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A small quantum absorption refrigerator with reversed couplings
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3Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland

Small quantum absorption refrigerators have recently attracted renewed attention. Here we
present a missing design of a two-qubit fridge, the main feature of which is that one of the two
machine qubits is itself maintained at a temperature colder than the cold bath. This is achieved
by ’reversing’ the couplings to the baths compared to previous designs, where only a transition is
maintained cold. We characterize the working regime and the efficiency of the fridge. We demon-
strate the soundness of the model by deriving and solving a master equation. Finally, we discuss
the performance of the fridge, in particular the heat current extracted from the cold bath. We show
that our model performs comparably to the standard three-level quantum fridge, and thus appears
appealing for possible implementations of nano thermal machines.

INTRODUCTION

A considerable amount of work has been devoted to the
study of quantum thermal machines. First works date
back to the study of the thermodynamics of lasers [1, 2].
More recent works discussed quantum thermal machines
as a platform to explore quantum thermodynamics [3],
while others aimed at proposing experimentally feasible
designs for thermal machines at the nano scale, see e.g.
[4–10].

A class of quantum thermal machines that received re-
cently great interest are autonomous, or self-contained,
thermal machines; see [11, 12] for recent reviews. The
specificity of these machines is that they function without
any external source of work, but simply via thermal con-
tact to heat baths at different temperatures. In particu-
lar, small quantum absorption refrigerators use only two
thermal reservoirs, one as a heat source, and the other as
a heat sink, in order to cool a system to a temperature
lower than that of either of the thermal reservoirs.

Moreover, the appeal of these machines resides in their
simplicity. Few quantum levels are enough to construct a
quantum absorption refrigerator. The simplest designs,
i.e. the smallest possible machines consist of a single
qutrit (i.e. a 3-level system) [1, 13], 2 qubits [14, 15]
or 3 qubits [13, 16–18]. Other designs were discussed as
well [19–23]. The efficiency of such machines was investi-
gated, and certain designs were proven to achieve Carnot
efficiency [1, 16]. Moreover, the significance of quantum
effects in some of these machines, in particular entan-
glement [24] and coherence [25, 26], was discussed. The
effect of applying squeezing to the heat baths was studied
in [27, 28]. Finally, schemes for experimental implemen-
tations of these ideas were proposed [29–31].

Interestingly, the functioning of essentially all these
quantum refrigerators can be captured by the following
idea. The cooling process can be divided in two steps.
First, a transition inside the machine (usually resonant
with the system to be cooled) is engineered in such a way

that its temperature, a so-called virtual temperature [17],
is lower than the temperature of the coldest bath. Sec-
ond, this transition is then (thermally) coupled to the
system, which thus thermalizes towards the virtual tem-
perature (or at least to a temperature colder than the
coldest bath).

In this work, we present a novel design for a quantum
absorption refrigerator consisting of only two qubits. The
specificity of our model is that cooling is achieved via
‘reversed couplings’ compared to previous designs. More
precisely, whereas previous designs function by preparing
a virtual temperature, our design allows for the direct
cooling of a physical qubit. Loosely speaking, instead
of cooling a single transition (i.e. a virtual qubit), we
cool a physical qubit. Furthermore, the way in which the
fridge is coupled to the thermal reservoirs is also in con-
trast with previous designs. Instead of connecting each
qubit to a thermal thermal reservoir (see e.g. [13]), we
now connect the reservoirs to transitions within the joint
state of the two qubits. We characterize the working
regime and the efficiency of the fridge, and demonstrate
the soundness of the model by deriving and solving a
Master equation which models the dynamics in a weak
coupling regime. Finally, we discuss the performance of
our model, using as a figure of merit the heat current ex-
tracted from the cold bath. Interestingly, we find that our
model is comparable to the standard three-level quantum
absorption refrigerator [1, 13, 28], and extracts a greater
amount of heat under some conditions. We believe that
this makes our model appealing for future implementa-
tions of nano thermal machines, as well as suggesting
the use of reverse couplings as a viable alternative to the
usual construction of these machines.

