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Résumé 

Les Interfaces Homme-Machine actuelles manquent « d’intelligence émotionnelle » : elles ne 
sont pas capables d’identifier les émotions humaines et de prendre cette information en compte 
pour choisir les actions à exécuter. Le but de l’informatique affective ou affective computing est 
de combler ce manque en détectant les indices émotionnels se produisant durant l’interaction 
avec la machine et en synthétisant les réponses émotionnelles adéquates. Durant ces dernières 
années, la plupart des études s’intéressant à la détection d’émotions se sont concentrées sur 
l’analyse des expressions faciales et de la parole pour déterminer l’état émotionnel d’une 
personne. Toutefois, il existe d’autres sources d’information émotionnelle provenant en 
particulier de l'analyse des signaux physiologiques. Comparés à l’analyse des expressions 
faciales, ces signaux n’ont été que peu étudiés bien qu’ils aient plusieurs avantages; par exemple, 
il est plus difficile de simuler une réponse physiologique qu’une expression faciale. 

Cette thèse traite de l’utilisation de deux types d’activités physiologiques pour détecter les 
émotions dans le cadre de l’affective computing : l’activité du système nerveux central (le 
cerveau) et l’activité du système nerveux périphérique. L’activité centrale est mesurée par 
l’utilisation d’électro-encéphalogrammes (EEGs). L’activité périphérique est mesurée au moyen 
des capteurs suivants : un capteur de réponse cutané galvanique (GSR) permettant de mesurer la 
transpiration ; une ceinture de respiration mesurant les mouvements de l’abdomen ; un 
pléthysmographe enregistrant les variations de volume sanguin (blood volume pulse -BVP), et un 
capteur de température servant à mesurer la température cutanée du doigt. 

L’espace valence-arousal (hedonicité-excitation) est choisi pour représenter les émotions car, 
issu de la théorie cognitive des émotions, il est suffisamment général pour être utilisable pour 
plusieurs applications. Certaines régions de l’espace valence-arousal sont utilisées pour définir 
des classes émotionnelles. Afin de reconnaître ces classes à partir des signaux physiologiques, il 
est nécessaire de trouver un modèle informatique qui associe une classe à une activité 
physiologique donnée. Les algorithmes de reconnaissance de forme et d’apprentissage artificiel 
sont utilisés pour déterminer ce modèle. 

Trois protocoles sont conçus pour enregistrer les signaux physiologiques lors de stimulations 
émotionnelles de différents types: regarder des images, se remémorer des épisodes émotionnels 
passés, et jouer à un jeu vidéo à différents niveaux de difficulté. Pour chaque stimulation, des 
caractéristiques sont extraites des signaux EEG et périphériques. Les signaux EEG sont 
caractérisés par leur énergie dans des bandes de fréquences en relation avec les processus 
émotionnels. De plus, l’information mutuelle calculée entre chaque paire d’électrodes est 
proposée comme un nouvel ensemble de caractéristiques pour détecter les émotions. Pour ce qui 
est des signaux périphériques, les caractéristiques sont calculées sur la base de la littérature 



 

vi 

existante et discutées par rapport aux aspects temporels. Plusieurs classifieurs (naïve Bayes, 
analyse discriminante, machines à vecteurs de support, relevance vector machines) sont ensuite 
entraînés sur la base de données des caractéristiques. La performance des ces algorithmes est 
évaluée par rapport à leur précision pour des classifications intra- (deux premiers protocoles) et 
inter- (troisième protocole) participants. Des méthodes de sélection de caractéristiques sont 
employées pour trouver les caractéristiques les plus intéressantes en vue de la détection 
d’émotions ainsi que pour réduire la taille de l’espace des caractéristiques. Finalement, la fusion 
des informations du système nerveux central et périphérique est analysée tant au niveau des 
caractéristiques (avant classification) qu’au niveau décisionnel (après classification). 

Les résultats montrent que les signaux EEG sont utilisables pour détecter les émotions car la 
précision obtenue par les algorithmes de classification sur les données EEG est bien supérieure à 
la précision aléatoire. La meilleure précision moyenne obtenue pour reconnaître trois classes est 
de 68% et autour de 80% pour deux classes (moyennes de la précision pour plusieurs 
participants). Les caractéristiques calculées en utilisant l’information mutuelle entre les paires 
d’électrodes sont également utilisables pour détecter les émotions comme le montrent les 
résultats obtenus (par exemple 62% de précision pour reconnaître trois états émotionnels). De 
plus la précision de classification en utilisant les signaux EEG est supérieure à celle obtenue avec 
les signaux périphériques lorsque leurs caractéristiques sont calculées sur des fenêtres 
temporelles relativement courtes (6 à 30 secondes). La fusion des informations périphériques et 
centrales au niveau décisionnel augmente significativement la précision de détection (de 3% à 
7%), ce qui encourage la fusion avec d’autres sources d’information émotionnelle comme les 
expressions faciales ou la parole. Une application des méthodes développées est proposée comme 
exemple d’une interface affective. Celle-ci adapterait automatiquement le niveau de difficulté 
d’un jeu vidéo en fonction de l’état émotionnel du joueur. 
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Summary 

Current Human-Machine Interfaces (HMI) lack of “emotional intelligence”, i.e. they are not able 
to identify human emotional states and take this information into account to decide on the proper 
actions to execute. The goal of affective computing is to fill this lack by detecting emotional cues 
occurring during Human-Computer Interaction (HCI) and synthesizing emotional responses. In 
the last decades, most of the studies on emotion assessment have focused on the analysis of facial 
expressions and speech to determine the emotional state of a person. Physiological activity also 
includes emotional information that can be used for emotion assessment but has received less 
attention despite of its advantages (for instance it can be less easily faked than facial 
expressions). 

This thesis reports on the use of two types of physiological activities to assess emotions in the 
context of affective computing: the activity of the central nervous system (i.e. the brain) and the 
activity of the peripheral nervous system. The central activity is monitored by recording electro-
encephalograms (EEGs). The peripheral activity is assessed by using the following sensors: a 
Galvanic Skin Response (GSR) sensor to measure sudation; a respiration belt to measure 
abdomen expansion; a plethysmograph to record blood volume pulse (BVP); and a temperature 
sensor to record finger temperature. 

The valence-arousal space is chosen to represent emotions since it originates from the cognitive 
theory of emotions and is general enough to be usable for several applications. Several areas in 
the valence-arousal space are used as ground-truth classes. In order to automatically detect those 
classes from physiological signals, it is necessary to find a computational model that maps a 
given physiological pattern to one of the chosen classes. Pattern recognition and machine 
learning algorithms are employed to infer such a model. 

Three protocols that use different emotion elicitation methods (images, recall of past emotional 
episodes and playing a video game at different difficulty levels) are designed to gather 
physiological signals during emotional stimulations. For each emotional stimulations, features are 
extracted from the EEG and peripheral signals. For EEG signals, energy features that are known 
to be related to emotional processes are computed. Moreover, the Mutual Information (MI) 
computed between all pairs of electrodes is proposed as a new set of features. For peripheral 
signals, the computed features are chosen based on the review of the literature and are discussed 
relatively to temporal aspects. Several classifiers (Naïve Bayes, Discriminant Analysis, Support 
Vector Machines – SVM and Relevance Vector Machines - RVM) are then trained on the 
resulting databases. The performance of these algorithms is evaluated according to the obtained 
accuracy for both intra (two first protocols) and inter (third protocol) participant classification. 
Feature selection methods are also employed to find the most relevant features for emotion 



 

viii 

assessment and reduce the size of the original feature spaces. Finally, fusion of the central and 
peripheral information at the decision and feature level is analyzed. 

The results show that EEG signals are usable for emotion assessment since the classification 
accuracy obtained with EEG features is much higher than the random level. The best accuracy for 
the detection of three emotional classes is 68% and around 80% for two classes, when averaged 
across participants. The effectiveness of the MI feature set for emotion assessment is also 
demonstrated by the classification accuracies (for instance 62% to detect three emotional classes). 
Moreover, the accuracy obtained for classification based on EEG features is found to be higher 
than based on peripheral features when the features are computed on short time periods (6 to 30 
seconds). Fusion of the peripheral and EEG features at the decision level significantly increased 
the accuracy (by an amount of 3% to 7%), encouraging further fusion with other sources of 
emotional information (facial expressions, speech, etc.). An application of the developed methods 
which automatically adapts the difficulty of games based on emotion assessment is proposed as 
an example of affective HMI. 

 



 

  ix 

Table of contents 

 

Résumé iii 
Summary vii 
Table of contents ix 

Table of symbols xiii 
Acronyms xiv 

 

Chapter 1 Introduction 1 

1.1 Emotions and machines 1 

1.2 Emotion assessment 2 

1.2.1 Multimodal expression of emotion 2 

1.2.2 Emotion assessment as a component of HCI 4 

1.2.3 Applications of emotion assessment 5 

1.2.4 Related questions / problems 9 

1.3 Contributions 11 

1.4 Thesis overview 11 
 

Chapter 2 State of the art 13 

2.1 Emotion representations and models 13 

2.1.1 Emotion categories and basic emotions 14 

2.1.2 Continuous representations 16 

2.1.3 Models of emotions 19 

2.1.4 Finding an adequate representation 24 

2.2 Physiological signals 26 

2.2.1 Central nervous system (CNS) 27 

2.2.2 Peripheral nervous system (PNS) 33 

2.2.3 Variability of physiological responses 40 

2.3 Emotion assessment from physiological signals 41 
 

Chapter 3 Physiological signals recording and processing 51 

3.1 Material 51 

3.1.1 EEG 52 

3.1.2 Peripheral sensors 53 



 

x 

3.2 Signals acquisition and preprocessing 55 

3.2.1 Signal acquisition 55 

3.2.2 Denoising 55 

3.2.3 EEG re-referencing 56 

3.2.4 HR computation 56 

3.3 Characterization of physiological activity 59 

3.3.1 Standard features 59 

3.3.2 Advanced features 60 

3.4 Ethical and privacy aspects 68 
 

Chapter 4 Methods for emotion assessment 71 

4.1 Classification 71 

4.1.1 Ground-truth definition 71 

4.1.2 Validation strategies 74 

4.1.3 Classifiers 76 

4.2 Feature selection 80 

4.2.1 Filter methods 81 

4.2.2 The SFFS wrapper method 83 

4.3 Fusion 84 

4.3.1 Feature level 85 

4.3.2 Classifier level 85 

4.4 Rejection of samples 86 
 

Chapter 5 Assessment of emotions elicited by visual stimuli 89 

5.1 Introduction 89 

5.2 Data collection 89 

5.2.1 Visual stimuli 89 

5.2.2 Acquisition protocol 91 

5.2.1 Features extracted 92 

5.3 Classification 93 

5.3.1 Ground-truth definitions 93 

5.3.2 Methods 96 

5.4 Results 97 

5.4.1 Valence experiment 97 

5.4.2 Arousal experiment 98 

5.5 Conclusion 100 



 

  xi 

Chapter 6 Assessment of self-induced emotions 101 

6.1 Introduction 101 

6.2 Data acquisition 101 

6.2.1 Acquisition protocol 101 

6.2.2 Feature extraction 104 

6.3 Classification 105 

6.3.1 The different classification schemes 105 

6.3.2 Classifiers 106 

6.3.3 Reduction of the feature space 107 

6.3.4 Fusion and rejection 108 

6.4 Results 108 

6.4.1 Participants reports and protocol validation 108 

6.4.2 Results of single classifiers 109 

6.4.3 Results of feature selection 114 

6.4.4 Results of fusion 116 

6.4.5 Results of rejection 118 

6.5 Conclusions 119 
 

Chapter 7 Assessment of emotions for computer games 121 
7.1 Introduction: the flow theory for games 121 

7.2 Data acquisition 122 

7.2.1 Acquisition protocol 122 

7.2.2 Feature extraction 125 

7.3 Analysis of questionnaires and of physiological features 127 

7.3.1 Elicited emotions 127 

7.3.2 Evolution of emotions in engaged trials 130 

7.4 Classification of the gaming conditions using physiological signals 131 

7.4.1 Classification methods 131 

7.4.2 Peripheral signals 132 

7.4.3 EEG signals 135 

7.4.4 EEG and peripheral signals 137 

7.4.5 Fusion 138 

7.5 Analysis of game-over events 139 

7.5.1 Method 140 

7.5.2 Results 140 

7.6 Conclusion 142 
 



 

xii 

Chapter 8 Conclusions 145 

8.1 Outcomes 145 

8.2 Future prospects 147 
 

Appendix A Consent form 151 

Appendix B Neighborhood table for the Laplacian filter 155 

Appendix C List of IAPS images used 157 

Appendix D Questionnaire results for the game protocol 159 

Appendix E Publications 161 
 

References 165 

List of figures 175 

List of tables 179 

 



 

  xiii 

Table of symbols 

x(n) Value of the signal x at discrete time n 

x  Mean of signal x 

x  Standard deviation of signal x 

x  Mean of the derivative of signal x 

,x xMin Max  Minimum and maximum values of signal x 

N Number of trials and number of instances in the feature set F 

Ne Number of EEG electrodes 

Ns Number of samples in one of the signals of a trial 

T Duration of a trial 

2
1f  Feature having name <2> and computed from signal <1> 

F Size of the feature space, number of features in a feature vector fi 

fi 
Feature vector containing the values of some 2

1f  features for the trial i 
(line of the feature set F) 

if  Vector containing the values of the feature i for several trials (column of the 
feature set F) 

F Matrix containing all the fi instances 

C Number of classes 

i  Class i 

yi True label associated to trial i, 1{ , , }i Cy  

ˆiy  Estimated label of trial i, 1ˆ { , , }i Cy  

y Column vector of true labels yi 
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Chapter 1 Introduction 

1.1 Emotions and machines 

Emotions are part of any natural communication involving humans. They can be expressed either 
verbally through emotional vocabulary, or by expressing non-verbal cues such as intonation of 
voice, facial expressions and gestures. In this context, decoding emotional cues is essential to 
correctly interpret a message. For instance, aggressively shouting “Shut up” at someone does not 
have the same meaning as saying it while laughing and smiling. In the second case, one could 
interpret that the speaker does not really want his interlocutor to shut up but rather that he found 
his remark funny and at the same time at the limit of social acceptance. However, disambiguating 
and enriching communication is not the only role of emotions. It has also been found that they 
play a key role in decision making and that they are strongly related to tendencies to action. This 
discovery is certainly a reason for the importance they have nowadays in neuromarketing that 
aim at uncovering the cerebral mechanisms leading to the purchase decision. In his bestseller 
book, D. Goleman [1] does not hesitate to talk about “emotional intelligence”, i.e. the ability of 
someone to understand, communicate and manage his / her own emotions as well as his / her 
capacity to understand and feel emotions of the others. According to him those competences are 
as important as logic and verbal skills to “succeed in life”. Of course the definition of what is 
“success in life” could be discussed, but nevertheless, the success of Goleman’s book and of 
many other books on emotions clearly demonstrates the importance that people attach to this 
topic in our society. 

Despite the importance of emotions in communication, many Human-Machine Interfaces (HMI) 
completely lack “emotional intelligence”. The reaction of users in response to this shortage is 
either to be more and more frustrated by the machine or to invent new ways to communicate their 
emotions using the limited interfaces at their disposition. The number of internet videos showing 
a person getting upset in front of his / her computer is a clear indicator of the first reaction, while 
the use of emoticons in chatting sessions and mails is an example of the second. In the last 
decades, researchers and manufacturers started to take into account the emotions of users in the 
design of products, adding the concept of user experience to the one of usability. For computers 
this is part of what is called “human-centered computing”, where the goal is to have interfaces 
that are made for the human: they should be intuitive, easily handled, and use as most as possible 
the standard communication channels used by humans (speech, gestures, etc.). Current interfaces 
are far from this objective since they are complex and require training to be used. Even if 
including the user experience in the design of software is a step toward the improvement of HMI, 
it is still far from having machines that can react properly to a sudden emotional reaction of the 
user. 
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In order to obtain such an “emotional machine” it is necessary to include emotions in the human-
machine communication loop (see Figure 1.1). This is what is defined as “affective computing”. 
According to Picard [2], affective computing “proposes to give computers the ability to recognize 
[and] express […] emotions”. Synthetic expression of emotions can be achieved by enabling 
avatars or simpler agents to have facial expressions, different tones of voice, and empathic 
behaviors [3, 4]. Detection of human emotions can be realized by monitoring and interpreting the 
different cues that are given in both verbal and non-verbal communication. However, a system 
that is “emotionally intelligent” should not only detect and express emotions but it should also 
take the proper action in response to the detected emotion. Expressing the adequate emotion is 
thus one of the outputs of this decision making. The proper action to take is dependent on the 
application but examples of reactions could be to provide help in the case the user feels helpless 
or to lower task demand in the case he / she is highly stressed. Many applications are detailed in 
chapter 1.2.2. Accurately assessing emotions is thus a critical step toward affective computing 
since this will determine the reaction of the system. The present work will focus on this first step 
of affective computing by trying to reliably assess emotion from several emotional cues. 

 

Figure 1.1. Including emotions in the human-machine loop 

1.2 Emotion assessment 

1.2.1 Multimodal expression of emotion 

A modality is defined as a path used to carry information for the purpose of interaction. In HMI, 
there are two possible approaches to define a modality: from the machine point of view and from 
the user point of view. On the machine side, a modality refers to the processes that generate 
information to the physical world and interpret information from it. It is thus possible to 
distinguish between input and output modalities and to associate them to the corresponding 
communication device. A keyboard, a mouse and a pad with the associated information processes 
are typical input modalities, while a text, an image and music presented on screens and speakers 
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are typical output modalities. From the user perspective, a modality corresponds to one of the 
senses  used  for  interpreting  (resp.  transmitting)  messages  from  (resp.  to)  the  machine.  In  
psychology a modality is similarly defined as one of the five sensorial categories: touch, vision, 
hearing, taste and smell. In this thesis, we choose to use the word modality in a wide sense, 
including both of those aspects. 

Emotions can be expressed trough several channels and modalities. Facial expressions, gestures, 
postures, speech and intonation of voice have already been cited in the introduction and are 
certainly those that are the most obvious. However, emotional information can also be found in 
many other modalities. For instance it has been shown that there are different physiological 
activations of the body corresponding to different emotions [5-7]. Examples of those activations 
and inactivation are paralysis of muscles in case of fear, increase of heart rate and sudation for 
aroused emotions. They are generally less perceivable by people, unless an observer is close 
enough to the person that feels the emotion. However these reactions could be easily recorded 
using specific sensors. Some of those physiological changes can also be directly perceived such 
as a strong increase of blood pressure that would lead to a blush of the cheeks. 

All those modalities could be used for emotion recognition, but so far, most of the studies 
concerning machine based emotion assessment have used facial expressions and/or speech. 
However, we believe that physiological signals have several advantages compared to video and 
sound: 

- the sensors used to record those signals are closer to the body since they are generally 
directly placed on the user, reducing potential sources of noise and problems due to the 
unavailability of the signal (user not turning the head in front of the camera or not 
speaking); 

- they have very good time responses, for instance muscle activity can be detected earlier 
by using electromyography (EMG) than by using a camera; 

- they are harder to control, it is thus harder to fake an emotion; 

- in the case of impaired users that cannot move facial muscles or express themselves, 
many physiological signals, such as brain waves, are still usable for emotion assessment. 

Since emotions are clearly multimodal processes it is necessary to perform fusion of different 
modalities to reliably assess them. This could be done by fusing different physiological signals 
but also by fusion with other modalities such as postures, gestures and speech. Fusing those 
different sources could help to increase the accuracy of emotion assessment; it is also 
advantageous when some signals are not available because of technical problems like 
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disconnected or damaged sensors. Moreover, the synchronization between the activation of 
different modalities could also be a potential source of emotional information. 

The goal of this thesis is to investigate the usability of physiological modalities to improve 
affective computing methods with the long-term goal of enhancing HMI. For this purpose, this 
work will focus on the assessment of a user’s emotional states from physiological signals of 
different nature. More specifically we are interested in the use of brain signals in conjunction 
with more classical physiological signals as will be detailed in Chapter 2. 

1.2.2 Emotion assessment as a component of HCI 

Figure 1.2 presents a framework describing how emotion assessment could be integrated as a 
component of Human-Computer Interaction (HCI). As proposed by Norman [8] the interaction 
with a machine, from the point of view of the user, can be decomposed in execution / evaluation 
cycles. After identifying his / her goals, the user starts an execution stage. It consists in 
formulating his / her intentions, specifying the necessary sequence of actions and executing those 
actions. Next, the computer executes the given commands and output results through available 
modalities. The second stage is the evaluation which is realized by: perceiving computer outputs, 
interpreting them and evaluating the outcome (i.e. are the goals satisfied?). 

 

Figure 1.2. Emotion assessment in human computer interfaces, adapted from the execution / evaluation model 
[8]. 
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According to the cognitive theory of emotions, emotions are issued from a cognitive process 
called appraisal that evaluates a stimulus according to several criteria such as goal relevance and 
consequences of the event [9-11]. For this reason, an emotional evaluation step, corresponding to 
the appraisal process, was added in Figure 1.2 at the evaluation stage. Elicitation of emotions is 
known to be related to changes in several components of the organism such as physiological, 
motor and behavioral components [10]. It is thus possible to consider those changes as emotional 
cues that can be used to automatically detect the elicited emotion after being recorded by the 
adequate sensors. The detected emotion can then be used to adapt the interaction by modifying 
command execution. The information presented on the output modalities can also be influenced 
directly by the emotional adaptation, for instance by synthesizing an emotional response on 
screens and speakers. 

This thesis will focus on the green parts of Figure 1.2 to evaluate the performance of 
physiological signals for emotion assessment. For this purpose physiological signals should be 
acquired during emotional stimulation. This is often done by designing protocols to elicit 
emotions. Three protocols were designed during this thesis with one of them corresponding to a 
HCI context. Once the signals are acquired, some of their features that are known to be related to 
emotional reactions are extracted. The computed features are then used to train a classifier that 
finds a computational model mapping physiological features values to a given emotional state. 
This model (classifier) can then be used to recover the emotional state corresponding to a new 
instance of the features. 

Several applications can be derived from the presented framework, some of them going beyond 
human-computer interfaces to reach human-machine interfaces in general and even human-
human interfaces. 

1.2.3 Applications of emotion assessment 

When thinking about emotion recognition one application that generally comes to mind is the lie 
detector. This is certainly due to the fact that it was the first tool able to estimate the true internal 
state of someone without him / her wanting it, which led to the debates that we all know. 
However, this section will show that the lie detector is just the top of the iceberg and that many 
more applications can be targeted by research on emotion assessment. We believe that most of 
them are more ethical and less subject to debate, essentially because their goal is not to reveal 
information that could be seen as private, but rather to improve the way machines react to human 
feelings, prevent accidents and rehabilitate impaired people. The following list of applications is 
of course not exhaustive but is rather made to give some insights into the possibilities and 
advantages of emotion assessment technologies as well as to provide a better understanding of 
the context and stakes of this thesis. 
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a. Human machine interfaces 

Emotion assessment can be used to automatically evaluate the user experience of software. User 
experience design aims at integrating the perception of the system by the user in the development 
of applications and devices. This mainly consists of asking users to fill in surveys about their 
emotional state and monitoring their facial expressions and physiological signals while they 
manipulate different interfaces [12]. In this case, offline automatic assessment of emotions helps 
to avoid the manual and visual processing of large amount of gathered data. But certainly one of 
the main interests for HMI is to adjust online the behavior of the machine to the emotional state 
of the user (i.e. directly after or during the feeling of the emotion). 

As stated in Section 1.1, the inclusion of emotions in the human-machine loop can help to 
improve and disambiguate communication. For instance, when the user repeats a command for 
the second time and agitation or stress is detected as the current emotion, the system could infer 
that it should try to change its previous response because the result was not satisfying. There are 
at least two particular applications that could be cited to illustrate adaptation of HMI to human 
emotions: learning platforms and games. 

In a learning situation many affective states can be elicited. Discouragement, anxiety, excitation, 
curiosity, are just some examples of the whole space of possible emotions. Some of those 
emotions are favorable to knowledge acquisition (i.e. curiosity) while some others are not (i.e. 
discouragement), some could also be useful as long as their intensity does not exceed a certain 
threshold (i.e. anxiety and excitation). With the development of e-learning, serious games and 
other learning platforms [13-15], it is now more and more common to learn through the use of 
computer interfaces. In a standard class-room the teacher is generally able to react according to 
the feeling of participants but this is not the case with standard computer interfaces. In this 
situation, automatically adapting the learning strategy of the system to the emotional state of the 
user could foster the acquisition of knowledge. Adaptation could be done trough the regulation of 
standards criteria like the speed of the information flow, the difficulty of exercises and questions 
but it could also be done by providing advices and tips to the learner. Another possibility is to 
have a virtual agent that could show artificial empathy by providing encouragements and 
displaying appropriate emotional cues [16]. In all those cases, the idea is to try to motivate the 
learner toward a state of mind that will increase his / her performance and learning outcomes. 

Games are also interesting from a HMI point of view because they are an ideal ground for the 
design of new ways to communicate with the machine. One of the main goals of games is to 
provide emotional experiences such as fun and excitement which generally occurs when the 
player is strongly involved in the course of the game action. However, a loss of involvement can 
occur if the game does not correspond to the player’s expectations and competences; he might 



  Introduction 

  7 

then feel emotions like boredom, distress and frustration [17, 18]. In this situation, the content of 
the game could be adapted to better fit the player and game designer’s expectations. For instance, 
in a role playing game, if the player seems to have more fun by exchanging information with 
non-players characters and solving puzzles than fighting monsters, the game could automatically 
increase this type of events. Some games are also purposely inducing particular emotional states 
such as fear in the case of a horror game. Emotion detection could then be used to control the 
effectiveness of emotion elicitation and adapt the elicitation methods for better success. 
Emotional states could also be used to modulate movements of the player character such as 
having a worse precision at shooting in case of stress and limited movements in the case of fear 
to simulate paralysis. Finally, another possibility is to adapt the difficulty of the game according 
to the felt emotion. This can avoid falling in the extreme cases of too easy and too hard games 
that would respectively elicit boredom and frustration. This later approach will be discussed in 
Chapter 7. 

b. Behavior prediction and monitoring of critical states 

Emotions are known to modulate tendencies to action [10, 19, 20]. For instance when someone is 
feeling a positive emotion he / she will rather tend to approach the stimuli, while fear will 
generally result in withdrawal from the situation. Based on this fact, emotion detection is an 
indicator for behavior prediction. It is thus possible to monitor critical emotional states that could 
lead to potential harmful or dangerous behaviors. 

Examples of such applications could be to monitor stress while driving to avoid accidents by 
encouraging the driver to stop and calm down. On a similar basis, some operators have to 
supervise critical operations and a loss of task engagement could induce severe damage. 
Monitoring of this cognitive state could then be of interest to re-engage the supervisor in his task. 
Emotions can also be monitored while performing dangerous operations, for instance to forbid 
the use of potentially harmful commands in the case of too high stress. Finally, monitoring of 
emotional states could also provide information to determine when an elderly or disabled person 
needs help, without having that person perform usual actions like giving a phone call to ask for 
help. 

c. Information indexing and retrieval 

The quantity of multimedia data (images, videos, sounds, music …) that is available on the 
internet is increasing. Moreover, availability of easy to use multimedia recorders embedded in 
low cost mobile devices leads to an incredible amount of self-collected data. This will be further 
encouraged by the coming of ubiquitous computing: the embedding of information processing 
tools in objects [21]. Recording would then be possible at any moment and any place. 
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For this reason, there is a real need of new technology to index and intelligently retrieve 
information. According to Hanjalic [22] retrieving information could be done by either 
highlighting particular items of interest or by summarizing the content of a complete recording. 
This could be done by finding information that contains strong emotional content [23, 24]. In this 
context emotion detection could be used to construct individual profiles that would store the 
relations between multimedia features and emotional states. In this way the search of emotional 
content would be adapted to each person according to his / her profile and his / her subjective 
interpretation of multimedia features. 

Events that people would like to record generally coincide with strong emotional states like 
pleasure and joy. Thus, emotion detection could be used, in a ubiquitous environment, to detect 
those events and automatically trigger the recording of relevant scene of the every-day life. At the 
same time, this data could be indexed emotionally and retrieved later by using emotional tags. 
Automatic emotional tagging could also be performed at a later stage by presenting previously 
recorded data to participants while monitoring their emotional states. This last point is an active 
topic of research being conducted within the European Network of Excellence PetaMedia1 to 
which we participate. 

d. Health and rehabilitation applications 

Empirical data analysis has shown that emotions are factors that can influence the speed and 
efficiency of treatments that are provided during a cure [1]. Thus, emotion assessment can be 
used as any other monitoring device to control patient’s signs of rapid and effective recovery. 
However its usability and effectiveness would certainly be more important to help for the healing 
of disorders implying emotional and social impairments such as depression and autism. An 
example for autism is given by [25] where an emotional robot is designed to play with autistic 
children. The idea behind the use of a robot is that autistic children would prefer to interact with a 
machine that has simplified rules of communication and is thus less intimidating. In this 
application, emotion assessment is used to adapt the behavior of the robot (speed and direction of 
a basketball basket, background music and game objective) according to the preferences of the 
child. The objective is to have a robot that is able to change its behavior along time like a real 
therapist would do. 

Some accidents and diseases, like amyotrophic lateral sclerosis, have as a consequence the 
complete paralysis of the body. Disabled persons that suffer from this type of trauma are not able 
to communicate through standard channels since this generally requires the activation of several 
muscles. In order to give them the possibility to communicate, one solution is to use interfaces 

                                                   
1 http://www.petamedia.eu/ (Retrieved on 30 April 2009) 
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that do not rely on standard peripheral nerves and muscles but directly on the brain neuronal 
activations. Such interfaces are named Brain-Computer Interfaces (BCI) [26-28]. Current BCI 
aim to detect brain activity that corresponds to complex tasks (mental calculus, imagination of 
finger taping, etc.) that are traduced in commands like moving a mouse cursor and choosing a 
letter from the alphabet [27, 29, 30]. Generally the user needs training before using such systems. 
In case the objective of the user is to express an emotion, classical BCI tasks (e.g., imagination of 
finger tapping) seem to be really far from this objective and it is more appropriate to use mental 
tasks such as the remembering of a similar emotional event (see Chapter 6). This emotion 
elicitation task can then be regarded as a mental task that the user tries to perform in order to 
communicate his / her feelings. The objective is then to detect the resulting emotional states from 
brain signals and output it in order to give back to disabled people the ability to express their 
feelings [31]. 

1.2.4 Related questions / problems 

Emotions have been studied from several perspectives and for many centuries starting with 
discussions of philosophers such as Aristotle [1, 32]. Darwin was also a pioneer who tried to 
explain the origin of emotions and their importance for the survival of species [33, 34]. But it is 
only recently (1950’s - 1960’s), with the emergence of cognitive sciences in psychology, that 
emotions gathered a real interest. Thus the study of emotions in psychology is rather a new field 
of research and there are still a lot of issues that remain unsolved. Those issues have a strong 
importance for HMI researchers since the definition, elicitation and characterization of emotions 
is the basis for proper emotion assessment, synthesis and adaptation. This section will emphasize 
the issues that are most relevant to emotion assessment. 

When designing a system for emotion assessment one of the critical steps is to specify the 
emotions that will be detected. This question is directly related to the issue of the definition of 
emotions: what is an emotion, how many emotions exist, are there emotions more important than 
others? The representation and modeling of emotions is a subject of debate in psychology. As a 
consequence several models that account for different components of emotions were developed. 
The representation and models of emotions that were found to be of interest in the specific case 
of emotion assessment will be presented in Chapter 2. The easiest way to represent an emotion is 
certainly by using words like fear, anger and joy. However, there is an incredible amount of 
vocabulary to refer to our affective states. In the dictionary of affect in language Whissel [35] 
registered up to 3000 English words with affective connotations. Those words do not always have 
the same meaning from one individual to another and it is sometimes difficult to determine if a 
word refers to an emotion or not (think to “disobedient” for instance that is part of Whissel 
dictionary). Words are also culture and language dependent and the difference between two 
words is sometimes difficult to catch such as for joy and happiness. From an HMI point of view, 
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the question of the relative importance of some emotion labels to others is strongly dependent on 
the application. For instance, detecting disgust is not really interesting to adapt the learning 
strategy of a virtual teacher but it could be very useful to index horror movies. It is thus really 
difficult to choose the appropriate representation of emotions for the general purpose of emotion 
assessment while there is a strong importance of designing and choosing emotion models that are 
consistent with the targeted application. 

Another point of interest is the question of subjectivity that can occur at several levels. If two 
persons are stimulated by the same event, they can feel very different emotions depending on 
several criteria such as their past experience and their current goals. For instance if a person is 
hungry, presenting him or her with chocolate can elicit pleasure, while it would elicit disgust in 
the case the person would be sick of chocolate. It is thus really difficult to infer the emotional 
state of someone just by having information about the event that elicited the emotion. Since 
drawing a complete profile of someone goals and past experiences is quite unfeasible, using 
emotional outputs is a promising solution to automatically infer emotions. Associating a stimulus 
to an emotional label is thus difficult, raising the question of the construction of emotional 
databases that need to associate recorded data with a specific emotion. A solution is to ask the 
user to report about his / her feelings exactly as if an expert was asked to give labels to objects of 
interest. This supposes that a person is an expert in evaluating his / her feelings. But is it really 
the case? Not always, according to psychologists, since they separate the objectively felt emotion 
(change of the organism state) from the resulting subjective feeling (the self-perceived emotion). 
All those remarks have strong implications on the design of protocols to gather emotional data 
and raise several questions: how to elicit an emotion with maximum certainty and how to 
annotate the collected data? There are no clear answers to those questions and assumptions will 
have to be made for the recording of emotional collections. 

The use of physiological signals also raises a lot of questions. What type of physiological signals 
should be used? Is the physiological response to emotional stimuli always the same? There are 
many physiological signals that have been shown to correlate with emotions. Chapter 2 discusses 
most of these signals. However, it has been shown that there are differences in their activation for 
a given emotion elicited in different contexts. Thus an emotion detection system should be 
designed for a particular application or take into account contextual information. Simultaneously 
measuring various physiological signals requires the use of several sensors that are sometimes 
quite obtrusive since they can monopolize the use of one hand and are not comfortable. The price 
of those sensors should also to be taken into account. For these reasons the issue of determining 
the most useful sensors is of importance. Finally, there is also variability in physiological signals, 
from person to person but also from day to day, that yield to difficulty in designing a system that 
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will detect emotions accurately for everyone and everyday. Methods to cope with this variability 
have to be developed. 

1.3 Contributions 

The main objective of this thesis is to evaluate the usability of physiological signals as emotional 
cues for assessing emotions in the context of affective computing. More precisely, performance is 
analyzed for signals from the central nervous system and the peripheral nervous system 
separately as well as for the fusion of these two types of physiological measures. 

The contributions of this thesis are: 

 Identification of key points in computerized emotion assessment: issues such as the 
definition of emotional classes of interest, the choice of a ground truth for emotion 
classification and the duration of emotional epochs are investigated. 

 Setting up acquisition protocols for different elicitation contexts: three different emotional 
stimuli were employed, namely images, recall of past emotional events and playing a 
game at several difficulty levels. 

 Evaluation of classification algorithms for emotion assessment: comparison of different 
classification (Naive-Bayes, LDA, SVM, RVM), feature selection (ANOVA, FCBF, 
SFFS, Fisher) and fusion (feature and classifier level) techniques was performed. 

 Demonstration of usefulness of EEGs (ElectroEncephaloGrams) for emotion assessment: 
the accuracy of emotion assessment from EEG features was compared to the accuracy 
obtained with peripheral features on different emotional classes and contexts. It was 
shown that EEG features can perform better than peripheral features especially for short-
term assessment. 

 Demonstration of the usefulness of fusion between peripheral and EEG modalities: the 
fusion was done at different levels (features and decision levels) with results showing the 
interest of fusion. 

Those contributions were included in a number of publications in international conferences [36-
38] and a journal [39]. These publications are also listed in Appendix E together with other 
contributions and collaborations related to the study of physiological signals for emotion 
assessment. 

1.4 Thesis overview 

This thesis is divided in 8 chapters. 



Chapter 1 

12 

Chapter 2 presents a state of the art regrouping the important notions concerning emotion 
assessment from physiological signals. It addresses several models and definitions of emotions 
proposed in the fields of psycho-physiology and sociology. The different physiological signals 
related to emotional processes are reviewed together with the existing methods and sensors 
usable for the acquisition of those signals. Finally, the results of studies using physiological 
signals to assess emotions are reported and discussed according to several criteria. 

Chapter 3 concerns the acquisition of physiological signals. It first presents the material used for 
the acquisition of physiological signals. It also provides some recommendations regarding how to 
position the sensors and control the quality of the signals. The features extracted from the signals 
to characterize the physiological activity are then presented. 

Chapter 4 describes the methods employed to assess emotions from the extracted features. It first 
addresses the possible methods available to construct a ground-truth, i.e. the true emotional state 
associated to a physiological activity. In the second part the algorithms used for the classification 
of those emotional states are presented together with the measure chosen to compare their 
performances. Finally, the feature selection methods used to reduce the amount of features are 
detailed. 

Chapter 5, 6 and 7 present the results of emotion assessment from physiological signals for 
different emotion elicitation strategies and classification methods. In Chapter 5, the emotions 
were elicited by using pictures and different ground-truths were compared. In Chapter 6, a self-
induction method was employed to elicit emotions belonging to three categories (pleasant, 
unpleasant and calm). The performances of different physiological signals were compared and 
the advantages of fusion of these signals were investigated. In Chapter 7 a gaming paradigm was 
proposed to get closer to real HCI applications. The performance of emotion assessment from 
different signals was investigated for several time scales. The changes in physiological activity 
following game-over events were also analyzed. 

Chapter 8 presents the conclusions of this work and provides some suggestions for future work 
and improvements. 
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Chapter 2 State of the art 

2.1 Emotion representations and models  

Before designing a system able to represent and recognize emotions, it is first necessary to define 
what an emotion is. At the moment, there is no common framework that can be used to answer 
this question. This is mainly due to the fact that emotions are complex phenomena that influence 
many aspects of everyday life: they help us to avoid danger, take decisions and they also have 
some important social values. Over the past century, four main theories of emotions have 
developed [33]. 

