

Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Article scientifique

Article 2015

Published version

Open Access

This is the published version of the publication, made available in accordance with the publisher's policy.

Large external quality assessment survey on thrombin generation with CAT: further evidence for the usefulness of normalisation with an external reference plasma

Perrin, Julien; Depasse, Francois; Lecompte, Thomas Pierre; Fontana, Pierre

How to cite

PERRIN, Julien et al. Large external quality assessment survey on thrombin generation with CAT: further evidence for the usefulness of normalisation with an external reference plasma. In: Thrombosis research, 2015, vol. 136, n° 1, p. 125–130. doi: 10.1016/j.thromres.2014.12.015

This publication URL:https://archive-ouverte.unige.ch/unige:79661Publication DOI:10.1016/j.thromres.2014.12.015

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

Contents lists available at ScienceDirect

Thrombosis Research

journal homepage: www.elsevier.com/locate/thromres

Regular Article

Large external quality assessment survey on thrombin generation with CAT: further evidence for the usefulness of normalisation with an external reference plasma

Julien Perrin^{a,b,*}, François Depasse^c, Thomas Lecompte^d, on behalf of French-speaking CAT group and under the aegis of GEHT¹, Participating centres from the French-speaking CAT group (all in France unless otherwise stated):

AP-HP BEAUJON Emmanuelle De Raucourt, AP-HP BICETRE Virginie Planche, AP-HP BICHAT / INSERM U698Nadine Ajzenberg, Véronique Ollivier, AP-HP HEGP Dominique Helley, AP-MARSEILLE LA CONCEPTIONFrançoise Dignat-Georges, AP-MARSEILLE LA TIMONE Pierre Morange, AP-HP LARIBOISIERE Ludovic Drouet, BIOMNIS Michel-Meyer Samama †, CHU LIEGE, BELGIUM Jean-Marc Minon, CHU BORDEAUXGeneviève Freyburger, CHU BREST Fanny Mingant, CHU CLERMONT FERRAND Thomas Sinegre, CHU DIJON Fabienne Dutrillaux, CHU GRENOBLE Raphaël Marlu, CHU LILLE Emmanuelle Jeanpierre, HOSPICES CIVILS DE LYON Yesim Dargaud, CHU MONTPELLIER Pauline Sauguet, CHU NIMES Jean-Christophe Gris, CHU POITIERS Jérôme Duchemin, CHU REIMS Nathalie Hezard, CHU RENNES Pierre Gueret, CHU ROUEN Véronique Le Cam-Duchez, CHU ST ETIENNE Brigitte Tardy, CHU TOURS Bénédicte Delahousse, CHU NANCY Julien Perrin, EFS ALSACE Catherine Ravanat, HOSPICES CIVILS DE LYON Michel Hanss, HUG, GENEVE, SWITZERLAND Pierre Fontana, LABM DE LA BRUCHE Olivier Feugeas, UCL, MONT-GODINNE, BELGIUM Damien Gheldof, UNIVERSITE DE NAMUR, BELGIUM Jonathan Douxfils, Diagnostica Stago labs (N=3).

^a Hématologie biologique - Hémostase, CHU Nancy, Nancy, France

^b INSERM U 1116, Groupe Choc, Equipe 2, 54511 Vandoeuvre les Nancy, France

^c Diagnostica Stago, Asnières, France

^d Service d'hématologie, Hôpitaux Universitaires de Genève (HUG), Genève, Switzerland

A R T I C L E I N F O

Article history: Received 1 October 2014 Received in revised form 25 November 2014 Accepted 9 December 2014 Available online 24 December 2014

Keywords: Thrombin generation tests Normalisation Standardisation Reference plasma

ABSTRACT

Background: Calibrated Automated Thrombography (CAT) has been widely used to assess in vitro thrombin generation as an informative intermediary phenotype of coagulation. Interlaboratory exercises have documented a worrisome poor reproducibility. There are some data on the normalisation with an appropriate external reference plasma (RP). This multicentre study of the French-speaking CAT Club aimed at providing further evidence for the usefulness of such a normalisation.

