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Abstract
Introduction A decrease in sperm cell count has been observed along the last several decades, especially in the most devel-
oped regions of the world. The use of metabolomics to study the composition of the seminal fluid is a promising approach 
to gain access to the molecular mechanisms underlying this fact.
Objectives In the present work, we aimed at relating metabolomic profiles of young healthy men to their semen quality 
parameters obtained from conventional microscopic analysis.
Methods An untargeted metabolomics approach focusing on low- to mid-polarity compounds was used to analyze a subset 
of seminal fluid samples from a cohort of over 2700 young healthy men.
Results Our results show that a broad metabolic profiling comprising several families of compounds (including acyl-carni-
tines, steroids, and other lipids) can contribute to effectively distinguish samples provided by individuals exhibiting low or 
high absolute sperm counts.
Conclusion A number of metabolites involved in sexual development and function, signaling, and energy metabolism were 
highlighted as being distinctive of samples coming from either group, proving untargeted metabolomics as a promising tool 
to better understand the pathophysiological processes responsible for male fertility impairment.

Keywords Semen quality · Seminal fluid · Sperm · Metabolomics

1 Introduction

Over two thirds of people in the world live in regions where 
the Total Fertility Rate (TFR, defined by the number of live 
births per woman) have been constantly declining over the 
last decades. In most European countries, the US and Japan, 
the TFR is now below the replacement level needed to reli-
ably sustain populations (Skakkebæk et al., 2022; World 
Population Prospects, 2022), making an increasing number 
of couples need to turn to assisted reproduction techniques. 
Hence, infertility (the failure to establish a pregnancy 
after 12 months of regular, unprotected sexual intercourse 
(Zegers-Hochschild et al., 2017)) and its future trends are 
becoming an increasingly worrying issue worldwide (Voll-
set et al., 2020). Besides diverse socioeconomical factors 
(e.g. delays in couples’ pregnancy planning) there is a strong 
body of evidence supporting that one of the major reasons 
for such a health issue is impaired semen quality (Levine 
et al., 2017). Although such a statement has been the sub-
ject of some debate (Boulicault et al., 2022; Jørgensen et al., 
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2021), the most recent studies have evidenced a global and 
constant decrease of sperm count during the past decades 
(Levine et al., 2022).

From the biological point of view, the seminal fluid car-
ries the sperm cells (or spermatozoa) in the seminal plasma 
–the mix of secretions coming from seminal vesicles, pros-
tate, and bulbourethral and periurethral glands (Drabovich 
et al., 2014). In humans, spermatozoa only account for ~ 5% 
of the total volume of the ejaculate and, being small cells 
with a minute amount of cytoplasm and the ability to move, 
they rely on the seminal plasma to be nourished, protected 
from the environment, and to fertilize the oocyte (Rob-
ertson & Sharkey, 2016; Schjenken & Robertson, 2020; 
Turunen et al., 2022). To fulfill these roles, the seminal 
plasma contains a large variety of nutrients, buffering ions, 
immunomodulators, and signaling molecules (Poiani, 2006). 
Along with its intrinsic high viscosity and protein content 
(Owen & Katz, 2005) it renders the seminal liquid a chal-
lenging matrix as a subject for bioanalyses.

Despite its analytical complexity, its close functional and 
anatomical relationship with the male reproductive organs 
makes semen an appealing biofluid to develop diagnostic 
approaches and to study the etiology and the mechanisms 
underlying alterations of the male genital tract (Blaurock 
et al., 2022). Although this type of applications has been 
developed in the proteomics field (Camargo et al., 2018; 
Drabovich et al., 2014; Druart & Graaf, 2018; Martins et al., 
2020; Milardi et al., 2013; Samanta et al., 2018), the body of 
studies dedicated to disentangling the metabolome composi-
tion of human seminal fluid and its correlation with semen 
quality is quite scarce. There is a remarkable number of pub-
lications focusing on the targeted analysis of up to ten ster-
oid hormones (Balladová, 2015; Hampl et al., 2013; Vitku 
et al., 2015, 2017; Ying et al., 1983; Zalata et al., 2014), but 
research devoted to an untargeted (> 50) determination of 
steroid hormones in seminal liquid remains limited (Olesti 
et al., 2020). The number of studies increasing the chemi-
cal coverage from a fully untargeted perspective, is even 
more restricted (Blaurock et al., 2022; Buszewska-Forajta 
et al., 2022; Engel et al., 2019; Mehrparavar et al., 2019; 
Qiao et al., 2017; Serri et al., 2022; Xu et al., 2020; Zeng 
et al., 2018). It becomes thus evident that there is a lack 
of knowledge about small molecule-composition of human 
seminal fluid.

