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Quantum deformations of nonsemisimple algebras: 
The example of D =4 inhomogeneous rotations 
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Switzerland 

Anatol Nowicki 
institute of Physics, Pedagogical Universi& Plac Slowianski 6, 65-029 Zielona Gora, 
Poland 

(Received 26 August 1993; accepted for publication 10 November 1993) 

A general class of deformations of the complexified D =4 Poincari algebra 
0( 3,1; C)?B T4( C) is considered with a classical (undeformed) subalgebra 
0( 3 ;C)D T4(C) and deformed relations preserving the 0( 3 ;C) tensor structure. 
We distinguish the class of quantum deformations-‘he complex noncocommuta- 
tive Hopf algebras-which depend on one complex mass parameter K. Further, we 
consider the real Hopf algebras, obtained by imposing the reality conditions. For 
any choice of real metric [O(4), 0(3,1), or 0(2,2)] the parameter K becomes 
real. All (e.g., Minkowski as well as Euclidean) real quantum algebras with stan- 
dard reality condition contain as nonlinearities the hyperbolic functions of the en- 
ergy operator and can be interpreted as introducing an imaginary time lattice. The 
symmetries of the models with real time lattice are described by a real quantum 
algebra with nonstandard reality conditions and trigonometric nonlinearities. 

1. INTRODUCTION 

Recently the quantum deformations of the Poincard algebra have been studied by several 
authors.‘-‘5 If we insist that the quantum deformation of a real Lie algebra is described by a real 
noncocommutative * -Hopf algebra it appears that in the literature the only quantum deformatidn 
of Poincari algebra satisfying this stringent requirement is the one given firstly in Ref. 8. For the 
definitions and description of standard and nonstandard * -operations see Refs. 16 and 17. It should 
also be mentioned that we define the quantum deformations in a broader sense (in comparison 
with Ref. 18) because we do not assume the existence of a quasitriangular universal R-matrix. We 
would like to recall that some authors call quantum Poincarh algebra the quantum deformations of 
the 11-generator Weyl algebra.3 This quantum algebra has been obtained by the particular con- 
traction of the real quantum algebra U,(O(3,2)), with q real, where 0(3,2) describes the anti- 
de-Sitter algebra, and it will be denoted further by U,(G@J, where K describes a fundamental mass 
parameter. For the description of q-deformed anti-de-Sitter algebra see also Refs. 19 and 20. It 
takes the following form. The boost generators, denoted in our previous work’Y8T’2 by L,, are 
changed for Ni . 

(a) Algebra sector: 

[Mi, Mj]=iEijkMC, [&L9~,1=o, (l.la) 

[Mi, Ni]=iEijkNk, (l.lb) 
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2608 Lukierski, &egg, and Nowicki: Quantum deformations of nonsemisimple algebras 

[Ni, Nj]=-iEijk cash ;--$ P,(PM) 

[Mi, Pj]=iEijkPk, [Mi, P,]=O, 

[Ni, Pj]=iKSij sinh PO/~, 

[Ni, Po]=iPi. 

(l.lc) 

(l.ld) 

(l.le) 

(1.lf-l 

(b) Coalgebra sector: 

A(Mi)=M,@l+l@Mi, 

A(PO)=Po@l+l@PO. 

(c) Antipodes: 

S(Mi)=-Mi, S(P,)=-P,, S(N,)=-N,+ii pia 

The two deformed Casimirs of U,(9’J look as follows: 

(1) mass square operator 

cl= -P*+~K* cash ;- 1 --P + 2~ smh 2;; ( po )- 2 ( . PO)*; 

(2) relativistic spin square operator 

KM sinh5 +PXN 
2 

. 
K 

(1.3) 

(1.4) 

0.5) 