THE MODEL

The fridge is comprised of two qubits. The first qubit,
with levels |0〉1 and |1〉1, and energy gap E1 represents
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the object to be cooled. The second qubit has levels |0〉2
and |1〉2, and energy gap E2. The free Hamiltonian of
the system is thus given by

H0 = E1 |1〉1〈1| ⊗ Î2 + E2 Î1 ⊗ |1〉2〈1| (1)

where Îj denotes the identity operator for qubit j. By
design of the machine, we choose E2 > E1.

Next, we introduce two thermal reservoirs: the heat
source reservoir at temperature Th and the sink (or room)
reservoir at temperature Tr < Th. In the following, we
will mainly use the inverse temperatures βh = 1/kBTh
and βr = 1/kBTr.

The system of two qubits (that is referred to as the
fridge henceforth) is coupled to the thermal reservoirs in
the following way. The sink bath is selectively coupled to
the energy gap E2 + E1. Thus the fridge can transition
between the states |00〉 = |0〉1 |0〉2 and |11〉 = |1〉1 |1〉2 by
absorbing or emitting an energy quanta of E2 +E1 from
or to the sink reservoir. Second, the hot bath is selec-
tively coupled to the energy gap E2 − E1, allowing the
fridge to transition between the states |10〉 = |1〉1 |0〉2
and |01〉 = |1〉1 |0〉2 by absorbing or emitting an en-
ergy quanta of E2 − E1. Additionally, the first qubit
of the fridge is coupled to a third reservoir at tempera-
ture Tc ≤ Tr. Hence the first qubit can absorb or emit
energy quanta of E1 with this ‘cold’ reservoir.

The working model is summarized in Fig.1 (a) which
depicts the four levels of the system and the various tran-
sitions that are coupled to the reservoirs. In order to
demonstrate cooling, the fridge must extract heat from
the coldest reservoir, at Tc. Equivalently, if the fridge
possesses a steady state of operation, the (reduced) state
of the first qubit should be found at a temperature that is
lower than Tc, which would predispose the cold reservoir
to transfer heat to rather than from the fridge.

(a) (b)

FIG. 1: (a) The 2 qubit fridge viewed as a 4-level system,
with the couplings to the hot, cold, and sink reservoirs. (b)
The four strokes of the cooling cycle. In each sub figure the
balls represent the state each qubit can initially be found in,
and the arrows depict the transitions that occur, driven by the
respective baths. By making sequentially the four transitions
shown (i.e. the four strokes), the system undergoes a cyclic
evolution and completes one cooling cycle.

COOLING CYCLE

We start our discussion of the above model by describ-
ing the “cooling cycle” of the fridge. From Fig. 1 (a), we
observe that the thermal couplings have been chosen in
order to allow the fridge to move through the following
unique cycle, involving every level of the fridge:

|00〉 → |10〉 → |01〉 → |11〉 → |00〉 (2)

It is insightful to understand the cooling cycle as a
four-stroke process, as illustrated in Fig. 1 (b). If one
considers the fridge to begin in the state |00〉, the energy
exchanged with the thermal reservoir in each stroke is as
follows:

• |00〉→|10〉. Qubit 1 absorbs E1 from the cold reser-
voir.

• |10〉→|01〉. Qubits 1 and 2 together absorb E2−E1

from the hot reservoir.

• |01〉 → |11〉. Qubit 1 once again absorbs E1 from
the cold reservoir.

• |11〉→ |00〉. Qubits 1 and 2 together dump E2 +E1

into the sink reservoir.

The net effect of the cooling cycle is that the fridge
absorbs energy 2E1 from the cold reservoir and energy
E2 − E1 from the hot reservoir, and dumps the total
energy E2 + E1 into the sink reservoir.

Indeed, one should also consider the reversed cycle.
Here the fridge emits energy 2E1 to the cold reservoir.
Now in order to determine whether cooling occurs, i.e.
whether the fridge extracts heat from the cold reservoir,
one must determine which of the two cycles, the cool-
ing cycle or its reverse, is more likely to occur. To find
out, we compute the entropy change associated to each
cycle. Following the second law of thermodynamics, the
preferred cycle is the one that tends to increase the total
entropy of the system (fridge + reservoirs).

