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Résumé

Cette thèse a pour sujet les propriétés spectrales de la matrice Laplacienne de graphes aléatoires. Notre
travail se concentre plus particulièrement sur le graphe Erdős-Rényi, qui est le modèle le plus simple d’un
graphe aléatoire. Le graphe Erdős-Rényi, noté G, est caractérisé par son nombre de sommets N ∈ N∗ ainsi
que son régime 0 < d < N qui controle le degré moyen de chaque sommet: chaque arête du graphe complet
sur N sommets est ouverte indépendemment avec probabilité d/N. Les propriétés du graphe G varient en
fonction de la valeur de d. Ces différents comportements probabilistes ont été étudiés en profondeur depuis
le papier originel de P. Erdős et A. Rényi. La matrice d’adjacence A et la matrice laplacienne L caractérisent
complètement le graphe G et leur spectre peut être utilisé pour obtenir des informations importantes sur le
graphe. Ce sont donc des objets mathématiques naturels dont l’étude revêt un intérêt à la fois pratique et
théorique.
La matrice laplacienne a une place centrale en théorie spectrale des graphes. L’énergie d’un vecteur selon
l’opérateur L est communément appelée énergie de Dirichlet et sert à obtenir des bornes de concentration
de mesure. Le trou spectral de L est directement relié au phénomène de mixing de la marche aléatoire sur
le graphe G et à son temps de relaxation. De manière plus générale, L est l’hamiltonien quantique d’une
particule qui se déplace aléatoirement sur G et la géométrie de ses vecteurs propres possède une interprétation
physique concrète reliée aux notions d’isolant et de conducteur éléctrique. D’un point de vue de la recherche
en matrices aléatoires, L est un exemple simple de matrice de Wigner déformée creuse. Une question centrale
pour de tels modèles et de savoir jusqu’à quel degré de densité le spectre des matrices gardent les mêmes
comportements asymptotiques que les matrices de Wigner déformées, et à quel moment le spectre s’altère de
manière notoire (apparition de valeurs propres extrêmes, changements des statistiques des valeurs propres
ou de la dimension des vecteurs propres).
Dans une première partie du travail, une loi locale sur la matrice de Green du laplacien est prouvée jusqu’au
régime sous-critique d ≥ C

√
logN , C > 1, repoussant de manière significative les limites des résultats

existants dans la littérature qui n’étaient valables que jusqu’à d ≥ Nε, ε > 0. La loi locale permet entre
autre d’assurer la délocalisation totale des vecteurs propres dans le centre du spectre. Nous expliquons
pourquoi ces résultats sont optimaux et ne peuvent pas être étendus hors du centre du spectre et à des
régimes de d inférieurs. Les techniques et les conclusions présentées dans ce chapitre s’inscrivent dans le
prolongements des lois locales, un sujet qui a reçu un attention soutenue ces quinze dernières années.
Dans un seconde partie du travail, nous étudions les statistiques des valeurs propres extrêmes et la forme des
vecteurs propres associés. Nous montrons que, pour 1 ≪ d ≪ N1/3, le processus ponctuel générés par les plus
grandes valeurs propres de L est asymptotiquement proche d’un processus de Poisson dont nous donnons la
fonction de densité. En particulier, pour 1

2 logN ≪ d ≪ N1/3, nous pouvons décrire la distribution du trou
spectral de L comme une fonction du voisinages des sommets de petits degrés. Finalement nous montrons
que pour certains régimes sous-critiques le trou spectral de L est donné par une fonction implicite calculée
sur des arbres de tailles finies.
Dans notre travail, nous montrons la co-existence à l’intérieur du spectre de L d’états délocalisés et localisés,
en prolongement de la vaste littérature sur ce sujet et la fameuse conjecture autour du modèle d’Anderson.
Nous pensons que cette thèse fournit une solide base théorique à la compréhension des algorithmes spectraux
et à la théorie spectrale des graphes. Nous proposons également des possibles extensions et des nouveaux
chemins de recherche.
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Abstract

This thesis focuses on the spectral properties of the Laplacian matrix of random graphs. The specific
emphasis is on the Erdős-Rényi graph, which is one of the simplest model of a random graph. The Erdős-
Rényi graph, denoted by G, is characterized by the number of vertices N ∈ N∗ and the density parameter
0 < d < N , which controls the average degree of each vertex: each edge of the complete graph on N vertices
is independently open with probability d/N . The probabilistic behaviors of G vary depending on the value
of the parameter d and have been extensively studied since the seminal paper by P. Erdős and A. Rényi. The
spectral properties of the two canonical matrices associated with G, namely the adjacency matrix A and the
Laplacian matrix L, completely characterize G and their spectra can provide important information about
the graph. Hence, they are natural mathematical objects with both practical and theoretical significance.
The Laplacian matrix holds a central position in the spectral theory of graphs. The quadratic form defined
by L is commonly referred to as the Dirichlet energy and is used to obtain concentration of measure bounds.
The spectral gap of L is directly related to the mixing phenomenon of the random walk on the graph G and
to its relaxation time. More generally, L is the quantum Hamiltonian of a particle that moves randomly
on G, and the geometric properties of its eigenvectors have a concrete physical interpretation related to
the notions of insulator and electrical conductor. From the perspective of random matrices, L serves as a
natural example of a sparse deformed Wigner matrix. A central question for such ensembles is to determine
to what extent the spectrum of matrices sampled for these models maintains the same asymptotic behaviors
as other deformed Wigner matrices. In particular, the spectrum might undergo notable changes (such as the
appearance of extreme eigenvalues, changes in statistics, and eigenvector dimensions) and the mechanism
underlying such transitions are of particular interest.
In the first part of this work, a local law for the Green matrix of the Laplacian is proved up to the subcritical
regime d ≥ C

√
logN , where C > 1. This significantly extends results previously available in the literature,

which were only valid up to d ≥ Nε, for ε > 0. The local law ensures, among other things, the complete
delocalization of the eigenvectors in the center of the spectrum. We explain why these results are optimal
and cannot be extended beyond the center of the spectrum nor to lower regimes of d. The techniques and
conclusions presented in this chapter are in line with the extension of local laws for matrix ensembles, a topic
that has received significant attention in the past fifteen years.
In the second part of this work, we study the statistics of extreme eigenvalues and the shape of the cor-
responding eigenvectors. We show that, for 1 ≪ d ≪ N1/3, the point process generated by the largest
eigenvalues of L is asymptotically close to a Poisson process for which we provide the explicit intensity
measure. Particularly, for 1

2 logN ≪ d ≪ N1/3, we can describe the distribution of the spectral gap of L as
a function of the neighborhoods of low-degree vertices. Finally, we demonstrate that for certain subcritical
regimes, the spectral gap of L is determined by an implicit function calculated on trees of finite sizes.
In our work, we demonstrate the coexistence of delocalized and localized states in the spectrum of L,
extending the vast literature on this subject and the famous conjecture concerning the Anderson model. We
believe that this thesis provides a solid theoretical foundation for understanding spectral algorithms and
spectral graph theory. We also propose possible extensions and new research directions.
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Chapter 1

Introduction

1.1 Random matrices and disordered systems
The study of complex systems has been an inspiring source of mathematical activity for more than a hundred
years. As the scale to which physical science studied the world became smaller, understanding the properties
of nature required physicists to handle large systems with many particles and interactions. The idea to
use randomness to analyze simplified models turned out to be a very powerful technic. Perhaps the most
popular model is the Ising model used to describe ferromagnetism in a piece of metal (see [18] for a historical
note on the matter). As anybody who followed an introductory lecture to quantum mechanics knows,
matrices are the mathematical tool used to describe matter on very small scales. Indeed, the Hamiltonian
of a quantum system is a matrix. While the first systems taught in quantum mechanics class are simple
(two-level systems, harmonic oscillators), some systems can become very large and too difficult to study
using standard linear algebra technics. Computing the spectral decomposition of a two-by-two matrix is
easy, doing it for a ten-by-ten matrix is already much more arduous. In parallel to statistical mechanics,
the study of large quantum systems borrowed the formalism of probability theorem to mathematics. The
combination of matrices (quantum Hamiltonians) and randomness (probability theory) resulted in random
matrices introduced by Wigner [50] in his seminal work. It is also worth noting that, long before Wigner’s
work on the semi-circle law, random matrices were studied as a tool for statistics most notably by Fisher,
Pearson and Wishart (see [41], [51], [26] and [52]).

The second half of the twentieth century witnessed the remarkable emergence of computer science, from
physic-based hardware innovations to the establishment of the development and analysis of algorithms as a
standalone mathematical field. The notion of a graph became extremely popular as a way to describe many
real-life problems. For instance, the problem of finding the shortest itinerary between two cities, which has
countless applications nowadays, was elegantly solved by E. W. Dijkstra in 1956 ( [21]). Understanding large
graphs became a practical problem that impacted many aspects of modern life. This mathematical object
received even greater academic attention with the advent of the world wide web. Indeed the formalism
of graphs was a natural way to encode the relationship between different internet agents. The Page-Rank
algorithm, which was at the heart of Google’s search engine for years ( [40]), is a famous example of a real-life
application of probability theory (Markov chains) and linear algebra (Perron-Frobenius theorem) combined
to extract meaningful information from large random graphs.

In this thesis, we consider the simplest model for a random graph and investigate the spectral properties
of its Laplacian matrix. The Erdős-Rényi graph on n ∈ N∗ vertices is the graph obtained by keeping every
edge of the complete graph with some probability p ∈ [0, 1]. In their seminal paper [22] P. Erdős and A.
Rényi showed that this graph undergoes a strong phase transition around the value p = 1/n, where connected
components of macroscopic size begin to appear. Following that paper, the asymptotic behavior of the Erdős-
Rényi graph when n → +∞ was extensively studied (see [16] and [31] for a summary) for various regimes of
p = p(n) and a host of different techniques were developed (for instance see [36] for an elegant proof using the
Breadth-First Search algorithm). Together with the adjacency matrix, the Laplacian is a canonical way to

1



2 CHAPTER 1. INTRODUCTION

encode the structure of a graph. From a physical point of view, it is the Hamiltonian of a quantum particle
living on the graph. From a mathematical point of view, it is an important object to study and understand
the behavior of random walks on graphs. Our work focuses on the spectrum of the Laplacian: we analyze
the eigenvalues and eigenvectors of the Laplacian matrix and their asymptotic behavior, as the size of the
graph goes to infinity (n → +∞) and under various regimes (d ..= n · p). Understanding the properties
of the spectrum is essential when using algorithms relying on spectral analysis of the graph. In the same
way that doing data analysis without knowing about the central limit theorem leads to flawed conclusions,
carelessly using spectral algorithms without understanding the asymptotic behavior of large random matrices
will inevitably lead to erroneous results. For instance, the Page Rank algorithm does not directly analyze
the adjacency matrix of the internet graph but rather a mixture of the internet and a mean-field component
called the random surfer model. Although the reason for their original choice is not rigorously justified in
their paper, the authors of [40] obtain more meaningful results with that modification. The present thesis
gives an explication of that phenomenon, in the case of the Laplacian matrix, by showing that only a limited
amount of information can be extracted from the maximal eigenvector of the Laplacian. The current work
also answers important graph theoretic questions, in particular about the spectral gap of random graphs.
In [10], the authors showed that a positive fraction of random regular graphs is Ramanujan graphs. This
result followed as an easy corollary of a more profound analysis of the law of the extreme eigenvalue of some
class of random matrices (Tracy-Widom distribution). In this thesis, we provide an estimate for the spectral
gap of Erdős-Rényi graphs in a wide range of regimes by using the same philosophy: first performing a
complete analysis of the edge of the spectrum and then converting this information into an understanding of
the spectral gap. In particular, we exhibit regimes of d for which the spectral gap is determined by functions
of small finite trees. Finally, by far the most technical result in the present work is a local law for the Green
function of the Laplacian, extending to critical and subcritical regimes previously known results; from an
information point of view however, this local law is a negative result since it tells us that no meaningful
information can be extracted from the bulk of the spectrum of the Laplacian. Indeed local laws are a reflection
of the mean-field nature of the model, with their simplest being the complete eigenvector delocalization. In
terms of information, we believe our results serve as a valuable, and mathematically rigorous, reminder of
the inherent limitations of spectral algorithms. At the end of the introduction, we suggest lines of research
that could open new possibilities to extract information from the spectrum of the Laplacian.

1.2 The Erdős-Rényi graph Laplacian
The Erdős-Rényi is the simplest model of a random graph. Let N ∈ N∗ and KN be the complete graph on
N vertices.
Notation. For n ∈ N a natural number we write

[n] ..= {1, . . . , n}. (1.1)

Let d ∈ [0, N ]. For every edge of E(KN ) we toss a biased coin with head probability d/N and tail
probability 1 − d/N . We denote by Xe the random variable that realizes this experiment. A realization of
the Erdős-Rényi graph is given by keeping all edges for which the result was head,

G(ω) =
(
V,E(ω)

)
, E(ω) ..= {e ∈ E(KN ) : Xe is head}.

Notation. For a graph G, we denote by V = V (G) the set of vertices and by E = E(G) the set of edges.
The graph distance is the length of the shortest path on G and is denoted by d = dG.
For x, y ∈ V (G) we write x ∼ y to mean that x and y are connected by an edge.
We use the capital letter N to denote the size of the system. In the case of the Erdős-Rényi graph, N denotes
the number of vertices of G.

This construction is best summarized as
The Erdős-Rényi graph is the subgraph of the complete graph obtained by removing every edge

independently at random.
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Figure 1.1: A realisation of the Erdős-Rényi graph for N = 53 vertices.

Formal construction and behavior of the degree sequence

Let N ∈ N∗ and 0 < d < N . We denote by Bern(d/N) a Bernoulli distribution of parameter d/N . The
Erdős-Rényi graph with parameters N and d is a random graph with vertex set [N ] and whose adjacency
matrix A is defined via the law of its entries, (Axy : x < y), which are independent Bernoulli random
variables with parameter d/N. The graph has no loop and so Axx = 0 for every x ∈ [N ].
Let D = Diag(D1, . . . , DN ) the diagonal matrix with the degrees defined as

Dx =
∑
y

Axy, x ∈ [N ].

The Laplacian matrix is defined as

L = D −A. (1.2)

Definition. Let n ∈ N∗ H be a matrix. A number λ ∈ C is an eigenvalue of H if it satisfies the equality

Hv = λv,

for some vector v ∈ Rn, called the eigenvector.
The (geometric) multiplicity of λ is the dimension of the vector space spanned by all the eigenvectors of λ.

Lemma. The matrix L is a symmetric, positive definite, real N -by-N matrix. The Laplacian has an eigen-
value at 0 whose multiplicity is equal to the number of connected components of G.
Moreover, for every connected component C ⊆ V , the vector qC ..= 1√

|C|
1C is a normalized eigenvector of

L with corresponding eigenvalue 0.

Proof. The proof of that lemma is standard and we only give a short explanation. The fact that L is
symmetric follows from the construction of the adjacency matrix A and the fact that the edges of G have
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no orientation. If C is a connected component of G, using the fact that
∑
y ̸=xAxy = −Dx, x ∈ [N ], it is

straightforward to see that qC is an eigenvalue of L.
If C1, . . . , Cn, n ∈ N, are all the connected components of G, it is clear that (qCi

: i ∈ [n]) form an system
of orthonormal eigenvectors. This shows that the multiplicity of 0 is greater than the number of connected
components. If v ∈ R|V | is an eigenvector of L with eigenvalue 0, then

0 = ⟨v , Lv⟩ =
∑

C c.c. of G

∑
x,y∈C

(
vx − vy

)2
,

and thus v must be constant on every connected component of G. This shows that v is a linear combination
of qCi

, i ∈ [n] and that the multiplicity of 0 is smaller than the number of connected components. This
concludes the proof.

Remark. The Laplacian of the Erdős-Rényi can be studied as a toy model for quantum mechanics. Indeed
L is the quantum Hamiltonian of a free particle on G.

As we mentioned at the beginning of the chapter, this thesis is focused on the analysis of the spectrum
of the matrix L. As elementary as the notion of eigenvalues and eigenvectors may sound, it is not at all
obvious how one should study those objects for large, possibly random, matrices. The only facts we know
a priori about the spectrum of L, are that the eigenvectors of L form an orthonormal basis of RN and the
eigenvalues are real, since the matrix is symmetric (c.f. the spectral theorem [46, Theorem 1.3.1]). However,
how is one supposed to go about computing the (non-trivial) eigenvalues of L? While elegant and simple
to memorize, the method of the characteristic polynomial to find the eigenvalues of L followed by Gauss
elimination to solve the equation (L− λ)v = 0 seems too cumbersome for dimensions greater than 3.
The Courant-Fisher characterization of the eigenvalues (also known as the min-max principle) is a set of
powerful equalities that expresses the eigenvalues as the solutions of a variational problem ( [29, Theorem
4.2.6]). If λmax denotes the largest eigenvalue of L (equivalently the spectral radius of L since L is positive
definite), the Courant-Fisher inequalities simplify to the Rayleigh quotient and yield

λmax = max
v∈RN , ∥v∥=1

⟨v , Lv⟩

In particular, consider x ∈ [N ] the vertex with maximal degree Dx = maxy∈[N ] Dy and consider the test
vector v = 1x. Then

λmax ≥ ⟨1x , L1x⟩ =
〈
1x , Dx1x −

∑
y∼x

1y
〉

= max
y∈[N ]

Dy. (1.3)

While the degrees can take any value from 0 to N , there are some indications that the matrix A should be
much smaller than D. First of all the entries of A are bounded (by 1) whereas the degrees can take any
value between 0 and N (but typically the largest degree is of size O(d+ logN)). Moreover, some heuristics
indicate that the graph G contains very few cycles and locally resembles a tree. In this case, basic spectral
theory tells us that ∥A∥ ≤ 2

√
∆, where ∆ is the maximum degree of the graph. In [11], the authors showed

that the matrix A ..= 1√
d

(
A− EA

)
was shown to have extreme eigenvalues located at

λ(N−k)(A) =
√
D(k)/d+O

(
1 +

( logN
d log(logN/d)

)1/2)
,

where D(k) is the k-th largest degree.
Considering regimes for which d ≫ logN and glossing over some technicalities, we can use this information
and standard perturbation theory to deduce that

λmax ≤ max
x∈[N ]

Dx +
√
d∥A∥ ≤ max

x∈[N ]
Dx +

√
Dx + o(1) ≤ max

x∈[N ]
Dx

(
1 +

√
1/Dx

)
+ o(1). (1.4)

Putting (1.3) and (1.4) together, we find λmax = maxx∈Dx
Dx(1 + o(1)).

This rough analysis suggests that understanding the statistics of the largest degree vertices is a good
starting point to understand the extreme eigenvalues of L. As it turns out, the degree sequence of the
Erdős-Rényi has been well-understood (see [16]).
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Lemma. The degrees
(
Dx : x ∈ [N ]

)
follow a binomial distribution of parameter (N − 1, d/N). Moreover,

the random variables are weakly correlated, for x, y ∈ [N ], x ̸= y,,

E(Dx) = d
(

1 − 1
N

)
, Var(Dx) =

√
d
(

1 − 1
N

)
, Cov(Dx, Dy) = d

N

(
1 − d

N

)
,

Proof. The first statement follows from the definition of Dx and the independence of the random variables
Axy. Computations of the mean and variance are standard. For x ̸= y, we have

Cov(Dx, Dy) = E
[
DxDy

]
− E[Dx]E[Dy] = E

( ∑
u̸=x,v ̸=y

AuxAyv

)
− d2

(
1 − 1

N

)2

= E
[
A2
xy

]
+N2

(
1 − 2

N

) d2

N2 − d2
(

1 − 1
N

)2
= d

N

(
1 − d

N

)
.

Remark. Some authors prefer to consider the Erdős-Rényi on N+1 vertices and to have EDx = d. However
since we usually consider parameters for which d ≪ N the factor 1 − d

N has no impact on the computations.

The best way to analyze the distribution of the degree is to use the Poisson approximation of the binomial
law. Indeed, as is well-known from elementary probability, if Xn ∼ Bn,p, n ∈ N with the parameter p
depending on n and such that lim p ·n = d ∈ R, then the binomial random variables converge in distribution
towards a Poisson distribution, Xn ⇒ Y , with Y ∼ P(d). This result is formalized in Lemma B.5. As
the central limit theorem states (Proposition B.1), after an appropriate scaling the binomial distribution
converges toward the normal law, 1√

d
(Xn − d) ⇒ Z, Z ∼ N (0, 1). A perhaps less famous asymptotic

property of Poisson variables is that for d ≫ logN , the tails of the distribution of Xn are well-described by
a normal law Z ∼ N (0, 1) (see Remark B.6) but as d ≲ logN , this is no longer the case (see Section B.2).
These approximations give us an important heuristic that we will use throughout this work

Dx
(d)= BN,d, ∼ P(d) ∼

{
N (d,

√
d), everywhere for d ≫ logN

N (d,
√
d), in the neighborhood of d, for all regimes.

(1.5)

The regime d ≍ logN is thus a limit at which the statistics of maxx∈[N ] Dx undergo a strong transition.
This corresponds to the apparition of inhomogeneity in the graph (see [6, Section 2]).

The Erdős-Rényi graph undergoes two phase transitions as a function of d. As d becomes larger than 1,
there is a unique large connected component. As d crosses the value logN , the graph becomes connected
with high probability ( [16, Theorem 7.3]). We usually distinguish three regimes

1. The supercritical regime: d ≫ logN , the graph is connected (with high probability and homogeneous);

2. The critical regime: d ≍ logN , the graph becomes inhomogeneous;

3. The subcritical regime: d ≪ logN , the graph is inhomogeneous and disconnected.

An intuitive way to understand the second phase transition is to consider the expected number of isolated
vertices in G as a function of d. Let x ∈ [N ]. Then by definition of the model the degree Dx follows a binomial
distribution of parameter N and d/N. By elementary analysis, the binomial law is well approximated by a
Poisson d distribution. In this sense we have

E
[∣∣{x ∈ [N ] : Dx = 0}

∣∣] ∼ NP
(
Pd = 0

)
= Ne−d


≪ 1 if d ≫ logN,
≡ 1 if d ≍ logN,
≫ 1 if d ≪ logN.

(1.6)

Now isolated vertices are the simplest disconnected components and we can expect that they can be used
as canaries for the emergence of disconnected components. This observation has an immediate consequence
on the spectrum of L as it increases the multiplicity of the trivial eigenvalue.
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Bulk versus Edge of L

We explained above how the degrees of G can be thought of as weakly correlated Poisson variables of mean
d. A naive guess would be to locate the eigenvalues of L roughly at the same place as the eigenvalues of D,
i.e. at the degrees of G. An important heuristic in random matrix theory is to divide the spectrum of random
matrix ensembles into two parts, the bulk of the spectrum and the edge. The bulk is the region where the
expected density of states is positive (i.e. in our case the regions where there are O(N) eigenvalues). The
edge is typically defined as the region where the maximal (or minimal) eigenvalue resides.
After the brief intuition we developed about the relationship between degrees of G and eigenvalues of L, it is
natural to use the diagonal matrix D to define the bulk, the edge and the mid-region. We define informally
the bulk as all energies that lie within O(1) standard deviations of the expected degree and the edge as the
region on which maxx∈[N ] Dx is supported. We informally define those areas as

Bulk ..= [d− C
√
d, d+ C

√
d], Edge ..= [∆ − ω,∆ + ω], ∆ ..= max

x∈[N ]
Dx,

for some C > 0 and ω ≫ 1.
It is more convenient to study the rescaled version of the Laplacian defined by

L ..= L− d√
d
. (1.7)

With this rescaling, the diagonal entries of our matrix are the rescaled degrees, denoted by vx ..= Dx−d√
d

, and
the bulk-edge dichotomy becomes

Bulk ..= [−C,C], Edge ..= [∆ − ω,∆ + ω], ∆ =
{√

2 logN + log
√

2π logN, d ≫ logN,
logN√

d log(logN/d) , d ≪ logN.

1.3 Simulations and overview of results
The analysis of large random graphs is the subject of abundant literature (see for instance [16]). The
most famous and impactful example of the efficiency of spectral analysis of random graphs is probably the
PageRank algorithm that was introduced in [40]. A central question throughout this work is the following

Can meaningful information be extracted from the eigenvalues and eigenvectors of L?

For a Hermitian matrix H, we usually denote by SpecH the set of its eigenvalues and for λ ∈ SpecH,
we write wλ its eigenvector. Note that eigenvectors are defined up to a phase, which we assume to be 1 for
simplicity.
An important question in random matrix theory is the distribution of eigenvalues. An even more important
question, and also a more difficult one, is the behavior of eigenvectors. Eigenvectors are typically normalized
in such a way that ∥wλ∥2 = 1, λ ∈ Spec(L). For a given eigenvector wλ, λ ∈ SpecL, the square of
its coefficients naturally defines a probability distribution on the set of vertices of G. Indeed the function
f : V (G) → [0, 1], f(x) = |wλ(x)|2, is a density function whose total mass is 1. What does the graph of f
look like?

Remark. The question of localization and delocalization of eigenvector can be understood by looking at a
simple two-level system. Let us consider

H =
[
v1 ε
ε v2

]
, v1, v2, ε ∈ R, v1 ̸= v2.

The spectrum of H is

λ± = 1
2
(
v1 + v2 ±

√
(v1 − v2)2 + 4ε2

)
= 1

2
(
v1 + v2 ± (v1 − v2)

√
1 − 4∆2

)
, ∆ ..= ε

v1 − v2
.
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Using the first order approximation
√

1 − t = 1 − 1
2 t+O(t2), we see that

wλ+ ∼ 1√
1 + ∆2

(
1
∆

)
, wλ− ∼ 1√

1 + ∆2

(
−∆
1

)
.

We see that wλ+ goes from being completely localised at ε = 0 to being completely delocalised for ε = v1−v2.
The mechanism is driven by the ratio between the spectral gap v1 − v2 and the interaction strength ε.

Suppose x ∈ [N ] is an isolated vertex. In that case it is supports an eigenvector w = 1x with eigenvalue
0. The function f corresponding to w is thus completely localized on one point of the graph. On the other
suppose the graph G is connected. In that case, the eigenvalue of 0 has multiplicity one and corresponding
eigenvector ..= 1√

N
1[N ]. In that case the function f is constant and delocalized, since f(x) = 1/N.

Those two scenarios represent the extreme behaviors of eigenvectors. However, the shape of the eigen-
vector is not constrained to those two extreme postures and can vary between being completely flat and
being completely localized. In fact, in the spectrum of the Laplacian matrix, the whole range of behavior
seems to coexist simultaneously (i.e. for one realization of G) depending on the region of the spectrum. In
the following simulation, we consider the rescaled Laplacian matrix (defined (1.7)).

Remark. (Physical and informational interpretation of |w(x)|2.) The shape of eigenvectors has some im-
portant interpretations in quantum mechanics. A delocalized eigenvector is a synonym for a state in which
the electron can travel through the medium. On the other hand, a localized eigenvector corresponds to
a state which is trapped in some region of the medium, meaning that the electron cannot travel and the
medium is an isolator.
In the field of computer sciences, the Perron-Frobenius eigenvector of the random surfer matrix, used in the
PageRank algorithm ( [40]) is the mathematical object used to rank the webpages according to their impor-
tance in the web. Let’s say that x, y ∈ V (G) are two vertices (webpages) of the internet graph, then the page
x is recommended to you before the page y if and only if |w(x)|2 ≥ |w(x)|2, where w is the Perron-Frobenius
eigenvector.

Note that similar pictures would appear for different values of d. For d ≫ logN, the picture is more
symmetric around 0 while for d ≪ logN , more points accumulate at the left of the spectrum and the
multiplicity of −

√
d increases.

As a point of comparison, we plot the same picture but for a matrix sampled from the Gaussian Orthogonal
Ensemble (GOE). Let H ∈ RN×N be a Hermitian matrix distributed as

Hxy = Hyx
i.i.d.∼ N (0, 1), x, y ∈ [N ].

It is well-known in the literature that the eigenvectors of H are completely delocalized and that the density
of state converges to the semi-circle law. The argument relies on the symmetry under orthogonal transfor-
mations of the normal law. The interested reader can also refer to [5, Figure A.1] to see how the same plot
looks when we consider only the adjacency matrix.

In the present thesis, we investigate various regions of the spectrum. We structure our research around
four results, Theorems A, B, C and D.

The three regions of the spectrum depicted in Figure 1.3 all bear a special importance in spectral analysis.
The analysis of the edge of the spectrum has a long-standing tradition both in mathematics and physics,
either when studying the spectral gap and the ground state energy of a quantum system or when analyzing
the law of the largest eigenvalues and the spectral radius of some matrix ensemble. The bulk of the spectrum
on the other hand has been a mainstay in random matrix theory ever since the seminal paper of [37].

Since the Erdős-Rényi graph is a random object, all of our results must incorporate this notion of
randomness.

Notation. An event Ω (that may depend on N) holds with high probability if

P(Ω) ≥ 1 − o(1).
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Spectrum of L for N = 2000 and d = 1.2 logN∥wλ∥∞

λ ∈ Spec(L)

Figure 1.2: The spectrum of the Laplacian matrix is presented here as a scatter plot. Simulation for N = 2000
and d = C logN , C = 1.2. We plotted the points (λ, ∥wλ∥∞) for λ ∈ SpecL. The spectrum is not uniformly
distributed as the region around 0 seems to be much more populated than the region at the right and left
extremities. The simulation shows four distinct behaviors. In the middle, the eigenvectors seem to be flat.
At the extremities of the spectrum, the eigenvectors are localized. One exception to that observation is the
eigenvector that corresponds to the smallest eigenvalue: however, this is easily explained once we recognize
that this is the trivial eigenvalue of the Laplacian matrix whose eigenvector is given by 1√

N
1[N ]. Finally we

see that there is a smooth transition between the middle and the two extremities of the spectrum.

GOE N = 2000 L, N = 2000, d = 1.2 logN

Figure 1.3: On the left-hand side, the simulation for a GOE. The numerical results agree with the results
proved in the literature. Namely that the density of states converges to a semi-circle law (clear from the
picture) and that the eigenvectors of a GOE are all "flat". On the right-hand side, the same simulation as
above but this time with the density of states plotted in the background as a histogram.

The thesis is organized as follows.

• In Chapter 2 we investigate the bulk of the spectrum and prove Theorem A. The results and techniques
fall into the literature on local laws.

• In Chapter 3 we investigate the right and left edge of the spectrum and prove Theorems B and C. The
general philosophy of the proof is to build a bijection between high-degree (respectively low-degree)
vertices and the maximal (respectively minimal) eigenvalues of L. The techniques rely on perturbation
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Theorem B

Theorem A

Theorems C and D

Spectrum of L for N = 2000 and d = 1.2 logN∥wλ∥∞

λ ∈ Spec(L)

Figure 1.4: The above simulation is the same as the one in Figure 1.2. Theorem A provides a rigorous
understanding of the bulk of the spectrum of L (blue region), while Theorems B, C and D describe the edge
of the spectrum (red regions). The transition between bulk and edge is explained by a partial localization
argument (continuous purple lines). The partial delocalization counterpart is unknown (dashed purple lines).

theory with a spectral gap.

• In Chapter 4 we investigate the left edge of the spectrum. We prove that for regimes of d smaller than
1
2 logN , there is a natural matching between the smallest eigenvalues of L and trees embedded in G.
Our argument relies on rank-one perturbation theory.

• In Chapter 5 we collect quantitative estimates and geometric results on the Erdős-Rényi . Many
arguments in Chapter 3 require those informations.

• In Appendix A we collect result of linear algebra. Appendix B contains various probabilistic results.
Appendix C summarizes all notations used in the thesis.

The results in this thesis have been proved under different assumptions. For instance, the extreme
eigenvalue statistics of Laplacian matrices has been studied with different assumptions and results (see [33]
or [20]). The bulk of the spectrum of L was first studied in [32] and [19] and in [30] the authors managed
to prove a local law for polynomial values of d. In figure 1.5, we provide a word map of the various results
already known on the subject of Laplacian matrices and where our results fall.

1.4 Local laws for sparse deformed Wigner matrices
Local laws provide control over the limiting behavior of the Green function entries. Such local laws have
been a central part of random matrices theory ever since the seminal works of [23] and [24]. More precisely
for (HN , N ≥ 1) a sequence of random matrices, local laws aim to understand the entries of the matrices

GN (z) ..= 1
HN − z

, z ∈ H.

Remark. The following section explains the methods used to prove the local law. We only describe the
methods that are relatively original and often refer to "typical strategies" or "most common techniques".
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N

N1/3

logN

√
logN

O(1)

Nε

1
t

logN

Theorem C

Theorem D

Theorem B

Theorem A

[30]
[20]

d

Bulk Right edge, spectral radiusLeft edge, spectral gap

Figure 1.5: The different regimes covered by the thesis. In grey, results previously known. In blue, the
results found in Chapter 2, where we improved [30] arguments to push down the result to the regimes

√
logN .

In red, the results found in Chapter 3 where we show how spectral statistics are closely related to extreme
degrees and how the corresponding eigenvectors have clear geometric interpretations. In green, the results
found in Chapter 4, where we show how trees embedded in the macroscopic connected component generated
the spectral gap of L.

This chapter is designed for a public familiar with local laws and is by no means a crash course on that
subject (it is a difficult subject). However, the interested reader can find good lecture notes on the matter
in [14] (shorter) and [25] (longer).

The most common ensemble of random matrices is the Wigner ensemble which satisfies the following
properties

1. the matrix H is symmetric.

2. the entries are independent (up to the symmetry constraint), i.e. the collection (Hxy : 1 ≤ x ≤ y ≤ N)
form an independent family of random variables.

3. the entries are centered, with variance EH2
xy = 1

N and the random variables
√
NHxy are bounded in

any Lp space, uniformly in N, i, j.

For a good introduction to local laws for Wigner matrices see for instance [14].
The starting point of any local law is the Schur complement formula

Gxx = 1
Hxx − z −

∑(x)
y,zHxyG

(z)
yz Hzx

. (1.8)

All notations including
∑() and G() will be introduced in Chapter 2. The general strategy in the proof of

local laws is to use large deviation estimates to show that

(x)∑
y,z

HxyG
(z)
yz Hzx = g +

(x)∑
y

(
H2
xy − 1

N

)
Gyy + Ex = g + o(1) g(z) ..= 1

N
TrGzz(z). (1.9)
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Plugging this back into (1.8) yields a self-consistent equation for the normalized trace g which, up to some
stability estimates, defines the asymptotic limit of Gxx.
For instance, in the case of Wigner matrices, the diagonal term is Hxx = o(1) and thus the limit of Gxx
does not depend on x, namely Gxx is asymptotically constant in x. The following local and global laws are
well-known (see [14, Theorem 2.4 and 2.6]).

Proposition (Local law for Wigner matrices). Under the above assumption, we have

Gxy(z) −msc(z)δxy = o(1).

uniformly for x, y = 1, . . . , N and z = E + iη, η ≫ N−1, E ∈ [−2, 2] In particular, g → msc and thus the
sample density of states ρ ..= 1

N

∑
λ∈Spec(H) δλ converges weakly to the semi-circle law.

The Laplacian matrix cannot be normalized in such a way that it becomes a Wigner matrix. Since the
off-diagonal matrix A and the diagonal entries D fluctuate on different scales, it is not possible to normalize
L so that all rescaled entries simultaneously fluctuate on the same 1/

√
N.

This is a typical situation in the study of so-called deformed Wigner matrices. Such matrices have been
notably studied in [37].
In our case, we will analyze the matrix

M ..= V −H +R, G ..= (M − z)−1, z ∈ H,

where H is a sparse Wigner matrix (see below), V is a diagonal matrix whose entries can be morally thought
of as N (0, 1) variables and R is a rank-one perturbation (see Section 2.1). Our first result, Theorem 2.4
shows that

Gxx ∼ 1
vx − z −m(z) , z ∈ Bulk,

where m is a random meromorphic function on the complex upper-half plane that depends only on the
variables (vx : x ∈ [N ]). In that sense, the asymptotic behavior of G does not depend on the geometry of
the graph (mean-field behavior).

We prove a local law down to optimal scale and state the result in the shortest form possible here.

Theorem A. For any constant τ > 0 there exists a constant C > 0 such that if d ≥ C
√

logN , then with
high probability |Gxy(z)| ≤ C, for every x, y ∈ [N ] and z = E + iη, |E| ≤ τ−1 and η ≥ N−1+τ .

An immediate consequence of our result is that the eigenvectors of M corresponding to the eigenvalues in
the bulk are delocalized. Since by construction the matrices M and L are related by a linear transformation,
M = 1√

d
(L− d), we deduce that with high probability, for any τ,R > 0,

∥wλ∥∞ = O
(
N−1+τ), ∀λ ∈ Spec(L) ∩ [−R,R]. (1.10)

Going back to Figure 1.3, we see that (1.10) explains why in the blue region the eigenvectors’ infinity
norm is bounded.

The problem of sparsity

In the case of the Laplacian matrix, a few of the usual conditions are not satisfied. It is clear that we cannot
simultaneously scale both the diagonal part (degrees) and the off-diagonal part (adjacency) in such a way
that the entries of both blocks have variance 1/N. Let us focus on the adjacency matrix. First of all the
entries are not centered random variable of variance 1/N. This issue can be easily solved by centering and
rescaling the off-diagonal entries

Hxy
..= 1

√
γ

(
Axy − d

N

)
, γ ..= d

(
1 − d

N

)
.
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However the assumption 3 for Wigner matrices is not true. Indeed we have

E|Hxy|p = 1
Nd

p
2 −1

(
1 +O

( d
N

))
≪ 1

Np/2 ,

as soon as d ≪ N. But we consider sparse Erdős-Rényi graphs and actually in this thesis we consider only
values d ≤ N1/3. This means that in our model the of diagonal entries of H have heavy tails. Such random
matrix ensembles are notoriously harder to analyze since the large deviation estimates that can be derived
are much weaker than for Wigner matrices. In the context of the Erdős-Rényi graph, [28] circumvented this
difficulty by introducing a new class of large deviation for sparse random vectors. Their method is relevant
in our setting but with some modifications as explained below. The proof relies on estimating

E
∣∣∣ n∑
i=1

aiXi

∣∣∣p, p = O(logN) (1.11)

where ai ∈ C are constant coefficients and Xi are centered, independent random variables with variance 1/N
and E|Xi|p ≤ N−1d− p

2 −1.
Typically the variables are set to Xi

..= Hℓi for some fix ℓ ∈ [N ] and the coefficients are the entries of the
matrix G(ℓ) ..=

(
M (ℓ) − z

)−1 where M (ℓ) is the sub-matrix of M obtained by removing the ℓ-th. Usual
estimates (see for instance [14, Lemma 3.6]) are thus harder to get with the weaker control on the moments
of X.