From a social constructivist point of view, emotions are only products of social interactions and 
cultural rules [33]. This statement is often considered too restrictive but nowadays most of 
researchers in affective sciences admit that social and cultural rules at least regulate emotions: 
one will not have the same emotional behavior in front of one’s senior than in front of one’s 
friend. On the one hand, this view emphasizes the importance that emotions have in society and 
uncovers applications for emotion assessment in social environment, for instance in computerized 
social networks. On the other hand, it also suggests that emotions should be assessed with models 
that are cultural and environmental specific, making this assessment more complex. 

Darwinians consider emotions as phenomena that are selected by nature according to their 
survival value, i.e. fear exist because it helps us avoid danger. This is one of the oldest views 
concerning emotions and has initially been proposed by Darwin in 1872 [33, 34]. The main 
implication is that emotions should have identical constructs across individuals and thus common 
emotional expressions and behaviors should be found across cultures. This point of view is 
clearly opposite to social constructivism and supports the idea that a single model for assessing 
and representing emotions universally is conceivable. 

For Jamesians, emotions uniquely corresponds to the feeling of bodily changes, such as 
modifications of heart rate and blood pressure, which follow the emotional stimuli (“I am afraid 
because I shiver”) [33, 40]. Thus if perceptual mechanisms are impaired there is no possibility to 
feel emotions anymore. Although controversial, this later approach emphasizes the important role 
of physiological responses in the study of emotions. More specifically this implies that each 
emotion corresponds to a unique pattern of physiological activity, which is strongly encouraging 
to go toward emotion assessment from physiological signals. 

In the cognitive theory, emotions are issued from a cognitive process called appraisal. This 
process is supposed to be “direct and non-reflective” and evaluates a stimulus according to 
several criterions such as relevance and consequences of an event [9, 10, 41]. This approach 
supports the idea that the brain is the main organ implied in emotions through organization of 
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emotional processes and triggering of emotional responses. As a consequence, brain signals 
should not be neglected for the analysis and detection of emotions. An advantage of this theory, 
from a computer-science point of view, is that it allows for computationally tractable models of 
emotions (see Section 2.1.3). 

From all those theories, different models and representations of emotions have emerged. There 
were also some attempt to combine and harmonize the different views but they are generally still 
anchored in one of the above theories. In the following sections two types of representations will 
be emphasized: the so-called basic emotions and the continuous representations. They are 
clearly the most used in the emotion assessment community. Models of emotions are discussed in 
section 2.1.3 but they are generally more complex and less usable for the purpose of emotion 
assessment from physiological signals alone. 

2.1.1 Emotion categories and basic emotions 

As stated in the introduction, dealing with the emotional vocabularies is difficult because of the 
high number of emotional words, the fact that they can be interpreted differently from one 
individual to another and also because they are culture dependent. In order to organize and reduce 
this large vocabulary one can rely on the basic emotions. Unfortunately, basic emotions have 
been introduced by several researchers [34, 41, 42] so that their definition, their number and their 
identity can be different depending on the studies and the theory in which researchers believe. 
According to Ortony [34] there are two main approaches to the definition of basic emotions: the 
biological view that is strongly anchored in the Darwinian and the Jamesian theories, and the 
psychological view. 

For the biological point of view, basic emotions are those that are solely evolved by nature and 
thus have important survival functions. There are several criteria that an emotion should meet in 
order to be basic, the most commons being: 

- distinctive physiology: the emotion must be associated to a unique pattern of 
physiological activity, 

- universality: the emotion must be found in all cultures, 

- unlearning: the emotion must not have been learned from previous experiences but is 
naturally present and hardwired in the brain. 

Table 2.1 presents several lists of basic emotions depending on the criterion that was used to 
construct them. As can be seen from this table the length of the proposed lists does not exceed 10 
different emotions, while general lists of emotional terms and emotional dictionaries can contain 
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up to thousands of words [35]. What about the remaining emotions? The psychological point of 
view can help to give an answer to that question. 

Reference Basic emotions Criteria 
Ekman [42] Anger, disgust, fear, joy, 

sadness, surprise 
Universal facial expressions 

Gray [43] Rage and terror, anxiety, joy Hardwired 
Panksepp [44] Expectancy, fear, rage, panic Hardwired 
McDougall [45] Anger, disgust, elation, fear, 

subjection, tender-emotion, 
wonder 

Relation to instincts 

Mowrer [46] Pain, pleasure Unlearned emotional states 
Plutchik [47] Acceptance, joy, anticipation, 

anger, disgust, sadness, 
surprise, fear. 

Relation to adaptive biological 
process 

James [40] Fear, grief, love, rage Bodily involvement 
Table 2.1. Lists of basic emotions from a biological point of view (from [34]). 

For several psychologists, an emotion is considered as basic if it is an “elementary” one that can 
be used to construct, in combination with others basic emotions, a large number (if not unlimited) 
of non basic emotions [34]. The word “elementary” signifies that a basic emotion is one that 
cannot be decomposed into a combination of other emotions. One of the main advantages of this 
definition of basic emotions is that it enables to virtually construct any emotion as a combination 
of basic emotions like it is possible to mix primary colors to obtain secondary ones. However, the 
way the combination is done differs among researchers and is not really clear. An example of this 
view is the wheel of emotions proposed by Plutchik [48, 49] that is shown in Figure 2.1. This 
wheel is composed of several quadrants containing the proposed basic emotions organized 
according to their closeness: emotions that are facing each other on the wheel are considered to 
be opposite while emotions in adjacent quadrants have common properties (especially if they 
have similar colors). Two adjacent emotions can then be combined to form a new non-basic 
emotion. For instance anticipation and joy will constitute optimism. In his wheel, Plutchik also 
added the concept of intensity as can be seen from Figure 2.1.  

Both the psychological and the biological views of basic emotions are challenged by social 
constructivism. Since in this theory emotions are considered to be a product of nurture rather than 
nature, there is no reason for the existence of basic emotions in the biological sense. Concerning 
the psychological view, social constructivists argue that the choice of the basic emotions is biased 
by cultural influence and that the so called “elementary” emotions are rather emotions that are 
prominent in the culture. For this reason, Shaver et al. [50] performed clustering of several 
emotional words using similarity between words evaluated by many participants. The result is a 
hierarchical tree structure where words are organized in three groups’ levels. The names of the 
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groups were chosen as the most common emotions or as a close basic emotion. The main 
advantage of this representation is that it allows for the taxonomy of several emotional words. 

   

Figure 2.1. Plutchik’s wheel of emotions. (Left) The basic emotion represented as quadrants and possible 
combinations of basic emotions2. (Right) The same wheel with the added concept of intensity2. 

While representing emotions with words has the advantage of being instinctive, the questions of 
cultural differences, misunderstanding and choice of words are still not resolved. Moreover, 
labels are discrete and hence cannot fully represent some aspects of emotions like the continuous 
scale of emotional strength. This is why several researchers focused on the search of a continuous 
space that would represent emotions with less ambiguity. 

2.1.2 Continuous representations 

The idea of searching for a continuous space able to represent emotions comes from the cognitive 
theory that assumes that any person possesses an internal representation of emotions [51]. The 
goal is to find what the dimensions of this representation are and how emotions are mapped into 
it. Several researches (see [51] for a review) have generally addressed those questions by 
analyzing participant-reported measures of similarity between either verbal or facial emotional 
expressions. In those analysis different methods were applied to find a space that minimize (resp. 
maximize) the distance between similar (resp. different) expressions. Most of the studies obtained 
different spaces but, on a closer look, some of the dimensions were redundant and similar across 
studies. 

As  a  result  there  is  nowadays  an  agreement  on  the  first  two  bipolar  and  most  important  
dimensions: valence and arousal (Figure 2.2). Valence represents the pleasantness, ranging from 
unpleasant to pleasant (it is also called evaluation); while arousal represents the awakeness, 

                                                   
2 http://library.thinkquest.org/25500/index2.htm (Retrieved on 4 May 2009) 
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alertness and activation of the emotion (this dimension is sometimes called sleep-tension and 
activation) [20, 52]. There is currently no consensus on a potentially third dimension. Most of the 
studies emphasize that it accounts for a low part of the variance in participants judgments, 
generally leading to its neglect. Otherwise, this third dimension could be related to concepts such 
as potency, control, and dominance in order to distinguish between emotions that are related to 
approach and withdrawal reactions. 

The two-dimensional valence-arousal space has several advantages. First, it is possible to 
represent emotions without using labels but just a coordinate system that includes emotional 
meaning. As a consequence, any emotion could be represented as a point in this space, even if 
there is no particular label or expression to define it. 

Secondly, since this space was created from the analysis of emotional expressions (verbal and 
non verbal), it is possible to associate areas of this space to emotional labels if necessary (Figure 
2.2). In [51], the direct mapping of verbal expressions on the space gave the result shown in 
Figure 2.2.a. As can be seen, labels tend to form a circle within the space. However there are 
some evidences that this mapping is not exactly the same from a person to another. In 
consequence, there are no exact boundaries in the valence-arousal space that define emotional 
expressions. A solution could be to represent this variability by defining expressions as areas that 
can overlap (Figure 2.2.b). Using probabilistic models that define the probability of having a 
given expression knowing the position in the valence-arousal space could help determine such 
boundaries. 

   

Figure 2.2. Valence arousal space with associated labels as (a) points (adapted from [Russell], (adjectives have 
been changed to nouns and only some of the words are displayed for clarity) and (b) areas. 

Thirdly, this space can also represent the intensity of the emotion [20, 51]: a point in the middle 
of the space would represent a low intensive and neutral feeling while a point on the periphery 
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would indicate a full-blown emotion. Finally, it has been shown [53] that the mapping of 
emotional words on this space does not vary significantly between four Europeans languages 
(English, Estonian, Greek and Polish). This encourages the use of this space as a way to represent 
emotions interculturally. 

As discussed, emotional labels can be projected from the discrete space of emotional labels to the 
continuous valence-arousal space. Unfortunately there is nothing that guarantees this projection 
to be injective so that two different labels could have the same coordinate in the valence-arousal 
space. In the representation above (Figure 2.2), this is merely the case for fear and anger, two 
highly negative and excited emotions. In that case the clear distinction between the two emotions 
could be achieved by adding the third dimension of control: when one is feeling fear one does not 
have control over the situation while control is present for anger. 

The valence-arousal space has been shown to be effective not only to represent emotional 
expressions but also for self-assessment of emotions and moods [51, 52, 54, 55]. However, while 
Russel [52] argues for independent dimensions of valence and arousal, there are some evidences 
that this is not true for self-reported feelings. Lang [54] observed that when people assess their 
own emotion while watching pictures of the IAPS (International Affective Picture System), their 
judgment tends to follow a U-shape centered in the space (Figure 2.3). This shape has also been 
observed using film clips as stimulations in [24]. This distribution of self-assessments is not 
surprising since it is difficult to elicit emotions that have low arousal and high valence 
simultaneously as well as emotion of high arousal and no valence. This also demonstrates that 
areas of this space are more important than others and that a system performing emotion 
assessment should focus on them. 

 

Figure 2.3. Self-assessments distribution obtained when eliciting emotions with images: most of the self-
assessed images lie inside the U-shape. 
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2.1.3 Models of emotions 

Sections 2.1.1 and 2.1.2 describe different representations of emotions. While they are useful for 
taxonomy, categorization and differentiation of emotions they do not provide much information 
about the process that gives rise to emotions. Several models, essentially from the cognitive view 
of emotions, have been proposed to answer this question [9, 10, 32, 56-58]. Most of them are 
based on the central concept of appraisal which has been defined by Arnold as the cognitive 
process that constantly evaluates the environment and elicit emotions [41]. It is generally 
considered as an unconscious process that is direct and non-reflective. To our view, the main 
differences between models of appraisal are the different evaluation criteria they propose. 

Two of the most famous models are presented in the following sections: the OCC (Ortony Clore 
and Collins) typology [57], which has been used to define computational models of emotions, 
and Scherer’s SECs (Stimulus Evaluation Checks) [9, 10], which can be viewed as an attempt to 
unify the different emotion theories. 

a. OCC typology 

According to Ortony [34], “the defining feature [of an emotion] that we consider most reasonable 
and least contentious is that the appraisal underlying the emotion be valenced, either positively or 
negatively”. It is thus not surprising to find the valence concept at the heart of his model. In the 
OCC (Ortony, Clore and Collins) typology [57], an emotion is viewed as a valenced reaction to a 
stimulus. More precisely, the elicitation of an emotion relies on the evaluation of three main 
criteria: the type of the stimulus (agent, object, and event), the concerned entity (self  or  
another) and finally the valence of the emotion (positive or negative). Since each of these criteria 
can only be discretely evaluated, it is possible to represent the model as a tree with the resulting 
emotions as the leaves (Figure 2.4). 

Two examples are given bellow that respectively corresponds to the green and blue dotted line of 
Figure 2.4. As a first example, imagine that a student just sat for an exam and is rather pleased by 
his / her performance. In this case the type of stimuli is an action (sitting for an exam), the agent 
of interest is the self, and since the valence is positive the resulting emotion is pride (green dotted 
line in Figure 2.4). As a second example, our student receives a letter concerning the result of the 
exam and reads it. Here the stimulus is an event (reading of the letter) and the concerned entity is 
again the self. Since prospects are relevant in this case and the student has opened the letter, the 
elicited emotions will be either satisfaction or disappointment depending of his / her results (blue 
dotted line in Figure 2.4). Notice that as long as the letter wasn’t read the elicited emotion was 
hope (he or she was happy about his / her performance). 
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Figure 2.4. The OCC typology (from [57]). Green and blue dotted lines correspond to the examples above. 

This model has the advantage of being computationally tractable. Consequently, it has been used 
for the purpose of emotion synthesis. Elliot extended it in [59] by adding few emotions, and 
implemented it in a computational affective reasoner. In [60], the authors converted this model in 
a BDI (Belief, Desire and Intensions) architecture and also demonstrated the effectiveness of this 
approach. 

This model can also be used for the purpose of user-emotion assessment. In order for this model 
to be applicable in this case, it is mandatory to have a complete knowledge or control of the 
environment in which the user is evolving to be able to follow a path in the tree. This is an 
interesting fact since it strongly emphasizes the importance of context in emotion assessment. 
However, even with a strong knowledge of context, valence is still a hard criterion to evaluate. 
Let’s take the example of a learning application since, as explained in the introduction, there are 
several advantages to include emotion assessment in this type of environment. Imagine that the 
user is informed that he failed in a task then the valence could be guessed as being negative. Now 
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imagine that he just finished the task but he has not been informed about his / her performance 
then the valence will depend on the user interpretation of his / her success. Since this information 
is not directly available to the system, it is not possible to infer any emotional state. In this case, 
detecting the valence from the measures of user’s emotional cues can solve the issue. 

b. SECs theory 

In his theory, Scherer [9, 10] proposed that appraisal can be decomposed into several checks that 
are cognitively evaluated. They are called the Stimulus Evaluation Checks (SECs, Table 2.2). 
Each of these processes is supposed to occur in a specific time span from the elicitation event 
with the possibility of parallel processing (time span that overlap). Those SECs can be grouped in 
the four appraisal objectives listed below. 

- Relevance detection: the objective of this group of SECs is to determine if the stimulus 
requires attention and further processing by analyzing its relevance for the person; the 
goal is to answer the question “Are there any possible implications to me or my direct 
environment?”. 

- Implication assessment: the next step is then to determine what the implications of the 
stimuli are in terms of consequences for the self. This objective regroups the central 
processes of appraisal and its function is mainly the protection and the progress of the 
organism: “is the stimulus dangerous or appealing?”, “does it correspond to my goals and 
needs?”. Notice that this appraisal objective is very close to what Darwin defines as the 
function of emotions as a whole. 

- Coping potential determination: the concept of coping is well known in psychology and 
is defined as the cognitive mechanisms that are implemented to control and reduce the 
impact of stressful and emotional events. According to Lazarus [32], there are two types 
of coping: problem oriented (determination of an action to solve the problem that gave 
rise to the stressful situation) and emotion oriented (cognitive regulation of the stress for 
instance by reconsidering the situation). The current appraisal objective is to deal with 
both of those aspects. 

- Normative significance evaluation: the objective of this SECs group is to evaluate 
whether the stimulus is compatible with one’s own principles and standards as well as 
with social norms and values. 

The order in which the SECs are presented in Table 2.2 is significant as it represents the sequence 
in which the checks are supposed to be completely evaluated. The appraisal decomposition in the 
present SECs as well as the temporal aspects have been validated in [61, 62]. 
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Appraisal 
objectives 

SECs Description / Answer the question 

Relevance 
detection 

Novelty Is stimulus novel and does it require attention? 
Is it familiar and/or predictable? 

Intrinsic pleasantness 

Will the stimulus lead to pleasure or pain? 
This is a property of the stimulus and is not related to the 
current state of the organism (it does not depend on the 
current goal and objectives of the subject but could have 
been learned in the past). 

Goal relevance check Does the stimulus have some consequences on my 
current goals? 

Implication 
assessment 

Causal attribution 
What or who is the cause of the stimulus and why? 
Often divided in two categories: the responsible agent 
and the motive. 

Outcome probability What are the consequences of the stimulus? 
What is the probability of each consequence? 

Discrepancy from 
expectation 

To which extent the stimulus is different from what was 
expected. 

Goal / need 
conduciveness 

Will the consequences of the stimulus help me to 
accomplish my goals or will they obstruct my goals? 

Urgency Should the stimulus be handled quickly? 

Coping 
potential 
determination 

Control To which extent the stimulus can be influenced and 
controlled. 

Power 
If control is possible, check the available resources 
(physical, knowledge, etc.) for a potential action. 
It is related to the problem oriented coping of Lazarus. 

Adjustment 

If it is not possible to influence the situation (because of 
a non controllable stimulus or lack of resources), check 
how well the organism can adjust with the situation. 
It is related to the emotion oriented coping of Lazarus. 

Normative 
significance 

Internal standards Is the stimulus in accordance with one’s own principles, 
ideals and moral code? 

External standards Is the stimulus in accordance with social norm and 
values? 

Table 2.2. List and description of the different Stimulus Evaluation Checks (SECs) grouped by appraisal 
objective and temporally ordered. 

Contrarily to the OCC model, where the different criteria are evaluated discretely, Scherer 
proposed that most of the SECs are evaluated on continuous scales (for instance the outcome 
probability SEC is evaluated for each event on a continuous scale ranging from 0 to 1). 
Moreover, 14 emotions such as happiness, disgust, anxiety, fear, pride, guilt and boredom were 
profiled by giving for each of them the possible associated evaluation of the SECs [9] (for 
instance Happiness is associated to high intrinsic pleasantness, medium goal/need relevance, very 
high outcome probability, very low urgency, etc.). It was shown that these profiles can be used to 
correctly identify an emotion associated with situations described according to the SECs. 



  State of the art 

  23 

However, the emotional profiles are described with words like “low”, “high”, “medium” so that 
the computational implementation of this model could not be directly done with continuous 
evaluations of the SECs. A first step should be taken to find evaluation thresholds (for each SEC) 
that define the boundaries between emotions. Moreover, it still remains that this model is very 
complex and requires the evaluation of 13 SECs confirming the remark made for the OCC model 
about the difficulty of components evaluation. 

In his appraisal theory, Scherer does not limit his analysis to the different components of the 
cognitive appraisal but also studied the relation between the systems (or components) of the 
organism taking part in the emotion elicitation and differentiation [10]: 

- the cognitive system, that is responsible for the evaluation of the emotional event 
(appraisal of the stimuli); 

- the autonomic system, that provides support for other components (for instance the 
quantity of blood in hands can increase in case of anger to prepare for action); 

- the motivational system, related to action tendencies, urges and desires (i.e. will one 
withdraw from the stimuli or approach it); 

- the motor system, to execute the (re)-action but also to show facial expressions as well as 
emotional gestures and behaviors; 

- the monitor system, which gives rise to the subjective feeling one can experience after 
being confronted to an emotional situation. 

This list clearly demonstrates the multimodal aspects of emotions, since emotional activation is 
reflected in the activity of all those systems. Notice that this activity could be monitored in order 
to assess emotions; actually it is even possible that monitoring the activity of ALL those systems 
is necessary to reliably and fully assess emotions. 

This last statement goes along with the componential patterning theory. According to this theory, 
a given evaluation of the SECs leads to a precise activity pattern in the five organism components 
and this pattern can be used to predict emotion. Another important statement is that the different 
components are not independent but rather interrelated. Consequently, they exchange information 
for the evaluation of the different SECs. For instance the evaluation of a SEC (cognitive 
component) will give rise to activity in another component (for instance in the autonomic 
system); this activity could then be feedbacked for the evaluation of another SEC. Since the SECs 
are evaluated in sequence, this theory implies that the pattern of emotional activity changes 
during the appraisal process and that synchronization between the different systems is necessary. 
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The collaboration between different components has also been suggested in [63] while the 
dynamic and synchronization aspects are detailed in [64]. 

2.1.4 Finding an adequate representation 

In the emotion assessment field, many studies are classifying emotions into categories such as 
anger, fear and disgust. In order to determine the categories of interest most of the studies focus 
on basic emotions since they are the most relevant because of their social or biological value but 
also because they can be used to determine more complex non-basic emotions. However, several 
lists of basic emotions are available (Table 2.1 is just a sample of those lists) and it is thus 
necessary to make choices. For instance, Ekman’s six basic emotions, also known as the big six, 
have been widely used as the target classes to be recognized from the analysis of facial 
expressions [20, 65-68]. Those target classes were chosen because Ekman’s definition of basic 
emotions was based on the universality of facial expressions. Having a system able to detect the 
big six from facial expressions would thus be universal. But what happens if one wants to assess 
emotions based on others modalities such as signals of the body? There is evidence that some of 
Ekman’s basic emotions have specific patterns of physiological activity [5] but it is still not clear 
if  this  is  true  for  all  of  them.  If  brain  activity  is  monitored  one  could  rely  on  James’s  basic  
emotions or on Gray and Panksepp sets (Table 2.1). But does it really make sense to change the 
set of targeted emotions according to the monitored activity? A solution could be to have a look 
at all lists of basic emotions and retrieve the most frequent ones to construct our own set of 
emotion to recognize. Unfortunately this is a difficult task because of the high number of such 
lists and the ambiguity of emotional words (ie. are rage and anger different emotions or do they 
refer to the same state?). 

One interesting point coming from the psychologist view of basic emotions is the idea of mixture 
of emotions. This idea states that emotions do not always appear in isolation but that they can 
also co-occur on a relatively short time scale (order of the second). The co-occurred emotions 
could be similar but also opposite, and imply the activation of two parallel, or at least two quickly 
consecutive appraisal processes. For instance, I used to visit my grand-parents at the hospital and 
each time I entered the room, the elicited feeling was a mixture of pleasure and sadness. Pleasure 
because I was happy to see them again, sadness because I could see that they were not as healthy 
as I left them from the previous visit. There are two possible ways to account for such a 
phenomenon in emotion assessment: the first is to consider that the mixture is a new emotion (for 
instance by using Plutchik mixture model) and the second is simply to allow for multiple labeling 
of emotion episodes. In both cases it is necessary to first identify several emotions from one 
epoch’s data. Several models have been proposed to perform multiple emotion labeling [69, 70]; 
of interest is the fact that some of those also allow for the characterization of intermediary states, 
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occurring at the transition of an emotion to another, which can be regarded as mixed emotional 
states [71]. 

In any case, the definition of a set of emotional labels should be strongly related to the targeted 
application. For instance, if the goal of an application is to monitor critical states while driving, 
there is actually no sense in detecting an emotional state such as disgust just because emotions 
are detected from facial expression. First, because there are very few chances that this emotion 
arises during driving. Secondly, because there is no clear action that the system (the “emotionally 
intelligent” car) should take to deal with the situation. On the other hand detecting boredom, 
which is not part of Ekman’s basic emotions, could be of interest. 

It is also important to check if the application can gather contextual information that could be 
useful for emotion assessment. For instance, the OCC model could be used together with 
contextual information to determine a path in the OCC tree while a binary assessment of valence 
(positive vs. negative) would then be enough to finally determine the elicited emotion. 

More than detecting emotion categories this approach could be useful to obtain information 
concerning the intensity of the felt emotion which discrete labels generally fail to do. The labels 
proposed by Plutchik in his wheel of emotions are related to intensity but this representation has 
the disadvantage of increasing the number of emotions to detect (Figure 2.1). Another possibility 
is to associate to each emotional label a continuous level that will represent the intensity of each 
emotion. This is what Rani [70, 72] proposed after observing that emotional physiological 
reactions where different for low and high anger. Rani’s representation has the advantage that 
mixtures of emotions can also be represented. However, in this representation it is important to 
account for the relations between the different emotions in order to avoid inconsistent state such 
as high anger and high boredom which is not the case in Rani’s proposal. 

As stated before, the continuous representation directly handles the notion of intensity. But it 
suffers for a major drawback: it is not intuitive compared to discrete emotional labels leading to 
difficult manual tagging of emotional data. While this is not a very important issue if this task is 
done by an expert, most of tagging is actually done by people who do not have any knowledge 
about this type of representations. To alleviate this problem, a description of how to use of a 
valence-arousal grid for self-assessment has been proposed in [52]. Alternatively, the SAM (Self 
Assessment Manikin) has been proposed in [73]. The SAM is composed of three nine-point 
scales where the different values of valence, arousal and dominance are associated with 
pictograms (Figure 2.5). Even if pictograms help the user to better understand the definition of 
the different axes they should be introduced to him / her prior to self-assessment. Another 
disadvantage of the valence-arousal space is that mixtures of negative and positive emotions 
cannot be represented. It is then necessary to decompose the emotion into two points in the 
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continuous space or choose the average response. This often confuses users when they try to self-
assess their emotions on a long time scale where there are probably several emotions that can be 
elicited.  

One of the main advantages of continuous spaces is that it can be seen as a general representation 
of any emotion. As a result it is possible to use them in any application, with only the area of 
interest varying from an application to another. In the case of the valence-arousal space it seems 
that only some areas are of real importance [23, 54]: negative-excited, positive-excited and calm 
neutral (Figure 2.3). Another advantage is that if a point in this space is determined (by automatic 
emotion assessment for instance), it is possible to associate an emotional label to it. It is also 
possible to assess only one axis of the valence-arousal space which could be enough for certain 
applications (for instance, monitoring of arousal for driving). Because of its generality but also 
for the other reasons mentioned above, we believe that it is preferable to assess valence-arousal 
space dimensions or areas than discrete labels if there is no particular targeted application for 
emotion assessment. 

 

Figure 2.5. Picture of the SAM scales (from [73]).The first line evaluates valence from positive (left) to 
negative (right), the second arousal from excited to calm and the third dominance from submissive to 

powerful. 

2.2 Physiological signals 

As sustained by the SECs theory, emotions should be assessed from the monitoring of the five 
systems involved in emotion elicitation (see Section 2.1.3.b). In this thesis, the performances of 
two of those systems are analyzed for emotion assessment: the cognitive and the autonomic 
systems. Several signals can be gathered to relate activities of the five systems (for instance a 
camera can be used to partially measure the motor activity) but the present work focuses on 
signals recorded by non-invasive sensors placed directly on the body: the physiological signals. 
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Physiological signals can be defined as signals that quantify physical and chemical phenomena 
occurring in organs and tissues. This definition emphasizes the existence of a device able to 
quantify a physical and chemical phenomenon: the sensor. The complete apparatus allowing the 
visualization and recording of (many) physiological signals is called an acquisition system and is 
detailed in Figure 2.6. 

 

Figure 2.6. An acquisition system for visualization and storage of physiological data. 

There is a wide variety of physiological signals depending on their source (the organ under 
consideration) and the phenomenon that is measured. For instance heart activity can be measured 
by recording the electrical potentials on particular positions of the body, the heart sound and the 
blood pressure in the coronary arteries. In this thesis, since all organs are connected to and 
controlled by the nervous system, we chose to divide them according to the following taxonomy: 
the central nervous system (CNS) and the peripheral nervous system (PNS). Thus, activities of 
organs that are controlled by the PNS will be referred to as peripheral activities while the activity 
of other organs (in this study only the brain) will be named the central activity. Notice that this 
taxonomy enables us to separate the two systems that are supposed to be at the center of the 
cognitive and Jamesian theories of emotions. 

2.2.1 Central nervous system (CNS) 

The CNS is composed of the brain, the cerebellum, the brain stem and the spinal cord. Since in 
this study only brain activity was analyzed, this description will focus on the brain structures and 
activities related to emotions as well as on the devices that could be used to measure those 
activities. 

a. Brain structure 

To better understand the functioning of the different devices used to monitor brain activity and 
the analysis of the resulting signals, it is first necessary to briefly discuss the anatomy of the 
brain. The human brain is made of around 100 billions of neurons that are interconnected through 
synapses, constituting neuronal networks. Neurons are specialized cells that vary in size and 
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shapes but are always constituted of three main parts: the dendrites, the soma and the axon 
(Figure 2.7.a). The soma is the cell body of the neuron and contains the same elements as typical 
cells (nucleus, ribosomes, etc.). The dendrites receive the output of one or many incidental 
neurons as inputs while the axon propagate the output of its neuron. The electrical signal 
transmitted from one neuron to another is composed of action potentials. The main task of a 
neuron is to integrate input action potentials to determine if an action potential should be 
generated on the axon (Figure 2.7.b). The activity of a neuron is proportional to its firing rate: the 
more a neuron is active the higher the firing rate. 

 

Figure 2.7. (a) Figure of a neuron3 connected with two input neurons (named 1 and 2). (b) Representation of 
the integration of input action potentials; the neuron fires only if its membrane potential exceeds a given 

threshold. 

The brain is divided into four lobes according to the names of the bones that surround them and 
the sulcus that separate the different lobes (Figure 2.8): the frontal, parietal, temporal and 
occipital lobes. Each of those lobes has been considered to be specialized in particular cognitive 
tasks. For instance, the frontal lobe is known to be implied in planning tasks while the occipital 
lobe is considered to be the vision center. Even if this view is superseded by new approaches that 
emphasize the cooperation between different areas of the brain during a single cognitive task, this 
nomenclature is still used to describe areas of the brain. 

                                                   
3 http://www.wiredtowinthemovie.com/mindtrip_xml.html (retrieved on 27 April 2009) 
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Figure 2.8. Image of the brain, the brain stem and the cerebellum with the different lobes highlighted (from 
[74]). 

b. Measuring brain activity 

Since neurons communicate trough action potentials it is possible to monitor brain activity by 
measuring electro-magnetic fields. Those methods are known as direct methods since they 
directly measure the activity produced by the neurons and can be divided into two types: 

- electroencephalography (EEG) measures electrical potentials by placing electrodes either 
on the scalp (surface EEG) or, by incising the skull, on the surface of the brain (Electro-
Cortico-Graphic electrodes - ECoG) or directly in neurons of interests (intra-cortical 
electrodes); 

- magnetoencephalography (MEG) measures the magnetic activity of neurons by using 
specialized devices (Superconducting QUantum Interference Devices - SQUID) able to 
detect small changes in magnetic fields. 

Indirect methods monitor other parameters that are related to neuronal activity such as artificial 
tracers injected in the body and resources consumed by neurons (oxygen for instance): 

- Positron Emission Tomography (PET) measures the positron emission of a slightly 
radioactive tracer; 

- Single Photon Emission Computed Tomography (SPECT), similarly to the PET, requires 
the injection of a radioactive tracer emitting gamma radiations that are measured by a 
gamma ray camera; 

- functional Magnetic Resonance Imagery (fMRI) detects the changes of oxyhemoglobin 
and desoxyhemoglobin by applying successive magnetic fields on the head that force 
protons to release energy at a particular frequency that is detectable by the system; 
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- functional Near InfraRed Spectroscopy (fNIRS) also monitors the changes of oxy-
desoxyhemoglobin by measuring the reflectance of a near infrared diode (0.7-1.5 µm 
wave-length) placed on the scalp using a near infrared sensor placed next to the diode. 

All those methods can be evaluated according to several criteria: spatial resolution, time 
resolution, financial cost, needed machinery size / weight, invasiveness, chirurgical operation 
and/or technical preparation. Table 2.3 evaluates the different methods above according to those 
criteria. High spatial and temporal resolutions are important for a precise analysis of signals but 
current methods do not allow for both high spatial and temporal resolution. However, recent 
studies are trying to perform multimodal recording of brain activity in order to combine 
resolution advantages of direct and indirect methods. 

Methods Spatial 
resolution 

Time 
resolution 

Financial 
cost 

Machinery 
size / weight 

Invasive
. Preparation 

D
ire

ct
 m

et
ho

ds
 

Surface 
EEG Low High Low Low None Apply gel on the 

scalp 

ECoG Low High High Low High Surgical incision 
of the skull 

Intra-
cortical High High High Low High 

Surgical incision 
of the skull and 
insertion of the 
electrode in the 
brain 

MEG Low High High High None 
 

In
di

re
ct

 
m

et
ho

ds
 PET High Low High High Low Injection of a 

radioactive tracer 

SPECT Low Low High High Low Injection of a 
radioactive tracer 

fMRI High Low High High None  
fNIRS Low Low Low Low None  

Table 2.3. Comparison of the different methods for the monitoring of brain activity. 

The criteria can also be viewed as constraints for the use of devices in HMI. For instance, a 
relatively low financial cost is mandatory for a commercial use of an emotion detection system. 
Having devices that are easily wearable and non invasive is also essential since it is unlikely that 
users will accept to receive injections or have a heavy chirurgical operation just for using a new 
HMI. For this reason, as can be seen from Table 2.3, surface EEG is certainly the most applicable 
method for use in HMI systems. As a consequence, this sensor was chosen for emotion detection 
in this study. However EEG still requires quite some preparation, such as the application of a 
conductive gel on the surface of the scalp to insure contact between the skin and electrodes, and 
the plugging of each electrode in a tightly fitting headcap. This can be seen as a high constraint to 
go toward commercial applications but there are now wireless dry-electrodes systems available 
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on the market which do not require as much preparation and are quite cheap (for instance the 
NeuroSky4 and Emotiv5 devices). 

Since in this thesis surface EEGs were used to monitor brain activity, the term EEG will now on 
refer to this type of measurement and not to EcoG and intra-cortical measurements. The electrical 
activity of a neuron has first to go trough several layers of different matter to reach an EEG 
electrode (gray matter, white matter, cerebrospinal fluid, bone and skin). The signal measured by 
an EEG electrode is thus the integration of the signals emitted by all the neurons that are close 
enough to be recorded. However, researchers have found that there are particular frequency bands 
(often called rhythms in the literature) of interest to interpret EEG signals: delta (2-4 Hz), theta 
(4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (> 30 Hz) bands. Notice that the 
frequency bands associated to each rhythm can vary from a study to another and from one person 
to another. Moreover, different names can be given to frequency bands according to the function 
that is associated to it, for instance the alpha band is also referred to as the mu-rhythm when 
considering the activity in the motor cortex. The reason why those rhythms are observed and 
fluctuate is still unclear but it is supposed that synchronization of several populations of neurons 
could be at the source of those phenomena [75]. 

Currently, EEG systems can record signals with more than 250 electrodes. Increasing the number 
of electrodes can improve the spatial resolution but increases the time necessary to apply gel and 
plug electrodes as well as the number of variables to analyze. In order for the EEG community to 
have some standards concerning the positioning and the naming of electrodes the 10-20 system 
was proposed [76]. Its name comes from the fact that the front and back median electrodes are 
positioned at 10% of the inion-nasion distance while the other electrodes are separated from each 
other by 20% of the same distance. The inion is a bone on the back of the skull and the nasion is 
the intersection of bones just above the nose. Latter, other systems extended the 10-20 system to 
define locations and names of more electrodes: the 10-10 system (74 locations) and the 10-5 
system (345 locations) [76]. 

Noise is a critical issue in the measurement of EEG. According to Kronegg [28], there are at least 
three potential sources of noises. Environment noises concern all the electrical noises that 
surround the recording, for instance the 50Hz power line noise. Physiological noises refer to 
noises from the body such as muscles contractions. The last source of noise is the background 
activity of the brain and is defined as all brain activities that are recorded but are not related to the 
particular brain function under study. 

                                                   
4 http://www.neurosky.com/ (retrieved on 29 April 2009) 
5 http://emotiv.com/ (retrieved on 29 April 2009) 
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c. The brain and emotions 

The cognitive view of emotions supports the idea that brain structures are involved in emotional 
processes. To gather evidences supporting this hypothesis, researchers have first analyzed the 
behavior of patients suffering from brain damages and animals with segmented brain areas. In 
this way they could identify structures that regulate emotional expressions. The invention of new 
methods to monitor brain activity such as EEG and fMRI allowed for a more precise and easier 
identification of those structures as well as for the determination of their functions in emotional 
processes. 

One of the first structures that was shown to be strongly involved in emotional expression is the 
limbic system. The elements composing this system are part of the temporal lobes and are placed 
under the cortex, deep in the brain. Papez was the first to suspect this system to be partially 
dedicated to emotions and found that the elements of the limbic system form a circuit, called the 
Papez circuit, that interconnect the cortex with the hypothalamus through structures such as the 
dorsal thalamus, the cingular gyrus, the hippocampus and the fornix [74]. Since the hypothalamus 
was known to coordinate emotional behaviors and expressions [74] this discovery supports the 
existence of a higher level of emotional processing occurring in the cortex. Later, an important 
structure was added as a part of this circuit: the amygdala [77]. It has been found that the 
amygdala is highly interconnected with sensory cortical areas suggesting that it could be at the 
source of the emotional attributions to sensorial stimuli (Figure 2.9). This hypothesis has been 
supported by many studies that shows the activation of this region at least for negative emotions 
such as fear and anger [78]. It was also proposed that the amygdala is involved in reinforcement 
learning [78, 79] and recognition of emotions [80]. 

 

Figure 2.9. Principal structures of the limbic system together with their functions. 