Materials and Methods: Lyophilised aliquots of a RP along with 3 plasmas (P1 = normal; P2 = hypo-; P3 = hypercoagulable) were sent to 34 laboratories (corresponding to 38 instruments). CAT was studied using 1 and 5 pM tissue factor and other dedicated reagents. Normalisation with the local RP in use in the laboratory could also be performed. Interlaboratory CVs were calculated for each plasma before and after normalisation. *Results:* Regarding endogenous thrombin potential, a good discrimination between the 3 plasmas was achieved in all laboratories but there was no overlap after normalisation only. CVs were generally not reduced with the use of local RP but were generally improved with normalisation using the external RP, often becoming lower than

* Corresponding author at: Hématologie biologique – Hémostase, CHU Nancy, rue du Morvan, 54511 Vandoeuvre les Nancy, France. Tel.: + 33 3 83 15 51 92; fax: + 33 3 83 15 37 89. *E-mail address:* julien.perrin@chu-nancy.fr (J. Perrin).

¹ GEHT stands for 'Groupe d'Etudes sur l'Hémostase et la Thrombose', a working group of the French Society for Haematology.

10%. Regarding P2 however, the benefit of normalisation was poor, and there were analytical difficulties as well, some laboratories being unable to get a useable signal.

Conclusions: We confirm that normalisation of CAT results with a suitable external RP is useful in "real life" practice as it often permits an acceptable level of interlaboratory variability. In case of frank hypocoagulability, further improvements are required to get reliable, potentially clinically relevant results.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

There has been a growing interest for thrombin generation tests (TGTs) [1,2]. Such tests allow a comprehensive and potentially clinically relevant *in vitro* phenotyping of blood coagulation. They take into account thrombin generation beyond the physical phenomenon of clotting as well as the entire process of thrombin inhibition as a whole, allowing the detection and quantification of both hypo- and hyper-coagulable states.

Among TGTs, the method developed by Hemker et al., namely Calibrated Automated Thrombography (CAT) [3] has been extensively studied for the last decade since: (i) the use of a calibrator allows an accurate measurement of the actual amounts and activities of generated thrombin; (ii) the detection of fluorescent signals allows the measurement in cellular milieus (except red blood cells), for instance platelet-rich plasmas [4] or leucocyte-rich plasmas [5].

Data have been published with the CAT method, consistent with a potentially high added value in clinical practice, in settings such as diagnosis and management of bleeding disorders [6-8], detection of hypercoagulability [9,10], characterization/monitoring of anticoagulant drugs including non-vitamin K antagonist oral anticoagulants [11,12] or even in acquired complex coagulation disorders [13]. Most of the data come from single-centre studies and must be confirmed in prospective, large, multicentre studies. However the method still suffers from an important inter-centre variability and a persistent deficiency in standardisation [14–17], which makes difficult the design of multicentre studies unless performing TGT in a centralised laboratory. Normalisation of raw results using a normal plasma (pooled or lyophilised) has been proposed for that purpose [14–18]. Recently, a standardized protocol with normalisation of results using a reference plasma (RP) has been shown to reduce lab-to-lab variability [19]. Though promising, such data, obtained in a relatively small number of reference laboratories and using a single batch of reagents, remain distant from real life practice. We report the largest multicentre study to date on lab-to-lab variability and improvement by normalisation of data using a single and suitable externally provided RP.

Materials and Methods

Reagents

Reagents and lyophilised plasmas were supplied from Diagnostica Stago (Asnières, France): PPP Reagent LOW[™] and PPP Reagent[™], Thrombin Calibrator[™] and FLUCA kit[™], as well as 4 lyophilised plasmas - plasma 1 ("normocoagulable"); plasma 2 ("hypocoagulable" – heparinised plasma); plasma 3 ("hypercoagulable" – plasma deficient in protein S); and external reference plasma (external RP) for normalisation of results. This external reference plasma is a lyophilised plasma selected to have a thrombin generation profile as close as possible to a fresh frozen normal donor plasma pool. It has been demonstrated to be suitable for such use by Dargaud et al. [19].

Study Design

The study aimed to evaluate in a large multicentre survey: (i) the lab-to-lab variability of TGT using CAT method; (ii) the benefit of

normalisation of results using a lyophilised external RP and, depending on the ongoing practice of each centre, the local reference plasma.