The problem of correlations

The matrix L has a non-trivial correlation structure. Since the diagonal entries are the sum of the off-diagonal
entries, it is clear that the variables (Lxy : 1 ≤ x ≤ y ≤ N) are not independent. Thus the assumption 2 for
Wigner matrices is not satisfied for the Laplacian matrix.
These correlations make it impossible to derive large deviation estimates in the usual way (for a definition
of usual see [14, Lemma 3.6]). This is an important obstacle to the proof of any local law. Indeed
To illustrate this fact, let us fix ℓ, k ∈ [N ] and recall the definition of G(ℓ). Let M̃ (ℓ) be the analogue of
M but for the graph G(ℓ) obtained by removing the vertex ℓ. Let aij be the coefficients of the matrix G(ℓ)

and bij the coefficients of the matrix G̃(ℓ) ..=
(
M̃ (ℓ) − z

)−1. It is clear that the variables (bij : i, j ̸= ℓ) are
measurable with respect to

(
Hij : i, j ∈ [N ] \ {ℓ}

)
and in particular independent of Xi. This is not the case

for the coefficients (aij : i, j ̸= ℓ). Bounding (1.11) is already a difficult task, but it is even harder if the
variables (Xi : i ∈ [N ]) are not independent from the coefficients.

In [30], the authors address this issue by using the resolvent formalism to replace the coefficients aij by
the coefficients bij . The second resolvent identity (see Lemma A.3) states that GA−GB = GA(A−B)GB , for
A,B ∈ CN×N . By setting A = M (ℓ) and B(ℓ), it is possible to filter out the correlations between

(
Hiℓ : i ̸= ℓ

)
at the cost of adding an extra sum. To illustrate their method, we apply the resolvent identity two times∑

i

aiXi =
∑
i

biXi +
∑
i,j

biXiaijXj =
∑
i

biXi +
∑
i,j

biXibijXj +
∑
i,j,k

biXibijXjajkXk.

Now the first two sums on the right hand can be estimated by first conditioning H(ℓ) and then bounding
moments of random vectors with deterministic coefficients. Applying this trick many times allows us to push
further the correlated term aij and eventually to control it.
In [30], the authors use the resolvent identity O(1) times and thus have to prove large deviation estimates
on random vectors of the form ∑

i1,...,il

bi1Xi1bi1i2 · · · bil−1ilXil , l = O(1).

One of the key technical achievements in Chapter 2 is to derive large deviation estimates that are efficient
for l = O(logN). The proof relies on two mechanism
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1. An analysis of large computation graphs.

2. The fact that off-diagonal entries of the Green function are with high probability of order o(1).

The first mechanism is a general technic that can be found in many proofs of local laws (see for instance [45]
and [23]). The second mechanism is somewhat surprisingly not often used in these proofs but it is an
important ingredient to overcome the difficulties arising from sparsity and heavy tails.

The problem of inhomogeneity of G

Once the large deviation estimates have been derived and upgraded, a local law up to d ≳ logN can be
quickly obtained by following the pipeline laid out in [30]. A central difficulty to go lower than logN is that
the graph becomes inhomogeneous. First of all some disconnected components appear as we go below logN
but even before that the behavior of the degree sequences changes (see the next section for more on the
matter).
A delicate consequence of this fact is that the local average of the Green function is not anymore necessarily
well-approximated by the global average. The estimate

(x)∑
y,z

(
H2
xy − 1

N

)
Gyy = o(1), ∀x ∈ [N ],

is not true anymore. Rather we can say that

∃T ⊂ [N ], |[N ] \ T | ≪ N,

(x)∑
y,z

(
H2
xy − 1

N

)
Gyy = o(1), ∀x ∈ T.

This set T is called the set of typical vertices while the complement is the set of atypical vertices.
Separating typical and atypical vertices is an idea that was developed in [5]. In that article, the authors
considered the adjacency matrix of the Erdős-Rényi in the same regimes of d. The phenomenon of inhomo-
geneity was thus the same. However, the (small but very real) correlations between entries of the Laplacian
matrix make the analysis much more complicated.

1.5 Largest eigenvalues, right of the spectrum
The analysis of the extreme eigenvalues of random matrix ensembles has been long-standing (see [13] and [9]
for instance). In the case of the Erdős-Rényi graph, as long as d ≪ logN , the top eigenvalues were located
close to the interval [−2, 2]. In [6] and [48], the authors showed that the appearance of eigenvalues outside
of [−2, 2] was shown to be related to the emergence of very large vertices in G. Our main theorem regarding
the right of the spectrum states that the eigenvalue process is asymptotically close to a sequence of Poisson
Point Processes (PPP ). As a by-product of the proof, we also show that the eigenvectors corresponding to
the maximal eigenvalues are localized in the graph on balls around large degree vertices.

Our result covers a region of the spectrum in which there are at most K = O(log logN) eigenvalues.

Theorem B. Let ε > 0. There exists a constant K ≥ 0 such that if K ≤ d ≤ N
1
3 −ε then the following holds

with high probability. The point process of the K largest eigenvalues is asymptotically close to a sequence of
PPP . Furthermore, if (log logN)1/4 ≤ d, the eigenvectors corresponding to the

√
K largest eigenvalues are

localized on the balls that surround the vertices with the largest degrees and largest sphere of radius two.

The law of the largest eigenvalue λ1(L) is explicitly described. Theorem B explains why in Figure 1.3,
the eigenvectors located at the right edge of the spectrum have a high infinity norm, ∥wλ∥∞ = 1 − o(1).
Indeed we will see in Chapter 3 that the top eigenvectors of L have an exponentially decaying mass away
from their centers of localization.
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Neighborhood of large degree vertices
To study the eigenvalues of L it is convenient to study a linear shift of the matrix L, namely

L ..= L− d√
d
.

In that way the diagonal entries are (almost) centered and have variance 1. We define the rescaled degree as

vx ..= Dx − d√
d

.

Since the largest entries of L are given by the largest normalized degrees, understanding the extreme statistics
of the variables (vx : x ∈ [N ]) seems to be a natural place to start our investigation of the extreme eigenvalue
statistics. Note that the variables vx can take negative values, but not smaller than −

√
d. Recalling (1.5),

we see that the rescaled degrees typically behave as N (0, 1) variables and we expect most of them to take
values in a compact interval around 0.

For clarity let us start with the easiest case when G is in the supercritical regime, meaning that d ≫ logN.
The matrix L can be viewed as a perturbation of the matrix D ..= D−d√

d
. In [11] and [12] the authors showed

that [6], 1
d∥A − EA| = O(1). In addition, as we explained in (1.5), the statistics of vx are close to the

statistics of N weakly correlated normal variables. It is well known from extreme value theory (see for
instance [17, Section 14]) that if Xi

i.i.d.∼ N (0, 1), the maximum is located around
√

2 logN and fluctuates on
the scale (logN)−1/2.

1
τ

(
max
i
Xi − σ

)
⇒ ee−x

dx, (1.12)

where τ =
√

2 logN and σ = τ(1 + o(1)).
Let us consider xmax ∈ [N ] such that vxmax = maxy∈[N ] vy. The strategy is to study the neighborhood of the
vertex x.
Notation. We equip the graph G with the graph distance d(·, ·). For x ∈ [N ] and i ∈ N, we define the
sphere and the ball of radius i around x as

Si(x) ..= {y ∈ [N ] : d(x, y) = i}, Bi(x) ..= {y ∈ [N ] : d(x, y) ≤ i}.

For T ⊂ [N ], we denote by G|T the graph restricted to the vertex set T ,

G|T ..=
(
T, {(x, y) ∈ E(G) : x, y ∈ T}

)
For M ∈ RN×N and T ⊂ [N ], we denote by M |T the |T |-by-|T | sub-matrix(

M |T
)
xy

= Mxy, x, y ∈ T.

For d ≤ N1/3−ε, ε > 0, it is possible by cutting a small number of edges (typically no more than O(1)), to
remove cycles and large vertices (i.e. y ∈ [N ] such that vy ≥

√
1.5 logN) from B1(xmax). After this pruning

procedure, G|B1(xmax) is a tree with one root vertex vx ≍
√

2 logN and maxy∈B1(x) |vy| = O(
√

logN).
Actually, we will show that we can do this procedure simultaneously for all vertices x ∈ V, where V ..= {x ∈
[N ] : vx ≥ maxy∈[N ] vy −

√
τ logN}, for some small enough constant τ > 0 (see Figure ).

The strategy is then broken into three parts
1. Section 3.5 : Compute the largest eigenvalue λ(x) of L|B1(x), for x ∈ V. Show that λ(x) = vx+ 1

vx
+εx,

εx = O
((

logN
)−1)

.

2. Section 3.2 : Use a block diagonal approximation of L to show that the point processes

Φ ..=
∑

λ∈SpecL
δλ, and Ψ ..=

∑
x:vx

√
(2−τ) logN

δv(x)+ 1
σ +εx

, (1.13)

agree on the interval
[
σ −

√
τ logN,+∞

)
, for some error terms εx = o

((
logN

)−1/2)
.
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Figure 1.6: Illustration of the pruning procedure on the graph from Figure 1.1. The vertices drawn in red
represent the large degree vertices and the colored edges are the ones removed during the pruning procedure.

3. Section 3.7 : Show that the law of the variables
(
vx + 1

vx
: x ∈ V

)
factorize asymptotically and that

the process Ψ converges to a Poisson Point Process with intensity measure e−xdx.

Perturbation theory
Let V be a Hermitian matrix and H a "small" Hermitian matrix. If everything is known about the spectrum
of V , what can we say about the spectrum of V + V ? This is a central question in random matrix theory
but more generally it is a very fruitful source of exercises for quantum mechanics classes (see [44, Chapter
5]). While the tools used are elementary (see for instance [46, Chapter 1]), it is rarely taught in mathematics
class. There are many ways to go about perturbation theory, perhaps the most historically relevant are the
so-called Rayleigh-Schrödinger coefficients.
In our setup, we need to understand the top eigenvalue of the Laplacian matrix of a rooted tree, whose root
vertex has a very large rescaled degree. Let us denote by x∗ the root vertex and Br(x), r ∈ N the tree
Setting V to be the diagonal matrix of the rescaled degrees and H the adjacency matrix, we can treat that
question as a perturbation problem. An adaption of an argument found in [35, Chapter 4] allows to give an
approximate value for the maximal eigenvalue of V +H by computing all possible cycles in the graph G that
starts at x∗. This is a self-contained argument that is elaborated in Proposition ??. The argument relies
only on the existence of a spectral gap (i.e that λ2(V ) ≤ λ1(V ) − 2∥H∥) and on Cauchy’s integral theorem.
We believe it can be used in other contexts. An illustration is proposed in Figure 1.7.

ψ

(vy : y ∈ Br(x) \ {x∗}) vx∗

Figure 1.7: Computing the maximal eigenvalue of L|Br(x∗) with perturbation theory. Here x∗ is supposed
to be a large degree vertex surrounded by vertices with average degree, i.e. vy = O(1) ≪ vx∗ .

Remark. This perturbation argument works best when we can consider cycles of length greater than 4. This
is however not always possible if we consider d ≥ N1/6. To fill the gap between N1/6 and N1/3 we use an
alternative technique based on the Courant-Fisher principle (min-max characterization of the eigenvalues).

An adaptation of an argument from [35] allows us to elegantly express the eigenvalue of L
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Rigidity of Poisson statistics
A good analysis of the eigenvalue process should allow us to distinguish the top eigenvalues one from the
other. As explained previously, for regime d ≫ logN , we can do this by matching the maximal eigenvalues
with a function of the maximal degree vertices. As d becomes of order logN however, it is possible to see
more than one vertex of maximal degree. Let us consider independent Poisson variables of parameter d as
a toy model for the eigenvalue process at the edge.
Let (Yi)Ni=1 be i.i.d. random variables with distribution Pd, i = 1, . . . , N . Then if d ≫ logN the maximum
of the Yi is with high probability unique and at the edge the rescaled Yis form a
PPP. If d ≍ logN the distribution of maxi Yi has bounded support and with positive probability there are
many j ∈ [N ] such that Yj = maxi Yi. Finally if d ≪ logN , the distribution of maxi Yi is concentrated on 1
or 2 points and almost surely there are many j ∈ [N ] such that Yj = maxi Yi. This emerging rigidity in the
distribution of the extremes of Yi is an adversarial mechanism when we want to distinguish top eigenvalues
in critical regimes. See also [11, Remark 4.14].
To circumvent this obstacle, we will do a finer perturbation analysis on L|B5(x), where x is again a high-degree
vertex. We then show that on the right half-infinite interval the point processes

Φ ..=
∑

λ∈SpecL
δλ, and Ψ ..=

∑
x large degree vertex

δΛ(αx,βx)+εx
, (1.14)

agree. Here Λ(·, ·) is a function of αx ..= Dx

d and β ..= |S2(x)|
|S1(x)|d − 1. The difference between the (1.13) and

(1.14) is illustrated in Figure 1.8

|S2|(x)
|S1(x)|d − 1

Spec(L)

Deg(x)
O(d−1/2)

O((logN)−3/2)

Deg(x)

Spec(L)

O
(√

d/ logN
)

d ≫ logN

d ≲ logN

Figure 1.8: Illustration of the correspondence between high-degree vertices and maximal eigenvalues. In the
supercritical regime, the maximal degrees are with high probability distinct and fluctuate, like a sample of N
independent normal variables, on a scale (logN)−1/2. In the critical, respectively in the subcritical regimes,
the maximal degrees can accumulate, respectively accumulate with high probability, on a few values. Then
an extra layer of information is needed to distinguish the eigenvalues generated by L|Br(x), for x ∈ W+, the
set of high-degree vertices.

1.6 Smallest eigenvalues and spectral gap
The left edge of the spectrum (c.f. Figure 1.2) looks similar to the right edge. This impression is vindicated
by our first theorem concerning the smallest eigenvalues of L which is the almost symmetric counterpart to
Theorem B.
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Theorem C. Let ε > 0. If 1
2 logN + (logN)ε ≤ d ≤ N

1
3 −ε, the point process of the K (non-trivial)

eigenvalues is asymptotically close to a sequence of PPP . Furthermore, the top eigenvectors are localized
around

1. minimal degree vertices when d ≥ logN − log logN ;

2. leaves with minimal sphere of radius three when d ≤ logN − log logN.

Too many leaves
Let us denote by L ..= {x ∈ [N ] : Dx = 1}, the set of degree-one vertices Just like the statement of Theorem
C is similar to the one of Theorem B, the ideas and techniques used in the proof are similar. There is
however one key difference when d = (1 − c) logN , for c ∈ (0, 1/2). In that case the number of leaves
becomes polynomial: indeed adapting (1.6) we see that

E
[
|L|
]

= Ne−dd = N c(1 + o(1)), L ..= {x ∈ [N ] : Dx = 1}

Because of this polynomial accumulation of vertices, the extreme value statistics of the variables
(
βx : x ∈ L

)
undergo the same transition as the extreme value statistics of the maximum of n i.i.d. Pd variables. We
need to proceed carefully and expand to approximate the smallest eigenvalues of L|B10(x), x ∈ L, to the
third order as

λ1(L|B10(x)) = ΛL(Dx, |S2(x)|, |S3(x)|
)

+ εx = ΛL(1, |S2(x)|, |S3(x)|
)

+ εx,

for εx sufficiently small.
An additional difficulty arises when d = 1

2 (1 + ε) logN and ε = o(1). In that case it is no longer possible
to guarantee that the neighborhood of leaves is free of other small degree vertices and the perturbation
argument (as illustrated in Figure 1.7) becomes increasingly difficult. We illustrate the difficulty by pushing
our result to regimes d ≥ 1

2 logN + (logN)ε, for ε > 0 constant. We believe the optimal regime should be
d ≥ 1

2 logN + C log logN, for some large enough constant C ≥ 0.

What is smaller than a leaf? Maximal trees and spectral gap
A key assumption in any perturbation analysis argument is to have a spectral gap (c.f. Figure 1.7). However
for d ≤ 1

2 logN, there is with high probability a positive number of regions in G where small degree vertices
are neighbors one of the other. In that case, it is impossible to perform perturbation analysis of the diagonal
matrix D. On the other hand, first-order perturbation analysis suggests that the eigenvalue generated by such
a configuration should be of order −

√
d+ 1

2
√
d
(1+o(1)), which is much different than the −

√
d+ 1√

d
(1+o(1))

obtained from perturbation analysis of a rooted tree with a rooted vertex of degree 1. A similar analysis for
a group of t ∈ N∗, t ≥ 2, vertices of degree O(1) attached together suggests that the eigenvalue should be
of the order −

√
d+ 1

t
√
d
(1 + o(1)). This observation suggests that the correct geometric shape to analyze is

not any more isolated vertices of small-degree, but rather trees. Let Tt, t ∈ N∗, be the set of finite trees
with vertices labeled by [t]. By Cayley’s theorem, this set has cardinality tt−2. In Chapter 4, we construct a
function γ∗ : N∗ → R>0 such that γ∗(t) is an implicit function of Tt and relate it to the smallest eigenvalues
of L.

Theorem D. For 1
t+1 logN ≪ d ≪ 1

t logN , t ∈ N∗, with high probability, we have

λ2(L) = −
√
d+ γ∗(t)√

d
+O

(
d−1).

Although we do not prove eigenvector localization and convergence towards a P.P.P. in the present work,
those results are believed to hold with a very high degree of confidence (and also with high probability).
Indeed the error bounds obtained in the proof of Theorem D can be actually quite easily refined and the
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ψ

(vy : y ∈ Br(x) \ {x, zx})vx = − 1√
d

vzx

η
√
d

ψ

β̃x

vx

1

2

(vy : y ∈ Br(x) \ {x, zx})

Figure 1.9: Illustration of the perturbation argument for points 1 (above) and 2 (below) of Theorem C.
In the first case, the perturbation theory works well and the eigenvalues are well-described by a function
of vx and β̃x ..= |S2(x)|−|S1(x)|d√

d
which has a continuous distribution. On the other hand, as d = η logN ,

η ∈ (1/2, 1), the smallest degree vertices are all leaves and the statistics of β̃ = vzx − d−1/2 become discrete
(rigidity phenomenon of the maximum of n Plogn variables). In that case the value of Dx (which is 1 for
leaves) and of |S1| = Dzx

is not enough to distinguish the smallest eigenvalues. Finally, observe that the
interval between vx and vzx

closes as η → 0. This explains the limitation in the hypotheses of the theorem.

logNd∗(2)d∗(3)d∗(4)

. . . . . .

d∗(t)

ε

Leaves and small degree vertices.

G

T3 T2

G

Tt

G G

Figure 1.10: Illustration of Theorem D

pipeline for Theorem B can be adapted in a straightforward way to handle the point process of minimal
eigenvalues in the regimes covered by Theorem D.

The mechanism underlying the proof of Theorems B and C rely on the analysis of the matrix H = H0+H ′,
where the largest eigenvalue of H0 is separated by a spectral gap ψ from the rest of SpecH0 and where H ′ is
a small matrix, in the sense that ∥H ′∥ ≪ ψ. The mechanics at work in Theorem D are different: we consider
the spectrum of rank one perturbation of a block diagonal matrix

H =
(
H1 0
0 H2

)
+ θvv∗, (1.15)

where θ ∈ R and v is a real vector.
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Now imagine the Erdős-Rényi is connected and admits a subset of vertices T ⊆ [N ] such that

|T | = t, max
x∈T

Dx ≤ 2t, min
x/∈T

Dx ≥ d−O(
√
d).

Suppose in addition that there is exactly one edge that links T and T c, namely e = (x, z), x ∈ T and
z ∈ [N ] \ T. In that case, the matrix L can be written as the matrix H of (1.15) with H1 is the (rescaled)
Laplacian matrix of a tree T ∈ T, H2 is the rest of the graph, i.e. L|T c , θ = 1√

d
and v = 1x − 1z, for

x ∈ T and z ∈ T c is used to "link" those two disjoint connected components. H1 and H2 are both (rescaled)
Laplacian matrices of graphs and therefore each generates a trivial eigenvalue −

√
d (recall the rescaling of

(1.7)).

H0

H1

H = H0 +H1 + 1√
d
vv∗

R

Mean-field, bulk

SpecH1tSpecH0−
√
d

ψ

Figure 1.11: Illustration of rank-one perturbation theory. In blue, we denote the eigenvalues of H1, in red
the ones of H0. In our setup we suppose that the spectrums of H0 and H1 are separated by a spectral gap
ψ (this is similar to the arguments illustrated in Figure 1.7). However here many "extreme" eigenvalues are
perturbed (if the tree is of size t ∈ N∗, then there are t such extreme eigenvalues). We see that analyzing the
spectral gap of H, i.e. the distance between λ1(H) = −

√
d and λ2(H) is equivalent to understanding how

the trivial eigenvalue λ1(H0) = −
√
d is perturbed when H0 is "anchored" to H1.

An interesting corollary of Theorems C and D is the following characterization of the spectral gap of L
restricted to the giant connected component.

Notation. We denote by Gcc the connected component of G with the highest number of vertices.

Corollary E (Spectral gap of L|Gcc
). Let ε > 0 and Λ ..= λ2(L|Gcc

) +
√
d be the spectral gap of the rescaled

Laplacian matrix. Then the following holds

(i) For d ≥ logN − log logN , the spectral gap is given by

minx∈Gcc Dx√
d

+O
(
d−1).

(ii) For 1
2 logN + (logN)ε ≤ d ≤ logN − log logN , the spectral gap is given by

1√
d

− minx∈L Dzx

d
+O

(
d−2).

(iii) For 1+ε
t+1 logN ≤ d ≤ 1−ε

t logN , t ∈ N∗, the spectral gap is given by

Universal function of finite trees of size t√
d

+O
(
d−1)
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1.7 Outlook

What did we learn?
There are many ways to interpret the results obtained in this work. The first way is to view them as a
collection of mathematical results the relevance of which lies in the hypotheses under which the various
theorems hold and the techniques we use to prove them. For instance, as pointed out in Figure 1.5, proving
a local law for the Laplacian of the Erdős-Rényi graph is not new but the regimes of d under which such
results are proved is sensibly better than previous work in this domain. Similarly, our local law falls in the
study of deformed Wigner matrices and, while the methods we use a very different from the ones found
in [37], [38] and [39], Theorem A can be seen as a companion result of the ones found in those papers.

Another way is to consider the physical meaning of our results. In [50], Wigner used random matrices to
describe the energy levels of particles in heavy atoms. Wigner managed to describe the distribution of the
energy levels of the atoms and show that it had the shape of a semi-circle, but, to our knowledge, he did not
make mention of the eigenvectors. In [8], Anderson proposed a way to describe the movement of electrons on
a lattice with random potential by considering an operator ∆ + V , where ∆ is the hopping term and V the
potential. In this case, the eigenvectors had an explicit interpretation as the location of the electron’s wave
function on the grid. In their famous paper [27], Fröhlich and Spencer proved rigorously that for a large
disorder, the top eigenvectors of the model are localized (see [2] for an overview of results and techniques).
This result has a direct physical interpretation as it tells that if the level of impurity is high enough, the
electron is trapped in some region of the grid (insulator, localized eigenvector, pure point spectrum) and
cannot travel in the medium (conductor, delocalized eigenvector, absolutely continuous spectrum). In this
regard, Theorems B and C are an analog of their result for the Laplacian: as mentioned earlier, the Laplacian
is the quantum Hamiltonian of a particle moving on the graph G. Proving localization of eigenvectors around
large-, respectively small-degree vertices (both analog to high disorder) means that for those level of energy,
the particle is trapped in the regions surrounding those vertices. This was already proved for the adjacency
matrix of G in [7]. While we do not prove eigenvector localization around trees, we strongly believe that
Theorem D can be extended to eigenvector localization exactly as its two counterparts.

A third way to understand our results is through the lens of information. As we mentioned earlier,
spectral analysis of graphs is a very popular tool in computer science, statistics and data analysis. Let us
remind the reader of the question we asked at the beginning of the chapter.

Can meaningful information be extracted from the eigenvalues and eigenvectors of L?

In his famous paper [34], Mark Kac asked whether it was possible to hear the shape of a drum. Or in
other words, what does the spectrum tell us about our system? Understanding this question is important
because we want to know what predictive powers our spectral algorithms can have. In that regard, the main
conclusion of this thesis is the following: spectral analysis of the bulk and the edge eigenvectors of L yields
no interesting information. Let us elaborate. In Theorem A, we claim that a local law holds down to the
regime

√
logN in the bulk. This means that the eigenvectors are completely delocalized. Local laws are the

typical result for mean-field models which by definition have no interesting structure. In Theorems B, C
and D, we claim that the extreme eigenvalues of the matrix L are determined by local configurations, such
as large degree vertices, small degree vertices and embedded trees. In particular, they do not reflect any
general effect of the system. The only information that was given is the characterization of the spectral gap
(Corollary E) of L down to regimes 1

C logN , for C = O(1). In particular, our results do not give ways to
identify anomalies or communities in graphs, with the exception of finding trees that are embedded in the
graph.

Non-ergodic delocalization
An interesting direction for future analysis would be to understand the partially delocalized phases of the
spectrum of L. As is evident from Figure 1.2 (purple lines on both sides of the bulk), such phases exist in
any regime of d and seem to be characteristic of regions of the spectrum that correspond to a polynomial
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density of states. A partial delocalization (also known as non-ergodic delocalization) mechanism seems to
be at play in the spectral regions located slightly above E =

√
logN , where∣∣{x ∈ [N ] : |vx − E| ≤ 1} = N− 1

2 +c(1 + o(1)), c ∈ (0, 1).

While we believe our explanation of the partial localization phenomenon (lower bound on ∥w∥∞), given in
Chapter 2, could be made rigorous without much effort (as it was done for instance in [5, Theorem 1.2]),
we do not know how to prove partial delocalization (upper bound on ∥w∥∞). There are only a few known
techniques that allow for a rigorous derivation of partial delocalization estimates. Indeed, apart from the
local law framework, the proof of delocalization results is extremely difficult and remains a big open question
in the field (Anderson extended state conjecture). Some heuristics have been developed for the Erdős-Rényi
graph [47] and general physical models and rigorous mathematical proofs have been shown for specific cases
( [1], [15], [49]).

Another way to study non-ergodic delocalization would be to modify the model by adding a small mean-
field component. This is in line with the idea of [40]. For instance does the localization result of Theorem B
remain valid if we consider

L1(α) ..= (1 − α)L+ α
1
N

1[N ]1∗
[N ], L2(α) ..= (1 − α)L+ α · GOE, α ∈ [0, 1],

with α possibly dependent on N? Clearly as α → 1, the matrix L1(α) moves closer to a rank-one matrix
while L2(α) becomes a GOE. As Google’s algorithm shows, we could expect a partial delocalization on the
most relevant vertices.

Very large trees
The behavior of the spectrum for regimes d = o(1) logN would be a natural way to expand Theorem D.
Would the localization conjecture remain valid? Could trees of different sizes simultaneously contribute to
the spectral gap?
As explained in Chapter 2, when d approaches

√
logN , large stars (resonant and non-resonant) start to

contribute significantly to the bulk of the spectrum. As is evident from the computations in Chapter ??, as
long as embedded trees are on finite size, their contribution to the spectral gap can be formally understood
as

λ(spectral gap) = −
√
d+ Universal function of L(T )√

d
+ N (0, 1)

d3/2 . (1.16)

Because the spectrum of L(T ) lives at a scale of O(1) and the fluctuation in the neighborhood in the graph
of T fluctuate on the scale d−3/2, as long as |T | = O(1) the scales in (1.16) allow to distinguish between the
contribution of different trees. It is not at all evident that, as much larger trees begin to appear, which will
happen as soon as d = o(logN), this relation still holds. In particular, we do not know if the spectral gap of
L(T ) is still generated by maximal trees. It might be that smaller trees with large neighborhood fluctuations
yield a smaller spectral gap than larger tree with small neighborhood fluctuations. We expect the spectral
gap to close and the rate at which it does would be an interesting question.

Very dense regimes
As explained above, the proof of Theorem B relies on a sparsity property of the graph that allows us to
separate the neighborhood around high-degree vertices (see Figure 1.6). For d = Nε, ε > 0, the radius of G
(the maximal distance between two points in the graph) is, with high probability 1/ε. Therefore, as ε becomes
larger than 1/3, it is no longer possible to do so and our proof breaks down (see Figure 1.5). However, we
believe that the law of the extreme eigenvalues remains the same, and our conjecture is supported by results
about dense Laplacian matrices (see [20]). However, we believe new techniques are required since, for the
adjacency matrix, the regime N1/3 is also the boundary between two kinds of behaviors for the extreme
eigenvalues.
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Chapter 2

Delocalization in the bulk

In this chapter, we prove two local laws for the Laplacian matrix of the Erdős-Rényi graph. The result is
valid for regimes as low as C

√
logN . In particular, we obtain that the entries of the Green function G(z)

remain uniformly bounded down to the optimal scale η ≫ N−1 on any compact interval. We explain how
these results allow us to prove eigenvector delocalization in the bulk and why the result is optimal.

2.1 Main results
In this chapter, we study the spectrum of the Laplacian matrix of the Erdős-Rényi graph. Recalling the
adjacency matrix A, we define

H ..= 1
√
γ

(A− E[A]), γ ..= d
(

1 − d

N

)
. (2.1)

The matrix H is Hermitian and the entries (Hxy : 1 ≤ x < y ≤ N) form a family of independent centered
random variables satisfying

E|Hxy|2 = 1
N
, |Hxy| ≤ Kd−1/2, (2.2)

for some K ≥ 0, as soon as d ≤ N/2.
We define the diagonal matrix V and the rank one matrix R as

V ..= Diag
(
v1, . . . , vN

)
, R = d

√
γ

ee∗, (2.3)

where e ..= 1√
N

1[N ] and

vx ..=
∑
y

Hxy. (2.4)

We will prove a local law for the matrix

M ..= V −H −R. (2.5)

The matrix M is a linear transform of L defined in (1.2) since

M = 1
√
γ

(
L− d− d

N

)
. (2.6)

We study M instead of L to comply with the conventions of the literature on local laws. In particular,
matrices of the form (2.5) are instances of so-called deformed Wigner matrices which have been studied in
the literature, for instance in [30], [5] and [37].

23



24 CHAPTER 2. DELOCALIZATION IN THE BULK

Convention 2.1. For now on every quantity depends implicitly on N unless we explicitly define it as a
constance.

Let Ξ ..= ΞN,ν be a family of events parametrized by N ∈ N and ν > 0. We say that Ξ holds with very
high probability if for every ν > 0 there exists a constant Cν such that

P
(
ΞN,ν

)
≥ 1 − CνN−ν

for all N ∈ N.
In particular, the estimate X ≤ CY with very high probability means that, for each ν > 0, there are constants
Cν , cν > 0 depending on ν such that

P
(
|X| ≤ CνY

)
≥ 1 − cνN

−ν .

We sometimes abbreviate that statement by X = O(Y ).
Note that X ≤ Y with very high probability means

P
(
|X| ≤ Y

)
≥ 1 − cνN

−ν

for some cν ≥ 0.

For constants κ ∈ (0, 1) and R ≥ 1 we define the spectral domain

Sκ,R ..= {z ∈ C : | Re z| ≤ R, N−1+κ ≤ Im z ≤ 2}. (2.7)

We prove a local law on the entries of the Green function and on the Stieltjes transform g of the empirical
spectral measure of M ,

G(z) ..= (M − z)−1, g(z) ..= 1
N

∑
λ∈SpecM

1
λ− z

= 1
N

TrG(z). (2.8)

We always assume that z lies in the complex upper-half plane H. The limiting behavior of G and g is governed
by the following deterministic quantities.

Definition 2.2 (Quadratic vector equation). Let vx ∈ R, x ∈ [N ], v = (vx)x∈[N ] ∈ RN . We define the
vector m ..= mv = (mv

x)x∈[N ] ∈ HN to be the solution of the system of equations

1
mx

= vx − z − 1
N

∑
y∈[N ]

my, x ∈ [N ], (2.9)

for z ∈ H. We also introduce

m ..= 1
N

∑
x∈[N ]

mx. (2.10)

As was observed in [37], g is the additive-free convolution of the semi-circle law µsc, and µv, the empirical
distribution of the entries of V .

Lemma 2.3 (Existence and uniqueness of (2.9)). For each z ∈ H and v ∈ RN , the system of equations (2.9)
has a unique solution m in H.

The proof of Lemma 2.3 is a classical result that can be found for instance in [4]. In Section 2.9, we study
in more detail the properties m when the vx are defined as in (2.4).

Theorem 2.4. Let M be as in (2.5) and m be the solution to (2.9) with v as defined (2.4). Then with high
probability, there exists D ≥ 0 such that if D

√
logN ≤ d ≤ (logN)3/2, then

max
x,y

|Gxy(z)| = O(1), max
x,y

∣∣∣Gxy(z) − δxy

vx − z − 1
d

∑
y Axymy

∣∣∣ = O

(
logN
d2

)1/3
, ∀z ∈ Sκ,R, (2.11)

holds with probability 1 −O
(
d−1).
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Definition 2.5 (Free convolution). The Stieltjes transform mfc is defined as the solution to the following
functional equation

mfc(z) = 1√
2π

∫
R

e−x2/2

x− z − mfc(z)dx, z ∈ H.

For d ≫ logN , the last term of the denominator in (2.11), can be shown to converge mfc. We have∣∣∣1
d

∑
y

Axymy − mfc(z)
∣∣∣ ≤

∣∣∣Dx

d
− 1
∣∣∣max

y
|my| + |m(z) − mfc(z)|.

Using Bennett’s inequality, Lemma B.3, we see that maxx
∣∣Dx

d − 1
∣∣ = O(

√
logN/d). Moreover, it can be

proved that m = mfc +O(
√

logN/d), see for instance Lemma 2.34. We can conclude that for d ≫ logN ,

Gxx(z) = 1
vx − z − mfc(z) + o(1).

This was known for d ≥ Nε, ε > 0, from [30]. The next theorem closes the gap between their results and
Theorem 2.4.
Theorem 2.6. For (logN)1+κ ≤ d ≤ Nκ/12,

max
x,y

∣∣∣Gxy(z) − δxy
vx − z − mfc(z)

∣∣∣ = O
(√

logN
d

)
, ∀z ∈ Sκ,R. (2.12)

Remark 2.7 (Extension to generic sparse Laplacian matrices). It is interesting to consider matrices M as
defined in (2.5) but with more general conditions on V , H and R. The matrix H is typically viewed as some
Wigner matrix and the conditions given by (2.2) are already quite general. A possible extension could be to
modify the law of V , making it independent of H for instance. or to replace the factor d/√γ in the definition
of R by some 0 ≤ f ≪ N is some rank one matrix (see for instance [5, (4.1)].
As will become apparent from its proof, Theorem 2.6 is easily extended to this setup. However, the techniques
used in the proof of Theorem 2.4 require some control on the relationship between the quantities αx ..=∑
yH

2
xy, and vx. For instance, in our proof, we need to know that if |αx − 1| > c > 0 for some constant

c > 0, then |vx| ≫ 1. This is not true in general, as the simple example where Hxy are i.i.d. with uniform
probability distribution on

[
−

√
12

N1/2 ,
√

12
N1/2

]
shows. However, we believe many natural models, for instance,

weighted random graphs, should be amenable to similar proofs.

Consequences and limits of the local law
Once a local law on some random matrix ensemble has been proved, many useful consequences can be
drawn. A very important is the delocalization of the eigenvectors associated with the eigenvalues present
in the interval of the local law. In this section, we use the following convention. If λ ∈ R is defined as the
eigenvalue of some Hermitian matrix H, then wλ denotes the associated eigenvector.
Corollary 2.8 (Eigenvector delocalization in the bulk). Let κ > 0 and R ≥ 1. Let us consider the Laplacian
matrix of the Erdős-Rényi graph L and write wµ, µ ∈ SpecL, the eigenvector associated to the eigenvalue
µ. There exists D ≥ 0 such that if D

√
logN ≤ d ≤ Nκ/12, then∥∥wµ

∥∥
∞ = O

(
Nκ−1

)
, ∀µ ∈

[
d−R

√
d, d+R

√
d
]

Proof. Let µ ∈ SpecL such that |µ− d| ≤ R
√
d. By (2.6), we know that wµ is an eigenvector of M for the

eigenvalue λ = 1
γ (µ− d− d/N). Applying Theorems 2.4 and 2.6 with R as R+ 1, and choosing the random

spectral parameter z ..= λ+ iη with η ..= N−1+κ, we find a constant C ≥ 0, such that

C ≥ ImGkk(z) =
∑

λ′∈Spec(M)

η

(λ′ − λ)2 + η2 |wλ′(k)|2 ≥ 1
η

|wλ(k)|2 = N1−κ|wλ(k)|2.

This shows the claim.
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Localization on tuning forks and trees

Follow the construction in [5] using tuning forks. The same argument works here. We can even use a (longer)
perturbation argument to show localization happens on big starts.As d gets closer to

√
logN, isolated trees

of size
√
d will appear outside of the macroscopic connected component. Such trees can have eigenvalue of

size
√
d (for instance the star on d−1 vertices). However, restricting the spectral analysis to the macroscopic

component does not solve this issue, since tuning forks of size d also appear with positive probability, giving
rise to eigenstates with energy

√
d localized on 2d vertices.

G

Figure 2.1: A tuning fork of size 2 times 5 and a star of size 5.

Partial localization outside of the bulk

In this subsection, we give a heuristic argument on why the conclusion of Corollary 2.8 cannot hold in regions
of the spectrum where the density of states of the entries of V is o(1). We know that this argument could be
made rigorous by following the arguments of [5, Theorem 3.4] but for the sake of brevity we restrain from
doing so.