In this context, a dedicated approach was previously 
developed to determine and annotate up to nearly 200 ster-
oids in seminal fluid (Olesti et al., 2020, 2021). This meth-
odology exploits an optimized SPE-based sample prepara-
tion, followed by RP-HRMS analysis of the samples. Highly 
reliable level 2 or level 1 annotations (Schymanski et al., 
2014) are then made possible by DynaSti, a retention time 
database containing 92 experimentally determined retention 
times (RT) and over 100 in silico calculated ones (Codesido 

et al., 2019). Despite the biological relevance of steroids 
in the seminal fluid, the complexity of this matrix goes far 
beyond what can be monitored through a single family of 
compounds. Additional mediators such as oxylipins are also 
present and account for an adequate sperm functionality. A 
number of other molecules with different degrees of lipophi-
licity are present in the seminal fluid and play an important 
role during spermatogenesis (sperm production), during 
their maturation throughout the epididymis, or even on the 
response of the female epithelium (Poiani, 2006; Robert-
son, 2005). Tracking such molecules in the search for differ-
ences between low- and high-quality semen samples using 
an untargeted approach has the advantage of providing a 
more complete picture of potential changes in their chemical 
composition. Moreover, it becomes particularly useful in the 
context of exploratory studies because no previous knowl-
edge about the concerned metabolic pathways is needed.

For this purpose, a strategy aiming to broaden and com-
plement the metabolic coverage provided by the existing 
LC–MS method covering 200 steroids has been developed 
and implemented thanks to the use of several different 
in-house analyzed libraries of compounds. Such libraries 
contained over 800 reference standards for which accurate 
masses, RTs, and fragmentation patterns have been experi-
mentally measured, enabling the reliable identification of the 
metabolites present in seminal fluid at level 1 of confidence 
(Blaženović et al., 2018; M.I.T. Group, 2020; Sumner et al., 
2007). This annotation effort has allowed to distinguish a 
wide variety of metabolites accounting for the difference 
between low- and high-sperm count individuals in an epide-
miological study conducted on young Swiss men.

2  Materials and methods

2.1  Study population and semen analysis

From September 2005 to June 2017, a nationwide cross-
sectional study was conducted on 2731 men aged between 
18 and 22 years coming from all regions of Switzerland. 
Volunteers were recruited upon their participation in a man-
datory short military camp before their potential enrollment 
in the Swiss military service. The details about the study can 
be found elsewhere (Rahban et al., 2019). Volunteers pro-
vided urine, blood plasma and a semen sample and filled a 
comprehensive questionnaire about their general and repro-
ductive health as well as their lifestyle habits. Upon collec-
tion, semen samples were incubated at 37 °C for 20–40 min 
to allow liquefaction as recommended in the WHO manual 
for semen analysis (World Health Organization, 2010). Ali-
quots (5 µL) of the semen sample were then transferred into 
a 20 µm-deep counting chamber (Leja Products, The Neth-
erlands) and analyzed using a Computer Assisted Sperm 
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Analyzer (CASA, Sperm Class Analyzer- SCA, Microptic, 
Spain). Semen parameters such as concentration (million/
mL), Total Sperm Count (TSC – million/ejaculate), and 
sperm motility (%) were recorded. Classes of sperm motil-
ity were determined according to previously described kin-
ematic parameters (Mortimer, 1997) and divided into the 
following groups: progressive (rapid and slow, type a and 
b, respectively), non-progressive (type c) and static (type 
d). Fixed and Papanicolaou stained smears were prepared 
for sperm morphology assessment, either using the CASA 
or by a single trained technician according to the stricter 
criteria (Menkveld et al., 1990). The semen samples were 
then centrifuged at 700 × g for 10 min, and the supernatant, 
representing the seminal fluid, was collected. Aliquots of 
blood serum, urine and seminal fluid were stored at − 80 °C 
until use. The study was approved by the ethical commit-
tees of the cantons of Vaud (17–01-2005, 01/02), Zürich 
(EK-StV-Nr. 27–2006), Ticino (Rif.CE 1886) and Geneva 
(2016–01674) in Switzerland.

