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ABSTRACT 
This paper introduces the general purpose Gaussian Trans-
form, which aims at representing a generic symmetric distri-
bution as an infinite mixture of Gaussian distributions. We 
start by the mathematical formulation of the problem and 
continue with the investigation of the conditions of existence 
of such a transform. Our analysis leads to the derivation of 
analytical and numerical tools for the computation of the 
Gaussian Transform, mainly based on the Laplace and Fou-
rier transforms, as well as of the afferent properties set (e.g. 
the transform of sums of independent variables). 
Finally, the Gaussian Transform is exemplified in analytical 
form for typical distributions (e.g. Gaussian, Laplacian), and 
in numerical form for the Generalized Gaussian and Gener-
alized Cauchy distributions families. 

1. INTRODUCTION 

Gaussian distributions are extensively used in the (broad 
sense) signal processing community, mainly for computa-
tional benefits. For instance, in an estimation problem Gaus-
sian priors yield quadratic functionals and linear solutions. In 
rate-distortion and coding theories, closed form results are 
mostly available for Gaussian source and channel descrip-
tions. Real data, however, is generally not Gaussian distrib-
uted. The goal of the work presented in this paper is to de-
scribe non-Gaussian distributions through an infinite mixture 
of Gaussian distributions. 
In a related work [4], it was proven that any distribution can 
be approximated through a mixture of Gaussian up to an ar-
bitrary level of precision. However, no hint was given by the 
author on how to obtain the desired mixture in the general 
case. In [5], an analytical formula is given for an infinite 
mixture of Gaussians equivalent to the Laplacian distribu-
tion, and used in a source coding application. Unfortunately, 
no generalization was attempted by the authors. The work 
presented here has the roots in their proof and extends the 
concept to a wide range of symmetric distributions through 
the introduced Gaussian Transform.  
The Gaussian Transform concept and the results presented in 
this paper can be extensively used in various applications of 
signal and image processing and communications including 
estimation, detection, source and channel coding etc. 
The rest of the paper is divided in two main blocks. In Sec-
tion 2 we define the Gaussian Transform, analyze its exis-
tence, investigate its properties and derive the mathematical 
tools for analytical and/or numerical computation, whereas in 
Section 3 we exemplify both the transform for some typical 

distributions such as Generalized Gaussian and Generalized 
Cauchy, and some of the properties deduced in Section 2. 

2. GAUSSIAN TRANSFORM 

2.1 Definition and existence 
We consider a generic symmetric distribution p(x). As we are 
aiming at representing it through an infinite mixture of Gaus-
sians, we can safely disregard the mean, and assume for sim-
plicity reasons that p(x) is zero-mean. We are looking for an 
integral representation in the form: 
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where ( )2|x σN�  is the zero-mean Gaussian distribution: 
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and ( )2G σ  is the mixing function that should reproduce the 
original p(x). We can now introduce the Gaussian Transform. 

Definition 1 (Gaussian Transform). The direct Gaussian 
Transform G is defined as the operator which transforms 

( )p x  into ( )2G σ , and the Inverse Gaussian Transform G-1 

is defined as the operator which maps ( )2G σ  to ( )p x : 

 ( ) ( ) ( ) ( )2 1 2: ;  : .p x G G p xσ σ−G� G  

Obviously, G-1 is simply given by (1): 
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We look now for the direct Gaussian Transform. We need to 
prove that for a given ( )p x  a mixing distribution ( )2G σ  
exists such as to comply with (1). This can be summarized in 
three conditions. 
Condition 1. For a given p(x), a function ( )2G σ  defined 
according to (1) exists. 
Condition 2. This function is non-negative. 

Condition 3. Its integral ( )2 2

0

G dσ σ
∞

∫  is equal to 1. 

The last condition is a consequence of Condition 1. Indeed, if 
( )2G σ  exists, then, integrating both sides of (1) with re-

spect to x and inverting the integration order of the left side: 
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Finally, since ( )2|x σN  is a distribution: 
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In order to investigate Condition 1, the existence of ( )2G σ , 

perform the following variable substitutions: 2s x=  and 

2

1
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t
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= . Since p(x) is symmetric, it can be rewritten as: 

 ( ) ( ) ( )p x p x p s= = . 