The argument relies on the fact that M can be seen as a perturbation of the diagonal matrix V by the
matrix H. The size of the perturbation is small compared to V . Indeed the entries of V can become very
large (see Lemma 2.48) while we know (see Proposition 3.25) that with very high probability

∥H∥ ≤ 2 + C
√

logN
d

. (2.13)

Suppose R ≫ 1 is an energy that depends on N such that the number of vertices with normalized degrees
close to R is polynomially small, i.e.

1
N

∣∣{x ∈ [N ] : R− ϕ ≤ vx ≤ R+ ϕ
∣∣} ≍ N−c/2,

√
dN−c/2 = o(1),

∥∥H∥∥ = O(1), (2.14)

for some constant c > 0 and some quantity ϕ, that may depend on N. Let us call V ..= V(R,ϕ) the subset
of vertices that contribute to that set.

Remark 2.9 (Relevance of the assumptions made above). Compare (2.14) with the analog condition in
the bulk (2.109). Note that the entries of V can be morally thought of as identically distributed, weakly
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spec(M) for N = 2000 and d = 1.2 logN

∥∥wλ

∥∥2
∞ Number of eigenvalues

maxx vx−
√
d 0

Figure 2.2: For the above simulation, we used a scatter plot (λ, ∥wλ∥2
∞), λ ∈ Spec(M) to illustrate the

negative correlation between the density of states in some region of the spectrum and the delocalization of
the eigenvectors in that region. The lower-left point corresponds to the trivial eigenvector 1√

N
e. The bulk

of the spectrum can be identified by the region where the green dots are the lowest and the density of states
is high.

correlated, normal variable in the regime d ≫ logN. Therefore (2.14) is satisfied for E =
√
c logN , c ∈ (0, 2).

The argument is the same for R ≪ −1, as long as R ≫ −
√
d (remember that L is positive definite and thus

Spec(L) ⊆ [−
√
d,+∞) by definition).

For c > 0 and d = (logN)2, all the conditions of (2.14) are satisfied.

Suppose λ ∈ Spec(L) ∩
[
R− ϕ

2 , R+ ϕ
2
]

and wλ is the corresponding eigenvector. We will show that∥∥wλ|Vc

∥∥2
2 = o(1). (2.15)

From (2.15), we will immediately be able to conclude that
∥∥wλ|V

∥∥2
2 > 1 − o(1) and thus, by Dirichlet

principle, ∥∥wλ

∥∥2
∞ ≥ 1

2|V|
≳

1
2N

−c/2 ≫ Nκ−1,

for any κ < 1 − c/2.
Since the matrix M can be seen as a small perturbation of the diagonal matrix V , we could expect that

if λ ∈ R were an eigenvalue of M close to R, then the eigenvector wλ would be supported mainly on the set
V. Let us introduce the projection operators

Π ..=
∑
x∈V

1x1∗
x, Π = 1 − Π.

Projected on Ran(Π), the eigenvalue eigenvector equation for (λ,wλ) becomes

0 = Π(M − λ)wλ = Π(M − λ)
(
Π + Π

)
wλ =

(
ΠMΠ − λ

)
Πwλ + ΠMΠwλ. (2.16)
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From (2.16), we deduce

Πwλ = 1
ΠMΠ − λ

ΠMΠwλ. (2.17)

By (2.3) and (2.14), we find that∥∥ΠRΠ
∥∥ ≤ |V|

N

√
d = o(1),

∥∥ΠHΠ
∥∥ ≤ C.

Since V is a diagonal matrix we see that

Spec(V ) = {vx : x ∈ [N ]}, Spec
(
ΠVΠ

)
= {vx : x ∈ V}.

We conclude that if ϕ ≥ 2C

Spec
(
ΠMΠ − λ

)
⊆ R \

[
R− ϕ/3, R+ ϕ/3

]
. (2.18)

Using the fact that e∗wλ = 0 and that V is diagonal and R is a multiple of a projection, we find∥∥ΠMΠwλ

∥∥ ≤
∥∥ΠHΠwλ

∥∥ ≤ C.

Thus, (2.16) yields ∥∥ΠIwλ

∥∥ ≤ 3C
ϕ

= o(1), (2.19)

as soon as ϕ ≫ 1.

Outline of the proof of Theorem 2.4
The Laplacian matrix is an instance of so-called deformed matrix ensembles. Such ensembles consist generally
of a mean-field matrix appropriately normalized to which a diagonal term, called the random potential is
added. In some cases the potential is completely decoupled from the rest of the matrix: the distribution of
the diagonal entries is arbitrary and the strength of the perturbation can be tuned by an external parameter
see for instance [37]. In the case of the Laplacian matrix, the diagonal entries are obviously correlated with
the off-diag entries. Moreover, they have an unbounded distribution as seen for the Central Limit Theorem
approximation (Lemma 2.52) This model has been studied up to values d ≫ Nα, α > 0, in [30].

Our proof differs from the preceding works in four ways. To begin with, we do not show convergence of
g towards the deterministic function mfc but only to the solution of (2.9).
The second difference is one of the key instruments to reach the scale d ≫

√
logN and was largely developed

[5]. In that paper, the authors introduced the notion of typical and atypical vertices, characterizing those
x ∈ [N ] for which the quantity

Sdx
..=

(x)∑
y

(
|Hxy|2 − 1

N

)
G̃(x)
yy

does not concentrate well. Although some non-trivial adaptations are required to make this line of argument
applicable to our setup, the structure of the proof is similar.
The third difference is a new observation. In most local laws, the bootstrap assumption simply passes the
information that Gxy is bounded uniformly in x, y ∈ [N ]. In our proof, in we need more information, namely

(i) that the diagonal entries of G are comparable with v−1
x for large degrees;

(ii) that the off-diagonal entries of G are smaller by a factor of d−1/2 than any of the corresponding diagonal
entry.

This information is encoded in the definition of the bootstrapping event θ defined in (2.24) and their deriva-
tion from large deviation techniques is fairly routine (see Proposition 2.32).
The final difference is technical and has to do with the ability to control multilinear large deviations of
sparse random vectors. It expands on the techniques developed in both [30] and [28] and uses in addition
the tweaked information found in θ.
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2.2 Typical vertices in sparse regimes
Throughout this section

√
logN ≤ d ≤ (logN)3/2. This section is devoted to an adaptation of the argument

of [5]. The notion of typical and atypical vertices is introduced. Both the definition of typical vertices and
the structure of the proof are identical, the techniques employed are however different.

Lemma 2.15

Lemma 2.16

Lemma 2.19

Lemma 2.21

Lemma 2.17*

Lemma 2.20Proposition 2.12

Lemma 2.18

Lemma 2.22* Lemma 2.23*Lemma 2.24 *

Figure 2.3: Dependencies in the proof of Proposition 2.12. The statements written with a star rely on
estimates from Section 2.7. NotThe main erre that in Lemma 2.23, we use Proposition 2.32 in order to avoid
rewriting the same argument.

Definition 2.10. For x ∈ [N ] we define M (x) ..= (Mxy)x,y∈[N ]\T to be the submatrix of M with the xth
line and column removed. We generalize this to any T ⊂ [N ]. We write

G(T )(z) ..=
(
M (T ) − z

)−1
. (2.20)

We define A(T ) and H(T ) in the same way.

Let us introduce the main error parameter

φa
..= a

(
logN
d2

)1/3
, a > 0. (2.21)

The following definition is an analog of [5, Definition 4.6].

Definition 2.11 (Typical vertices). Let a > 0 be a constant, and define the set of typical vertices as

Ta
..= {x ∈ [N ] : |Φx| ∨ |Ψx| ≤ φa}, (2.22)

where

Ψx
..=

(x)∑
y

(
|Hxy|2 − 1

N

)
G(x)
yy , Φx ..=

(x)∑
y

(
|Hxy|2 − 1

N

)
, (2.23)

Note that the matrix G(T ) and (Hxy : y ∈ [N ]) are correlated (see Definition 2.13). For this reason,
the term Ψx is not amenable to large deviation estimates in the usual way. This is a major source of
complications.

The bootstrapping events that control the entries of the Green function all depend on the parameter
Γ ..= Γ(κ) > 0 which will be chosen large enough later. For p > 0 we define

θd(Γ) ..= 1maxx,y|Gxy|≤Γ, θo(p) ..= 1maxx ̸=y[N] ṽxy|Gxy|≤p, θi(Γ) ..= 1minx∈[N]|Gxx|(ṽx∨Γ)≥1/4,

θ(Γ, p) ..= θd(Γ)θo(p)θi(Γ)
(2.24)

where we introduced the quantities

ṽx ..= |vx − Re z|, ṽxy ..= 1 ∨ ṽx ∨ ṽy, x, y ∈ [N ]. (2.25)

The following proposition is the analog of [5, Proposition 4.8].
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Proposition 2.12. There exist p, q ∈ (0, 1), depending only on Γ, and a > 0, depending on ν and q such
that on the event {θ(Γ, p) = 1}, the following statements hold with very high probability.

(i) Most vertices are typical

|T c
a | ≤ exp(qφ2

ad) +N exp(−2qφ2
ad). (2.26)

(ii) Most neighbours of any vertex are typical

(x)∑
y∈T c

a

|Hxy|2 ≤ 8φa. (2.27)

Note that for
√

logN ≤ d ≤ (logN) we have (logN)1/6 ≤ φ2
ad ≤

√
logN , and therefore (2.26) implies

|T c
a | ≤ exp

(√
logN

)
∨N exp

(
−(logN)1/6) ≤ N exp

(
−(logN)1/6) (2.28)

with very high probability.
The rest of this section is devoted to the proof of Proposition 2.12. We will need the following definitions.

Definition 2.13 (Decorellated submatrices). For T ⊂ [N ] we define M̃ (T ) to be the N − |T | × N − |T |
matrix as

M̃ (T )
xy = Hxy − δxy

∑
u∈T

Hxu −Rxy.

For u /∈ T we define M̃ (T,u) = (M̃ (T,u)
xy )x,y∈N\T∪{u} to be the minor of M̃ (T ) obtained by removing the u-th

row and column. We define

G̃(T )(z) ..=
(
M̃ (T ) − z

)−1
, G̃(T,u)(z) ..=

(
M̃ (T,u) − z

)−1
. (2.29)

In Appendix A.1, we recall the standard identities that relate the entries of G and G(x), for x ∈ [N ]. For
x ∈ [N ] the entries of G̃(x) and G(x) are related by the by the second resolvent identity (A.3)

G̃
(x)
ab = G

(x)
ab −

(x)∑
c

G̃(x)
ac HxcG

(x)
cb , a, b ̸= x.

The following definition has no direct analog in [5] but it is a generalization of [30, (3.1)].

Definition 2.14. For x ∈ [N ] and T ⊂ [N ] we define

Ψ(T )
x

..=
(Tx)∑
y

(
|Hxy|2 − 1

N

)
G̃(Tx)
yy , Φ(T )

x
..=

(Tx)∑
y

(
|Hxy|2 − 1

N

)
,

and

T (T )
a

..= {x ∈ [N ] : |Φ(T )
x | ∨ |Ψ(T )

x | ≤ φa}.

Note that Φ(∅)
x = Φx but Ψ(∅)

x ̸= Ψx since G̃(x) ̸= G(x). The following is the analog of [5, Lemma 4.15].

Lemma 2.15. There are constants 0 < q ≤ 1, depending on Γ > 0, and a > 0, depending only on ν and
q such that, for any deterministic set X ⊂ [N ], the following holds with very high probability on the event
{θ(q) = 1}.

(i) |X ∩ T c
a/2| ≤ exp(qφ2

ad) + |X| exp(−2qφ2
ad);
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(ii) If |X| ≤ exp(2qφ2
ad), then |X ∩ T c

a/2| ≤ φad.

For any deterministic x ∈ [N ] the same estimates hold for (T (x)
a/2 )c and a random set X ⊂ [N ] \ {x} that is

independent of H(x).

The proof of Lemma 2.15 is given after Lemma 2.21. The following is the analog of [5, Lemma 4.11].
Lemma 2.16. There exists 0 < q < 1 such that with very high probability, for any a > 0,

θ|Φ(x)
y − Φy| ≤ φa θ|Ψ(x)

y − Ψy| ≤ φa,

Proof of Proposition 2.12. For (i) we choose X = [N ] and use Lemma 2.15 (i) and the fact that Ta/2 ⊂ Ta.

By Lemma 2.16 we have T c
a ⊂ (T (x)

a/2 )c with very high probability hence

θ

(x)∑
y∈T c

a

|Hxy|2 ≤ θ

(x)∑
y∈(T (x)

a/2 )c

|Hxy|2

with very high probability. Using the fact that |Hxy| ≤ 2Axy√
d

+ 2
√
d

N , we find

(x)∑
y∈(T (x)

a/2 )c

|Hxy|2 ≤ 4
d

∣∣{y ∈ S1(x) ∩
(
T (x)

a/2
)c}∣∣+ 4d

N
.

Now observe that S1(x) is a measurable function of the family (Hxy)y∈[N ] and it is thus independent of
H(x). Moreover by Lemma 2.48, we have |S1(x)| ≤ logN ≤ qφ2

ad, for any fixed q and a, and so |S1(x)| ≤
exp(2qφ2

ad). Applying Lemma 2.15 (ii) we find
(x)∑

y∈(T (x)
a/2 )c

|Hxy|2 ≤ 4φa + 4 d
N

≤ 8φa.

This concludes the proof.

For T ⊂ [N ] we define v(T )
x

..=
∑(T )
y Hxy and

ṽ(T )
x

..=
∣∣v(T )
x − Re z

∣∣, ṽ(T )
xy

..= ṽ(T )
x ∨ ṽ(T )

y ∨ 2. (2.30)

For p > 0, we define the following analog of (2.24),

θ
(T )
d (Γ) ..= 1maxx,y /∈T |G̃(T )

xy |≤2Γ, θ(T )
o (p) ..= 1maxx ̸=y,x,y /∈T |ṽ(T )

xy G̃
(T )
xy |≤p, θ

(T )
i (Γ) ..= 1minx /∈T |G̃(T )

xx |(ṽ(T )
x ∨Γ)≥1/16,

θ(T )(Γ, p) ..= θ
(T )
d (Γ)θ(T )

o (p)θ(T )
i (Γ).

(2.31)

The following lemma is the analog of [5, Lemma 4.14]. However, its proof is much more involved in the case
of M because in general, for T ⊂ [N ], the matrices G̃(T ) and H(T ) are correlated.
Lemma 2.17. There exists c = cν depending on ν and κ, and p > 0, depending on Γ, such that, for any
ν > 0 and any deterministic set T ⊂ [N ] satisfying |T | ≤ cνd/Γ2,

θ(Γ, p) max
x,y/∈T

|G̃(T )
xy | ≤ 4Γ, (2.32)

and

θ(Γ, p) max
x,y

|G̃(Tu)
xy − G̃(T )

xy | ≤ CΓ
d

+ CΓ1x=y
Aux√
d
, (2.33)

hold with probability 1 −O(N−ν).
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The proof of Lemma 2.17 is postponed to Section 2.3.
The following lemma can be compared with Lemma 2.48.

Lemma 2.18. Let T ⊂ [N ] be deterministic. Then if d|T | ≤
√
N , we have

max
x∈[N ]

∣∣S1(x) ∩ T
∣∣ ≤ C, (2.34)

with very high probability.

Proof. Let x ∈ [N ]. Then Zx ..=
∣∣S1(x) ∩ T

∣∣ is a binomial random variable with parameters Bn,p, n ..= |T |,
p ..= d

N . By Lemma B.3, we see that

P
(
Zx − µ ≥ s

)
≤ exp

(
−µh(a/µ)

)
, s ≥ 0,

where h(x) ..= x log x − x + 1 is defined in (B.1) and µ = EZx = d|T |
N . By assumption on d and |T |, µ ≤ 1

and we find

P
(
Zx ≥ C + 1

)
≤ exp

(
−C
[
log
(CN
d|T |

)
− 1
])

≤ N−C/4.

Choosing C = Cν large enough and applying a union bound, we get the desired result.

The following is the analog of [5, Lemma 4.15].

Lemma 2.19. There is a constant 0 < q ≤ 1, depending only on Γ, such that the following holds with very
high probability.
For any deterministic T ⊂ [N ],

θ(T )P(|Φ(T )
x | ≥ ε|H(T )) ≤ e−32qε2d, θ(T )P(|Ψ(T )

x | ≥ ε|H(T )) ≤ e−32qε2d. (2.35)

Moreover for any u /∈ T ,

Φ(Tu)
x − Φ(T )

x = O(d−1), θ(T )
(

Ψ(Tu)
x − Ψ(T )

x

)
= O

((
1 + αx

)(Axu√
d

+ 1
d

))
. (2.36)

and

θ
(
Ψ(∅)
x − Ψx

)
= O

(
1 + αx√

d

)
. (2.37)

Note that θ(T ) is measurable with respect to H(T ). This explains the position of θ(T ) outside of the
conditional probability in (2.35). Due to the correlations inside of M , that lemma has weaker bounds than
its analog in [5].

Proof of Lemma 2.16. Follows from (2.36) for T = ∅.

Proof of Lemma 2.19. Since G̃(T ) and θ(T ) are measurable with respect to H(T ), we can use (2.83b) in
Proposition 2.38 with ψ = Γd−1/2 to get∥∥∥∥∥∥θ(T )

(Tx)∑
y

(
H2
xy − 1

N

)
G̃(Tx)
yy

∣∣∣H(T )

∥∥∥∥∥∥
r

≤ 6Γ
√
r

d
.

Applying Chebyshev’s inequality with r = 32qε2d and q = 1
(24Γe)2 , we find

θ(T )P(Ψ(T )
x ≥ ε) ≤

(
6Γ
ε

√
r

d

)r
≤ e−qε2d.
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The large deviation bound on Φ(T )
x is proved similarly using Proposition 2.38 with ai = 1.

Equation (2.36) is a comparison argument and is derived similarly to [5, (4.32)] but using (2.33) instead
of [5, (4.25)]. Note that the bounds we obtain are weaker than their counterparts.
On the event

{
θ = 1

}
, we know that with very high probability maxx,y,z|G̃(z)

xy | ∨ |G(z)
xy | ≤ 2Γ, by Lemma

2.17. Therefore (2.37) follows from (A.8) and a double application of (2.97a),

θ

(x)∑
y

(
H2
xa − 1

N

)
G(x)
yy − G̃(x)

yy ≤ θ(αx + 1) max
y ̸=x

|G(x)
yy − G̃(x)

yy | ≤ C(αx + 1)√
d

.

The following lemma is the analog of [5, Lemma 4.12]. Its proof is postponed to the end of this section.

Lemma 2.20. There exist p, q > 0 depending only on Γ, such that, for any constants ν,a > 0, the following
holds with very high probability. If x /∈ T ⊂ [N ] are deterministic with |T | ≤ φad/C then

P(T ⊂ T c
a/2, θ(p) = 1) ≤ e−4qφ2

ad|T | + CN−ν ,

P
(
T ⊂ (T (x)

a/2 )c, θ(p) = 1
)

≤ e−4qφ2
ad|T | + CN−ν .

Before proving Lemma 2.15, we need one last result, which is the analog of [5, Lemma 4.11].

Lemma 2.21. There exists p > 0, depending only on Γ, such that for any deterministic T ⊂ [N ] satisfying
|T | ≤ d

CΓ2 we have θ(p) ≤ θ(T )(p).

Proof. For p > 0 small enough and C = 2
cν

the assumptions of Lemma 2.17 are satisfied. Using the bound
(2.32), we conclude that θ = θθ(T ) with very high probability. Since θ ≤ 1, the proof is complete.

We are now ready to prove Lemma 2.15. The proof is essentially built around the same blueprint as the
one in [5].

Proof of Lemma 2.15. Throughout the proof we abbreviate Pθ(Ξ) ..= P(Ξ ∩ {θ = 1}). Let C be the constant
from Lemma 2.20, and set

a ..=
(Cν

4q

)1/3
. (2.38)

For the proof of (ii), k = φad/C and use Lemma 2.20 to estimate

Pθ(|X ∩ T c
a/2| ≥ k) ≤

∑
Y⊂X:|Y |≥k

Pθ(Y ⊂ T c
a/2) ≤

(
|X|
k

)(
e−4qφ2

adk + CN−ν)
≤
(
|X|e−4qφ2

ad
)k + C|X|kN−ν ≤ e−2qφ2

adk + Ce2qφ2
adkN−ν ≤ N−2qa3/C + CN2qa3C−ν .

In the second step we used Lemma 2.19 and in the final step the assumption d ≤ (logN)3/2.
To prove (i) we estimate for t > 0 and l ∈ N,

Pθ(|X ∩ T c
a/2| ≥ t) ≤ 1

tl

∑
x1,...,xl∈X

Pθ
(
xi ∈ T c

a/2, i ∈ [l]
)
.

Choosing l = φad/C, regrouping the summation according to the partition of coincidences, and using Lemma
2.19 yield

Pθ(|X ∩ T c
a/2| ≥ t) ≤ 1

tl

∑
π∈Pl

|X||π|(e−4qφ2
ad|π| + CN−ν)

≤ 1
tl

l∑
k=0

(
l

k

)
ll−k|X|k(e−4qφ2

adk + CN−ν) = (l + |X|e−4qφ2
ad)l + CN−ν(l + |X|)l

tl
.
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Here we denoted by Pl the set of partitions of [l] and we denote by k = |π| the number of blocks in the partition
π ∈ Pl. We also bounded the number of partitions of size k by

(
l
k

)
ll−k. Using l = φad/C and choosing

t = eqφ2
ad + |X|e−2qφ2

ad as well as C and ν sufficiently large gives, using d ≥ C
√

logN , l ≤ eqφad ≤ N−ν .
Moreover since d ≤ (logN)3/2 we get e−2qφ2

ad ≤ N−ν . Therefore

Pθ(|X ∩ T c
a/2| ≥ k) ≤ CN−ν .

To obtain the same statements for
(
T (x)

a/2
)c we estimate

Pθ(|X ∩ (T (x)
a/2 )c| ≥ k) ≤ E

[
Pθ
(
|X ∩ (T (x)

a/2 )c| ≥ k, θ(x)(p) = 1|X
)]

+ P(θ(x)(p) = 0, θ(p) = 1).

Now, since the set (T (x)
a/2 )c and the indicator function θ(x) are independent of X we bound the conditional

probability as before. Finally P(θ(x) = 0, θ = 1) ≤ N−ν is a consequence of Lemma 2.21. This concludes the
proof of Lemma 2.15.

Proof of Lemma 2.20. Throughout the proof we abbreviate Pθ(Ξ) ..= P(Ξ∩{θ = 1}). Let us define the events

Ωx ..= {|Φx| ≥ φa/2} ∪ {|Ψx| ≥ φa/2}, Ω(T )
x

..= {|Φ(T )
x | > φa/4} ∪ {|Ψ(T )

x > φa/4|}.

We have

P
(
T ⊂ T c

a/2, θ = 1
)

= Pθ
(⋂
x∈T

Ωx
)
,

and using a union bound we deduce

Pθ
(⋂
x∈T

Ωx
)

≤ Pθ
(⋂
x∈T

Ω(T )
x

)
+
∑
x∈T

Pθ
(
|Φx − Φ(T )

x > φa/4
)

+
∑
x∈T

Pθ
(
|Φx| ≤ φa/2, |Ψx − Ψ(T )

x | > φa/4
)
.

The first term is an intersection of events that are independent after conditioning on H(T ). Using (2.35) we
find

Pθ
(⋂
x∈T

Ω(T )
x

)
= E

[∏
x∈T

P
[
Ω(T )
x

∣∣H(T )
]]

≤ e−4qφ2
ad|T |. (2.39)

On the event
{
θ = 1

}
∩
{

|Φx| ≤ φa/2
}

, using Lemma 2.18 and (2.36), we find that

|Ψ(∅)
x − Ψ(T )

x | ≤ C
(
1 + αx

)( |S1(x) ∩ T |√
d

+ |T |
d

)
≤ C

(
1√
d

+ |T |
d

)
≤ φa/4,

holds with very high probability. Moreover observe that if Φx ≤ φa then αx ≤ 2 and, using (2.37), we have

∣∣Ψx − Ψ(∅)
x

∣∣ ≤ C√
d

≤ φa/8,

with very high probability. We conclude that Ψx − Ψ(T )
x ≤ φa/4. Therefore, choosing a large enough, we see

that the right-hand side of (2.39) is bounded by CN−ν . This concludes the proof.
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2.3 Proof of Lemma 2.17
Throughout this section, we work on the very high probability event defined in Lemma 2.48, we fix T ⊂ [N ]
satisfying the assumptions of Lemma 2.17. After a relabelling of the vertices, we can suppose that T ={

1, . . . , |T |
}
. Let us introduce the following variables.

Γk ..= 1 ∨ max
x

|G̃([k])
xx |, Pk ..= max

x

∣∣(V (k, x)G̃([k])
xx

)−1∣∣, Qk ..= max
x ̸=y

|V (k, x, y)G̃([k])
xy |.

where

V (k, x, y) ..= 2 max(ṽ([k])
x , ṽ([k])

y ,Γ), V (k, x) ..= V (k, x, x).

In particular not that maxk,x,y|V (k, x, y)| ≤ logN with very high probability by Lemma 2.48.
We also introduce the following quantity that bounds the maximum of the Green function entries and

all of its submatrices at stage k,

Γ̃(k) ..= max
x,y,u

(∣∣G̃([k])
xy

∣∣, ∣∣G̃([k]u)
xy

∣∣, ∣∣G̃([k],u)
xy

∣∣),
where the maximum is taken over all u /∈ [k] and then over all x, y /∈ [k] ∪ {u}. Note that Γ̃(0) is exactly Γ̃
defined in (2.54).

The key difficulty is to show that, as we increase k, the entries of the Green functions remain bounded.
We focus on this issue in the proof of Lemma 2.17. However, we need a priori bounds on Pk and Qk. We
also need to be sure that Γk+1 is not too large if Γk is bounded. These facts are the contents of the two
following auxiliary lemmas, which are proved at the end of the section.

Let us define

Γ(+)
k

..= 1 ∨ max
x

|G̃([k],k+1)
xx |.

Lemma 2.22. For any Γ = O(1), there exists p > 0, depending only on Γ, such that on the event
{
Qk ≤

2p
}

∩
{
Pk,Γk ≤ Γ

}
,

Γ̃(k) ≤ 2Γk, Qk+1 ≤ CΓk√
d
, Pk+1 ≤ 2Pk. (2.40)

In particular Γ(+)
k ∨ Γk+1 ≤ 2Γk holds with very high probability.

Lemma 2.23. For any Γ = O(1),

1
2 ≤ V (x, k)

∣∣G̃([k])
xx

∣∣ ≤ 10Γ2, x /∈ [k], (2.41)

holds with very high probability on the the event {Γ̃(k) ≤ Γ}. In particular, Pk ≤ 2 holds with very high
probability on that event.

Proof of Lemma 2.17. For a deterministic set A ⊂ [N ], we introduce the random variable

∆(k, x) ..= |{S1(x) ∩ [k]}|, x ∈ [N ]

and ∆(k) ..= maxx∈[N ] ∆(k, x). We will prove by induction on k that there is C > 0 such that with very high
probability

max
x

(
1 + 64CΓ2

√
d

)−∆(k,x)
G̃(k)
xx ≤ Γ0

(
1 + 64CΓ2

d

)k
, Qk ≤ 2p, Pk ≤ 2Γ (2.42)
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for all k ∈ N satisfying k ≤ d
128CΓ2 . In particular, by Lemma 2.18, max1≤k≤|T | ∆(k) ≤ C with very high

probability. Therefore (2.42) implies

Γk ≤ Γ0

(
1 + 64CΓ2

√
d

)∆(k)(
1 + 64CΓ2

d

)k
≤ 2Γ0 ≤ 4Γ.

It thus suffices to establish (2.42) to prove (2.32).
The initialization k = 0 is trivial. Suppose the induction holds up to k and denote z = k + 1. Then by our
upper bound on k, we know that Γk ≤ 2Γ0 ≤ 4Γ. Therefore by Lemma 2.22 (renaming Γ as 4Γ), for p > 0
small enough depending only on Γ, we have with very high probability,

Γ(+)
k ∨ Γk+1 ≤ Γ̃(k) ≤ 2Γk, Qk+1 ≤ CΓk√

d
, Pk+1 ≤ 2Pk. (2.43)

By induction hypothesis, Γk ≤ 2Γ0 ≤ 4Γ, we conclude that for any constant p > 0, Qk+1 ≤ CΓk√
d

≤ 2p holds
with very high probability. Since Γ̃(k) ≤ 4Γ = O(1), we can apply Lemma 2.23 with Γ replaced by 8Γ and we
find that Pk+1 ≤ 2 holds with very high probability. Thus we have proved the second and third inequalities
of (2.42).
Of course (2.43) is not sufficient to establish the first inequality in (2.42) if we want |T | to be comparable to
d. We will now improve on those estimates using Proposition 2.49 and with the stronger control Qk+1 ≤ CΓk√

d
.

The starting point is the equality

G̃([k+1])
xy = G̃([k])

xy +
(
G̃([k],z)
xy − G̃([k])

xy

)
+
(
G̃([k+1])
xy − G̃([k],z)

xy

)
. (2.44)

We expand the first term on the right-hand side of (2.44) using (A.8b) with T = [k] and u = z. Using
Lemma A.1 and |Hau| ≤ Kd−1/2, we find

∣∣∣∣ fN G̃([k])
zz

(Tu)∑
a

G̃([k],z)
xa

∣∣∣∣ ≤ 4Γkf

√
Γ(+)
k

Nη
,

f2

N2

∣∣∣∣G̃([k])
zz

([k])∑
a,b

G̃
([k],z)
ab

∣∣∣∣ ≤ 4Γkf2

√
Γ(+)
k

Nη
.

Using (2.97a) Proposition 2.49 we see that, on {Γ(+)
k ,Γk+1 ≤ 2Γk}, and using again the fact that Γk = O(1)

to check (2.96), we find ∣∣∣∣ ([k+1])∑
a

HxaG̃
([k],z)
ay

∣∣∣∣ ≤ CΓk√
d
,

and

G̃([k])
zz

([k+1])∑
a

HuaG̃
([k],z)
ay

([k+1])∑
a

HuaG̃
([k],z)
ax ≤ CΓ3

k

d
≤ 16ΓCΓk

d
,

hold with very high probability. Using the fact that d, f = O
(
Nτ/6) and Γ = O(1), we conclude that∣∣∣G̃([k],z)

xy − G̃([k])
xy

∣∣∣ ≤ 64CΓk
d

, (2.45)

holds with very high probability.
Using (2.43), (A.4) and (2.98b) of Proposition 2.49 with T = [k], u = z, Γ(T ) = 4Γk and Q(T ∪ {u}) ≤
CΓkd−1/2, we find that

G̃([k+1])
xy − G̃([k],z)

xy =
[k+1]∑
a

G̃([k],z)
xa HzaG̃

([k+1])
ay ≤ 1x=yAxz

CΓk√
d

+ CΓk
d
, (2.46)
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holds with very high probability for x, y /∈ [k + 1]. Plugging the previous estimates into (2.44), we find that

max
x ̸=y

|G̃([k+1])
xy | ≤

(
1 + 64Γ2C

d

)
Γk, max

x
|G̃([k+1])

xx | ≤
(

1 + 64Axk+1Γ2C√
d

+ 64Γ2C
d

)
|G̃([k])

xx |,

We deduce from the induction hypothesis that

|G̃([k+1])
xx | ≤

(
1 + 64Γ2C√

d

)Azx+∆(k,x)(
1 + 64Γ2C

d

)k+1
|G̃([k])

xx |Γ0, x /∈ [k + 1],

holds with very high probability. Now using the fact that Azx + ∆(k, x) = ∆(k+ 1, x), we can conclude the
proof of the first inequality in (2.42). This concludes the proof of (2.42) and the induction.

Equation (2.33) follows from (2.44), (2.45) and (2.46). This concludes the proof.

The rest of the section is devoted to the proof of Lemmas 2.22 and 2.23. We first prove this simple
consequence of Lemma 2.47. Let us denote by ∥X∥r|H(z)

..=
(
E
[
|X|r|H(z)])1/r, for X a random variable.

Lemma 2.24. Let Γ > 0 and T ⊂ [N ]. Suppose maxx,y/∈T
∣∣G̃(T )

xy

∣∣ ≤ Γ. Then∑
a

|Haz||G̃(z)
ax | ≤ CΓ√

d
, x ∈ [N ] \ T,

holds with very high probability

Proof. Let us fix x ∈ [N ]. Let Za ..= |Hza| − E|Hza|. Then

E
∣∣|Hza| − E|Hza|

∣∣ ≤ 4
√
d

N
− d3/2

N2 ≤ 4
√
d

N
, E

(
|Hza| − E|Hza|

)2 ≤ 2
N
.

Using Lemma A.1 and the fact that G̃(z) is measurable with respect to of H(z), we can apply Lemma 2.47
with γ = N−κ/4 and Γ as Γ to get∥∥∥∥ (z)∑

a

(
|Hza| − E|Hza|

)
|G̃(z)

ax |
∥∥∥∥
r|H(z)

≤ 1√
d

64rΓ
1 + κ logN , r ∈ N∗.

Setting r = ν logN , C ≥ 64eνΓ and using Chebyshev’s inequality yields a bound in very high probability.
We conclude that

(z)∑
a

|Hza||G̃(z)
ax | =

(z)∑
a

(
|Hza| − E|Hza|

)
|G̃(z)

ay | + E|Hza|
(z)∑
a

|G̃(z)
ax |

≤ CΓ√
d

+ Γ
√
d

Nκ/4 ≤ CΓ√
d
,

holds with very high probability. In the second inequality we used Lemma A.1. Since x was arbitrary and
all bounds hold with very high probability, we conclude.

Proof of Lemma 2.22. Without loss of generality, we set k = 0, Γ0 = Γk and k+1 = z. Let V (x) ..= V (0, x, x)
and V (x, y) ..= V (0, x, y) and

Γ(+) ..= max
x,y

∣∣G(z)
xy

∣∣, P (+) ..= max
x

∣∣∣(G(z)
xx V (x)

)−1∣∣∣, Q(+) ..= max
x̸=y

∣∣∣V (x, y)G(z)
xy

∣∣∣.
We will first prove that

Γ(+) ≤ 4
3Γ0, Q(+) ≤ 4p, P (+) ≤ 4

3P0. (2.47)
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We choose p > 0 such that p ≤ 1
4Γ . Applying (A.7), with T = ∅ and for x, y ̸= z we find

|G(z)
xy | ≤ |Gxy| +

∣∣∣GxzGzy
Gzz

∣∣∣ ≤ Γ0 + p

V (x, z)
p

V (x, y)2V (z) ≤ Γ0 + 8p2

Γ0
≤ 4

3Γ0,

where we used that V (x), V (z) ≤ V (x, z) and 2Γ ≤ V (x, y) and 8p2 ≤ Γ2
0. We conclude that Γ(+) ≤ 4

3 Γ0.

If x ̸= y, using |Gxz| ≤ 2p
V (x,z) , we find

∣∣V (x, y)G(z)
xy

∣∣ ≤ V (x, y)
[

2p
V (x, y) + p

V (x, z)
p

V (x, y)2V (z)
]

≤ 4p.

We conclude that Q(+) ≤ 4p.
If x = y, using |Gxz| ≤ 2p

V (x,z) and V (x), V (z) ≤ V (x, z) , we find

∣∣∣V (x)G(z)
xx

∣∣∣−1
=
∣∣∣∣V (x)

(
Gxx + GxzGzx

Gzz

)∣∣∣∣−1
= 1
V (x)Gxx

∣∣∣∣1 − GxzGzx
GzzGxx

∣∣∣∣−1

≤ 1
V (x)Gxx

(
1 − 4p2Γ2)−1 ≤ 4

3P0.

Here we used the estimates 1
Gxx

≤ P0V (x) as well as p < (4Γ)−1. We deduce that P (+) ≤ 4
3P0. This

establishes (2.47).
We will now prove

Γ1 ≤ 4
3Γ(+), Q1 ≤ CΓ0√

d
Q(+), P1 ≤ 4

3P
(+). (2.48)

The proof is then complete since combining (2.47) and (2.48) yields (2.40) with very high probability. Since
z = k + 1 was arbitrary, Γ̃(k) ≤ 2Γ0 follows from (2.48) and a union bound.

Using (A.4) and Lemma 2.24 with Γ = Γ1, we find

|G̃(z)
xy | =

∣∣∣G(z)
xy +

(z)∑
a

G(z)
xaHzaG̃

(z)
ay

∣∣∣ ≤ Γ(+) + Γ(+)
(z)∑
a

|Hza||G̃(z)
ay | ≤ 3

2Γ0 + 3CΓ0Γ1

2
√
d

, (2.49)

holds with very high probability for any x, y ̸= z. We find that
(
1 − CΓ0√

d

)
Γ1 ≤ Γ(+) ≤ 4

3 Γ0 and therefore

Γ1 ≤ 2Γ0,

holds with very high probability. If x ̸= y, then we can multiply (2.49) on both sides by V (x, y) by
substituting Q(+)

k for Γ(+). Since Q(+)
k ≤ 4p, we find Q1 ≤ 8p.

Observe that the bounds derived on Γ1 are independent of the choice of z and since those bounds hold with
very high probability, they can be derived simultaneously for every possible choice of z. We conclude that

max
a,b,x

|G̃(x)
ab | ∨ |G(x)

ab | ≤ 2Γ0, max
a,b,x

1a ̸=bV (a, b)
(

|G̃(x)
ab | ∨ |G(x)

ab |
)

≤ 8p, (2.50)

holds with very high probability.
We conclude that the event Γ̃(k) ≤ 2Γ0 holds with very high probability and since Γ = O(1), we can

apply Lemma 2.23. From (2.41) we see that there exists a constant C ≥ 0 such that maxx∈[N ] V (x)|Gxx| ≤
40Γ2

0 ≤ C with very high probability. Let x ̸= y and suppose, without loss of generality, that V (y) ≤ V (x).
Using (A.6), we find the identity

V (x)Gxy = V (x)Gxx
(x)∑
a

HxaG
(x)
ay + f

N
V (x)Gxx

(x)∑
a

Gay.
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The second sum can be controlled by Cf
√

Γ0N−κ ≤ Cd−1/2 after using Lemma A.1. For the second term
we use Proposition 2.49 (2.97a), with Γ = 2Γ0, and find that

∣∣∣V (x)Gxx
∣∣∣∣∣∣∣ (x)∑

a

HxaG
(x)
ay

∣∣∣∣ ≤ C
CΓ0√
d

≤ CΓ0√
d
, x ̸= z,

holds with very high probability. If V (y) ≤ V (x) we permute x and y in the above equation. We conclude
that Q0 ≤ CΓ0√

d
. We can use this bound and (A.8) to find that

V (x, y)|G(z)
xy | ≤ V (x, y)|Gxy| + V (x, y)|Gxz|

|Gzx|
|Gzz|

≤ Q0 + ΓV (x, y)V (z)
dV (x, z)V (z, y) ≤ 2Q0 ≤ 2CΓ0√

d
, x ̸= y,

holds with very high probability. Since x and y are arbitrary we deduce Q(+) ≤ CΓ0√
d
.