Each plasma (numbered 1, 2 and 3 as stated above) had to be tested using CAT method in an independent run over 3 days. In parallel, the reference plasma was studied in each run. Instructions were given to participants regarding use of dedicated reagents, test plasma in triplicates and adherence to manufacturer's instructions for plasma/reagent reconstitution and CAT performance. No instruction was given regarding preheating plates at 37 °C. Of note also, the locally implemented version of Thrombinoscope[™] software was used (2 different versions). Thus 6 batches of initiating reagents (PPP Reagent[™] and PPP Reagent LOW[™]) were used; concerning Thrombin Calibrator[™] and FLUCA kit[™], a single batch was provided, but each participant could use its own reagent batch.

Fig. 1. Typical thrombin generation profiles of the 4 plasmas used in the study, obtained with (A) 1 pM TF – PPP Reagent LOW m ; (B) 5 pM TF – PPP Reagent m .

Table 1

Robust means (see text) and associated lab-to-lab CVs with 1 pM TF as initiating condition (PPP Reagent LOW TM). Bold characters indicate CVs $\leq 10\%$. Symbols (\uparrow , =, \downarrow) illustrate changes in CVs as compared with raw data. Normalised results are expressed as a percentage of a RP, except for temporal data (lag time, start tail and time to peak) which are expressed as ratios.

Parameters		Raw data		Normalised data Local plasma			Normalised data External reference plasma		
		Robust mean	CV	Robust mean	CV		Robust mean	CV	
Plasma 1	ETP	1167 nM.min	17%	122%	28%	↑	98%	10%	Ļ
	Lag time	3.6 min	15%	0.79	17%	↑	0.68	8%	Ļ
	Peak	108 nM	21%	118%	42%	↑	87%	17%	Ļ
	Start tail	34.5 min	9%	1.1	16%	↑	1.08	9%	=
	Time to peak	9.0 min	9%	0.93	12%	↑	0.89	7%	\downarrow
	Velocity index	20 nM/min	29%	113%	50%	↑	77%	27%	Ļ
Plasma 2	ETP	119 nM.min	38%	11%	41%	↑	10%	56%	1
	Lag time	3.8 min	31%	0.92	32%	Ť	0.77	21%	Ļ
	Peak	5 nM	35%	5%	43%	Ŷ	4%	42%	↑
	Start tail	52.5 min	17%	1.6	32%	Ŷ	1.6	26%	↑
	Time to peak	15.7 min	18%	1.7	23%	Ŷ	1.6	12%	\downarrow
	Velocity index	0.43 nM/min	46%	2%	53%	Ŷ	2%	43%	\downarrow
Plasma 3	ETP	1929 nM.min	16%	187%	26%	Ŷ	156%	9%	\downarrow
	Lag time	3.2 min	13%	0.70	19%	<u>↑</u>	0.60	6%	\downarrow
	Peak	440 nM	10%	444%	50%	Ť	336%	18%	Ť
	Start tail	22.3 min	12%	0.68	20%	Ŷ	0.68	12%	=
	Time to peak	4.9 min	10%	0.52	18%	↑	0.48	6%	\downarrow
	Velocity index	247 nM/min	15%	1421%	67%	1 1	937%	34%	1

Thrombin generation test and data analysis

Briefly, 80 μ L plasma samples were mixed with 20 μ L initiating reagent (PPP ReagentTM or PPP Reagent LOWTM) in a 96-well plate. Coagulation was started by adding 20 μ L FLUCA kitTM containing calcium chloride and the fluorogenic substrate (Z-Gly-Gly-Arg-AMC). Upon splitting by thrombin, the fluorescent AMC (7-amino-4-methylcoumarin) is released and measured with a 390-nm-excitation and a 460-nm-emission filter set in an Ascent FluoroskanTM (ThermoLabsystems, Helsinki, Finland). All samples were run in triplicate. For each plasma sample, the fluorescence signal was corrected for substrate consumption, plasma colour variability and inner filter fluorescence effect by running in parallel 3 calibrating wells where 80 μ L plasma were mixed with 20 μ L Thrombin CalibratorTM. As mentioned above, data were analysed using the locally used version of ThrombinoscopeTM software (Diagnostica Stago – Asnières, France).