2.2  Chemicals and reagents

Phosphoric acid  (H3PO4) analytical grade was purchased 
from Sigma-Aldrich (Buchs, Switzerland). Formic acid (FA) 
was obtained from Biosolve (Valkenswaard, The Nether-
lands), and acetonitrile (MeCN), water  (H2O), and methanol 
(MeOH) from Fisher Scientific (Loughborough, UK). All 
the solvents and additives were UPLC-MS grade.

2.3  Sample preparation

Seminal fluids were extracted as previously published 
(Olesti et al., 2020). Briefly, 200 µL of seminal fluid were 
acidified with 500 μL of aqueous 4%  H3PO4 and then loaded 
onto SPE HLB μElution plates (Waters, Milford, MA, USA) 
using a positive pressure manifold (PRESSURE + 96, Bio-
tage AB, Uppsala, Sweden). Samples were washed with 
400 μL of  H2O:MeOH (95:5) and then eluted with 50 μL 
of  H2O:MeCN (10:90). Eluates were evaporated to dryness 
(SpeedVac, Thermo Fischer Scientific, Waltham, MA, USA) 
and reconstituted in 100 μL of  H2O:MeOH (50:50).

2.4  Sequence

The analytical sequence was split into two separate batches 
comprising 140 and 142 samples, analysed consecutively 
after MS cleaning. Each one of the batches contained blanks, 
system suitability tests, conditioning and long-term QC sam-
ples (Pezzatti et al., 2020). QC/dQC pairs were analysed 
every 8 study samples. Long-term QCs were extracted as 
detailed in Sect. 2.2 from a pool of healthy donors and rou-
tinely used to check analytical quality. Intra-study QC sam-
ples were prepared by pooling aliquots of all the extracts 

from the study samples and also used as conditioning sam-
ples. Diluted QC samples were made by diluting QC sam-
ples with injection solvent by a 1:1 ratio.

2.5  LC–MS analyses

Chromatography was performed on a Waters H-Class 
Acquity UPLC system composed of a quaternary pump, a 
column manager and an FTN autosampler (Waters Corpo-
ration, Milford, MA, USA). Samples were separated on a 
Kinetex C18 column (150 × 2.1 mm, 1.7 µm) and the cor-
responding SecurityGuard Ultra precolumn and holder (Phe-
nomenex, Torrance, USA). Solvent A was  H2O and solvent 
B was MeCN, both containing 0.1% formic acid. The col-
umn temperature and flow rate were set at 30 ºC and 300 
µL  min–1, respectively. The gradient elution was as follows: 
2 to 100% B in 14 min, hold for 3 min, then back to 2% B 
in 0.1 min and re-equilibration of the column for 7.9 min. 
The UPLC system was coupled to a maXis 3G Q-TOF high-
resolution mass spectrometer from Bruker (Bruker Daltonik 
GmbH, Bremen, Germany) through an electrospray interface 
(ESI). The capillary voltage was set at –4.7 kV (ESI +), dry-
ing gas temperature was 225 ºC, drying gas flow rate was 
set at 5.50 L  min–1 and nebulizing gas pressure was 1.8 bar. 
Transfer time was set at 40 µs and pre-pulse storage dura-
tion at 7.0 µs. Data between 50 and 1000 m/z were acquired 
in profile mode at a rate of 2 Hz. Formate adducts in the 
90–1247 m/z range were employed for in-run automatic 
calibration using the quadratic plus high-precision calibra-
tion algorithm provided by the instrument’s manufacturer. 
MS and UPLC control and data acquisition were performed 
through the HyStar v3.2 SR2 software (Bruker Daltonik) 
running the Waters Acquity UPLC v.1.5 plug-in.