The other brain area that is assumed to play a key role in the elicitation of emotions is the 
prefrontal cortex [74, 78-81]. This area is located at the front of the frontal lobe and contains the 
orbito-frontal cortex (above the orbits of the eyes) that is known to be involved in cognitive 
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processes such as decision making. Davidson [19, 81] has shown that the prefrontal cortex is 
involved in approach and withdrawal reactions, which are closely linked with emotions, while 
Rolls [79] argues that the orbito-frontal cortex also plays a role in reinforcement learning of 
emotions. 

Lateralization of those brain structures is also of interest. The most consistent findings 
concerning this hypothesis concern the prefrontal cortex. At least two types of lateralization have 
been observed. First Davidson [19, 81] has noticed that the left prefrontal lobe is more involved 
in emotional reactions corresponding to approach reactions while the right prefrontal lobe is more 
involved in withdrawal reactions. This was concluded by observing the power changes in the 
alpha band from EEG signals of participants subject to the two different types of stimuli. Some 
researchers also suggest that this lateralization corresponds to positive and negative emotions. 
However, this theory is discussed since the relation between approach-withdrawal reactions and 
positive-negative emotions is not direct. For instance, some negative stimuli can lead to approach 
reactions (anger for instance). Secondly, evidences suggest that the right hemisphere is more 
involved in emotional processing than the left one. Some studies also argue for asymmetric 
phenomenon in the amygdala but this question is still under study [78]. 

Finally, there is a high number of studies showing the activation of several other brain areas 
during emotional processes. An example is the work of Aftanas et al. [82] that showed significant 
differentiation of arousal based on EEG data collected from participants watching high, 
intermediate and low arousal images. This differentiation could be found in various areas such as 
parietal, parieto-temporal and occipital lobes. In [83] interactions between cortical regions during 
the presentation of emotional film clips were analyzed. It turned out that brain areas were 
differently synchronized depending on the type of stimulus. For instance, a higher 
synchronization between left and right frontal areas was observed for sad clips when compared to 
happy clips. Damasio also observed differences in brain activity during the feeling of self-
generated emotions [84]. 

2.2.2 Peripheral nervous system (PNS) 

The PNS is constituted of neurons that can be of two types: the sensory neurons that convey 
information from the sensory receptors to the CNS and the motor neurons that arouse or inhibit 
muscles and glands activity. The PNS can be divided in two subsystems: the somatic nervous 
system (SNS) that is connected to skeletal muscles and the autonomic nervous system (ANS) 
connected to autonomous muscles (the heart for instance) and glands. The SNS is associated with 
voluntary control of muscles while the ANS does not require conscious control to activate or 
inhibit connected organs. The SNS and the ANS are both involved in emotional reactions. For 
instance, the SNS is concerned with the voluntary production of facial expressions and the ANS 
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with involuntary facial expressions and physiological supportive functions (see section 2.1.3.b). 
Finally the ANS is also divided into two categories: the sympathetic nervous system and the 
parasympathetic nervous system. While the first prepares the organism for the uses of resources 
generally related to “flight and fight” responses, the second has the role of preserving and 
augmenting resources. Both of those systems are thus of interest in the study of emotions. 

Since it is difficult and invasive to measure PNS electrical potentials by inserting electrodes 
directly into the nerves, PNS activity is generally indirectly assessed by measuring the activity of 
peripheral organs such as muscles. Below are described different measures of the PNS that will 
be used in this study. 

a. Electrodermal activity 

The ElectroDermal Activity (EDA) is related to the changes of electrical potentials and resistance 
of the skin. It was first measured by Féré [85]. While phenomenon inducing electrodermal 
responses are still not completely understood, it has been shown that they are strongly associated 
with sweat gland activity [86]. Sweat glands are situated deeply in the skin at the junction of the 
hypodermis and the dermis. A duct links a sweat gland to a pore situated at the surface of the skin 
(the epidermis) that can be closed or opened to let sweat spread out. Since sweat gland activity is 
known to be controlled by the sympathetic nervous system, EDA has become a common source 
of information to measure the ANS. 

There are two methods to measure EDA: 

- the exosomatic method consist of placing active electrodes (electrodes that inject a small 
current) on two sites of the skin to measure its resistance (or its conductance); 

- the endosomatic method consists of placing two electrodes on the skin to simply measure 
the differences in skin potentials. 

In both cases, since the sweat is a salty liquid that plays the role of a conductor, as soon as the 
ducts are filled with it, the electrical and impedance properties of the skin will change and be 
recorded by one the above settings. The palms of hands and foot, especially the fingers and the 
toes, are recommended places to position the electrodes because at these areas the skin contains 
many sweat glands. 

The measured EDA can be decomposed in two different components [87]: the tonic level and the 
phasic response as highlighted in Figure 2.10. The tonic level represents the general resistance of 
the skin and is influenced by the hydration of the skin and the precedent sweat emissions. The 
phasic response is due to the accumulation of sweat in ducts and opening of the pores. Notice that 
it is not necessary that the sweat reaches the surface of the skin for the response to occur. This 
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response occurs from 1 to 4 seconds after a stimulus [88] and is often characterized by its latency 
(the time for the response to start after the stimuli), amplitude, rise time and half-recovery time 
(Figure 2.10) [87]. Sometimes these characteristics are hard to determine when there are several 
responses that overlap. 

Depending on the method used to measure EDA as well as on the component of interest, several 
names can be found in the literature that refer to the same measurements: ElectroDermal 
Response (EDR), Galvanic Skin Response (GSR), Skin Resistance Level / Response (SRL and 
SRR), Skin Conductance Level / Response (SCL and SCR), Skin Potential Level / Response 
(SPL and SPR). 

An increase of activity in sweat glands usually occurs when one is experiencing emotions such as 
stress or surprise. By asking participants to look at more or less arousing pictures of the IAPS, 
Lang et al. [7] discovered that the SCR amplitude is correlated with the level of arousal. Similar 
results where obtained in [89] showing that emotional words and neutral words can be 
differentiated based an EDA measures. By analyzing reactions to olfactory stimuli, Delplanque et 
al. [90] found a higher amplitude of the EDR for unpleasant than for pleasant odors. Moreover, 
EDA is known to be influenced by brain structures such as the hypothalamus, the limbic system 
and frontal cortical areas [89]. EDA can thus also be regarded as a window on emotional brain 
activity. 

 

Figure 2.10. (left) Example of a signal representing the changes of resistance of the skin, (right) the 
characterization of an electrodermal response. 

b. Blood pressure 

The blood pressure (BP) is defined as the pressure that the blood exerts on the surfaces of the 
cardiovascular system (heart and vessels). Close to the heart the BP is the highest and decreases 
as the blood flows in the cardiovascular system. Changes in BP are influenced by cardiac output 
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(contractions of the heart), vasoconstriction and vasodilatation (reduction and augmentation of 
the vessels diameter by contraction and dilatation), and also by mechanisms occurring in other 
organs [91]. 

Generally two types of BP are distinguished: the systolic BP (SPB) is measured when the heart is 
contracted while the diastolic BP (DBP) is measured between two beats when the heart is 
relaxed. In turn, the pulse pressure is defined as the difference between SBP and DBP. Another 
value of interest is the mean arterial pressure (MAP) defined as the average BP. This value can be 
computed by averaging continuous measures of BP or by using an approximation formula based 
on the discrete measures of SPB and DPB [91]. Finally, it is also possible to compute pulse 
transit time (proportional to what is also called pulse wave velocity) defined as the time for the 
pressure wave to propagate from the heart to the area where the pressure is measured [91]. 

In order to avoid invasive methods, BP is generally measured using indirect methods. They can 
be divided in two types: intermittent methods that only allow for BP measures separated by 
several seconds and continuous methods that more or less continuously record the pressure 
signal. Manual or automatic cuffs tied around the arm to measure brachial artery pressure 
(sphygmomanometers) are examples of intermittent methods that measure SBP and DBP by 
identifying the so-called Korotkoff sounds. This method allows for 1 to 4 measures per minute 
[91]. By tying a photoplethysmograph around a finger it is possible to continuously record 
changes in blood pressure. The photoplethysmograph is a device that emits light and measures its 
reflection through the skin. Since light reflection varies according to the quantity of blood present 
in the vessels this sensor is able to measure Blood Volume Pulse (BVP). The obtained signal 
correlates with BP but can only provide relative changes of BP. Usually this sensor is placed at 
areas where there are many vessels near to the surface of the skin such as fingers and ear lobes. 

Blood pressure has significant correlation with defensive reactions since these reactions are 
associated with vasoconstriction responses [87]. Several emotions are also known to be related to 
an increase or decrease of cutaneous blood flow giving rise to flushes or paleness [74]. Sinha et 
al. [92] refers to the increase of blood pressure during fear and anger as one of the most 
consistent findings in emotion research from autonomic activity. Moreover, they reported an 
increase in SBP during the visualization of emotional images compared to neutral images and an 
increase in DBP for anger compared to sadness. Finally, Lisetti and Nasoz [93] listed in their 
review  two  studies  [94,  95]  where  SBP  and  DBP  were  found  to  be  reliable  indicators  of  task  
difficulty.  

c. Heart rate 

The Heart Rate (HR) is the number of heart contractions occurring over a given amount of time. 
It is generally expressed in Beats Per Minute (BPM) and is computed from InterBeat Intervals 
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(IBI), the time elapsed between two beats. An increase of HR can be due to an increase of the 
sympathetic activity or a decrease of the parasympathetic activity. Moreover, the cardiac 
response to sympathetic stimulations is slower than for parasympathetic stimulations giving rise 
to complex fluctuations of HR [96]. 

To better analyze those fluctuations Heart Rate Variability (HRV) is a common feature extracted 
from HR and IBI. Several methods can be used to compute variables related to HRV. One of the 
simplest  is  to  consider  the time series  of  IBI as  a  stochastic  process  and compute its  statistical  
properties, such as standard deviation, to characterize the distribution of heart periods. It is also 
possible to compute the cardiac acceleration (i.e. the derivative of the HR). Another method 
consists of switching from the temporal to the frequency representation of the HR signal. In this 
case, three frequency bands are generally considered: 

- the High Frequency (HF) band including frequencies between 0.15Hz and 1Hz; 

- the Low Frequency (LF) band ranging from 0.05Hz to 0.15Hz; 

- the Very Low Frequency (VLF) band from 0.0033Hz to 0.05Hz. 

The exact boundaries of the different frequency bands are still under discussion in the literature 
and the given values are taken from [96]. The energy in the HF band is known to be principally 
mediated by the parasympathetic activity while energy in the LF band is influenced by the two 
autonomic systems. For those reasons many studies have proposed to use the ratio of the LF 
energy over the HF energy to reflect cardiac autonomic balance [96]. Other methods are also 
available to quantify HRV such as determining HR acceleration by computing the derivative of 
the HR signal. 

In order to compute HRV features it is first necessary to identify heart contractions to construct 
the IBI and HR time series. This can be done non-invasively by analyzing the signals issued from 
several devices. One solution is to record heart electrical activity by placing electrodes at 
appropriate positions [97]. The recording is called an electrocardiogram (ECG or EKG). From an 
ECG  it  is  possible  to  identify  the  peaks  of  the  main  waves,  known  as  the  R  waves,  which  
correspond to the main contractions of the heart. In order to measure HR, a microphone can be 
used to monitor heart sounds related to blood flow and valves activity of the heart. Finally, since 
heart pulses are visible in continuous BP and BVP signals, it is also possible to compute HR from 
this type of signals [97]. 

Increase or decrease of HR properties can be associated with different emotions [74]. For 
instance, Rainville et al. [6] observed an increase of mean HR for anger, fear, happiness and 
sadness compared to a neutral state. Moreover this increase was significantly different for fear 
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and anger, fear and happiness as well as for fear and sadness. In the same study, cardiac 
acceleration was also a relevant variable for the discrimination of those emotions while in [7] it 
was shown to be significantly correlated with pleasantness. Ekman [5] found that HR was able to 
separate happy, disgusted and surprised emotional states from angry, fearful and sad states. 
Concerning HRV, an energy shift from HF to LF frequencies is known to be associated with 
parasympathetic withdrawal reactions [96]. Finally, a decrease of energy in the HF bands was 
observed in [6] for fear and happiness compared to a neutral state while this energy was 
significantly different for fear and anger. 

d. Respiration 

Respiration involves organs such as lungs, airways and respiratory muscles. It is quantified by 
variables like lung volume, tidal volume (the quantity of air moved during inhalation and 
exhalation), pressure, air flow and breathing rate which can be influenced by resistive properties 
and contraction of the above-mentioned organs [98]. Breathing is mostly achieved by the 
contraction / relaxation of the diaphragm and the intercostals muscles that increase / decrease the 
thoracic volume. Contrarily to other measures described above, the respiration is operated by 
both the ANS and the SNS since breathing is generally involuntary but it is possible to control it 
for short periods of time. Concerning the ANS divisions both the sympathetic and 
parasympathetic divisions are implied in respiration. 

Precisely measuring respiration characteristics requires the use of obtrusive equipment like 
spirometers for displaced air volume assessment and air-tight chambers for alveolar pressure 
computation (the last one being called body plethysmography). For a good review of such 
apparatus the reader is referred to [98]. A less obtrusive device that detects respiratory patterns is 
the respiration belt. It is attached around the abdomen and / or the chest in order to measure their 
expansion (Figure 2.11). Since this expansion approximates the quantity of inspired and expired 
air it is possible to measure the tidal volume with the proviso that calibration is performed 
beforehand and that two belts are used for measuring both chest and abdomen extension [98, 99]. 
Several types of belts exist, differing in the methods used to measure expansion (inductive 
sensors, piezo-electric sensor, etc.). One disadvantage of the belts is that they are relatively 
sensitive to movements. Temperature sensors placed under the nostrils and before the mouth can 
also be used to approximate respiration flow. However this method is not really reliable, 
especially during fast inspiration and expirations (Figure 2.11), prohibiting its usage for tidal 
volume computation. 

The main function of respiration is to regulate the quantities of oxygen and carbon dioxide 
present in the blood to meet the needs of organs. However respiration is also influenced by 
emotional processes [98, 99]. For instance, a low breathing rate is linked to relaxation while 
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irregular rhythm, quick variations, and cessation of respiration correspond to more aroused 
emotions like anger or fear [6, 100]. Laughing is also known to affect respiration patterns, for 
instance by introducing high-frequency fluctuations in the signal measured by a respiration belt. 

 

Figure 2.11. Examples of signals obtained from a respiration belt tied across the chest and a temperature 
sensor placed bellow the nostrils during different type of respirations. 

e. Temperature 

The internal temperature of the body is relatively stable while the temperature at the surface of 
the skin mainly depends on the surrounding temperature. The organism controls the internal 
temperature by balancing heat production and heat loss. Heat production is achieved by muscle 
contraction (such as shivering), by increasing chemical and metabolic activity and by 
vasoconstriction of skin blood vessels. Heat loss is obtained through reduction of metabolic 
activity, vasodilatation and sweating [101]. Since most of the heat is lost through the skin toward 
the surrounding environment, all those mechanisms also influence skin temperature. 

Skin temperature can be recorded by standard temperature sensors like thermometers. Analog 
thermometers  which  allow  for  digital  recording  of  temperature  are  generally  based  on  the  
electrical resistance measurement of a piece of metal placed on the skin. To assess temperature, 
those devices make use of the predictable changes of the material resistance according to the 
heat. Less common devices include infrared thermal cameras. Since the amount of infrared light 
emitted by a surface is proportional to its temperature it is possible to use such a device to 
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monitor thermal changes. The main advantage of this device is that it is not necessary to attach a 
sensor on the skin, allowing for less obtrusive recordings. 

Since skin temperature is influenced by vasoconstriction and sweat, both being related to 
emotions as discussed in the preceding sections, it is not surprising that researchers found it to be 
associated with emotional processes. Ekman [5] found a significant increase of skin temperature 
for anger compared to his five other basic emotions (sadness, happiness, fear, surprise and 
disgust). McFarland [102] found that stimulating persons with emotional music led to an increase 
of temperature for calm positive music and a decrease for excited negative pieces. In [103, 104] 
thermal images where investigated for the purpose of stress and anxiety detection. Finally, since 
skin temperature is also related to muscular activations, a thermal camera could be used to 
distinguish between different facial expressions [105]. 

2.2.3 Variability of physiological responses 

As described in the preceding sections, physiological signals are influenced by several functions 
and features of the organism. They are thus very sensitive to modifications of the internal state 
but also to changes of the environment. For instance, a change of the surrounding temperature 
will impact skin temperature directly, BVP because of vasoconstriction and GSR because of 
possible change in sudation. A consequence is that the variability of physiological signals due to 
the process under consideration, in our case the emotion, is often much lower than the variability 
due to other phenomena. This last variability can then be considered as an important disturbance 
for an emotion assessment system. 

The variability is generally decomposed into two components: inter-participant variability and 
intra-participant variability. Inter-participant variability accounts for the differences in 
physiological responses from one person to another. Those differences are due to several factors 
such as physiological characteristics, personal traits and behaviors. For instance body mass index, 
age and sex influence physiological responses while smokers and non-smokers may have 
different respiration patterns. Intra-participant variability accounts for the differences in 
physiological responses that can be observed for a given person. Those differences can be 
observed from day to day and can also be due to spontaneous events. Examples are a changes in 
mood from one day to another that influences EEG waves [81], and coffee absorption that 
modifies many physiological responses [91, 96, 97]. 

It is thus important to find a way to reduce the impact of those noise sources. Intra-participant 
variability can be reduced by having a high degree of control over the experiment, for instance by 
forbidding the ingestion of coffee or any drug before physiological recordings and keeping track 
of the mood of participants. It is worth to say that those methods can rarely be applied in the case 
of an emotion recognition system working in a real environment, generally far away from any 
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experimental control. Picard [106] emphasized the importance of including baseline monitoring 
to account for day to day variability in physiological signals. This method is equally important to 
reduce inter-participant variability. It consists in recording physiological signals during a 
“neutral” moment, before any emotional stimulation. The signals or the features extracted from 
the signals during emotion assessment are then expressed relatively to this baseline. Moreover, in 
emotion assessment from physiological signals, normalization of the signals for each participant 
is often performed to remove inter-participant variability [93, 106, 107]. Even if this method is 
quite effective, it is first required to have the range of all possible responses to normalize the 
signals which is generally not the case in real applications. 

As shown in the preceding sections, different patterns of peripheral activation were found for a 
wide range of emotions. However, those findings are not always consistent since patterns which 
are ascribed to one emotion tend to vary between studies [108]. One explanation for this 
phenomenon is that the physiological activation that accompanies emotions is rather due to the 
tendency to action related to the emotion than to the emotion itself. In other words, the body is 
preparing for action (running in case of fear, aggressive action in case of anger, etc.) and this is 
the activity that can be measured on peripheral outputs. In [108] the authors proposed to unify 
those two views by developing the context-deviation specificity of emotions in which it is 
assumed that emotions have specific patterns of peripheral activation in the case where the 
conditions of emotional activation are similar. 

These considerations are very important because they imply that any system dedicated to the 
recognition of affect should take into account the context specificity in its model of emotions. 
Though the goal of this thesis is not to design such a model, we believe that this concept should 
be kept in mind when one tries to perform affect recognition. From a practical point of view, 
taking into account all possible social, behavioral or psychological contexts of emotion elicitation 
seems  a  very  hard  task.  Fortunately,  to  greatly  reduce  the  number  of  contextual  situations  it  
generally suffices to concentrate on one particular application. From this point of view, it seems 
that a good protocol for emotion elicitation is not the one that will elicit emotion as close as 
possible to the real life emotions [107], but rather the one that will elicit emotions under 
controlled or monitored context close to the target application. 

2.3 Emotion assessment from physiological signals 

Over the last years, emotion recognition from physiological signals has received much interest. 
The goal is to find a computational model that is able to associate a given physiological pattern to 
an emotional state. This can be done by several methods discussed in this chapter. 

Table 2.4 provides a (non exhaustive) list of relevant studies concerning emotion assessment 
from physiological signals. Unfortunately, it is difficult to make comparisons between these 
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studies because they differ on several criteria. Six criteria are introduced below to help the reader 
gain insight into the current state of the art as well as to discuss important aspects of emotion 
assessment from physiological signals. The studies are listed in Table 2.4 according to those six 
criteria. 

Number of participants: in a study that includes a high number of participants the results can be 
regarded as more significant. Another point of importance is to know if the model obtained for 
emotion identification is user-specific or not. A user specific model avoids the problems related 
to inter-participant variability but a new model will have to be generated for each new user.  

Emotion elicitation: how to elicit emotions from a participant is also a question of significant 
interest, especially considering the importance of the context as detailed before. Picard [106] 
proposed five factors to describe the context in which the emotion are elicited. One of those five 
factors divides emotion elicitation approaches into two categories: subject-elicited and event-
elicited. In the first category, emotions can be generated by asking the participant to act as if 
he/she was feeling a particular emotion (for instance by mimicking the facial expression of anger) 
or to remember a past emotional event of his / her life. This method has often been used in facial 
expression recognition and it has been shown in [5] that it is effective to induce specific 
peripheral activity. In the second category, it is possible to use images, sounds, video clips or any 
emotionally evocative task. Several databases of stimuli have been designed for the purpose of 
emotion elicitation like the International Affective Picture System or International Digitized 
Sound system (IAPS, IADS)[54]. These databases are generally accompanied by affective 
evaluations from experts or average judgments of several people. However, since past experience 
plays a key role in emotion elicitation, it can also be important to ask the user to report and self-
assess his / her feelings. Emotion elicitation is also influenced by the number and the complexity 
of the targeted emotions. 

Time: temporal aspects are also relevant for emotion recognition but have only received little 
attention. According to [20], it is possible to define some time categories that range from the “full 
blown emotions”, lasting for some seconds or minutes, to the traits, lasting for years if not all the 
lifetime. In between are categories such as moods or emotional disorders. In human computer 
interaction, most of the applications under consideration deal with what Cowie defines as “full 
blown emotions” thus managing phenomena that last from seconds to minutes. In an ideal 
affective interface, the emotion of the user should be detected as soon as possible (let’s say in few 
seconds) in order to take the proper decision that directly matches the user expectation and not 
one that was expected minutes before. Synchronization of the different modalities is also an issue 
since the activation of physiological outputs can occur at different time scales. For instance, a 
change in temperature of the skin is much slower than a change in brain activity occurring a few 
milliseconds after emotion elicitation. 
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Ref. Number of 
participants 

Elicitation 
methods 

Temporal 
aspects 

Signals / sensors Emotion classes Methods (classifiers, 
feature selection, etc.) 

Best 
results 

Kim J. 
[100] 

3 
user specific 

Music, 
AuDB 
(Augsburger 
database of 
bio-signals) 

Time of a 
trial not 
specified 
 
25 
recordings 
over 25 
days 

Skin conductance, 
EMG, Respiration, 
ECG 

Joy, anger, relaxation, 
sadness 
 
Positive / negative 
 
 
High / low arousal 
 

SFFS feature selection, 
LDA with MSE 
 
SFFS feature selection, 
LDA with MSE 
 
SFFS feature selection, 
LDA with MSE 

84% 
 
 
84% 
 
 
94% 

Lisetti et 
al. 
[93] 

29 
not user 
specific 

Film clips 70-231 s 
 

GSR, heart rate, 
temperature 

Sadness, amusement, 
fear, anger, frustration, 
surprise 

Neural network with 
Marquardt backpropagation 

84% 

Rainville 
et al. 
[6] 

43 
not user 
specific6 

Self 
Induction 

90 s ECG, respiration, 
skin conductance, 
EMG (zygomatic, 
masseter, 
corrugator) 

Anger (15 part.), fear 
(15 part.), happiness (15 
part.), sadness (17 part.)6 

Step wise discriminant 
analysis 

49% 

Picard et 
al. 
[106] 
 

1 Self 
induction 
 

100 to 
250 s 
 
20 
different 
days of 
recording 
 

EMG, GSR, 
respiration, BVP, 
ECG 

Neutral (no-emotion), 
anger, hate, grief, 
platonic love, romantic 
love, joy, reverence 
 
High / low arousal 
 
Positive / negative 

SFFS-Fisher projection 
 

81% 
 
 
 
 
84% 
 
87% 

Katsis et 
al. 
[109] 

10 
not user 
specific 

Driving 
simulation 

Features 
computed 
on 10 s 
windows 
 

EMG, ECG, 
respiration, GSR 

High stress, low stress, 
disappointment and 
euphoria 

SVM 
 
 
Adaptive neuro-fuzzy 
inference system 

79% 
 
 
77% 

                                                   
6 The physiological activity of each participant was recorded for only one or two of the emotional conditions. The final number of participant for each condition is given in 
the “Emotion classes” column. 
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Ref. Number of 
participants 

Elicitation 
methods 

Temporal 
aspects 

Signals / sensors Emotion classes Methods (classifiers, 
feature selection, etc.) 

Best 
results 

Kim K.H. 
et al. 
[110] 

50 children 
 
not user 
specific 

Combination 
of story 
telling, 
visualisation 
and audio 
stimulus 

50 s Skin temperature, 
GSR, heart rate 

Sadness, anger, stress 
 
Sadness, anger, stress, 
surprise 

Subjects for training and 
others for testing 
SVM 

78% 
 
62% 

Wagner et 
al. 
[111] 

1 Music 
chosen by 
the 
participant 

2 min 
 
25 
recordings 
over 25 
days 

EMG, ECG, GSR, 
respiration 

Anger, sadness, joy, 
pleasure 
 
Positive / negative 
 
High / low arousal 

LDA, KNN, MLP 
SFFS, Fisher, ANOVA 

92% 
 
 
86% 
 
96% 

Haag et 
al. 
[107] 

1 images from 
IAPS 

2 s 
 
several 
days 

EMG, GSR, Skin 
temperature, BVP, 
ECG, respiration 

Arousal 
 
Valence 

Neural network for 
regression 
Accury is computed as the 
number of samples that fall 
in a 20% bandwidth of the 
correct value 

97% 
 
90% 

Sibha et 
al. 
[112] 

27 
not user 
specific 

Self 
induction 

60 s 
 
2 
recording 
sessions 
on 
different 
days 

ECG, GSR, finger 
temperature, blood 
pressure, EOG, 
EMG (zygomatic, 
corrugator, 
masseter, depressor 
muscles) 

Fear, anger, neutral LDA (first session as 
training set, second as test 
set) 

67% 

Takahashi 
et al. 
[113] 

12 
not user 
specific 

Film clips Time of a 
trial not 
specified 

EEG, BVP, GSR 
 

Joy, anger, sadness, fear, 
relaxation 
 

Linear SVM one vs. all 42% 
 
 

Leon et 
al. 
[114] 

9 
not user 
specific 

images from 
the IAPS 

6 s Heart rate, GSR, 
BVP 

Neutral, negative, 
positive 

Autoassociative neural 
networks 
1 participant for testing 
others for training 

71% 
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Ref. Number of 
participants 

Elicitation 
methods 

Temporal 
aspects 

Signals / sensors Emotion classes Methods (classifiers, 
feature selection, etc.) 

Best 
results 

Sakata et 
al. 
[115] 

16 Pictures 3 s EEG 
 
Hear rate (results 
not presented) 

6 emotions LDA 29% 

Rani et al. 
[116] 

15 
user specific 

solving 
anagrams, 
playing 
pong 

3-4 min 
 
6 sessions 
on 
different 
days 

ECG, GSR, bio-
impedance, EMG 
(corrugator, 
zygomatic, 
trapezius), temp., 
BVP, heart sound 

3 levels of intensity for: 
engagement, anxiety, 
boredom, frustration, 
anger. 
 
A classifier is trained 
independently for each 
emotion. Results are the 
average accuracy across 
participants and 
affective states 

KNN 
 
Regression tree 
 
Bayes network 
 
SVM 

79% 
 
83% 
 
78% 
 
86% 

Table 2.4. List of publications on emotion assessment from physiological signals. Signals acronyms are: Electromyography (EMG), Electrocardiogram (ECG), 
Galvanic Skin Response (GSR), Electroencephalography (EEG), Blood Volume Pulse (BVP). Classification acronyms are : Sequential Floating Forward Search 

(SFFS), Linear discriminant analysis (LDA), Support Vector Machine (SVM), Mean Square Error (MSE), Multi Layer Perceptron (MLP), K-Nearest Neighbors 
(KNN), ANalysis Of Variance (ANOVA). 

 

 



Chapter 2 

46 

Sensors / modalities: as described in chapter 2.2 various sensors can be used to measure 
physiological activity related to emotional processes. However, sensors used for emotion 
assessment should be chosen carefully so that they do not perturb the user. First, sensors should 
not be uncomfortable for the user in order to avoid parasite emotions like pain. Secondly, they 
should not prevent the use of classical modalities for instance by monopolizing the hands of the 
user. When physiological sensors are used for affective computing they switch from the standard 
status of sensors to the concept of modalities that communicate information about the emotional 
status of the user. It is then necessary to merge these modalities to perform emotions assessment 
in a reliable way, taking into account redundant and complementary information such as the 
relation that exists between HRV and respiration [117, 118]. 

Emotion models / classes: as discussed in chapter 2.1, several representations of emotions are 
available. Section 2.1.4 discusses their usability and extensions for the purpose of emotion 
assessment. In order to define a computational model that links physiological reactions to 
affective states, it is necessary to record physiological activity together with a ground-truth (i.e. 
the true elicited emotional state). However, constructing an emotional ground-truth is a difficult 
task because emotional states are influenced by several components of the organism as explained 
in Section 2.1.3.b. Several methods can be used to construct a ground-truth, for instance by 
defining the emotional state a-priori (generally based on precedent studies or evaluations of the 
stimuli) or by asking the participants to self-report their feelings. Depending on the methods 
used, the ground-truth can be quite different. The advantages and disadvantages of the ground-
truth construction methods are discussed in Section 4.1.1. 

Methods: a wide range of methods has been used to infer affective states. Most of them are part 
of the machine learning and pattern recognition techniques. Classifiers like k-Nearest Neighbors 
(KNN), Linear Discriminant Analysis (LDA), neural networks, Support Vector Machines 
(SVM’s) and others [119, 120] are useful to detect emotional classes of interest. Regression 
techniques [120] can also be used to obtain continuous estimation of emotions, for instance in the 
valence-arousal space. Prior to inferring emotional states it is important to define some 
physiological features of interest. It is very challenging to find with certainty some features in 
physiological signals that always correlate with the affective status of users. Those variables 
frequently differ from one user to another and they are also very sensitive to day to day variations 
as well as to the context of the emotion induction. To perform this selection researchers generally 
apply feature selection or projection algorithms like Sequential Floating Forward Search (SFFS) 
or Fisher projection. 

As can be seen from Table 2.4 there are large differences in classification accuracy even for 
studies that employ the same number of classes. Although this can be partly explained by the 
factors detailed above, we believe that such variations mostly result from: the differences in 
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emotion elicitation strategies, the type of physiological signals (modalities) used, and the chosen 
model of emotions (or emotional classes). 

For emotions elicited by an event, the best results obtained on more than three classes are those 
presented in [93] and [111]. One interesting point is that even though these studies use different 
stimuli (film clip versus music) they both use a method to control for the validity of the elicited 
emotions. In [93], the film clips presented were chosen according to the results obtained in a pilot 
study. In this pilot study, several participants were asked to evaluate clips by stating the emotion 
they felt as well as its intensity. In [111], the authors worked with the Augsburger Database of 
Biosignals (AuDB), the participants where asked to freely choose music that matched the desired 
emotions. Both of these methods insure that emotions felt during the experiment are intense and 
correspond to the expected ones. The good results obtained in [106] using a self induction 
protocol also tend to confirm the importance of reliable elicitation. In [106], the participant was 
the experimenter herself so that the emotions to be induced were perfectly clear to her. Moreover, 
the participant remembered past emotional events for emotion elicitation; this implies a strong 
intensity since remembered events are generally those that have induced intense feelings. 

Diverse types of physiological activity measurements from both the peripheral and the central 
nervous system have been used. Up to now, most of the studies using brain activity for emotion 
assessment have used EEG signals with unconvincing results [36, 115]. One could conclude that 
EEG signals in the present state of the art are not effective for emotion assessment; the present 
thesis however will argue against this. Describing the state of the art for emotion recognition 
based on peripheral signals is a real challenge because most studies performed classification on 
feature sets that include features from many types of signals, thus preventing analysis for single 
modalities. However, there are signals that are employed in nearly all studies, like GSR and HR 
(extracted from ECG or plethysmography). These two signals are known to correlate well with 
affective states [5, 7, 92]. In many results it can also be seen that EMG signals are relevant for 
emotion assessment [6, 111, 112, 116, 121]. Generally, EMG electrodes are positioned to 
measure facial muscle activity. Muscles that are often recorded include: the venter frontalis 
(raising of eyebrows), the zygomatic (smiling) and the corrugator supercili (frowning of 
eyebrows). Since emotional states are often associated with facial expressions, measuring facial 
activity is strongly relevant to assess emotions. However having EMG, electrodes on the face is 
quite uncomfortable which could hamper their usage in a concrete application. 

In order to assess emotions using physiological signals it is necessary to extract features from 
those signals that are relevant to the problem. In the current state of the art, most of studies [93, 
106, 107, 122] consider physiological signals as independent Gaussian processes and thus extract 
statistical features such as mean, standard deviation and sometimes moments of higher order 
(skewness and kurtosis). However, it is likely that this independency assumption does not hold 



Chapter 2 

48 

since physiological signals are influenced by identical systems such as the ANS for peripheral 
signals. Moreover, correlations exist between the different signals because they are modulated by 
a single reaction to emotions. For instance both finger blood pressure and skin temperature are 
influenced by vasoconstriction. To our knowledge, there are no studies that try to consider those 
interactions at the feature extraction level. Most of the studies perform feature selection after 
feature extraction with the goal of removing redundant features and keeping relevant and 
synergetic ones. Other features frequently extracted in the temporal domain are statistical features 
(mean, standard deviation, etc.) of the first and second derivative of the signal [87, 93, 106, 113, 
123]. Apart from temporal features, features from the frequency domain are also frequently 
extracted especially for HR, respiration and EEG [6, 109, 110, 115, 122, 124]. 

One of the most obvious observations that can be made from Table 2.4 is that different models of 
emotions lead to different classification accuracies. This is especially clear when comparing the 
basic-emotions models, which generally include more than three categories, to emotions in the 
valence-arousal space model, including two or three categories. Thanks to the works of Wagner 
[111] and Picard [106], it is possible to compare results on valence-arousal classes to those 
obtained on basic emotions classes in an intra-study framework. The conclusion emerging from 
this comparison is that the accuracies reported with the valence-arousal representation are lower 
than the accuracies reported with basic emotions, considering that the number of classes is 
different. A possible explanation for this is that acquisition protocols were designed for basic 
emotion elicitation while valence-arousal classes were defined by grouping basic emotions into 
two sets of classes (high vs. low arousal and high vs. low valence). This coarse definition can 
lead to confusing classes. For instance, grouping bliss and joy in the same positive class is prone 
to errors since peripheral activity for bliss, which is a rather calm feeling, is certainly different to 
the one of excited joy. However, results from other studies indicate that classification in the 
valence-arousal space is often associated with lower accuracies than when using basic emotion 
labels. Moreover, identification of valence classes is generally harder than identification of 
arousal classes (Table 2.4), which supports the idea that peripheral activity has a higher 
correlation with arousal than valence [7]. No clear differences in accuracy can be observed 
between the studies using different labels and number of classes to recognize basic emotions. 

Only some of the studies listed in Table 2.4 performed emotion recognition online [25, 114, 125]. 
The others performed acquisition of the signals in a well controlled experimental environment 
and, in a second step, applied emotion recognition algorithms offline making use of cross-
validation methods to determine the effectiveness of their system on unseen data. In [114] the 
authors first trained a model to associate physiological patterns to emotions and then applied the 
same model to detect emotions during the presentation of images from the IAPS. As can be seen 
from Table 2.4 the obtained accuracy on three classes (neutral, negative and positive) is quite 
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high (71%) demonstrating the feasibility of online emotion recognition. However, only one 
participant was tested with online detection preventing further conclusions concerning the 
reproducibility of this approach. Moreover, recordings and online classification where also 
performed in experimental conditions that are far from ecological and real application conditions. 
Another example of online emotion assessment is [125] where the authors designed a fuzzy 
emotion detection system for the purpose of studying emotions during game play. However, no 
online accuracy is reported for their system. Instead, the authors directly use the assessed 
emotions to compare different game play conditions. One of the most relevant studies concerning 
online emotion recognition is certainly [25] where pleasure (low vs. high) is assessed from the 
physiological signals of autistic children in order to adapt the behavior of a robot arm playing 
with them. The objective is to construct a robot able to change its gaming strategies as a 
psychologist would do. In this case the authors reported an average online accuracy of 81.1% 
when the two assessed emotional classes where compared to a ground-truth based on 
psychologist judgments. In this study, emotions were assessed while the children were interacting 
with the robot thus showing the possibility of emotion assessment for applications in a real HMI 
environment. 
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Chapter 3 Physiological signals recording and processing 

3.1 Material 

The material used for the acquisition of physiological signals is the Biosemi Active 2 System 
[126]. This system is composed of several components as detailed in Figure 3.1. The Biosemi 
system allows for simultaneous acquisition of EEG and peripheral signals. The analog signals are 
transmitted to the A/D converter for amplification and conversion to digital data. The data is then 
transmitted to the receiver through an optical fiber and finally to the PC for visualization and 
storage, both operated by the Actiview software (v. 5.21). Since the A/D converter is supplied 
with a low power battery and galvanic insulation from the main power supply is ensured by the 
optical fiber, there is no risk of electrocution. The system also provides a way to plug in external 
triggers that will be recorded with the other data sources. This is useful for synchronization with 
another acquisition system and for recording of manual event triggers (for instance by pushing 
buttons). 

 

Figure 3.1. Hardware and software for signal acquisition. 