The left hand side of (1) transforms to: 
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According to the definition of the Laplace Transform L [1], 
equation (1) finally takes the form: 
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Thus, ( )2G σ  is linked to the original probability distribu-
tion p(x) through the Laplace Transform and can be com-
puted using the Inverse Laplace Transform L-1. The direct 
Gaussian Transform is therefore given by:  
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Consequently, the existence of the Gaussian Transform is 
conditioned by the existence of the Inverse Laplace Trans-
form of ( )p s . From the general properties of the Laplace 

Transform, it is sufficient [1] to prove that the limit at infinity 
of ( )s p s⋅  is bounded, or equivalently : 

 ( )2limx x p x→∞ ⋅ < ∞ . (5) 
The above condition is satisfied by all the distributions from 
the exponential family, as well as by all the distributions with 
finite variance. (4) allows for straightforward identification 
of Gaussian Transforms for distributions whose Laplace 
Transforms are known, by simply using handbook tables. 
Unfortunately, it does not guarantee compliance with the 
Condition 2: non-negativity. As it is rather difficult to verify a 
priori this constraint, the test should be performed a posteri-
ori, either analytically or numerically. 

2.2 Properties of the Gaussian Transform 
We derive the first property of the Gaussian Transform using 
the initial value theorem for the Laplace Transform [1], the 
direct formula (4) and the existence condition (5). 

Final Value Property. The Gaussian Transform tends asymp-
totically to 0 when 2σ  tends to infinity: 

 ( )2
2lim 0G

σ
σ
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We also expect the transform to preserve the data variance. 

Mean Value Property. The mean value of the Gaussian Trans-
form is equal to the variance of the original distribution: 
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Another crucial property of the Gaussian Transform applies 
to  the transform of the sum of independent variables. 

Convolution Property. If X1 and X2 are independent random 
variables with ( )( ) ( )( )1 1 2 21 2 and X X X Xp x G p x G= =G G , 
then the Gaussian Transform of their sum is the convolution 
of their respective Gaussian Transforms (the result can be 
generalized for the sum of multiple independent variables): 
 ( )( )1 2 1 21 2X X X Xp x x G G+ + = ∗G . (8) 

Proof: consider the random variable 1 2X X X= + . Since 

1XG  exists, X1 is a random Gaussian variable with variance 

1

2
Xσ  distributed according to the distribution probability 

1XG . 
Similarly, X2 is a random Gaussian variable with variance 

2

2
Xσ  distributed according to 

2XG . Then X is also a random 

Gaussian variable with variance
1 2

2 2 2
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1

2
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2
Xσ  are independent variables drawn from 

1XG  and 

2XG . It follows that 2
Xσ  is a random variable described by 

the probability distribution 
1 2X X XG G G= ∗ , q.e.d. 

Corollary. If X1 and X2 are independent random variables and 
X2  is Gaussian distributed ( ) ( )2 2

2
2 2 |X Xp x x σ= N , then the 

Gaussian transform of their sum is a shifted version of 
1XG : 
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2.3 Numerical computation 
The computation of the Gaussian Transform for distributions 
not available in handbooks is still possible through the com-
plex inversion method for Laplace Transforms known as the 
Bromwich integral [3]: 
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where ε is a real positive constant satisfying 
( )( )( )sup Re poles fε >  and u is an auxiliary variable. (10) 

can be rearranged as a Fourier Transform, allowing the use of 
the numerous numerical and/or symbolical packages avail-
able (with ω  the variable in the Fourier space): 



 ( )( ) ( )( )1 1tf s e f iε ε ω− −= +L F  (11) 
Very often p(x) has no poles, being a continuous and 
bounded function, and in this case it might be very practical 
to evaluate (11) at the limit 0ε → . Using (4) and (11): 
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When the original distribution is only numerically known, 
approximation of ( )2G σ  is still possible either through ana-
lytical approximations of p(x), followed by (4) (or (12)), or 
through solving the inverse problem yielded by (1).  