In this paper, using purely algebraic methods guided by the formulas (1. l)-( 1.3), we would like to 
introduce a more general class of deformations of D = 4 inhomogeneous rotation algebras. In the 
first part of this paper we extend the discussion presented recently in Ref. 12, where it was shown 
that the quantum algebras obtained in Refs. 1 and 8 arc the unique solutions of an ansatz for the 
deformed Poincare algebra depending on three arbitrary functions of PO. {It should be mentioned 
that quite recently Bacry15 independently considered the same class of deformations, with an 
additional function describing the freedom of nonlinear transformations of the energy operator 
Pot Po( PO). This function can be eliminated if we assume the conventional additivity law for the 
energies of two subsystems [i.e., A( PO) = PO@ 1 + 1 @PO]. The results presented in Ref. 15 can be 
obtained from the formulas (l.la)-( 1. lf) by the substitution Po=f( PO), where PO satisfies the 
coproductruleA(Po)=f-‘(f(PO)~l+l~~(PO)).}H ere our most general ansatz will depend on 
five functions, depending on two variables x= POI~ and Y=~/K’*. In such a way we obtain new 
deformations of the Poincare algebra; however, we are not able to show that these deformations 
are quantum, i.e., can be supplemented with the Hopf algebra structure. In the second part of the 
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paper we consider the reality conditions defining the Minkowslci [ O( 3, I )] , Euclidean [O( 4) and 
0(2,2)] version of the quantum inhomogeneous D =4 rotation algebra and point out the differ- 
ence between standard and nonstandard real Hopf algebras. 

II. QUANTUM DEFORMATIONS OF THE COMPLEXIFIED POINCARli ALGEBRA 

We shall consider the deformations of the Poincark algebra ~7~ which 
(a) do not modify the nonrelativistic classical algebra (1. la) and (1. Id). 
(p) The boost generators remain three vectors under rotations [i.e., (l.lb) is not changed]. 
(7) The deformations of the [N, N] and [N, P] commutators remain manifestly O( 3)- 

covariant, as well as invariant under the time parity transformations: 

Miami) Ni~-Ni, PijPi, PO+-PO. (2.1) 

(6> The deformation functions depend on the four momenta only, i.e., rhs of (1. lc) after 
deformation remains linear in M. 

The most general deformation consistent with the assumptions (a)-(@ is the following: 

(2.2) 

where the masslike parameters K, K’ have been introduced in order to obtain the functions fA(n,y) 
dimensionless. 

Taking into consideration (2.1) and assuming that in the limit K, K’+W one obtains the 
classical Poincar6 algebra, one obtains (a= 1,2,4,5) 

f&,Y)=fa(-X,Y), f3(%Y)= -f3(-hY)v 

and Cf’=(al&)j=; A= 1,2,3,4,5) 

(2.3a) 

fA(o.o)= 1, f;(o,o)= 1. (2.3b) 

The mass Casimir for the deformed Poinca6 algebra (2.2) is described by the function C,(x,y) 
satisfying the following equation: 

(2.4a) 

Subsequently, we can eliminate the function f4 if we replace PO by Pa( Pol~,P2/~‘2) satisfying the 
following partial differential equation: 

1 d& 2K2 c+, 
;xf4+payf3=1. (2.4b) 

Substituting P,+I?, in the formulas (2.2) one obtains that f4 becomes equal to 1. Further, one 
can proceed with the Jacobi identities. They are satisfied if 

- 4 P2 - 
fl+,ff:!+;;zfi=o, fl=Kf3, fs=O, 

where 
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(2.5b) 

It is also easy to see that 

6C&,y)=O. (2.5~) 

Introd$ng the change of variable; y +C2(X,y), i.e., fA(x,y)‘jA(x,c2), One obtains from 
(2.5) that OfA = (l/K)& & = (d/h)fA), i.e., 

(2.6) 

Let us consider now the following general classes of deformations: 
(i) j$ = 0. In such a case one obtains 

and one obtains further 

72=j2(C2) (2.7) 

j;=-4j3,, f;=f,. (2.8) 

Putting 4f2 = - w2 (w complex) we obtain the following general solution of (2.8): 

j3=~emX+~e-wX jl=w(~e"X-~e-WX), (2.9) 

where in general case A, B, and w depend on C, . Imposing the initial conditions (2.3) one obtains 
A= -B= 1/2w, i.e., 

n n 
f3=( l/w)sinh wx, f 1 = cash wx. (2.10) 

Resealing K-MJK (or x-+x/o) one can write the commutators (2.2) in the form (l.lc), (l.le) and 
(l.lf) with parameter K= K(C~) complex. It follows from our earlier work (see Ref. 8) that such 
a deformed U,(F4) algebra can be endowed with the Hopf algebra structure given by the relations 
(1.2) and (1.3). 

(ii) The functions f,( r= 1,2,3) are linear in y: 

fr(AY) =fi0’(4 +us,“(4. 