We will now prove Q1 ≤ CΓ0√
d

from which (2.48) will follow. Let x ̸= y and suppose, without loss of generality,
that V (y) ≤ V (x). Using (A.4) we find

G̃(z)
xy = G(z)

xy −
(xz)∑
a

G(z)
xaHzaG̃

(z)
ay −G(z)

xxHzyG̃
(z)
yx .

Multiplying on both sides by V (x, y) = V (x) and using Q(+) ≤ CΓ0√
d

we find

V (x)|G̃(z)
xy | ≤ Q(+) +

(zy)∑
a

∣∣G̃(z)
xa

∣∣|Hza| max
a ̸=z,x

(
V (x)

∣∣G(z)
xa

∣∣)+ V (x)
∣∣G̃(z)

yx

∣∣2KΓ0√
d
.

Using Lemma 2.24 with Γ as 2Γ0, we deduce

V (x)|G̃(z)
xy | ≤ 2Q(+)

(
1 + CΓ1√

d

)
If V (x) ≤ V (y), we exchange the x and y in the above equations and we can replace V (x) by V (x, y) in the
last line. Since x and y were arbitrary, we deduce that Q1 ≤ 4Q(+) ≤ CΓ0√

d
. This concludes the proof.

There only remains to prove Lemma 2.23. Note that in its proof, we use a result from Proposition 2.32
(the very high probability bound (2.65c) to be precise). There is no logical loop, the only hypothesis of
Proposition 2.32 is Γ̃(0) = O(1) and we do not use Lemma 2.24 in its proof.

Proof of Lemma 2.23. Without loss of generality we let k = 0, k+ 1 = z, ṽ(T )(x) = ṽ(x). Let x ∈ [N ], x ̸= z
and V (x) = V (0, x). We want to show that

1
2 ≤ V (x)|Gxx| ≤ 10Γ2, (2.51)

holds with very high probability. The starting point is the algebraic identity (A.2)

1
Gxx

= vx − z −
(xz)∑
a

H2
xaG

(x)
yy + Yx = ṽ(x) − Im z −

(xz)∑
a

H2
xaG

(x)
yy + Yx, (2.52)

with Yx defined as in (2.64). Using Proposition 2.32 below, we see that Yx ≤ CΓ√
d

with very high probability
on the event {Γ̃(0) ≤ Γ}. Moreover, by definition we have

(xz)∑
a

H2
xaG

(x)
yy = 1

d

∑
y∼x

G(x)
yy +O

(
Γd2

N

)
,
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and that vx =
√
d(αx − 1) and αx = vx√

d
+ 1.

Suppose |ṽx| ≤ 2Γ. In that case V (x) = 2Γ and αx ≤ 3
2 since vx√

d
≤ 1

2 . We immediately have |Gxx|V (x) ≤
2Γ2 and ∣∣∣∣ 1

Gxx

∣∣∣∣ ≤ |ṽx| + αxΓ + CΓ√
d

≤ 4Γ.

Dividing the above inequation by V (x) and using the fact that Γ ≥ 1, we see that (2.51) holds in that case.
If 2Γ ≤ |ṽx| ≤

√
d, then V (x) = 2ṽx and αx ≤ 3

2 and we find

1
2 ≤ 2ṽx

ṽ(x) + 3
2 Γ + CΓ√

d

≤ V (x)|Gxx| ≤ 2ṽx
ṽ(x) − 3

2 Γ − CΓ√
d

≤ 6 ≤ 10Γ2.

Using the fact that αxΓ
ṽx

= O
(
d−1/2), we see that the right-hand side of the above equation satisfies the lower

and upper bounds of (2.51).
Finally suppose

√
d ≤ |ṽ(x)|. Then αx

ṽ(x) ≤ 2 and from (2.52) we see that∣∣∣ 1
Gxx

∣∣∣ = V (x)
(
1 +O(Γ/d)

)
+ O(ΓC/

√
d).

where we used ṽ(x) = V (x)
(
1 +O

(
d−1/2)). Multiplying the above by V (x) yields (2.51).

2.4 Proof of Theorem 2.4
In this section, we prove Theorem 2.4 and assume d ≤ (logN)3/2 throughout. Let us define the error
parameters, for T ⊂ [N ],

Λd(T ) ..= max
x∈T

|Gxx −mx|, Λa(T ) ..= max
x∈T

∣∣∣∣∣Gxx − 1
vx − z −

∑
yH

2
xymy

∣∣∣∣∣, Λo ..= max
x ̸=y

|Gxy|. (2.53)

The goal is to prove that Λa([N ]) is small. As an intermediate step, we will show that Λd(T ) is small for
T = Ta the typical vertices. For d ≤ logN , that Λd([N ]) we cannot show that is small. Indeed for atypical
vertices, mx might not be a good approximation of Gxx. On the other hand, off-diagonal entries of G are
always much smaller than 1, and this explains why Λo is introduced.
Let us also introduce the quantity Γ̃, that bounds the entries of the Green function and its associated
modifications,

Γ̃ = max
x,y,z

|Gxy| ∨ |G(z)
xy | ∨ |G̃(z)

xy |, (2.54)

where the maximum is taken over all z ∈ [N ] and x, y ∈ [N ] \ {z}.
Let us introduce the following set of self-consistent equations.

Definition 2.25 (Restricted quadratic vector equation). Let vx ∈ R, x ∈ [N ], v = (vx)x∈[N ] ∈ RN . For
X ⊂ [N ]. We define the vector m ..= (mX ,v

x )x∈X to be the unique solution of

1
mX
x

= vx − z − 1
|X |

∑
y∈X

mX
y , x ∈ X , z ∈ H, (2.55)

such that mX
x ∈ H, for all x ∈ X . We also introduce

mX ..= 1
|X |

∑
x∈X

mX
x . (2.56)
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The vector m satisfies the following stability and uniqueness result which is the analog of [5, Lemma
4.16]. The condition |Re z| ≤ 2 − τ , which in that paper insures that the imaginary part of m is bounded
away from zero, is replaced by (2.57) in our lemma.

Lemma 2.26. Let X ⊂ [N ], (vx)x∈X ∈ RX and m = mX ,v be the solution of (2.55). Let τ > 0 be such that

Im
( 1

|X |
∑
y∈X

my

)
≥ τ. (2.57)

Assume that for two vectors (gx)x∈X , (εx)x∈X ∈ CX , the identities

1
gx

= vx − z − 1
|X |

∑
y∈X

gy + εx, (2.58)

hold for all x ∈ X . Then there are constants b, C ∈ (0,∞), depending only on τ , such that if maxx∈X |gx −
mx| ≤ b then

max
x∈X

|gx −mx| ≤ C max
x∈X

εx. (2.59)

The proof of Lemma 2.26 is deferred to Section 2.8.
The condition (2.57) is here to insure that we are in the bulk. Recalling (2.28), we anticipate that our result
should hold even if we remove a small number of vertices. Let us define the event

Ξ1(τ) ..=
{

inf
X

inf
z∈Sτ,R

ImmX (z) ≥ τ
}
, τ > 0, (2.60)

where the first infimum is taken over all sets X ⊂ [N ] such that |X c| ≤ N exp(−(logN)1/6) (see (2.28)).
The next lemma shows that with high probability if z ∈ Sτ,R, then we are in the bulk of the spectrum. It
even states that we can remove o(N) vertices and still be in the bulk.

Lemma 2.27. Let vx, x ∈ [N ], be defined as in (2.4). There is a constant τ = τ(R) > 0 such that

P(Ξ1(τ)) ≥ 1 −O
(
d−1).

Proof. We combine Lemma 2.51 together with Lemma 2.52 below.

Lemma 2.28. Let τ > 0 be a constant. On the event Ξ1(τ) we have

sup
X

sup
x∈X

∣∣mX
x −m[N ]

x

∣∣ ≤ |X |
N
, z ∈ Sτ,R, (2.61)

where the first infimum is taken over all sets X ⊂ [N ] such that |X c| ≤ N exp(−(logN)1/6).

The proof of Lemma 2.28 is deferred to the end of Section 2.8.
Let us define the event

Ξ2(τ) ..=
{

inf
x∈[N ]: vx≥−R−2

inf
z∈Sτ,R

Im
( ∑
y∈[N ]

H2
xym

[N ]
y (z)

)
≥ τ,

}
, τ > 0. (2.62)

The next lemma is a local equivalent of Lemma 2.27 around any vertex.

Lemma 2.29. Let vx, x ∈ [N ], be defined as in (2.4). There is a constant τ = τ(R) > 0 such that

P(Ξ2(τ)) ≥ 1 −O
(
d−1).

Proof. We combine Lemma 2.51 together with Lemma 2.53 below.
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Lemma 2.30. Let τ > 0 be a constant. Then there exists D > 0 depending only on τ such that on the event
Ξ1(τ) ∩ Ξ2(τ), we have

inf
X

inf
x: vx≥−R−C

Im
(∑
y∈X

H2
xym

[N ]
y (z)

)
≥ τ/2,

where the infimum is taken over all set X ⊂ [N ] that satisfy

sup
x∈[N ]

∣∣S1(x) ∩ X c
∣∣

d
≤ 1
D
. (2.63)

Proof. On Ξ1(τ), we have the bound maxx|mx| ≤ 1/τ = O(1). Therefore

Im
(∑
y∈X

H2
xym

[N ]
y (z)

)
≥ Im

(
1
d

∑
y∈X ∩S1(x)

m[N ]
y (z)

)
≥ Im

(
1
d

∑
y∈S1(x)

m[N ]
y (z)

)
− 1
τD

≥ τ

2 ,

for D ≥ 2/τ2 where we used (2.62), (2.63) and the fact that maxx∈[N ]
∣∣m[N ]

x

∣∣ ≤ τ−1 on Ξ1(τ).

The following lemma is the standard starting point to prove a local law. It is a straightforward application
of Lemma A.2.

Lemma 2.31 (Schur complement formula). For any x ∈ [N ] and z ∈ C+, we have

1
Gxx

= vx − z −
(x)∑
y

|Hxy|2G(x)
yy + Yx,

where

Yx ..= − f

N
+

(x)∑
a̸=b

HxaG
(x)
ab Hby + f

N

[ (x)∑
a,b

G
(x)
ab Hby +

(x)∑
a,b

HxaG
(x)
ab

]
+ f2

N2

(x)∑
a,b

G
(x)
ab . (2.64)

where we defined f =
(

d
(1−d/N)

)1/2
.

Let us recall (2.24) and (2.25). The next proposition establishes bounds that are typical in the proof of
local laws.

Proposition 2.32 (Main error bounds). For Γ = O(1) the following estimates hold with with very high
probability

1Γ̃≤Γ max
x̸=y

|Gxy| ≤ Γ C√
d
, (2.65a)

1Γ̃≤Γ max
x̸=u̸=y

|Gxy −G(u)
xy | ≤ Γ C√

d
(2.65b)

1Γ̃≤Γ max
x

|Yx| ≤ Γ C√
d
, (2.65c)

Proof. Using (2.97a) for T = ∅ (in which case G̃(T,u) = G(u)) and (A.6) and Lemma A.1, we find, for x ̸= y,

|Gxy| ≤ |Gxx|
∣∣ (x)∑
a

HxaG
(x)
ay

∣∣+ |Gxx| f
N

∣∣∣ (x)∑
a

G(x)
ay

∣∣∣ ≤ C Γ√
d
.
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Using (A.8a) with T = ∅,we find

Gxy −G(u)
xy = −Gxu

[ (u)∑
a

HuaG
(u)
ay + f

N

(u)∑
a

G(y)
ay

]
.

The size of the terms on the right-hand side can be bounded using Proposition 2.49 and Lemma A.1 to
obtain (2.65b).

To prove (2.65c), we first use Lemma A.1

f2

N2

∣∣∣ (x)∑
a,b

G
(x)
ab

∣∣∣ ≤ f2
√
N Im z

≤ N−κ/6 ≤ Cd−3/2,

and, introducing Sa ..= N−1∑(x)
b G

(x)
ab we have

f

N

∣∣∣ (x)∑
ab

G
(x)
ab Hax

∣∣∣ ≤
∣∣∣f (x)∑

a

SaHax

∣∣∣ ≤ |Sa|f
(x)∑
a

|Hax| ≤ Γ f√
Nη

logN + d√
d

≤ C
d

where used Ward’s identity to bound Sa ≤ Γ(Nη)−1/2 and Lemma 2.48 to bound

(x)∑
a

|Hax| ≤
(x)∑

a:Aax=1

1√
d

+
√
d ≤ logN√

d
+

√
d.

We use Proposition 2.50 to get
(a)∑
x ̸=y

HaxG
(a)
xy Hya = CΓ

d
.

We now turn to the bootstrapping argument which is the core of the proof of Theorem 2.4. Bootstrapping
is a standard technique in the proof of local laws (see for instance [14] and references therein). The boot-
strapping hypothesis usually takes the form of a uniform bound on the entries of the Green function. In our
proof however, we need more information. The bootstrapping argument will need the following conditions.

1. The two events Ξ1 and Ξ2 analysed in Lemma 2.27 and 2.30 respectively should hold, i.e. Sκ,R lies in
the bulk spectrum.

2. The entries of the Green function should be bounded, that is Γ̃ = O(1) for Γ̃ defined in (2.54);

3. The set of atypical vertices, introduced in Definition 2.11, should be amenable to Proposition 2.12, i.e.
the condition θ(Γ, p) = 1 should hold;

4. The error parameters introduced in (2.53) need a priori control. We want to find a subset U ⊂ [N ]
such that Λd(U) and Λa(U c) are small and |U c| = o(N).

We call a set U ⊂ [N ], full if |U c| ≤ N exp
(
−(logN)1/6) and (2.63) holds. Note that the notion of full set

depends only on the constant τ . We introduce the indicator function

ϕ ..= ϕ(Γ, pλ, τ) = 1{Γ̃≤Γ}θ(Γ, p)1∃U⊂[N ] full Λd(U)∨Λa(Uc)≤λ, (2.66)

as well as the event

Ξ(τ) ..= Ξ1(τ) ∩ Ξ2(τ).

The reason we consider ϕ and Ξ separately comes from the fact that we only have O(d−1) bounds on P(Ξc)
while bounds on ϕ are with very high probability.
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Proposition 2.33. There exists τ > 0 depending on κ and R, constants Γ, λ, p > 0, depending only on τ
and constants a,D ≥ 0 depending on τ and ν such that if

D
√

logN ≤ d ≤ (logN)3/2,

then for all z ∈ Sκ,R, there exists T ⊂ [N ] which is full such that

1Ξ(τ)ϕ(2Γ, 2p, λ, τ) ≤ θ(Γ, p), 1Ξ(τ)ϕ(2Γ, 2p, λ, τ)
(
Λd(T ) + Λo + Λa([N ])

)
≤ C∗φa, (2.67)

holds with very high probability for some constant C∗ = C∗(τ) > 0.

Proof. Let τ > 0 be defined so that Ξ1(τ) ∩ Ξ2(τ) both hold and choose Γ = 2/τ. Let p, q > 0 be chosen
from Γ and a be chosen from q and ν so that Proposition 2.12 holds for 2p, q and such that Lemma 2.22
holds for p and Γ.
Then we see that Ta as defined in (2.22) is q−full since by (2.26) and (2.27) respectively

|T c
a |
N

≤ e2qφ2
ad

N
+ e−2qφ2

ad ≤ e−q
√

logN , sup
x∈[N ]

∣∣S1(x) ∩ T c
a
∣∣

d
≤ 10φa ≤ 10D−1/3, (2.68)

with very high probability, where we used the fact that φ2
ad ≤ a

D1/3

√
logN and we chose D ≥ a3. Using

Proposition 2.12 (ii) and (2.65c) we find that, with very high probability, there exist εx ≤ 2φa, x ∈ Ta, such
that

1
Gxx

= vx − z −
(x)∑
y

H2
xyG

(x)
yy + Yx

= vx − z − 1
|Ta|

∑
y∈Ta

Gyy + Ψx + Yx +O

(
|T c

a |
N |Ta|

)
= vx − z − 1

|Ta|
∑
y∈Ta

Gyy + εx.

(2.69)

Here we used the fact that Cd−1/2 ≤ φa since d ≤ (logN)3/2.
Let U be a q−full set that satisfies Λa(U c),Λd(U) ≤ λ. Such a set exists by definition of ϕ, see (2.66). Let
T1

..= Ta ∩ U and T2
..= Ta \ U and T ..= T1 ∪ T2. We will show that

Λd(T1), Λd(T2), Λa([N ]) ≤ Cφa, C = C(τ) > 0. (2.70)

Let us conclude the proof using (2.70). On the event θ(2Γ, 2p) we know by Lemma 2.22, that θ(2Γ, CΓ√
d
) holds

with very high probability. Using (2.65a) we see that Λo ≤ 2ΓCd−1/2 ≤ φa holds with very high probability.
Moreover since on Ξ(τ) we have Im 1

d

∑
y∈[N ] Axymy ≥ τ, we find that

|Gxx| ≤ 1
τ

+O
(
φa
)

≤ 2
τ

= Γ.

By Lemma 2.23 since Γ̃ ≤ 2Γ = O(1), θi(Γ) holds. We conclude that θ(Γ, CΓ√
d
) ≤ θ(Γ, p) holds. Thus it

suffices to establish (2.70) to conclude the proof.
We start with Λd(T1). By definition ϕ and (2.68) we see that |T c1 | ≤ |T c| + |U c| ≤ 2eq

√
logN and

|T1|
|T | = 1 − |T\U |

|T | ≥ 1 −O
(
N−1/2). Plugging this into (2.69), we find

1
Gxx

= vx − z − 1
|T1|

∑
y∈T1

Gyy + εx, x ∈ T1. (2.71)
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By Corollary 2.28, since |T c1 | ≤
√
N we know that ImmT1 ≥ τ . We want to apply Lemma 2.26 to X = T1

with maxx ε = O
(
φa
)
. By definition of ϕ, we know that maxx∈T1 |Gxx − mx| ≤ λ and by Lemma 2.28 we

know that

max
x∈T1

|m[N ]
x −mT1

x | ≤ |T c1 |
N

≤ exp(−(logN)1/6) ≤ φa. (2.72)

Therefore choosing λ as b/2 from Lemma 2.26, we have

max
x∈T1

|Gxx −mT1
x | ≤ max

x∈T1
|m[N ]

x −mT1
x | + max

x∈T1
|Gxx −m[N ]

x | ≤ 2λ ≤ b,

and we can conclude that maxx∈T1

∣∣Gxx − m
[T1]
x

∣∣ ≤ Cφa for some C > 0 depending on τ. Using one more
time (2.72), we see that Λd(T1) ≤ Cφa. This concludes the estimate of Λd(T1) in (2.70).

We now estimate Λd(T2). Using the fact that maxx∈[N ]|Gxx| ≤ 2Γ we see that

1
|T |

∑
x∈T

Gxx − 1
|T1|

∑
x∈T1

Gxx = O

(
Γ|T2|

|T ||T1|

)
≤ N−1/2. (2.73)

Using (2.73) and Λd(T1) = O(φa), we see that

Im
( 1

|T |
∑
x∈T

Gxx

)
≥ ImmT1 −O

(
φa + Γ|T2|

|T ||T1|
+ εx

)
≥ 1

2τ , (2.74)

holds with very high probability. For x ∈ T2, using (2.69), the fact that Imm[N ] ≥ τ on Ξ, (2.73) and (2.74),
we find that∣∣Gxx −m[N ]

x

∣∣ =
∣∣∣∣ 1
vx − z − 1

|T |
∑
y∈T Gyy + εx

− 1
vx − z −m[N ]

∣∣∣∣
≤ 2
τ2

∣∣∣∣m[N ] − 1
|T |

∑
y∈T

Gyy + εx

∣∣∣∣ ≤ 2
τ2

∣∣∣m[N ] −mT1 + Λd(T1) + 2εx
∣∣∣ ≤ Cφa,

holds with very high probability with C = C(τ) > 0. This shows that Λd(T2) = O
(
φa
)
.

Note that using Λd(T1 ∪ T2) = O
(
φa
)

and (2.68), we have

1
N

∑
x∈[N ]

Gxx = m[N ] +O
(
φa
)
, (2.75)

and in particular Im 1
N

∑
x∈[N ] Gxx ≥ τ/2 on Ξ1(τ).

We now turn to atypical vertices and the estimate of Λa(T c). For x /∈ T , we find from (A.2) that

1
Gxx

= vx − z −
(x)∑
y

H2
xyG

(x)
yy +O

(
φa
)

= vx − z −
(x)∑
y∈Ta

H2
xyG

(x)
yy +O

(
φa
)

= vx − z −
(x)∑
y∈Ta

H2
xymy +O

(
(1 + αx)φa

)
= vx − z −

(x)∑
y

H2
xymy +O

(
(1 + αx)φa

)
.

(2.76)

In the second and fourth equalities, we used the bound on maxx
(

|mx| ∨ Gxx

)
≤ Γ. We now proceed as in

the proof of Lemma 2.23 and distinguish between two cases.
In the first case, if αx ≥ 2, we deduce that vx ≥

√
d and, using the identity αx = vx√

d
+ 1,

∣∣∣vx − z −
(x)∑
y

H2
xyG

(x)
yy

∣∣∣ ≥ |vx|
(

1 − 2Γ√
d

)
− 1 −R ≥

√
d

2 .
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Using (2.75), we get ∣∣∣Gxx − 1
vx − z −

∑(x)
y H2

xymy

∣∣∣ = O

(
(1 + αx)φa

|vx|τ

)
= O

(
φa
)
.

If αx ≤ 2, we use (2.68) and Ξ2(τ) to see that∑
y∈Ta

H2
xym

[N ]
y ≥ τ/2.

Moreover Imm[N ] ≥ τ on Ξ1(τ). Using those two lower bounds, we can invert (2.76) to find that for x /∈ T
with αx ≤ 2, we have ∣∣∣∣Gxx − 1

vx − z −
∑
y∈Ta

H2
xymy

∣∣∣∣ ≤ 4φa

τ2 .

Now observe that H2
xy = 1

dAxy +O
(
dN−2). We deduce that Λa(T c) = O

(
φa
)
. Note that the same argument

shows that λa(T ) = O
(
φa
)

from which we get (2.70).

Proof of Theorem 2.4. Let us choose τ > 0 as in Lemmas 2.27 and 2.29 such that Ξ(τ) ..= Ξ1(τ) ∩ Ξ2(τ)
holds with probability 1 −O

(
d−1).

Let E ∈ [−R,R], L ≥ 1 and zk ..= E + iηk, ηk = L − kN−3 for k = 0, . . . , k∗ with k∗
..= inf{k ∈ Z, ηk ≤

N−1+κ}. We introduce the events

Ωk(Γ, λ) ..=
{

max
(
Λo(zk),Λa([N ])(zk),Λd(T )(zk)

)
≤ λ, for some full set T ⊂ [N ]

}
,

Υk(Γ, p) ..= {θ(Γ, p) = 1}, Γ,Λ, q, p > 0.

By Proposition 2.33, we know that there exists C∗ = C∗(τ) > 0 and constant Γ, p, q,a, all depending, in
fine, only on τ , such that, for any ν ≥ 0,

P
[(

Υk(Γ, p) ∩ Ωk(Γ, C∗φa)
)c ∩ Ωk(2Γ, 2p) ∩ Ξ(τ)

]
≤ CνN−ν ,

for some Cν ≥ 0.
Moreover, by Lipschitz continuity of the entries of G and m (see the remark after Lemma 2.51), we know
that

Υk(Γ, p) ≤ Υk+1(2Γ, 2p), Ωk(Γ, λ) ≤ Ωk+1(2Γ, 2λ),

for any constants Γ, p and λ ≥ 1
N .

Finally observe that choosing L ≥ 0 large enough in the definition of η0 insures that Ω0(2Γ, 2p, q) holds
deterministically since then all quantities are smaller than L−1.We can now conclude, by a standard induction
argument that there exists constants Γ,a, q all depending on τ such that, for any E ∈ [−R,R],

k∗∏
k=1

Ωk(2Γ, 2C∗φa)1Ξ(τ) = 1Ξ(τ)

with very high probability.
Using the Lipschitz continuity and a grid of mesh size N−3, we can extend this result to get

P
[
Λo(z) + Λa([N ])(z) ≤ 4C∗φa, Γ̃(z) ≤ 4Γ, ∀z ∈ Sκ,R

]
≤ P

[
Ξ(τ)c

]
+ 2RN3P

[( k∗⋂
k=0

Λo(E + iηk) + Λa([N ])(E + iηk) ≤ 4C∗φa, Γ̃(E + iηk) ≤ 4Γ,Ξ(τ)
)c]

≤ Cd−1 + CνN−ν+6 = O
(
d−1).

Choosing D = D10 we conclude the proof.



2.5. PROOF OF THEOREM 2.6 47

2.5 Proof of Theorem 2.6
In this section, we prove Theorem 2.6. We write

τ ..= τ(R, κ) = inf
z∈Sκ,R

Im mfc(z).

By Lemma 2.54, we know that τ ≥ 1
100 e−R2/2. Recalling the definition of g from (2.8) we define the two

quantities

Λ ..=
∣∣∣∣Gxy − δxy

vx − z − mfc(z)

∣∣∣∣, Θ ..= |g(z) − mfc(z)|.

For v = (vx)x∈[N ] ∈ RN , we define

m̂fc(z, v) ..= 1
N

N∑
i=1

1
−vi − z − mfc(z) . (2.77)

The quantity m̂fc is a good approximation of mfc as the following lemma suggests.
Lemma 2.34. Let vx be as in (2.4) and Sτ,R as in (2.7). There exists D ≥ 0, depending on the notion of
very high probability, such that for D logN ≤ d ≤

√
N , then∣∣ m̂fc(z, v) − mfc(z)
∣∣ ≤ C

√
logN
d

, z ∈ Sτ,R,

holds with very high probability.

The proof of Lemma 2.34 is a simple application of McDiarmid inequality and is given in Section 2.9.
The next lemma is the analog of Lemma 2.26 and is stated in [30, Proposition 3.5].
Lemma 2.35. There exists c∗ > 0 depending only on R and κ such that if w1, . . . , wN ∈ H satisfy∣∣∣∣ 1

N

∑
i∈[N ]

1
wi − z − mfc(z) − mfc(z)

∣∣∣∣ ≤ c∗,

then

c∗ ≤
∣∣∣∣1 − 1

N

∑
i∈[N ]

1
(wi − z − mfc(z))2

∣∣∣∣ ≤ 1 + c∗.

Proof. Since R > 0 is of order 1, by Lemma 2.54 there exists τ > 0 such that Im mfc(z) ≥ τ for every
z ∈ Sκ,R. Following the proof in [30, Proposition 3.5] and writing c∗ = min(c1, τ

2/16, 1/τ), with c1 is defined
therein, we conclude.

We also have the following analog to Proposition 2.32. Note that (2.78d) does not have an equivalent in
Proposition 2.32. Instead, it is equivalent to the statement maxx Ψx = o(1). This is only true for d ≫ logN.
Proposition 2.36 (Error bounds). Let Γ > 0. There exists C ≥ 0 depending on ν such that for d ≥ C logN ,
on the event Γ̃ ≤ Γ we have

1Γ̃≤Γ max
x̸=y

|Gxy| ≤ Γ C√
d
, (2.78a)

1Γ̃≤Γ max
x ̸=a̸=y

|Gxy −G(a)
xy | + |G(a)

xy − G̃(a)
xy | ≤ Γ C√

d
(2.78b)

1Γ̃≤Γ max
x

|Yx| ≤ Γ C√
d
, (2.78c)

1Γ̃≤Γ

(x)∑
y

(
H2
xy − 1

N

)
G(x)
yy ≤ ΓC

√
logN
d

(2.78d)
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Proof. The proof of (2.78a)-(2.78c) is the same as in Proposition 2.32. To prove (2.78d), we expand G
(x)
yy

using (A.4) and we find

(x)∑
y

(
H2
xy − 1

N

)
G(x)
yy =

(x)∑
y

(
H2
xy − 1

N

)
G̃(x)
yy +

M∑
l=1

(x)∑
y

(
H2
xy − 1

N

)
Sl(y, y)

+
(x)∑
y

(
H2
xy − 1

N

) (x)∑
a

SM (y, a)HaxG
(x)
ay ,

Let us fix M = 10. Using Proposition 2.38 (2.83c), we see that

∣∣∣ (x)∑
y

(
H2
xy − 1

N

)
G̃(x)
yy

∣∣∣ ≤ ΓC
√

logN
d

,

with very high probability.
Using Lemma 2.48, we know that

∑(x)
y

(
H2
xy − 1

N

)
≤ C, with very high probability. Moreover by Proposition

2.39,

max
y∈[N ]

|Sl(y, y)| ≤
( CΓ√

d

)l
, l ≥ 1, (2.79)

from which we conclude that
M∑
l=1

(x)∑
y

(
H2
xy − 1

N

)
Sl(y, y) ≤ CΓ√

d
.

Again using (2.79), we find that∣∣∣∣ (x)∑
y

(
H2
xy − 1

N

) (x)∑
a

SM (y, a)HaxG
(x)
ay

∣∣∣∣ ≤ Γ
d

(
CΓ√
d

)M (x)∑
a

|Hxa| ≤ Γ(logN + d)
d3/2

(
CΓ√
d

)M (x)∑
a

≤ Γ C√
d
,

holds with very high probability. This concludes the proof of (2.78d).

Proposition 2.37 (Bootstrap in dense regimes). There exists Γ, λ > 0, depending only on R and κ, such
that for every z ∈ Sκ,R, the following holds with very high probability

1Γ̃≤2Γ,Θ≤λΓ̃ ≤ Γ, 1Γ̃≤2Γ,Θ≤λ
(
Λ ∨ Θ

)
≤ C

√
logN
d

.

Proof. Let us choose Γ = 2/τ and λ ≤ c∗ with c∗ defined in Lemma 2.35 and write φ ..=
√

logN
d . We start

by improving the bound on Θ to Θ ≤ φ. Recalling (2.64), we define

Zx ..= Yx +
(x)∑
y

(
H2
xy − 1

N

)
G(x)
yy .

Using Lemma 2.31 and (2.77), we find

g(z) − mfc(z) = 1
N

∑
x

1
vx − z − g(z) + Zx

− 1
vx − z − mfc(z) + m̂fc(z) − mfc(z). (2.80)

Using Θ ≤ λ and Lemma 2.54, we find that

Im(vx − z − g(z) + Zx) ≥ Im(mfc) − λ− φ ≥ τ/2, (2.81)
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for τ = e−R2/2/10, λ ≤ τ/3 and d ≥ 10 logN. Using Lemma 2.35 we see that for λ > 0 small enough,
depending only on τ , we have ∣∣∣∣1 − 1

N

∑
x

1
(vx − z − mfc(z))2

∣∣∣∣ ≥ c∗.

By Lemma 2.34, we know that | mfc(z) − m̂fc(z)| ≤ Cφ holds with very high probability. We conclude that
(2.80) implies that

c∗

2 Θ ≤
∣∣∣∣1 − 1

N

∑
x

1
(vx − z − mfc(z))2 − 8 maxx|Zx|

τ3

∣∣∣∣Θ ≤ 4 maxx|Zx|
τ2 + | mfc(z) − m̂fc(z)| ≤ Cφ,

holds with very high probability. Multiplying the above by 2/c∗ we deduce that Θ ≤ Cφ holds with very
high probability.

The bound on Gxy for x ̸= y follows from (2.78a). For the diagonal terms we have, using again Lemma
2.31, we prove that∣∣∣∣Gxx − 1

vx − z − mfc(z)

∣∣∣∣ =
∣∣∣∣ g(z) − mfc(z) + Zx
(vx − z − g(z) + Zx)(vx − z − mfc(z))

∣∣∣∣ ≤ Γ C
τ2φ,

holds with very high probability, where we used (2.81). Using (2.78b) and Im mfc(z) ≥ τ, we see that
Γ̃ ≤ 1

τ + CΓd−1/2 ≤ Γ with very high probability. This concludes the proof.

Proof of Theorem 2.6. We proceed by induction on zk = E+ iηk for |E| ≤ R and ηk = L− ikN−3 for L ≥ 1
chosen large enough later and 1 ≤ k ≤ k∗. Here k∗ ..= sup

{
k ∈ N, ηk ∈ Sτ,R

}
. Throughout this proof we will

use Γ = 2
τ for some large enough constant C > 0. For z0, we immediately have Γ̃ ≤ Γ. Furthermore we have

for L ≥ 2λ−1 we immediately have that Θ(z0) ≤ |g(z0)| + |mfc(z0)| ≤ 2L−1 ≤ λ. The induction hypothesis
for z0 is thus fulfilled. For the step k → k + 1, we use the Lipschitz continuity, the fact that φ = o(1) and
|vx − z − mfc(z)|−1 ≤ τ−1, to show that

1{Θ(zk)≤min(λ/2,τ/2)} ≥ 1{Θ(zk+1)≤λ,Γ̃≤2Γ},

which allows the induction to work.
We conclude the proof by noting that the intersection of O(N3) very high probability events is still a very
high probability event.

2.6 Large deviations estimates
In this section, we derive large deviation estimates for multilinear forms of sparse random vectors with
independent components. The results here are independent from the rest of the paper.
In this section, we consider N ∈ N∗ and q = q(N) ≥ 1 and Xi, i ∈ [N ], to be independent, centered random
variables satisfying

E|Xi|2 = 1
N
, E|Xi|k ≤ 1

Nqk−2 . (2.82)

We also introduce ai, aij ∈ C, i, j ∈ [N ] to be deterministic complex numbers.
The following results were probed in [28, Section 3].

Proposition 2.38 (Proposition 3.1-3.2 of [28]). Let N, q ≥ 0, Xi and aij , ai be defined as in (2.86). Suppose
that ( 1

N

∑
i

|ai|2
)1/2

≤ γ,
maxi|ai|

q
≤ ψ,
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for some γ, ψ ≥ 0. Then ∥∥∥∥∥∑
i

aiXi

∥∥∥∥∥
r

≤
( 2r

1 + 2(log(ψ/γ))+

)
(γ ∨ ψ), (2.83a)∥∥∥∥∥∑

i

ai(|Xi|2 − E|X2
i |)
∥∥∥∥∥
r

≤ 2
(

1 + 2q2

N

)
max
i

|ai|
( r
q2 ∨

√
r

q2

)
, (2.83b)

If γ and ψ satisfy (
max
i

1
N

∑
j

a2
ij

)1/2
∨
(

max
j

1
N

∑
i

a2
ij

)1/2
≤ γ, max

i ̸=j
|aij | ≤ ψ,

then ∥∥∥∥∥∥
∑
i ̸=j

XiaijXj

∥∥∥∥∥∥
r

≤ Γ
d

( r

1 + log(ψ/γ)

)2
. (2.83c)

In [30, Section 3.3], the following quantities were introduced

Sl ..=
∑
i1,...,il

Xi1ai1i2Xi2 . . . ail−1ilXil , (2.84a)

Sl(i) ..=
∑
i1,...,il

aii1Xi1ai1i2 . . . ail−1ilXil , (2.84b)

Sl(i, j) ..=
∑
i1,...,il

aii1Xi1ai1i2 . . . ail−1ilXilailj . (2.84c)

Note that (2.83a) is a bound on ∥S1(j)∥r if we set aij ≡ ai for some j ∈ [N ]. The next result are an
amelioration of [30, Proposition 3.1] that controls the Lr norm of Sl, Sl(i) and Sl(i, j).

Let us introduce the main error parameter

E ..= E(r, l, ϕ, γ, q) =
[

1
ql

max
(
ψl−1

(
rl

1 + log(ψ/γq4)

)l
∨ rψ

1 + log(ψ/γq4)

)]
∨ rl

(
γ

ψ

)l/4
(2.85)

Proposition 2.39. Let Xi be as in (2.82) and suppose (aij)i,j are complex number that satisfymax
i

1
N

∑
j

a2
ij

1/2

∨

(
max
j

1
N

∑
i

a2
ij

)1/2

≤ γ, max
i ̸=j

|aij | ≤ ψΓ, max
i∈[N ]

|aii| ≤ Γ. (2.86)

For l ≥ 2 we have

∥Sl∥r,≤(8Γ)lE + (8Γ)lr
ql−1 , (2.87a)

∥Sl(i)∥r, ∥Sl(i, j)∥r ≤(8Γ)lE . (2.87b)

Remark 2.40. In the case where γ ≤ ψ ∨ q4

ψ and l = O(1), E simplifies to

E ≤
(

8Γ
q

(
rl

1 + (log(ψ/q4γ))+
∨ 1
))l

ψ. (2.88)

In some cases, we might need to consider cases where l ≫ 1. In this case, we can use the factor ψl−1 in
(2.85) to offset the growth of l. A typical use case could be l = logN and ψ = O

(
(logN)−1/2).
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Before we start the proof of Proposition 2.39, let us introduce the tools we will use. The study of large
powers of polynomials arises often in random matrix theory. In our case we are interested in understanding
the expression

E(Sl)r =
∑

i1,...irl∈[N ]

r−1∏
i=0

l∏
j=1

aj+l(i−1)j+1+l(i−1)E [Xi1 . . . Xirl
] . (2.89)

An approach commonly used is to use so-called computation graphs.