During and after the recording of physiological data it is necessary to have a program that 
presents stimuli and records participant answers to electronic questionnaires. In Figure 3.1 this is 
named the “Protocol program”. The protocol describes the scheduling of the different tasks that 
have to be performed by the participants during the experiment. It is important to synchronize the 
stimuli presented by the protocol program with the recorded signals to be able to retrieve the 
physiological signals that correspond to the events of interest. Since the Actiview software is 
implemented in Labview, the same platform was used to develop the protocol programs. In this 
way, we were able to send software triggers for the different events that were then recorded by 
the Actiview software together with physiological data. However, since the operating system was 
not real time there was nothing that could guarantee the precision of the software triggers. 
Experimentation showed that the lag between the stimulus presentation and the recorded trigger 
did not exceed 100 ms. 
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All the data were recorded in a room relatively immune to electromagnetic noise or in the Eckel 
C14 audiometric research chamber with electromagnetic insulation7 (2.16m x 1.80m x 2.37m). In 
both cases aeration ensured that the ambient temperature did not increase due to the presence of a 
participant. The Faraday cage also provided acoustic isolation to ensure that participants were not 
disturbed by audio noise. 

3.1.1 EEG 

In order to avoid invasive recordings, surface EEG electrodes were used to monitor brain activity. 
The Biosemi system uses Ag-AgCl active electrodes to record electro potentials at the surface of 
the scalp which implies that a small current is applied on the skin. This design allows for noise 
and impedance reduction, low offset voltages and stable DC performance [126]. Two electrodes, 
the CMS and DRL electrodes, replace the usual ground electrode common to other EEG 
acquisition systems. As can be seen from Figure 3.2 which gives an overview of the names and 
positions of the EEG electrodes, the CMS and DRL electrodes were placed respectively on the 
left and right side of POz electrode position for all the recordings. The raw signals are referenced 
to the CMS electrode but it is necessary to re-reference them to obtain a better signal to noise 
ratio [126] (see Section 3.3.2). 

In the different experiments performed, two electrode configurations were employed for EEG 
recordings. In the first configuration 64 electrodes were used to record an EEG with a relatively 
high spatial resolution (Figure 3.2). Those electrodes were positioned according the 10-10 system 
[76] which proposes positions for up to 74 electrodes. The second configuration consists of 19 
electrodes placed according to the 10-20 system which allows for up to 21 positions [76]. The 
chosen electrodes are colored in green in Figure 3.2. The second configuration permits to reduce 
the time required to plug electrodes into the headcap. It is then possible to acquire data from more 
participants in a given amount of time, the main drawback being the loss of spatial resolution. 

As can be seen from Figure 3.2 electrodes are plugged in electrode holders, themselves fixed on a 
cap attached on the head of participants. A cap is first chosen according to the head size of each 
participant and fitted on the head so that: 

- Cz, Fpz and Oz electrodes are on the nasion-inion line (Figure 3.2), 

- Fpz is at approximately 10% of the nasion-inion distance from the nasion, 

- Oz is at approximately 10% of the nasion-inion distance from the inion. 

                                                   
7 http://www.eckel.ca/ (retreived on 29 April 2009) 
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During the experiment, the cap was attached using Velcro straps to prevent displacement of 
electrodes. Before plugging an electrode, it is mandatory to fill in the corresponding electrode 
holder with a salty gel ensuring contact and conductivity between electrodes and the skin. The gel 
must be inserted using a syringe because of the small size of the electrode holders. Attention 
should be paid not to insert too much gel into the holders so that two different electrodes would 
be connected by a gel bridge and record the same broad activity. This is particularly important for 
the CMS / DRL electrodes since they are close to each other and a direct connection of those 
electrodes would reduce the signal to noise ratio for all electrodes. Two types of indicators were 
used to control that the electrodes were correctly plugged: impedance of the electrodes was kept 
below 5 K  and signals were visually verified. Visual verification consisted in ensuring that 
there is no sudden drift in the signals, controlling the appearance of alpha waves when the 
participant relaxes with eyes closed and observing the appropriate shape of the signals during eye 
blinks. Setting up the cap with 64 electrodes takes approximately 30 minutes for a trained 
experimenter. 

 

Figure 3.2. (left) A participant wearing the EEG cap with 64 electrodes plugged. (right) Top head view with 
the positions and names of the 64 electrodes used for EEG recording. For a 19 electrodes configuration only 

the green electrodes were used. 

3.1.2 Peripheral sensors 

The sensors used to monitor peripheral activity during emotional stimulations are presented in 
Figure 3.3. Apart from the respiration belt all the other sensors were attached on one of the hands. 
More precisely, they were placed on the left (resp. right) hand for right-handed (resp. left-handed) 
people to leave their preferred hand free to interact with the computer and answer questionnaires. 
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A GSR (Galvanic Skin Response) sensor, which measures the resistance of the skin in an 
exosomatic setting (see Section 2.2.2.a), was used to record EDA. This sensor is composed of 
two Ag-AgCl electrodes with a diameter of 8 mm that were placed on the distal phalanges of the 
index and middle fingers (Figure 3.3) as suggested by the guidelines of the society for 
psychophysiological research [127]. No electrolyte paste was applied and the GSR electrodes 
were directly fixed on the skin using medical tape. Proper contact with the skin was controlled 
using the indicators implemented in the Actiview software and by verifying the existence of an 
EDR when the participant is stimulated by a surprising event (clap of the hands hidden to the 
participant). Since the exosomatic setting implies that a small current is applied on the skin, the 
CMS / DRL electrodes have to be connected. If EEG was recorded simultaneously with GSR, the 
standard position was adopted (see section 3.2.1); otherwise the CMS / DRL electrodes were 
positioned close to each other, on the hypothenar eminences of the same hand as the GSR 
electrodes. 

 

Figure 3.3. Pictures and positions of the sensors used to monitor peripheral activity. The CMS / DRL position 
was used only in the case where EEG activity was not monitored simultaneously with peripheral activity. 

BVP (Blood Volume Pulse) was recorded by using a photoplethysmograph (later on called 
plethysmograph) that emits an infrared light and record the amount of light reflected by the skin 
(see Section 2.2.2.b). The plethysmograph was often clipped on the participant’s thumb except if 
it did not fit or if bad signal quality was obtained at that place. In this case the little finger was 
used as the alternate position. The quality of the signal was verified by controlling the existence 
of a pulse including the usual peaks observed in BVP signals (see Section 3.3.3). 

Respiration was monitored using a respiration belt tied around the abdomen of participants. 
When allowed by the participant, the respiration belt was placed directly in contact with the skin 
to avoid artifacts due to clothes movements. The respiration belt is useful to determine the 
respiration rate as well as deep breath depth. Since the chest expansion was not monitored 
together with the abdomen expansion it was not possible to determine the quantity of expired and 
inspired air (see Section 2.2.2.d). Between chest and abdomen positions, the abdomen was 
chosen because less noise was observed in the respiration signals at that position. Before the 
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beginning of each experiment, the quality of the respiration signals was controlled by observing 
their shape in different respiration conditions (slow / normal / fast respiration, deep breath). 

Finally a temperature sensor was attached on the distal phalange of the ring finger with medical 
tape. Temperature measurements were assumed to be correct if they were around 33 °C. 

3.2 Signals acquisition and preprocessing 

3.2.1 Signal acquisition 

All the signals were acquired at a sampling rate of 1024 Hz. This high sampling rate was chosen 
to have high time resolution EEG signals and it was applied to the other signal sources as well 
because they were plugged on the same acquisition system. At that sampling rate the bandwidth 
was of 268Hz due to an antialiasing filter that is applied to the signals by the Actiview system 
before storage on the hard drive. The complete bandwith was not used in the present studies; 
nevertheless it allows performing high frequency EEG analysis for future studies. 

The physiological activity of each participant was recorded for the complete duration of the 
protocols. The obtained signals were then segmented in several trials (or epochs) each one being 
associated to a given stimulus. The starting time of each stimulus could be retrieved thanks to the 
triggers while the duration of a trial was defined by the protocols. Before extracting physiological 
features that are related to emotional activity, three preprocessing steps were applied to the 
signals: EEG and peripheral signals were denoised, EEG signals were re-referenced and the heart 
rate (HR) signal was computed from the non-filtered BVP signal. 

3.2.2 Denoising 

As a first step, the EEG signals were filtered by a 2-47 Hz Equiripple band pass filter (Table 3.1). 
This filter was applied to remove the DC offset of each electrode, drifts due to the difference of 
electrode impedance over time and power lines 50 Hz noise. This band pass filter also allows 
preserving frequency bands of interest for the study of emotional processes. 

The peripheral signals were filtered by a moving average filter to remove noise. For this purpose 
we used filters of length 512 samples for GSR and temperature, 128 for BVP, and 256 for 
respiration (Table 3.1). Those different lengths were chosen to remove high frequencies without 
corrupting oscillations of interest in the different signals. 

All the signals were filtered using the filtfilt function from the signal processing Matlab toolbox 
(v. 6.2.1) which processes the input signal in both the forward and reverse directions. This 
function allows performing a zero-phase filtering. 
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 High pass 
(-3dB) 

Low pass 
(-3dB) 

EEG 2 Hz 47 Hz 
GSR - 0.9 Hz 
BVP - 3.5 Hz 
Respiration - 1.7 Hz 
Temperature - 0.9 Hz 

Table 3.1. Low and high pass cutoff frequencies at -3dB for the different filters. 

3.2.3 EEG re-referencing 

Since with the Biosemi system the original reference (signals are originally referenced to the 
CMS electrode) provides a poor signal to noise ratio, it is necessary to re-reference them 
afterward. To obtain a Laplacian reference the following Laplacian operator was applied to each 
electrode i: 

 
( )

1( ) ( ) ( )i i j
j Neig ii

x n x n x n
N

 (3.1) 

where ix  is the CMS referenced signal of electrode i, xi the Laplacian referenced signal, n the 

sample number, Neig(i) the neighbors electrodes of electrode i and Ni the  size  of  this  
neighborhood. The neighborhood of an electrode was defined according to the Appendix B. 

3.2.4 HR computation 

As stated in Section 2.2.2.c an HR signal can be inferred from the BVP signal recorded by a 
pletysmograph. However, computing HR from a BVP signal is less reliable than from an ECG 
since the vaso-construction can influence the shape and timing of the heart pulses. As can be seen 
from Figure 3.4, the BVP signal is periodic because the blood pressure changes with heart 
contractions. Two points of interest can be identified in this signal: the foot of the systolic 
upstroke and the systolic peak both due to one of the heart contraction. 

A method to determine HR from a BVP signal is proposed in [128]. This method is based on a 
complex analysis that identifies the systolic peaks as heart beats and requires recordings of long 
duration. For this study, this method was not used because: 

- as can be seen from Figure 3.4 (right) it is sometimes difficult to identify which peak is 
which in a pulse, especially when the blood pressure is strongly increasing and decreasing 
or if the signal is of bad quality (noise due to movements, sensor badly placed or moved, 
etc.); 

- in our experiments the trials generally lasted less than 10 seconds, the method was thus 
not adequate for these signals. 
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Figure 3.4. The heart waves in a BVP signal. (Left) Three pulses of the BVP signal with the different peaks, 

(rigth) example of a pulse where it is difficult to identify the different peaks. 

In order to compute HR from signals of short durations without using the systolic peak, a method 
based on the detection of the foot of the systolic upstroke was implemented. The use of this point 
for identification of a heart beat is motivated by its frequent use for pulse wave velocity 
computation [96] (i.e. the time elapsed between the heart beat and the corresponding wave in a 
blood pressure signal). The developed method is composed of the following steps: 

1. the linear trend of the BVP signal was removed from each trial to attenuate the effects of 
strong increase and decrease of blood pressure; 

2. heart beats were assumed to be the local minima of the signal which were obtained by 
finding samples were the derivative is zero and the amplitude is switching from a 
decrease to an increase; 

3. in the case where two such beats fall in the same interval of 0.5 second then only the beat 
that corresponds to the highest increasing BVP derivative is kept. The 0.5 second interval 
was chosen based on the assumption that the HR will not exceed 120 beats per minutes 
(BPM) which is somehow reasonable since in all the protocols participants were sitting in 
front of a computer screen without performing any significant physical activity; 

4. the interbeat intervals (IBI) were computed as the time elapsed between two consecutive 
beats which could be converted to B-1 HR values corresponding to the B detected heart 
beats. The time stamp of each HR value was placed in the middle of the corresponding 
IBI interval. 
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Figure 3.5. Example of the beat detection and HR computation algorithm on a 9 seconds signal. The HR signal 
is represented as a staircase function with the length of a step corresponding to the duration of an IBI. 

As can be seen from Figure 3.5 this method performed fairly well on short duration trials (less 
than 10 seconds) but it was found to be less reliable on signals from one of the protocols where 
the length of a trial was longer (5 minutes) and signals were noisier. To improve the reliability of 
the peak detection, an algorithm was designed to detect and correct the falsely detected heart 
beats a posteriori. It is composed of two main steps described below. 

1. Detection and correction of false positive peaks (a beat is detected but this is not a true 
one): 

a. for the ith IBI the median mi of the 5 precedent IBI’s was computed (except for the 
5 first IBI); 

b. if ( )im IBI i  then the ith IBI is considered as corrupted,  being a parameter 

of the algorithm; 

c. for each corrupted IBI check if removing one of the two corresponding peak will 
solve the problem, in this case this peak is removed. 

2. Detection and correction of false negative peaks (a beat has not been identified): 

a. similarly to step 1.b. if ( )im IBI i  then the ith  IBI  is  considered  as  

corrupted; 

b. for each corrupted IBI i the  number  Pi of peaks to add was determined by 
( ( ) / ) 1i iP round IBI i m ; if adding those peaks does not violate the constraints 



  Physiological signals recording and processing 

  59 

1.a and 2.a then the peaks were added in this IBI to construct Pi+1 new IBI’s with 
equal duration. 

The parameter  was empirically set to 0.2 seconds since it corresponds to reasonable changes in 
HR and it detected nearly all the false positive and false negative peaks. 

3.3 Characterization of physiological activity 

For each trial the physiological activity was characterized by computing several features from the 
signals. It is then possible to concatenate the different features to construct a feature vector 
associated to a trial. The current section explains for each feature why it has been chosen as well 
as the time constraints necessary for their accurate computation. 

As explained in Section 2.2.3 it is important to use a baseline to account for inter and intra 
participant variability. However, most of the classifiers used in this thesis are participant specific 
which means that a classifier was trained for each participant. There is thus no need to account 
for inter-participant variability. Moreover, the physiological activity of each participant was 
recorded in a single session within a controlled context (stable environment temperature, no 
possibility to eat, etc.) alleviating the need to account for intra-participant variability. While 
baselines were computed for all protocols, subtracting baselines to the signals did not increase the 
accuracy of participant specific classification. For this reason the baselines were not used except 
for the video-game protocol presented in Chapter 7 because in this protocol a classifier was 
designed independently of the participant. The baselines computed for this protocol are presented 
in Chapter 7.  

3.3.1 Standard features 

This section described the physiological features that can be considered as standard because of 
their frequent use for emotion assessment [87, 93, 106, 113, 123]. Only the features that were 
used in this study are described. 

By assuming that each measured signal is generated by a Gaussian process with independent and 
identically distributed samples, the two physiological features that can be used to characterize a 
physiological signal are its mean and its standard deviation: 
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where x(n) is the value of the signal x (an EEG electrode signal, GSR signal, etc.) at sample n and 
Ns is the number of samples in a trial. 

In order to evaluate the trend of a signal x over a trial, the average of the signal derivative can be 
computed as: 
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Finally the maximum and minimum of a signal can also provide information concerning the 
range of the signal amplitude: 

 min ( )x n
Min x n  (3.5) 

 max ( )x n
Max x n  (3.6) 

Those features are quite general and can be applied to a wide range of physiological signals 
(EEG, GSR, EMG, etc.). Their usefulness (or weakness) will be discussed in the Section 3.4.2 for 
the different types of signal. 

3.3.2 Advanced features 

This section proposes specific features for each signal type based on the variables that are often 
analyzed in psycho-physiology. 

a. EEG 

The cognitive theory of emotions provides a strong motivation to go toward emotion assessment 
using signals from the CNS. As described in Section 2.2.1.c, several researchers have shown the 
involvement of brain structures in emotional processes. When using EEG to record emotional 
activity, most of the results were obtained by comparing the energy in different frequency bands. 
For instance, Davidson [81] demonstrated the lateralization of the frontal cortex by studying the 
energy of the EEG alpha waves. Aftanas et al. [82] reported energy differences between more or 
less arousing visual stimuli (images from the IAPS). Those last differences were observed from 
the energy in theta bands for the parietal and occipital areas, alpha bands for the frontal areas and 
gamma bands for the complete scalp. However, energy is not the only feature that can be used for 
the purpose of emotion assessment since studies also demonstrated that there are specific patterns 
of synchronization between brain areas during emotional processes [61, 129]. For those reasons 
different types of features were defined to characterize EEG signals. They were regrouped in five 
feature sets according to the type of features extracted. 



  Physiological signals recording and processing 

  61 

Energy 

This set of features, named EEG_FFT,  was  defined  to  represent  the  energy  of  EEG signals  in  
frequency bands known to be related to emotional processes [81, 82]. For each electrode i, the 
energy in the different frequency bands displayed in Table 3.2 was computed over all samples 
belonging to a specific trial, using the Fast Fourier Transform (FFT) algorithm. This was done 
under the assumption that the EEG signals are stationary over the whole duration of a trial. 

Feature for 
electrodes i Frequency band 

i 4-8 Hz 
i 8-12 Hz 
i 12-30 Hz 

Table 3.2. The energy features computed for each electrode and the associated frequency bands. 

Moreover, the following EEG_W feature was added because it is known to be related to cognitive 
processes like workload, engagement, attention and fatigue [130-133]. To compute this feature 
the energy in each frequency was summed over the Ne electrodes: 
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The feature vector fEEG_FFT, which corresponds to one trial, is thus composed of 3.Ne +1 features 
and the EEG_FFT feature set contains all the fEEG_FFT vectors. 

Lateralization of EEG alpha waves 

The results obtained in [19] are at the origin of the creation of this feature set called 
EEG_Lateral. This study demonstrated the correlation between a EEG asymmetry score in the 
frontal region and reported measures of general tendency to approach or withdraw. Similar 
results have also been reported, with less reproducibility, for stimuli of negative and positive 
valence [58, 78]. The asymmetry score was computed according to the following formula: 

 log( ) log( )R LAS P P  (3.8) 

where PR and PL are the power of the EEG signal in the alpha frequency band (defined as the 8-
13 Hz band) respectively for a given right electrode and the left symmetrical electrode (for 
instance electrodes F4 and F3). 
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In this study the asymmetry score was computed for several pairs of electrodes, including non-
frontal electrodes. 

Asymmetry score Right electrode Left electrode 
AS_1 Fp2 Fp1 
AS_2 AF4 AF3 
AS_3 F4 F3 
AS_4 FC4 FC3 
AS_5 C4 C3 
AS_6 CP4 CP3 
AS_7 P4 P3 
AS_8 PO4 PO3 
AS_9 O2 O1 

Table 3.3. The pairs of electrodes used to compute 9 asymmetry scores. 

For each trial, the alpha power of a given electrode was computed from the FFT applied on the 
complete duration of the trial; the asymmetry scores were then computed and a feature vector 
fEEG_Lateral was constructed by concatenation of the asymmetry scores: 

 _ [ _1, , _ 9]EEG Lateral AS ASf  (3.9) 

Finally, the EEG_Lateral feature set is composed of the ensemble of the fEEG_Lateral feature vectors 
obtained for each trial. 

Average energy over brain areas 

This feature set was computed to assess emotions elicited by the visualization of images with 
emotional content, as described in Chapter 5. The choice of those features was based on the study 
of Aftanas et al. [82] who showed a correlation between arousal elicited by images and responses in 
particular frequency bands and brain areas. As can be seen in Figure 3.6, areas were defined as 
groups of several electrodes (e.g. there are 6 electrodes in area PT, P, O). This figure also indicate 
the name of the rhythms of interest ( 1, 2, , etc.) together with the associated frequency bands. 

Power values of the 6 frequency bands listed in Figure 3.6 were computed for each electrode and for 
the whole duration of a given trial using the FFT algorithm. As several electrodes are located in the 
same area, the power over all these electrodes were averaged yielding a total of 6 features for this 
EEG feature set (e.g. feature one is the average power in band 1 over all electrodes in areas PT, P, 
O). Most of the features concern the Occipital (O) lobe, which is not surprising since this lobe 
corresponds to the visual cortex and subjects were stimulated with pictures [82]. 
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Figure 3.6. Top head view with EEG electrode locations and corresponding frequency bands (from [82]). 

For each trial a feature vector fEEG_Area was constructed by concatenating the 6 EEG features: 

 _ [ _ _1, , _ _ 6]EEG Area EEG Area EEG Areaf  (3.10) 

and the EEG_Area feature set was defined as the set of all vectors computed from the different trials 
of a given protocol. 

Spectrogram 

In the two feature sets, energy features were computed from EEG signals by applying the FFT 
algorithm on the whole duration of a trial. This could be done reliably under the assumption that 
the EEG signals are stationary for the duration of each trial. However this is rarely true since 
EEG signals can only be considered as stationary on short periods of time. This comment also 
applies for the computation of mean and variance features. To solve this issue the following 
feature set was defined under the assumption that EEG signals are stationary on short time 
windows of 0.5 seconds. 

This set of EEG features was extracted by computing the Short-Time Fourier Transform (STFT) 
for each electrode with a sliding window of 512 samples and 50% overlap between consecutive 
windows. This window size was chosen in order to have a frequency resolution of f = 2Hz 
which allows to separate the different rhythms observed in EEG signals while maintaining a time 
resolution of 0.5 second. For each of the spectrograms (one per electrode), we selected 9 
frequency bands of 2Hz ranging from 4Hz to 22Hz. This range was chosen because it includes 
most of the frequency bands used for the computation of the EEG_FFT and EEG_Area features 
set. 

The fEEG_STFT feature vector for a given trial is then constructed by concatenating all the power 
values of the 9 frequency bands at the different time frames and for each electrode. The length of 
fEEG_STFT is thus: 

PT 
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EEG 
feature 

Location 
area 

Frequency 
band 

EEG_Area_1 [PT;P;O] 1 (4-6Hz) 
EEG_Area_2 [PT;P;O] 2 (6-8Hz) 
EEG_Area_3 [PT;P;O]  (30-45Hz) 
EEG_Area_4 [AT;F] 2 (10-12Hz) 
EEG_Area_5 [AT;F;C] 1 (12-18Hz) 
EEG_Area_6 [C;PT;P;O] 3 (22-30Hz) 
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_( ) 9 4 1EEG STFT
elength N Tf  

where 9 is the number of frequency bands, Ne the number of electrodes and 4 1T  gives  the 

number  of  time  frames  for  a  trial  of  duration  T seconds. The feature set composed of all the 
fEEG_STFT feature vectors (one per trial) is named EEG_STFT. 

Mutual Information features 

In this feature set, mutual information (MI) between pairs of electrodes is proposed as a measure 
of statistical dependencies between different areas of the brain. This set of features was motivated 
by studies that demonstrated synchronization of brains areas in emotional processes [61, 129]. 
With the assumption that the signal xi of electrode i for a given trial is a stochastic process with 
probability mass function P(Xi), the mutual information between electrodes i and j for this trial is 
expressed as: 

( ; ) ( ) ( | )i j i i jI X X H X H X X  

 ( ) ( )log( ( ))
i

i i i i i
x

H X P X x P X x  (3.11) 
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( / ) ( , ) log( ( / ))
i j

i j i i j j i i j j
x x

H X X P X x X x P X x X x  

where H(Xi) and H(Xi |  Xj) are respectively the entropy and conditional entropy of random 
variables Xi and Xj. Mutual information was computed using Moddemeijer’s Matlab toolbox 
[134]8 that estimates the different distributions based on histograms and automatically determines 
an appropriate bin size. 

The MI feature vector fEEG_MI of this trial is then constructed by concatenation of mutual 
information between each pairs of electrodes: 

 _
1 2 1 1 1[ ( , ) ( , ), ( , ) ( , ), ( , )]

e e e e

EEG MI
N i i i N N NI X X I X X I X X I X X I X Xf  (3.12) 

The total number of features of a trial for Ne electrodes is then:
1

1
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set containing all feature vectors was named EEG_MI. 

                                                   
8 available at http://www.cs.rug.nl/~rudy/matlab/ (retrieved on 27 April 2009) 
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b. Galvanic Skin Response (GSR) 

The mean skin resistance over a trial has been shown to be correlated with the arousal of a 
stimulus [7] and has been widely used for emotion assessment from peripheral physiological 
signals. An aroused emotion should also induce a decrease in the GSR signal. For those reasons 
mean skin resistance and the trend of the GSR signal were frequently added to the peripheral 
feature sets. However, as described in Section 2.2.2.a, the speed of the fall of a GSR signal is also 
of importance to characterize the EDA. To approximate this value the average decrease rate 
during decay time was defined as follows: 
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with Nn being the number of samples where the GSR derivative GSR '  is negative. The proportion 
of negative samples in the derivative was also computed to characterize the duration of GSR 
falls: 
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While these features can correctly characterize GSR signals when it is expected that only one 
EDR occurs, it is important to count the number of EDR’s if several responses occur in a single 
trial. For this purpose an automatic EDR detection algorithm called nbPeaks was designed. In a 
first step this algorithm identifies consecutive high and low peaks of a GSR signal by finding the 
sign changes of the signal derivative. High peaks were identified as potentially being the 
beginning of an EDR whereas the low peaks were identified as the potential apex of a response. 
Finally a response was counted if the following criteria were met: 

- the difference in amplitude between the beginning and the apex of a response is higher 
than 200 Ohms; 

- the time elapsed between the beginning and the apex of a response is between 1 and 5 
seconds. 

Thus the last feature computed for the GSR signal is: 

 ( )NbPeaks
GSRf nbPeaks GSR  (3.15) 

Concerning the time aspects, the EDR is known to occur from 1 to 4 seconds after a stimulus 
[88]. It is thus important to record a GSR signal for more than 4 seconds after the presentation of 
an emotional stimulus to be sure that at least part of the reaction is recorded by the sensor. 
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c. Blood volume pulse (BVP) 

The BVP signal given by the pletysmograph is a relative measure of the blood pressure (BP): it is 
correlated with the BP but does not measure its exact value. Since variations of BP and blood 
flow are known to be associated to several emotions (Sinha, Healey, Section 2.2.2b) the features 
computed from the BVP signal were the mean, the standard deviation and minimum / maximum 
values as described in Section 3.4.1. 

d. Heart rate (HR) 

The increase and decrease of HR is associated to many emotions (Section 2.2.2.c) thus the 
average HR computed over the whole duration of an emotional stimulus is a feature that can be 
used for emotion assessment. Another variable of interest for the study of emotions is the Heart 
Rate Variability (HRV). As detailed in Section 2.2.2.c the HRV can be determined from the HR 
power spectrum and by computing HR standard deviation. 

Three components in the HR spectrum (frequency bands) of interest are generally considered to 
characterize HRV: a High Frequency band (HF, 0.15Hz-1Hz), a Low Frequency band (LF, 
0.05Hz-0.15Hz) and a Very Low Frequency band (VLF, 0.0033Hz-0.05Hz). As a consequence, it 
is necessary to have signals of significant duration to correctly record HRV components. For 
instance the committee report of the Society for Psychophysiological Research [96] recommends 
using epochs of at least 1 minute to reliably compute the HF component and 2 minutes for the LF 
component. Those durations correspond to approximately 6-10 times the length of the wave with 
the lowest frequency (0.15Hz for HF and 0.05Hz for LF). Actually, it is possible to determine 
(less reliably) the energy in the HF band on epochs of 6.6 seconds and in the LF band on epochs 
of  20  seconds.  If  HRV  is  estimated  using  the  standard  deviation  of  heart  rate,  then  it  is  
computable on any period of time including at least 2 HR values (3 heart beats, which generally 
corresponds to less than 3 seconds); the result will however only provide information about the 
energy in frequency bands limited by the duration of the epoch. 

The VLF component was not investigated in this study since it needs too long trial duration for its 
computation. Before computing energy in the HF and LF frequency bands the HR signal was 
interpolated with a cubic interpolation to obtain a new signal sampled at 1024Hz. This first step 
allows to: 

- transform the original signal that has a low sampling rate and which is not sampled at 
regular intervals into a regularly sampled signal with a high sampling rate; 

- obtain a signal with the same sampling rate than the others which facilitates the 
comparison of the signals over time (correlation measures, etc.). 
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The FFT algorithm was then applied to the interpolated HR signal to compute the power in the 
two frequency bands of interest. Finally, the ratio between the power in the HF and LF frequency 
bands was computed to reflect the cardiac balance between the sympathetic and parasympathetic 
activity (see Section 2.2.2.c). Table 3.2 summarizes the three features computed from the HR 
power spectrum. 

Feature name Description / formula 
LF

HRf  Power of HR in [0.05-0.15Hz] 
HF

HRf  Power of HR in [0.15-1Hz] 

/LF HF
HRf  

LF
HR
HF

HR

f
f

 

Table 3.4. The three features computed from the HR 

e. Respiration 

The respiration rate ranges from 0.1 to 0.35 breaths / second at rest, while it can reach 0.7 breaths 
/ second during exercise. Moreover, if respiration is measured with a belt, irregular respiration 
lead to energy increases in higher frequency bands. Laughing also affects the respiration pattern 
by introducing high-frequency fluctuations on the recorded signal. To measure the main 
respiration frequency (i.e. respiration rate) at rest it is thus necessary to have a signal of at least 
10 seconds (based on the lower bound of the respiration rate). Nevertheless, shorter periods of 
time could still contain interesting information since respiration rate at rest can increase up to 
0.35 breaths / second which can be measured on an epoch of around 3 seconds. To capture those 
fluctuations, features from both the frequency and time domain are therefore used. 

Features of the frequency domain are obtained by computing the FFT of the original signal. Then 
six features were computed to measure the power of the respiration signal in consecutive 
frequency bands. Table 3.5 summarizes the different frequency bands of interest. Those 

frequency bands were concatenated in a feature vector called Pow
Respf . 

Power feature Frequency band  Power feature Frequency band 
1Pow

Respf  [0-0.25Hz]  4Pow
Respf  [0.75-1Hz] 

2Pow
Respf  [0.25-0.5Hz]  5Pow

Respf  [0.75-1.25Hz] 
3Pow

Respf  [0.5-0.75Hz]  6Pow
Respf  [1.25-1.5Hz] 

Table 3.5. The power features computed from the respiration signals and being part of the Pow
Respf  feature 

vector. 

The main frequency of the respiration signal was considered to represent the respiration rate and 
is computed as: 
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0.1 0.7

arg max ( )Rate
Resp Respf

f P f  (3.16) 

where PResp(f) is the power of the respiration signal at frequency f. The precision of this feature 
depends on the frequency resolution obtained from the FFT which depends on the duration of the 
signal used for the FFT computation. 

Finally, to identify the deepest inhalation or exhalation in a respiration signal Resp, the dynamic 
range feature was computed as: 

 max ( ) min ( )DR
Resp nn

f Resp n Resp n  (3.17) 

f. Temperature 

Generally, changes in skin temperature are quite slow and difficult to detect on short time 
periods.  However,  since  skin  temperature  is  influenced  by  vasoconstriction  and  sweat,  it  is  
possible to observe short thermal reactions of a few seconds. For instance, Ekman [5] showed 
that the average value of skin temperature measured on a hand over an epoch of 10 seconds could 
be used to distinguish anger from fear and sadness. For this reason mean temperature was used as 
a feature in this study. The average derivative of the temperature signal was also used to indicate 
the trend of the signal. 

3.4 Ethical and privacy aspects 

Ethics is related to moral, law, honesty and privacy issues [135]. It is not often that researchers in 
computer science have to deal with those issues. However, there is an ever expanding trend in 
recording and using personal data for various domains of application such as sport, gaming and 
health. Due to its very private nature, this type of personal information requires that all necessary 
steps be taken to ensure privacy. In order to perform experiments on physiological emotion 
assessment it is necessary to acquire physiological data from persons while they are experiencing 
emotions. This raises several ethical issues since the human being is directly involved in those 
experiments and sensitive data is acquired. 

This section describes all the steps that were taken to ensure ethical aspects. The binding 
regulations are European (The European Charter of Fundamental Rights, Art. 3, 8, 13), Swiss 
(Swiss Federal law from June 19, 1992 on data protection (LPD)), as well as at the University 
level (University of Geneva regulations concerning integrity in research). Rules and key points to 
address were also derived from the European commission document concerning ethics for 
researchers [135]. 
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The recordings were performed with a limited number of volunteers (ranging from 4 to 11 
persons depending on the experiment). All of them were adults, researchers from our department 
or students interested in our work. It was controlled that participants were able to understand and 
question the experiment as well as give their participation approval on their own. The participants 
also needed to accept spending some time to do the experiment but no other selection criterion 
was applied. 

All volunteers were carefully informed about the experiment and had to sign a consent form 
(Appendix A) to ensure that they were aware of: 

- the purpose and scientific goals of the research (in human-computer interaction); 

- how the experiment is performed (sensors used, type of data recorded, description of the 
protocol, duration of the experiment, possible income for the participant, etc.); 

- the possible risks incurred (see Appendix A and next paragraph); 

- the privacy issue, data being confidential and anonymous; 

- the persons to contact in case of questions or problems (project leader and experimenters); 

- the possibility to stop the experiment at any time, and to have data deleted on request, 
both without any loss of benefits. 

Neither questions considered as too personal nor medical questions were asked. The only 
incentives to participate in the studies were self-motivation and curiosity. In only one study a 
(small) financial reward was given to some participants according to their performance (to 
increase their motivation see Chapter 7). Two copies of the (paper only) consent form were 
signed: one for the person participating to the experiment, one for the project leader. Moreover 
the content of this consent form was inspired from several sources like the binding regulations 
referred above and other consent forms used in medical and biological research. 

Regarding safety, all recordings of physiological signals were non-invasive. The system used 
in the studies (see Section 3.2) records physiological signals using active electrodes, which mean 
that a small quantity of current is applied on the surface of the skin. To our knowledge this 
current is not harmful to the human. No counter-indications are given by the manufacturer and 
supplier of the acquisition system. The electrodes and the A/D converter are galvanicaly isolated 
(using an optical fiber) from the rest of the acquisition system (PC), avoiding any risk of 
electrocution from the mains supply. These systems are routinely and safely used in many 
laboratories worldwide, for a number of applications including human-computer interaction. 
Other threats could be headache due to a too long period wearing the fairly tight EEG caps and 
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epileptic reactions due to the manipulation of human computer interfaces (especially games). It is 
important to state that none of the experimenters have medical knowledge that could permit the 
incidental finding of diseases or abnormalities in the data; this was explicitly stated in the consent 
form. 

Regarding privacy, all recordings were anonymized by assigning a numerical code to each 
user, and stored accordingly (e.g. Participant 1, Participant 2, etc.). The names of the participants 
were not stored in electronic form. Only the project leader and the experimenter had access to the 
participant's identity. The relevant recorded data, according to the purpose of the experiment, are 
kept for processing. Only authorized researchers have access to the recorded anonymous data (for 
electronically stored data: password and IP address restriction). Data once recorded will not be 
modified. The data is processed only for the research purposes as is explained in the consent form 
and will not be used for any other research. All data can be erased on request from the 
participant. Further, it is not possible to determine the identity of a participant from the 
physiological recordings we employ. The data is not shared with outside laboratories, and not 
used for any commercial purpose.  

Finally, this section does not aim at answering ethical questions concerning the potential 
applications of this thesis. However, we believe that for each specific application the benefit / 
burden balance should be considered carefully. 
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Chapter 4 Methods for emotion assessment 

4.1 Classification 

Section 3.3 describes the different features extracted from the physiological signals to reflect 
emotional activity. The next step to go toward emotion assessment consists in finding a 
computational model that is able to associate a given instance of those features to an emotional 
state. 

To obtain such a model it is possible to learn it from previously acquired data. In this thesis 
several protocols (described in the next chapters) were designed to acquire emotional data elicited 
by different types of stimuli (images, recall of past emotional episodes, etc.). As explained in 
Chapter 3, the signals acquired from those protocols were segmented in N trials, each one 
corresponding to an emotional state yi, and features were extracted for each trial. The result is a 
database for each protocol including: 

- a feature set F composed of N feature vectors fi,  one for each trial i, containing some of 
the features described in Section 3.3 (a feature vector fi can  then  be  regarded  as  an  
instance or sample of the feature set F); 

- a vector y with each value yi being the emotional state associated to trial (or sample) i. 

On such a database, supervised learning algorithms [119, 120] can be applied to obtain a 
computational model that transduces the values of feature vector fi into an estimated emotional 
state ˆiy . In supervised learning such a model is learned from a database that contains both a 

feature set F and the associated labels vector y. However, in order to construct the y vector it is 
first necessary to define what an emotional state is and how to determine the real emotion 
associated to a trial. This is known as the ground-truth construction and is detailed in Section 
4.1.1. Section 4.1.2 explains the methods employed to validate the models learned from the data 
and Section 4.1.3 presents the different supervised algorithms used to learn the model. 

4.1.1 Ground-truth definition 

Defining a ground-truth for the purpose of emotion assessment strongly depends on the protocol 
used to record emotional reactions. There are actually two ways to elicit emotions (Section 2.3): 

- by asking the participant to self-generate a given emotion; 

- by stimulating him / her with material containing emotional content (images, sounds, 
video clips, etc.). 
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In the first case the annotation is straightforward since a trial could be annotated with the emotion 
that the participant was supposed to express. However, assumes that the requested emotions were 
successfully elicited, and thus requires appropriate control of the elicitation procedure. 

In the second case, the annotation of each trial (corresponding to a stimulus) can be done by 
either one of the following three methods: 

- by a-priori defining the emotional label of each stimulus; 

- by determining the elicited emotion from the observation of the participant’s emotional 
expressions (for instance facial expressions); 

- by asking the participant to self-assess his / her feelings after the stimulation. 

The a-priori annotation can be done arbitrarily for instance according to the judgment of the 
experimenter. However this method is not recommended since it does not take into account the 
variability of judgments that can be observed in a population. Another possibility is to ask a large 
population of persons to extensively evaluate the stimuli. Each stimulus can then be associated to 
the most frequent label or to the average of judgments if emotions were evaluated in a continuous 
space such as the valence-arousal space. For instance, each of the IAPS images [54] is provided 
with the mean and the standard deviation of the valence-arousal judgments of 800 persons. 
However this method is still not optimal since the participants can have various emotional 
reactions under the same stimulus, due for instance to differences in past experience. As an 
example, an image of someone skiing can elicit pleasure but it can also elicit negative emotions for 
a participant that had a bad experience on skis. To alleviate this problem, it is possible to ask to 
each participant to select and evaluate images before the experiment. By using this method the 
elicited emotions are known in advance. The problem is then that the stimuli will be known by the 
participants and thus elicit different emotional response during the experiment (for instance less 
intense responses). 