3. EXAMPLES OF GAUSSIAN TRANSFORMS 

3.1 Analytic Gaussian transforms 
The most obvious and natural example is the Gaussian Trans-
form of a Gaussian distribution. One would expect to have 
(with δ  the Dirac function): 
 ( )( ) ( )2 2 2
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Then, using the Laplace Transform tables: 
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Since the Gaussian Transform is a function of σ2 [2]: 
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Thus the Gaussian Transform of a Gaussian distribution 
( )2

0|x σN�  is a Dirac function centered in 2
0σ . 

The convolution property (8) can now be used to prove a 
well known result in statistics: the sum of two independent 
Gaussian variables, with respective probability laws 

( )1

2| Xx σN�  and ( )2

2| Xx σN� , is another Gaussian variable 

with probability distribution ( )1 2

2 2| X Xx σ σ+N�  (the extension 
to non-zero mean distributions is trivial). Proof: 
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Then, inverting the Gaussian Transform: 
 ( )( )( ) ( )1 2 1 2 1 2

1 2 2 2 2 2|X X X X X Xp xδ σ σ σ σ σ−
+ = − + = +G N� . 

Similarly to (13), it is possible to compute the Gaussian 
transforms of other usual symmetric distributions using the 
Laplace transform tables [1]. We exemplify with the Lapla-
cian and Cauchy distributions. 
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As mentioned, the result (14) was already proven in [5]. 

Cauchy:
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The results (13), (14) and (15) are plotted in Fig. 2. 

 
Figure 2. Gaussian Transforms 

To exemplify the Convolution Property, consider now 
Cauchy data contaminated with independent additive white 
Gaussian noise. Then the Gaussian Transform of the meas-
ured data (Fig. 3) is a shifted version of the original data 
transform (9). 

 
Figure 3. Shift of the Gaussian Transform 

The previous analytical results will be generalized in subsec-
tion B through numerical computations. 

3.2 Numeric Gaussian transforms 
This part illustrates the numerical computation of the Gaus-
sian Transform through (12) for the Generalized Gaussian 
and Generalized Cauchy distributions families. 

Generalized Gaussian Distribution (GGD) 

The GGD family is described by an exponential probability 
density function with parameters γ and γσ : 
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= Γ Γ . For 1γ =  the GGD par-

ticularizes to the Laplacian distribution, while for 2γ =  one 
obtains the Gaussian distribution. The Gaussian Transform of 
the Generalized Gaussian distribution can not be obtained in 



analytical form using (4). However, it does exist (5) and can 
be calculated numerically through (12): 
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The Gaussian Transforms for γ ranging from 0.5 to 2 with 
fixed 1γσ =  are plotted in Fig. 6. The transforms evolve 
from a Dirac-like distribution centered on 0 for small γ to 
exponential for 1γ = , then Rayleigh-like for 1.2γ = , bell-
shaped for 1.5γ =  and again Dirac-like centered on 2

γσ  for 
2γ = . As expected, the Gaussian Transform of the Lapla-

cian distribution ( 1γ = ) is exponential (14). 

 
Figure 6. Gaussian Transforms of GGD 

Unfortunately, the real part of the complex probability func-
tion diverges for periodical values of γ, which impedes on the 
computation of the transform through this method for γ >2. 
However, real data is mostly confined to 0<γ<2 [6]. 

Generalized Cauchy Distribution (GCD) 

The GCD probability density function is given by 
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and it particularizes to the Cauchy distribution for 0.5ν = . 
Its Gaussian Transform can be computed through: 
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Corresponding plots are given in Fig.7. 

 
Figure 7. Gaussian Transforms of GCD 

As a remark, the variance of the Cauchy distribution being 
infinite, its Gaussian Transform has infinite mean value (7). 
The GCD family possesses finite variance only for 1ν > . 

4. CONCLUSION 

We introduced in this paper the Gaussian Transform, which 
allows for the representation of symmetric distributions as an 
infinite Gaussian mixture. The scope of applicability of the 
Gaussian Transform is potentially very broad, from denoising 
and regularization to filtering, coding ,compression, water-
marking etc. However, an extension of the concept to non-
symmetric distribution would be required for some specific 
applications. Further investigation of the existence condi-
tions, especially non-negativity, is also necessary. Finally, 
one would need adapted numerical packages (most likely 
based on existing Laplace and Fourier transform computa-
tional packages) for the computation of Gaussian Transforms 
of  both analytically and numerically defined distributions. 
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