The following thrombin generation parameters were studied: endogenous thrombin potential (ETP); lag time; thrombin peak; time to peak; velocity index; start tail. Once performed, participants had to enter the data in the Qualiris by Stago® website. This on-line platform collects all the results and provides laboratories with comparative reports including, for each parameter, the "robust mean" calculation (statistical method not affected by outliers, see ISO Standard 13528). Results are expressed in standard units (raw result), as a percentage or as a ratio of external or local reference plasma ("normalised result"). Lab-to-lab coefficients of variation (CV) were then determined for both raw and normalised results with the 3 assayed plasmas.

Results

Typical thrombin generation profiles of the 4 plasmas are shown in Fig. 1.

Thirty-four participants sent data corresponding to 38 CAT instruments; among them, 21 centres sent data using their local reference plasma in addition to the external reference plasma.

Raw data & lab-to-lab variability

Under both initiating conditions (1 or 5 pM TF) and with the 3 plasmas, lab-to-lab variability was important (Tables 1 and 2), most

Table 2

Robust means (see text) and associated lab-to-lab CVs with 5 pM TF as initiating condition (PPP ReagentTM). Bold characters indicate $CVs \le 10\%$. Symbols ($\uparrow, =, \downarrow$) illustrate changes in CVs as compared with raw data. Normalised results are expressed as a percentage of a RP, except for temporal data (lag time, start tail and time to peak,) which are expressed as a ratio.

-			-					-	
Parameters		Raw data		External reference plasma Local plasma			Normalised data External reference plasma		
		Robust mean	CV	Robust mean	CV		Robust mean	CV	
Plasma 1	ETP	1467 nM.min	15%	114%	10%	Ļ	94%	8%	↓
	Lag time	2.2 min	13%	0.82	13%	=	0.77	9%	\downarrow
	Peak	264 nM	19%	121%	20%	↑	99%	10%	Ļ
	Start tail	22.4 min	10%	0.99	8%	Ļ	0.93	6%	Ļ
	Time to peak	5.0 min	12%	0.87	12%	=	0.86	8%	Ļ
	Velocity index	95 nM/min	32%	139%	33%	↑	105%	18%	Ļ
Plasma 2	ETP	567 nM.min	22%	46%	18%	Ļ	36%	20%	Ļ
	Lag time	3.0 min	19%	1.16	16%	Ļ	1.08	9%	Ļ
	Peak	38 nM	37%	18%	31%	Ļ	14%	39%	↑
	Start tail	38.8 min	17%	1.68	14%	\downarrow	1.63	15%	\downarrow
	Time to peak	10.7 min	13%	1.84	16%	1	1.86	10%	Ļ
	Velocity index	5.0 nM/min	54%	8%	43%	\downarrow	6%	52%	\downarrow
Plasma 3	ETP	2079 nM.min	18%	155%	14%	\downarrow	129%	8%	\downarrow
	Lag time	2.0 min	15%	0.73	9%	Ļ	0.70	8%	Ļ
	Peak	468 nM	9%	202%	28%	↑	172%	14%	Ŷ
	Start tail	22.0 min	15%	1.00	14%	\downarrow	0.91	8%	\downarrow
	Time to peak	3.6 min	12%	0.62	16%	↑	0.62	8%	Ļ
	Velocity index	283 nM/min	14%	417%	58%	↑	306%	28%	1

Fig. 2. ETP as raw and normalised results with external RP, obtained with (A) TF 1 pM – PPP Reagent LOW ™ (B) TF 5 pM – PPP Reagent™.

CVs being higher than 10% for almost all parameters, some values even exceeding 20%. As an example, regarding ETP, CVs were comprised between 15 and 35 %. Of note, dispersion of data was more important with plasma 2 or at low TF concentration. In addition, the velocity index stood as the most variable parameter, the CVs being almost always the highest of the series, except for plasma 3.

Normalisation with the Local Reference Plasma

Using the local reference plasma, lab-to-lab variability was still important, as only few CVs fell below 10%, whatever TF concentrations or plasmas. Some CVs were even higher than before normalisation; at low TF concentration, normalisation consistently worsened CVs.