Analyzing the emotional behavior and expressions of the participant is a possible method to 
determine the elicited emotion. However this method requires that at least one expert (a 
psychologist for instance) is present during the experiment. In order to avoid bias in the estimated 
emotions, it is even better to group the judgments of many experts, raising the question of the 
combination of different judgments. The participant should be free to fully express his / her 
emotions, which is not always the case. For instance, when physiological signals are recorded 
movements are generally limited to avoid noise in the signals. Finally, if a model is trained from 
this type of ground-truth then it will be able to detect the expression of the emotion and not the 
other factors involved in emotions such as the subjective feelings (see Section 2.1.3.b).  
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Presenting the stimuli to the participants and then asking them to self-assess their feeling is also 
an alternative to the two precedent annotation methods. This can be done by asking the 
participants to fill in questionnaires, to give emotional labels and to evaluate their emotions in the 
valence-arousal space. While this method alleviates the problems related to the subjectivity of 
emotions it relies on the assumption that the participants are reliable experts in evaluating their 
own feelings. This latter statement can be discussed because of the following issues. Firstly, the 
participant will determine the elicited emotions mostly based on his / her subjective feeling which 
is only one of the factors involved in the emotion (see Section 2.1.3.b). Secondly, 
misunderstanding of the material used for self-assessment could lead to wrong annotations. As 
stated in Section 2.1.4, emotional words can have different meanings across persons and cultures. 
Moreover, representing an emotion in the valence-arousal space is not straightforward and it is 
mandatory to provide explanations before someone can use this space. Thirdly, a participant can 
hide his / her true felt emotional state because of social rules. For instance, a man can hesitate to 
report high arousal while watching a picture of a nude man. 

The best way to annotate data is certainly to combine the different annotation methods described 
above. An example can be to combine annotations from experts that evaluate an emotional state 
based on the analysis of several emotional cues (facial expressions, speech, behavior, 
physiological signals etc.) together with self-reported measures of emotions. This would enable 
to determine a ground-truth based on several components involved in emotional processes. 
However it is not clear how the fusion of the different annotation should be performed. 

In this study both self-generated and stimuli-based emotions were elicited in different protocols. 
For the protocol where emotions were self-generated, the trials were directly annotated with the 
corresponding emotional state as explained above. For the protocols where emotions were 
elicited using stimuli two of the annotation methods described above were employed: a-priori 
annotation and self-assessment. The effectiveness of those methods was thus estimated based on 
the accuracy of the emotion assessment. 

The above paragraphs detail how to collect a ground-truth without any assumption on the type of 
annotations that are collected. Those annotations could be continuous (for instance by using the 
valence-arousal space) or discrete (using emotional labels such as fear and anger). Essentially 
because of its generality but also for other reasons detailed in Section 2.1.4 the valence-arousal 
space was chosen as a representation for emotional states. Accurately determining a point in this 
space based only on physiological features is a difficult task. For this reason we preferred to take 
a first step by defining valence-arousal classes of interest. Thus each value yi of the y vector can 
take values in a set of emotional labels Y={ 1,…, c}, where C is the number of classes. 
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Depending on the protocol, the valence-arousal space was thus divided in different regions and 
each  region  associated  to  a  target  label.  For  instance,  three  regions  of  interest  (C=3) can be 
defined by segmenting the valence-arousal space in calm, excited-positive and excited negative 
areas. Another possibility is to segment the space in two areas (C=2) such as calm vs. excited or 
positive vs. negative areas. The segmentation can be done a-priori, the participants thus annotate 
the emotions accordingly to the classes defined; or a-posteriori from continuous annotations 
gathered during the protocol. All those different possibilities give rise to different y ground-truth 
vectors and thus corresponds to different formulations of the emotion assessment problem that 
are called classification schemes. Several classification schemes were studied for the data 
gathered from each protocol and they will be detailed in the appropriate chapters. 

4.1.2 Validation strategies 

From the ground-truth acquired according to the methods presented in Section 4.1.1, the emotion 
assessment task is defined as supervised classification. It is supervised because a ground-truth is 
available to learn a model (the yi values) and it is classification because the goal is to retrieve 
emotional classes of interest ˆiy . In this case, the methods usable for emotion assessment originate 

from the pattern recognition and machine learning fields [119, 120]. 

When training classifiers overfitting can occur when the obtained model perfectly fits the data 
from which it is learned but performs poorly on new unseen data [119]. In order to control for the 
generalization capability of the model, it is thus important to test the performance of a learned 
model (the classifier) on a different dataset than the one used for learning. Validation strategies 
consist in segmenting the data in two sets: a training set from which the model is learned and a 
test set on which the performance of the model is tested (Figure 4.1). 

 
Figure 4.1. Validation scheme for classification, where ŷ is the vector of the classes estimated by model for the 

test set, A is the accuracy. 

In this study, the performance of a model was tested by using the following measure of accuracy: 
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where Nt is the number of samples in the test set and Nc is the number of test samples correctly 
classified (test samples where ˆi iy y ). A confusion matrix (Table 4.1) will also be used to 

determine how the samples are classified in the different classes. A confusion matrix gives the 
percentage of samples belonging to class i and classified as class j. 
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Table 4.1. A confusion matrix, Pi,j is the percentage of samples belonging to class i and classified as class j. 

The accuracy A can be retrieved from the confusion matrix by summing its diagonal elements Pi,i 
weighted by the prior probability p( i) of occurrence of the class i: 
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For the model to correctly represent the data, it is important that the training set contains enough 
samples (or instances). On the other hand it also important that the test set contains enough 
samples to avoid a noisy estimate of the model performance. This can be problematic because it 
often occurs that the amount of collected data is limited in practice. This is particularly true in our 
case since the number of emotional stimulations is limited by the duration of the protocols which 
should not be too long to avoid participant fatigue as well as elicitation of undesired emotions. 
Cross-validation methods help to solve this problem by splitting the data in different training / 
test sets so that each sample will be used at least once for training and once for testing. 

The two well known cross-validation methods are the k-fold and the leave-one-out [136]. In the 
k-fold cross-validation, the data is split in k folds containing the same amount of samples. 
Generally the folds are determined so that the prior probability p( i) of observing each class i is 
the same for each fold. Each fold is then used in turn as the test set and a model is learned from 
the remaining k-1 folds. By using this method k accuracies are obtained from the k test sets so 
that it is possible to compute the average accuracy and its standard deviation. The leave-one-out 
cross-validation is similar to the k-fold cross-validation except that the size of the test set is 
always 1. Thus N models are tested in turn on each sample and learned from the N-1 remaining 
samples of the database. The advantage of this cross-validation method is that it provides the 
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maximum possible size for the training set which generally helps to find a better model, 
especially in the case where few samples are available in the database. On the other hand only the 
average accuracy can be computed reliably since the test set contains only one sample (the 
accuracy is thus either 0 or 1). 

When designing a general computational model for emotion assessment (i.e. a model that is not 
person dependent but can be used to assess emotions of anyone) based on physiological features 
it is important to take into account the high variability that can be observed in physiological 
reactions. To control the performance of such a model it should be tested on physiological data of 
persons whose features were not used for the learning of the model. For this reason the 
participant cross-validation method was proposed. The database was segmented in folds where 
each fold contains the samples computed from the physiological signals of a single participant. 
Then the classification performance was computed similarly to the k-fold cross-validation, by 
using each fold in its turn as the test set. This method allows testing the classification 
performance as in a “real-case” where the emotions of a user would be assessed by using a model 
defined from the physiological activity of other persons. 

4.1.3 Classifiers 

Section 4.1.2 detailed how to determine the performance of a classifier. This section will describe 
the different classifiers used in this study, all being part of the pattern recognition and the 
machine learning fields [119, 120]. For most classification algorithms, it is important that the 
features be normalized (i.e. belongs to the same range of value). This normalization was applied 
at each cross-validation step by whithening each feature using mean and standard deviation 
computed from the training set. 

a. Naïve Bayes 

Several classifiers rely on the Bayes’ rule to find the most probable class in which a sample 
represented by its feature vector f should be classified. This is done by attributing the class i that 
maximize the posterior probability p( i | f) to the estimated label ŷ . According to the Bayes’ 
rule: 
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One of the advantages of this type of classifier is that it is able to output the posterior probability 
p( i | f) that a sample belong to a given class i. Notice that it is enough to find the maximum 
value of the numerator to maximize p( i | f) since the denominator has the same value for any 
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class i. The main differences between Bayesian classifiers is the way by which the conditional 
probabilities p(f | i) are estimated. 

For the Naïve-Bayes classifier the assumption of conditional independence of the features given 
i is made: 
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where F is the number of features in the feature vector f. In this study, the conditional probability 
p(fj | i) of a feature j was estimated by quantizing the features in 10 bins of equal sizes and 
computing the associated conditional probability mass function from the training set. The prior 
probability p( i) could also be computed from the training set; it would however be biased by the 
stimuli presented for each class in the protocol. For instance, if the aim of the classifier is to 
distinguish between calm and excited emotional states and more excited stimulus were presented 
to the participants then the prior probability would be higher for the excited class. While this is 
coherent in this particular protocol it does not have any meaning in real applications since there is 
nothing that guarantees the higher occurrence of excited states in this case. For this reason the 
prior probability p( i) was set to 1/C under the assumption of equiprobability of the classes. 

b. Discriminant analysis 

Two discriminant analysis methods, namely the linear discriminant analysis (LDA) and the 
Quadratic discriminant analysis (QDA) are used in this study. Both are based on the Bayes rule to 
find the class with the highest posterior probability p( i | f) [119]. For this purpose the following 
gi discriminant functions are defined: 

 ( ) ln( ( | ) ( ))i i ig p pf f  (4.5) 

Finding the class i with the highest gi value is then similar to finding the class that maximizes 
the numerator of equation 4.3 Under the assumption that the conditional distributions p(f | i) are 
Gaussians with different means µi and covariance matrices i this rule automatically defines a 
(hyper-)quadratic decision boundary (hence the name QDA for the associated classifier): 

 11 1( ) ( ) ( ) ln 2 ln ln ( )
2 2 2

T
i i i i i i

Fg pf f f  (4.6) 

where T and |.| respectively stands for the transpose and determinant operators. Vectors µi and 

matrices i are computed from the training set. In the case where ,i j i j  the boundary 

becomes linear, yielding an LDA classifier. With the LDA it is sufficient to compute a single 
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covariance matrix  from the complete training set without distinction between classes. Similarly 
to the Naïve Bayes classifier, the prior probability p( i) was defined as 1/C.  

In the case where the size of the feature space F is large and the number of samples available for 

learning is small, the discriminant analysis can fall in the singularity problem where the 1
i  

matrix is not invertible. In this case we used the diagonalized version where covariance matrices 
are assumed to be diagonal, containing the variances of the features. Notice that in this case the 
discriminant analysis is a Naïve Bayes classifier with a conditional independent Gaussian 
assumption for the p(fj | i) distributions. The Matlab statistics toolbox (v. 5.0.1) implementation 
of those algorithms was used in this study. 

c. Support Vector Machines (SVM’s) 

A SVM [120, 137] is a two class classifier (C=2) using a linear model of the form: 

 ( ) ( )Th bf w f  (4.7) 

where a feature vector f is  estimated as  being from class  1 if h(f)<0 and 2 if h(f)>0. The  
function projects a feature vector in another feature space, generally of higher dimensionality, 
thus allowing for non linear separation of the data in the original feature space. In order to find 
the model weights w and b, an SVM tries to maximize the distance between the decision surface 
created by the h function and a margin to this surface as well as to minimize the error on the 
training set. The trade-off between margin maximization and the training error minimization is 
controlled by a parameter CSVM that was empirically set to 1 in this study. The advantage of 
SVM's is that they minimize an upper bound on the expected risk rather than only the error on the 
training data, thus enabling good generalization even for undersampled datasets, as well as 
interesting performances in high dimensional feature spaces [138]. Moreover, they provide sparse 
solutions where not all of the data points are used for classification. 

The SVM optimization problem can be expressed in a dual form [120, 137], where a kernel 

function ( , ) ( ) ( )Tk f f f f  is introduced between two samples f and f´. In this new formulation, 
the decision boundary becomes a function of only some of the data points called the support 
vectors. In this study, both linear and radial basis function (RBF) kernels were used: 

 ( , ) .linear Tk f f f f  (4.8) 
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where ||.|| is the norm operator. In the case of RBF kernels, the size of the kernel  was chosen by 
applying a 5-fold cross-validation procedure on the training set and finding the  yielding the best 
accuracy. The tested  values belonged to the 5.10-3 to 5.10-1 range with a step of 5.10-3. 

There are two drawbacks to the use of SVM’s as classifiers: they are intrinsically only two-class 
classifiers and their output is uncalibrated so that it is not directly usable as a confidence value in 
the case one wants to combine outputs of different classifiers or modalities. In this study the first 
point was addressed by using the one-versus-one approach where C(C-1)/2 classifiers are trained 
on each possible pair of classes. The class associated to a test sample is the one that receives the 
highest number of votes from the C(C-1)/2 classifiers. 

 

Figure 4.2. Obtaining posterior probabilities p( i | h) from SVM outputs. a) Histograms representing the 
distributions of the SVM output for two classes. b) Posterior probabilities estimates from the Bayes rules 

applied on the histogram of a) and from the sigmoid fit proposed by Platt [139]. 

For the second point, Platt (2000) proposed to model the probability p( 1 | h) of being in the first 
of the two classes knowing the output value h of the SVM. As can be seen in Figure 4.2 this 
could be done by applying the Bayes rule. The discrete posterior probability plotted in Figure 4.2 
approximately follows a sigmoid curve; this is why Platt proposed to model those probabilities by 
using: 

 1
1( | )

1 exp( )
p h

h
 (4.10) 

where the  and  values are found by the algorithm proposed in [139] and improved in [140]. 
Figure 4.2 shows the result of the sigmoid curve fitting. Concretely, the h values were obtained 
from a 5-fold cross-validation on the training set and the parameters  and  were determined 
from those h values. The posterior probabilities of the test samples were then computed using 
equation 4.10. Finally, to compute the posterior probabilities p( i | h) when there are more than 
two classes to separate, the solution proposed in [141] was employed. The libSVM [142] Matlab 
toolbox was used as an implementation of the SVM and probabilistic SVM algorithms. 
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d. Relevance Vector Machines (RVM’s) 

RVM’s [143] are algorithms that have the same functional form as SVM's but embedded in a 
Bayesian learning framework. They have been shown to provide results similar to SVM's with 
generally sparser solutions. They have the advantage that they directly give an estimation of the 
posterior probability of having class i. 

RVM’s try to maximize the likelihood function of the training set using a linear model including 
kernels. The main difference with classical probabilistic discriminative models is that a different 
prior is applied on each weight thus leading to sparse solutions that should generalize well. For 
all the following studies, the multiclass RVM version presented in [144] was used. 

4.2 Feature selection 

The features extracted from the physiological signals, especially EEG signals, were sometimes of 
high dimensionality. For instance the fEEG_STFT feature vector presented in section 3.4.2.a would 
contain 16704 features for an EEG recorded over a period of 7.5 seconds with 64 electrodes. 
Although increasing the number of features in a database should theoretically decrease 
classification error, this is not the case in practice because models of classifiers, or parameters of 
distributions, are estimated from a training set of limited size. Having fewer samples than 
features for classification, as could be the case when the feature space is of high dimensionality, 
is known as the undersampled or singularity problem [138, 145]. To alleviate this problem, one 
can resort to feature space reduction techniques. Reducing the size of a feature space can be done 
either by finding a function that projects the data points in a space of lower dimensionality 
(generally preserving or improving the discriminability between classes) [119, 146] or by 
discarding the features that are not of interest for classification [147-149]. In this study 
algorithms from the second approach, called feature selection algorithms, were implemented. 

Two different approaches are generally considered to deal with feature selection [147]: the filter 
approach where the quality of each feature is estimated independently of the classification 
scheme,  generally  using  statistical  measures;  and  the  wrapper  approach  that  relies  on  the  
classification algorithm to evaluate feature subsets as well as on heuristic methods to find the best 
subset. Although the second approach can yield better results, it suffers from an important 
computational cost, especially for very high dimensional space. There are also classification 
algorithms that perform embedded feature selection such as the Adaboost [150]. The SVM also 
contains a regularization term in its error function that keeps the weights w low and thus provides 
a form of feature selection. 

In this study, feature selection algorithms were always applied on the training set to determine the 
selected subset of features. The classifiers were then trained on this selected subset and the 
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resulting model was applied on the test features subset. This section describes the filter and 
wrapper algorithms used for feature selection. 

4.2.1 Filter methods 

a. ANOVA 

The ANOVA (ANalysis Of VAriance) is a statistical test that estimates if a difference in mean 
observed between several groups for a given variable is significant. Two values can be computed 
from an ANOVA test: the F value that gives the magnitude of the mean difference and the p 
value that gives the probability of making an error by assuming a difference in mean. If the p 
value is low (near to 0) than this reflects the strong belief that at least one group mean is different 
from the others. 

 

Figure 4.3. Different possible distributions of a feature value for a 3 classes scenario (green, red and black 
classes). (left) The feature is relevant since it is usefull to distinguish the green class from the others (low p 

value). (right) A non relevant feature (high p value). 

Under the assumption that the conditional distributions p(fi |  i) are Gaussians with similar 
variances than a feature is relevant for classification if the means of those distributions are 
different for at least one of the classes (Figure 4.3). Thus an ANOVA test was applied on each 
feature with the groups defined by the classes and the resulting p values were used to determine if 
a feature was relevant. A feature was considered to be relevant if and only if p < ANOVA, with 

ANOVA set to 0.1 which corresponds to an error probability of 10%. All non-relevant features 
were discarded. It was thus not possible to a-priori choose an exact number of features to be 
selected. 

b. Fisher criterion 

The Fisher projection [119, 146] is a well known algorithm that projects the samples of a given 
feature space into a subspace of lower dimensionality having the highest linear discrimination 
between the classes according to the Fisher criterion. However, the choice of the dimension Fs of 
the subspace is limited by the number of classes (Fs < C). In order to perform feature selection 
instead of projection and to be free to choose the size of the resulting feature space, the Fisher 
criterion used in the Fisher projection algorithm was applied independently to each feature. For 
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this purpose, vectors if  containing all the samples for each feature fi were constructed from the 

feature set F  (a vector if  is a column of F). It is then possible to apply the following Fisher 

criterion on such a vector: 
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where m and mj are respectively the mean of the vector f  and the mean of this vector for samples 
belonging to class j, Nj is  the  number  of  samples  belonging  to  class  j and Dj represents the 
ensemble of values from f  that belongs to class j. 

From the numerator of Equation 4.11 it can be seen that the larger the distance between the 
feature means of each classes, the higher the value of J. On the other hand, the denominator 
represents the average variability of the feature across the classes and the smaller the better. Thus 
this criterion will have high values for features that have different mean for each class and a low 
average intra-class variance which is very similar to what the ANOVA test does. 

To filter out features, the Fisher criterion J was computed for each feature and the features were 
then ranked by decreasing order of J. Finally, the Fs features with the highest J value were kept 
and the others removed. This algorithm thus allows selecting the size Fs of the resulting feature 
space. 

c. Fast Correlation Based Filter (FCBF) 

The FCBF algorithm [149] was proposed as a filter method that selects features according to their 
relevance to the class concept and removes those that are redundant. By removing redundant 
features the algorithm reduces the size of the selected subset of features without changing its 
disciminant capacity. The absolute value of the linear correlation measure was used to evaluate 
both the relevance and redundancy of a feature: 
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where x, z are two vectors of size m respectively containing xi and zi values with means x and z . 
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From the feature set F, vectors if  were constructed. These vectors contains all the samples of 

each feature fi. The algorithm then selected a feature subset in two steps: 

- removal of each irrelevant feature fi where ( , )i FCBFCorr f y ; 

- removal of redundant features; a feature fi being considered as redundant with respect to 
another feature fj if ( , ) ( , )i j jCorr Corrf f f y  and ( , ) ( , )i jCorr Corrf y f y . 

The first step removes features that have low correlations with the classes. In the second step the 
pairs of features that are highly correlated are identified and for each feature pair the feature that 
has the lowest correlation with the class is removed. 

As for the ANOVA feature selection, the number of selected features is determined by the FCBF 
parameter but the exact number of features can not be chosen explicitly. The possible values for 
the FCBF parameter range from 0 to 1. With FCBF = 0 all the features are selected in the first step 
but redundant features are removed in the second. When FCBF is increased the number of 
selected features decreases with the minimum number of selected features being reached when 

FCBF= 1 (only the features that are fully correlated with the classes are kept). 

4.2.2 The SFFS wrapper method 

In most of the filter algorithms, the relevance of a feature is estimated independently from the 
other features. However it can happen that a feature is not relevant by its own but is highly 
relevant when combined with another feature; this is called feature interaction [151, 152]. 
Wrapper algorithms have the advantage that a feature is added or removed from a feature set 
based on the analysis of the newly generated feature set. As a consequence, those algorithms are 
able to remove redundant features but also to take into account the interaction between features. 
Moreover, the wrapper algorithms generally use the predictive accuracy of the classifier used for 
final classification to evaluate the performance of a feature subset. Thus the features are selected 
in accordance with the intrinsic properties of the classifier. However the main drawback of those 
algorithms is that they are computationally intensive since they require the evaluation of a 
number of feature subsets that is generally higher than the number of features. 

The Sequential Floating Forward Selection (SFFS) [148] was implemented as a wrapper 
algorithm if the number of features was sufficiently low. This algorithm starts with an empty 
feature set. At each iteration of the algorithm a forward step is taken followed by a number of 
backward steps. A forward step consists in adding to the current feature set the feature that 
maximizes the performance of the newly created feature set. A backward step consists in 
removing a feature from the current feature set only if doing so improves the performance. This 
last step is taken as long as removing a feature improves the performance. This method searches 
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the feature space more deeply than by using only forward or backward algorithms [148]. The 
SFFS algorithm stops when the number of features in the subset is equal to the number of 
requested features FSFFS and no backward step is taken. The best subset of selected features is 
then returned which can be of size 1 to FSFFS. In this study the classification accuracy, computed 
on the samples of the training set, was used as the performance measure. The classifier used to 
evaluate a feature subset was the same as the one used to generate the final classification model. 
For instance, if the SVM classifier was used for emotion assessment then it was also used for 
feature selection. 

4.3 Fusion 

As stated in Sections 1.1.2 and 2.1.3.b emotion elicitation is a multimodal process that involves 
several components of the organism. As a consequence, emotions are expressed through several 
channels, giving rise to many emotional cues that can be recorded by different sensors. Since the 
information recorded by those sensors can represent the activity of the different components 
involved in emotional processes, combining the information obtained from those sensors can 
improve the reliability of emotion assessment. The combination of multi-sensor information is 
known as fusion. In this study, several sensors described in Section 3.1 were used to monitor the 
activity of both the peripheral and the central nervous system. Moreover, different types of 
features were also computed for each sensor. This section describes how the different information 
obtained from the sensors were fused for the purpose of emotion classification. 

When the goal is to perform classification, information fusion can be done at different levels 
including the sensor data, the feature and the classifier levels [153, 154]. In this study the 
performance of fusion was evaluated at the feature and classifier level. In those cases, the 
problem could be formulated as having a dataset containing several feature sets Fj (instead of one 
as presented in Section 4.1) and the associated label vector y.  Each  of  those  feature  sets  can  
contain: 

- the features extracted from the signals produced by a given sensor (for instance all the 
features extracted from the GSR signals or all the features extracted from the EEG 
signals); 

- the features extracted from the signals corresponding to one of the two parts of the 
nervous system (for instance the features extracted from the PNS or those extracted from 
the CNS); 

- the different features extracted from the signals of a unique sensor (for instance a feature 
set containing the MI features extracted from EEG signals and another one containing the 
STFT features extracted from the same signals). 
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Under this formulation, fusion at the feature levels consists in combining the features sets Fj 
before classification, while fusion at the classifier level consists in classifying each feature set 
independently and combine the classification results in a second step. 

4.3.1 Feature level 

Fusion at the feature level can be done by concatenating the feature sets or by linearly or non-
linearly combining the features [153]. Concatenation of features from the peripheral and central 
nervous system has already been done in [113] with no improvement of the performance. 
However the features computed from the EEG signals were only standard features (see section 
3.3.1) not specially related to emotional processes which could explain their low performance for 
emotion assessment. 

In this study concatenation of the features was done to combine the features extracted from the 
different peripheral sensors (GSR, Respiration belt, etc.) in a unique feature set. It was also used 
to fuse peripheral features with features computed from the EEG signals. Concatenating NF 
feature sets F1, …, FNF  in a new feature set F consists in the concatenation of feature vectors 

j
if for each sample i and all feature set j: 

 1[ ]FNj
i i i if f f f  (4.13) 

4.3.2 Classifier level 

According to Sanderson et al. [153] the fusion at the classifier level (or post-mapping fusion) is 
divided in two categories: decision fusion and opinion fusion. In decision fusion, the estimated 
classes given by several classifiers are combined to decide which class will be attributed to a 
sample. The most common method for decision fusion is certainly majority voting: the class that 
has been chosen by most of the classifiers is attributed to the sample. However, decision fusion 
strategies are generally applicable only in particular cases (for instance the number of classifier is 
constrained by the number of classes for majority voting). This is why the present study focuses 
on opinion fusion. 

a. Opinion fusion: sum rule 

In opinion fusion, a classifier outputs a score for each class. This score generally represents the 
classifier confidence that the test sample belongs to a given class. Product and sum rules can then 
be applied to fuse the scores given by multiple classifiers [153]. In this work, the probabilistic 
outputs of the classifiers were used as a measure of confidence. The following sum rule was 
applied to fuse those output probabilities for a class i: 
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where Q is the ensemble of the classifiers chosen for fusion, |Q| the number of such classifiers 
and Pq( i | f) is the posterior probability of having class i according to classifier q. The final 
choice is done by selecting the class i with the highest value ki. It can be observed that ki can 
also be viewed as a confidence measure on the class given by the fusion of classifiers. 

b. Opinion fusion: Bayes belief integration 

One drawback of the sum rule is that it does not take into account the errors made by each of the 
classifiers [154]. As an extreme example, it is possible that a (very bad) classifier q classifies 
most of the instances of a class i into  a  class  j. Thus, when the class estimate ˆqy  of this 

classifier is i there is a high probability that the true class be in fact j. For Bayes belief 
integration [154], the errors produced by the classifiers are expressed by the probabilities 

ˆ( | )i qP y  computed from the confusion matrices obtained from the training set. The fusion is 

then performed by assuming classifiers independency and choosing the class i that maximizes 
the following probability: 

 1 | | | | 1

ˆ( | )
ˆ ˆ( | ... )
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i q
q Q

i Q Q
i

P y
P y y

P
 (4.15) 

where Q is the ensemble of classifiers used for the fusion and ˆqy  is the class estimate of classifier 

q. Notice that the probability 1 | |ˆ ˆ( | ... )i QP y y  could be computed directly from the training set 

without any assumption on classifiers independence. However it is generally difficult to estimate 
it reliably because of the low number of training samples compared to the high number of 
combinations of the |Q| classifiers estimates. 

4.4 Rejection of samples 

In classification, the samples that lie close to the decision boundary can be considered as less 
reliably classified than those that are far from the decision boundary. For this reason a classifier 
can assign a class to a sample only if it is sufficiently far away from the decision boundary (i.e. 
the confidence in the classification is sufficiently high). 

As a final step, rejection of trials that have a confidence value ki (determined using the method 
presented in Section 4.3.2.a) below a threshold reject was performed to improve classification 
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accuracy. When a sample is rejected because the confidence value is not sufficiently high, the 
sample is not classified and the classification accuracy is computed only on the samples with high 
confidence. The percentage of rejected samples as well as the accuracy computed on the 
remaining samples thus become a function of the reject threshold. A good value for reject would 
be the one which provides a compromise between accuracy maximization and rejection rate 
minimization. This approach is taken is chapter 6. 
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Chapter 5 Assessment of emotions elicited by visual stimuli 

5.1 Introduction 

Among all the senses, the visual modality is the one that has the largest capacity (i.e. it can carry 
a large amount of information in a given time) [155]. It is thus not surprising that, in HMI, most 
of the information is communicated to the user through the visual modality (for instance via 
screens). Consequently, recognizing visually elicited emotions is important to enhance affective 
computing methods. In this chapter, images were chosen as visual stimuli to elicit emotions. The 
performance of several methods to assess the valence and arousal dimensions of these emotions 
from physiological signals was then analyzed. Since this work uses images as stimuli, its results 
can also have some impact on the automatic affective annotation of multimedia data (see Section 
1.2.3.c). 

Section 5.2 describes how an emotional database of physiological features was constructed. In 
Section 5.3 different classes were defined in the valence-arousal space and the classification 
methodology employed to recognize them are presented. Section 5.4 discusses the results 
obtained and stresses the interest of EEG features alone as well as fused with other peripheral 
features in emotion assessment. 

5.2 Data collection 

This section details the creation of a database of physiological features where emotions, defined 
as classes in the valence-arousal space, where elicited by using images. It explains how the image 
stimuli where chosen, describes the protocol designed to acquire the data and finally presents the 
extracted features. 

5.2.1 Visual stimuli 

In this study we used a subset of images from the 700 emotionally evocative pictures of the IAPS 
(International Affective Picture System [54]). Each of these images has been extensively 
evaluated by north-American participants, providing valence and arousal values on nine points 
scales (ranging from 1 to 9). Experimentation showed a 0.8 correlation with evaluations 
performed by Europeans [156]. Each image is associated with average arousal µA and valence µV 
computed from these evaluations as well as with their standard deviations A and V. However, as 
observed during our experiments, feelings induced by an image on a particular participant can be 
very different from the ones expected. This is likely due to difference in past experience. Self-
assessment of valence/arousal was therefore performed in the present study by each participant 
and for each image. Two different subsets of the IAPS images were presented to the participants, 
one to study the valence dimension (valence subset) and the other to study the arousal dimension 
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(arousal subset) of emotions. The complete list of the pictures presented to the participants can be 
found in Appendix C. 

To construct the valence subset, 50 negative and 50 positive images were selected according to 
the following constraints: 

negative images: 5; 3; 2A V V ; 

positive images: 5; 7; 2A V V . 

The constraint on the mean arousal allows keeping only images that have high arousal and thus 
intense positive or negative content. The constraint on the mean valence is useful to distinguish 
negative from positive images while a low standard deviation ensures stability in the judgments 
of the participants (i.e. there is a high probability that a participant rates an image with a valence 
close to the mean IAPS valence). Pictures were than randomly selected from the subset of the 
IAPS images satisfying the constraints. 

For the arousal subset, 50 images of high arousal and 50 images of low arousal were selected 
The pictures were taken from the 3 subsets of the IAPS images defined by the following 
constraints: 

low arousal and neutral: 3; 4 6A V ; 

high arousal and positive: 5.5; 5A V ; 

high arousal and negative: 5.5; 5A V . 

50 images were chosen randomly from the “low arousal and neutral” set to construct the final low 
arousal set. To construct the high arousal set 25 images were chosen from both the “high arousal 
and positive” and the “high arousal and negative” sets. This procedure was employed because 
there are few pictures with high arousal and neutral valence. It is important that the high arousal 
set contains the same number of negative and positive images to ensure that the arousal axis will 
be assessed at the classification stage (and not the difference between neutral and negative 
images as could be the case if only negative image were present in this set). No constraint was 
added on the variance with the disadvantages that participants’ evaluations can strongly differ 
from the IAPS evaluations. However, if a constraint on the standard deviation would be added, 
the number of images would have been too low to construct sets of 50 pictures. 

By using the constraints above, some of the high arousal images of the arousal subset can also be 
part of the valence subset. This should be avoided because the arousal and valence sets were 
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presented consecutively to the participants (see Section 5.2.2) and the second time an image is 
presented, the intensity of the felt emotion can be weakened. For this reason the images were 
chosen in order to minimize the intersection of the arousal and valence subsets. This result in a 
total of 19 images present in both sets (the list of these images is given in Appendix C). 

5.2.2 Acquisition protocol 

We acquired data from 4 participants, 3 males, 1 female, aged from 28 to 49. One of the 
participants is left handed. Cortical activity was acquired by recording an EEG with 64 electrodes 
(see Section 3.1.1). The peripheral sensors used were the GSR sensor, the plethysmograph to 
measure BVP, the respiration belt to evaluate abdominal and thoracic movements, and the 
temperature sensor. All signals were sampled at 1024 Hz. 

For each experimental recording, the participant equipped with the above sensors was sitting in front 
of a computer screen in a bare room relatively immune to electromagnetic noise. The valence and the 
arousal sets of images were presented consecutively to the participant. For both sets, each trial 
corresponding to a visual stimulus was scheduled as described in Figure 5.1. A dark screen was first 
displayed for 3 seconds to “rest and prepare” the participant for the next image. A white cross was 
then drawn on the screen center for a random period of 2 to 4 seconds, to attract user's attention and 
avoid accustoming. An IAPS image was subsequently displayed for 6 seconds, while at the same time 
a trigger was sent for synchronization. The task of the participant was to watch each image and self 
assess the valence and the arousal of his / her emotion using a simplified version of the SAM [73] 
(see Figure 5.1). The valence/arousal scales were composed of 5 possible numerical judgments for 
each dimension with scales ranging from -2 to 2 for valence and 0 to 4 for arousal. This self-
assessment step was not limited in time to allow for a resting period between images. 

 

Figure 5.1. Description of the acquisition protocol. (left) the modified SAM used for self assessment. (right) the 
schedule of the protocol. 

According to the 5 factors defined by Picard [106] this protocol corresponds to an open-
recording condition since the participant knew that his / her physiological activity was recorded. 
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The emotions were event-elicited using  the  images.  The  emphasis  was  put  on  the  feeling of 
emotions rather than the expression of the emotion since participants had to self-assess their 
feelings. The complete recording was performed in a lab setting (special room dedicated to the 
recording). 

5.2.1 Features extracted 

For the EEG signals two feature sets were used for classification (see Section 3.3.2.a): 

- the EEG_Lateral feature set was employed for classification on the valence dimension; 

- the EEG_Area feature set was used for the classification on the arousal dimension. 

The choice of the EEG_Lateral feature set is motivated by the fact that studies have shown that 
the asymmetry index can be useful to discriminate positive from negative stimuli while Aftanas 
et al. [82] demonstrated that the EEG_Area features are significantly different for low and high 
arousal stimuli. Notice that most of the EEG_Area features concern the Occipital (O) lobe, which is 
interesting since this lobe corresponds to the visual cortex and subjects are stimulated with pictures. 

Concerning peripheral signals, HR was estimated from the blood pressure signal by using the 
method presented in Section 3.2.4. The 5 peripheral signals to analyze are therefore: GSR, BP, 
HR, respiration and temperature. Table 5.1 presents the features extracted from each of these 
signals over the 6 seconds epoch. They correspond to some of the standard features presented in 
Section 3.3.1. A total of 18 features were thus obtained for the peripheral signals. Since no post-
processing algorithm was applied to improve the peak detection on short time BVP signals (see 
Section 3.2.4) and since the minimum and maximum features are sensible to outliers, those 
features were not computed for the HR signal. 

Signal 
x  x  xMin  xMax  

BVP X X X X 
HR X X   

GSR X X X X 
Respiration X X X X 
Temperature X X X X 

Table 5.1. The 18 features extracted from the peripheral signals. 

For arousal classification, the EEG features and the peripheral features were concatenated as 
presented in section 4.3.1 to analyze the performance of fusion of peripheral and central 
information at the feature level. This step was not taken for valence classification as for this 
problem the classification accuracy obtained with peripheral features was at the random level (see 
Section 5.4.1). 
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5.3 Classification 

5.3.1 Ground-truth definitions 

The visual stimuli used in both the valence and arousal experiments were purposely chosen to 
belong to two distinct classes: negative vs. positive for the valence experiment and calm vs. 
excited for the arousal experiment. Since self-evaluations were also collected, the ground-truth 
can be defined either a-priori, based on the classes defined by the IAPS evaluations, or a-
posteriori using the self-evaluations. Some of the advantages and disadvantages of these two 
methods are discussed in Section 4.1.1.  

This section compares the IAPS evaluations to the self-assessment values and discusses the 
construction of the ground-truth for emotion assessment. For this purpose, the IAPS evaluations 
(ranging from 1 to 9) were linearly projected in the same range as the self-assessment values 
(ranging from -2 to 2 for valence and 0 to 4 for arousal) using the following formulas: 

 

( 1)
2

( 5)
2

IAPS

IAPS

AA
VV

 (5.1) 

VIAPS and AIAPS being the original IAPS valence / arousal values and V and A being the new 
valence / arousal values. 

a. Valence experiment 

As can be seen from Figure 5.2 the valence distribution of the self-evaluations is very close to the 
one obtained from the IAPS evaluations. This tends to validate that the visual stimuli elicited the 
expected emotions: either positive or negative emotions. However, 3 of the 4 participants judged 
some of the stimuli as being of neutral valence with 79% of those stimuli belonging to the 
positive class according to the IAPS evaluations. Moreover only one participant ranked three of 
the stimuli with a value of 2. Those results demonstrate that, according to the 4 participants self-
assessments, positive emotions were more difficult to elicit than negative emotions. 

Concerning arousal evaluations, the IAPS and self-assessment distributions were found to be 
quite different. For instance most of the stimuli were self-evaluated with an arousal value of 1 
while, because of the constraints applied for the selection of images, none of the stimuli had an 
IAPS arousal value below 2. This result can be explained by two factors. First, the stimuli may 
have elicited lower arousal than expected. Secondly, the participants may have used the complete 
scale to report for the arousal difference between the stimuli (which is a measure relative to the 
set of stimuli) rather than to report absolute arousal value. When looking at the IAPS arousal 
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histogram with a higher number of bins than in Figure 5.2 (which is possible because the IAPS 
values are means computed from a 9 points scale), the histogram computed in the interval [2,4] is 
then very similar to the one obtained from the self-assessment. This encourages the argument of 
relative self-assessment and shows that the self-assessed arousal values were not so different 
from the IAPS evaluations. 