Definition 2.41 (Computation graph). Let G = (V,E) be a finite graph. We define

Val(G) ..= 1
N |V |

∑
s∈[N ]V

∏
(i,j)∈E

|asisj
|. (2.90)

Let Π be a partition of V . We define GΠ to be the graph whose vertex set are the block of Π and whose
edges are eπxπy . We denote the edge set of GΠ by E(G,Π) Similarly to (2.90) we define

Val(G,Π) ..= 1
N |Π|

∑
s∈[N ]Π

∏
(π1,π2)∈E(G,Π)

|asπ1sπ2
|. (2.91)

Using this notion of computation graph and viewing
{
i1, . . . , irl

}
as V and using the independence of Xi

and the bound E|Xi|k ≤ N−1q2−k, we can transform (2.89) into

E(Sl)r =
∑
G

Val(G) 1
q|V (G)| ,

where the sum is taken among all graphs obtained by partitioning [rl]. As a first observation, we see, using
the fact that the variables Xi are centered and independent if a block the partition of [rl] has only one
element, then the contribution of this graph is null.
Given the particular structure of Sl as defined in (2.84) the appropriate representation uses so-called line
graphs.

Definition 2.42. (Line graphs and graphs induced by partitions) Let l ∈ N∗. We define the l-line graph to
be the graph L[l]

..= ([l], {(i, i+1) : 1 ≤ i < l}). The l−1 edges of L[l] are naturally indexed by ei = (i, i+1),
i ∈ [l − 1].
Let α ⊂ [l− 1]. We define the (l, α)-line graph, denoted by L(α)

[l] , to be the graph obtained by partitioning a
L[l] by the equivalence relation x ∼α y if and only if (xy) ∈ α.
For r ∈ N∗, we define P≥2,α to be the set of partition of [r] × [l] satisfying

(i) Each block π ∈ Π has size at least 2;

(ii) The partition must preserve the structure induced by α on every subset {i} × [l], 1 ≤ i ≤ r.

The following lemma relates the topology of a graph G and its value in the context of Definition 2.42. It
is the key result of this section.

Lemma 2.43. Let r, l ≥ 1, α ⊊ [l − 1] and G ..= ⊔ri=1L[l] graph. Then, for Π ∈ P≥2,α we have

Val(G,Π) ≤ Γrlψ(r(l−|α|−1))−|Π|/2γ|Π|/2. (2.92)

Proof. Let Π ∈ P≥2,α([rl]), GΠ as defined in Definition 2.41. Let T be a spanning forest of GΠ. We
enumerate the vertices of T in such a way that π1 is a leaf of T and π2 is its neighbor in T . Edges in
E(GΠ) \ E(T ) are either loops, meaning edges with of the form (x, x) for x ∈ V (GΠ), or extra edges. We
proceed as in [30, Lemma 3.13] to associate with every edge of T a factor γ using the Cauchy-Schwartz
inequality.
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Two copies of L[7]

Equivalence relation α = {2, 5, 6} for loops

Two copies of L(α)
[7] and a partition Π ∈ P≥2,α

π1π1 π2 π4 π5

π2 π2π3 π4 π5

π1π2

π3

π5

π4

The final graph

Figure 2.4: An illustration for Definition 2.42 in the case r = 2, l = 7, α = {2, 5, 6} and Π ∈ P≥2,α a
partition on [2] × [7]. Labeling the vertices from 1 to 14 from left to right and top to bottom, the blocks are
π1 = {1, 4}, π2 = {2, 3, 8, 11}, π3 = {9, 10}, π4 = {5, 6, 11, 13} and π5 = {7, 14}. Note that between graph 3
and 4, no new loops are created.

As a toy example, consider the graph G′ on two vertices x, y, z with edge set
{

(x, x), (x, y), (x, y), (y, z)
}
.

Then E(T ) =
{

(x, y), (y, z)
}

, we have one extra edge (x, y) and one loop (x, x). We find that

Val(G′) = 1
N3

∑
i,j,k∈[N ]

|aii||aij |2|ajk| ≤ max
i

|aii| max
i ̸=j

|aij |
(

1
N

∑
i∈[N ]

1
)(

1
N

∑
j,k∈[N ]

|aij ||ajk|
)

≤ Γ2ψ
1
N

∑
k

|ajk|
(∑

j

|aij |
)

≤ Γ2ψ
1
N

∑
k

|ajk|
(

1
N

∑
j

|aij |2
)1/2

≤ Γ2ψγ

(
1
N

∑
k

|ak|2
)1/2

≤ Γ2ψγ,

where we used the Cauchy-Schwartz inequality in the two last steps. In this case, the enumeration of T was
π1 = x, π2 = y and π3 = z.
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In the case of GΠ we find

Val(G) ≤ Γrl 1
N |V (G)|

∑
s∈[N ]Π

∗

∏
(π,π′)∈E(G)

π ̸=π′

asπsπ′

≤ Γrlψr(l−|α|−1)−|E(T )| Val(T ) ≤ Γrlψr(l−|α|−1)−|E(T )|(
√

Γγ ∧ ψ)|E(T )|.

In the first inequality, we used the fact that, by definition, for Π ∈ P≥2,α([rl]) there are exactly r|α| loops.
Once all loops are removed, there remain r(l− |α| − 1) edges GΠ.. In the second inequality, we estimated all
extra edges by ψ. In the last equality, we used the Cauchy-Schwartz inequality repeatedly, as was illustrated
on G′.
If c is the number of connected components of G and k is its number of vertices, we have |E(T )| = k − c.
The key observation is now that, for α ̸= [l − 1] and Π ∈ P≥2,α([rl]), every connected component has at
least two vertices. Indeed every copy of L(α)

[l] has at least two vertices and those vertices cannot belong to
the same block of Π, by ((ii)) Definition 2.42. Therefore k ≥ 2c and since γ ≤ ψ we find that

Val(Gr,l,Π) ≤ Γrlψr(l−|α|−1)

(√
Γγ ∧ ψ

ψ

)|E(T )|

≤ Γrlψr(l−|α|−1)

(√
Γγ ∧ ψ

ψ

)k/2

≤ Γrlψr(l−|α|−1)−k/2(
√

Γγ)k/2 ≤ Γrlψr(l−|α|−1)−k/2γk/2.

Proof of Proposition 2.39. We start from (2.89). The family of graphs induced by all possibles partitions of
[rl] is difficult to handle and therefore we first decouple the problem, by considering separately all possible
(l, α)-line graphs. This is done by using the identity

1 =
∑
α⊂[l]

∑
i1,...,il

∏
(k,k+1)∈α

1ik=ik+1

∏
(k,k+1)/∈α

1ik ̸=1k+1 ,

and Minkowski’s inequality to find that

∥S∥r ≤
∑

α⊂[l−1]

∥Sα∥r

where

S
(α)
l

..=
∑
i1,...,il

Xi1ai1i2Xi2ai2i3 . . . ail−1ilXil

∏
(k,k+1)∈α

1ik=ik+1

∏
(k,k+1)/∈α

1ik ̸=ik+1 , α ⊂ [l − 1].

The first product imposes that the vertices ik, ik+1 ∈ [N ], for (k, k + 1) ∈ α belong to the same block of
the partition Π. The second product forbids vertices ik, ik+1 ∈ [N ] from belonging to the same block, if
(k, k1) /∈ α.
Let us now fix α ⊊ [l − 1] and set G ..= ⊔ri=1L

(l). Using (2.82) and (2.90), we find

E(S(α)
l (i))r ≤

∑
Π∈P≥2([rl],α)

∑
s∈[N ]V (G)

1
N |Π|qrl−2|Π|

∏
(π,π′)∈E(GΠ)

asπsπ′

≤
∑

Π∈P≥2([rl],α)

1
qrl−2|Π| Val(GΠ).

We can now control Val(GΠ) using Lemma 2.43. Note that the bound (2.92) only depends on |V (GΠ)| = |Π|.
Using the Stirling numbers of the second kind, denoted Str, we see that∣∣{Π ∈ P≥2,rl : |Π| = k

}∣∣ ≤ Str(rl, k) ≤
(
rl

k

)
krl−k, k ∈ N∗.
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Setting b ..= |α|, we find

E(S(α)
l )r ≤

r(l−b)∧rl/2∑
k=2

Str(r(l − b), k) 1
qrl−2k Val(GΠ : |V (GΠ)| = k)

≤ 2rΓrl max
k,b

kr(l−b)−k

qrl−2k ψr(l−b−1)−k/2γk/2,

where the maximum is taken over 1 ≤ k ≤ r(l − b) ∧ rl/2 and 0 ≤ b ≤ l − 2.

Lemma 2.44. Let r, l ≥ 0 and 0 ≤ b ≤ r(l − 1). Then

max
k,b

kr(l−b)−k

qrl−2k ψr(l−b−1)−k/2γk/2 ≤
(

4Γ
q

rl

1 + (log(ψ̃/γ))+

)rl(√
γ

ψ
∨ ψ

)r
,

where the maximum is taken over 1 ≤ k ≤ r(l − b) ∧ rl/2 and 0 ≤ b ≤ l − 2.

Before proving Lemma 2.44 we use it to conclude the proof. We find

max
α⊊[l−1]

∥∥∥S(α)
l

∥∥∥
r

≤ (2Γ)lE .

There remains to control the case α = [l − 1] , i.e.ṫhe term S
[l−1]
l =

∑
i a
l−1
ii X l

i . Writing Yi = X l
i − EX l

i ,
i ∈ [N ] and using the fact that EYi = 0 and E|Yi|k ≤ 2k

Nqkl−2 for k ≥ 1 as well as (2.83a) with ai ..= al−1
ii , we

find that ∥∥∥∥∥∑
i

al−1
ii Yi

∥∥∥∥∥
r

≤ 4lrΓl−1

ql−1 ,

∥∥∥∥∥∑
i

E(X l
i)
∥∥∥∥∥
r

≤ (2Γ)l
ql−2 .

Therefore we get, as soon as r ≥ 2,

∥S[l−1]
l ∥r ≤ 4lΓl−1r

ql−1 + 2lΓl−1

ql−2 ≤ 4lΓl−1r

ql−1 ,

and we can conclude that

∥Sl∥r ≤ ∥S([l−1])
l ∥r +

∑
α⊊[l−1]

∥S(α)
l ∥r ≤ 8lΓl−1r

ql−1 + (4Γ)lE .

This concludes the proof of (2.87a).
For S(i) and S(i, j) the only difference is that the case α = [l − 1] leads to a better error term. Indeed we
have

∥∥∥S[l−1]
l (i)

∥∥∥
r

≤

∥∥∥∥∥∥
∑
j

aija
l−1
jj Yi

∥∥∥∥∥∥
r

+

∥∥∥∥∥∥
∑
j

al−1
jj E(X l

i)

∥∥∥∥∥∥
r

.

The first sum can be controlled using (2.83a) to obtain∥∥∥∥∥∥
∑
j

aija
l−1
jj Yi

∥∥∥∥∥∥
r

≤ Γl−1
( 2r

1 + 2 log(ψ/γ) ∨ 2
)

(γ ∨ ψ),

The adaptations for S(i, j) are straightforward and we skip the details. This concludes the proof.
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Remark 2.45. In the control of Sl(i) and Sl(i, j) we could consider the specificities of the computation
graph generated by the extra term aii1 and ailj . This is done for instance in [30, Definition 3.12] where they
introduce so-called white vertices. In our case this only lead to minor improvements (the term ψ/q4γ in the
denominator of (2.87a) becomes ψ/q2γ) and we do not pursue this amelioration further.

Proof of Lemma 2.44. We first bound the contribution of Γ uniformly by Γrl. Then we introduce the function
f : [0, l − 1] × [1, rl] → R+ defined by

f(b, k) = 12≤k≤r(l−b)∧ rl
2

kr(l−b)−k

qrl−2k γk/2ψr(l−b−1)− k
2 .

Our goal is to bound the function f. We start with the case where γ ≤ ψ/q4. In this case we consider, for
fixed b̄ ∈ [l − 2], the function log f(k, b̄). A standard analysis of that function yields that

k∗ = r(l − b)
1 + log k∗ + log(ψ/γq4) ,

is a critical point and that the function itself is concave in [1, rl]. We conclude that

f(k, b̄) ≤ f(1, b̄) + f(k∗, b̄) ≤
(
ψl−b−1

ql

)r
+
(

r(l − b)
1 + log(ψ/γq4)

)r(l−b)(
ψl−b−1

ql

)r
.

Observe that the right-hand side of the above equation is a function of b, which we call g ..= g(b). A short
analysis of log g shows that it is convex and thus maximized at the border of its domain of definition, that
is at b = 0 and b = l − 2. We find

max f(k, b) ≤ 1
qrl
(
ψl−1 ∨ ψ

)r + 1
qrl

(
ψl−1

(
rl

1 + log(ψ/γq4)

)l
∨ rψ

1 + log(ψ/γq4)

)r
≤ Er. (2.93)

The case γ ≥ ψ/q4 is handled in another way. Here we need to only optimize over b. We find

max
k,b

f(k, b) ≤ max
b

rr(l−b)

qrl

(
γq4

ψ

)kmax/2
, kmax

..= kmax(b) = r(l − b) ∧ rl

2 .

The logarithm of left hand side of the above inequality is a piecewise linear function in b with a non-positive
derivative. It is therefore maximized at b = 0 in which case we find

max
k,b

f(k, b) ≤ rrl

qrl

(
γq4

ψ

)rl/4
≤ rrl

( γ
ψ

)rl/4
.

Combining this bound with (2.93), we conclude.

We will also need the following refinement of Proposition 2.49 which is the analog of (2.83c).

Sol
..=

∑
i1,...,il ̸=i1

Xi1ai1i2Xi2 . . . ail−1ilXil . (2.94)

Proposition 2.46. Suppose the assumptions of Proposition 2.49 are satisfied. Then

∥Sol ∥r ≤ (4Γ)lE .

Proof. The proof is the same as for (2.87a) except that we do not have to consider the case where α = [l− 1]
since this is prohibited by the condition i1 ̸= il.
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Lemma 2.47. Let Zk be centered random variables with E|Zk|2 ≤ Kq
N and ∥Zk∥∞ ≤ K

q , for some constant
K > 0. Suppose aij ∈ C for i, j ∈ [N ] satisfy( 1

N

∑
k

a2
k

)1/2
≤ γ, max

k
|ak| ≤ Γ.

Suppose q3 ≥ γ ∥∥∥∥∥∑
k

akZk

∥∥∥∥∥
r

≤
( 2KΓr

1 + log(q3/γ)

)1
q

(2.95)

Proof. We have

E

(∑
k

akZk

)r
≤

r/2∑
k=1

kr−kKrΓr−k (γq)k
qr−2k ≤

(
2KΓ
q

)r (
r

1 + log(q3/γ)

)r
where we used the binomial theorem to estimate the sum by 2r times the value at the maximum k∗ with

k∗ ≤ r

1 + (log(q3/γ))+
.

2.7 Consequences of large deviations
In this section, we prove estimates on multilinear sums of Green function entries. We need the following
bound on the size of

∑
yHxy for x ∈ [N ].

Lemma 2.48. For 1 ≤ d ≤ N/2, for any ν > 0 there exists Cν > 0 such that

P
[

max
x∈[N ]

∑
y

|Hxy| ≤ Cν
logN + d√

d

]
≤ CνN

−ν .

We denote ∆(ν) as the indicator function of the event in the above probability.

Proof. Let x ∈ [N ] and Yy ..= |Hxy| −E|Hxy|, y ∈ [N ]. By (2.1), Yy is centered and satisfies EY 2
y ≤ 1/N and

|Yy| ≤ K√
d

for some constant K ≥ 0. We can thus use Lemma 2.47 to bound with very high probability

∑
y

Yy = O
(

logN√
d

)
.

We conclude that ∑
y

|Hxy| =
∑
y

Yy +NE|Hxy| ≤ C logN√
d

+ 4
√
d ≤ C logN + d√

d
.

where C ≥ 0 depends on the notion of very high probability.

Let us define

Γ(T ) ..= max
x,y/∈T

∣∣G̃(T )
xy

∣∣, Γ(T ; z) ..= max
x,y/∈T∪{z}

∣∣∣G̃(T,z)
xy

∣∣∣, Q(T ) ..= max
x ̸=y, x,y/∈T

∣∣G̃(T )
xy

∣∣.
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Proposition 2.49. Let Γ > 0, T ⊂ [N ] and u ∈ [N ] \ T . Suppose there exists κ > 0 such that

d2 ≤ NηN−κ/4, d2|T |2 ≤ Nκ/2, Γ = O(1) (2.96)

Then for any ν > 0, there exists C > 0 such that on the event {Γ(Tu),Γ(T, u) ≤ Γ} we have

(T∪{u})∑
a

HuaG̃
(T,u)
ax ≤ CΓ√

d
, (2.97a)

(T∪{u})∑
a

G̃(T,u)
xa HuaG̃

(T∪{u})
ay ≤ CΓ√

d
, (2.97b)

with very high probability.
Moreover, for any constant C ′ > 0, if {Γ(T ),Γ(Tu) ≤ Γ, Q(Tu) ≤ ΓC ′d−1/2} holds then we have

(T∪{u})∑
a

HuaG̃
(T,u)
ax ≤ Aux

C ′C√
d

+ C ′ CΓ
d
, (2.98a)

(T∪{u})∑
a

G̃(T,u)
xa HuaG̃

(T∪{u})
ay ≤ 1x=yAxu

C ′C√
d

+ C ′ CΓ
d
, (2.98b)

hold with very high probability.

Note that the condition on Γ in (2.96) could be restated as Γ√
d

≤ 1
C for some C > 0 large enough

depending on the notion of very high probability.

Proof. Without loss of generality, we suppose that T = ∅. The general case is obtained by writing H̃(T ) and
G̃

(Tu)
xy instead of H and G̃

(u)
xy respectively. We restrict ourselves to the event ∆(ν) defined in Lemma 2.48.

Since this event holds with very high probability, it suffices to prove our results on it.
Let us consider the sums expression defined in (2.84) with aij ..= G̃

(u)
ij , Xi

..= Hui, ψ = 1. Applying (A.4),
we see that

(u)∑
a

HuaG
(u)
ax =

(u)∑
a

HuaG̃
(u)
ax +

(u)∑
a,i1

HuaG̃
(u)
ai1
Hi1bG

(u)
i1x

= S1(x) +
(u)∑
i1

S1(i1)Hui1G
(u)
bx .

We now iterate (A.4) M times, for some fixed M ∈ N>0 and find

(u)∑
a

HuaG
(u)
ax =

M∑
l=1

Sl(x) +
(u)∑
b

SM (b)HubG
(u)
bx . (2.99)

Now by Proposition 2.49 and (2.88), using that log(ψ/dγ) ≥ κ
4 logN , see that (2.87b) becomes

∥∥Sl(x)
∥∥
r|H(u) ≤

(
32Γlr
κ logN

)l
≤
(

32ΓMr

κ logN

)l
for 1 ≤ l ≤ M. Therefore, setting r = ν logN and M = 10, C ≥ 80Me

κ and ε = CΓ/
√
d, we find, using

Chebyshev’s inequality,

1Γ0,Γ1≤ΓP
[

max
1≤i≤M

Sl(x) > εl
∣∣H(u)] ≤ 1Γ0,Γ1≤ΓM max

1≤i≤M
P
[
Sl(x) > εl

∣∣H(u)] ≤ M max
1≤l≤M

e−lr ≤ CνN−ν .

(2.100)
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In the same way, we that, setting ε = CΓ/d−5 for C > 0 large enough,

P
(
max
b∈[N ]

SM (b) ≥ ε
)

≤ Nε−r
(

80νΓ
κ

√
d

)10r
≤ CνN−ν .

Therefore, using Lemma 2.48, we have

(u)∑
a

HuaG
(u)
ax ≤

M∑
l=1

( CΓ√
d

)l
+ CΓ
d5 max

b∈[N ]
|G(u)

bx |
(u)∑
b

|Hub| ≤ 2 CΓ√
d

+ CΓ
d3/2 ,

where we used the fact that CΓ√
d

≤ 1
2 and the definition of ∆(ν) to bound the contribution of the last sum.

This proves (2.97a).
Equation (2.97b) is proved analogously using the bounds on Sl(i, j) and the identity

(u)∑
a

G̃(u)
xa HuaG̃

(u)
ay =

M∑
l=1

Sl(x, y) +
(u)∑
b

Sl(x, b)HubG
(u)
by , M ∈ N∗. (2.101)

To prove (2.98), under the additional assumption that maxa̸=b G̃
(u)
ab ≤ C ′d−1/2 we only need to improve the

bounds on
(u)∑
a

HuaG̃
(u)
ax ,

(u)∑
a

G̃(u)
xa HuaG̃

(u)
ay , (2.102)

since Sl(x), Sl(x, y) = O(d−1) for l ≥ 2. Indeed observe that in (2.85), we collect an extra ψ factor as soon
as l > 1.

For the first sum in (2.102), if Axa = 0, Here we use the fact that Hxy is Axy measurable and that(
Hxy : x, y ∈ [N ]

)
form a family of independent random variables. Therefore

∥∥∥∥1Aux=0

(u)∑
a

HuaG̃
(u)
ax

∥∥∥∥
r

≤
∥∥∥∥∥∥∥∥1Aux=0

(ux)∑
a

HuaG̃
(u)
ax

∥∥∥∥
r|H(u)

+
∥∥∥∥K

√
d|G̃(u)

xx |
N

∥∥∥∥
r|H(u)

∥∥∥∥
r

=
∥∥∥∥∥∥∥1Aux=0

∥∥∥
r|H(u)

∥∥∥∥ (ux)∑
a

HuaG̃
(u)
ax

∥∥∥∥
r|H(u)

∥∥∥∥
r

+ K
√
d|G̃(u)

xx |
N

∥∥∥∥
r

≤
∥∥∥∥∥∥∥∥ (ux)∑

a

HuaG̃
(u)
ax

∥∥∥∥
r|H(u)

∥∥∥∥+ K
√
dmaxx |G̃(u)

xx |
N

.

In the first step, we used Minkowski’s inequality on the conditional Lr norm and 1Axu=0|Hxu| ≤ K
√
d

N . In
the second step we used the independence between Axu and (Hua : a ̸= x) and the fact that G̃(u)

xx is H(u)-
measurable. In the third inequality, we again used Minkowski’s and the bound 1 on the indicator function.
We can then apply (2.83a) with ψ = C′Γ

d to conclude that

∥∥∥∥1Γ̃≤Γ

∥∥∥∥1Aux=0

(u)∑
a

HuaG̃
(u)
ax

∥∥∥∥
r|H(u)

∥∥∥∥
r

≤ CΓ
d

(
r

1 + log(ψ/γ)

)
.

This translates into a very high probability bound as before.
For the second sum in (2.102), we split the sum into three parts

(u)∑
a

G̃(u)
xa HuaG̃

(u)
ay = G̃(u)

xxHuxG̃
(u)
xy + G̃(u)

xy HuyG̃
(u)
yy +

(uxy)∑
a

G̃(u)
xa HuaG̃

(u)
ay . (2.103)
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If x = y then the bound is the same as in (2.97b) unless Axu = 0 in which case we get

G̃(u)
xxHuxG̃

(u)
xy + G̃(u)

xy HuyG̃
(u)
yy ≤ KΓ

√
d

N
= O(1/d).

On the other hand if x ̸= y, we can bound the sum using (2.87b) with ψ = C ′d−1/2 instead of ψ = Γ and as
for the two first terms we find

|G̃(u)
xxHuxG̃

(u)
xy | ≤ Γ 1√

d

C ′Γ√
d

≤ Γ2

d
.

Finally,
∑(uxy)
a G̃

(u)
xa HuaG̃

(u)
ay is bounded using (2.87b) to bound S1(x, y) with maxa̸=b G̃

(u)
ab ≤ C′Γ√

d
. This

concludes the proof.

Proposition 2.50. We have on the event maxx,y,a|Gxy| ∨ |G̃(a)
xy | ≤ Γ, we have with very high probability

(a)∑
x ̸=y

HxaG
(a)
xy Hay ≤ ΓC

d
. (2.104)

Proof. Let us recall Sol defined in (2.94), (A.4) to expand the sum and find
(a)∑
x ̸=y

HxaG
(a)
xy Hay =

∑
l≥2

Sol +
(a)∑
b

Sl(b)Hby.

The last sum is estimated using Lemma 2.48,
(a)∑
b

Sl(b)Hby ≤ S1 + max
l

|Sl(b)|
(a)∑
b

|Hby| ≤ max
b

|SM (b)| logN + d√
d

with very high probability.
By (2.83b) and a Chebyshev’s argument, we see that S1 = O

(Γ
d

)
. For l = 2, . . . ,M , we use Proposition 2.46

and find

max
b

|Sol | ≤
( CΓ√

d

)l
with very high probability. We conclude as before.

2.8 Quadratic vector equations
The results In this section, are focused on the stability of the self-consistent equation (2.55).
For N ∈ N, a ..= (ax)x∈[N ] ∈ CN , we define the matrix

B(a) ..= 1 − 1a∗ =



1 − a1 −a1 −a1 . . . −a1
−a2 1 − a2 −a2 . . . −a2
−a3 −a3 1 − a3 . . . −a3

−a4
. . . . . . . . . −a4

... . . . . . . . . . ...
−aN −aN −aN . . . . . . 1 − aN


. (2.105)

Writing the Von Neumann series we see that

B−1(a) =
∑
n≥0

(1a∗)n = I +
∑
n≥0

⟨a ,1⟩n1a∗ = I + 1
1 − ⟨a ,1⟩

1a∗ = I + 1
detB(a)1a∗. (2.106)

Therefore for B−1 to be bounded, we need to ensure that 1 − 1
N

∑
i ai remains bounded away from zero.
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Proof of Lemma 2.26. Let e ..= 1√
|X |

1X , m = (m1, . . . ,m|X |), g = (g1, . . . , g|X |) and ε ..= (ε1, . . . , ε|X |).
Throughout the proof we multiply column vectors entrywise
Subtracting (2.58) and (2.55) yields

1
gxmx

(gx −mx) =
(
ee∗(g − m)

)
x

+ εx, x ∈ X .

Multiplying this equation by on both sides gxmx and using gxmx = mx(gx −mx) +m2
x, we get

gx −mx = mx(gx −mx)
(
ee∗(g − m)

)
x

+m2
x

(
ee∗(g − m)

)
x

+mx(gx −mx)εx +m2
xεx, x ∈ X .

Recalling (2.105), we define the matrix B ..= B(m2) = 1−(m2e)e∗, where m2 = (m2
1, . . . ,m

2
|X |). Subtracting

the above equation by m2
x

(
ee∗(g − m)

)
x
, we find the vectorial equation

B(g − m) = m(g − m)(ee∗(g − m)) − m(g − m)ε + m2ε. (2.107)

For a matrix R ∈ CX ×X , we write ∥R∥∞→∞ for the operator norm induced by the norm ∥r∥∞ = maxx∈X |rx|.
In particular, we have ∥m2∥∞ ≤ τ2, since since |mx| ≤ 1

Im(z+m) ≤ τ.

In order to bound ∥g − m∥∞, we want to find the inverse of B and then multiply (2.107) by B−1. Recalling
(2.106), we see that in order to control the ∥B∥∞, we need to study the quantity detB = 1 − 1

X
∑
xm

2
x.

We have

Re
[ 1

|X |
∑
x∈X

1
(vx − z −m)2

]
= 1

|X |
∑
x∈X

(
Re vx − z −m

)2 −
(
Im vx − z −m

)2

|vx − z −m|4

≤ 1
|X |

∑
x∈X

1
|vx − z −m|2

− 1
|X |

∑
x∈X

(
Im vx − z −m

)2

|vx − z −m|4
≤ Imm

Im(m+ z) −
(

1
|X |

∑
x∈X

Im(z +m)
|vx − z −m|2

)2

≤ 1 − (Imm)2,

where we used the Cauchy-Schwartz inequality in the second inequality. We conclude that detB is bounded
away from zero by a constant as soon as (2.57) holds. In particular

∥B−1∥∞→∞ ≤ ∥1∥∞→∞ + τ2

1 − τ2 ≤ C,

for some C > 0 depending only on τ.
Combining the above estimate with (2.107), we find

∥g − m∥∞ ≤ ∥B−1∥∞→∞

[
τ∥g − m∥2

∞ − τ∥g − m∥∞∥ε∥∞ + τ2∥ε∥∞

]
.

If we know a priori that ∥g − m∥∞ ≤ λ and that λ ≤ 1
2C , we can move the term quadratic in ∥g − m∥∞ to

the left-hand side and estimate ∥g − m∥∞ = O(∥ε∥∞). This concludes the proof.

Proof of Corollary 2.28. This is done by induction. Fix U ⊂ [N ] and E ∈ [−R,R]. Consider zk ..= E +
iL(1 − kN−2), k = 0, . . . , k∗. Here we define k∗

..= sup{k ∈ N : zk ∈ S} and L ≥ 2/λ. Then (2.61) holds for
gx = m

[N ]
x with εx = |U |

N and for z0 we trivially have supx∈X |gx −mx| ≤ λ. The constant b > 0 from Lemma
2.26 depends only on R. We conclude that supx∈U

∣∣mU
x − m

[N ]
x

∣∣ ≤ C |U |
N = o(1), for some C > 0 depending

on R. We can then bootstrap this using the Lipschitz continuity of both m[N ] and mU , and using the fact
that C |U |

N ≤ λ. This concludes the proof.
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2.9 Estimates on the imaginary parts of the normalized Stieltjes
transform

The following result gives lower bound on m defined in (2.10) in terms of the density of the (vx)x∈[N ] ∈ RN .
The following lemma contains no randomness. It is stated for (2.9) but the result is also valid for (2.55) by
replacing [N ] by X ⊂ [N ] and N by |X | and mx by mX

x .

Lemma 2.51 (Existence, uniqueness and characterisation in the bulk). There exists a unique solution to
(2.9) in HN and

|m(z)| ≤ 1, z ∈ H. (2.108)

Recall the definition of Sκ,R. If there exists c ..= c(R) ∈ (0, 1) depending on R such that for any t ∈ [c2/8, 2]
(independent of N) we have

|{x ∈ [N ] : |vx − E| ≤ t}|
N

≥ ct, E ∈ (−R− 1, R+ 1), (2.109)

then

Imm(z) ≥ c2

8 , z ∈ Sκ,R. (2.110)

Suppose vx
i.i.d.∼ N (0, 1). Then by a second-moment argument we can convince ourselves that (2.109) is

satisfied with e−R2/2

C for some large enough C > 0 as soon as N is large enough with high probability.
Let us first make some comments on m. A general result on Nevanlinna functions states that if m : H → H
is analytic and satisfies the limit condition limη→∞ iηm(iη) = −1, then m is the Stieltjes transform of some
probability measure. Indeed we have

|m(z) −m(w)| =
∣∣∣∣∣
∫
R

1
x− z

− 1
x− w

dµ(x)
∣∣∣∣∣ ≤ |z − w|

∫
R

dµ(x)
|x− z||x− w|

≤ |z − w| 1
Im(z) Im(w) ,

where µ is the associated probability measure. Alternatively we can use [3, Theorem 2.1] with the kernel
S = 1

N 1[N ]1∗
[N ] to get this result. Since (2.10) satisfies all of these conditions and so it is N2-Lipschitz

continuous on S.

Proof of Lemma 2.51. The existence and uniqueness result can be found in a very general formulation for
instance in [4, Proposition 2.1] or in the Appendix of [37].
For (2.108) we observe that

|m(z)|2 ≤ 1
N

∑
x∈[N ]

1
|vx − z −m|2

= Im(m)
Im(m+ z) < 1.

This proves (2.108). To prove (2.110) we first observe that (2.109) implies

1
N

∑
x

1
( vx−E

t )2 + 1
≥ 1
N

∑
x:|vx−E|≤t

1
1 + 1 ≥ c

2 t, t ≥ c2/8. (2.111)

Let E0 ∈ (−R,R) and zk ..= E0 +iηk, ηk = 1−kN−3 and k = 0, . . . , k∗ with k∗
..= inf

{
k ∈ N, zk /∈ Sκ,R

}
−1.

We will proceed by induction on k making use of the N2-Lipschitz continuity of m(z).
Denoting ζ(z) ..= z + m(z) Ek ..= Re ζ(zk) and Ik ..= Im ζ(zk), we observe that since |m(z)| ≤ 1 and
Imm(z) ≥ 0, we have Ek ∈ (−R− 1, R+ 1) and 1

N ≤ Ik ≤ 2. For k = 0 we have

Im(m(z0)) = 1
N

∑
x

I0

(vx − E0)2 + I2
0

= 1
I0

1
N

∑
x

1
( vx−E0

I0
)2 + 1

≥ c

2 ≥ c2

8 ,
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where we applied (2.111) with t = I0 ≥ 1 ≥ c2/8 in the third step.
For the induction step we suppose that Im(m(zk)) ≥ c2

8 . By Lipschitz-continuity and because ηk+1 ≥ 1
N we

have Ik+1 ≥ Im(m(zk)) − 1
N + ηk+1 ≥ c2

8 − 1
N + 1

N ≥ c2

8 . We now distinguish between two cases.
On the one hand if Ik+1 ≥ c/2, we have

Im(m(zk+1)) = 1
Ik+1

1
N

∑
x

1
( vx−E0
Ik+1

)2 + 1
≥ 1
Ik+1

1
N

∑
x

1
( vx−E0

c/2 )2 + 1
≥ 1

2
c

2
c

2 = c2

8 .

On the other hand if Ik+1 ≤ c/2, we have

Im(m(zk+1)) ≥ 1
Ik+1

1
N

∑
x

1
( vx−E0
c2/8 )2 + 1

≥ 1
Ik+1

c

2
c2

8 ≥ c2

8 ,

where we used 1
Ik+1

≥ 2/c in the last inequality. This concludes the induction and the proof.

The condition (2.109) means that we are in the bulk of the spectrum. For a given E ∈ R and t ≥ 0, and
vx, x ∈ [N ], as in (2.4), we introduce the function

f(E, t) ..= P
[
vx ∈ [E − t, E + t]

]
. (2.112)

Note that f is independent of the choice of x ∈ [N ] as the vx are identically distributed. If we fix a constant
R ≥ 0, then by Proposition B.1 we know that

f(E, t) ≥ 1
2
√

2π

∫ E+t

E−t
e−x2/2dx ≥ e−(R+2)2/2

10 , E ∈ [−R,R], 0 ≤ t ≤ 2, (2.113)

for N large enough, and that there exists a constant CL ..= CL(E) > 0 such that

|f(E, t) − f(E, s)| = P
(
t < |vx − E| ≤ s

)
= 1 + o(1)√

2π

∫
I(t)\I(s)

e−x2/2dx ≤ CL|s− t|, (2.114)

for all E ∈ [−R,R] and 0 ≤ s < t ≤ R. Note that under these constraints, CL depends only on R and is
uniform in E.

Lemma 2.52. For d ≫ 1 and R = O(1) and vx be as in (2.4). Then there exists c∗ = c∗(R) ∈ (0, 1) such
that for every c2

∗
8 ≤ t ≤ 2,

inf
X : |X c|=o(N)

inf
E∈[−R,R]

|{x ∈ X : |vx − E| ≤ t}|
|X |

≥ tc∗, (2.115)

with high probability.

Proof. Let R,C > 0 be constants. Fix t > 0, E ∈ [−R,R] and I ..= [E − t, E + t] Let us first observe that
since

sup
|X c|≤

√
N

∣∣∣∣ |{x ∈ X : vx ∈ I}|
|X |

− |{x ∈ [N ] : vx ∈ I}|
N

∣∣∣∣ ≤ sup
|X c|≤

√
N

2|X c||X |
N |X |

= o(1),

it suffices to show that (2.115) holds of X = [N ] up to taking a smaller constant.
Let us define the enlargement of I to be I(s) ..= [E − t − s, E + t + s], for s ≥ 0. We introduce

Zx(I) ..= 1vx∈I , x ∈ [N ]. Then recalling (2.112), E[Zx(I(s))] = f(E, t+ s) we find

E[Zx(I)Zy(I)] = E
[
E
[
Zx(I)|Hxy

]
E
[
Zy(I)|Hxy

]]
= E

[
f(E, s+Hxy)2],
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where we used the fact that vx and vz are independent conditioned on Hxz. Using the fact that Hxz ≤ K√
d

and the Lipschitz continuity of f(E, ·) from (2.114), we see that

∣∣E[Zx(I)Zw(I)] − f(E, t)2∣∣ ≤ C2
LK

2

d
,

and

Var
( 1
N

∑
x∈[N ]

Zx(I)
)

= 1
N2

∑
x,y∈[N ]

(
E[Zx(I)Zy(I)] − E[Zx(I)]E[Zy(I)]

)
≤ C2

LK
2

d
.

Writing Z ..= 1
N

∑
x Zx, and using Chebyshev’s inequality, we find

P
(

|{x ∈ [N ] : vx ∈ I}|
N

≤ f(E, t)
2

)
≤ P

(∣∣Z − EZ
∣∣ ≥ f(E, t)

2

)
≤ 4C2

LK
2

df(E, t)2 = O
(
d−1), (2.116)

where we used (2.113) in the last equality. Since the right-hand side of (2.116) is independent of E, we
deduce that there exists τ = τ(R), that can be chosen as the right-hand side of (2.113), such that for any
constant t > 0 and E ∈ [−R,R],

|{x ∈ [N ] : |vx − E| ≤ t}|
N

≥ tτ,

holds with probability 1 −O
(
d−1).

Let u = τ2

27 and t = u
4 = τ2

29 . Define En ..= −R + nt for n = 0, . . . , ⌈2R/t⌉. Then the intervals In ..=
[En−t, En+t] are a covering of [−R,R] and for any E ∈ [−R,R], there is a n ∈ N∗ such that [En−t, En+t] ⊂
[E − u,E + u]. Therefore

P
(

inf
E∈[−R,R]

∣∣{x ∈ [N ] : |vx − E| ≤ u
}∣∣

N
< uτ/4

)
≤ P

(
∃n ∈ [⌈R/t⌉] :

∣∣{x ∈ [N ] : |vx − En| ≤ u/4
}∣∣

N
< uτ/4

)
≤ 2RC

td
= O

(1
d

)
.