Normalisation with External RP

Except for plasma 2, for which there were analytical difficulties as well (3 laboratories being unable to get a useable signal) and whatever the TF concentration, normalisation of results with external RP obviously generally improved interlaboratory CVs. Noteworthy, for a given parameter, CVs after normalisation, when improved, often decreased below 10%. Furthermore, regarding ETP, even if a good discrimination of the 3 plasmas was achieved in all laboratories, the overlap was only eliminated after normalisation (an outlier value persisting with plasma 3) (Fig. 2). Regarding the "thrombin peak" with plasma 3 however, CV after normalisation was higher than before (18% versus 10% at 1 pM TF). Besides, the normalisation was of poor benefit with some parameters, the more so regarding velocity index, with equal or higher CVs under both TF conditions, with the 3 plasmas.

Discussion

We report the largest study to date regarding thrombin generation with CAT, in terms of number of participants and analysed parameters, on lab-to-lab variability and potential benefit of results normalisation using an external RP. As an example, the European external assessment program ECAT 2013–2 exercise gathered 15 and 20 participants with 1 pM or 5 pM TF as coagulation initiating conditions respectively (see ECAT External quality Control for Assays and Tests foundation, report 2013–02 Thrombin Generation Test).

Three kinds of plasmas were chosen to cover the whole spectrum of thrombin generation measuring range, markedly hypocoagulable, normocoagulable and highly hypercoagulable, as compared to data obtained in healthy subjects under similar conditions [18,20]. For practical purposes it was decided for defective coagulation to supplement normal plasma with heparin. Plasma artificially depleted in protein S was found to be hypercogulable due at least in part to the expected loss of APCindependent anticoagulant effect [21,22]. In agreement with previously published data [19] and ECAT TGT surveys, the lab-to-lab variability of raw results was important whatever the initiating conditions or types of plasma. Indeed, only few CVs were inferior to 10%, a maximal accepted target-value to allow multicentre studies. The variability was more important at low TF concentration or with the hypocoagulable plasma. In a previous multicentre study (5 participants), Dargaud et al. reported a better improvement in CVs than in the present work, under similar initiating conditions (1 pM TF). However, the design of the previous study significantly differed by using a single batch of reagents and frozen plasmas; plasmas were prepared using corn trypsin inhibitor (to eliminate the variable contribution of the contact phase) and were less hypo- or hyper-coagulable.

In the present study, the fact that CVs for ETP (often considered as the most global and important parameter of CAT) were often higher than 15% raises some questions on differences in real-life local practices, since all participants were familiar with the method. As a matter of fact, even if the experimentation protocol was standardised, some local experimental variability is likely to have existed, regarding factors such as the pre-heating or not of samples and/or plates before measurement, or even the reconstitution of reagents and plasmas (the latter being probably more subject to variability than thawing of frozen plasma).

To reduce lab-to-lab variability, normalisation of raw data with an appropriate plasma has been proposed [14,15,19]. In the herein reported study, participants had to normalise their data with external RP

prepared by Diagnostica Stago and, if applicable, the locally prepared pool of normal plasma.

Strikingly, the local plasma was generally unable to improve lab-tolab variability whatever the initiating conditions or plasma, even worsening CVs after normalisation. This may be related to the disparities in preparation modalities (sampling, centrifugation, pooling...), as it is accepted that preanalytical treatment largely influences TGT [16]. Therefore, the main interest of such a material is essentially to act as an "internal quality control" to minimise run-to-run intralaboratory variability. Thus a suitable, well-characterised, external reference material is needed.

Normalisation with external RP generally improved CVs, which often dropped below 10% for plasma 1 and 3. In particular, CVs for normalised ETP were acceptable, except for plasma 2. More generally, regarding the markedly hypocoagulable plasma 2, normalisation with RP had poor impact on CVs since the values obtained are at the very low end of the CAT measuring range. Surprisingly, for unclear reasons, normalisation with RP worsened CVs for thrombin peak with the hypercoagulable plasma, under both initiating conditions. Interestingly, despite an outlier value persisting with plasma 3, normalised ETPs allowed a better discrimination of the 3 plasmas at the multicentre scale, where raw ETPs overlapped. This appears very encouraging for the design of large-scale studies.