2.6  Data pre‑processing and metabolite annotation

Run alignment, peak-picking and annotation were per-
formed on Progenesis QI v2.3 (Nonlinear Dynamics, 
Waters, Newcastle upon Tyne, UK). dQC/QC ratios were 
used to filter out analytically unreliable features using 
in-house developed Java scripts. A threshold of 20% was 
applied as the upper limit of the dQC/dQC ratio relative 
standard deviation. In addition, a dQC/QC ratio between 
0.2 and 0.8 was considered acceptable around the theo-
retical value of 0.5 (1:1 dilution), and signals outside this 
range were removed. Intra-batch and long-term QCs were 
used to correct analytical drift by using scripts developed 
under the MATLAB® 8 environment (The MathWorks, 
Natick, USA). LOESS regression involving a linear fit and 
an initial smoothing span of 0.75 was used for intra- and 
inter-batch normalization based on QCs. The span value 
was then optimized using cross-validation. Probabilistic 
Quotient Normalization (PQN) using median QC values 
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as reference was applied to ensure the comparability of the 
samples under study (Codesido et al., 2019; Robertson, 
2005).

Peaks were identified by matching their RTs, accurate 
masses and isotopic patterns to a database of standards. 
Such a database was built in-lab, analyzing a set of libraries 
of reference compounds under the same conditions as the 
samples, and comprising: 634 chemical standards (MSMLS, 
Sigma-Aldrich), 192 steroid standards (Sigma-Aldrich; Ster-
aloids, Newport, USA; and Lipomed Arlesheim, Switzer-
land), 29 acyl-carnitines (Sigma-Aldrich) and 65 oxylipins 
(synthetized and kindly provided by Prof. Vladimir Bezu-
glov, Shemykin-Ovchinikov Institute of Bioorganic Chemis-
try RAS, Moscow). Six compounds were annotated at level 
2 based only on their isotopic profiles and fragmentation 
patterns retrieved from available databases (MONA and 
Waters Metabolic Profiling CCS Database, as detailed in 
Supplementary Information 1 for significant metabolites).

2.7  Data analysis

Unit variance scaling was used as a pre-treatment. Proba-
bilistic Quotient Normalization (PQN) (Dieterle et  al., 
2006) Principal Component Analysis (PCA), Monte Carlo 
Uninformative Variable Elimination-Partial Least Squares 
(MCUVE-PLS) (Han et al., 2008) and Orthogonal Partial 
Least Squares-Discriminant Analysis (OPLS-DA) models 
were calculated using combinations of toolboxes and in-
house functions in MATLAB® 8. MCUVE-PLS was carried 
out using the libPLS 1.98 package (Li et al., 2018) using an 
ensemble of  104 models with a ratio of training samples of 
0.7. A threshold of 1.5 was applied to reliability index values 
to remove variables considered as uninformative.

PLS prediction performance was evaluated using leave-
one-out cross-validation to compute the discriminant  Q2 
 (DQ2) index (Westerhuis et al., 2008). The latter is an adap-
tation of the standard  Q2 value to discriminant analysis that 
does not penalize class predictions beyond the class label 
value.

3  Results and discussion

Semen samples were collected from a national cohort of 
more than 2700 Swiss young men, recruited during military 
conscription (Rahban et al., 2019). The primary objective 
was to obtain a more comprehensive metabolic profile of 
seminal fluids, in addition to the steroidomic fingerprint, to 
provide some insights into the metabolic and signaling path-
ways underlying differences between high and low sperm 
count volunteers.

3.1  Semen quality evaluation

Since the study cohort is representative of the general popu-
lation of Swiss young men, semen parameters measured on 
the 2731 seminal fluids were investigated to get an objective 
and quantitative evaluation of semen quality (World Health 
Organization, 2010). Eight semen characteristics considered 
as the most relevant criteria describing motility, concentra-
tion and morphology, were selected (Guzick et al., 2001). 
PCA was then computed to obtain an overview of the col-
lected samples distribution according to these parameters.

Four principal components (PCs) were considered for 
interpretation, summarizing 33.5%, 21.0%, 19.2%, 11.3% 
of the total variance, respectively, for a cumulated variance 
of 85.0%, as relevant trends could be associated with each 
of these PCs. PC1 could be related to a trend following 
motility with a clear contribution of motile spermatozoa, 
independently of their efficacy, i.e. variables associated with 
the number of sperm with a slow progressive motility (SP), 
rapid progressive motility (QP), non-progressing (NP), and 
hyperactive (HY) spermatozoa, as opposed to static sperm 
(ST).