The entropy change of each reservoir is given by ∆Si =
βiQi, where Qi is the heat absorbed by the ith reservoir.
Summing the contribution from each of the four strokes
of the cooling cycle, one obtains the total entropy change

∆S = −βcE1 − βh(E2 −E1)− βcE1 + βr(E2 +E1) (3)

The entropy change of the reverse cycle is of course −∆S.
Thus the condition that the fridge achieves cooling is
simply that ∆S > 0, or equivalently

βV =
βr(E2 + E1)− βh(E2 − E1)

2E1
> βc (4)

where βV = 1/kBTV , and TV is labelled the virtual tem-
perature of the fridge qubit [17]. We shall show below
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that much of the working of the fridge may be under-
stood from this virtual temperature. Notably, we see
already that one can re-express the condition that the
fridge achieves cooling by the condition TV < Tc. That
is, the virtual temperature of the fridge should be lower
than the temperature of the cold bath for cooling to oc-
cur.

EFFICIENCY AND CARNOT POINT

Our next focus is the efficiency of the fridge, defined
as the ratio between the amount of heat drawn from the
cold reservoir and the amount of heat drawn from the
hot reservoir. More formally, the efficiency is given by

η =
Qc
Qh

(5)

where Qh and Qc denote the heat currents from the hot
and cold reservoirs to the system. Similarly, we define the
heat current into the sink reservoir to the system as Qr.
Since the fridge implements a cycle, we can determine
the ratios of heats exchanged from the relevant amounts
exchanged in a single cycle:

Qh : Qc : Qr :: E2 − E1 : 2E1 : E2 + E1 (6)

which therefore determines the efficiency

η =
2E1

E2 − E1
(7)

Alternatively, one may use the virtual temperature in
order to express the efficiency as

η =
βr − βh
βV − βr

<
βr − βh
βc − βr

, (8)

where the inequality follows from the cooling criterion
TV < Tc. Hence we obtain an upper bound for the effi-
ciency given by

ηC =
βr − βh
βc − βr

(9)

which is simply the Carnot efficiency for an absorption
refrigerator working with the temperatures Tc, Tr, and
Th. Thus the Carnot point is approached when the vir-
tual temperature approaches to the temperature of the
cold reservoir, i.e. TV → Tc. From (3) - (4), one finds
that in the limit, the entropy change ∆S → 0 and thus
the cooling cycle approaches reversibility, as it must do.
We will see later, when we look at a more detailed model,
that the heat currents also vanish in this limit, showing
that we enter the quasi-static regime as TV → Tc, again
as is necessary for reversibility.

DETAILED MODEL OF THE FRIDGE

We now present a detailed model of the fridge. We
will derive the steady state of the fridge, and discuss its
cooling regime, the Carnot point, and operating points
away from Carnot.

As we discussed above, several transitions within the
two qubit system are coupled to thermal baths at differ-
ent temperatures. Here each bath is represented by an
(infinite) collection of qubits, with energy corresponding
to the associated transition in the fridge. Thus the state
of a qubit from bath j ∈ {c, r, h} is given by

τj = e−βjHj = rj |0〉r〈0|+ r̄j |1〉j〈1| , (10)

where rj = 1 − r̄j = (1 + e−βrEj )−1. We have that
Ec = E1, Er = E1 + E2 and Eh = E2 − E1.

The interaction between the qubit bath and the fridge
are modeled as follows. In a time interval δt, there is a
small probability pjδt (where j ∈ {c, r, h}), that a qubit
from reservoir j interacts with the fridge. The interaction
is energy conserving, and described by the Hamiltonian
that implements a swap between the thermal qubit and
the corresponding transition within the fridge. For the
sink and hot reservoirs we have

Hr = gr (|00〉s〈11| ⊗ |1〉r〈0|+ c.c.) , (11)

Hh = gh (|10〉s〈01| ⊗ |1〉h〈0|+ c.c.) . (12)

The coupling to the cold bath is given by

Hc = gc (|0〉1〈1| ⊗ I2 ⊗ |1〉c〈0|+ c.c.) . (13)

Note that the cold bath couples directly to qubit 1.
To prevent anomalous heat flows between the reser-

voirs while they are both coupled to the fridge, we take
the interactions to be very strong (i.e. all of the strengths
gi are very high), but to act for a short time, so that the
probability that the fridge is coupled to more than a sin-
gle thermal qubit is negligible. Moreover, we assume that
there are no memory effects from the reservoir, thus the
effect of the interaction on the fridge is obtained by trac-
ing out the thermal qubit at the end of the interaction.
Assuming that the duration of the interaction between
the fridge and a thermal qubit is uncertain over the time
it takes to for a complete swap, the effect is calculated via
the time-averaged map. For the case of the interaction
with heat bath j ∈ {c, h, r},

Ωj(ρ) = Trj

[
gj
2π

∫ 2π/gj

0

e−iHjt (ρ⊗ τj) e+iHjtdt

]
(14)

where Trj denotes the partial trace over the bath qubit j.
The maps that describe the effect of an interaction with
a hot or cold thermal qubit are calculated analogously.