Our results also highlight that variability is important and not or only poorly corrected by normalisation. This is especially the case for velocity index. An explanation would be that this parameter is calculated using lag time, time to peak and peak, therefore cumulating variability of each individual parameter. Furthermore, the peak is derived from the first derivative of the fluorescent signal, and the noise in a derivative is always higher than in the original signal; thus it is expected that this parameter and those based on it have a high variability. Several concerns have been raised with plasma 2, some centres being unable to get a useable increase in fluorescence or reporting a '0 nM.min' result for ETP. This is a problem because in case of frank hypocoagulability, tiny thrombin generation might be of clinical importance compared to no generated thrombin at all [23,24]. The reasons for this discrepancy between centres are unclear; further improvements are required to get reliable results. The poor results obtained with plasma 2 (markedly hypocoagulable) may also be due to the noise of the fluorescent signal, the impact of which is proportionally more important at low signals, in particular for the determination of the tail of the curve ("start tail"), and this ultimately affects the shape of the final, α 2M-corrected thrombin generation curve [25].

Calibration and normalisation combine their effects to reduce lab-tolab variability. On one hand the use of a calibrator allows to reduce some technical aspects like plasma colour and optical factors (filters, lamp...) [26]. On the other hand, normalisation is very likely to correct batch-tobatch variability of reagents; in addition, it may correct some analytical aspects such as measurement temperature, the pre-heating or not of plates, which is critical [27], or the operator-related variability (reconstitution of reagents or dispensing).

To go one step further, it is interesting to note that the improvement of CVs is the clearest for plasma 1, which is normal, possibly because the external RP has a normal profile as well. The hypothesis that normalisation with a RP close to the studied thrombin generation profile (that is, hypocoagulable RP for hypocoagulable samples; hypercoagulable RP for hypercoagulable ones) would be more successful deserves to be studied.

To conclude, we confirm with the largest multicentre study to date that normalisation of CAT results with a suitable external reference plasma (RP) – which will be commercially available soon – is useful in "real life" practice, with acceptable levels of variability. However, in case of frank hypocoagulability, further improvements are required. In addition, the next step should include different kinds and/or levels of hypo- and hyper-coagulability to confirm the suitability of RP to cover the whole spectrum of thrombin generation disorders. Moreover, in order to further reduce interlaboratory variability, a strict adherence to a well-defined detailed experimental scheme seems also mandatory. Our data suggest that lab-to-lab normalisation using a common and suitable material could facilitate the design of multicentre studies, allowing TGT to be locally performed in each participating centre.

Conflict of Interest

None.

Acknowledgements

This study was supported by Diagnostica Stago (Asnières, France).