Since the self-assessments were close to the IAPS evaluations, particularly for valence 
evaluations, the ground-truth was defined based on the IAPS evaluations only. This allows to 
construct two classes of interest: one class corresponding to the positive stimuli and one 
corresponding to the negative stimuli. 
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Figure 5.2. Histograms of the IAPS and self evaluations (valence and arousal) for the valence experiment. For 
easier comparison of IAPS evaluations and self evaluations the IAPS values have been normalized to the same 

range as the self evaluations. 

b. Arousal experiment 

As for the valence experiment, the distribution of valence obtained from the IAPS and self-
assessment values are quite similar (see Figure 5.3). The higher number of images self-evaluated 
as having a valence of 1 compared to the IAPS evaluations is mostly due to participants 
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evaluating originally neutral images (valence value to 0) as slightly positive. This is particularly 
true for participant 3 as can be seen from Figure 5.3. 
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Figure 5.3. Histograms of the IAPS and self evaluations (valence and arousal) for the arousal experiment. For 
easier comparison of IAPS evaluations and self evaluations the IAPS values have been normalized in the same 

range as the self evaluations. 

For arousal, the histograms from the IAPS and self-assessment values were again different. Due 
to the constraints applied to construct sets of low and high arousal stimuli, two peaks can be 
observed for the arousal IAPS histogram. However, those peaks are not clearly visible for the 
histogram obtained from self-assessments. Only participant 3 obtained similar peaks with a high 
number of images rated with arousal values of 0 and 2. Since no constraint was applied on the 
variance of arousal during the selection of the stimuli, the histogram difference is certainly due to 
a large variability of the arousal judgments across participants and demonstrates the difference in 
evaluation that can be observed for the same stimuli. 

Since the distributions of self-evaluations and IAPS values were found to be different for arousal 
and the purpose of this experiment is to assess the arousal dimension of emotions, different sets 
of classes were constructed based on either the IAPS values or the self-assessments. 



Chapter 5 

96 

The images used for the arousal assessment were purposely chosen to be of either very low or 
very high IAPS arousal values, that is they essentially should have belonged to 2 classes. For this 
reason, when using the IAPS judgments as a basis to build ground-truth classes, it was natural to 
divide data into two sets, one for the calm emotions and the other for the exciting emotions. In 
this way, two well balanced ground-truth classes of 50 patterns each were obtained. 

It is more difficult to determine classes from the self-assessment values. As shown by the 
histograms of arousal, the evaluations are not equally distributed across the 5 choices and in 
particular do not readily correspond to 2 classes. Taking this into account, two different 
classification experiments based on the self-assessment were done:  

- with 2 ground-truth classes, were the calm class contained patterns judged in the calmest 
category and the exiting class the others, 

- with 3 ground-truth classes (calm, neutral, exciting) were the calm class corresponded to 
the first of the 5 judgment values, the neutral class to the second and third, and the 
exciting class to the last two. 

Both class definitions led to unbalanced classes, especially for the 3-classes problem: the exciting 
class contained very few samples (6 to 23 depending on the participant) compared to the calm 
class (32 to 45) and the neutral class (32 to 55). 

5.3.2 Methods 

An  ANOVA  test  was  applied  on  the  features  of  the  EEG_Lateral feature set to control that 
significant differences were observed in the asymmetry scores between the positively and 
negatively valenced emotional states. This was done to verify the precedent findings concerning 
alpha lateralization in the case where emotions are stimulated by pictures and also to check if the 
asymmetry scores can be used as features for the purpose of classification. Since classification 
was done in an intra-participant framework (a model was designed for each participant) the 
ANOVA test was run separately for each participant. For the EEG_Area feature set, no ANOVA 
test was applied because Aftanas et al. [82] already demonstrated the interest of those features for 
arousal discrimination in a protocol very similar to the one proposed in this chapter. 

A Naïve Bayes classifier was first applied on the features of each participant. This classifier is 
known to be optimal under the assumption of conditionally independent features and in the case 
of complete knowledge of the underlying probability distributions of the problem. Modeling the 
underlying distributions is unfortunately difficult in our study, since very few samples are 
available to construct them; a performance decrease is thus unavoidable. For the sake of 
comparison, classification based on LDA was also performed. In this case the distributions are 
assumed to be multivariate Gaussians with no assumption of independence. Due to the rather 
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limited number of patterns, a leave one out cross validation was preferred to a k-fold strategy in 
order to maximize the size of the training set (see Section 4.1.2). Results presented in the next 
section are the percentage of well classified examples. 

5.4 Results 

5.4.1 Valence experiment 

An ANOVA test was applied on the EEG_Lateral features to check for a difference in mean 
between the two valence conditions (Table 5.2). Contrary to what was expected from Davidson’s 
theory [19, 81], no significant differences were found in the frontal area. This could be due to the 
a lower signal to noise ratio in this region because of facial muscular artifacts that were not 
removed. Another explanation could be that the lateralization of alpha waves was demonstrated 
for approach and withdrawal stimuli [19] which are different from positive and negative stimuli. 
However the lateralization was significant in areas located more at the rear of the brain such as 
parietal and occipital areas. Those results could partly be explained by the nature of the stimuli 
since visual processing takes place in occipital areas. Moreover, the absence of alpha hemispheric 
lateralization for the frontal areas and a significant effect for the parietal area (P3-P4 electrodes) 
was also found in [157] where the participants had to mentally review film sequences. Since 
some of the features were shown to have significantly different means between the two 
conditions, this feature set was used for the purpose of classification. 

Electrodes pairs p-values 
Paticipant 1 Paticipant 2 Paticipant 3 Paticipant 4 

Fp2-Fp1 0.78 0.62 0.57 0.30 
AF4-AF3 0.22 0.71 0.59 0.70 

F4-F3 0.72 0.43 0.27 0.79 
FC4-FC3 0.83 0.17 0.80 0.06 

C4-C3 0.52 0.20 0.53 0.45 
CP4-CP3 0.75 0.08 0.68 0.04 

P4-P3 0.39 0.10 0.09 0.13 
PO4-PO3 0.01 0.08 0.01 0.12 

O2-O1 0.11 < 0.01 0.59 0.01 
Table 5.2. p-values of the ANOVA test applied on the lateralization features for the two groups defined by the 
IAPS classes (negative vs. positive visual stimuli) and for each participant. p-values < 0.1 are highlited in gray. 

The Naïve Bayes classifier accuracies obtained on both the peripheral and EEG features were all 
around the random level of 50%. Since better results were obtained with an LDA (Figure 5.4) on 
the EEG feature set this suggest that the Naïve Bayes assumption of conditional independence is 
not valid in this case. By looking at the covariance matrices of the normalized EEG features for 
the two classes, some features were found to be correlated. This shows the EEG features 
conditional dependency and explains the poor results of the Naïve Bayes classifier. 
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The accuracies obtained with the LDA for the peripheral and EEG features are presented in 
Figure 5.4. The mean bars on the right of Figure 5.4 represent the average accuracy obtained for 
the 4 participants (P1 to P4). As can be seen from this figure, the accuracy is higher than the 
random level for the EEG features and around the random level for peripheral features. The 
average EEG accuracy across participants is of 58%. This result demonstrates the importance of 
EEG features for better assessment of the valence dimension of emotions and shows that EEG 
signals should not be neglected for the assessment of emotions from physiological signals. The 
lower accuracy obtained for peripheral features is not surprising since the peripheral activity, 
more specifically the autonomous nervous system activity, is known to better correlate with the 
arousal dimension than with the valence dimension of emotions [7, 87]. 
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Figure 5.4. LDA accuracy for classification of negative and positive stimuli. 

5.4.2 Arousal experiment 

When using the two arousal ground-truth classes defined according to the IAPS judgment, the 
Naïve Bayes classifier average accuracy across participants exceeded the chance level only for 
EEG features (54% vs. 50%). The LDA classifier performed slightly better, with an average 
accuracy of 55%, 53% and 54% for EEG, physiological and fused features respectively. Those 
relatively low accuracies are likely due to large differences between the IAPS values and the 
actual emotion felt by the participant (as detailed in section 5.3.1.b). We concluded that in our 
experimental setting the IAPS arousal judgments could not be recovered from actual 
physiological measurements, and had to use self-assessments. However, using the LDA, the 
accuracy of peripheral features is higher than the random level. This confirms that the peripheral 
features computed in this study are more suitable for classification of the arousal dimension than 
the valence dimension of emotions. 

Results with ground-truth classes obtained from self-evaluations are presented in Figure 5.5 and 
Figure 5.6. The percentage of well classified patterns for the four participants and the average 
across participants are shown. Compared to accuracies obtained with the ground-truth defined by 
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the IAPS judgments, accuracies obtained with the self-assessed ground-truth are higher, 
especially for participants 2 and 3 (Figure 5.5). This tends to confirm that physiological signals 
better correlate with personalized self assessment of emotion than with the generalized IAPS 
judgments. The best performance of 72% is obtained by using the EEG signals of participant 2 
and a Naïve Bayes classifier. A similar result is obtained with the LDA (70%). For both 
classifiers, the average accuracy obtained with EEG signals is higher than the one obtained from 
peripheral signals. Those results stress again the added value of using EEG signals for emotional 
assessment. 
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Figure 5.5. Classifiers accuracy with 2 classes constructed from self-assessment. 

It is worth mentioning that there are two drawbacks to the problem of unbalanced classes in the 
case three arousal classes are assessed:  (i) some of the classes are strongly undersampled and (ii) 
the accuracy measure is less reliable since there are more samples belonging to one of the class 
than to the others. The first drawback implies that the probability distributions of the 
undersampled classes cannot be correctly determined which results in a weak assessment of those 
classes. Concerning the second drawback, since the number of samples in each class was equal 
for the two feature sets and similar across participants, we believe that the comparison of the 
emotion assessment performances based on this measure of accuracy is still reliable. 

Figure 5.6 shows results for the three class problem. Again, the features extracted from the EEG 
of participant 2 yield the best result of 58% of well classified patterns (compared to a chance 
level of 33%). Participant 4 still obtained the worst accuracy. This is likely due to the high 
number of eye-blinks that were found in the EEG signals of this participant (approximately one 
blink per second). Participant 1 obtained better results with a Bayes classifier than with a LDA. 
Extreme results for participants 2 can be explained by a better understanding of the self 
assessment procedure since he had a good knowledge about emotions, and was likely to 
accurately evaluate his feelings. 

The results obtained for fusion by concatenation are different depending on the participant, the 
classifier and the number of defined classes. For the Naïve-Bayes classifier, the concatenation of 
peripheral and EEG features slightly increased the average accuracy for the 3 arousal classes and 
decreased it for 2 arousal classes. For the LDA, concatenation of features increased the average 
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accuracy by 5% for 3 arousal classes and did not affect it in the other case. Thus the LDA seems 
more appropriate for fusion at the feature level, which could be explained by the weak 
assumption of conditional independence of the Naïve-Bayes classifier. Also, fusion provides 
more robust results since some participants had better scores with peripheral signals than with 
EEG's and vice-versa. 
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Figure 5.6. Classifiers accuracy with 3 classes constructed from self-assessment. 

5.5 Conclusion 

In this chapter two categories of physiological signals, from the central and from the peripheral 
nervous systems, have been evaluated on the problem of assessing the arousal and the valence 
dimension of emotions elicited by IAPS images. Those assessments were performed as 
classification problems, with ground-truth valence / arousal values provided either by the IAPS or 
by  self-assessments  of  the  emotion.  Two  classifiers  were  used,  a  Naïve-Bayes  classifier  and  a  
LDA. 

Results showed the usability of EEG's in both arousal and valence recognition and the interest of 
EEG features over peripheral features. Moreover, the fusion of EEG features with peripheral 
features improved the assessment performance. This improvement was better with a LDA than 
with the Naïve-Bayes classifier. Results also markedly improved when using classes generated 
from self-assessment of emotions. When trying to assess emotions, one should avoid using 
predefined labels but rather ask for the user’s feeling. However, by using self-assessment the 
generated classes were unbalanced which gave rise to classification problems such as the 
undersampling of some classes. Moreover, using the self-assessments as a ground-truth implies 
that the user is an expert in evaluating his / her feelings, which is not always the case as discussed 
in Section 4.1.1. 

Future work on arousal assessment will first aim at improving on the current results by using other 
non-linear classifiers, such as Support Vector Machines. Feature selection and more sophisticated 
fusion strategies will also be examined, jointly with the examination of other features such as 
temporal characteristics of signals that are known to be strongly implied in emotional processes. 
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Chapter 6 Assessment of self-induced emotions 

6.1 Introduction 

Fairly recent psychological studies regarding the relations between emotions and the brain have 
uncovered the strong involvement of cognitive processes in emotions [61, 79-81, 84, 158]. 
Among those studies, some used the recall of past emotional events to self-induce emotions [84, 
158]. This method has the advantage of activating many brain areas because cognitive processes 
related to memory retrieval are located throughout the brain. Asking participants to self-induce 
emotions is also useful because the remembered emotions will correspond with the emotion that 
is required by the protocol. This allows for an optimal control over the number of emotions that 
are elicited per class. From a classification point of view, this is interesting because it avoids the 
problem of unbalanced classes encountered in Chapter 5. Other advantages of this elicitation 
method are presented in Section 4.1.1. To our knowledge, despite of all those advantages, this 
method has never been used for emotion assessment from EEG features (see Section 2.3). 

Having in mind the previous considerations, the present Chapter aims at investigating the 
usefulness of EEG and peripheral signals in a self-induction paradigm. In order to be as much 
application independent as possible, we used the valence-arousal space as a prior model to define 
three emotional classes of interest that are calm-neutral, positive-excited and negative-excited. 
The protocol and the features computed from the recorded signals are presented in Section 6.2. 
Section 6.3 describes the complete framework used for emotion recognition. Finally, results are 
presented discussed in Section 6.4. 

6.2 Data acquisition 

6.2.1 Acquisition protocol 

In [106] five factors that can influence recordings were defined: subject-elicited vs. event-
elicited, laboratory setting vs. real world, focus on expression vs. feeling of the emotion, openly-
recorded vs. hidden recording and emotion-purpose vs. other-purpose. The following protocol 
description addresses those five factors as well as those emphasized in Section 2.3. 

In the present study a self-induced method, using recall of strong emotional episodes, is 
employed to elicit reliable and short time emotions. An episode is defined as a situation that 
lasted for a several minutes and potentially containing several events and actions with the same 
emotional orientation. An example is the funeral of a relative including events such as moments 
of the ceremony and the burial in itself. The elicited emotions are considered reliable because (i) 
thinking of the same episodes ought to produce similar reactions from one trial to another, (ii) 
emotional episodes are often stored in memory because the emotions felt were quite intense,(iii) 
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emotional recall is a cognitive task that induces EEG activity [84, 158] as well as modify 
peripheral activity [6, 92]. 

Compared to other studies [93, 106, 111], where emotions are elicited and assessed over several 
minutes, the duration of an emotion epoch in this study is merely 8 s. This epoch duration was 
chosen because it is the maximum duration that allows maintaining the total length of the 
protocol below one hour to avoid participant fatigue. Within the requirement of the one hour 
duration this epoch is maximized for three reasons. Firstly, some peripheral features need to be 
determined over a sufficiently long period of time in order to be reliably computed; this is for 
instance the case for statistical features extracted from HR. In general, an epoch of 8 s should 
suffice for this purpose if we do not consider the very low frequency features such as low 
frequency HRV [96]. Secondly, recalling past episodes and eliciting the corresponding emotions 
are difficult tasks and participants might need a few seconds to accomplish them. Thirdly, the 
reaction time of peripheral activity from the moment where the emotion is elicited is of several 
seconds, with the GSR being the slowest response with a lag around 1-4 seconds [88]. 

The 11 participants (7 males, 4 females) who took part in the study were aged from 26 to 40, one 
being left-handed. One week before the recording, participants were told to retrieve from their 
memory one excited-positive and one excited-negative episode that had occurred in their life and 
that they consider as being most powerful. On the day of the experiment, each participant was 
given a consent form where the context, the goal and a short explanation of the experiment were 
provided. Participants had to sign this consent form to continue further and could stop the 
experiment whenever they wanted. After signing the consent form, sensors were attached to the 
participant who was seated in front of a computer screen. A precise description of the protocol 
was provided with a support demonstration. This type of experiment corresponds to Picard’s 
factors for an open-recording (participants knew they were recorded), emotion-purpose 
(participants new the objective of the study), and laboratory settings (participant are recorded in a 
controlled environment). 

The complete recording session was divided into trials. During each trial participants had to 
accomplish a particular task according to the visual cue displayed on the monitor after a random 
duration display of a dark screen (Figure 6.1). This task could be to self-generate one of the two 
excited emotions by using the past emotional episodes of their life as a support, or to stay calm 
and relax in order to define a third emotional state called calm-neutral. A total of T = 300 trials 
(100 trials per emotional state) were performed in a random order. Since facial muscle artifacts 
can contaminate EEG signals, participants were encouraged not to express their feelings through 
facial expressions, not to blink, and not to close their eyes during the 8 s of recordings (despite of 
this instruction some involuntary facial expressions artifacts can still occur in the signals). 
Emphasis was thus put on the feeling of emotions rather than on the cognitive task of 
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remembering and on the motor expressions of emotions. A resting period of unlimited duration to 
relax and stretch muscles was proposed to participants after each block of 30 trials. As can be 
seen from Figure 6.1, the chosen emotional states do not cover all areas of the valence-arousal 
space, especially in the bottom half of the space. This choice was made because there are actually 
few emotions that are calm-negative or calm-positive [23, 54]. 
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Figure 6.1. (left) The different emotional classes represented in the valence-arousal space and their associated 
image. (right) schedule of the protocol and detail of a trial. 

Data were recorded using the Biosemi Active II system. EEG signals were recorded using 64 
surface electrodes. Plugged on the same system to simplify synchronization, other sensors were 
used to record peripheral activity: a GSR (Galvanic Skin Response) sensor to evaluate sudation, a 
respiration belt to record abdominal expansion and a plethysmograph to measure blood pressure. 
Both EEG and peripheral signals were sampled at 1024 Hz. 

After data acquisition, participants were asked to report verbally on their experiences in an 
informal interview. Participants were not asked to provide a detailed description of the chosen 
episodes because we believe that for personal and ethical reasons a participant may hesitate to 
refer to his / her strongest emotional experiences. For this reason the differences in the cognitive 
tasks between different trials could not be fully controlled. However, as argued in [84] the known 
effectiveness of mental imagery as an elicitator of powerful emotions can compensate this 
problem. 

The present protocol for off-line acquisition of physiological signals is very close to those 
encountered in the BCI community so that the conclusions drawn from this study may also have 
some impact in this direction. An emotion elicitation task can then be regarded as a mental task 
that the user tries to perform in order to communicate his / her feelings. This can be useful for 
severely disabled people that cannot directly express their emotions. Current BCI paradigms [27, 
29, 30] aim to detect brain activity that corresponds to complex tasks (mental calculus, 
imagination of finger taping, etc.) not related to the objective of the user (moving a mouse cursor, 
choosing a letter, etc.). Generally the user needs training before using such systems. In case the 
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objective of the user is to express an emotion, classical BCI tasks (e.g., imagination of finger 
tapping) seem to be really far from this objective and it is more appropriate to use tasks such as 
the remembering of a similar emotional episode. 

6.2.2 Feature extraction 

From the EEG signals, 2 feature sets were extracted to analyze their performance for emotion 
assessment. Those features were computed on the last 7.5 seconds of the signal. The first 0.5 
seconds were removed for the two following reasons. Firstly, this time window was not expected 
to contain emotional information related to the requested emotional episode since it is rather 
unlikely that a participant start to remember the episode directly after the display of the 
associated image. Secondly, this part of the signal contains the P300 [159] wave and may contain 
emotional information related to the nature of the presented image (smiling or sad smiley) which 
is not the stimulus studied here. 

The 2 feature sets computed from the EEG signals are (See Section 3.3.2.a): 

- the EEG_STFT feature set, obtained from the spectrogram of the EEG signals, containing 
in that case 9 64 29 16704  features (9 frequency bands, 64 electrodes and 29 time 
frames); 

- the EEG_MI feature set, containing the mutual information between each pairs of the 64 

electrodes with a total of 
(64 1)64 2016

2
 features. 

As can be seen, both feature sets are of very high dimensionality. 

Peripheral signal Standard features Advanced features Reference 
x  x  x  

GSR X  X DecRate
GSRf , DecTime

GSRf  Section 3.3.2.b 
BVP X     
Heart Rate (HR) X X X   
Respiration X X X Pow

Respf , DR
Respf  Section 3.3.2.e 

Table 6.1. The features extracted from the peripheral signals 

The peripheral features extracted from the corresponding signals are given in Table 6.1. A 
detailed explanation of the features can be found in Section 3.3.1 for the standard features. The 
“Reference” column indicates the section of Chapter 3 that corresponds to an explanation for the 
given advanced features. All the peripheral features were computed from the complete duration 
of the 8 seconds trial and concatenated in a feature vector. The HR signal was computed from the 
BVP signal of the plethysmograph as discussed in Section 3.2.4. No a-posteriori correction of the 
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wrongly detected beats was applied because of the short duration of a trial. For a given trial, all 
the peripheral features were concatenated in a unique feature vector containing a total of 18 
features. The peripheral feature set constructed by that way was called Peripheral. 

6.3 Classification 

6.3.1 The different classification schemes 

From the protocol detailed in Section 6.2.1, the ground-thruth is easily defined by attributing to 
each trial the corresponding label of calm, positive-excited and negative-excited. However, to 
analyze the classification performance in different classes’ formulations, the five classification 
tasks described bellow were tested. 

 

Figure 6.2. Complete process of trial acquisition, classification, fusion and rejection for a given participant. As 
defined in Chapter 4, ki is the confidence measure of class i after opinion fusion and reject is the rejection 

threshold. 

Since each recorded trial corresponds to a particular emotional state, it is easy to formulate a 
classification task (called CPN for "calm", "positive", "negative") where the three ground-truth 
classes c,  p,  n correspond to calm-neutral, positive-excited and negative-excited patterns. A 
target class vector yCPN = [y1…,yi,…,y300]T is constructed, where yi  { c, p, n } represents the 
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class of the trial i. We also address other classification tasks by constructing different target 
vectors to distinguish between the following emotional states: negative excited vs. positive-
excited (NP), calm-neutral vs. positive-excited (CP), calm-neutral vs. negative excited (CN), 
calm vs. excited (CE) by regrouping samples of the positive-excited and negative-excited states. 

As summarized in Figure 6.2, there are three sets of features, Peripheral, EEG_STFT and 
EEG_MI that contain respectively peripheral features, STFT EEG features and MI EEG features 
for all trials. Those feature sets are associated with the class vectors yCPN, yNP, yCP, yCN and yCE, 
depending on the classification task to address. 

6.3.2 Classifiers 

Since the EEG feature sets (EEG_STFT and EEG_MI) are of very high dimensionality (thousands 
of features) compared to the number of samples in the sets (200 or 300 depending on the 
classification scheme), there is always a linear boundary that can completely separate training 
samples of the different classes. For this reason only linear classifiers were applied on those 
feature sets. Another advantage of using linear classifiers is that they give better generalized 
solutions. The issue of feature space reduction was also investigated as detailed in Section 6.3.3. 

The following linear classifiers were applied on the EEG feature sets: 

- the LDA because it can provide probabilistic output which is useful for the purpose of 
fusion. Since the EEG feature spaces are of high dimensionally it sometimes occurred that 
the covariance matrix of the features was singular, in that case the diagonalized version of 
the LDA was employed; 

- the linear SVM since they are known to have good performance in high dimensional 
spaces [138]; 

- the probabilistic linear SVM to obtain probabilistic output; 

- the RVM since, as the SVM, it should perform well in high dimensional spaces and 
provides probabilistic outputs. 

The above mentioned classifiers were also applied on the Peripheral feature set. Since this 
feature set is of a lower dimensionality than the EEG feature sets, the performances of the 
following non linear classifiers were also investigated: 

- the QDA to obtain quadratic decision boundaries together with probabilistic outputs; 

- the RBF SVM, where the RBF kernel size was chosen according to the procedure 
explained in Section 4.1.3.c; 
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- the probabilistic RBF SVM to obtain probabilistic output. 

In the present study, different classifiers were trained on the three feature sets to recover the 
ground truth classes. A classifier was trained separately for each participant and the accuracy of 
each classifier was evaluated using the leave-one-out strategy. This involves using each feature 
vector in turn as the test set and the remaining ones as the learning set. At each step, a classifier is 
trained from the learning set and then applied to the test sample. This leave-one-out strategy was 
chosen since it provides the maximum possible size of the learning set. This is preferable in this 
problem because the number of samples (N=300) is very low compared to the size of the EEG 
feature spaces. 

6.3.3 Reduction of the feature space 

In order to study the effects of feature space reduction on the classification accuracy, several 
methods were tested: the Fast Correlation Based Filter (FCBF) presented in Section 4.2.1c and 
filtering based on the Fisher criterion presented in Section 4.2.1b. The classification accuracy of 
the LDA and the linear SVM were evaluated for different parameter values of these feature 
selection methods. Since both these methods are computationally expensive, they were tested on 
one participant only, namely participant 1 (who was the first recorded participant). The reduction 
of the EEG_STFT feature set was addressed since this is the one that contains the higher number 
of features. 

The FCBF parameter of the FCBF algorithm represents the minimum correlation value with the 
class labels y that a feature f should have in order to be selected. This parameter is thus related to 
the number of selected features and the higher the parameter the lower the number of selected 
features. In this study, the value of this parameter ranged from 0.05 to 0.3 with a step of 0.05. The 
higher bound of 0.3 was chosen because most of the features had a correlation value below this 
value (for instance, for the CPN classification scheme only one feature has a correlation value 
higher than 0.3). At the lower bound of 0.05 approximately half of the features are removed in 
the first step of the FCBF algorithm. 

The Fisher criterion defined in Section 4.2.1b can be used to rank the features by relevance order. 
It is then possible to select only the most relevant features and filter out the others, which allows 
to compute the classification accuracy for a given number of selected features. In this study, the 
performance of this filter technique was studied for numbers of features taken in the interval [1 
FEEG_STFT] (where FEEG_STFT is the number of features in the complete EEG_STFT feature set). 
This method was used only for the CPN classification scheme. 
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6.3.4 Fusion and rejection 

To investigate the advantages of fusion of several physiological feature sets, classification 
accuracy was studied for both of the methods presented in Section 4.3: fusion at the feature level 
and fusion at the classifier level. Fusion was done independently for each participant and the 
combination of the following feature sets was studied: 

- EEG_STFT and EEG_MI feature sets, to analyze the performance of fusion of different 
feature sets computed from the same EEG modality, 

- EEG_STFT, EEG_MI and Peripheral to analyze the performance of fusion of information 
originating from the CNS with information originating from the PNS. 

Fusion at the feature level was done by the concatenation of features as explained in Section 
4.3.1. The fusion at the classifier level was done by opinion fusion, using the sum rule detailed in 
Section 4.3.2a. In this case, a classifier was chosen for each feature set to form the ensemble Q of 
classifiers (with |Q| = 2 or |Q| = 3 depending on the number of feature sets used for fusion). The 
ensemble Q was composed of the classifiers with probabilistic outputs that generally had the best 
accuracy on the associated feature set. 

As a final step the method detailed in Section 4.4 to reject samples with a low confidence ki value 
was applied to the CPN, NP and CE classification scheme. Those schemes were chosen because 
they are the most relevant for HCI applications. To analyze the performance of this rejection, the 
average accuracy across participants computed on the non-rejected samples and the percentage of 
rejected samples were plotted as a function of the reject threshold (taken in the range [0 1]). Since 
the label of each trial is already determined after fusion, it is possible to compare the number of 
badly classified trials that are rejected to the correctly classified ones. The sums over participants 
of the correctly classified and badly classified samples that are rejected are also plotted as a 
function of the reject threshold. From the analysis of those curves, a value for the reject threshold 
that improves the accuracy while keeping the percentage of samples reasonably low will be 
suggested. 

6.4 Results 

6.4.1 Participants reports and protocol validation 

Out of the 11 recorded participants 10 reported a successful elicitation of the emotions by 
recalling emotional episodes. As can be seen from Figure 6.5, which represents the average 
accuracies obtained from the 10 participants cited above, the peripheral activity is useful to 
distinguish between different classes of emotions. This implies that different patterns of 
physiological activity where induced for each emotional task and thus supports the idea that 
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emotions were successfully elicited. However, all participants reported that it was really difficult 
to stay concentrated throughout the entire recording. A recurring observation was also that 
switching from one emotion to another very quickly was sometimes confusing and hard to 
accomplish. The effects of such observations can be missing trials where the participants did not 
accomplish the requested task, the elicitation of the undesired boredom emotion which can 
interfere with positive and negative excited trials, and noisy EEG signals due to fatigue. The 
emotions used in the two excited categories were also different from a participant to another (for 
instance a participant elicited a negative-excited emotion by remembering a past episode where 
he felt fear while another participant used an episode where he felt anger). 

In the protocol presented in Section 6.2.1 brain activity can be induced by two cognitive 
components: the actual events of the episode (for instance thinking of someone crying) and the 
emotion elicitation following the event. Since our aim is to detect emotions, it is important to 
control that the events used to induce emotions were not always the same to ensure that what is 
detected  from  brain  signals  is  the  emotion  and  not  the  cognitive  task  related  to  the  event  (for  
instance mental imagery of the act of crying). Since participants did not report about the episodes 
they used to induce emotions it is difficult to control for this, however the following remarks lead 
us to assume the protocol is valid: 

- two participants reported that they thought of different episodes within the same category 
(i.e. positive-excited and negative-excited). The classification accuracy obtained from the 
signals of one of those two participants actually corresponds to the best results across the 10 
participants while the other one obtained average accuracies; 

- one participant reported that he thought to the episodes without concentrating on the feeling 
of emotions which resulted in a weak emotion elicitation. All the accuracies computed from 
the signals of this participant are at the random level; 

- since an episode was defined as including several emotional events of the same category, it is 
unlikely that the participants always thought of the same event to elicit one of the emotions; 

- the participants were explicitly told to focus on the feeling of emotions and emotions were 
successfully elicited as stated above. 

Notice that the participant who did not concentrate on the feeling of emotions was removed for 
further analysis since he did not follow the protocol properly. 

6.4.2 Results of single classifiers 

Figure 6.3, Figure 6.4 and Figure 6.5 respectively present the mean accuracy across participants 
for the EEG_STFT features, the EEG_MI features and the Peripheral features. The accuracies of 
different modalities and classifiers are compared below to answer the following questions: what 
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is the effectiveness of EEG and peripheral features to assess emotions according to the different 
classification schemes and which classifiers should be used for latter fusion of feature sets. 

The EEG_STFT features provided interesting results with a mean classification accuracy of 63% 
for three classes and a SVM classifier (the random level is at 33% accuracy). The best average 
accuracy for two classes is obtained from the CP classification task with nearly 80% of well 
classified trials (random level at 50%), followed by the CE and NP classification tasks with 
respectively 78% and 74% of accuracy. For all participants and all classification tasks, the results 
are higher than the random levels (33% for three classes and 50% for two classes). The EEG_MI 
features seem to be a bit less suitable for emotion classification than EEG_STFT features with an 
approximate decrease of well classified trials of 2% to 4%, except for the NP classification task 
where a slight performance increase was noted. It is hard to compare those results to the state of 
the art because there are only few studies using EEG. In the previous study reported in Chapter 5 
the  best  accuracy  on  two  and  three  arousal  classes  was  respectively  of  72%  and  58%.  In  this  
study the highest accuracies for the CE and CPN classification tasks are respectively of 88% and 
86.3%. The best result for a two class task is obtained on the NP task with 96% of accuracy. In 
[115] an accuracy of 29% was obtained for 6 different emotional classes while the accuracy was 
of 42% for identification of 5 emotional states in [113]. Our results are thus superior to the 
previous studies using the EEG modality for detecting emotions expressed in the valence-arousal 
space and in alignment with results obtained on emotional labels. 
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Figure 6.3. Mean classifier accuracy across participants for the EEG_STFT feature set and the different 
classification schemes. The bars on top of each column represents the standard deviation across participants. 
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Figure 6.4. Mean classifier accuracy across participants for the EEG_MI feature set and the different 
classification schemes. The bars on top of each column represents the standard deviation across participants. 

To check for the usability of this emotional protocol as a new BCI paradigm our results were 
compared to BCI accuracies. In [160] the authors showed that around 75% of the 99 untrained 
participants that took part in a two class BCI paradigm without feedback obtained accuracies 
between 60% and 79%. The distributions of the accuracies for our recall paradigm are similar; 
however more participants should be recorded to validate this statement. Our results are also far 
from those of more recent BCI studies where the accuracy can reach more than 90% for two 
classes for many untrained participants [30]. This can be due to the definition of mental task that 
are chosen to activate well separated areas of the brain, contrary to the task definition used in this 
study. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPN CE NP CN CP

A
cc

ur
ac

y

LDA

QDA

Linear SVM

Prob. linear SVM

RBF SVM

Prob. RBF SVM

Linear RVM

 

Figure 6.5. Mean classifier accuracy across participants for peripheral features and the different classification 
schemes. The bars on top of each column represents the standard deviation across participants. 
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If the three figures (Figure 6.3, Figure 6.4 and Figure 6.5) are compared, it is obvious that the 
EEG features lead to better accuracy than peripheral features for all classification schemes. For 
peripheral features the LDA classifier is the best with an average accuracy of 51% for three 
classes and around 66% for two classes (except for the NP classification task with accuracy 
around 61%). Results ranged from nearly the random level up to around 80% for two class 
formulations and from 37% up to 75% for three classes, showing the importance of this modality 
for at least one participant. However there is an exception, the CE classification task, where the 
LDA does not have the best accuracy. In this task the sparse kernel machines have better 
accuracies but they were sensitive to the unbalanced nature of this configuration with 200 
samples belonging to the excited class and 100 samples belonging to the calm class. As can be 
seen from the confusion matrices of Table 6.2, sparse kernel machines tend to always assign the 
excited class to test samples. Those results where thus considered as irrelevant and the LDA 
classifier chosen as the most relevant classifier for fusion. 

(a) 

Classified 
Truth Calm Excited 

(b) 

Classified 
Truth Calm Excited 

Calm 65% 35% Calm 31% 69% 
Excited 33% 67% Excited 11% 89% 

        

(c) 

Classified 
Truth Calm Excited 

(d) 

Classified 
Truth Calm Excited 

Calm 13% 87% Calm 33% 67% 
Excited 3% 97% Excited 10% 90% 

Table 6.2. Average confusion matrices across participants for peripheral features and different classifiers: (a) 
LDA, (b) Linear SVM, (c) RBF SVM and (d) Linear RVM. 

Compared to the state of the art of emotion assessment from peripheral signals and time segments 
of similar duration our results are under those reported. In [107] 90% and 97% of accuracy was 
obtained using time windows of 2 s for valence and arousal assessment respectively. However, 
the accuracy they report represents the number of samples from which the output of a neural 
network regressor falls in a 20% interval of the target value. Thus this accuracy cannot be directly 
compared to classification tasks. In [114] the classification strategy discriminated three emotional 
states (neutral, positive and negative) with an accuracy of 71% from 6 s signals. The 
classification strategy used in [114] included a detection of signals corruption, which 
demonstrates the importance of such a procedure for correct emotion assessment. However, the 
accuracy was computed for only one participant after training the algorithm on 8 participants. To 
give an example of the variability of results that can be obtained from a participant to another, in 
our study results ranged from 39% for the worst participant to 78% for the best considering only 
the LDA classifier (the classifier having the lowest variance) and the CPN classification task. 
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The large differences in accuracy between the EEG and peripheral features can be explained by 
two factors. Firstly, the protocol is based on a cognitive elicitation of emotions where participants 
are asked to remember past emotional episodes which ensures strong brain activities. Moreover, 
the emphasis was put on the internal feeling of emotions rather than on the expression of emotion 
that can help to induce peripheral reactions [5]. Secondly, the 8 s length of trials may be too short 
for a complete activation of peripheral signals while it may be sufficient for EEG signals. 

For both EEG and peripheral features there is always high variability of results across the 
participants. For instance the accuracies ranged from 45% to 86% to classify emotions in three 
classes using the EEG_STFT features and the Linear SVM classifier. This variability can be 
explained by the fact that the participants had more or less difficulty in accomplishing the 
requested tasks as reported during the interview. Another remark that holds for all feature sets is 
that the detection of arousal states is more accurate than the detection of valence sates. This is not 
surprising for peripheral activity since it is known to better correlate with the arousal axis than 
with the valence axis [7], and sheds some new light on the usability of EEG for the detection of 
arousal and valence. Notice that the standard deviation is lower for arousal identification than for 
all other combination of emotional states showing that arousal states are detected with more 
stability across participants. The RVM classifier also tends to classify emotion with more 
stability but unfortunately obtained a lower average accuracy than SVM for most classification 
schemes. 

This study also allows comparing the performances of the different classifiers in the three feature 
spaces. For the Peripheral feature set (Figure 6.5), the classifiers have relatively similar 
accuracies except for the QDA which performs poorly compared to the others. Since this 
algorithm needs to compute a covariance matrix for each class, the low number of samples that 
are available for learning (around 100 per class) explains this result. The RBF SVM does not 
perform as well as the other classifiers for the two classes formulations, suggesting that those 
problems are linear by nature. For the high dimensional spaces of EEG features the LDA 
accuracy is always about 10% below the results obtained by SVM classification. This confirms 
the effectiveness of SVM’s in high dimensional spaces [138]. One of the goals of the present 
work was also to determine which of the RVM and probabilistic SVM would have the best 
accuracies in order to use the best algorithm for the purpose of fusion. As can be seen from 
Figure  6.3  and  Figure  6.4,  the  probabilistic  SVM  performs  as  well  as  the  standard  SVM  
demonstrating the interest of such a classifier to perform fusion on the basis of standardized 
scores. The RVM classifier outperforms the LDA, showing its adequacy for high dimensional 
spaces but does not outperform the SVM. An explanation could be that RVM’s generally used 
less support vectors than SVM’s which is not desirable in those undersampled classification tasks 
where good generalization is hard to obtain. 