4

The above model leads to a simple master equation
that determines the evolution of the fridge:

dρ

dt
= i[ρ,H0] +

∑
j∈{c,h,r}

pj (Ωj(ρ)− ρ) (15)

where the free Hamiltonian of the two-qubit fridge H0 is
given in equation (1).

Solving the above master equation, we find that the
steady state of the fridge is a diagonal state [33], with its
diagonal elements given below:

ρS =
1

D
diag


rc

(
rcrh
pr

+ r̄crr
ph

)
+ rr

(
rcrh
pc

+ r̄cr̄h
pc

)
r̄c

(
rcrh
pr

+ r̄crr
ph

)
+ rh

(
rcr̄r
pc

+ r̄crr
pc

)
rc

(
r̄cr̄h
pr

+ rcr̄r
ph

)
+ r̄h

(
rcr̄r
pc

+ r̄crr
pc

)
r̄c

(
r̄cr̄h
pr

+ rcr̄r
ph

)
+ r̄r

(
rcrh
pc

+ r̄cr̄h
pc

)

 ,

(16)

where

D =

(
1

pc
+

1

pr

)
(rcrh + r̄cr̄h)+

(
1

pc
+

1

ph

)
(rcr̄r + r̄crr) .

(17)
Of course, one may take a different approach to the

process of thermalization than the one we follow, which
would lead in general to different dynamics. Interestingly,
if one considers the baths to be collections of bosons in-
stead, one arrives at a steady state that is identical to
ours under the appropriate choice of thermal couplings
(see Appendix). Also, if one uses the simpler ‘reset’
model[13], one arrives at the same steady state.

We first discuss the condition for cooling. Since the
cold qubit of the fridge is directly coupled to the cold
reservoir, cooling occurs when the cold qubit of the fridge
is maintained at a lower temperature than that of the
reservoir; i.e. its ground state population r1 is larger
compared to a qubit from the cold reservoir. We find
that

r1 = rc +
2(r̄2

crr r̄h − r2
c r̄rrh)

pcD
, (18)

Since D > 0, the cooling condition r1 > rc reduces to

r̄2
crr r̄h − r2

c r̄rrh > 0 =⇒ TV < Tc, (19)

with the virtual temperature TV as defined in (4). Hence
we recover the cooling condition derived above from sim-
ple entropic considerations. This demonstrates that the
cooling condition is independent of the coupling param-
eters, but determined solely by the virtual temperature
TV . The latter depends only upon the static design of
the fridge, i.e. the energies of the fridge qubits and the
temperatures of the thermal reservoirs.

Another point of interest is the steady state of the
fridge when operated at the Carnot point, i.e. TV = Tc.

In this case, the steady state factorizes into the tensor
product state

ρ =

(
rc 0
0 r̄c

)
⊗
( rcrh
rcrh+r̄cr̄h

0

0 r̄cr̄h
rcrh+r̄cr̄h

)
(20)

Thus the cold qubit is in equilibrium with the cold reser-
voir, while the second qubit is at an effective tempera-
ture that lies between the temperatures of the hottest
and coldest reservoirs. It is easily verifiable that the ef-
fective temperatures of the transitions between the pairs
of energy levels |00〉 ↔ |11〉 and |10〉 ↔ |01〉 are equal to
Tr and Th respectively, and thus at the Carnot point, the
fridge is in thermal equilibrium with every reservoir, in
the sense that every transition that is coupled to a bath
is stationary with virtual temperature equal to the bath
temperature it is in contact with.

