining LNs
cross-present tumor antigens through MHCI complexes, and
further drove the apoptosis of tumor-specific CD8+ T cells.
The expression of the immunosuppressive molecule PD-L1 is
enhanced at the surface of LECs after antigen specific interaction
with CD8+ T cells in vitro (7, 26). Moreover, blockade of PD-L1
on antigen pulsed immortalized LECs in vitro increases CD8+

T cell activation (7). In vivo, in several tumor mouse models,
TA-LECs express higher levels of PD-L1 compared to naïve skin
LECs (7, 8), the highest PD-L1 expression being observed in
immunogenic tumors (8). Recently, Lane et al. demonstrated that
PD-L1 expression by non-hematopoietic cells prevents CD8+ T
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cells accumulation in melanoma. IFN-γ production by antigen-
specific CD8+ T cells is primarily necessary to induce PD-
L1 expression on LECs. Using mice with LECs deficient for
IFN-γ receptor, they established that the specific loss of IFN-
γ sensitivity in LVs improves CD8+ T cell-dependent control
of melanoma tumor growth and mouse survival (8). Thus,
during tumor development, a negative feedback loop is set up
between LECs and T cells. LECs up-regulate PD-L1 expression in
response to IFN-γ produced by tumor specific CD8+ T cells, and
subsequently inhibit T cell accumulation in tumors (Figure 1.5).

In human metastatic melanoma, VEGF-C expression
positively correlates with T cell infiltration and CCL21
expression (9). CCL21 plays a crucial role in the establishment
of a tolerogenic tumor microenvironment by recruiting CCR7+

regulatory T cells in primary tumors and by promoting
the formation of lymphoid like stromal structures with
immunosuppressive features (106). CCL21 further attracts naïve
T cells that can be locally activated in response to immune
blockade or vaccination (9).

CONCLUDING REMARKS

Recent studies indicate that tumor-associated LECs significantly
contribute to shaping the immunosuppressive TME, therefore
helping tumors hijack the immune system from an efficient
to an incompetent anti-tumor response. Altogether, several
observations highlight a new role for lymphatics in promoting
tumor development, suggesting that lymphatic endothelium
in the local microenvironment may be a novel target for
immunomodulation. In agreement with these hypotheses, a
recent publication demonstrated that following exposure to
tumor derived factors, FRCs of the tumor draining LNs
undergo multiple changes to convert into a immunosuppressive
phenotype, such as decreased production of IL-7 and CCL19/21
(107). Whether a similar profound reprogramming occurs to

LECs in tumor draining LNs remains to be determined.

Whereas, VEGFC driven TA-lymphangiogenesis correlates
with increased intratumoral inflammation (39) and immune
suppression in progressing tumors (5), it seems also to be
necessary for the response of the tumor microenvironment
to immunotherapeutic intervention, as demonstrated for PD-
1 blocking antibodies (9) (Figure 1.6). This suggests that TA-
LECs potentiate immunotherapy by attracting naive T cells
through a CCL21 dependent mechanism. Accordingly, LVs
and immune cell infiltrates positively correlated in metastatic
cutaneous melanoma and colorectal cancer patients (39, 40).
Once in the tumor, naive T cells can be locally primed
upon PD-1 blockade, which reverts the immunosuppressive T
cell imprinting and induces long-lasting anti-tumor immunity.
Therefore, it is tempting to speculate that LV density in tumors
could be used as a predictor for positive response to immune
checkpoint blockade. Additional research will determine how to
selectively target LEC immunosuppressive functions in tumors,
which could, combined to immunotherapeutic approaches, lead
to the conversion of a “cold” into “hot” immunogenic TME and
potentiate anti-tumor T cell responses.
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