We conclude that (2.115) holds for c∗ = τ
4 and for fixed t = τ2

27 . Let us call Ξ this event.
Let c∗ = τ/8. If u ≥ t, then the interval [E − u,E + u] contains t

⌊
u
t

⌋
disjoint intervals of size t. Then on Ξ

we have, for any X and E as in (2.115),∣∣{x ∈ [N ] : |vx − E| ≤ u
}∣∣

N
≥ t
⌊u
t

⌋τ
4 ≥ u

2
τ

4 = u
τ

8 = uc∗,

holds for any u ≥ t = τ2

29 = c2
∗
8 . Here we used that t

⌊
u
t

⌋
≥ u

2 . We conclude that on Ξ, we have

inf
X : |X c|≤

√
N

inf
E∈[−R,R]

|{x ∈ X : |vx − E| ≤ t}|
|X |

≥ tc∗,
c∗

2 ≤ t ≤ 2.

Since Ξ holds with high probability this concludes the proof.

Lemma 2.53. Let m = m(v) be as in (2.9). With high probability, there exists τ > 0 depending only on R
such that for every x ∈ [N ] with |vx| ≤ R+ 2 we have

inf
x∈[N ] : |vx|≤R+2

Im
(1
d

∑
y∈[N ]

Axymy

)
≥ τ, z ∈ Sκ,R. (2.117)
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Proof. Let us fix x ∈ [N ] such that |vx| ≤ R+ 2 and write S1(x) ..=
{
y ∈ [N ] : Axy = 1

}
. Observe that this

means that |S1(x)| = d(1 +O(d−1/2)).
Combining Lemma 2.52 for X = [N ] with Lemma 2.51, we deduce that there exists a constant c∗

..= c∗(R) > 0
such that c∗ ≤ Im(z +m(z)) ≤ 2. As in (2.111), we find

Im
(1
d

∑
y∈S1(x)

my

)
= 1
d Im(z +m(z))

∑
y∈S1(x)

1( vy−Re z
Im(z+m(z))2

)2 + 1
≥ 1

2d
∑

y∈S1(x)

1(vy−Re z
c∗

)2 + 1
. (2.118)

Let us define Zy ..= 1|vy−Re z|≤c∗ , y ∈ [N ], and let f ..= E[Zy]. (Note that f is the analog of f(c∗) introduced
in the proof of Lemma 2.52) Then by Proposition B.1, f > c > 0 for some constant c > 0 depending on
R. Conditioning on Axy and using the Lipschitz continuity argument similar to the one used in the proof of
Lemma 2.52 (2.115), we find that

E[Zy1y∈S1(x)] = E[E[Zy|Axy]1y∈S1(x)] = fd

N

(
1 +O

(
K√
d

))
We also have that

E[ZyZw1y,w∈S1(x)] = E
[
E[Zy|Hxy, Hyw]E[Zw|Hxw, Hyw]1y,w∈S1(x)

]
= f2 d

2

N2 (1 +O(d−1/2))2

We therefore have

Var
(

1
d

∑
y∈S1(x)

Zy

)
= 1
d2 Var

(
1
N

∑
y∈[N ]

Zy1y∈S1(x)

)
= O

(
1√
d

)
.

Using Chebyshev’s inequality as in (2.116) we see that there exists τ = τ(R) > 0 such that we have, with
probability 1 −O(d−1),

1
d

∑
y∈S1(x)

Zy ≥ 1
2E
[

1
d

∑
y∈S1(x)

Zy

]
≥ τ.

Plugging this into (2.118), Im
( 1
d

∑
y∈S1(x) my

)
≥ τ/4.

We use this pointwise lower bound to deduce a uniform lower bound in Re z as in the proof of Lemma 2.52.
This concludes the proof.

Proof of Lemma 2.29. Using Lemma 2.52 and the fact that |T c| ≤
√
N , (2.109) remains valid for some

c = c(R) > 0. This proves the statement about Ξ1. To prove the statement about Ξ2, we use (ii) Proposition
2.12, Lemma 2.53 and supxmx = O(1). By (2.26), N−1|T c

a | = O(N−1/2) and we have

Im
(∑
y∈Ta

H2
xym

[N ]
)

≥ Im
(1
d

∑
y∈S1(x)∩Ta

m[N ]
)

≥ τ

for some τ > 0.

Lemma 2.54 (Imaginary part of the free convolution). For z ∈ H,

Im mfc(z) ≥ 1
10e− Re(z)2/2.

Proof. Let z ∈ H and I = Im(z + mfc(z)) and R = Re(z + mfc(z)). We denote by dµG the standard normal
distribution. Using (2.108) and the fact that I ≥ 0, we find

Im(mfc(z)) =
∫

I

(x−R)2 + I2 dµG(x) ≥
∫

[R−1−I−α,R−1]

I

(x−R)2 + I2 dµG(x)

≥ I1−α
√

2π
min

x∈[R−1−I−α,R−1]

e−x2/2

(x−R+ 1)2 + I2 ≥ I1−α
√

2π
e−(Re z)2/2

I2 = e−(Re z)2/2
√

2πI1+α
.

Since I ≤ 3 we have for α = 0, Im mfc(z) ≥ e−(Re z)2/2

3
√

2π .
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Proof of Lemma 2.34. Using McDiarmid’s inequality and the independence of the entries Hxy, x, y ∈ [N ],
we can show that

P
[∣∣ m̂fc(v, z) − E m̂fc(v, z)

∣∣ ≥ t
]

≤ Ce−ct2d,

for some constant C, c > 0. Setting t = C
√

logN/d yields a very high probability bound.
Then we can use a Lindeberg to compare the expectations of m̂fc(v, z) and m̂fc(u, z) with u i.i.d.∼ N (0, 1). We
find that ∣∣E m̂fc(v, z) − E m̂fc(u, z)

∣∣ ≤ C
1√
N
,

where the constant depends on R and can be chosen as e3R2/2. We conclude by observing that E m̂fc(u, z) =
mfc(z) by definition of mfc .
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Chapter 3

Localization at the edge

In this chapter, we study the law of the extreme eigenvalues of the Laplacian matrix. We show that after
an appropriate rescaling, the eigenvalue point process of L is asymptotically close to a sequence of Poisson
Point Processes. Throughout this chapter, we consider the Erdős-Rényi graph on N vertices with connection
probability d/N .

3.1 Main results
In this chapter, we prove statements about the statistics of extreme eigenvalues and eigenvectors of the
normalized Laplacian matrix L which is defined through

L ..= D −A− d√
d

, (3.1)

where A is the adjacency matrix of G and D = Diag(D1, . . . , DN ) the diagonal matrix of the degrees defined
through Dx

..=
∑
y Axy.

Remark 3.1 (Convention on constants). By convention, all objects introduced may depend implicitly on
N , the number of vertices in the graph G, unless explicitly mentioned otherwise.

The central idea of this chapter is to build a bijection between top eigenvalues and vertices that have
large degrees. Following this idea, three different regimes appear.

(i) For d ≫ logN , the point process of the maximal and minimal eigenvalues can be well approximated
by the PPP corresponding to independent normal variables.

(ii) For d ≍ logN , the maximal degree of the graph has a bounded distribution and is with high probability
not unique. At a scale much smaller than d−1/2, the eigenvalues form a PPP .

(iii) For d ≪ logN , the maximal degree of the graph is deterministic and a PPP appears at scale
√
d logN .

For the left edge of the spectrum, the idea of mapping the smallest eigenvalues to vertices with the
smallest degree remains valid to some extent.

(i) For d ≥ logN , the techniques employed for the left edge of the spectrum remain valid for the right
edge.

(ii) For 1
2 logN ≪ d ≤ logN , the smallest degree vertices are with high probability leaves. We analyze

the neighborhood of the leaves on the graph to understand the distribution of the smallest eigenvalues.
However, the number of leaves can become polynomially large which requires extra care in the analysis.

67
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(iii) For d ≤ 1
2 logN , leaves are no longer the structures that generate the smallest eigenvalues. Trees that

dangle from the macroscopic connected component are the key objects. We study this idea further in
Chapter 4.

Remark 3.2 (Rigidification of extreme values of Poisson variables). Let (Yi)Ni=1 be i.i.d. random variables
with distribution Pd, i = 1, . . . , n. Let us use this family as a toy model for the largest eigenvalues. Then
if d ≫ logn the maximum of the Yi is with high probability unique and at the edge the rescaled Yis form
a PPP . If d ≍ logn the distribution of maxi Yi has bounded support and with positive probability there
exists many j ∈ [n] such that Yj = maxi Yi. Finally if d ≪ logn, the distribution of maxi Yi is concentrated
on 1 or 2 points and with high probability there are many j ∈ [n] such that Yj = maxi Yi. This emerging
rigidity in the distribution of the extremes of Yi is an adversarial mechanism when we want to distinguish
top eigenvalues in critical regimes. See also [11, Remark 4.14].
Remark 3.3 (Conventions). We use bold symbols to represent vectors of dimension N as well as sequences
of real numbers indexed by N . For instance u+ defined in (3.3) is a sequence of real numbers indexed by N .

The following deterministic objects are used for centering and scaling. Define the function

f : (0,∞) → R, f(x) = x log x− (x− 1) + 1
2d log(2πdx), (3.2)

and let x∗ ∈ R be the point above which f is increasing, i.e. the largest solution of the equation x log x = − 1
2d .

We introduce the restrictions f−
..= f |[ 1

2d ,x∗], f+
..= f |[x∗,∞) and

u±
..= f−1

±

( logN
d

)
∨ 1
d
. (3.3)

The random variables Dx are well approximated by the Poisson law of parameter d (see Lemma B.5).
The quantity du+ plays therefore the role of a proxy for the quantity maxx∈[N ] Dx, the largest degree of the
graph. Similarly, du− is a proxy for the smallest degree of the Erdős-Rényi graph, zero excluded. Various
properties of u± are given in Section B.2. We see that the maximal and minimal entries on DiagL, are
approximately given by

max
x∈[N ]

Lxx ≈ v(u+) ≈

{√
2 logN, d ≫ logN

logN√
d log(logN/d) , d ≪ logN, , min

x∈[N ]
Lxx ≈ v(u−) ≈

{
−

√
2 logN, d ≫ logN

−
√
d, d ≤ logN,

where we introduced the function

v : [0,∞) → [0,∞), t 7→
√
d(t− 1). (3.4)

We are now ready to introduce the point processes we will compare. As a general rule, eigenvalue
processes are denoted by the Greek letter Φ and abstract Poisson point processes are denoted by the Greek
letter Ψ. Superscript + refers to point processes at the right edge (top eigenvalues), and − to processes at
the left edge (bottom eigenvalues). The scaling and centering we use for supercritical regimes, d ≫ logN ,
would not make sense for subcritical regimes. We therefore need to introduce different eigenvalue processes,
depending on the regime we want to consider. The subscript sup refers to supercritical regimes and the
subscript crit refers to critical regimes. For the right edge of the spectrum, the scaling and centering for
critical, d ≍ logN , and subcritical, d ≪ logN , remain the same and so Φ+

sub = Φ+
crit. On the other hand, for

the left edge of the spectrum, we consider different processes depending on whether d ≥ logN or d ≤ logN.
We introduce the process Φ−

sub later.
Definition 3.4 (Eigenvalue process at the edge). We define the rescaled eigenvalue point process

Φ+ ..=
∑

λ∈SpecL
δτ(λ−σ) (3.5)

where the rescaling parameters are defined as

σ ..= v(u+) + u+

v(u+)

(
1 + 1

v(u+)2

)
, τ ..=

√
dv(u+)2
√
u+

. (3.6)
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Our first result Theorem 3.8 shows that Φ+ is asymptotically close to a sequence of Poisson Point
Processes Ψ.

Definition 3.5 (Poisson reference processes). Given m ⊆ R (which might depend on N), we define Ψcrit,m
to be the sequence of Poisson Point Processes with intensity measures

ρ(ds) =
∑
k∈Z

uk+g
(
s+ kτθ

)
ds, g(t) ..= 1√

2π
e−t2/2, θ ..= 1√

d

(
1 − 1

v(u+)2

)
The density ρ is plotted for three different values of d in Figure 3.1.
Our results hold in a region [−κ,+∞) containing an expected number K of rescaled eigenvalues. Let

K ..= log logN, (3.7)

we define

κ+
..= − inf

{
s ∈ R : ρ([−s,∞)) ≤ K

}
. (3.8)

We define K in order to push Theorem 3.8 as far as possible, i.e.ḟor regimes d as small as O(1). We could
fine-tune the value of K for the other regimes, but we do not pursue this here.

Remark 3.6 (Thumb rules). At this point, it might be useful to consider the order of magnitude of the
different parameters introduced. The two most important ones are u+ and v(u+) which are related by the
equalities

v(u+) = √
u+(d− 1), u+ ≍

{
logN

d log(logN/d) , d ≤ 1
2 logN,

1, d ≥ 1
2 logN.

, v(u+) ≍
√

logN ∨ logN√
d log(logN/d)

.

If Zi
i.i.d.∼ Pd, i = 1, . . . N , then we expect the maximum to satisfy maxi Zi = du+ and the area around u+

to be populated by the Zis in the following way |{i ∈ [N ] : Zi = u+ − ℓ}| ≡ (u+)ℓ, ℓ ∈ Z.

The asymptotic closeness of the rescaled eigenvalue and reference processes can be given a precise meaning
by introducing the metric of convergence of point processes on compact sets.

Definition 3.7. For Φ and Ψ two point processes and κ > 0 , we define

Dκ(Φ,Ψ) ..=
∑
n∈N

2−n sup
s1,...,sn≥−κ

sup
k1,...,kn∈N

∣∣∣P( ⋂
i∈[n]

(Φ([si,∞)) ≥ ki)
)

− P
( ⋂
i∈[n]

(Ψ([si,∞)) ≥ ki)
)∣∣∣.

We say that two point processes Ψ and Φ are asymptotically close if D(Φ,Ψ) → 0, as N → +∞.

Theorem 3.8 (Eigenvalue right edge). There is a constant K > 0 such that for any constant ε > 0, if

K ≤ d ≤ N
1
3 −ε,

then

Dκ+

(
Φ+,Ψ+) −→ 0.

Remark 3.9 (Distribution of the maximal eigenvalue of L). Let Λ ..= maxλ∈SpecL be the maximal eigenvalue
of L. We can read off from Theorem 3.8 the law of the rescaled version of Λ. In the supercritical regime
d ≫ logN , we have P(b(X1 − a) ≤ s) = ee−s + o(1) for b =

√
2 logN and a = b + 1

2 logN + 1
2 log d

2 logN .
This behavior and rescaling are reminiscent of the one observed for the extreme eigenvalue statistics of N
independent normal variables (but with an extra small shift in our case). This result is similar to the one
found in [20, Theorem 1.2].
In the critical and subcritical regimes, the relevant scaling of Λ is X1

..= τ(Λ − σ). In the critical regime
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d ≍ logN , the distribution of Λ does not admit a limit. Instead, it is a mixture of two distributions on
different scales. The maximal degree in the graph has a law given by

P
(

max
x∈[N ]

Dx − ⌊du+⌋ = t
)

= ct

for some constant c ∈ (0, 1) (c.f. Lemma B.7). This randomness influences Λ on a scale of order d−1/2. If
∆ ..= maxx∈[N ] Dx − ⌊du+⌋, the randomly centered eigenvalue X̃1

..= τ(Λ − σ − θ(∆ − du+)) follows the law
of the maximum of u∆

+ independent normal variables.
In the subcritical regime, one must distinguish between resonant and nonresonant regimes (see [6, Remark
1.5] for a more detailed discussion). In the non-resonant regime, maxxDx = K with high probability, for
some deterministic K (that depends on N and d) and after a suitable affine rescaling, X1 has a Gumble
distribution. In the resonant regime, asymptotically with probability 1−1/e, the variable X1 has a standard
normal, and with probability 1/e it has a Gumble distribution centered around −v(u+)2

√
u+

(1 −O
((

logN
)−1)

.

We now move on to the eigenvectors of L.

Theorem 3.10 (Eigenvector localization). Let ε > 0, K ≤ (log logN)1/2, and

(log logN) 1
5 +ε ≤ d ≤ N1/3−ε.

The K eigenvectors corresponding to the K highest eigenvalues of L are localized around some vertex x ∈ [N ],
in the sense that ∥∥wλ(i)|B10(x(i))

∥∥ = o(1), i ≤ K.

To study the neighborhood around the smallest degree vertices we need to introduce new objects. Indeed
when the number of minimal vertices becomes exponentially large, the statistics of the sphere of radius two
around leaves are no longer well approximated by a normal law, as explained in Remark 3.2.
Let

uγ(k) ..= f−1
(

(1 − γ) logN + k log d
d

)
∨ 1
d
, γ ∈ [0, 1), k ∈ N∗, (3.9)

and

vγ ..=
√
d(uγ − 1). (3.10)

We abbreviate uγ ..= uγ(1). The parameter vγ will be the approximate value of maxx∈L,z∼x vz, where L
denotes the set of leaves in G and x ∼ z means that the two vertices are connected.

Definition 3.11 (Eigenvalue process at the left edge, leaves). Let γ ≥ 0. We define the rescaled eigenvalue
point process

Φ− ..=
∑

λ∈Spec(L)

δτ−(σ−−λ), Φγ ..=
∑

λ∈Spec(L)

δτγ (σγ −λ),

where the scaling parameters are defined as

σ−
..= v(u−) + u−

v(u−)

(
1 + 1

v(u−)2

)
, τ−

..=
√
dv(u−)2
√
u−

,

σγ ..= v(1) + 1
d(v(1) − vγ)

[
1 + uγ

v(1)(v(1) − vγ)

]
, τγ ..=

d2(v(1) − vγ)2
√
uγ

.
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d = 251, u+ = 1.3, v(u+) = 319 d = 18, u+ = 2, v(u+) = 37 d = 4, u+ = 3, v(u+) = 14

(a) (b) (c)

Figure 3.1: An illustration of the density function s 7→ ρ(s), with N = 104. We plotted in (a) the supercritical
regime, d = N0.6, in (b) the critical regime, d = 2 log(N), and in (c) the subcritical regime, d = 1

2 logN.
At first sight, the three plots look very similar. However, the scale of the y-axis is different in each case. In
(a) the intensity of ρ remains smaller than 20 even for very small values of x and can be seen to be slightly
positive even when x > 50. In addition, the intensity between different peaks does not seem to change a lot.
This is because each term in the sum in the definition of ρ comes with a factor uk+ and u+ = 1 + o(1) in the
supercritical regimes. In (b) and (c) the intensity of ρ becomes larger than 20 as soon as x < 60, respectively
x < 40. This is caused by the fact that the coefficient u+ increases as d decreases. Moreover, the height of
the peaks varies markedly in (b) and even more vigorously in (c): indeed u+ > 1 + ε, for d ≍ logN and
u+ > 2 for d = o(logN). Remember that we do not expect to see multiple vertices with the same degree
(near du+) when d ≫ logN but rather a cloud of points once we zoom out enough. On the other hand, we
know (see Remark 3.2) that maximal degrees will accumulated on O(1) possible values when d ≍ logN and
then on one or two values when d = o(logN).
In addition, it is remarkable that the spacing between the bumps become wider as d becomes smaller. In
(a), one can even imagine a continuous function by tracing a line between the peaks and the function e−x

seems to be a good approximation (see Remark 3.9). Comparing the above pictures with [7, Figure 1.1], we
can better understand how the impact of the degrees on the limiting distribution of the maximal eigenvalue
is much stronger in the case of the Laplacian than in the case of the adjacency matrix.

Let us define the intensity measures ρ− and ργ exactly as we defined ρ in Definition 3.5 but replacing τ
and θ by τ−, respectively τγ , and

θ−
..= 1√

d

(
1 − 1

v(u−)2

)
,

respectively

θγ ..= 1
d(v(1) − vγ) ·[

1 + uγ
v(1)(v(1) − vγ) + 1√

d(v(1) − vγ)3
+ 1√

d(v(1) − vγ)4
+ 1√

d(v(1) − vγ)2

]
.

(3.11)
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We will see along the proof, that for values of d much larger than 1
2 logN , the parameter θγ takes the much

simpler form θγ ..= k
d3/2(v(1)−vγ ) , since in that regime v(1) − vγ ≍

√
d. However, in order to push our analysis

as far as possible, we need the complicated formula from (3.11).
We also define κ−, resp. κγ , and Ψ−, resp. Ψγ , analogously to κ, defined in (3.8) and Definition 3.5.

Theorem 3.12 (Left edge of the spectrum). Let ε > 0.

(i) If logN − (log logN)2 ≤ d ≤ N−ε+1/3, then

Dκ−

(
Ψ−,Φ−) −→ 0.

(ii) If 1
2 logN + (logN)ε ≤ d ≤ logN − log logN and γ ..= 1 − d

logN , then

Dκγ

(
Ψγ ,Φγ

)
−→ 0.

For the next theorem, we denote by λ(1) ≥ λ(2) ≥ . . . λ(N) = −
√
d the eigenvalues of L sorted decreas-

ingly. We also denote by x(i) the vertices of G sorted lexicographically first by |S1(x)| then by |S2(x)| and
finally by |S3(x)|.

Theorem 3.13 (Eigenvector localization). Let ε > 0, K ≤ (log logN)1/2, and

1
2 logN + (logN)ε ≤ d ≤ N−1/3+ε.

Then the following holds with high probability

1. The K eigenvectors corresponding to the K smallest non-trivial eigenvalues of L are localized around
some vertex x ∈ [N ], in the sense that∥∥wλ(i)|B10(x(i))

∥∥ = o(1), i ≤ K.

2. In particular, for d ≤ logN − (log logN), the localization centers of those K eigenvectors are known to
be leaves.

Remark 3.14 (Lexicographic ordering of vertices). Let us introduce the following three-level lexicographic
ordering of the vertices [N ]. For x ∈ [N ], the three levels are defined by Li(x) ..= |Si(x)|, i = 1, 2, 3, and
Li(x) = +∞ if Si(x) = ∅ (this case is relevant for isolated vertices). We can then compare any two vertices
x, y ∈ [N ] by lexicographically ordering their (L1(x), L2(x), L3(x)) and (L1(y), L2(y), L3(y)).
As it turns out from our statical and geometric analysis of G, this three-level ordering is enough to distinguish
strictly, with high probability, the vertices from the sets

S−
..= {x ∈ [N ] : Dx = min

y∈[N ]
Dy + ω}, and S+

..= {x ∈ [N ] : Dx = max
x∈[N ]

Dx − ω}, ω = log logN.

Theorem 3.10 could be stated as the K eigenvectors corresponding to the K largest eigenvalues are localized
around the K largest vertices with respect to the three-level lexicographic ordering. An analogous reformu-
lation in terms of the smallest vertices with respect to the three-level lexicographic ordering would also be
valid for Theorem 3.13.

3.2 Block decomposition
In this section, we construct an approximate block diagonal decomposition of L in some bases of approximate
eigenvectors. The first decomposition, Proposition 3.15 is relevant for small and large eigenvalues in the
regime logN ≪ d ≪ N1/6. The second decomposition, Proposition 3.18 is relevant only for large eigenvalues,
but in the regime 1 ≪ d ≪ (logN)2. The third decomposition, Proposition 3.21 is relevant for small
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eigenvalues in the regime 1
2 logN ≪ d ≪ (logN)2. In the regime N1/6 ≤ d ≪ N1/3, we do not manage

to prove a block diagonal decomposition but we can nevertheless describe the extreme eigenvalues (see
Proposition 3.16). The proofs of all three propositions are deferred to Section ??. Each proposition is
followed by a corollary that makes explicit the matching between the eigenvalue process of L at the edge
and the point process of approximate eigenvalue generated by top, respectively bottom, degree vertices.

For ε > 0 we introduce the vertex sets U+(ε) and U−(ε) which represent the vertices that have a large,
respectively small, degree. As we will see, the set U±(ε) are with high probability r-packings in G, for any
r = O(1) . This property is crucial for the construction of the block diagonal approximations. Let

U±(ε) ..=
{
x ∈ [N ] : |vx| > u±(ε), sign(vx) = ±

}
, (3.12)

where

u+(ε) ..= max
{√

(1 + ε) logN,
√
d
(1 + ε

2 u+ − 1
)}
,

u−(ε) ..=

min
(√

(1 + ε) logN, ε
√
d
)

if d ≥ logN − log logN
√
d− 1√

dε
if d < logN − log logN.

W+(κ)
U+(ε)

W−(κ)
U−(ε)

d
Deg(x)

vx

du+

v(u+)0

κ
G−1(1 −N−1/2)

u+(0)

0 1
κ

v(1) u−(0)

G−1(N−1/2)

d d+
√
d logN d+

√
2d logNd−

√
d logNd−

√
2d logN Deg(x)

vx0−
√

logN−
√

2 logN
√

logNt
√

2 logN

a) d ≫ logN

b) d ≲ logN

−
√
d

−
√
d

Figure 3.2: Illustration of the different vertex subgroups used in the block diagonal approximation of L. As
is apparent from the figure, the distribution of the degrees is symmetric around d in the dense regime. In
the sparse regime, the distribution of the degrees is skewed towards small degrees. We denote by G the
distribution function of the degrees. We choose u+(ε) and u−(ε) in such a way that vertices in U±(ε) are
never close one from the other.

In dense regimes, the distribution of the degrees of G is well approximated by a Gaussian random variable
of mean d and variance d and is symmetric around d.

Proposition 3.15 (Block decomposition for d ≫ logN). Let ε > 0 and

(logN)1+ε ≤ d ≤ N
1
6 −ε (3.13)

For τ ∈ (1 − 2ε, 1), the following holds with high probability. The exists a Hermitian matrix M and an
orthogonal matrix U such that

∥L−M∥ = O
(
d−1/2), UMU∗ =

 ν 0 E∗
d

0 D E∗

Ed E X

 , (3.14)

where
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(i) D = Diag
(
vx + αx

vx
+ εx : x ∈ U+(τ) ∪ U−(τ)

)
and maxx |εx| = O

( 1
logN

)
.

(ii) ∥X∥ =
√

(1 + τ) logN +O(1) and ∥E∥ = O
(
(logN)−1);

(iii) ν +
√
d = O(d−1/2) and ∥Ed∥ = O(d−1).

We can push further the analysis of the extreme eigenvalues of L to the regime d ≪ N1/3. However, we
do not obtain a block diagonal decomposition of L. The reason for that is the fact that the balls around
large-degree vertices are too close to obtain good bounds on the norm of the off-diagonal block E.

Proposition 3.16 (Very dense regime). Let ε > 0, τ ∈ (1 − ε/2, 1) and Nε ≤ d ≤ N
1
3 −ε. Let I± be the

[N ]-valued random variable defined by

I+ ..= inf
{
i ∈ [N ] : v(i) ≤ u+(1 − τ/2)

}
, I− ..= inf

{
i ∈ [N ] : v(N−i) ≥ u−(1 − τ/2)

}
.

Then there exist error terms ε±
i , i ∈ [I±] such that maxi |ε±

i | = O
(
(logN)−3/2 + d−1) and

λ(i) = v(i) + 1
v(i)

+ ε+
i , λ(N−i+1) = v(N−i) + 1

v(N−i)
+ ε−

i .

Recalling the scaling parameters τsup and σsup from Definition 3.11, let us define the intervals

χ+,dense(c∗) ..=
[
σsup − c∗

√
logN,+∞

)
, χ−,dense(c∗) ..=

(
−∞,−σsup + c∗

√
logN

]
.

Corollary 3.17. Let ε > 0 and (logN)1+ε ≤ d ≤ N1/3−ε. Then with high probability, there exists a constant
c∗ > 0, error terms εx, x ∈ [N ], such that maxx |εx| = O

(
(logN)− 1+ε

2
)

and the processes∑
λ∈SpecL\{−

√
d}

δλ, and
∑

x∈U+(τ)∪U−(τ)

δvx+ αx
vx

+εx

coincide on the spectral domain χ+,dense(c∗) ∪ χ−,dense(c∗).

Proof. We first prove the statement for d as in (3.13). By (3.14) and perturbation theory, Lemma A.7, we
know that the eigenvalue processes of M and L coincide up to a small error∑

λ∈L

δλ =
∑
µ∈M

δµ+εµ
, max

µ
|εµ| = O

(
d−1/2).

Moreover if Y ..=

ν 0 0
0 D 0
0 0 X

 , then again by perturbation theory, we see that the eigenvalue process∑
µ∈Spec(M) δµ coincides with the process

∑
µ̃∈Spec(Y ) δµ̃+εµ̃ , Now observe that for c∗ = τ/2, by (ii), we have

ν /∈ χ±,dense(c∗) and, by (iii),

SpecX ∩
(
χ+,dense(c∗) ∪ χ−,dense(c∗)

)
= ∅.

Therefore, using (i), we see that the processes∑
µ̃∈Spec(Y )

δµ̃, and
∑

x∈U±(τ)

δvx+ αx
vx

+εx

where |ε| = O
(
(logN)−1), coincide on χ±,dense(c∗).

We now prove the statement for N1/6−ε ≤ d ≤ N1/3−ε. This is immediately follows from Proposition
3.16, the definition of I±, the choice c∗ = τ/2 and the fact that |αx − 1| = O

(√
logN
d

)
= O

((
logN

)−1
)
.

We skip the details. This concludes the proof.
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To obtain good approximate eigenvalues in sparse regimes, we will need stronger estimates than those
provided by Proposition 3.15. Such estimates can only be achieved by selecting an even more restrictive
subset of vertices. For the rest of this section, we introduce the parameter κ which we use to tune the size
of this subset. Let

κ = (log logN)2 ∨ log logN
log(u+) . (3.15)

and

W+(κ) ..= {x ∈ [N ] : Dx ≥ du+ − κ} , W−(κ) ..= {x ∈ [N ] : Dx ≤ du− + κ} . (3.16)

Observe that for d ≪ (log logN)2 logN , the first term in (3.15) dominates and κ ≤ logN√
d log(logN/d) . On the

other hand d ≫ logN , we always have κ ≍
√
d log logN√

logN
. We conclude that W+ ⊆ U+(ε) for any constant

ε ∈ (0, 1) in all regimes (see Lemma 3.50).
For x ∈ [N ], we define Si(x) ..=

{
y ∈ [N ] : dist(x, y) = i

}
, i ≥ 0, where dist is the usual graph distance G,

as well as

αx ..= Dx

d
, βx ..= |S2(x)|

|S1(x)|d . (3.17)

Note that vx =
√
d(αx − 1). We can also define the functions

α(t) = t

d
, v(t) ..=

√
d
(
α(t) − 1

)
, ρ(t) ..= α(t)

v(t) , t ≥ 0. (3.18)

We define the approximate eigenvalue around a vertex x as the function

Λx ..= Λx(αx, βx) = vx + αx
vx

(
1 + 1

v2
x

)
+

√
dαx
v2
x

(βx − 1). (3.19)

This quantity can be understood as the extreme eigenvalue of an (αx, βx)-rooted tree.
Let us introduce the generic error parameter

ω(α) ..= d2α ∨ log logN, α ∈ (0, 1). (3.20)

Proposition 3.18 (Block decomposition for top eigenvalues). For α ∈ (0, 1/12) and κ as in (3.15), there
exist K ..= K(α) ≥ 1 and c∗

..= c∗(α, κ) > 0 such that if ε > 0 and

K ≤ d ≤ (logN)2,

then the following holds with probability 1 −O(e−c∗ω(α)2). There exists an orthogonal matrix U such that

U−1LU =

DW 0 E∗
W

0 DU E∗
U

EW EU X

 , (3.21)

where

(i) DW = Diag
(
Λx + εx : x ∈ W+(κ)

)
, and

max
x∈W+

|εx| = O

( √
u+√

dv(u+)2ω(α)2

)
(3.22)

(ii) DU = Diag
(
vx + αx

vx
+ εx : x ∈ U+(ε) \ W(κ)

)
. and maxx∈U+ |εx| = O

(
ω(α)√
d logN

)
,
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(iii) ∥E♯∥ = O
(

ω
logN

)4 for ♯ ∈
{

U ,W
}

and

SpecX ⊆
(

−∞, u+(ε)(1 + ε)
]
. (3.23)

Moreover supx∈W+(κ)|Λx − vx + αx

vx
| = O( ω

logN ) and supx∈W+(κ)|βx − 1| = O
(
κ log logN

logN

)
.

Let us define the intervals
χ+

..=
[
v(u+) − κ

2
√
d
,+∞

]
. (3.24)

Corollary 3.19. For α ∈ (0, 1/12), there exists K ..= K(α) > 1, such if K ≤ d ≤ logN , with high probability
there exist error terms εx, x ∈ [N ], such that

max
x

|εx| = O

( √
u+√

dv(u+)2ω(α)2

)
,

and the processes ∑
λ∈SpecL

δλ and
∑

x∈W+(κ)

δΛx+εx

coincide on the spectral domain χ+(κ).
Proof. By definition, x ∈ W(κ) if and only if vx ..=

√
d(u+ − 1) − κ√

d
. Moreover for any x ∈ U(ε) \ W(κ),

ε > 0, then, using (ii),

vx + αx
vx

+ εx ≤ v(u+) − κ√
d

(
1 +O

(
1√

d logN

))
≤ v(u+) − κ

2
√
d
.

We can conclude as in Corollary 3.17 using the estimates from Proposition 3.18.

For regimes 1
2 logN ≤ d ≤ logN, we will show that bottom eigenvalues are in bijection to some subset

of the set of leaves
L ..=

{
x ∈ [N ] : Dx = 1

}
. (3.25)

For for d = γ logN , with γ ∈ ( 1
2 , 1), the number of leaves becomes polynomial as E|L| ≍ N1−γ . This

has two consequences. First of all, we should expect the eigenvalue spacing to become polynomially small,
which would render error estimates such as those found in Proposition 3.18 useless to distinguish eigenvalues.
Secondly, the sphere of radius two around x ∈ L having a distribution close to a Pd variable, the observable
βx will become subject to the rigidity phenomenon as described in Remark 3.2.
Both these issues are tackled by looking at extreme value statistics of the family of random variables{
αzx

: x ∈ L
}

where zx denotes the unique neighbor of such x. Inside W−, we define the set

Wγ(n) ..=
{
x ∈ W−(κ) ∩ L : and for z the unique neighbor of x, |Dz − duγ | ≤ n

}
, n > 0. (3.26)

The set Wγ , γ ..= d
logN , is only meaningful in regimes where γ ≤ 1 and we set the convention that Wγ = ∅

if γ ≥ 1.

Definition 3.20 (Approximate eigenvalues for leaves). For x ∈ L1 and zx denote its unique neighbor. We
define

ΛL
x

..= ΛL
x

(
αzx

, βzx

)
= v(1) + 1

d(v(1) − vzx
)

(
1 − 1

d(v(1) − vzx
)2 +

αzx(1 + 1√
dv(1)

+ 1
v2

(1)
)

v(1)(v(1) − vzx
)

)
+ αzx√

dv(1)(v(1) − vzx
)2

(βzx − 1),

Λ̃L
x

..= Λ̃L
x (αzx

) = v(1) + 1
d

1
v(1) − vzx

+ 1
dv(1)(v(1) − vzx)2

(3.27)

where v(1) was introduced at the end of Definition 3.11.
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Proposition 3.21 (Block decomposition for bottom eigenvalues). Let K = O(1) and

1
2 logN + (logN)1/K ≤ d ≤ (logN)2. (3.28)

For ε ∈ (0, 1
10 ), and r ≥ 10K, γ ..= d

logN and vγ as defined in Definition 3.11 and

κ ..=
{

1
2ε if, d ≤ logN − log logN
κ else,

(3.29)

there exists c∗
..= c∗(K) > 0 such that the following holds with probability 1 − O

(
e−c∗(logN)c∗ ).There exists

an orthogonal matrix U such that

L = U−1


ν 0 0 E∗

ν 0
0 DW 0 E∗

W 0
0 0 DU E∗

U 0
Eν EW EU X 0
0 0 0 0 Y

U, DW =

W1 0 0
0 W2 0
0 0 W3

 , (3.30)

where

(i) W1 = Diag
(

ΛL
x + εx : x ∈ Wγ(κ)

)
,

max
x∈Wγ (κ)

|εx| = O

(
ω(α)3

(logN)3(v(1) − vγ)2

)
, (βzx

− 1) = O

(
κ log d

(logN)3/4

)
. (3.31)

(ii) W2 = Diag
(
Λ̃L
x + εx : x ∈ L \ Wγ(κ)

)
,

max
x

|εx| = O

(
ω(2α)

(logN)2− 1
6 (v(1) − vγ)2

)
.

(iii) W3 = Diag (Λx + εx : x ∈ W−(κ) \ L) and

max
x

|εx| = O

(
ω

d(logN)2 1d≥logN−(log logN)2 + 1
(logN) 1

2 +2c∗
1d≤logN−log logN

)
.

(iv) DU = Diag
(
vx + αx

vx
+ εx : x ∈ U−(ε) \ W−(κ)

)
and maxx∈U |εx| = O

(
(logN)− 1

2 −2c∗
)
.

(v) The submatrix Y is of size O
(
Nd4e−d

)
, ∥E♯∥ = O

((
ω

logN
)r/2

)
, for ♯ ∈

{
ν,W,U

}
, and

ν = −
√
d+O

(
N− 1

5

)
, SpecX ⊆

[
−

√
d(u− − 1) + 3

2κ,+∞
)
, SpecY =

{
−

√
d
}
. (3.32)

(vi) For d ≥ logN − (log logN)2,

sup
x∈W−

|Λx − vx − αx
vx

| = O
( ω

logN

)
max

x∈W−∩L
|Λx − ΛL

x | ∨ |ΛL
x − Λ̃L

x | = O

(
ω3

(logN)5/2

)
. (3.33)

We could push this result further by only asking that d ≥ 1
2 logN

(
1 + C

log d
)

for some large enough
constant C ≥ 0. This leads to more complicated error terms and we do not push it further. We are content
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with pushing the lower bound on d to ( 1
2 + o(1)) logN .

Let us define the interval

χ−
..=
(
−∞,

√
d(u− − 1) + κ

2
√
d

]
, χγ ..=

(
−∞,

√
d(u− − 1) − χγ

]
, (3.34)

where

χγ ..= 1
d(v(1) − vγ)

[
1 + κ

2
√
d

1
(v(1) − vγ)

]
.