PERFORMANCE OF THE FRIDGE

Here we discuss the performance of our fridge. As a
figure of merit we consider the heat current extracted
from the cold bath, calculated via the dissipator from
(14),

Qc = pcE1Tr [(Ωc(ρ)− ρ) |1〉s〈1|] (21)

=
2(r̄2

crr r̄h − r2
c r̄rrh)

D
(22)

We proceed with a few examples. Without loss of gen-
erality, we set E1 = 1 (hence setting the energy scale). As
a case study, we choose Tc = 1, Tr = 1.1, and fix the cou-
pling parameters: pc = pr = ph = 1. We first investigate
the dependency of Qc with respect to the temperature of
the hot bath Th. The results are plotted (solid blue line)
in Fig. 3(a). The heat current increases monotonically

(a) (b)

2

FIG. 2: Construction of equivalent qutrit fridge to compare
performance.
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FIG. 3: Performance of the fridge (solid blue lines), and comparison with the three-level fridge (dashed red lines); see main text.
(a) Heat current Qc drawn from the cold bath as a function of the temperature of the hot bath Th. (b) Qc as function of the
energy of the second qubit E2, for fixed Th = 20. Clearly, the heat current is maximized at a finite value Eopt

2 . (c) Dependency
of Eopt

2 as a function of Th. Finally, we note that in both (a) and (b), our model outperforms the standard three-level fridge.

with Th, asymptotically approaching a saturation value

lim
Th→∞

Qc =
r̄2
crr − r2

c r̄r
1
2

(
1
pc

+ 1
pr

)
+
(

1
pc

+ 1
ph

)
(rcr̄r + r̄crr)

.

(23)

Second, we investigate the dependence of Qc with re-
spect to E2, fixing Th = 20. The results are plotted (solid
blue line) in Fig. 3 (b). Interestingly, we observe that
there is an optimal value for E2, denoted Eopt2 . In Fig.
3 (c) we study the dependence of Eopt2 as a function of
Th, and conclude that Eopt2 is always finite (for finite Th).
Hence, there appears to be an optimum value of the en-
ergy E2 (that effectively sets the largest possible energy
gap E1 + E2 in the fridge) for which the heat current
is maximized. This effect can be intuitively understood
as follows: for the ideal operation of the machine, the
sink reservoir must be primed to accept as much heat
as possible, and thus the sink qubits must be as biased
towards the ground state as much as possible, that is
Tr � (E1 + E2). On the other hand, the hot reservoir
must be primed to inject heat into the fridge, and thus
the hot qubits must be as close as possible to the maxi-
mally mixed state, that is (E2 − E1) � Th. Hence for a
given set of resources (Th and Tr), the heat current will
be maximized when the above two conditions are both
satisfied, and thus Eopt2 is clearly always finite (for finite
Th).

Finally, since our quantum fridge contrasts with previ-
ous designs, we would like to compare its performance to
other schemes. In particular, we compare here our model
to the simplest and well-studied three-level (or qutrit)
fridge, discussed in [1, 13]. This model also works by
selectively coupling various energy transitions to three
different thermal reservoirs. Analogous to our quantum
fridge, a master equation and steady state of operation
can also be derived for the qutrit fridge (see [13] for de-
tails). In order to make a fair comparison, we take the
resources for both the qutrit fridge and our fridge to be
identical, i.e. the temperatures Th and Tr of the hot and
sink reservoirs are the same, and the thermal qubits from

each reservoir that are connected to either fridge have the
same energy gap (see Fig. 2). In this way, both models
feature the same virtual temperature Tv, and thus also
an identical Carnot point of operation, and identical con-
ditions for cooling to be achieved.

To compare the performance of the fridges away from
the Carnot point, we must discuss the coupling to the
baths. Here we use the collision model discussed above
for both models, in which the coupling strength between
a reservoir and the fridge is proportional to the rate of
collisions of reservoir qubits with the fridge. For the cou-
pling to the sink and hot reservoirs, we consider the same
couplings ph and pr for both models. This is justified by
the fact that the sink and hot reservoirs are connected
to the same energy gaps in both models. To describe
the coupling to the cold bath, the situation is a bit more
subtle. While the qutrit fridge is coupled to the cold
bath with a transition of energy 2E1, our model is con-
nected to a transition at energy E1. For the purpose of
this comparison, we take pc to be the same for both our
fridge and the qutrit.[34]

The comparison between the two models is illustrated
in Fig. 3(a) and (b); here we have used the same pa-
rameters as above, in our case study. Clearly, our fridge
outperforms the qutrit fridge in this example. More gen-
erally, when we conducted a numerical search over all
parameters (temperatures, couplings and energies) and
found regimes where our fridge outperforms the qutrit
(as above), as well as regimes where the qutrit outper-
forms our fridge.