PC2 could be linked to differences in overall number of 
spermatozoa with marked positive contributions of sperm 
concentration (CO) and total number of spermatozoa (TS) 
showing a correlated trend between these two descriptors, 
which therefore seem to be closely related, suggesting a 
comparable initial volume of seminal fluid during sample 
collection. The distribution of the samples on the first princi-
pal plane (PC1 vs. PC2) is illustrated on Fig. 1, using a color 
scheme related to semen quality. By examining this biplot, 
it can be seen how the samples with the lowest sperm con-
centration and sperm motility (red circles) are clustered in a 
thin group extending along PC1 and PC2, thus meaning that 
samples having both sperm motility and concentration below 
the WHO threshold (40% motile spermatozoa and 15 million 
cells/mL) are quite homogeneous. On the contrary, samples 
having only one or none of these two variables under the 
reference limits, are much more spread over the PCA space.

PC3 could be associated with a second motility pattern 
separating progressively rapid, slow, non-progressive, static, 
and hyperactive sperms. Interestingly, PC4 was mainly 
driven by the morphology parameter (MO). Taken together 
these four principal components helped to extract major 
trends in semen parameters that were linked to relevant 
functionality characteristics in an unsupervised and objec-
tive manner.

3.2  Sample selection

Samples were then stratified according to their position in 
the quantile distribution for TS and MO within the 2731 
samples to maximize potential biochemical composition 
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differences by considering clearly contrasted conditions. 
Then, the 200 most extreme samples of the cohort accord-
ing to these two variables were selected to create four dis-
tinct groups representing different degrees of semen qual-
ity: 50 samples with high TS and normal MO, 50 with low 
TS and normal MO, 50 with high TS and abnormal MO 

and 50 with low TS and abnormal MO. (Fig. 2). Such a 
knowledge would later allow the pathophysiological pro-
cesses behind different types of sub-fertility to be more 
efficiently highlighted by finding metabolic features char-
acterising different conditions of good and poor-quality 
samples. An additional amount of 5% extra samples (10 
in total) were added to the 200 originally selected ones to 
account for losses during sample preparation, and analy-
sis. The resulting 210 samples were submitted to chemical 
analysis as detailed in the Materials and Methods section.

The analytical platform performed with negligeable 
retention time and intensity drift along the sequence of 
each batch and between the two batches. In all, the pre-pro-
cessing of all the 384 individual runs yielded over 120.000 
features. Such features came from 51% of [M +  H]+ 
adducts, 24% of [M +  Na]+, 17% of [M + H-H2O]+, and 
8% of [M + H-2H2O]+. Features filtering, within- and 
between-batch drift correction, and sample normalization 
procedures were carried out as described in the Materi-
als and Methods section. Metabolite annotation was then 
performed and a total of 210 features could be identified 
based on experimental accurate mass and retention time 
match: 110 from the MSMLS library, 69 steroids, 22 
oxylipins and 9 acylcarnitines (Supplementary Informa-
tion Table 1). The annotation effort was limited to these 
groups of compounds since the sample preparation and the 
LC were mainly targeting low- to mid-polarity compounds.

Two OPLS-DA models based on the whole set of 210 
identified metabolites were then evaluated (Bylesjö et al., 
2006) and leave-one-out cross-validation was performed 
to assess the optimal model size and predictive abil-
ity. Because of its ability to separate Y-predictive from 
Y-orthogonal variations, OPLS-DA extends the interpret-
ability of OPLS (Trygg & Wold, 2002) to discriminant 
analysis.
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A first OPLS-DA model was computed to compare sam-
ples characterized by abnormal (G1 & G3) vs. normal (G2 
& G4) morphology whatever their sperm counts, as evalu-
ated using CASA (Fig. 2). The model was found optimal 
with two latent variables (one predictive and one orthogo-
nal) using leave-one-out cross-validation and characterized 
by  R2Y = 0.298,  DQ2Y = 0.015,  AccuracyCV = 58.1%. The 
very low prediction performance of the model revealed that 
spermatozoa morphology could not be significantly related 
to any metabolic alterations in the seminal fluid.