Note that
√
d(u− − 1) = −

√
d+ 1√

d
= v(1) and |vγ | = O

(
ω2) when d ≤ logN − log logN.

Corollary 3.22. Let K > 0. If K = O(1) and 1
2 logN + (logN)1/K ≤ d ≤ (logN)2 there exists c∗

..=
c∗(K) > 0 such that the following holds with probability 1 −O

(
e−c∗(logN)c∗ )

.

(i) If d ≥ logN − (log logN)2, the processes∑
λ∈SpecL

δλ and δ−
√
d +

∑
x∈W−(κ)

δΛx+εx

coincide on the spectral domain χ− where εx, x ∈ [N ], are error terms satisfying maxx∈W− |εx| =
O
(

ω
d(logN)2

)
.

(ii) If d ≤ logN − (log logN) and γ = 1 − d
logN there exist C ≥ 0 and M = O(N4γ/3) such that the

processes ∑
λ∈SpecL

δλ and Mδ−
√
d +

∑
x∈Wγ (κ)

δΛL
x +εx

(3.35)

coincide on the spectral domain χe where εx, x ∈ [N ], are error terms satisfying maxx∈Wγ (κ)|εx| =
O
(

ω
(v(1)−vγ )2(logN)3

)
.

Proof. Let ε > 0 be some small constant such that 1
2ε ≥ κ. The first point is proved the same way as

Corollary 3.19. In this regime, we use(vi) to replace Λ̃L
x and ΛL

x for x ∈ L by Λx and we conclude by an
argument analog to the one in the proof of Corollary 3.17.
For the second point first observe that, for any c > 0, M = O

(
N4γ/3

)
, by ((v)). Removing the contribution

of SpecY correspond to the first sum of the second process. Let x ∈ L \ Wγ(2κ) and y ∈ W(κ) \ L, and
z ∈ U \ W(κ). Then

Λ̃L
x ≥ v(1) − 1

d(v(1) − vγ) − κ

d3/2(v(1) − vγ)2 +O

(
(log logN)4 + κ2

(logN)2− 1
6 (v(1) − vγ)2

)
≥ v(1) − χγ ,

where we used 2 − 1
6 ≥ 3

2 in the second inequality. Moreover

Λy ∧ vz + αz
vz

≥ v(1).

These bounds remain correct even after we add the respective error terms εx. These bounds combined with
those on ∥E♯∥ in (v), guarantee that only terms from W1 contribute in the interval χγ . We conclude with
an argument analog to the one in the proof of Corollary 3.17.

Remark 3.23. However for d ≤ 1
2 logN , some fundamental differences arise. First of all, the number of

disconnected components and their variety increases. But more importantly, even the left edge spectrum
of L|Gcc exhibits different behavior. For d ≤ 1

k logN , k ∈ N∗, some trees of size k start to dangle from
Gcc. They do not form disconnected components but only have a few connections to the rest of the graph.
These configurations induce eigenvalues smaller than the eigenvalues induced by leaves. This phenomenon
is explored further in Chapter 4.
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Before turning to the proofs of the various propositions stated in this section, let us introduce some
notations and a priori estimates.

We denote by A ..= 1√
d
A and by D ..= 1√

d
(D − d).

Definition 3.24 (Restriction of a matrix). Let N ∈ N∗, M ∈ CN×N and T ⊆ [N ]. We define M |T to be
the T -by-T matrix with

(M |T )ij = Mij , i, j ∈ T.

Any vector w = (wx)x∈[T ] defined on some subset T ⊂ [N ] is naturally extended on [N ] by w = (wx)x∈[N ],
with wx = wx if x ∈ T and zero otherwise. In general, we do not write the overline.

We also need the following bound on the operator norm of the adjacency matrix.

Proposition 3.25 (Bound on ∥A− EA∥ ). For 4 ≤ d ≤ 1
2N , we have, with very high probability

∥A− EA∥ ≤


3 if d ≥ (logN)5

2 + C
√

logN/d if 1
2 logN ≤ d ≤ (logN)5

1 + C + C logN
d(log logN−log d) if 4 ≤ d ≤ 1

2 logN.
(3.36)

Proof. The first case is obtained by applying [14, Lemma G.2] with H̃ ..= A − EA. Since maxi,j∥H̃ij∥ =
O(d−1/2) = O((logN)−5/2), the hypotheses are satisfied. The last two cases are [6, Corollary 6.2].

3.3 Dense regimes and min-max principle
In this section, we prove Proposition 3.16. While both Propositions 3.16 and 3.15 combine to give Corollary
3.17, the techniques used in their respective proofs are very different.
The proof of Proposition 3.16 relies on the min-max characterization of the eigenvalue problem and the
graph constructed in Proposition 5.15. A crucial ingredient needed to derive the upper bound on λ(1) is the
fact that, for τ > 0 small enough, for any two large degrees x, y ∈ U(τ), the sphere of radius one around y
does not overlap with the sphere of radius 2 around x (see (i) of Proposition 5.16).

Proof of Proposition 3.16. Let Gτ be the graph defined by Proposition 5.15 and M its rescaled Laplacian
matrix. We work on the event defined by Proposition 3.25. Since the eigenvalues of L and M differ by at
most O

(
d−1/2) = O

(
(logN)−1), it suffices to prove the result for the eigenvalues and normalized degrees of

M and Gτ respectively. All quantities henceforth are related to those objects. We only prove our result for
top eigenvalues as the proof for bottom eigenvalues is essentially the same.
Let k ∈ [I], where we abbreviate I ..= I+, Sk ..= span

(
wx(i) : i ∈ [k]

)
, k ∈ [I], where

wx(i)
..=
(

1 + 1
v2
x(i)

)−1/2 [
1x(i) − 1√

dvx(i)
1S1(x(i))

]
, i ∈ [I]. (3.37)

The rescaling in front is to insure that w are normalized. However, this does not impact the computations
up to a factor O

(
(vx)−2) = O

(
(logN)−1). For instance, writing x = x(i) and Dx = |S1(x)| for some i ∈ [I],

we find that

⟨wx ,Mwx⟩ = 1
1 + v−2

x

〈
1x − 1√

dvx
1S1(x) , (Dτ −Aτ )

(
1x − 1√

dvx
1S1(x)

)〉
= 1

1 + v−2
x

[
vτx − 1

dv2
x

∑
y∈S1(x)

vτy −
〈

1x −
1S1(x)

vx
√
d
,

1S1(x)√
d

+ Dx

dvx
1x
〉]

= 1
1 + v−2

x

[
vx + 2

vx
+O

(
d−1/2 + (logN)−1)] = vx + 1

vx
+ εx,

(3.38)
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with εx = O
(
(logN)−3/2 + d−1). In the last equality we used the power series expansion of (1 + v−2

x )−1 to
get the simplification.

We can derive a lower bound on λ(k) using the max-min principle

λ(k) = max
dimS=k

min
v∈S

〈
v ,Mv

〉
≥ min
v∈Sk

〈
v ,Mv

〉
.

By Proposition 5.15, the vertex sets (B1(x(i)) : i ∈ [I]) are disjoint and Sτ1 (x(i)) ∩Sτ2 (x(j)) = ∅, for i, j ∈ [I],
i ̸= j. If v =

∑
i aiwx(i), with

∑
i|ai|2 = 1, ai ∈ R, we find

〈
v ,Mv

〉
=

k∑
i=0

a2
i

[
vx(i) + 1

vx(i)
+ 1
dv2
x(i)

∑
y∈S1(x(i))

vy − 1
]

≥ min
i∈[k]

(
vx(i) + 1

vx(i)
+ εx(i)

)
.

Now since the function f(x) ..= x+ x−1 is strictly increasing for x > 1 we conclude that

λ(k) ≥ vx(k) + 1
vx(k)

+O
(
(logN)−3/2 + d−1).

We now turn to the upper bound on λ(k). We will prove that

λ(1) ≤ max
i∈[I]

vx(i) + 1
vx(i)

+O

(
1

logN

)
. (3.39)

The proof for λ(k), 2 ≤ k ≤ I is similar, using the max-min principle

λ(k) = min
S:dimS=N−k+1

max
v∈S

⟨s,Ms⟩ ≤ max
v∈Uk

⟨v ,Mv⟩ ≤ max
k≤i≤I

vx(i) + 1
vx(i)

+O

(
1

logN

)
,

with Uk ..= S⊥
k . The details are left to the reader.

Let us consider the system of linear independent normalized vectors W ..=
(
wx(i) : i ∈ [I]

)
(remember that

in the graph Gτ the balls B1(x(i)), i ∈ [I] are disjoint). We complete W in a basis by first adding the vector

q ..= 1
|A|1/2 1A, A ..= [N ] \

⋃
i∈[I]

B1(x(i)),

and then by using Gram-Schmidt procedure to complete W ∪ {q} with a collection of vectors that we call
U . The vector q plays the role of the trivial eigenvector e ..= 1√

N
1[N ] but its support excludes the support

of the vectors of W (thus insuring orthogonality). However the difference is small since, using Lemma 5.2
we get

|A| ≤
∑
i∈[I]

|B1(x(i))| ≤ 2dNτ/2 = O
(
N1/3),

and thus

⟨e ,q⟩ =
(
1 −O

(
N−2/3)). (3.40)

Note that since W ∪ {q} ∪ U is an orthonormal basis, we have∑
u∈U

∣∣u(x(i))
∣∣2 ≤ 1

v2
x(i)

≤ 1 −
∣∣wx(i)(x(i))

∣∣2 = 1
v2
x(i)

i ∈ [I]. (3.41)

Let v ∈ RN and

v =
∑
i∈[I]

aiwx(i) +
∑
u∈U

buu + cq, a ..=
(∑
i∈[I]

a2
i

)1/2
, b ..=

(∑
u∈U

b2
u

)1/2
,
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with ai, bu, c ∈ R and a2 + b2 + c2 = 1.
Combining (3.38) with (i) of Proposition 5.16, we get

⟨wx(i) ,Mwx(j)⟩ = δij

(
vx(i) + 1

vx(i)
+O

( 1
logN

))
, i, j ∈ [I].

Since ∥Aτ −A∥ = O
(
d−1/2), the vectors of U are orthogonal to q (and thus ⟨q ,u⟩ = 0, for any u ∈ U) and

EAτ =
√
dee∗, we can use (3.40) and Proposition 3.25 to get∣∣⟨u , Aτu⟩

∣∣ =
∣∣⟨u , (Aτ − EAτ )u⟩ −

√
d⟨u , ee∗u⟩

∣∣
≤ ∥Aτ − EAτ∥ +

√
d|⟨u , 1 − q⟩|2|⟨1 − q , e⟩|2 ≤ 3 +O

(
N−1/2) ≤ 4,

where we used Cauchy-Schwartz inequality in the first inequality. holds with with very high probability and
thus, using (3.41), we get

⟨u ,Mu⟩ = ⟨u , Dτu⟩ + 4 ≤ max
y/∈U(τ)

vy + max
i∈[I]

vx(i)

v2
x(i)

+ 4 ≤
√

(2 − τ) logN + 5 ≤
√

(2 − τ/2) logN.

Finally the cross-terms between U and W can be controlled by〈∑
i

aiwx(i) , M
∑
u

buu
〉

=
〈∑

i

aiwx(i) , D
τ
∑
u

buu
〉

−
〈∑

i

aiwx(i) , A
τ
∑
u

buu
〉

≤
〈∑

i

ai1x(i)D ,
∑
u

buu(x(i))
〉

+ 1√
d

∑
i

ai
vx(i)

∑
y∈S1(x(i))

vτy
∑
u

bu|u(y)| + 3

≤
(∑

i

a2
i v

2
x(i)

)1/2(∑
u

b1
u|u(x(i))|2

)1/2
+ Cba+ 3

≤
(maxi vx(i)

mini vx(i)

)1/2
ab+ Cba+ 3 ≤ 2Cba+ 3.

Here in the second inequality, we transferred the diagonal operator on the left side of the scalar product
and used the precise structure of w. We also used again the bound on the size of Aτ − EAτ . In the second
inequality we used Cauchy-Schwartz as well as (iii) of Proposition 5.16 to control

∑
y∈S1(x(i)) v

τ
y = Cd for

C ≥ 1 large enough. Finally, in the last step we used
√

(2 − τ) logN ≤ mini vx(i) ≤ maxi vx(i) ≤
√

2 logN.
Using (3.40), we see that ⟨q ,Mq⟩ = −

√
d
(
1 +O

(
N−1/3)). The cross-terms with q are controlled by∣∣∣∣〈∑

i

aiwi , Mq
〉∣∣∣∣ = 1

d|A|1/2

∑
i

ai|S2(x)|
vx(i)

= O
(
N−1/3),∣∣∣∣〈∑

u

buu , Mq
〉∣∣∣∣ ≤ 1√

N

∑
u

bu
∑
x∈[N ]

vxu(x) + 3 ≤
√

(2 − τ/2) logN +O(1),

where for the second claim we proceed as before using (3.41) to bound the contribution of D applied to any
vector of u and (3.40) to bound the contribution of Aτ . In the last inequality we used Cauchy-Schwartz to
bound N−1/2∑

u |bu| ≤ b.
Writing v1

..= maxi∈[I] vx(i), we find

⟨v ,Mv⟩ ≤ a2
(
v1 + 1

v1
+ ε
)

+
(
b2 + bc

)√
(2 − τ) logN + 2Cba+ 6 − c2

√
d

2 +O
(
N−1/3),

for some ε = O
(
d−1 + (logN)−3/2), i ∈ [I]. Now since v1 + 1

v1
≥

√
2 logN − log logN with high probability,

we conclude that this inequality is maximal when a is maximal. This concludes the proof.
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3.4 Proof of block diagonal decompositions
In this section, we prove various block diagonal approximations of the matrix L. While the results and
computations might differ between the proofs of Propositions 3.15, 3.18 and 3.21, the pipeline is always the
same. First, we analyse the top eigenvalue and eigenvector (λ,w) of L restricted to the balls that surround
our extremal vertices (meaning high- or low-degree vertices). Second, we obtain good bound on the radial
decay of w. Finally, we always have to account for the trivial eigenvector of the macroscopic connected
component: indeed Proposition 3.25 does not give bounds on ∥A∥ but on ∥A− EA∥. All three elements are
then combined to prove the block diagonal approximations.

Block diagonal decomposition in dense regimes
When d ≪ N1/6 we can use the graph constructed in Proposition 5.16 which has stronger separation
properties (compare Proposition 5.16 (i) with Proposition 5.15 (i)). For τ ∈ (1 − 2ε, 1), let Gτ be the graph
constructed in Proposition 5.16. We define

Mτ ..= 1√
d

(
Dτ −Aτ − d

)
, (3.42)

where Dτ and Aτ are the degree matrix and the adjacency matrix of Gτ respectively. In the rest of this
section quantities related to Gτ are indicated using a superscript τ.

Proposition 3.26. Let d and τ̃ be as in Proposition 3.15, τ ∈ (τ̃ , 1) and M ..= M τ̃ as defined in (3.42).
There exists η > 0 such that the following holds with probability 1 −O

(
N−η). For each x ∈ U(τ) the matrix

M |Bτ̃
2 (x) has a unique eigenvalue µ satisfying |µ| ≥

√
(1 + τ̃) logN . The corresponding eigenvector is denoted

w and satisfies ∥∥∥(M |Bτ̃
2 (x) − (vτ̃x + ατ̃x

vτ̃x
))w

∥∥∥ = O
( 1

logN

)
(3.43)

and

∥(M − ⟨w ,M |Bτ̃
2 (x)w⟩)w∥ = O

( 1
logN

)
. (3.44)

Proof. Let us fix τ̃ > 0 and drop the superscript in this proof. We work on the event defined in Proposition
5.16 and Lemma 5.2 that hold with probability 1 −O

(
N−η) for η > 0 small enough.

By Proposition 5.16 (i), there exists c > 0 such that miny∈B2(x) |vx − vy| > c
√

logN . Since B2(x) is a tree,
by Lemma 5.10 and (5.2), we know that ∥A|B2(x)∥ ≤ 2 maxy∈B2(x)

√
Dy ≤ C

√
d for C ≥ 0 large enough. We

can therefore apply Proposition A.10 applied to the matrix H = 1√
d
Aτ |Bτ

2 (x) and V = 1√
d

(
Dτ |Bτ

2 (x) − d
)

to
conclude that M |B2(x) has a unique eigenvalue larger than

√
(1 + τ) logN +C. Moreover using (A.13) with

k = 2, we find

µ = vx + 1
d

∑
y∈S1(x)

1
vx − vy

+O

(
1

miny∈B2(x) |vx − vy|3

)
.

Proposition 5.16 (iii), we find

1
d

∑
y∈S1(x)

1
vx − vy

= αx
vx

+ C
αx(logN)1/4

v2
x

+ C

√
logN
dv2
x

= αx
vx

+O

(
1

(logN)3/2

)
.

Here, we introduced C ≥ 0 as the constant coming from the first order Taylor expansion of the function
f(t) = 1

vx−t . We deduce (3.43).
The second claim is proved analogously (3.53c), using a spectral gap argument. This concludes the

proof.
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We denote e ..= N−1/21[N ], Bτ ..=
⋃
x∈U(τ) B

τ
2 (x) and ∂Bτ ..=

⋃
x∈U(τ) S

τ
2 (x).

Proposition 3.27. Under the assumptions of Proposition 3.15, there exists a normalized eigenvector q
supported on the complement of Bτ such that

∥(Mτ +
√
d)q∥ = O(d−1/2), ∥q − e∥ = O(d−1).

Proof. By Lemma 5.2 and Lemma 5.7, we know that

P
[

max
x∈[N ]

Dx

d
∨ |B2(x)|

d2 ≥ C

]
= O

(
N−1

)
,

for C ≥ 0 chose large enough. We conclude that

|Bτ | ≤ CN1−τ/2d2 ≤ N1− 1
3 −ε− τ

2 = O
(
N−1/2

)
,

holds with probability 1 − O
(
N−η) for η > 0 small enough as soon as τ ≥ 1/3. Let H ..= Mτ |Bc

τ
. By

perturbation theory and Proposition 3.25, H has a unique eigenvalue outside of the interval [−
√
τ logN −

2,
√
τ logN + 2]. The vector q ..= |Bcτ |−1/21Bc

τ
satisfies ∥(H +

√
d)q∥2 = O

(
N−1/4), and so by Lemma A.6,

we find

∥e − q∥ = O
(1
d

)
.

This concludes the proof.

Proof of Proposition 3.15. Let τ < τ̃ < 1, M ..= M τ̃ as defined in (3.42) and U(τ) ..= U+(τ) ∪ U−(τ) Then
by (iii) of Proposition 5.16

∥L−M∥ ≤ 2√
d

max
x∈[N ]

∣∣Dx −Dτ
x

∣∣ = O(d−1/2).

Let

Π ..=
∑

x∈U(τ)

wxw∗
x + qq∗, Π = 1 − Π

where wx is the eigenvector of M |B2(x) described in Proposition 3.26 and q is the approximate eigen-
vector constructed in Proposition 3.27. Suppose u is an eigenvector of ΠMΠ. Then maxx∈U(τ)|u(x)| ≤
maxy/∈U(τ)|vy| 4

vx
since by orthonormality

|u(x)|2 ≤ 1 − |w(x)|2 ≤ 1 − |wx(x)|2 +O
( 1

logN

)
≤ 1 −

(
1 − 1

vx

)2
+O

( 1
logN

)
≤ 4
vx
.

Therefore, we find that with high probability

∥X∥ ≤ max
y/∈U(τ)

|vy|
2
vx

+
∥∥ΠM |Gτ \U(τ)Π

∥∥ ≤ max
y/∈U(τ)

|vy|
2
vx

+
√
τ logN + 10.

Here we used the fact that 1√
d
∥Aτ−EAτ∥ ≤ 3 by Proposition 3.25. By (3.43), we find that |εx| = O(1/ logN).

Finally if v =
∑
x∈U(τ) axwx we find, using (3.44) and the fact that the balls B3(x), x ∈ U(τ), are disjoint,

we get ∥∥EU(τ)v
∥∥2 =

∑
x∈U(τ)

a2
x∥(M − ⟨wx ,Mwx⟩)wx∥.

This concludes the proof.
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Block diagonal decomposition for top eigenvalues
In this subsection, we prove Proposition 3.18. Let us recall the definition of κ and ω(α), α > 0, from (3.15)
and (3.20) respectively.

Proposition 3.28 (Rigidity at U+). Let α ∈ (0, 1/12) and r ≥ 10. There exists K ..= K(α, r) ≥ 1 and
c∗

..= c∗(α, κ) > 0 such that if ε > 0 and

K ≤ d ≤ (logN)2,

then the following holds with probability 1 −O(e−c∗ω(α)).

(i) For each x ∈ W+(κ) the normalized eigenvector w of L|Br(x) corresponding to its largest eigenvalue
satisfies ∥∥(L− Λx)w

∥∥ = O

( √
u+√

dv(u+)2ω(α)2

)
, (3.45a)

where Λx is defined in (3.19).

(ii) For each x ∈ U+(ε) the normalized eigenvector w of L|Br(x) corresponding to its largest eigenvalue
satisfies ∥∥(L− (vx + αx

vx
))w

∥∥ = O
( log logN

logN

)
. (3.45b)

(iii) For each x ∈ U+(ε) \ W+(κ), if 1 ≤ i ≤ r

∥∥w|Si(x)
∥∥ = O

((
log logN

(logN ∨ d)

) i
2
)
,
∥∥(L− ⟨w , Lw⟩)w

∥∥ = O

((
log logN
(logN)

) r
2 −1)

. (3.45c)

Note that by Lemmas 5.2 and 5.18, maxx∈W+(κ)
∣∣Λx − vx − αx

vx

∣∣ = O
(
(logN)−1) on an event of good

probability. Therefore (3.45a) implies (3.45b) for x ∈ W+.

Remark 3.29 (Non-isoradial nature of w). The eigenvector w constructed in (i) is not isoradial in the sense
that exists c > 0 such that for each x ∈ W+(κ),

P
[
min
γ∈R

∥γs1 − w(x)|S1(x)∥ ≥ c
]

≥ c. (3.46)

The proof of Proposition 3.28 is deferred to the end of Section 3.5

Proposition 3.30 (Delocalisation estimate). Let 1 ≤ d ≤ logN , ε > 0 and 0 < η < ε/2. If u is a vector
orthogonal to span

{
w(x) : x ∈ U+(ε)

}
, where wx is the eigenvector constructed in Proposition 3.28, then

|u(x)|
∥u∥

= O
( ω√

logN

)
, x ∈ U+(ε), (3.47)

holds with probability 1 −O(N−η).

Proof. Let us fix ε > 0, x ∈ U+ and (µ,w) the eigenvalue-eigenvector pair of L|Br(x) constructed in Propo-
sition 3.28. Let u ∈ span{w(x) : x ∈ U+}⊥. Without loss of generality, we suppose that u is normalized.
For η > 0, we work on the event defined in Proposition 5.19.
Since Br+2(x) is a tree for every x ∈ U+, Lemma 5.10 gives us that

∥A|Br+1(x)∥ ≤ 2√
d

(
max

y∈Br(x)
Dy

)1/2
≤ 2
√
Dx/d = 2√

αx.
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The orthogonality relation between u and w becomes

0 =
∣∣⟨u ,w⟩

∣∣ =
∣∣∣〈u ,

L|Br(x)

µ
w
〉∣∣∣ ≥ 1

µ

[∣∣∣⟨u , Dw⟩
∣∣∣−
∣∣⟨u , Aw⟩

∣∣]
≥ 1
µ

[
|⟨u , Dw|B0(x)⟩| − ⟨u , Dw|Br(x)\{x}⟩| − ∥u∥∥A|Br+1(x)∥∥w∥

]
.

Using (3.45c) and the bound on ∥A|Br+1(x)∥, we find

0 ≥ 1
µ

[
|u(x)vx||w(x)| − ∥w|Br(x)\{x}∥∥D|Br(x)∥ − 2√

αx

]
≥ |u(x)vx|

µ

[
1 − C

( ω(α)
logN

)1/2]
− C

µ

(
ω(α)
logN

)1/2
max

y∈Br(x)\{x}
|vy| −

2√
αx
µ

.

with C chosen as in (3.45c).
Using the fact that µ ≥ vx ≥ ψ+ and maxy∈Br(x), y ̸=x|vy| ≤ ψ+, for ψ+ defined in (5.22), we find

1
2 |u(x)| ≤ 1

µ

[
ω(α)ψ+√

logN
+ 2√

αx

]
≤ 2 ω(α)√

logN
.

This concludes the proof.

Proof of Proposition 3.18. Let us fix ε, α > 0. We work on the event defined by Propositions 3.30, 5.19, for
r ≥ 10, and by Lemma 5.18.
Points (i) and (ii) follow from (i) and (ii) of Proposition 3.28 respectively. By (3.19), Lemma 5.18 and (i)
from Proposition 5.21,

sup
x∈W+(κ)

∣∣Λx − vx + αx
vx

∣∣ = O
( ω

logN

)
,

holds with probability 1 −O
(
e−cω(α)) for some constant c > 0 small enough.

Let (µx,wx), x ∈ U+(ε), be the eigenvector-eigenvalue pair constructed for L|Br(x) in Proposition 3.28. Let
v ..=

∑
x∈W+ cxwx, with

∑
x c

2
x = 1. Since the balls

(
Br+10(x) : x ∈ U+(ε)

)
are disjoint, we have

∥EWv∥2 ≤ 2
∑
x∈W+

|cx|2∥(L− ⟨wx , Lwx⟩)wx∥2 = O
(
(logN)−4),

where we used (3.45c) and r ≥ 10 in the last step. The bound over ∥EU ∥ is proved in the same way.
It now remains to show (3.23). Let us define the projections

Π ..=
∑

x∈U+(ε)

wxw∗
x, Π ..= 1 − Π. (3.48)

By Proposition 3.30 and Lemma 5.2, if v is a vector of norm 1, we have that〈
Πv , D|U+(ε)Πv

〉
≤ max
x∈[N ]

∣∣Πv(x)
∣∣∣∣ max
y∈U+

|vy| ≤ C
ω(α)2

√
d(u+ − 1)

logN ,

holds with high probability for some constant C ≥ 0 large enough. We find〈
Πv , LΠv

〉
≤
〈

Πv , D|U+(ε)Πv
〉

+
〈

Πv , D|(U+(ε))cΠv
〉

+ ∥A− EA∥ −
〈

Πv , EAΠv
〉
.

Using Proposition 3.25 and the fact that EA = dee∗ − d
N IdN , we find

〈
Πv , LΠv

〉
≤ max
y/∈U(ε)

|vy| + C
ω(α)2

√
d(u+ − 1)

logN + Cu+ − d
∑
x∈[N ]

∣∣Π(v)
∣∣2 + d

N

∥∥v
∥∥

≤ u+(ε) + C
(
ω(α)2 + 2u+

)
≤ u+(ε)(1 + ε),

holds with high probability. This proves (3.23) and concludes the proof.
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Block diagonal decomposition for bottom eigenvalues
Proposition 3.31 (Rigidity at U−). Let K > 0 and α, ε ∈ (0, 1/10) and κ and κ as in (3.29). If

1
2 logN + (logN)1/K ≤ d ≤ (logN)2, 0 < c∗ < 2α ∧ log d

K log logN ,

then the following holds for r ≥ max(10, 10/c∗), with probability 1 −O(e−dc∗ ).

(i) For each x ∈ U−(ε), the normalized eigenvector w(x) of L|Br(x) corresponding to its smallest eigenvalue
satisfies ∥∥∥(L−

(
vx + αx

vx

))
w(x)

∥∥∥ = O
( 1√

logN

)
. (3.49a)

(ii) For each x ∈ W−(κ), the normalized eigenvector w(x) of L|Br(x) corresponding to its smallest eigen-
value satisfies

∥(L− Λ)w(x)∥ = O
(
εx
)
. (3.49b)

where Λ ∈
{

Λx,ΛL
x , Λ̃L

x

}
according to the different cases listed Proposition 3.21 (i)-(iii) and εx defined

accordingly therein.

(iii) For d ≥ logN − (log logN)2 we have

max
x∈W−(κ)∩L

|Λx − ΛL
x | ∨ |Λx − Λ̃L

x | = O

(
ω(α)

(logN)2

)
. (3.49c)

(iv) For each x ∈ U−(ε),

∥∥w(x)|Si(x)
∥∥ = O

(
1

(logN)c∗

ωi

(logN) i−1
2

)
, 1 ≤ i ≤ r,

∥∥(L− ⟨w(x) , Lw(x)⟩)w(x)
∥∥ = O

(
ωr

(logN) r−2
2

)
.

(3.49d)

The proof of Proposition 3.31 is deferred to the end of Section 3.6. Let us define

B−
r (ε) ..=

⋃
x∈U−(ε)

Br(x), r ∈ N∗. (3.50)

Lemma 3.32 (Connected components and trivial eigenvector). Let K > 0, r ∈ N∗ and d be as in (3.28). If
r = O(1), there exists c∗ > 0 such that with probability at least 1 −O(e−dc∗ ), the following hold.

1. the graph G consists of one connected component with more than N/2 vertices, denoted Gcc and at
most O

(
e−dN

)
isolated vertices.

2. There exists a vector q supported on Gcc \ B−
r (ε) such that

∥(L+
√
d)q∥ = O

(
N− 1

4 +η
)
, η > 0.

Proof. The first point follows from Lemmas 5.5. Recalling (3.12), Lemma B.3, we use Chebyshev’s inequality
to prove that |U−(ε)| ≤ N

1
2 +η/2 with probability 1 − O

(
N−η), η > 0. In the rest of the proof, we work on

the intersection of the event {|U−(ε)| ≤ N
1
2 +η/2} and the one defined in Proposition 5.23, that we call Ξ. In

particular, we know that on Ξ,∣∣B−
r (ε)

∣∣ ≤ CN
1
2 +η/2dr+6 = O

(
N

1
2 +η), ∣∣Gcc \ B−

r (ε)
∣∣ ≥ N1−η.



3.4. PROOF OF BLOCK DIAGONAL DECOMPOSITIONS 87

The same estimates are true if we replace B−
r by B−

r+3. Let

q ..= |Bcr(ε)|−1/21Bc
r(ε).

We have (
L+

√
d
)

q = 1√
|Bcr+1|

∑
x∈Bc

r

(vx − ṽx)1x + 1√
|Bcr+1|

∑
x∈Bc

r∩Br+2

1x,

where ṽx ..= 1√
d

(∑
y(A|Bc

r
)xy − d

)
. Since on Ξ the balls

(
Br+3(x) : x ∈ U−(ε)

)
are disjoint trees, 0 ≤

vx − ṽx ≤ d−1/2 holds for x ∈ Bcr and vx − ṽx = 0 for [N ] \ Bcr+3. Therefore only vertices in Bcr+1 ∩ Br+2
contribute to the right-hand side of the above equation. Moreover, on Ξ,

|Bcr+1 ∩ Br+2|
|Bcr+2|

≤
|U−(ε)| maxx∈U−(ε)|Br(x)|

N1−η = N
1
2 +η

N1−η = O
(
N− 1

2 +2η
)
.

We concludes that ∥(L+
√
d)q∥2 = O

(
N− 1

2 −2η
)

and the claim follows.

Proposition 3.33 (Delocalisation estimate). Let ε > 0, K > 0,

1
2 logN + (logN)1/K ≤ d ≤ logN,

and w(x), x ∈ U+(ε), be the vector constructed in Proposition 3.28. There exists c∗ > 0 such that with
probability at least 1 − O(e−dc∗ ), there is C > 0 such if u is a normalized vector orthogonal to span

{
w(x) :

x ∈ U+(ε)
}

, then

|u(x)| = O
( ω

(logN)c∗/2

)
. (3.51)

Proof. The proof is the same as the one of Proposition 3.30 using (3.49d) instead of (3.45c).

Proof of Proposition 3.21. Almost all claims from (i)-(iv) and (vi) follow from Proposition 3.31 (i)-(iii). The
only claim that is not proved is the bound on (βzx − 1) in (3.31), which follows from Lemma 5.24. There
only remains to prove (v). We begin by restricting ourselves to Gcc using Lemma 3.32. This proves the
statement regarding SpecY . Let H ..= L|Gcc

. The statement about ν comes from Lemma 3.32. Estimates
on ∥E♯∥, ♯ ∈

{
ν,U ,W

}
are proved as in Proposition (iii) using (3.49d).

By Proposition 3.25, for d ≥ 1
2 logN , we have ∥A− EA∥ ≤ 3 with very high probability. Let us define

Π ..= qq∗ +
∑

x∈U−(ε)

w(x)w(x)∗, Π ..= 1 − Π,

where w(x) are the vector constructed in Proposition 3.31. Let u be a normalized vector supported on Gcc.
We find that〈

Πu , HΠu
〉

≥
∑

y/∈U−(ε)

∣∣Πu(y)
∣∣2vy +

∑
y∈U−(ε)

∣∣Πu(y)
∣∣2vy − ∥A− EA∥ −

〈
1 − q ,EA(1 − q)

〉
≥ −

√
d+ u−(ε)

[
1 − Cω

(logN)c∗

]
− 3 −

√
d

|Br|
N

,≥ −
√
d(u− − 1) + 1

2(u−(ε) −
√
du−),

where we used the fact that EA =
√
dee∗ and the bound on |Br| derived in the proof of Lemma 3.32. In the

regime where u−(ε) ≫ 1 we can immediately conclude (3.32). If u−(ε) = 1
ε we simply choose ε > 0 small

enough so that 1
ε − 4 ≥ 3κ

2 , for instance ε < 1/10. This concludes the proof.
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3.5 Spectrum around large vertices
In this section, we prove Proposition 3.28. As a general rule, the error bounds relating to W+(κ) are written
using u+-dependent parameters. This is done to obtain the degree of precision which we need in Section 3.7
to prove convergence to Poisson point processes. Bounds relating to U+(ε) are not stated with this level of
precision. Let us recall the definition of κ and ω(α), α > 0, from (3.15) and (3.20) respectively.

Let us introduce the spectral gap for this section

ψ+
..=
√

logN ∨ logN√
d log(logN/d)

. (3.52)

Observe that there exists C > 0 such that 1
C v(u+) ≤ ψ+ ≤ Cv(u+) by construction. However, these two

parameters have different meanings and so we keep them distinct.
Proposition 3.34 (Spectrum of L|Br(x), x ∈ U+). Let α, ε ∈ (0, 1/12) and r ≥ 10. There exists K ..=
K(α, r) ≥ 1 and c∗

..= c∗(α, κ) > 0 such that if

K ≤ d ≤ (logN)2,

then the following holds with probability 1 −O(e−c∗ω(α)).
1. For each x ∈ U+(ε), the largest eigenvalue of L|Br(x) written µ satisfy

µ = vx + αx
vx

+O

(
log logN

logN

)
. (3.53a)

2. For each x ∈ W+(κ) then

µ = Λx +O

( √
u+√

dv(u+)2ω(α)2

)
, (3.53b)

where Λx is defined in (3.19).
Moreover if w is the eigenvector corresponding to µ we have

∥w|Br(x)\Bi(x)∥ = O

((
log logN

logN

) i
2
)
, i ∈ [r]. (3.53c)

Proof. Let us fix r ≥ 10, ε > 0 and α ∈ (0, 1/12). We work on the event defined by Lemma 5.12 and
Propositions 5.19 and 5.21. Then there exists c∗ > 0, depending on κ and α and ε, such that the probability
of this event is 1 −O

(
ec∗ω(α)) and

max
y∈Br(x), y ̸=x

|vx − vy| ≥ c∗ψ+, x ∈ U+(ε), (3.54)

where ψ+ is defined in (3.52). Let us denote this event Ξ ..= Ξ(c∗, α).
We fix x ∈ U+(ε) and write V ..= D−d√

d
|Br(x) and abbreviate H ..= fA|Br(x) with f = d−1/2. By (3.54)

and Proposition 3.25, there exists c > 0 depending on c∗ such that the hypotheses of Proposition A.10 are
satisfied with ψ = c∗ψ+ and G = (Br(x), A|Br(x), x). Equation (A.13) with k = 3 becomes

µ = vx + E2(0) + E4(0) + E4(1) +O

(
∥H∥6(|vx| + ψ)

ψ6

)
, (3.55)

where El(e), l ≥ 1 and e ∈ [l − 1] is defined in (A.14).
Observe that, again by Lemma 5.10, since Br(x) is a tree ∥H∥8 ≤ 2α4

x ≤ 2u+. By (3.52) and the bound
vx ≤ Cψ+ for C ≥ 0 large enough, we see that

∥H∥6(|vx| + ψ+)
ψ6

+
≤
Cu3

+
ψ5

+
= O

( √
u+√

dv(u+)2ω(α)2

)
,
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E1(0)E2(0)

E2(1)

S3(x)

S2(x)

S1(x)

Figure 3.3: Illustration of the perturbation argument. The different terms that contribute to (3.55) appear
as cycles that start and end at the root vertex (black vertex in the middle). The illustration makes clear
what each index in El(e) means: the subscript l stands for half the length of the cycle (in a tree there are
no odd-length cycles) while de number e stands for the number of excess visits to the central vertex (i.e. the
number of total visits minus 2).

where we used α < 1
12 in the last step.

The leading contribution to the correction away from vx comes from the first term

E2(0) ..= 1
d

∑
y∈S1(x)

1
vx − vy

.

Using the second order approximation 1
vx−t = 1

vx
+ t

v2
x

+ t2

v3
x

+O
(
t3

v4
x

)
. We find

E2(0) = 1
d

∑
y∈S1(x)

[
1
vx

+ vy
v2
x

+
v2
y

v3
x

+O

(
v3
y

|vx − vy|4

)]

= αx
vx

+
√
dαx(βx − 1)

v2
x

+ αx

v2
x

√
d

+ 1
d

∑
y∈S1(x)

v2
y

v3
x

+O

(
v3
y

|vx − vy|4

)
.