Chapter 6 

114 

6.4.3 Results of feature selection 

Feature selection was applied for participant 1 on the EEG_STFT feature set. Only the data 
recorded from the first participant was subject to this analysis because of the computational time 
needed to select features from this high dimensional feature set. The FCBF algorithm was applied 
on all classification schemes while the filter method based on the Fisher criterion was applied 
only the CPN classification scheme. 

a. FCBF 

For the FCBF feature selection, Figure 6.6 shows classification accuracies as a function of the 
threshold FCBF. For LDA, accuracies for all two-class sets without feature selection were 
obtained using a subset of the original feature set, generally with FCBF=0.2 and a subset size of 
30  to  80  features.  FCBF  even  succeeded  in  improving  the  results  for  about  6%  for  the  CN  
classification task. The significant reduction of the number of features (less than 0.5% of original 
features are kept) can help improve computation time and storage capacity in a practical 
application. 

The number of features that have a correlation with the class labels lower than 0.05 represents 
around half of the original size of the EEG_STFT feature set. However for all classification 
schemes the FCBF algorithm keeps only around 100 of those features. This is due to the second 
step of the FCBF algorithm that removes redundant features and shows that many features are 
correlated. This correlation is certainly due to the construction of the EEG_STFT feature set: two 
energy features extracted from the same electrode signal but in a neighboring time window are 
likely to be correlated, as are two features computed over the same time window and from the 
signals of two neighboring electrodes. 

SVM accuracy is higher without feature selection, confirming its intrinsic capacity of good 
generalization in high dimensional spaces. For both LDA and SVM feature selection was not 
effective on the set of three classes (42% of accuracy for one selected feature and up to 47% for 6 
selected  features).  This  can  be  due  to  the  nonlinear  nature  of  this  problem  since  the  FCBF  
algorithm relies on linear correlation. One solution can be to substitute linear correlation by 
mutual information as a measure of relevance [149]. Another explanation for the accuracy 
decrease when using feature selection is that the FCBF algorithms eliminates features without 
taking into account the quality of the whole feature subset as is the case with wrapper algorithms. 
FCBF  then  fails  to  find  features  that  are  interacting  and  such  that  they  are  improving  
classification accuracy with the complete set of features. 
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Figure 6.6. classification accuracy using participant 1 EEG_STFT features with LDA and with SVM on the 
five sets of classes, with or without FCBF feature selection. The bottom horizontal axis indicates the value of 

the threshold FCBF, while the top horizontal axis corresponds to the number of selected features. 

b. Fisher feature selection 

Since the FCBF algorithm has a poor performance on the CPN classification scheme, the filter 
method based on the Fisher criterion was applied on this problem and the accuracies of LDA and 
linear SVM classifiers were analyzed. Figure 6.7 shows the accuracy of those classifiers as a 
function of the number of selected features, the last point of the curve being the accuracy for the 
complete set of 16704 features. 

As can be seen from by comparing Figure 6.6 (CPN classes) and Figure 6.7 the accuracies 
obtained with the Fisher feature selection are better than those obtained with the FCBF algorithm. 
With Fisher selection, the accuracy of the LDA is 47.3% by selecting only one feature and 59% 
by selecting 100 features compared to the best accuracy of 47% obtained with the FCBF 
algorithm (the number of feature ranging from 1 to 106). The first peak in accuracy can be 
observed for 1000 selected features using a LDA and 1500 selected features using the SVM. This 
point corresponds to the best accuracy for the LDA and demonstrates the usefulness of feature 
selection for this classifier. By keeping 1000 features only 6% of original features are selected 
which is interesting for computational complexity and storage improvement. However, the 
number of features is still high at this point which shows that many features from the STFT 
feature set are required for accurate detection of emotions. 
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Figure 6.7. Accuracy of LDA and the Linear SVM classifiers for different numbers of selected features of the 
EEG_STFT feature set using the Fisher criterion (only for the CPN classification scheme). Only the number 

of features marked with a ‘+’ have been computed while the other values are linearly interpolated. 

Figure 6.7 shows that the SVM accuracy is lower than the LDA accuracy in low dimensional 
spaces (under approximately 1250 selected features) while it is better in high dimensional spaces. 
The SVM performance in high dimensional spaces can be explained by its intrinsic properties 
[138]. The good performance of the LDA can be explained by the fact that the diagonalized 
version of the LDA was employed. Since in this classifier only the variance and the mean of the 
features are taken into account to determine the linear boundary between the classes (contrarily to 
the  SVM  with  a  linear  kernel);  the  diagonalized  LDA  is  very  close  to  the  Fisher  criterion  
employed for feature selection. 

The decrease of accuracy observed after the first peak is likely due to the addition of noisy and 
redundant features. However, after the addition of more than 8000 features the accuracy increases 
with the number of selected features. This demonstrates that less relevant features (in the sense of 
the Fisher criterion) can interact with others to improve the accuracy. 

As can be seen from Section 6.4.3.a and Section 6.4.3.b, feature selection can improve the 
accuracy for the LDA with a strong reduction of the number of features (from 0.5% to 6% of the 
features are kept), providing advantages for real applications where the issues of storage and 
computation time are important. However, the methods used for feature selection were not able to 
increase the best accuracy obtained by the SVM classifier. For this reason, feature selection 
algorithms were not employed for the next steps that are fusion of the modalities and rejection of 
samples. 

6.4.4 Results of fusion 

Concerning the fusion by concatenation of the feature vectors, no significant improvement of the 
accuracy was observed. Most of the time, the classification accuracy was the same as the 
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accuracy obtained on the EEG_STFT which have the highest number of features. This is likely 
due to the problem of high dimensionality of this space. While applying feature selection 
methods after or before fusion can help to solve this issue, this method was not analyzed in view 
of the results presented in Section 6.4.3. Instead the fusion at the classifier level was performed. 

Fusion of classifier decisions is done according to the explanation given in Section 6.3.4. 
According to the obtained results, fusion was performed choosing probabilistic SVM as the 
classifiers for EEG features sets (qSFFT and qMI ), and the LDA as the classifier for the peripheral 
feature set (qPeriph ). 

Results  from  the  fusion  of  MI  and  STFT  EEG  features  as  well  as  fusion  of  all  EEG  and  
peripheral  features  are  presented  in  Figure  6.8.  As  can  be  seen,  combining  EEG  feature  sets  
increased the best average accuracy by 2% to 4% while combining the three feature sets 
increased it by 3% to 7% depending on the classification scheme. For instance, the accuracy of 
the SVM classifier is 63.5% for the CPN classification scheme and reaches 70% after fusion of 
the three feature sets. In all the present cases combining feature sets leads to an increase in 
average accuracy, even when fusing modalities with low accuracies such as the peripheral 
signals. This demonstrates the importance of combining multiple sources of information from 
both the central and peripheral nervous system in emotion detection from physiological signals. 
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Figure 6.8. Average accuracy across participants for different modalities and their associated classifiers, as 
well as for fusion of the two EEG and the three physiological modalities. 

To our knowledge there only is one study that tried to fuse peripheral and EEG information at the 
feature level [113]. In this study the authors found that the fusion did not improve accuracy 
compared to EEG classification. The same fusion was also analyzed in Chapter 5 where an 
increase was reported only for some classifiers and sets of classes. Since poor results for fusion at 
the feature level were also obtained in the current study, we believes that for the purpose of 
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emotion assessment the fusion between the peripheral and the EEG modalities should be operated 
at the classifier level. This is especially true when the fusion involves feature spaces that are of 
high dimensionality. 

6.4.5 Results of rejection 

Finally, samples with low confidence values are rejected using the method described in Section 
4.4 and the corresponding increase in accuracy is analyzed in Figure 6.9. In this figure, only the 
results of the CPN configuration are presented for the trials of all 10 participants (3000 trials) and 
different values of the reject threshold. As can be seen from Figure 6.9, no samples are rejected 
until reject reaches  the  value  of  33%,  which  is  normal  since  max ii

g cannot be inferior to 33% 

(there is the constraint 
1

1
K

i
i

k ). The number of rejected samples that are badly classified is 

higher than the number of correctly classified samples until reject becomes higher than 47%. We 
choose this value to stop rejecting samples since most of the badly classified samples are rejected 
at this point.  
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Figure 6.9. Relation between the  threshold value, classification accuracy and the amount of eliminated 

samples for the CPN classification task. 

This value corresponds to a mean accuracy across participants of 80%, thus increasing it by about 
10%. This is to be compared with the 70% accuracy when performing fusion without rejection, 
but at the cost of rejecting 40% of the samples. Such high rejection rate could seem problematic 
for a real application, but is however compensated by the short recording period needed to 
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perform classification and give a decision. For instance if two consecutive trials are rejected, and 
the third one correctly classified the whole process would still be completed within 25 s. 

Similar curves were plotted for the NP and CE classification schemes. The results were quite 
similar than those obtained from the CPN scheme. Using the same value of 40% for the 
percentage of rejected samples, the increase of accuracy was respectively of 11% and 10%, 
resulting in an accuracy of 89% and 92% for the NP and CE schemes. This shows the interest of 
rejecting samples to improve classification accuracy for other classification schemes than the 
CPN as well. 

6.5 Conclusions 

This chapter proposes an approach to classify emotions in the three main areas of the valence-
arousal space by using physiological signals from both the PNS and the CNS. A protocol based 
on the recall of past emotional episodes was designed to acquire short-term emotional data from 
11 participants. From the data of 10 participants we extracted three feature sets, one for 
peripheral signals and two high dimensional feature space for EEG signals. Using the different 
feature sets, the accuracy of several classifiers was compared on the discrimination of the 
different combinations of three emotional states. The reduction of the feature space dimensionally 
was studied for different feature selection algorithms. The fusion of the three feature sets at the 
classifier level, by combining the probabilistic outputs of classifiers, was analyzed. Finally, 
rejection of trials where the confidence of the resulting classification is low was performed. In the 
case the trials with low confidence are those that are misclassified such rejection should lead to 
an increase of accuracy. 

Results showed the importance of EEG signals for emotion assessment by classification as they 
had better accuracy than peripheral signals on the 8 s of recorded signal. Classification of time-
frequency features derived from the EEG signals provided an average accuracy of 63% for three 
emotional classes and between 73% and 80% for two classes. A new set of features containing 
the mutual information between each pairs of electrodes was proposed to represent the interaction 
between different brain areas during emotional processes. The accuracies obtained with this new 
feature set were only slightly lower than those obtained with the energy features, showing their 
potential interest for emotion assessment. 

Despite of their low accuracy compared to EEG features, the peripheral features were shown to 
increase accuracy when fused with the EEG modality at the classifier level. Fusion of the two 
different EEG feature sets also increased the performance of the emotion assessment. This also 
demonstrates the interest of the new feature set based on mutual information. By fusing the three 
physiological feature sets the obtained accuracy is of 70% on three classes. Finally, the rejection 
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of 40% of samples having a low confidence value increased the accuracy to up to 80% on three 
classes. 

The analysis of feature selection methods to reduce the dimensionality of the EEG feature spaces 
showed that those methods are effective to decrease computational and storage costs without 
loosing too much accuracy. However, the accuracy obtained after feature selection was always 
lower than the best accuracy obtained without feature selection. 

Since following the stimulus onset emotional processes in brain and peripheral signals are 
expected to be observable at different times, the exploration of different time resolutions is 
needed to determine the time scales favorable to emotional assessment from EEG and peripheral 
activity. For this purpose a protocol where the exact time of the emotion elicitation is known 
should be designed. 

The high number of electrodes used in this study is also an issue since it leads to a high 
dimensional space where classification is difficult and it forbids the use of this system for real 
applications. From the analysis of feature selection results, it was shown that a lot of features 
were correlated, potentially because they were extracted from neighboring electrodes. Grouping 
the features extracted from close electrodes in order to keep only relevant information and 
remove part of the noise could also be a solution to reduce the size of feature spaces. The study 
from Ansari-Asl et al. [129] that tries to select relevant electrodes, based on the data from the 
same protocol, is also a step toward the reduction of feature spaces sizes.  

Analysis of EEG in other elicitation contexts should also be performed to confirm the efficiency 
of EEG features for emotional assessment in less cognitive tasks, as well as when interacting with 
computer interfaces. For HCI, the described work can also be used as a guideline to decide which 
classification strategy to use. Finally, while the rejection of non-reliable trials has been shown to 
improve accuracy, the percentage of rejected samples is high and further analysis should be 
conducted to confirm that this rejection can improve the information transfer rate. 
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Chapter 7 Assessment of emotions for computer games 

7.1 Introduction: the flow theory for games 

The experiments presented in Chapters 5 and 6 demonstrated the usefulness of physiological 
signals for emotion assessment. In this chapter similar experiments were performed in a context 
closer to real HCI applications. This work was done in collaboration with the TECFA 
(Educational Technologies Laboratory, Faculty of Psychology, University of Geneva). 

Due to their capability to present information in an interactive and playful way, computer games 
have gathered increasing interest as tools for education and training [13]. Games are also 
interesting from a human-computer interaction (HCI) point of view, because they are an ideal 
ground for the design of new ways to communicate with machines. Affective computing [2] has 
opened the path to new types of human-computer interfaces that adapt to affective cues from the 
user. As one of the main goals of games is to provide emotional experiences such as fun and 
excitement, affective computing is a promising area of research to enhance game experiences. 
Affective information can be used to maintain involvement of a player by adapting game 
difficulty or content to induce particular emotional states. For this purpose, automatic assessment 
of emotions is mandatory for the game to adapt in real time to the feelings and involvement of the 
player, without interrupting his / her gaming experience (like it would be the case by using 
questionnaires). The present work thus focuses on emotion assessment from physiological signals 
in the context of a computer game application. 

Games can elicit a lot of different emotional states but knowing all of them is not necessary to 
maintain involvement in the game. Many representations of the player’s affective state have been 
used in previous studies like anxiety, frustration, engagement, distress and the valence-arousal 
space [17, 70]. According to emotion and flow theories [20, 161] strong involvement in a task 
occurs when the skills of an individual meet the challenge of a task (Figure 7.1). Too much 
challenge would raise anxiety and not enough would induce boredom. Both these situations 
would restrain the player’s ability to achieve a “flow experience”, leading to less involvement, 
engagement and possibly interruption of the game [162]. 

In a game, the change from an emotional state to another can occur due to two main reasons. 
First, the difficulty is increased because of progression in the different levels but too fast 
compared to the competence increase of the player (potentially giving rise to anxiety, see Figure 
7.1). Secondly, the competence of the player has increased while the game remained at the same 
difficulty (potentially giving rise to boredom). In both cases, the challenge should be corrected to 
maintain a state of pleasure and involvement, showing the importance of having games that adapt 
their difficulty according to the competence and emotions of the player. Based on this theory, we 
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defined three emotional states of interest that corresponds to three well separated areas of the 
valence-arousal space: boredom (negative-calm), engagement (positive-excited) and anxiety 
(negative-excited). 

 
Figure 7.1. Flow chart and the suggested automatic adaptation to emotional reactions. 

This work attempts to verify the validity and usefulness of the three defined emotional states by 
using a Tetris game where the challenge is modulated by changing the level of difficulty. Self-
reports as well as physiological activity were obtained from players by using the acquisition 
protocol described in Section 7.2. Using those data, three analyses were conducted. The first aims 
at validating the applicability of the flow theory for games (see Section 7.3). In the second 
analysis, detailed in Section 7.4, physiological signals were used for the purpose of classification 
of the different states. In this case, since one of the goals of this study is to go toward 
applications, particular attention was paid to designing classifiers that could be used for any 
gamer without having to re-train it. The third analysis concerned the analysis of physiological 
signals after the occurrence of game-over events (see Section 7.5). 

7.2 Data acquisition 

7.2.1 Acquisition protocol 

A gaming protocol was designed for acquiring physiological signals and gathering self-reported 
data. The Tetris game (Figure 7.2) was chosen in this experiment for the following reasons: it is 
easy to control the difficulty of the game (speed of falling blocks); it is a widely known game so 
that we could expect to gather data from players with different skill levels (which occurred, see 
Figure 7.3); and it is playable using only one hand, which is mandatory since the other hand is 
used for placement of some data acquisition sensors. 
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Figure 7.2. Screen shot of the Tetris (DotNETris) game. 

The Tetris game used in this experiment is the DotNETris software9 (Figure 7.2). The difficulty 
levels implemented in DotNETris were adapted to have a wider range of difficulties than in the 
original game. The new levels ranged from 1 to 25 in which a block goes down one line every t 
seconds with: 

 -(0.12  level + 0.5)t e  (7.1) 

where the exponential function was chosen because a small change in t is not really perceivable 
when the blocks are falling slowly while it is a significant change in difficulty if the blocks are 
already falling fast. The 0.12 and 0.5 values where chosen empirically to have a “smooth” 
increase of the difficulty. As a consequence, the blocks were going down a line every 0.54 
seconds at level 1 and 0.03 seconds at level 25. Other modifications to the original DotNETris 
include: 

- the possibility to play the game at a given level, without change of a level when 10 lines 
are eliminated; 

                                                   
9 available at http://sourceforge.net/projects/dotnetris/ (retrieved on 29 April 2009) 
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- the command to speed up the fall of the blocks was disabled so that the participants had to 
wait for the blocks to go down at the chosen speed; 

- playing the game for  a  given duration.  Each time the blocks reach the top of  the Tetris  
board (Figure 7.2) during this duration, a game over event was reported, the board was 
automatically cleared and the participant could continue to play. 

20 participants (mean age: 27, 13 males, all right handed) took part in this study. After signing 
the consent form (Appendix A), each participant played Tetris several times to determine the 
game level where he/she reported engagement. This was done by repeating three times the 
threshold method, starting from a low level and progressively increasing it until engagement was 
reported by the participant or starting from a high level and decreasing it. The average of the 
obtained levels was then considered as the participant skill level. Depending on this skill level, 
three experimental conditions were determined: medium condition (game difficulty equal to the 
player’s skill level), easy condition (lower difficulty, computed by subtracting 8 levels of 
difficulty from the player’s skill level), and hard condition (higher difficulty, computed by adding 
8 levels). As can be seen from Figure 7.3, the participants to the study reported to be engaged at 
different levels ranging for most of them from 11 to 16, confirming that they add different Tetris 
skills. One of the participants was even a “Tetris expert” with a skill level of 20. 
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Figure 7.3. Histogram of the skill levels of the 20 participants. 

Participants were then equipped with several sensors to measure their peripheral physiological 
activity: a GSR (Galvanic Skin Response) sensor to measure skin resistance, a plethysmograph to 
record relative blood pressure, a respiration belt to estimate abdomen extension and a temperature 
sensor to measure palmar changes in temperature. Those sensors are known to measure signals 
that are related to particular emotional activations as well as useful for emotion detection (see 
Section 2.2.2). In addition, an EEG system was used to record central signaling from 14 
participants. In this study 19 electrodes were positioned on the skull of participants according to 
the 10-20 system (see Section 3.1.1). As demonstrated in other studies, EEG’s can help to assess 
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emotional states and is also useful to provide an index of task engagement and workload [130-
133]. All signals were recorded at a 1024Hz sampling rate using the Biosemi Active 2 acquisition 
system. The acquired signals were subsequently downsampled to 256Hz using the built-in 
Biosemi software [126]. This allows to keep the frequency bands of interest for this study and to 
speed up computations. 

Once equipped with the sensors, the participants took part in 6 consecutive sessions (Figure 7.4). 
For each session the participants had to follow 3 steps: stay calm and relax for one minute, play 
the Tetris game for 5 minutes in one of the three experimental conditions (difficulty level) and 
finally answer a questionnaire. The first step was useful to let the physiological signals return to a 
baseline level, to record a baseline activity and to provide a rest period to the participants. For the 
second step, each experimental condition was applied twice and in a random order to account for 
side effects of time in questionnaires and physiological data. The goal of participants was to 
perform the highest possible score. To motivate them toward this goal, a prize of 20 CHF was 
offered to three of the participants having the highest score (the participants were divided in three 
groups according to their competence). The questionnaire was composed of 30 questions related 
to both the emotions they felt and their level of involvement in the game (see Appendix D). The 
answer to each question was given on a 7 points Likert scale. Additionally, participants rated 
their emotions in the valence-arousal space using SAM [73] scales. 

 
Figure 7.4. Schedule of the protocol. 

7.2.2 Feature extraction 

From the EEG signals the EEG_FFT feature set was computed. This feature set contains for each 
electrode the EEG signal energy in the ,  and  bands over the complete duration of a trial. The 
EEG_W feature is also part of the EEG_FFT feature set and is related to cognitive processes such 
as workload and engagement. This last feature is particularly interesting for this protocol since 
the participants are expected to be more engaged at the medium difficulty than at the two others. 
The EEG_FFT feature set contains a total of 3 19 1 58  features (3 frequency bands and 19 
electrodes plus the EEG_W feature). 
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Concerning the peripheral activity, features extracted from the corresponding signals are given in 
Table 7.1. A detailed explanation of the features can be found in Section 3.3.1 for the standard 
features. The “Reference” column indicates the section of Chapter 3 that corresponds to an 
explanation for the given advanced features. The peripheral features were computed from the 
complete duration of the 5 minute trial and concatenated in a feature vector. In this protocol, the 
duration of a trial was sufficiently long to allow for the computation of peripheral features (i.e. 

LF
HRf , HF

HRf , /LF HF
HRf ) that require signals of longer duration than the features computed in the 

protocols of Chapter 5 and 6. The HR signal was computed from the BVP signal of the 
plethysmograph as discussed in Section 3.2.4 and a-posteriori correction of the falsely detected 

beats was applied. The Rate
Respf  feature was computed from the respiration spectrum obtained by 

using the Welch algorithm (Matlab pwelch function) with 20 seconds windows and 10 seconds 
overlap. For a given trial, all the peripheral features were concatenated in a unique feature vector 
containing a total of 18 features. 

Peripheral signal Standard features Advanced features Reference 
x  x  x  

GSR X  X DecRate
GSRf , DecTime

GSRf , 
NbPeaks

GSRf  

Section 3.3.2.b 

BVP X X    
Heart Rate (HR) X X X LF

HRf , HF
HRf , /LF HF

HRf  Section 3.3.2.d 

Respiration  X  Rate
Respf , DR

Respf  Section 3.3.2.e 

Temperature X  X   
Table 7.1. The features extracted from the peripheral signals. 

In this study the collected data are not analyzed for each participant separately but as a whole. It 
is thus important to account for inter-participant variability in physiological activity (see Section 
3.3). For this reason, the physiological signals acquired during the rest period were used to 
compute a baseline activity for each session (6 baselines per participant) that was subtracted from 
the corresponding physiological features. Depending on the feature, the following baseline 
strategies were applied (see Table 7.2): 

- no baseline was subtracted for the features that are already a relative measure of 

physiological activity such as x  and DecRate
GSRf ; 

- the last value of the baseline signal was subtracted (L) from some of the x  features; in 

that case a x features represents the signal average change from the end of the baseline; 
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- the method used to compute the subtracted baseline activity is the same as the one used 
for the feature computation. For instance the EEG energy in the  band for the Fz 
electrode was computed from the baseline signals and subtracted to the corresponding 
EEG feature. 

Feature 
name 

GSR  GSR  
DecRate

GSRf
 

DecTime
GSRf

 

NbPeaks
GSRf

 
BVP  BVP  HR  HR  HR  

Baseline 
strategy L - - - - L F F F - 

Feature 
name 

LF
HRf  

HF
HRf  

/LF HF
HRf

 
Resp  

Rate
Respf  

DR
Respf  Temp  Temp  

EEG 
features 

 

Baseline 
strategy F F F F F - L - F  

Table 7.2. The baseline subtraction strategy used for each feature. -: no subtraction of a baseline. L: last value 
of the baseline signal subtracted. F: the baseline is computed using the same method than for feature 

computation. 

7.3 Analysis of questionnaires and of physiological features 

In this section the data gathered from the questionnaires and from the computed physiological 
features is analyzed to control the applicability of the flow theory for games. For this purpose the 
validity of the following two hypotheses were tested: 

- H1: playing in the three different conditions (difficulty levels) will give rise to different 
emotional states; 

- H2: as the skill increases, the player will switch from an engagement state to a boredom 
state (see Figure 7.1). 

7.3.1 Elicited emotions 

a. Questionnaires 

To test for hypothesis H1, a factor analysis was performed on the questionnaires to find the axes 
of maximum variance. The first two components obtained from the factor analysis account for 
55.6% of the questionnaire variance and were found to be associated with higher eigenvalues 
than the other components (the eigenvalues of the first 3 components are 10.2, 8.2 and 1.7). The 
questionnaire answers given for each session were then projected in the new space formed by the 
two components and an ANOVA test was applied to those new variables to check for differences 
in distributions of judgment for the different conditions. By looking at the weights of the two 
components (see Appendix D) it was found that: 
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- the first component was positively correlated with questions related to pleasure, 
amusement, interest and motivation; 

- the second component was positively correlated with question corresponding to levels of 
excitation and pressure and negatively correlated with calm and control levels. 

 
Figure 7.5. Mean and standard deviation of judgments for each axis of the two component (comp.) space and 

the different difficulties (diff.): easy, medium (med.) and hard. 

The ANOVA test, applied on the data projected on the first component (see Figure 7.5), showed 
that participants felt lower pleasure, amusement, interest and motivation for the easy and hard 
conditions than for the medium one (F=46, p<0.01). Differences in the three distributions 
obtained from the second component demonstrated that increasing difficulty led to higher 
reported excitation and pressure as well as lower control (F=232, p<0.01). This demonstrates that 
an adequate level of difficulty is necessary to engage players in the game so that they feel 
motivated and pleased to play. Moreover those results also validate hypothesis H1 since they 
show that the different playing difficulties successfully elicited different emotional states with 
various levels of pleasure and arousal. According to the self-evaluations those states were defined 
as boredom for the easy condition, engagement for the medium condition and anxiety for the hard 
condition. 

b. Peripheral features 

The physiological features were subjected to an ANOVA test to search for differences in 
activations for the different conditions and analyze the relevance of those features for emotion 
assessment. For this purpose the ANOVA test was applied on the three distributions and the F-
values and p-values are reported in Table 7.3. Moreover, the ANOVA test was also applied to 
check for differences between the easy and medium conditions as well as between the medium 
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and hard condition. If a difference is significant (p-value < 0.1) the trend of the mean from a 
condition to another is reported in Table 7.3. 

Feature F-value p-value Trend of 
the mean 

 Feature F-value p-value Trend of 
the mean 

GSR  4.4 0.01   
HR  3.4 0.04  

GSR  2.7 0.07   LF
HRf  2.4 0.09  

DecRate
GSRf  3.1 0.05   

Resp  5.8 < 0.01  
DecTime

GSRf  6.7 < 0.01   
Temp  9.4 < 0.01  

NbPeaks
GSRf  18.3 < 0.01   

Temp  10 < 0.01  
Table 7.3. F-values and p-values of the ANOVA tests applied on the peripheral features for the 3 difficulty 

levels. Only the relevant features are presented (p-value < 0.1). The “Trend of the mean” column indicates the 
differences between two conditions. For instance  indicate a significant decrease of the variable from the 

easy to the medium condition (first ) and from the medium to the hard condition (second ), while  
indicate no significant differences between the easy and medium condition and a significant increase to the 

hard condition. 

The decrease observed for the GSR , GSR , DecRate
GSRf features and the increase of the NbPeaks

GSRf  

between the easy and medium conditions indicate an increase of EDA when progressing from the 
easy to the medium difficulty level. Between the easy and medium conditions a significant 
decrease of temperature is also observed. Those results are in favor of an increase of arousal 
between the easy and the medium condition. When analyzing the GSR features changes between 

the medium condition and the hard condition, only the DecTime
GSRf  feature (percentage of negative 

samples in the GSR derivative) is significantly increasing. An increase of mean HR and a 
decrease of temperature are also observed between the same conditions. Those results suggest 
that there is also an increase of arousal between the medium and hard conditions but to a lesser 
extent than between the easy and medium conditions. In summary, an increased arousal is 
observed for increasing game difficulty, supporting the results obtained from the analysis of the 
questionnaires. 

As can be seen from Table 7.3 a total of ten features were found to have significantly different 
distributions among the three difficulties. This suggests that the conditions correspond to 
different emotional states and demonstrates the interest of those features for later classification of 

the three conditions. One feature of particular interest is LF
HRf , the HR energy in low frequency 

bands, because it has a lower value for the medium condition than for the two others, showing 
that this condition can elicit particular peripheral activation. This is also one of the only features 
that can help to distinguish the medium condition from the two others. 
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c. EEG features 

An ANOVA test was also performed on each EEG feature to test for differences between the 
three conditions. Table 7.4 gives a list of the EEG features that are relevant (p-value < 0.1). 
However, to illustrate the EEG activity we focused on the EEG_W feature since it is a 
combination of the other features and is known to be related to cognitive processes such as 
engagement and workload [130, 131, 133]. 

 Left electrodes Midline electrodes Right electrodes 
Theta band C3, T7, P3, P7, O1 Fz, Cz F4, C4, T8, O2 
Beta band Fp1, P7, O1 Cz C4, T8, P8, O2 

Table 7.4. List of the relevant EEG features (p-value < 0.1) given by frequency band and electrode. 

Significant differences were observed for the EEG_W feature between the three conditions 
(F=5.5, p<0.01). Figure 7.6 shows the median and quartiles of the EEG_W values for each 
condition. Since for the medium difficulty the participants reported higher interest and motivation 
than for the easy and hard difficulty, it was expected that the mean of the EEG_W values would 
be significantly higher for the medium condition. However, as can be seen from Figure 7.6, there 
is increase in the median of the EEG_W values as the difficulty increases. The differences 
between the medium and hard conditions as well as between the easy and hard conditions are 
significant  according  to  the  ANOVA  test.  In  our  view  this  reflects  the  fact  that  the  EEG_W 
feature is more related to workload than to engagement. The participants involved more 
executive functions in the hard difficulty than the medium one, even if they were less engaged. 

 
Figure 7.6. Boxplot of the EEG_W values for the three condition. The red line represent the median of the 

EEG_W values, the box the quartile and the whiskers the range. NS: non significant. 

7.3.2 Evolution of emotions in engaged trials 

Hypothesis H2 was tested by focusing on the data of the two sessions corresponding to the 
medium condition where the participant is expected to be engaged. Both physiological and 
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questionnaire data were analyzed using a pairwise t-test to verify that there was a decrease of 
engagement from the first to the second session. 

The pairwise t-test on the variables of the questionnaire showed a significant decrease from the 
first to the second medium condition for the questions “I had pleasure to play” (t=-1.8, p=0.09) 
and “I had to adapt to the interface” (t=-3, p=0.06). From peripheral signals, a decrease in the 

number of GSR peaks NbPeaks
GSRf  (t=-2.4,  p=0.02)  as  well  as  an  increase  in  the  average  of  

temperature Temp  (t=2.6, p=0.02) and average of temperature derivative Temp  (t=2.3, p=0.03) 

was found. 

Those results are indicative of a decrease of arousal and pleasure while playing twice in the same 
condition, thus supporting hypothesis H2. The result obtained for the question “I had to adapt to 
the interface” gives a cue that this decrease could be due to an increase of player’s competence. 
However the competence changes were not measured with other indicators to confirm this 
possibility. In any case, those results demonstrate the importance of having automatic adaptation 
of game’s difficulty when the challenge of the game remains the same. 

7.4 Classification of the gaming conditions using physiological signals 

7.4.1 Classification methods 

As shown in Section 7.3 several features computed from both the peripheral and central signals 
were found to significantly differ between the three gaming conditions. Moreover the participants 
reported to be in a different emotional state for each of these conditions. In this section, the next 
step is to investigate in more details the classification accuracy that can be expected from 
emotion assessment in gaming conditions. For this purpose classification methods were applied 
on the data gathered from the gaming protocol. The ground-truth labels were defined as the three 
gaming conditions, each one being associated to one of three states: boredom (easy condition), 
engagement (medium condition) and anxiety (hard condition). 

Four classifiers were applied on this data set: a DLDA, a DQDA, a linear SVM and a SVM with 
RBF kernel. The diagonalized versions of the LDA and the QDA were employed because of the 
low number of samples, which sometimes gives rise to the problem of singular covariance 
matrices. The participant cross-validation method proposed in Section 4.1.2 was used to compute 
the accuracy of the classifiers. For each participant a classifier was trained using features of the 
other participants; accuracy was then computed by applying the trained model on the 
physiological data of the tested participant. The gamma parameter of the RBF SVM was chosen 
to maximize accuracy on the training set (see Section 4.1.3.c). Since the classifier is tested on the 
data of participants that are not present in the training set, this method allows evaluating the 
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performance of the classifier in the worst case where the model is not user-specific, i.e. no 
information about the specificity of the user’s physiology is required for emotion assessment, 
except for a baseline recording of 1 min. 

Three feature selection algorithms were applied on this problem to find the features that are 
relevant for classification and provide good generalization across participants. All those 
algorithms were applied on the training set to select features of interest and only the selected 
features were used for classification of the test set. The ANOVA feature selection was applied to 
keep only those that are relevant to the class concept. Only the features having a p-value below 
0.1 were kept. The FCBF algorithm was applied to select relevant features and remove redundant 
ones. The FCBF parameter was set to 0.2 because (i) it was shown in Chapter 6 that this value is 
relevant for FCBF EEG features selection and (ii) the number of features that have a correlation 
with the classes higher than 0.2 (7 for peripheral features and 23 for EEG features) is similar to 
the number of relevant features found using the ANOVA test (10 for peripheral features and 20 
for EEG features, see Section 7.3.1). Finally, the SFFS algorithm (see Section 4.2.2) was also 
used to select features of interest, including potentially interacting features. To search for features 
that have good generalization across participants, the accuracy of a feature subset was estimated 
by computing the participant cross-validation accuracy on the training set. The maximum size 
FSFFS of a feature subset was set to 18 for peripheral features and 20 for EEG features. We limited 
the maximum size of the EEG feature set to 20 because the SFFS algorithm is computationally 
expensive and 20 features were found to be relevant according to the ANOVA test. 

Since the EEG signals were recorded only for 14 out of the 20 participants, the available number 
of samples for EEG based classification is not the same as for peripheral based classification. For 
this reason the results obtained from EEG and peripheral features are separated in two sections 
with classification algorithm applied on 14 participants for EEG and 20 participants for 
peripheral features. In Section 7.4.4 the classification accuracies obtained with EEG and 
peripheral features on different time scales are compared while the fusion of peripheral and EEG 
modalities is investigated in Section 7.4.5. In both cases, the classification accuracy was 
computed only on the 14 participants having EEG recorded. 

7.4.2 Peripheral signals 

Figure 7.7 presents the accuracies obtained by applying the classification methods on the features 
extracted from the peripheral signals. The result obtained for the linear SVM is omitted for the 
SFFS. When using the SFFS algorithm to search for the first best feature, the computations could 
not be completed, this presumably was caused by convergence problems or by an error in the 
libSVM toolbox implementation. 
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Figure 7.7. Accuracies of the different classifiers and feature selection metods on the peripheral features. 

Without feature selection the linear classifiers obtained the best accuracies of 55% for the linear 
SVM and 54% for the DLDA showing their ability to find a boundary that generalizes well 
across participants. In any case, the accuracies are higher than the random level of 33%. Except 
for the ANOVA, the feature selection methods always improved the classification accuracies. 
The best accuracy of 59% is obtained with the DQDA combined with SFFS feature selection. 
However the FCBF results (58%) are not significantly different from those obtained with the 
SFFS algorithm because of the high variance of the accuracies. Moreover, the variance of the 
accuracies obtained with SFFS tends to be higher than those obtained with the FCBF which 
shows that the FCBF is more stable than the SFFS algorithm in selecting the proper features. 
According to the results and considering that the FCBF is much faster than the SFFS, the FCBF 
can be considered as the best feature selection algorithm for this classification scheme. 

Since the participant cross-validation method was used, the feature selection algorithms were 
applied 20 times on different training sets. For this reason, the features selected at each iteration 
of the cross-validation procedure can be different. The histograms of Figure 7.8 show for each 
feature the number of times it was selected by a given feature selection algorithm. The average 
number of selected features is 3.5 for the FCBF, 9.35 for the ANOVA feature selection and 4.8 
for the SFFS. The ANOVA nearly always selected the features that were found to be relevant in 
Section 7.3.1.b but with poor resulting accuracy (Figure 7.7). Thanks to the removal of redundant 
features, the FCBF strongly reduces the original size of the feature space with a good resulting 
accuracy. Moreover this algorithm nearly always selected the same features independently of the 
training set showing its stability. The SFFS also obtained good performance but as can be seen 
from Figure 7.8, some of the features were selected only on some of the training sets, showing 
that this algorithm is less stable than the FCBF. 
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Figure 7.8. Histograms of the number of cross-validation iterations (over a total of 20) in which features have 
been selected by the FCBF, ANOVA and SFFS feature selection algorithms. The SFFS feature selection is 

displayed for the DQDA classification. 

By inspecting the SFFS, FCBF and ANOVA selected features, the DecTime
GSRf  and NbPeaks

GSRf  features 

were always selected which shows their importance for classification of the three conditions from 
physiological signals. To our knowledge similar features have been used only in [109] for 
emotions assessment despite of their apparent relevance. The HR  feature was frequently selected 

by the FCBF but never by the SFFS and vice-versa for the Resp  feature. The Resp  feature was 

removed by the FCBF because it was correlated with HR . However the SFFS kept the Resp  

feature based on its predictive accuracy which suggests that this feature may be better than HR  

for classification. Finally, the temperature features were also found to be frequently relevant. 