A second OPLS-DA model was then evaluated to com-
pare samples characterized by low (G1 & G2) vs. high (G3 
& G4) sperm counts whatever their morphology, as evalu-
ated using CASA (Fig. 2). The model was found optimal 
with three latent variables (one predictive and two orthogo-
nal) using leave-one-out cross-validation and characterized 
by  R2Y = 0.603,  DQ2Y = 0.457,  AccuracyCV = 80.0%. This 
model showed moderate but promising prediction perfor-
mance despite significant heterogeneity within the groups 
compared. A strategy to discard non-informative variables 
was thus carried out in order to remove the less relevant or 
highly varying signals from the metabolic profiles by rely-
ing on the MCUVE-PLS method. The objective of such an 
approach is to leave aside signals that are difficult to inter-
pret because they exhibit too much variability, and to focus 
on a subset of robust variables to distinguish the different 
classes of observations. An ensemble learning strategy based 
on resampling is implemented to limit the risk of overfitting. 
This promotes the stability and therefore the interpretability 
of the resulting multivariate model based on a stable subset 
of informative variables.

3.3  Uninformative variable elimination

MCUVE-PLS is a variable selection method evaluating both 
the amplitude and stability of PLS regression coefficients 
using a Monte Carlo resampling strategy. A reliability index 
based on these two characteristics is computed for each vari-
able to assess its predictive value estimated from a large 
ensemble of models generated by randomly selecting train-
ing sets from the initial data. This parameter then serves as a 
selection threshold to leave out variables that are considered 
uninformative due to low amplitude coefficient and/or too 
much variability. This method was reported as an efficient 
variable elimination strategy by offering a robust estimation 
of the coefficient’s amplitude and variability, thus decreasing 
the risk of overfitting. This approach also has the advantage 
of not just focusing on a limited subset of the most predictive 
variables, but also of retaining all the signals that contribute 
to distinguish situations of interest such as different experi-
mental conditions. This is particularly relevant in the context 
of metabolomic analyses because it allows all the potentially 
modulated metabolites to be kept in the model, thus offering 

a more complete biological interpretation by integrating the 
different molecular actors of the involved pathways.

A reliability index cut-off of 1.5 was found suitable 
to remove uninformative metabolites, while preserving 
biological information, thus leading to a subset of 87 
variables (41.4% of the initial dataset). A refined model 
(Fig. 3) was then evaluated and found to be robust with 
three latent variables (one predictive and two orthogonal) 
based on cross-validation. Moreover, improved prediction 
accuracy was observed, with  R2Y = 0.678,  DQ2Y = 0.610, 
 AccuracyCV = 87.6%. Biological interpretation was then 
carried out based on loadings associated with variables 
contributions.

3.4  Biological implications

The refined OPLS-DA model and volcano plot allowed to 
highlight a panel of metabolites whose concentrations were 
different in samples coming from volunteers with low total 
sperm count from those with high total sperm count (Figs. 4 
and 5).

Steroids that can be found in seminal fluid do not only 
originate from the local production of androgens by Leydig 
cells, but also originate from the systemic blood circulation 
passing through the blood-testis barrier. These molecules 
are well-known to play a crucial role in spermatogenesis 
(Hampl et al., 2013) and, thus, they were one of the priority 
groups of interest. While androgens show a positive corre-
lation with sperm production, the opposite effect has been 
observed for estrogens (Vitku et al., 2017). In the present 
study, we found that the levels of 2-hydroxyestradiol, an 
estradiol metabolite, were higher in the individuals with the 
lowest sperm count, in good agreement with the previous 
knowledge (Hampl et al., 2013). Interestingly, the levels of 
the estradiol precursor and metabolite estrone were found to 
be larger in individuals with higher sperm count, suggesting 
a deregulation of the interconversion of estrone and estradiol 
via the 17β-hydroxysteroid dehydrogenase.

Monitoring of oxylipin-type compounds revealed a high 
abundance of these molecules in seminal fluid. Indeed, over 
200 features could putatively be assigned to prostaglandins 
based on their formulae and retention times. Nevertheless, 
we were able to reliably annotate only 22 of these com-
pounds by matching their accurate masses and retention 
times to our database of standards. Although prostaglan-
dins play a relevant role (Cosentino et al., 1984), it remains 
unclear how many of them exactly relate to semen quality, 
with both low and high levels being deleterious for sperm 
maturation and activity (Isidori et al., 1980). Prostaglan-
dins E, for instance, have been shown to improve sperm 
motility. On the contrary, higher levels of prostaglandin 
A1, a pro-inflammatory one, can be related to inflammatory 
response, increased ROS stress and, thus, a less efficient 
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spermatogenesis. In the case of isoprostans, they are related 
to sperm immaturity and oxidative damage (Signorini et al., 
2020), thus explaining why lower levels can be found in the 
better semen quality samples.