DISCUSSION

We have discussed a small quantum absorption fridge.
We first discussed the physics of the fridge in general
terms, characterizing the cooling regime and showed that
the model can reach Carnot efficiency. These conclusion
were then verified using a detailed model for the fridge.
Conceptually, the main interest of this model is that cou-
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pling are reversed compared to previous models. Instead
of creating a virtual qubit at a cold temperature and plac-
ing it in thermal contact with the qubit to be cooled, our
model refrigerates a physical qubit directly. Hence the
roles of the real and virtual qubits is switched compared
to standard quantum absorption fridges.

From a more practical point of view, we found that
our model performs comparably to the standard three-
level quantum absorption refrigerator, in terms of cooling
power, and outperforms it in some regimes. This suggests
that our model is relevant for experimental implementa-
tions of quantum thermal machines.
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Appendix

Bosonic heat bath

In this section we will give the Master equation and
corresponding steady state solution that corresponds to
the system being in contact with bosonic thermal baths.
As is well known [28, 32] the Master equation which fol-
lows from modelling the weak interaction between a sys-
tem and a collection of Bosons with the Born and Markov
approximations is given by

dρ

dt
= i[ρ,H0] +

∑
α

(
Γα
(
σα−ρσ

α
+ − 1

2{σ
α
+σ

α
−, ρ}

)
+ Γ−α

(
σα+ρσ

α
− − 1

2{σ
α
−σ

α
+, ρ}

))
(24)

Here α = c, r, h labels the bath, Γ±α are the decay
rates, given by Γα = γαE

3
α(1 + Nα(Eα)), where γα are

constants of each bath (which in principle can be dif-
ferent, depending on how strongly the system is cou-
pled to the bath), Eα is the energy coupled to the bath,
Nα(Eα) = 1/(eβαEα−1) is the average number of excita-
tions in the bath at temperature βα and energy Eα and
Γ−α = e−βαEαΓα. Furthermore, σα+ and σα− = σα+

† are
the ‘jump’ operators, given by

σc+ = |1〉 〈0| ⊗ Î
σh+ = |01〉 〈10| (25)

σr+ = |11〉 〈00|

where the difference between the cold bath and the room
and hot baths comes from the fact that in the former
case we couple to the first qubit itself, whereas in the
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latter cases we couple only to single transitions in the
(combined) four-level system.

Solving this equation we again find a diagonal steady
state, now given by

ρS =
1

∆
diag


r2
crrrh

(
1

Γc
+ 1

Γh

)
+ rcr̄crr

(
r̄h
Γc

+ rh
Γh

)
rcr̄crr r̄h

(
1

Γc
+ 1

Γr

)
+ r2

c r̄r

(
r̄h
Γc

+ rh
Γh

)
r̄crrrh

(
rc
Γc

+ r̄c
Γh

)
+ rcrh

(
rcr̄r
Γc

+ r̄crr
Γr

)
rcr̄rrh

(
rc
Γc

+ r̄c
Γh

)
+ r̄cr̄h

(
rcr̄r
Γc

+ r̄crr
Γr

)

 ,

(26)

where

∆ = rcr̄rrh

(
rc
Γc

+
r̄c
Γh

)
+ r̄cr̄h

(
rcr̄r
Γc

+
r̄crr
Γr

)
. (27)

Interestingly, we notice that if we make the substitu-
tion Γα → pαrα then the steady state solution (26) to the
bosonic bath Master equation (24) can be seen to exactly
coincide with the steady state solution (16) to the Master
equation (15) in the main text (after a small amount of
algebra). Moreover, given that it is possible to tune the
γα (the coupling strengths to the bosonic baths) it fol-
lows that one can choose the γα such that this mapping
is satisfied for any specific choice of Hamiltonian H0.

In conclusion, we see that the two Master equations
(15) and (24) describe the same physics, as far as the
stationary behaviour of the fridge is concerned.
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