Because of its good accuracy and low computational time the FCBF algorithm coupled with 
DQDA classification was used for further analyses involving the peripheral modality. Table 7.5 
presents the confusion matrix for the 3 classes: it can be seen that the boredom condition was 
well classified, followed by the anxiety condition. Samples from the engagement condition tend 
to be classified mostly as bored samples and also as anxious samples. This is not surprising since 
this condition lies in between the others. Notice that 21% of the samples belonging to the anxiety 
class are classified as bored samples; this can be due to fact that some participants completely 
disengaged from the task because of its difficulty, reaching an emotional state close to boredom. 
In this case, the adaptive game we propose would increase the level of difficulty since the 
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detected emotion would be boredom, which is not the proper decision to take. A solution to 
correct this problem could be to use contextual information such as the current level of difficulty 
and the direction of the last change in difficulty (i.e. increase or decrease) to correctly determine 
the action to take. 

Estimated 
True 

Easy 
(Boredom) 

Medium 
(Engagement) 

Hard 
(Anxiety) 

Easy (Boredom) 80% 10% 10% 
Medium (Engag.) 37% 33% 30% 
Hard (Anxiety) 21% 19% 60% 

Table 7.5. Confusion matrix for the DQDA classifier with FCBF feature selection. 

7.4.3 EEG signals 

The accuracies obtained for classification of the EEG features with the different classifiers and 
feature selection methods are displayed in Figure 7.9. Linear SVM results combined with the 
SFFS procedure are not displayed because of the problem described in Section 7.4.2. 
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Figure 7.9. Accuracies of the different classifiers and feature selection metods on the EEG features. 

All the classification methods obtained accuracy higher than the random level of 33%. Without 
feature selection the DLDA had the best accuracy of 49%, followed by the linear SVM classifier 
with 47.5% of accuracy and the RBF SVM with 47%. As with the peripheral features, these 
results demonstrate the ability of linear and support vector classifiers to well generalize across the 
participants. The best result of 56% was obtained by the DLDA coupled with ANOVA feature 
selection. The ANOVA feature selection method always had a better performance than the other 
methods. To our knowledge these are the first results concerning the identification of gaming 
conditions from EEG signals, especially considering that the classifiers were trained using a 
cross-participant framework. 
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Figure 7.10. Histograms of the number of cross-validation iterations (over a total of 14) in which features have 

been selected by the FCBF, ANOVA and SFFS feature selection algorithms. The SFFS feature selection is 
displayed for the DLDA classification. 

As can be seen from Figure 7.10, the FCBF selected less features than the two other feature 
selection methods. It selected 3.1 features in average compared to 20.3 for the ANOVA and 13.0 
for the SFFS coupled with the DLDA. This explains the low accuracy obtained with the FCBF 
and shows that good accuracies on this problem can be obtained only by concatenating several 
features. The ANOVA algorithm often selected the features described in Section 7.3.1.c. The 
SFFS coupled with the DLDA had accuracies close to those of the ANOVA with DLDA but by 
selecting less features in average. For this reason the features selected by this method are of 
particular importance for accurate classification of the three gaming conditions. The more often 
selected features (selected more than 8 times) were the theta band energies of the T7, O1, Cz, P4 
and P3 electrodes and the beta band energies of the P7, Pz and O2 electrodes. This result shows 
that the occipital and parietal lobes were particularly useful for differentiation of the three gaming 
conditions. 

The confusion matrix displayed in Table 7.6 for the DLDA and FCBF methods shows that the 
different classes were detected with similar accuracies. The medium condition still has the lowest 
accuracy but is better detected than when using the peripheral features. On the other hand, the 
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easy condition is detected with less accuracy than with peripheral features. This indicates that the 
fusion of the two modalities should increase the overall accuracy. 

Estimated 
True 

Easy 
(Boredom) 

Medium 
(Engagement) 

Hard 
(Anxiety) 

Easy (Boredom) 57% 43% 0% 
Medium (Engag.) 21% 50% 29% 
Hard (Anxiety) 19% 19% 62% 

Table 7.6. Confusion matrix for the DLDA classifier with ANOVA feature selection. 

7.4.4 EEG and peripheral signals 

In order to compare accuracies obtained using either EEG or peripheral signals, the best 
combinations of classifiers and feature selection methods were applied on the physiological 
database with the same number of participants for both modalities (the 14 participants for whom 
EEG was recorded). Moreover, the comparison was conducted for different time scales to analyze 
the performance of each modality as a function of the signal duration used for the features 
computation. For this purpose, each session (see Figure 7.4) was divided into 1 to 10 non-
overlapping windows of 300/W seconds, where W is the number of windows and 300 seconds the 
duration of a session. An EEG and peripheral feature vector was then computed from each 
window and the label of the session was attributed to this feature vector. By using this method, a 
database of physiological features was constructed for each window size ranging from 30 to 300 
seconds. 

For a database in which the features were computed from W windows, the number of samples for 
each class is 20 2 W  (20 participants, 2 sessions per class and W windows per session). Thus 
the number of samples per class increases with W. Since the number of samples can influence 
classification accuracy and the goal of this study is to analyze the performance of EEG and 
peripheral features at different time scales, it is important that this comparison be conducted with 
the same number of samples for each window’s length. To satisfy this constraint one sample was 
chosen randomly from each session using a uniform distribution to have 20 2 40  samples per 
class. The classification algorithms were than applied on this reduced database. This was repeated 
1000 times for each value of W to account for the different possible combinations of the windows 
(except for W=1). Notice that it is not possible to perform classification for all windows 
combinations since there are W40 such combinations. 

By using this method the average accuracies over the 1000 iterations are displayed in Figure 7.11. 
The small accuracy oscillations that can be observed for small time windows (less than 100 
seconds) are likely due to the increase of the number of possible combinations of windows. As 
can be seen from Figure 7.11 the accuracy obtained for the peripheral signals with the original 
duration of the sessions (300 seconds) is not significantly different from the one obtained with all 
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of the 20 of participants (See Section 7.4.2). Thus having 13 or 19 participants for classifiers 
training (because of participant cross-validation) does not significantly change the classification 
performance. This suggests that adding more participants to the current database would not 
increase classification accuracies and that recording 14 to 20 participants is enough to obtain 
reliable accuracy estimations. 

 
Figure 7.11. Classification accuracy as a function of the duration of a trial for EEG and peripheral features. 

For both modalities, decreasing the duration of the window on which the features are computed 
leads to a decrease of accuracy. However, this decrease is stronger for peripheral features than for 
EEG features. For the EEG features, the accuracy drops from 56% for windows of 300 seconds to 
around 51% for windows of 30-50 seconds. For the peripheral features the accuracy is 57% for 
windows of 300 seconds and around 45% for windows of 30-50 seconds. Moreover, the EEG 
accuracy remains approximately the same for windows having duration inferior to 100 seconds 
while the peripheral accuracy continues to decrease. All those results demonstrate that the EEG 
features are more robust on short term assessment than the peripheral features. For our 
application, adapting the difficulty of the Tetris game based on the physiological signals gathered 
during the 5 precedent minutes may be undesirable since there is a high probability that the 
difficulty of the game has changed during this laps of time due to usual game progress. Having 
modalities, like EEG, that are able to estimate the state of the user on shorter time periods is thus 
of great interest. 

7.4.5 Fusion 

Fusion at the feature level (see Section 4.3.1) was performed and the different classifiers and 
feature selection methods were applied on the resulting feature sets. The results did not show any 
significant improvement of the classification accuracy. Similar results were obtained when 
performing fusion at the classifier level using the sum rule (see Section 4.3.2.a) and the best 
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classifiers for each feature set. This is due to the fact that the posterior probabilities outputed by 
the classifiers were generally higher for EEG features than for peripheral features so that the class 
estimated from the EEG features was often selected by the fusion. 

As can be seen from the confusion matrices obtained from the classification based on the 
peripheral and EEG features (Table 7.5 and Table 7.6), the errors made in with these two feature 
sets are quite different. As explained in Section 4.3.2.b the Bayes belief integration is well suited 
for this type of problem, and thus was employed for fusion of the best classifiers found for each 
feature set (the DLDA couples with ANOVA for EEG features and DQDA coupled with FCBF 
for peripheral features). Another advantage of the Bayes belief integration is that the probabilities 

ˆ( | )i qP y  can be estimated independently for the two classifiers. It was thus possible to use the 

training data of 19 participants to compute probabilities for the peripheral features while only 13 
participants were used for the EEG features. The resulting accuracy and confusion matrices were 
obtained by using the participant cross-validation applied on the 14 participants for whom both 
EEG and peripheral activity were recorded. 

Estimated 
True 

Easy 
(Boredom) 

Medium 
(Engagement) 

Hard 
(Anxiety) 

Easy (Boredom) 82% 14% 4% 
Medium (Engag.) 29% 39% 32% 
Hard (Anxiety) 4% 27% 69% 

Table 7.7. Confusion matrix for the “Bayes belief integration” fusion. 

The accuracy obtained after fusion was 63% which corresponds to an increase of 5% compared to 
the best accuracy obtained with the peripheral features. Table 7.7 presents the confusion matrix 
obtained after fusion. By comparing this table to Table 7.5 and Table 7.6 it can be observed that 
the detection accuracy of the easy and the hard classes was increased by 2% and 7% respectively 
compared to the accuracy obtained with the best feature set (peripheral features for the easy class 
and EEG features for the hard class). The accuracy obtained on the medium class with fusion 
(39%) is lower than the one obtained with EEG features (50%) but higher than with peripheral 
features (33%). When performing classification based either on EEG or peripheral features many 
of the hard samples were classified as easy while this problem was solved after fusion. All these 
results demonstrate the interest of peripheral and EEG fusion for a more accurate detection of the 
three conditions. 

7.5 Analysis of game-over events 

Analysis of the physiological signals should also be conducted on the basis of the events in the 
game and not only for the complete 5 min of a session since change of emotional states can also 
occur during any of the sessions. For this purpose the analysis of physiological signals after a 
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game-over event is performed in this section. Notice that since the game restarted automatically 
after each game-over event, the changes in physiological activity observed after these events can 
be due either to the loss of a game or to the start of the new one. 

7.5.1 Method 

In this section, the variations of the BVP, HR and GSR signals after game-over events were 
analyzed. Those signals were chosen to represent the peripheral activity because they have fast 
reaction time and they are known to be indicators of arousal and mental effort [7, 163]. Since the 
HR signal is not sampled at regular interval and with the same sampling rate as other signals, it 
was first interpolated using a cubic interpolation. All the signals were then segmented into 
windows of 5 seconds, each window starting at one of the game-over triggers recorded during the 
acquisition. Each window was also associated to the label of the corresponding session in order to 
distinguish between peripheral reactions of the different difficulty conditions. 

During the easy sessions, none of the participants reached the top of the Tetris board (Figure 7.2) 
which shows that the difficulty level was appropriately chosen as easy but prevents any analysis 
of game-over events for this condition. For the two other conditions, the game-over events were 
present for all participants and occurred on average each 98 seconds for the medium condition 
and each 14 seconds for the hard condition. As a result, the number of samples obtained for the 
hard condition is much higher than the one of the medium condition. Due to the high frequency 
of game-over events in the hard condition, it is possible that an event fell in the window of the 
precedent event (two game-overs within 5 seconds). In that case, the window associated to the 
first event was rejected. 

Within a given window, each signal is normalized by subtracting the amplitude of the first 
sample from all samples. Once all the signals were segmented and normalized, differences 
between the conditions were investigated. For this purpose an ANOVA test was applied every 0.5 
second on the values of each type of signal. 

7.5.2 Results 

Figure 7.12 shows the HR and GSR averages over the windows of each experimental condition. 
No significant differences between the medium and hard conditions were found for the BVP 
signal. The GSR values were significantly different from 3 seconds after the game-over trigger 
with a higher value for the medium condition than for the hard condition. The most significant 
difference (F=5.3, p=0.02) was obtained at the fourth second. For the HR signal, a significant 
difference between the conditions was found between 1.5 to 3 seconds after the game-over trigger 
with a higher heart rate for the medium than for the hard condition. The most significant 
difference (F=6.3, p=0.01) occurred 2.5 seconds after game-over events. 
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Figure 7.12.Averages of the normalized GSR and HR signals for the 5 seconds following the game-over 
triggers. Points that are marked with a ‘+’ corresponds to the samples that were found to be significantly 

different (p-value < 0.1) among the two conditions. ‘**’ indicate that p-value < 0.05. 

The results obtained from the GSR signal indicate a higher EDA for the hard condition than for 
the medium condition which shows that the sympathetic activity was higher in the hard condition. 
Since from the questionnaire the hard condition was found to be related to higher excitation and 
pressure, a potential interpretation of this result is that the participants were more aroused and 
stressed because they had to start a new game that they know to be too hard relatively to their 
competences. The HR responses are significantly different only for a short period of time after 
the trigger. For this reason, those responses were assumed to be related to the game-over event 
and not to the new game. Higher HR was reported for unpleasant stimuli compared to pleasant 
stimuli in [62]. Since the participant reported higher pleasantness and amusement in the medium 
condition the difference in HR could be due to the deception of loosing a game in the medium 
condition. 

Unfortunately, more variables should be gathered to confirm the interpretations given in the 
precedent paragraph, especially self-reports concerning the game-over events. Nevertheless, 
results demonstrate that there are different patterns of peripheral activity after game-over events 
between the sessions where the participants reported higher motivation and pleasantness and 
those were they reported high pressure and less motivation. This suggests that this activity could 
be used to distinguish engaged from stressed states in games where such events occurs 
frequently. Examples of such games are the first-person shooter games where the character 
driven by the gamer is frequently “killed”. Further studies are needed to investigate if those 
responses are also present for other games than the modified Tetris used in this protocol. 
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7.6 Conclusion 

This study investigated the possible use of emotion assessment from physiological signals to 
adapt the difficulty of a game. A protocol was designed to record physiological activity and 
gather self-reports of 20 participants playing a Tetris game at three different levels of difficulty. 
The difficulty levels were determined according to the competence of the players on the task. 
Three types of analysis were conducted on the data: statistical analysis of self-reports and 
physiological data was performed to control that different cognitive and emotional states were 
elicited by the protocol, classification was conducted to determine whether it is possible to detect 
those states from physiological signals, and an analysis of the changes in physiological activity 
after game-over events was performed. 

The results obtained from the analysis of self-reports and physiological data showed that playing 
the Tetris game at different levels of difficulty gave rise to different emotional states. The easy 
difficulty was related to a state of low pleasure, low pressure, low arousal and low motivation 
which was determined as boredom. The medium difficulty elicited higher arousal than the easy 
difficulty, as well as higher pleasure, higher motivation and higher amusement. It was thus 
defined as engagement. Finally the hard difficulty was associated to anxiety since it elicited high 
arousal, high pressure and low pleasure. Moreover, the analysis of consecutive engaged trials 
showed that the engagement of a player can decrease if the game difficulty does not change. 
These results demonstrate the importance of adapting the game difficulty according to the 
emotions of the player in order to maintain his / her engagement. 

The classification accuracy of EEG and peripheral signals to recover the three states elicited by 
the gaming conditions were analyzed for different classifiers, feature selection methods and 
durations on which the features were computed. Without feature selection the best classifiers 
obtained an accuracy around 55% for peripheral features and 48% for EEG features. The FCBF 
increased the best accuracy on the peripheral feature to 59% while the ANOVA selection 
increased the accuracy to 56% for EEG features. The analysis of the classification accuracy for 
EEG and peripheral features computed on different durations demonstrated that the EEG features 
are more robust to a decrease in duration than the peripheral features, which confirms the 
importance of EEG features for short term emotion assessment. 

From the analysis of the game-over events, distinct patterns of GSR and HR activity for the 
medium and hard conditions were found in the 5 seconds following the event. The distinct 
patterns were supposedly due to the differences in arousal and pleasantness relative to the game-
over event and to the starting of a new game. Nevertheless, those distinct peripheral patterns 
suggest that peripheral signals recorded after events occurring during the game could be used to 
determine the state of the player. 
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Future work will focus on the improvement of the detection accuracy. Fusion of physiological 
information with other modalities such as facial expressions and speech would certainly improve 
the accuracy. Including game information such as the evolution of the score can also help to 
better detect the three states. Another question of interest is to determine the number of classes to 
be detected. Since boredom and anxiety are detected with higher confidence than engagement it 
might be enough to use those two classes for adaptation to the game difficulty. Moreover, from 
the observation of Figure 7.1, one can conclude that it is more interesting to adapt the difficulty 
of the game solely based on the increase of competence because it leads to a stronger change of 
state in the flow chart (Figure 7.1) and stimulates learning. In this case only the detection of 
boredom is of importance to modulate difficulty. This also implies to more clearly define what 
are the relations between emotions, competence and learning. A future study would be to 
implement an adaptive Tetris game and verify that it is more fun and enjoyable than the standard 
one. Finally, analysis of physiological signals for different types of games is also required to see 
if the results of this study can be extended to other games. 
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Chapter 8 Conclusions 

8.1 Outcomes 

This thesis concentrated on the study of physiological signals in the context of affective 
computing. It aimed at demonstrating and comparing the usefulness of two categories of 
physiological signals for emotion assessment: those that reflect the activity of the central nervous 
system (EEG’s) and those reflecting the peripheral nervous system activity (GSR, temperature, 
BVP, HR and respiration). 

Chapter 2 presented a state of the art of the topics related to emotion assessment from 
physiological signals. Firstly, the most well-known representations and models of emotions were 
given together with their implications for emotion assessment studies. The valence-arousal space 
was used as the representation of emotions throughout this thesis since it was considered as being 
the most general, flexible and less dependent on the application. The role of context and the 
multimodal aspects of emotions were also emphasized from the analysis of the described models 
of emotions. Secondly, the physiological processes related to emotions were described for both 
the peripheral and central activities. A non exhaustive list of the devices usable to record those 
activities was given and the signals features that are known to be related to emotional processes 
were discussed. Thirdly, several studies concerning the assessment of emotions from 
physiological signals were reviewed. Six criterions were proposed to organize, evaluate and 
compare those studies as well as to discuss important aspects of physiological emotion 
assessment. 

Chapter 3 started by a description of the material used to monitor the physiological activity of 
several participants during emotional experiences. While this part is important for the 
reproducibility of the results, it also provides a guide to help persons that are not used to this type 
of apparatus for setting up an acquisition process. The algorithms to pre-process the signals and 
extract the features that characterize the physiological activity were then presented. For EEG’s, 
features based on the energy of the signals were computed according to the literature and a new a 
feature set based on the MI between pairs of electrodes was proposed. An algorithm to compute 
HR from a BVP signal based on the detection of the foot of the systolic upstroke was detailed. 
The proposed peripheral features were explained and discussed according to the literature. This 
chapter concluded on the ethical aspects that should be (and have been) considered when 
acquiring physiological signals. 

Chapter 4 presented the supervised learning methods used to assess emotions from the extracted 
physiological features. It stressed the importance of the ground-truth definition and provided 
different possibilities to determine the (supposedly) true emotional state elicited by an event. The 
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accuracy and the confusion matrix obtained on test data, by using the defined cross-validation 
strategies, were chosen to measure the performance of the emotion assessment. The classifiers 
(Naïve-Bayes, QDA, LDA, SVM and RVM) used to find models that map the physiological 
responses to an estimated emotional state were given. Since some of the extracted feature sets 
were of high dimensionality, filter (ANOVA, Fisher based and FCBF) and wrapper (SFFS) 
feature selection algorithms were detailed to later select the features of interest. The last part of 
Chapter 4 presented the information fusion methods. These methods were used in the next 
chapters to investigate the usefulness of fusion between the peripheral and central information. 

Chapter 5, 6 and 7 applied the previously described methods on physiological and emotional data 
acquired in different elicitation contexts (elicitation method, emotions elicited and duration of 
trial). In Chapter 5 the emotions were elicited by using images from the IAPS and the classifiers 
were independently trained to recover valence or arousal classes. In Chapter 6, the participants 
had to self-generate emotions by remembering past emotional episodes of their life belonging to 
three areas of the valence-arousal space. Chapter 7 described a gaming protocol that aimed at 
testing emotion assessment in a context that is closer to HCI applications. The main conclusions 
and outcomes drawn from those chapters are given below. 

One of the main outcomes of this thesis is the conclusion that EEG’s are useful for emotion 
assessment. For all the protocols and classes formulations, the average classification accuracy 
was higher than the random level. Moreover, compared to the peripheral features, the 
classification based on EEG features generally led a higher accuracy for the assessment of the 
valence dimension of emotions. The experiments performed in chapter 6 and 7 also demonstrated 
that the EEG modality was more adequate than the peripheral modality to assess emotions on a 
short time scale. 

Fusion of peripheral and EEG features was shown to be effective as it increased the classification 
accuracy, especially for the data presented in Chapter 6 and 7. The fusion of the classifiers 
outputs was always more effective than simple concatenation of the feature vectors. The MI 
feature set proposed in Chapter 3, was less effective than the energy feature set. However when 
the two feature sets were fused, an increase of the accuracy was observed showing the interest of 
the MI features for emotion assessment. 

Applying the feature selection algorithms to reduce the dimensionality of the extracted features 
led to a strong decrease of the size of the feature sets with only a reasonable decrease (Chapter 6) 
or increase (Chapter 6 and 7) of the accuracy depending on the employed classifiers and datasets. 
This is of interest to improve the computational speed of the classification algorithms. Moreover, 
these algorithms assisted in finding the EEG and peripheral features that are useful for inter-
participant classification as detailed in Chapter 7. 



  Conclusions 

  147 

Concerning the classification algorithms, none of the classifiers systematically performed better 
than the others. However, the analysis conducted in Chapter 6 confirmed the interest of the SVM 
classifiers for classification of emotions in high dimensional feature spaces. 

An important outcome of this thesis is the production of three emotional databases containing the 
peripheral and EEG signals of several participants, acquired in different emotional elicitation 
contexts. While those databases are not publicly available because of ethical aspects, it remains 
that further studies can be performed on this data within the University of Geneva. 

This thesis has shown the usability of EEG and peripheral signals for emotion assessment and 
therefore encourages their use for affective computing. An example of an affective Tetris game 
that adapts its difficulty to the emotions felt by the user is given in Chapter 7. The results 
obtained from the analysis of physiological signals gathered in Chapter 7 showed that these 
signals are useful for the game adaptation. Many other applications in areas such as health and 
information retrieval can be targeted by this research. 

8.2 Future prospects 

As demonstrated in this thesis, physiological signals can be used to assess emotions. However, 
there are still some research issues that have to be investigated in order to improve the accuracy 
of the assessment and apply it to concrete HCI applications. 

Emotions can be elicited in several contexts influencing the emotional expression. It is thus 
important that the methods developed to assess emotions take into account those contextual 
elements. Since new human-computer interfaces will more and more involve all of the human 
senses it can be interesting to analyze the performance of emotion assessment algorithms 
according to the sense used for the emotion elicitation. Analyzing the combinations of such 
stimuli can also be of interest. The emotional model proposed by Ortony [57] is a possible 
direction to follow in order to better determine an emotional state according to the course of 
events that elicited the emotion. Emotion assessment from physiological signals (or from other 
sources) can then be added to this model to add personal emotional information. The mood of the 
user and the persistence of the precedent emotional state are also context related issues that can 
influence the elicitation of an emotion and thus should be taken into account. 

All the experiments conducted in this thesis were done in an “ideal” environment where the 
participants were instructed to accomplish given tasks and to avoid movements. Switching from 
this type of experiment to the real environments gives rise to several issues. Physiological signals 
are very sensitive to movements, for instance if a user stands up his / her blood pressure will 
change. Moreover, the user can be disturbed by external events that are not related to the 
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application of interest. It is thus very important to develop algorithms that are able to detect 
signals changes that are not related to emotional processes. 

While this work focused on the identification of emotional classes defined as areas of the 
valence-arousal space, going further toward the identification of a point in this space is of high 
interest to determine emotional states with higher precision. This could be useful to infer the 
intensity of the emotion, generally defined as the distance of the point to the center of the space. 
Having enough resolution in this space is also mandatory to map a valence-arousal estimation to 
a given emotional label. Assessing the dominance (or control) dimension of emotions can be 
useful to well differentiate emotional states like fear and anger. Continuous estimations of 
emotional points in those spaces can be done by using supervised regression algorithm. In that 
case, since the valence and arousal variables seem to be dependent, the regression should be 
performed accordingly. Going forward to other continuous representations of emotions, like the 
SEC proposed in Scherer’s [10] model is still an opportunity but requires the evaluation of many 
continuous variables. 

As demonstrated in this thesis, EEG signals can be used for emotion assessment. However, a lot 
of effort should be put on the design of new EEG caps that are less obtrusive to go toward 
applications. For parts of this thesis, 64 electrodes were employed to monitor brain activity. This 
high number of electrodes is problematic regarding prices aspects and leads to high dimensional 
feature spaces. Developing algorithms that are able to select the electrode positions of interest for 
emotion assessment is of major importance to solve those issues. A possible solution to this 
problem could be to use the MI computed between pairs of electrodes (as proposed in Chapter 3) 
to regroup electrodes that recorded similar information and choose one of them as the 
representative of the group. 

Increasing the accuracy obtained from EEG features is of major importance for practical use of 
this device. For this purpose, new features should be investigated possibly inspired from the BCI 
community like features based on common spatial patterns. The MI feature set used with success 
in this study encourages the investigation of interactions between brain areas during emotional 
processes. The synchronization of brain processes could be used to determine new features. Some 
of the brain structures involved in emotional processes lie deep in the brain and it is thus difficult 
to assess their activity from surface EEG signals. Solving the inverse problem (i.e. finding the 
brain sources corresponding to a given EEG) to estimate deep sources and using this information 
as new features for emotion assessment could be promising. 

Fusion with other sensors and sources of emotional information could lead to improvements of 
the emotion assessment accuracy. Several sensors can be used to acquire signals originating from 
the same sources. For instance, EEG measurements can be coupled with fNIRS measurements to 
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better estimate brain activity. However, since emotions are multi-modal processes that involve 
several component of the organism it is certainly most valuable to perform the fusion of different 
sources of information. For instance, this could be achieved by combining facial expression and 
speech identification with physiological measurements of emotions. Those fusions would 
necessitate more studies, especially concerning time aspects. The time resolution of different 
sensors is not the same and the different components involved in emotional processes do not have 
the same reaction time. 

Most of the studies concerning emotion assessment from physiological signals (including this 
thesis) are done on emotional data that are not available to the whole research community. As a 
consequence it is difficult to compare the methods used for emotion assessment since their 
performances strongly depend on the protocol used for data acquisition. There is thus an 
important need for databases that are freely accessible. Such databases should ideally be 
multimodal, include contextual information and meet the constraints imposed by the law / ethical 
rules. A freely available multimodal database10 of emotionally driven brain and peripheral signals 
was constructed in collaboration with partners of the European Network of excellence Similar. 
Unfortunately, this data was not analyzed in this thesis but we strongly encourage the use of this 
database for further research on the topic. A similar effort is now underway in the context of the 
EU project Petamedia. 

Taken together, the above suggestions should lead to the development of a robust emotion 
assessment system. Once such a system is developed the next step would be to determine how the 
machine should adapt to the user’s emotional state. Some propositions were given in Chapter 7 
for computer games but this strategy is highly dependent on the gaming application. Finally, the 
investigation of how the user perceives the complete system (i.e. emotion assessment and 
adaptation) is mandatory to control how it would be received by the general public. 

 

                                                   
10 available at http://enterface.tel.fer.hr/index.php?frame=results (retrieved on 19 May 2009) 
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Appendix B Neighborhood table for the Laplacian filter 

The neighborhood of an electrode was defined as proposed in [164]. The following table gives 
for each electrode the list of the associated neighbors. 

Electrode Neighbors electrodes Electrode Neighbors electrodes 
Fp1 F7, F5, AF7, AFz, Fpz Fpz Fp1, AFz, Fp2 
AF7 Fp1, F5, F3, AF3, AFz Fp2 Fpz, AFz, AF8, F6, F8 
AF3 AFz, AF7, F3, F1, Fz, AF4 AF8 Fp2, AFz, AF4, F4, F6 
F1 F3, FC3, FC1, Fz, AF3 AF4 AF8, AFz, AF3, Fz, F2, F4 
F3 F5, FC5, FC3, F1, AF3, AF7 AFz Fpz, Fp1, AF7, AF3, AF4, AF8, Fp2 
F5 F7, FT7, FC5, F3, AF7, Fp1 Fz AF3, F1, FC1, FCz, FC2, F2, AF4 
F7 FT7, F5, Fp1 F2 AF4, Fz, FC2, FC4, F4 
FT7 T7, FC5, F5, F7 F4 F6, AF8, AF4, F2, FC4, FC6 
FC5 FT7, T7, C5, FC3, F3, F5 F6 F8, Fp2, AF8, F4, FC6, FT8 
FC3 C5, C3, C1, FC1, F1, F3, FC5 F8 Fp2, F6, FT8 
FC1 F1, FC3, C1, FCz, Fz FT8 F8, F6, FC6, T8 
C1 FCz, FC1, FC3, C3, CP1, Cz FC6 FT8, F6, F4, FC4, C6, T8 
C3 C1, FC3, C5, CP3, CP1 FC4 FC6, F4, F2, FC2, C2, C4, C6 
C5 CP5, CP3, C3, FC3, FC5, T7 FC2 F2, Fz, FCz, C2, FC4 
T7 TP7, CP5, C5, FC5, FT7 FCz Fz, FC1, C1, Cz, C2, FC2 
TP7 P9, P7, CP5, T7 Cz FCz, C1, CP1, CPz, CP2, C2 
CP5 TP7, P7, P5, CP3, C5, T7 C2 FC4, FC2, FCz, Cz, CP2, C4 
CP3 CP5, P5, P3, CP1, C3, C5 C4 C6, FC4, C2, CP2, CP4 
CP1 Cz, C1, C3, CP3, P3, Pz, CPz C6 T8, FC6, FC4, C4, CP4, CP6 
P1 POz, P2, Pz, P3, P5, PO3 T8 FT8, FC6, C6, CP6, TP8 
P3 P5, P1, Pz, CP1, CP3 TP8 T8, CP6, P8, P10 
P5 PO3, P1, P3, CP3, CP5, P7 CP6 TP8, T8, C6, CP4, P6, P8 
P7 PO7, PO3, P5, CP5, TP7, P9 CP4 CP6, C6, C4, CP2, P4, P6 
P9 O1, PO7, P7, TP7 CP2 C4, C2, Cz, CPz, Pz, P4, CP4 
PO7 Iz, Oz, PO3, P7, P9, O1 P2 PO4, P6, P4, Pz, P1, POz 
PO3 Oz, POz, P1, P5, P7, PO7 P4 P6, CP4, CP2, Pz, P2 
O1 Iz, PO7, P9 P6 P8, CP6, CP4, P4, P2, PO4 
Iz O2, PO8, Oz, PO7, O1 P8 TP8, CP6, P6, PO4, PO8, P10 
Oz Iz, PO8, PO4, POz, PO3, PO7 P10 TP8, P8, PO8, O2 
POz Oz, PO4, P2, P1, PO3 PO8 O2, P10, P8, PO4, Oz, Iz 
Pz P2, P4, CP2, CPz, CP1, P3, P1 PO4 P8, P6, P2, POz, Oz, PO8 
CPz Cz, CP1, Pz, CP2 O2 P10, PO8, Iz 
 





  List of IAPS images used 

  157 

Appendix C List of IAPS images used 

Liste of IAPS images for the arousal experiment 

IAPS image 
number 

Associated 
class 

IAPS image 
number 

Associated 
class 

IAPS image 
number 

Associated 
class 

1050 High arousal 4659 High arousal 7050 Low arousal 
1201 High arousal 4800 High arousal 7060 Low arousal 
1300 High arousal 5130 Low arousal 7080 Low arousal 
1310 High arousal 5390 Low arousal 7090 Low arousal 
1931 High arousal 5470 High arousal 7100 Low arousal 
2190 Low arousal 5500 Low arousal 7110 Low arousal 
2381 Low arousal 5510 Low arousal 7140 Low arousal 
2440 Low arousal 5520 Low arousal 7150 Low arousal 
2480 Low arousal 5530 Low arousal 7175 Low arousal 
2570 Low arousal 5621 High arousal 7185 Low arousal 
2580 Low arousal 5623 High arousal 7187 Low arousal 
2620 Low arousal 5626 High arousal 7205 Low arousal 
2661 High arousal 5700 High arousal 7217 Low arousal 
2691 High arousal 5731 Low arousal 7224 Low arousal 
2840 Low arousal 5740 Low arousal 7233 Low arousal 
2850 Low arousal 5910 High arousal 7234 Low arousal 
2870 Low arousal 5920 High arousal 7235 Low arousal 
2880 Low arousal 5940 High arousal 7380 High arousal 
2890 Low arousal 5950 High arousal 7490 Low arousal 
3030 High arousal 6570 High arousal 7491 Low arousal 
3053 High arousal 7000 Low arousal 7640 High arousal 
3071 High arousal 7004 Low arousal 7950 Low arousal 
3080 High arousal 7006 Low arousal 8030 High arousal 
3150 High arousal 7010 Low arousal 8080 High arousal 
3170 High arousal 7020 Low arousal 8160 High arousal 
3261 High arousal 7025 Low arousal 8161 High arousal 
4220 High arousal 7031 Low arousal 8170 High arousal 
4290 High arousal 7035 Low arousal 8200 High arousal 
4658 High arousal 7040 Low arousal 8300 High arousal 
8400 High arousal 9050 High arousal 9600 High arousal 
8490 High arousal 9360 Low arousal 9622 High arousal 
8500 High arousal 9405 High arousal 9810 High arousal 
8501 High arousal 9570 High arousal   
9040 High arousal 9571 High arousal   
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Liste of IAPS images for the valence experiment 

IAPS image 
number 

Associated 
class 

IAPS image 
number 

Associated 
class 

IAPS image 
number 

Associated 
class 

1710 Positive 5621 Positive 8501 Positive 
1811 Positive 5623 Positive 8502 Positive 
2053 Negative 5629 Positive 8503 Positive 
2160 Positive 5660 Positive 8531 Positive 
2710 Negative 5700 Positive 8540 Positive 
2800 Negative 5910 Positive 9006 Negative 
3051 Negative 6212 Negative 9050 Negative 
3060 Negative 6230 Negative 9140 Negative 
3063 Negative 6300 Negative 9181 Negative 
3064 Negative 6360 Negative 9252 Negative 
3100 Negative 6830 Negative 9253 Negative 
3110 Negative 6831 Negative 9300 Negative 
3120 Negative 7230 Positive 9340 Negative 
3130 Negative 7260 Positive 9400 Negative 
3180 Negative 7270 Positive 9405 Negative 
3220 Negative 7330 Positive 9421 Negative 
3230 Negative 7380 Negative 9433 Negative 
3400 Negative 7502 Positive 9500 Negative 
4220 Positive 8030 Positive 9520 Negative 
4599 Positive 8034 Positive 9560 Negative 
4607 Positive 8080 Positive 9570 Negative 
4608 Positive 8090 Positive 9571 Negative 
4610 Positive 8170 Positive 9600 Negative 
4640 Positive 8180 Positive 9611 Negative 
4641 Positive 8190 Positive 9620 Negative 
4660 Positive 8200 Positive 9630 Negative 
4680 Positive 8210 Positive 9800 Negative 
5260 Positive 8230 Negative 9810 Negative 
5270 Positive 8350 Positive 9910 Negative 
5450 Positive 8370 Positive 9911 Negative 
5460 Positive 8380 Positive 9920 Negative 
5470 Positive 8400 Positive 9921 Negative 
5480 Positive 8420 Positive   
5600 Positive 8496 Positive   

The images that are common to the arousal and valence experiment are: 4220, 5470, 5621, 5623, 
5700, 5910, 7380, 8030, 8080, 8170, 8200, 8400, 8501, 9050, 9405, 9570, 9571, 9600, 9810. 

 



  Questionnaire results for the game protocol 

  159 

Appendix D Questionnaire results for the game protocol 

The following table gives the list of the 30 statements that the participants had to evaluate using 
Likert scales. The participants also had to evaluate their emotion using the valence, arousal and 
dominance SAM scales.The weights higher than 0.7 are highlighted in gray. 

 Statement 1st component 2nd component 
Q1 J'ai apprécié le jeu 0.90 -0.09 
Q2 J'ai été intéressé(e) 0.90 0.13 
Q3 J'ai essayé de nouvelles commandes 0.34 -0.03 

Q4 
J'ai été motivé(e) à faire le meilleur score 
possible 0.74 -0.17 

Q5 J'ai eu du plaisir à jouer 0.90 -0.17 
Q6 J'ai dû m'adapter aux commandes 0.35 0.41 
Q7 J'ai trouvé la partie difficile -0.12 0.87 
Q8 J'ai été absorbé(e) par le jeu 0.60 0.56 

Q9 
J'ai pris en compte d'avantage d'information 
qu'auparavant 0.55 -0.16 

Q10 J'ai dû réfléchir 0.75 0.00 
Q11 J'ai été stressé(e) 0.06 0.88 
Q12 Mon attention s'est focalisée sur la partie 0.53 0.50 
Q13 J'ai eu l'impression que je m'améliorais 0.66 0.24 
Q14 J'aurais pu obtenir un meilleur score 0.54 0.00 
Q15 J'ai été amusé(e) 0.86 0.07 
Q16 Je n'ai pas vu le temps passer 0.50 0.45 
Q17 J'ai joué au maximum de mes capacités 0.36 0.48 
Q18 J'ai oublié ce qui se passait autour de moi 0.32 0.44 
Q19 J'ai trouvé la partie trop facile 0.11 -0.84 
Q20 J'ai ressenti de l'ennui -0.46 -0.21 
Q21 J'ai senti que j'avais le contrôle 0.40 -0.78 
Q22 J'ai trouvé la partie plaisante 0.88 -0.10 
Q23 J'ai été calme 0.19 -0.67 
Q24 J'aurais volontiers continué à jouer 0.86 -0.11 
Q25 J'ai été excité(e) 0.31 0.70 
Q26 J'ai su clairement ce que je devais faire 0.35 -0.49 
Q27 J'ai pu diriger les pièces comme je le voulais 0.34 -0.82 
Q28 J'ai été concentré(e) totalement sur le jeu 0.60 0.46 
Q29 J'ai été mis(e) sous pression -0.02 0.81 
Q30 J'ai pensé à d'autres choses qu'au jeu -0.12 -0.45 
Q31 valence (SAM) 0.73 0.01 
Q32 arousal (SAM) 0.17 0.77 
Q33 dominance (SAM) 0.37 -0.59 
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