One obtains from (2.11) the following five equations for six functions f:‘, frl): 

(2.11) 

2 
sp’=cs,“‘,‘+~~~‘s,“, fl')=cf(31))'+2 $ (fy))2, 

2 
v’,“)~+~r’,‘)f$‘=(), u’,“‘,‘+~~spif’,“+~splr(,“‘=~. 

(2.12) 

Because the general solution of (2.12) is still very complicated, we shall further simplify this 
system in order to obtain only the parameter-dependent solutions and we assume additionally in 
(2.12) that f(,“=O. In such a case the system (2.12) gives the following set of equations: 
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fp=(#)‘, fy)=o, 

(j$$))l =Ohf(2l)=f =const, 

(f$yy+~f~p=o, (j-p)'= -4f$“‘fp. 

Prom (2.13~) one obtains that (F=K’~!~K~~) 

fi”)=2F@20))2+C1, 

and from fro’ = f30)’ = -FCr,O’)” one obtains (c”i =cllF) 

f~‘“+2(f~‘)2+4=0. 

(2.13a) 

(2.13b) 

(2.13~) 

(2.14) 

(2.15) 

The whole deformation is determined by the solutions of (2.15). Putting z(x) = - -$(2 one obtains 
the equation 

z”(x) = 6z2(x) + Ci/3. (2.16) 

The formulas (2.13) give 

@=3Fz’(x), fiO)=3Fz”(x). (2.17) 

We consider now separately 
(cu) c1 =0 In such a case Eq. (2.16) has the solution [see, e.g., Ref. 21, Chap. 71 

1 
sn2(C(x-xl);k) 1 [ =C2 +$ +k2sn2(C(x-xo);k) 1 , (2.18) 

where C, x0, x, are arbitrary constants, k4 - k2 + 1 = 0, and sn( U; k) is a Jacobi elliptic function, 
analytic at u = 0. In order to satisfy the conditions (2.3) we should choose the arbitrary constants 
in such a way that 

z(O)= -4, z’(O)=O, z”(O)=$ (2.19) 

(p) c”t #O After simple normalization one can put in (2.16) Et = -$g2, where 
g2=2(e:+ez+e$), where ei (i= 1,2,3) determine the fundamental differential equation for the 
Weierstrass elliptic function LF(x):21,22 

(9’)2=4(P-e1)(P-e2)(LF-e3). 

One can show that for the above choice of the constant El one obtains 

(2.20) 

z(x) =*x1, 
(2.21) 

P(x)=; + 5’ 
1 

1 1 
m,n=-m (x-2mw-2no~)2-(2mo+2Trti~)T ’ I 

where C’ means excluding m and n which are simultaneously zero. The quantities o, w’ are two 
numbers with their ratio not real. The Weierstrass elliptic function Rx) implies the following 
expansion of the functions fl”(x) (I= 1,2,3): 
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flo)=3F9”(x)=3F 
( 

6 +e +0(x2) ) 
x4 10 i 

fp= -397x)= -3 $ +g +o(x4)), 
( 

(2.22) 

f3’)=3F9’(x)=3F -$ +g +0(x3) 

where g3=4ele2e3. 
From the formulas (2.22) it follows that it is not possible to satisfy the conditions (2.3), i.e., 

we cannot treat (2.22) as the continuous deformation of the classical Poincard algebra. 

Ill. QUANTUM DEFORMATION OF 0(4-k,k)3BT,(k=0,1,2) 

Let us write the reality conditions for the complexified Poincard algebra with four real metrics 
of O(4;C): 

(3.la) 

0(4):MT=Mi, PI=Pi, N,?=-Niy P,*=-PO (3.lb) 

0(2,2):M,,2=M;,2, M;= -M3, Nl,2=N;,2, NT=-N3, 
(3.lc) 

p,.2=p :,23 PT=-P3, P,*=Po. 

We shall introduce the following two types of * -operations, defining the reality conditions.‘6*‘7 
(i) The standard + involution, which is an antiautomorphism in the algebra sector and an 

automorphism in the coalgebra sector: 

(al.u2)+=u~u;, (ac3b)+=a+c3b+. (3.2a) 

Further, the following consistency condition involving the antipode is satisfied: 

so+ = +6-l. (3.2b) 

(ii) The nonstandard EI involution, which is an antioautomorphism in both algebra and colge- 
bra sector: 

(3.3a) 

Further, we have 

S~CEJ=tB%S. (3.3b) 

Now we shall describe six real forms of UK(p4) with the Cartan-Weyl generators satisfying the 
reality conditions (3.la)-(3.lc). 