Carnitines also show remarkable differences between low 
and high sperm count volunteers. Acylcarnitines transport 

cytoplasm acyl-groups to the mitochondria to be used in 
energy production during beta-oxidation. The concentration 
of carnitines found in the male reproductive tract is unusu-
ally high. The transport of carnitine from blood plasma to 
the epididymis is mediated by specific active transporters in 
Sertoli cells and seminiferous tubules. Since such increased 
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levels can be found especially in the epididymis, this points 
to its contribution to the maturation of sperm cells (Mongioi 
et al., 2016). In this direction, our results show that, indeed, 
higher carnitine and acylcarnitine levels can be found in the 
seminal plasma of individuals with higher sperm count. This 
could be caused by differences in diet carnitine intake, or 
different transporter activity among the individuals. These 
results support the role of carnitine and its derivatives in 
improving the sperm count, probably through improved 
spermatogenesis or facilitated sperm maturation (Khaw 
et al., 2020).

Another cause of poor sperm quality is the fragmenta-
tion of the DNA of spermatozoa (Agarwal et al., 2016), 
which is usually tracked back to a defective meiosis dur-
ing the first steps of spermatogenesis. Retinoic acid is 
the active form of retinol, and it is essential during sper-
matogenesis to produce mature spermatozoa from undif-
ferentiated germ cells due to its role as a meiosis inducer 
(Gewiss et al., 2021; Hogarth & Griswold, 2010, 2013). 
When comparing the retinol/retinoic acid presence in both 
groups of the present study we found that, quite surpris-
ingly, the high sperm count group showed the lowest lev-
els of retinoic acid. This counterintuitive finding shall be 
considered in a spatial context. Even if higher levels of 
retinoic acid must be present in the seminiferous tubes to 
promote sperm cell development, it does not mean that the 
same retinol-to-retinoic acid ratio should be preserved in 
the seminal plasma. Indeed, the presence and use of the 

active form by developing sperms could turn the balance 
towards retinol when it comes to the amount of each mol-
ecule being able to make their way from the seminiferous 
tubes to the final composition of seminal liquid.

Homovanillinic acid is a degradation metabolite from 
dopamine. It has been found that intracellular accumulation 
of dopamine in sperm cells reduces their mobility, maybe 
through the production of oxidative species (Ramírez-
Reveco et al., 2017), and homovanillinic acid itself has 
been previously found to be less concentrated in patients 
showing fertility issues (Chen et al., 2015). Earlier literature 
has shown that increased itaconate production in oxidative 
phosphorylation regulates the transition from glycolysis to 
pentose phosphate pathway transition to maintain redox 
homeostasis, playing a role in improving a high mobility rate 
in these cells (Zhu et al., 2020). Although changes observed 
in the present study mainly relate to sperm count, they point 
towards the contribution of these metabolites in spermato-
genesis and sperm energy production.

4  Conclusions

In the present study, a subset of 210 seminal fluid samples 
from a nation-wide study on semen quality has been char-
acterized by using an untargeted metabolomics approach. 
The detection of steroids and other low-to-mid-polarity 
compounds allowed the identification of metabolic differ-
ences between men having low and high total sperm counts. 
Other parameters such as the sperm morphology did not 
show clear relationship with the metabolomic profile. An 
uninformative variable removal strategy based on iterative 
Monte Carlo subsampling allowed to boil down the initial 
panel of annotated metabolites to the most relevant 87 ones. 
Some of the highlighted molecules are known to play a role 
in sexual development, inflammatory signaling, and sperm 
cell maturation and preservation, thus showing the potential 
of untargeted metabolomics to get a deeper insight into the 
mechanisms underlying cell count decrease and, in general, 
male fertility impairment. Opening metabolomics analyses 
to other groups of compounds such as polar metabolites 
will improve their capacity to provide an insight into this 
condition.
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