References

- Baglin T. The measurement and application of thrombin generation. Br J Haematol 2005;130:653–61.
- [2] Ten Cate H. Thrombin generation in clinical conditions. Thromb Res 2012;129: 367–70.
- [3] Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003;33:4–15.
- [4] Dargaud Y, Luddington R, Baglin T. Platelet-dependent thrombography: a method for diagnostic laboratories. Br J Haematol 2006;134:323–5.
- [5] Perrin J, Ranta D, Empereur F, Vigneron C, Feugier P, Lecompte T. Polymorphonuclear neutrophils from JAK2(V617F) positive MPD patients do not support hypercoagulability: A study with calibrated automated thrombography (CAT). Blood Cells Mol Dis 2011;46:235–8.
- [6] Nair SC, Dargaud Y, Chitlur M, Srivastava A. Tests of global haemostasis and their applications in bleeding disorders. Haemophilia 2010;16S5:85–92.
- [7] Trossaërt M, Regnault V, Sigaud M, Boisseau P, Fressinaud E, Lecompte T. Mild hemophilia A with factor VIII assay discrepancy: using thrombin generation assay to assess the bleeding phenotype. J Thromb Haemost 2008;6:486–93.
- [8] Dargaud Y, Lienhart A, Negrier C. Prospective assessment of thrombin generation test for dose monitoring of bypassing therapy in hemophilia patients with inhibitors undergoing elective surgery. Blood 2010;116:5734–7.
- [9] Dargaud Y, Trzeciak MC, Bordet JC, Ninet J, Negrier C. Use of calibrated automated thrombinography +/- thrombomodulin to recognise the prothrombotic phenotype. Thromb Haemost 2006;96:562–7.
- [10] Lecompte T, Wahl D, Perret-Guillaume C, Hemker HC, Lacolley P, Regnault V. Hypercoagulability resulting from opposite effects of lupus anticoagulants is associated strongly with thrombotic risk. Haematologica 2007;92:714–5.
- [11] Hacquard M, Perrin J, Lelievre N, Vigneron C, Lecompte T. Inter-individual variability of effect of 7 low molecular weight antithrombin-dependent anticoagulants studied in vitro with calibrated automated thrombography. Thromb Res 2011;127:29–34.
- [12] Freyburger G, Macouillard G, Labrouche S, Sztark F. Coagulation parameters in patients receiving dabigatran etexilate or rivaroxaban: two observational studies in patients undergoing total hip or total knee replacement. Thromb Res 2011;127: 457–65.
- [13] Tripodi A, Chantarangkul V, Mannucci PM. Acquired coagulation disorders: revisited using global coagulation/anticoagulation testing. Br J Haematol 2009;147:77–82.
- [14] Dargaud Y, Luddington R, Gray E, Negrier C, Lecompte T, Petros S, et al. Effect of standardization and normalization on imprecision of calibrated automated thrombography: an international multicentre study. Br J Haematol 2007;139:303–9.
- [15] Dargaud Y, Luddington R, Gray E, Lecompte T, Siegemund T, Baglin T, et al. Standardisation of thrombin generation test–which reference plasma for TGT? An international multicentre study. Thromb Res 2010;125:353–6.
- [16] Loeffen R, Kleinegris MC, Loubele ST, Pluijmen PH, Fens D, van Oerle R, et al. Preanalytic variables of thrombin generation: towards a standard procedure and validation of the method. J Thromb Haemost 2012;10:2544–54.
- [17] Rodgers SE, Wong A, Gopal RD, Dale BJ, Duncan EM, McRae SJ. Evaluation of preanalytical variables in a commercial thrombin generation assay. Thromb Res 2014; 134:160–4.
- [18] Spronk HM, Dielis AW, De Smedt E, van Oerle R, Fens D, Prins MH, et al. Assessment of thrombin generation II: validation of the Calibrated Automated Thrombogram in platelet-poor plasma in a clinical laboratory. Thromb Haemost 2008;100:362–4.
- [19] Dargaud Y, Wolberg AS, Luddington R, Regnault V, Spronk H, Baglin T, et al. Evaluation of a standardized protocol for thrombin generation measurement using the calibrated automated thrombogram: an international multicentre study. Thromb Res 2012;130:929–34.
- [20] Dielis AW, Castoldi E, Spronk HM, van Oerle R, Hamulyák K, Ten Cate H, et al. Coagulation factors and the protein C system as determinants of thrombin generation in a normal population. J Thromb Haemost 2008;6:125–31.
- [21] Seré KM, Rosing J, Hackeng TM. Inhibition of thrombin generation by protein S at low procoagulant stimuli: implications for maintenance of the hemostatic balance. Blood 2004;104:3624–30.
- [22] Rosing J, Maurissen LF, Tchaikovski SN, Tans G, Hackeng TM. Protein S is a cofactor for tissue factor pathway inhibitor. Thromb Res 2008;122(Suppl. 1):S60–3.

- [23] Al Dieri R, Peyvandi F, Santagostino E, Giansily M, Mannucci PM, Schved JF, et al. The [25] Al Dieti K, regvandi F, Santagostino E, Giansity M, Miannucci PM, Schved JF, et al. The thrombogram in rare inherited coagulation disorders: its relation to clinical bleed-ing. Thromb Haemost 2002;88:576–82.
 [24] Beltrán-Miranda CP, Khan A, Jaloma-Cruz AR, Laffan MA. Thrombin generation and phenotypic correlation in haemophilia A. Haemophilia 2005;11:326–34.
 [25] Woodle SA, Shibeko AM, Lee TK, Ovanesov MV. Determining the impact of instru-
- ment variation and automated software algorithms on the TGT in hemophilia and normalized plasma. Thromb Res 2013;132:374–80.
- [26] De Smedt E, Al Dieri R, Spronk HM, Hamulyak K, ten Cate H, Hemker HC. The tech-[20] De Smeut E, AI DIETI K, Spronk HW, Hamuyak K, ten Cate H, Hemker HC. The technique of measuring thrombin generation with fluorogenic substrates: 1. Necessity of adequate calibration. Thromb Haemost 2008;100:343–9.
 [27] De Smedt E, Hemker HC. Thrombin generation is extremely sensitive to preheating conditions. J Thromb Haemost 2011;9:233–4.