A. Real quantum Polncari algebra [0(3,1) metric] 

One obtains the following two real quantum Poincari algebras: 

(1) the standard real+Hopf algebra is obtained by putting in (l.l)-(1.3) K= K* (K is real). Such an 
algebra has been obtained from the contraction of quantum anti-de-Sitter algebra U,(O(3,2)) 
with 4 real.* 
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(2) The nonstandard real CEJ Hopf algebra is obtained by putting in (1. I)-(1.3) K= -K* (K is 
purely imaginary). Such an algebra has been obtained from the contraction of quantum anti- 
de-Sitter algebra U,(O(3,2)) with lql=1.‘*6 

B. Real quantum Euclidean algebra [O(4) metric] 

Introducing the D = 4 Euclidean generators 

~i=Mi, ~i=Pi, Iji=iNi, ko=iPo, (3.4) 

one can rewrite U,(C?‘~) as the K-deformed D=4 Euclidean inhomogeneous algebra (we write 
only the relations involving boost N,): 

[fii, fij]=iEij&),, (3.5) 

,. i$ i&i) 
Mk COS y- 4K2 , 

(3.6) 

where 

and 

S(~i)=-~i, S(~k)=-~k, S(rji)=-~i-(3/2K)~i. (3.8) 

The reality con$tionsA(3.1b) imply that the generatoTs occuring in the relations (3.5)-(3.7) are 
selfconjugate (MT = Mi, kCF = Pi, Nj* = Ni, @$ = PO). One obtains the following two real quan- 
tum Euclidean algebras. 

(1) The standard real+Hopf algebras is obtained by putting in (3.5)-(3.7) K purely imaginary. 
(2) The second, nonstandard real @ Hopf algebra is obtained if we put in (3.5)-(3.7). K real. .I. 

C. Real quantum inhomogenous 0(2,2) algebra 

The 0( 2,2) generators are introduced as follows: 

h?,=iM,, ki3=M3, I’,=P,, p3=iP3, kT,=N,, fi3=iN3, Fo=Po. (3.9) 

Substitution of the generators (3.8) in (l.l)-(1.3) does not change the form of the nolinearities, but 
due to the replacement of Minkowski metric by 0( 2,2) metric there appear some changes of 
signs. Again one obtains two real quantum inhomogeneous 0(2,2) algebras. 

(1) The standard +-Hopf algebra is obtained if the deformation parameter K is real. 
(2) The nonstandard @-Hopf algebra is obtained if K is purely imaginary. One can therefore 

conclude the following. 

(i) The standard real Hopf algebras for all three 0( 4 - k,k) metrics (k = 0,1,2) are charac- 
terized by the hyperbolic nonlinearities. If one introduces the coordinate space in a standard way, 
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i.e., by classical Fourier transform, these hyperbolic nonlinearities in P, imply the replacement of 
the usual time derivatives by the finite difference time derivatives (see also Refs. 8 and 14) 

(3.10) 

where A is proportional to K-’ and it is purely imaginary. 
(ii) The nonstandard real Hopf algebras for all three metrics are characterized by the trigo- 

nometric nonlinearities. In such a case the quantum deformation leads again to the replacement 
(3.10), but with A real. In such a case the quantum derivative (3.10) can be identified with the 
derivatives on the lattice (see, e.g., Refs. 23 and 24) in time direction, i.e., one can treat the 
quantum K-deformation as introducing the time lattice with the lattice length proportional to UK. 
We see that the real lattice interpretation is related only with a nonstandard real Hopf algebra with 
star operation satisfying the relations (3.3a) and (3.3b). These nonstandard real Hopf algebras 
[obtained in the Minkowski case by putting in (1, l)-( 1.3) the parameter K purely imaginary] have 
several features which are not encouraging from the mathematical as well as the physical point of 
view. We shall mention two of them. 

(1) The reality condition (3.3a) for the coproduct implies that the real spectrum of the quan- 
tum Poincare generators becomes complex on the tensor product. Let us consider for example two 
states Ip$“) (r= 1,2), which are the eigenvalues of the three-momentum operator. For purely 
imaginary K=~K’ [K’=(K’)*] one obtains from (1.2) that (IP~‘),P~~)),~P~~))~IP~~))) 

pil+z)p:l)p:21)=[plL) exp( -i 9) +pi2) exp( i $)]lpi1’,pi2’) 

= p(u cos pz +p!2) 
(1) 

I K’ ’ 
cospO 

K’ 
sin ‘bz)_p!‘) 

(1) 

K’ ’ 
sin ‘5 Ipi1),pj2)), 

(3.11) 

i.e., the total three momentum of two independent subsystems with real three momenta becomes 
complex. 

(2) In the nonstandard real quantum Poincare algebra, trigonometric nonlinearity implies the 
mass-shell condition 

-P2+(2K sin P,~/2K)~=fi’f;. (3.12) 

For M,, = 0 the K-deformed formula for the light velocity looks as follows: 

(3.13) 

(Such a modification of relativistic velocity was discussed long time ago by Caldirola.25) We see 
that the velocity for the particles with vanishing K-mass Me (Mo= 0) achieves at ]p(=2~ an 
infinite value, i.e., the Einstein principle of maximal finite velocity of any signals is strongly 
violated. To the contrary, if we consider the standard real quantum Poincare algebra, with the 
K-deformed mass-shell condition given by (1.4), the formula for the velocity of K-massless quanta 
looks as followslo*l’ 

d IPI l Pi Vi=- arcsin - = 
aPi i i 20 J1+p2/4 (3.14) 

i.e., one obtains a more acceptable modification of Einstein’s value c = 1. 
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It should be stressed however that 

(i) The application of D = 2 inhomogeneous quantum algebras with trigonometric nonlinearities 
to the phonon excitation? as well as Heisenberg spin models27 (one-dimensional real spin lat- 
tices) were successful and provided an algebraic scheme consistent with the Bethe ansatz for 
solving D = 2 integrable models. Further, it has been shown26*27 that the coproduct is a correct 
operation describing algebraically in D = 2 (one space, one time dimension) the multiexcited states 
(e.g., two-magnon states). 
(ii) For 4 being a root of unity the difficulties with introducing tensor product of representations 
for nonstandard real Hopf algebras can be avoided if one introduces suitable projection operators 
on the spaces of physical interest. In such a case one arrives at the notion of quasiassociative quasi 
Hopf algebras.20Y28*29 
(iii) In this paper we consider the application of quantum groups to the deformation of four- 
dimensional symmetries. Unfortunately the physical interpretation of “nonsymmetric” coproduct 
rules for the four-dimensional K-Poincard generators is yet not clarified and should be further 
studied. 

IV. FINAL REMARKS 

We presented in this paper a new type of quantum deformation which can be generalized to 
any semidirect product ,@ t^ where t^- ( tr) are the Abelian generators and g describes the semi- 
simple Lie algebra. The case of analogous deformation for i given by the algebra of rank one 
[SU(2) or SU(l,l)] was given in Ref. 30. In such a simple case one can find an explicit transfor- 
mation of the generators which eliminate the nonlinearities from the algebra, i.e., the whole 
quantum deformation appears only in the noncocommutative coproduct sector. In our case the 
concrete form of the analogous transformation reducing the quantum algebra (1.1) to the classical 
Poincar6 algebra is under consideration. 

We would like to point out that there is an analogy between the Drinfeld-Jimbo deformation 
scheme of simple Lie algebras i (Refs. 18 and 31) and our scheme. In the Drinfeld-Jimbo method 
the nonpolynomial deformations are introduced as the functions on the elements of the maximal 
Abelian subalgebra of Cartan generators; for nonsemisimple algebra g0; an analogous role is 
played by the Abelian subalgebra 1. In principle, for nonsemisimple algebra one can form “mixed” 
Abelian subalgebras taking suitable parts of the Cartan subalgebra of i as well as of the subalgebra 
t*. It would be interesting to find an example of quantum deformation with nonpolynomial func- 
tions of the generators belonging to such a “mixed” Abelian subalgebra sector. 

Finally let us mention that our deformation implies the deformation in one direction of the 
four-dimensional space, which was chosen to be the time axis. It is very easy to see that the 
considerations in the present paper can be extended to the description of the deformation into one 
spacelike direction. {For Euclidean case [see, e.g., (3.5)-(3.7)] such a deformation is obtained by 
reindexing the generators.} It is interesting, however, to consider the multidimensional deforma- 
tions (e.g., cubicI or rectangular lattices) and see whether the real Hopf algebra structure (stan- 
dard or nonstandard) remains valid. 
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