(3.56)

Here the constant in the big-O is a universal one that depends only on the Taylor expansion of f.
We also used the identity (valid since Br(x) is a tree)

1
d

∑
y∈S1(x)

vy = |S2(x)| + |S1(x)| − d|S1(x)|
d3/2 =

√
dαx(βx − 1) + αx√

d
. (3.57)

Next we use the estimates (iv) of Proposition (iv), to see that on Ξ

|Si(x)|
di

= u+

(
1 +O

( logN
dDx

)1/2
)

= O
(
u+

(
1 ∨ log logN

d

))
, x ∈ U+(ε), 1 ≤ i ≤ r. (3.58)
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By Proposition 5.21 we also have, for each x ∈ W+(κ), on Ξ,

1
di

∑
y∈Si(x)

v2
y = αx

(
1 +O

(ω(α)2
√
Dx

))
+ (log logN)61d2α≤log logN ,

1
di

∑
y∈Si(x)

|vy|n = αxd
2α
(

1 +O
( logN
dDx

)1/2
)

+ Cκ
(ψ+)n/2 log logN

di+2α ,

(3.59)

for 1 ≤ i ≤ r, n ∈ N∗. By Proposition 5.19 we have, for each x ∈ U+(ε), on Ξ, the bounds in the
above equation become αx(log logN)2 and αx(logN)αn + (logN)1−2αd−i respectively. We thus find, us-
ing κ log logN ≤ d1+2α√

u+, (log logN)6 ≤
√
v(u+) and α < 1/2,

E2(0) = αx
vx

+ αx√
dv2
x

+
√
dαx
v2
x

(βx − 1) +
{
αx

v3
x

+ εx, with εx ≤ RHS of (3.53b), x ∈ W+(κ)
εx, with εx ≤ RHS of (3.53a) x ∈ U+(ε).

(3.60)

The terms E4(e), e = 0, 1, correspond to cycles of length 4. E4(0) are those cycles that visit x only twice
(at the beginning and the end), and thus they are in bijection with the points of S2(x). We have

E4(0) ..= 1
d2

∑
z∈S2(x)

1
(vx − v(z−))2(vx − vz)

,

where we introduced the notation (z−) ..= S1(x) ∩ S1(z), for z ∈ Br(x) \B1(x) (see Picture).
The cycles that contribute to E4(1) visits x three times and are thus in bijection with S1(x)×S1(x). Counting
the multiplicity 2 induced by reordering, we find

E4(1) ..= −1
2d2

∑
(y,z)∈S1(x)×S1(x)

1
(vx − vy)(vx − vz)

[
1

vx − vy
+ 1
vx − vz

]
= −1

d2

∑
y,z∈S1(x)

1
(vx − vy)2(vx − vz)

We can now conclude (3.53a) from (3.54) and (3.58), and the fact that for each x ∈ U+(ε),

E4(0) + E4(1) ≤ Cu+

v(u+)3

(
1 + log logN

d

)
+

u2
+

v(u+)3 = O

(
log logN

logN

)
.

In the rest of the argument, we consider only x ∈ W+(κ). Proceeding as for E2(0) and using (3.59), we find

E4(1) = − 1
d2

∑
y,z∈S1(x)

1
(vx − vy)2(vx − vz)

= − 1
d2

∑
y,z∈S1(x)

(
1
v2
x

+ 2vy
v3
x

+O

(
|vy|2

ψ4
+

))(
1
vx

+ vz
v2
x

+O

(
|vz|2

ψ3
+

))

= −α2
x

v3
x

− 3αx
v4
x

1
d

∑
y∈S1(x)

vy +O

(
u2

+d
4α

ψ5
+

)
= −α2

x

v3
x

+O

( √
u+√

dv(u+)2ω(α)2

)
,

(3.61)

where we used u2
+ω(α)2 ≤ v(u+)2 in the last step.

The last term to control si E4(0). Using the linearization 1
vx−vz

= 1
vx

+O
(

|vz|
ψ2

+

)
and miny∈S1(x)|vx−vy| ≥

c∗ψ+, we find

E4(0) = 1
d2

∑
z∈S2(x)

1
(vx − v(z−))2(vx − vz)

= 1
d2

∑
z∈S2(x)

1
vx(vx − v(z−))2 +O

(
|vz|
ψ4

+

)

= 1
d2vx

∑
y∈S1(x)

Ny
(vx − vy)2 +O

( √
u+√

dv(u+)2ω(α)2

)
,
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where we introduced Ny ..= |S1(y) ∩ S2(x)| = (
√
dvy + d − 1) and estimated the error term by considering

the cases d ≥ (logN)1/10 and d ≤ (logN)1/10 separately.
Let f(t) =

√
dt+d−1

(vx−t)2 , for t ∈ R. Then a Taylor development to the second order gives

f(t) = d− 1
v2
x

+ t
[√

d

v2
x

+ 2(d− 1)
v3
x

]
+O

( √
d

(vx − ζ)3 +
√
dζ + d

(vx − ζ)4

)
, 0 < ζ < t.

Using (3.57), v(u+)2 ≥ √
u+ω(α)2 and Lemma 5.24, we deduce

1
d2vx

∑
y∈S1(x)

Ny
(vx − vy)2 = αx

v3
x

− αx
dv3
x

+ 1√
dv3
x

1
d

∑
y∈S1(x)

vy +O

(
αx√
dvxψ3

+
+ αx
vxψ4

+

)

= αx
v3
x

+O

( √
u+√

dv(u+)2ω(α)2

)
.

We conclude that

µ = vx + αx
vx

[
1 + 1√

dvx
+ 2 − αx

v2
x

]
+

√
dαx
v2
x

(βx − 1) +O

( √
u+√

dv(u+)2ω(α)2

)
= vx + αx

vx

[
1 + 1

v2
x

]
+

√
dαx
v2
x

(βx − 1) +O

( √
u+√

dv(u+)2ω(α)2

)
which proves (3.53b). (We used the identity vx =

√
d(αx − 1) in the last step.)

We now turn to the proof of (3.53c). Let us write M ..= V −H and define Q(k) ..=
∑
y∈Br(x)\Bk(x) 1y1∗

y,
k ∈ [r], to be the projection onto the coordinates Br(x) \ Bk(x). Then on Ξ there exists c > 0 such that
µ− ∥Q(k)MQ(k)∥ ≥ cψ+, k ∈ [r]. The eigenvalue eigenvector equation Mw = µw becomes

(Q(k)MQ(k) − µ)Q(k)w = −Q(k)M(1 −Q(k))w = −Q(k)H(1 −Q(k))w|Sk−1(x), (3.62)

where in the last equality we used the fact that Br(x) is a tree and thus the only neighbors of Br(x) \Br(k)
within Bk(x) are precisely Sk(x).
In other words, we have the following induction

∥Q(k)w∥ ≤
∥w|Sk−1(x)∥∥Q(k)H(1 −Q(k))∥

cψ+
. (3.63)

Using Lemma 5.10, we can bound ∥Q(k)H(1 − Q(k))∥ ≤ 2√
αx. It follows that, there exists C ≥ 0 large

enough, such that

∥w|Br(x)\Bk(x)∥ ≤ C

√
αx∥w|Sk

∥
v(u+) = ∥w|Sk

∥O
(

log logN√
logN

)
, (3.64)

where we used
√
u+

v(u+) ≤ 1√
Dx

≤ (logN ∨ d). Since |w(x)| ≤ 1, we conclude (3.53c). This concludes the
proof.

Proof of Proposition 3.28. We work on the event defined by Proposition 3.34 and on which
(
Br+2(x) : x ∈

U+(ε)
)

are disjoint trees.
Let us fix x ∈ U+(ε). Br+2(x) \ Br(x) is a forest and maxy∈Sr(x)|vy| = O(

√
logN). The first assertion in

(3.45c) follows immediately from (3.53c), as for the second claim we have, using again Lemma 5.10 to control
the adjacency matrix,

∥(L− µ)w∥ =∥(L− L|Br(x))w∥ ≤ ∥A|Sr+1(x)∥∥w|Sr(x)∥

≤2
(

max
z∈Sr+1(x)

αz

)1/2
O
(( ω

logN

)r/2)
= O

(
ωr/2

(logN)r/2−1

)
.

(3.65)

The two other points follow directly from the two claims of (3.53).
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3.6 Spectrum around small vertices
In this section, we study the eigenvalues generated by small degree vertices. We split our rigidity results
into two different propositions. The first proposition includes regimes of d for which the number of leaves is
very large and has weaker error bounds. The second one considers regimes of d where the number of small
degree vertices remain small and has better error bounds.

Proposition 3.35 (Spectrum of L|Br(x), x ∈ U− and d subcritical). Let α, ε ∈ (0, 1/3), K > 0. There exist
c∗ > 0 depending on K and α such that for any constant r ≥ max(10, 10/c∗) and κ, κ as in (3.29), if

1
2 logN + (logN)1/K ≤ d ≤ logN − log logN,

then the following holds with probability 1 −O
(
e−dc∗ ).

(i) For each x ∈ U−(ε), the smallest eigenvalue of L|Br(x) written µ satisfy

µ = vx + αx
vx

+O

(
1√

d(logN)2c∗

)
. (3.66a)

(ii) If x ∈ L \ Wγ(κ) then

µ = Λ̃L
x +O

(
ω(2α)

(logN)2− 1
6 (v(1) − vγ)2

)
(3.66b)

with Λ̃L
x defined in (3.27).

(iii) If x ∈ Wγ(κ) then

µ = ΛL
x +O

(
(log logN)4

(logN)2(v(1) − vγ)3

)
(3.66c)

with Λx defined in (3.27).

Moreover if w is the eigenvector corresponding to µ we have

∥w|Br(x)\Bi(x)∥ = O

(
ω(α)√
ψ−

(
ω(α)√
logN

) i
2
)
, i ∈ [r] (3.67)

where ψ−
..= (d− 1

2 logN) ∧
√

logN

Remark 3.36. If we suppose (1
2 + ε

)
logN ≤ d ≤ (logN)2,

for some constant ε > 0, the proof becomes much shorted and the error bounds simpler. The underlying
mechanism is that as d gets closer to 1

2 logN , we cannot exclude the possibility that a ball Br(x) for some
x ∈ L contains a vertex z such that vz − v(1) ≪

√
logN. Therefore the perturbation analysis becomes more

complicated. However, we can insure that there will be at most one such vertex, which makes the analysis
feasible.

Proof. We work on the event defined in Propositions 5.23 and 5.26 and Lemmas 5.13, 5.22 and 5.24, which
we denote by Ξ. Then there exists c∗ > 0 such that P(Ξ) ≥ 1 − O(e−dc∗ ). Note in particular that on
Ξ the balls

(
Br(x) : x ∈ U−(ε)

)
are disjoint trees. Finally observe that for the values of d we consider,

x ∈ U−(ε) means that Dx ≤ ε−1 = O(1) (see (3.12)) and therefore on Ξ there exists C > 0 such that
maxi∈[r],x∈U−(ε)|Si(x)| ≤ Cdi−1.
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Let us fix x ∈ U−(ε) and write V ..= D−d√
d

|Br(x) and abbreviate H ..= fA|Br(x) with f = d−1/2. By Lemma
5.10 and the fact that on Ξ we have

min
y∈Br(x), y ̸=x

|vx − vy| ≥ c∗(logN)c∗ , max
y∈Br(x)

|vy| = O
(√

logN
)
,

we see that ∥H∥ ≤ C for some constant C ≥ 0 and that we are in the setup of Proposition A.10. Let
k ..= ⌈5/c∗⌉ and ψ = c∗(logN)c∗ , (A.13) becomes

µ = vx +
k∑
l=1

1
dl

l−1∑
e=0

E2l(e) +O

(
k

∥H∥2k
√
d

ψ2k

)
. (3.68)

where El(e) is defined in (A.14). Therefore we find that for our choice of k, the last term on the right-hand
side of (3.68) is bounded by O

(
(logN)−5).

We define

y∗
..= argmin

{
vy : y ∈ Br(x) y ̸= x

}
, r∗

..= dist(x, y∗).

By Proposition 5.23 (ii), we have

min
y∈Br(x)\{x,y∗}

|vx − vy| ≥ c∗
√

logN, |vx − vy∗ | ≥ c∗(logN)c∗ . (3.69)

To analyze (3.68), we will distinguish three cases.
The first case is when r∗ > 1 and Dx > 1. The term E2l(e) has an expression in terms of cycles starting

at x of length 2l (see (A.14)). As can be seen by a simple combinatorial argument, using the fact that on
Ξ there exists C > 0 such that |Si(x)|

|Si−1(x)| ≤ Cd, for i = 2, . . . , r, there are at most Dx(Cd)l−1 such cycles.
Moreover a cycle starting at x with length greater that 3 must visit at least twice S1(x), thus collecting at
least to factors 1

miny∈S1(x)|vx−vy| . But since r∗ > 1, such factors are of the order (logN)−c∗ . We conclude
that on Ξ,

|E2l(e)| ≤ Dx(Cd)l−1

dl(logN) = O
( 1
d(logN)2c∗

)
, l ≥ 2, e ≥ 0. (3.70)

If x ∈ U−(ε) we get

1
d

∑
y∈S1(x)

1
(vx − vy)

= αx
vx

+O
( Dx maxy∈S1(x)|vy|

miny∈S1(x)|vx − vy|2d

)
= αx
vx

+O
( 1√

d(logN)2c∗

)
, (3.71)

which proves (i).
Next we consider the case when Dx = 1 and x ∈ Wγ(κ). Recalling Definition 3.20, we denote zx the

unique neighbour of x and write vx = v(1). In particular maxy ̸=x,zx |vy| ≤ C(log logN)2 for some C ≥ 0.
If x ∈ Wγ(κ), this means that r∗ = 1 and vy∗ = vγ + O

(
κ√
d

)
. In this case, we consider the definition of

El(e) in (A.14) and see that at each step of the path either we are at zx, in which case we gain a factor
(logN)−c∗/2d−1/2, or we are not at zx, in which case we gain a factor (logN)−1/2 from (3.69). The last case
is when we are at x and not at the end of the path which will create a term (logN)−c∗/2d−1/2 ∧ (logN)−1/2

by differentiation (see proof of Proposition A.10). This shows that

max
l≥8,e

|El(e)| = O

(
1

(logN)3(v(1) − vγ)3

)
. (3.72)
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We compute explicitly

E6(1) = 1
d3(v(1) − vzx

)3

∑
y∈S2(x)

1
v(1) − vy

= αzx

d2(v(1) − vγ)3v(1)
+ 1
d2(v(1) − vγ)3v2

(1)

1
d

∑
y∈S2(x)

vy +O

(
1

d2(logN)3(v(1) − vγ)3

)
,

E6(2) = 1
d3(v(1) − vzx)3 = O

( (log logN)4

(logN)3(v(1) − vγ)3

)
,

(3.73)

and

E2(0) + E4(1) = 1
d(v(1) − vzx) + − 1

d2(v(1) − vzx)3

= 1
d(v(1) − vγ) + vγ − vzx

d(v(1) − vγ)2 +O

(
κ2

(logN)2(v(1) − vγ)3

)
.

(3.74)

The only term remaining is E4(0). Proceeding as we did in (3.57) and using (3.57), we find

E4(0) = 1
d2(v(1) − vzx)2

∑
y∈S2(x)

1
v(1) − vy

=
[

1
d(v(1) − vγ)2 +O

( κ

d3/2(v(1) − vγ)3

)][αzx

v(1)
+

√
dαzx

(βzx
− 1)

v2
(1)

− αzx

v2
(1)

√
d

+O

(
(log logN)4

(logN)3/2

)]

= αzx

d(v(1) − vγ)2v(1)
+

√
dαzx

(βzx
− 1)

d(v(1) − vγ)2v2
(1)

+O

(
(log logN)4

(logN)5/2(v(1) − vγ)2

)
.

Combining the above equation with (3.68), (3.72), (3.73) and (3.74), we conclude

µ = ΛL
x +O

(
(log logN)4

(logN)2(v(1) − vγ)3

)
.

where we used κ = O(log logN) and |v(1) − vγ | ≤
√

logN.
Finally we consider the case where Dx = 1 but x /∈ Wγ(κ). In this case we see that E6(1), E6(2), E4(1)

can be bounded by the right-hand side of (3.66b). Recalling (3.27) we see that (3.68) becomes

µ = Λ̃L
x + vz

dv2
(1)

+ E4(0) +O

(
(log logN)4

(logN)2(v(1) − vzx)2

)
.

Using Proposition 5.23 (iv) with α = 1/6, we have

1
d

∑
y∈S2(x)

1
v(1) − vy

= αzx

v(1)
+ d1/6

miny∈S2(x)|v(1) − vy|2
.

Either, zx = y∗ and vzx ≤ c∗
√
d and then we know, by Proposition 5.23 (iii) that miny∈S2(x)|v(1) − vy|2 ≥

c∗ logN and vzx
− v(1) ≥ c∗(logN)c∗ . Or vzx

≥ c∗
√
d in which case miny∈S2(x)|v(1) − vy|2 ≥ c2

∗(logN)2c∗ . In
either case, we find,

E4(0) = αzx

dv(1)(v(1) − vzx)2 +O

(
d1/6

d(v(1) − vzx)2 miny∈S2(x)|v(1) − vy|2

)
= αzx

dv(1)(v(1) − vzx
)2 +O

(
(log logN)4

(logN)2− 1
6 +2c∗

)
.
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This proves (3.66b).
There only remains to prove (3.67). The proof goes exactly as the one for (3.53c). We use the fact that for
all but at most one i ∈ [r] the relation (3.63) holds with ψ+ replaced by c

√
logN for c > 0 small enough. If

there is y ∈ Si(x) such that |vx−vy| ≤ c(logN)c for some c > 0, then we apply (3.63) with c(logN)c instead
of ψ+. Since by Proposition 5.23 (iii) this situation happens for at most one i ∈ [r] we conclude (3.49d).

Proposition 3.37 (Spectrum of L|Br(x), x ∈ U− and d critical). Let α, ε > 0 and r ≥ 10. There exist
c∗ > 0 depending on ε and r such that if

logN − (log logN)2 ≤ d ≤ (logN)2,

and κ, κ as in (3.29). Then the following holds with probability 1 −O
(
e−dc∗ ).

(i) For each x ∈ U−(ε), the largest eigenvalue of L|Br(x) written µ satisfy

µ = vx + αx
vx

+O

(
1

logN

)
. (3.75a)

(ii) If x ∈ W−(κ) then

µ = Λx +O

(
ω(α)

d(logN)2

)
(3.75b)

Moreover if w is the eigenvector corresponding to µ we have

∥w|Br(x)\Bi(x)∥ = O

((
1

logN

) i+1
2
)
, i ∈ [r]. (3.75c)

Proof. We work on the event defined by Propositions 5.23 and 5.25 and Lemma 5.24 that we denote Ξ. As
in the proof of Proposition 3.35, we see that we are in the setup of Proposition A.10 with ψ = c∗

√
logN , for

some c∗ > 0 small enough. For k = 3, (A.13) becomes

µ = vx + E2(0) + E4(1) + E4(0) +O

(
∥H∥6

ψ5
−

)
.

Since Br(x) is a tree, ∥H∥ ≤ 2 on Ξ.
We treat the three terms as we treated their analog in the proof of Proposition 3.34 (see (3.60) and (3.61)).
We use d ≥ 1

2 logN and Lemma 5.24 to remove the terms that are O
(

d2α

(logN)3

)
In particular using Proposition

5.25 (ii) we find that

1
dv3
x

1
d

∑
y

v2
y = αx

v3
x

[
1 +O

(
dα

(logN)3/2

)]
,

|S1(x)|d
d2vxψ3

−
= O

(
ω

(logN)3

)
.

We skip the details as they are very similar to the proof of Proposition 3.34.
The proof of (3.75c) is the same as (3.53c) in Proposition 3.35. We skip the details and conclude the proof.

Proof of Proposition 3.31. Exactly as the proof of Proposition 3.28, this time using a wider margin of safety.
Setting r = 10

c∗
we obtain exactly as in (3.65) that

∥(L− µ)w∥ =
∥∥(L− L|Br(x))w

∥∥ ≤
∥∥A|Sr+1(x)

∥∥∥∥w|Sr(x)
∥∥

≤2d−1/2
(

max
z∈Sr+1(x)

Dz

)1/2
O

(
ω√
ψ−

(
ω√

logN

)10/c∗−1
)

= O

(
1

(logN)10

)
.
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All of the equations (3.49) follow from their counterpart in Propositions 3.35 and 3.37.
In addition (3.49c) follows from the fact that for d ≥ logN − (log logN)2 we have v(1) − vγ ≥ c logN for
some small enough c > 0. We have

ΛL
x − Λ̃L

x = αzx√
dv(1)(v(1) − vzx)2

[
1√
d

+ (βzx
− 1)

]
= O

(
1

(logN)5/2

)
,

where we used Lemma 5.22 to bound (βzx − 1) = O((logN)−1/2).
We have, expanding the denominator v(1) − vzx ,

Λ̃L
x − Λx = α1

v(1)
+ α1

v3
(1)

+ α1

v2
(1)

√
d

(
|S2(x)|
d

− 1
)

− 1
d(v(1) − vzx

) − vzx

dv2
(1)

≤ 1
dv3

(1)
− 1
d3/2v2

(1)
− vzx

dv3
(1)

+O

(
|vzx |3

d(v(1) − vzx
)4

)
= O

(
1

(logN)5/2

)
.

This concludes the proof.

3.7 Eigenvalue processes
In this section, we will prove that the point processes described in Corollaries 3.17, 3.19 and 3.22 are Poisson
Point Processes.

Let us recall that we consider processes with K = log logN points (see (3.7)).
Let us introduce the quantity

Q(a, b) ..= P(Pda − da ≥ b
√
da). (3.76)

Lemma 3.38 (Linearization of the approximate eigenvalues). Let K, ε > 0 be constants and κ > 0 that may
depend on N . Then

(i) For (logN)1+ε ≤ d and x ∈ W+(κ), we have

vx + αx
vx

= vx + 1
σ

+ 1√
d

+O
( κ

logN

)
(3.77)

(ii) For 1 ≤ d ≤ (logN)2 and x ∈ W+(κ), we have

Λx = σ +
√
dθ(vx − v(u+)) + 1

τ

√
αxd(βx − 1) +O

(
κ2

√
dv(u+)3

)
(3.78)

(iii) For 1
2 logN ≤ d ≤ (logN)2 and x ∈ W−(κ), we have

Λ = σ(u−) + θ−(
√
d(vx − v(u−))) + 1

τcrit,−

√
αxd(βx − 1) +O

(
κ2

√
dv(u+)3

)
. (3.79)

for Λ ∈
{

Λx,ΛL
x , Λ̃L

x

}
.

(iv) For 1
2 logN ≤ d ≤ logN

log logN and x ∈ Wγ(κ), we have

ΛL
x = σγ + θγ(vzx

− vγ) + 1
τγ

(βzx − 1) +O

(
κ2 log(d)

d9/4(v(1) − vγ)3 + κ2

d5/2

)
(3.80)

The proof of Lemma 3.38 relies on a Taylor expansion in ∆t ≍ O(κ/
√
d). Note that if t = vx then

t√
d

+ 1 = αx and
√
d(vx − v(u−)) = Dx − du+. It is deferred to Section 3.9.
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Asymptotic behavior of Φ+ in critical and subcritical regime
In this section we prove Theorem 3.8 in the regime K ≤ d ≤ (logN)2. The starting point is Corollary 3.19
which tells us that to understand the eigenvalue point process in the window χ+ (c.f. (3.24)) it suffices to
look at the quantities Λx, x ∈ W(κ). The first step in the proof is to check that the window χ+ (which
morally lives on the space of degrees) is larger than the window defined by κ+ (which lives on the space of
point processes and depends on K and ρ). Indeed we have

v(u+) − κ

2
√
d

≤ σ − κ

2
√
d

≪ σ − κ+

τ
, (3.81)

since τ ≫
√
d and κ+ ≪ κ by definition.

Let us define the reference process

Σ ..=
∑
x∈[N ]

δZx
, Zx ..=

{
τθ(Dx − du+) + d

√
αx(βx − 1) if Dx − du+ ≥ −

√
dκ

−∞ otherwise.
(3.82)

We define the error parameter

η ..= 1
(log logN)2 , (3.83)

chosen in order to have τεx ≪ η ≪ maxs≥κ
1

d
dsρ(Es) for εx defined in (3.22) and ρ defined below.

Lemma 3.39. Under the assumptions of Corollary 3.19, we have for every s ≥ −κ+

Σ
(
Es+η

)
≤ Φ+(Es) ≤ Σ

(
Es−η

)
.

Proof. Let us introduce the intermediate process

Σ̃ ..=
∑
x∈[N ]

δZ̃x
, Zx ..=

{
τ(Λx − σ(u+)) if vx − v(u+) ≥ −

√
dκ

−∞ otherwise.

By (3.81), only vertices belonging to W+(κ) contribute to [−κ+,∞). Moreover by Corollary 3.19 since
η ≪ τεx, for εx as defined therein, we have

Σ̃(Es+η/2) ≤ Φ+(Es) ≤ Σ̃(Es−η/2).

Recalling Lemma 3.38 and in particular the error term on the right-hand side of (3.78), we see that

τ
κ2

√
dv(u+)3

≪ η.

We conclude that Σ(Es+η/2) ≤ Σ̃(Es) ≤ Σ(Es−η/2).

We define the intensity measure

ρ̃(Es) ..=
∑
v∈N

NP(Pd = v)Q(v, s− τθ(v − du+))1v≥5∨ log log N
log(u+)

(3.84)

The next lemma states that ρ̃ is a good approximation of ρ.

Lemma 3.40. For κ+ as defined in (3.8) and for every s ≥ κ+

ρ̃(Es) = ρ(Es)
(

1 +O

(
1

(du+)1/5

))
+O

(
e−(logN)1/5)

.

Moreover

sup
u≥s

∣∣∣ d
ds ρ̃(Es−η)

∣∣∣ ≤ 3K, ρ̃(Es+−η) ≤ 3K. (3.85)
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Proof. Let K = (log logN)2 ∨ log logN
log(u+) . By a Taylor expansion, we see that for k ≥ −K,

NP[Pd = k + du+]1k≥ã = uk+
(
1 +O

(
eK/du+

))(
1 +O

( 1
du+

))
= uk+

(
1 +O

( 1
du+

))
.

Moreover, applying Lemma B.4 with µ = d2u+ and xi = 1
10 we find

Q(v, s− τθ(v − du+)) =
{
G(s)(1 + (du+)− 1

5 ), if |s− τθ(v − du+)| ≤ µξ

O
(
e−(s2∧µ)) else.

We bound the contribution of the lower term by O
(
e−(logN)1/5).

(3.85) is immediate from the definition of κ in (3.8) and the fact that

sup
s≥κ−η

ρ(Es) − ρ̃(Es) ≤ ρ(Eκ−η) CK
(du+)c∗

≤ 3K.

This concludes the proof.

The next step is to prove that the k-point correlation functions of the process Σ factorize asymptotically.
Let us recall the definition of the l−point correlation measure qΣ of a point process Σ, given in (3.91).

Lemma 3.41 (Inclusion exclusion for Σ). Let ℓ ≤ c logN
log u+

for some small enough c > 0. For all i ∈ [ℓ], let
Ii = [ai, bi) with −κ− η ≤ ai < bi. Then

qΣ(I1 × · · · × Iℓ) =
[
1 −O

(
l2

N

)] ∏
i∈[ℓ]

ρ̃(Ii) +O(N−1/5).

Proof. Let ℓ ∈ N and a1, . . . , al ∈ R. A straightforward adaptation of Proposition 5.27 gives us

N ℓP

(⋂
i∈[ℓ]

{
Zi ≥ ai

})
= N ℓ

∑
v1,...,vn∈N

(∏
i∈[ℓ]

1(vi−du+)τθ≥κ

)
P

(⋂
i∈[ℓ]

{
Zi ≥ ai

})

=
(∏
i∈[ℓ]

ρ(Ei)
)

+N ℓO
(
N−1/3P(Pd ≥ du+ −K)ℓ + KℓN−ℓ−1

)

=
(∏
i∈[ℓ]

ρ(Ei)
)

+O(N−1/4),

where we used (5.3) to estimate (
NP(Pd ≥ du+ −K)

)
≤ uℓK+ ≤ N1/5

and the assumption on l for c small enough.
We have by Lemma 3.51,

N ℓP(Z1 ∈ I1, . . . , Zℓ ∈ Iℓ) =
∑
U⊂[ℓ]

(−1)|U |N ℓP
(⋂
i∈U

{
Zi ≥ bi

}
∩

⋂
i∈[ℓ]\U

{
Zi ≥ ai

})
=
∑
U⊂[ℓ]

(−1)|U |N ℓ
∏
P

(∏
i∈U

ρ(bi)
∏

i∈[ℓ]\U

ρ(bi)
)

+O
(
2lN−1/4)

=
∑
U⊂[ℓ]

(−1)|U |N ℓ
∏
P

(∏
i∈U

ρ(bi)
∏

i∈[ℓ]\U

ρ(bi)
)

+O
(
N−1/5),

for ℓ ≤ 1
20 log(2) logN. We conclude by combining the two equations.
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Next we show that Σ behaves asymptotically as a PPP with density ρ̃.

Lemma 3.42 (Asymptotic Poisson Behavior of Σ). Suppose n ∈ N∗ and s ∈ R satisfy

n, ρ̃(Es) ≪ logN
log u+

.

Let I1, . . . , In ⊆ Es be disjoint intervals of the form Ii = [ai, bi) with −κ − η ≤ ai ≤ bi. Then for all
k1, . . . , kn ∈ N we have

P
( ⋂
i∈[n]

{
Σ(Ii) = ki

})
=
∏
i

ρ̃(Ii)e−ρ̃(Ii)

ki!
+ E(k1, . . . , kn)

where the error term satisfies, for some small enough c > 0,

|E(k1, . . . , kn)| ≤ e−cm∗ + e−K

Proof. Choose m ..= c logN
log u+

for some constant c > 0 which will be chosen small enough in the following. We
write ρ = ρ̃ in the rest of the proof. By Lemma 3.51, we find

P

 ⋂
i∈[n]

{Σ(Ii) = ki}

 = 1
k1! · · · kn!

∑
l1,...,ln∈N

(−1)
∑

i
li

l1! · · · ln! qΣ(Ik1+l1
1 × · · · × Ikn+ln

n )

= 1
k1! · · · kn!

∑
l1,...,ln∈N

1∑
i
li≤m

(−1)
∑

i
li

l1! · · · ln! qΣ(Ik1+l1
1 × · · · × Ikn+ln

n ) + E0

= 1
k1! · · · kn!

∑
l1,...,ln∈N

1∑
i
li≤m

∏
i∈[n]

(−1)liρ(Ii)ki+li

li!
+ E0 + E1

=
∏
i∈[n]

ρ(Ii)ki

ki!
e−ρ(Ii) + E0 + E1 + E2.

The first two equalities follow from Lemma 3.51 with ℓ =
∑
i li + ki ≤ m (after choosing c small enough in

the definition of m) and the error term is defined as

E0
..= 1

k1! · · · kn!
∑

l1,...,ln∈N
1∑

i
li=m+1

(−1)
∑

i
li

l1! · · · ln! qΣ(Ik1+l1
1 × · · · × Ikn+ln

n ).

The third equality follows after introducing

E1
..= 1

k1! · · · kn!
∑

l1,...,ln∈N

1∑
i
li≤m

1
l1! · · · ln!E1(l1, . . . , ln),

E1(l1, . . . , ln) ..= qΣ(Ik1+l1
1 × · · · × Ikn+ln

n ) −
∏
i

ρ(Ii)ki+li .

The fourth equality is just the formula e−x −
∑
k≤m

xk

k! ≤ 1
(k+1)! , x > 0, and

E2
..=
∏ ρ(Ii)ki

ki!
∑

l1,...,ln∈N

1∑
i
li≤m+1

∏
i

(−ρ(Ii))li
li!

.
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To control E1, we observe that
∑
i ki + li ≤ 2m and so by Lemma 3.41

∑
l1,...,ln

1∑
i
li=l|E1(l1, . . . , ln)|1∑

i
li≤m ≤ (logN)2

N

(∏
i

ρ(Ii)ki

ki!

) ∑
l1,...,ln

1∑
i
li≥m+1

∏
i

(−ρ(Ii))li
li!

≤ (logN)2

N

(∏
i

ρ(Ii)ki

ki!

) ∑
l≥m+1

(3
∑
i ρ(Ii))l

l!

= (logN)2

N

(∏
i

ρ(Ii)ki

ki!

) ∑
l≥m+1

(3ρ(
⋃
i Ii))

l

l! .

Similarly, we have

|E0| + |E2| = O

(∏
i

ρ(Ii)ki

ki!

) ∑
l≥m+1

(3ρ(
⋃
i Ii))
l! .

Using (3.85), it suffices to have m ≥ 3e2nK which is insured by the definition of m and the fact that
log logN ≪ logN

log u+
. Using the fact that the Ii are disjoint we see that 3e2ρ(

⋃
i Ii) ≤ m and so

|E0| + |E1| + |E2| ≤ C(1 + (logN)2

N
)
(∏

i

ρ(Ii)ki

ki!

)
e−2m ≤ e−m

Therefore ∑
k1,...,kn

1∑
i
ki≤me−m ≤ mne−m ≤ e−m/2

for n ≤ m/ logm. This concludes the proof for
∑
i ki ≤ m.

The case
∑
i ki ≥ m, we observe that

∑
k1,...,kn

1∑
i
ki>m

∏
i

ρ(Ii)kie−ρ(I+i)

ki!
=
∑
l>m

(
∑
i ρ(Ii))le−

∑
i
ρ(Ii)

l!

≤ C exp
(

− m

ρ(
⋃
i Ii)

(
1 + ρ

(⋃
i

Ii

))
log
(

m

ρ(
⋃
i Ii)

))
≤ Ce−K

by (B.4).

We are now ready to show the asymptotic closeness of Ψ+ and Φ+. Let Ψ̃ be the Poisson process with
intensity measure ρ̃.

Lemma 3.43. Fix n ∈ N∗ and κ as in (3.8). Then

P
( ⋂
i∈[n]

{
Ψ̃(Eti) ≤ ki

})
= P

( ⋂
i∈[n]

{
Ψ(Esi) ≤ ki

})
+ o(1)

uniformly for k1, . . . , kn ∈ N, s1, . . . sn ≥ −κ and t1, . . . , tn satisfying |ti − si| ≤ η.

Proof. A simple exercise on Poisson processes shows that it suffices to establish ρ̃(Eti) = ρ(Esi
) + o(1). By

(3.85) and Lemma 3.40, we have ρ̃(Eti) = ρ(Eti). Moreover an easy computation shows that d
dtρ(Et) =

O(ρ(Et)) and since η = 1
(log logN)2 = o

( 1
K
)

and ρ(Et) = O(K), we conclude that ρ(Eti) = ρ(Esi
) + o(1).
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Proof of Theorem 3.8 for d ≤ (logN)2. By definition of κ+ and κ in (3.24) and (3.15) respectively we see
that

κ+ ≤ 2 log(K)
log(u+) ≪ κ,

since log K ≪ log logN. By Lemmas 3.42 and 3.43 we can write for t1 ≥ t2 ≥ · · · ≥ tn ≥ −κ − η and
r1 ≤ · · · ≤ rn in N∗,

P
( ⋂
i∈[n]

(Φ(Eti) = ri)
)

= P
( ⋂
i∈[n]

(Σ(Eti+η) = ri)
)

= P
( ⋂
i∈[n]

(Σ([ti + η, ti−1 + η)) = ri − ri−1)
)

= P
( ⋂
i∈[n]

(Ψ̃([ti + η, ti−1 + η)) = ri − ri−1)
)

+ E(r1, . . . , rn)

= P
( ⋂
i∈[n]

(Ψ̃(Eti+η) = ri)
)

+ o(1) = P
( ⋂
i∈[n]

(Ψ(Eti) = ri)
)

+ o(1).

This concludes the proof.

Asymptotic behavior of Φ+ in supercritical regime
In this section we show that the eigenvalue process converges to Φ+ in the supercritical regime d ≤ (logN)1+ε,
ε > 0.

Definition 3.44. Let Φ be a random point process on R. We can represent Φ =
∑
x∈X δZx , where X is an

index set and (Zx)x∈X is an exchangeable family of random variables. For a, b ∈ R, b ̸= 0, we denote by

Φ(a,b) ..=
∑
x∈X

δb(Zx−a),

The reference window is different, we introduce

κsup = (log logN)2 ∨ log logN
log u+

and the rescaling parameters

α ..= 1
2 log d

2 logN , β = 1√
dv(u+)

.

In order to do that we introduce an intermediate point process Σgumb, which is the analog of (3.82),

Σgumb
..=

∑
x∈[N ]

δZx , Zx ..=
{√

2 logN(vx − v(u+) − α) if vx − v(u+) ≥ κsup,

−∞ else.
(3.86)

We will first show that Σgumb is asymptotically close to both Φ+ and to Ψsup, a PPP with density ρsup
..=

e−sds. Then we will show that Ψsup is asymptotically close to a rescaled version (zoomed-out version is more
accurate) of ψ+. This is illustrated by the chain of comparisons

(
Φ+)(α,β) (1)∼ Σgumb

(2)∼ Ψsup
(3)∼
(
Ψ+)(α,β)

, (3.87)

where ∼ denotes asymptotic closeness of point processes (with respect to the topology induced by the metric
Dκ), Ψ(b,a) denotes the process Ψ rescaled by b ∈ R+ and shifted by a ∈ R (see Lemma 3.39 below). We will
then be able to conclude that Φ+ ∼ Ψ+ by Lemma 3.46.
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The step (1) in (3.87) is proved by adapting Lemma 3.39, using Corollary 3.17 instead of 3.19, the
linearization (3.77) instead of (3.78) (in particular 1

σ − 1
v(u+) = O

((
logN

)−1)). This allows us to use Lemma
3.39 with the obvious modifications.

Step (2) of (3.87) is obtained by first proving asymptotic decoupling of the variables Zx. This is an
adaptation of Lemma 3.41 using Proposition 5.28 instead of 5.27 and the bound ρsup(κ) ≤ K.

Step (3) will follow from the next result.

Lemma 3.45. The processes Ψsup and Ψ(α,β) are asymptotically close in the sense that

Dκsup(Ψsup,Ψ(α,β)) → 0.

Proof. Let T ∈ [κsup,+∞). Let us write ω ..=
√

2 logN
d so that u+ = 1 +ω. Using θτ√

d
= 2 logN(1 + o(1)), we

find

E
[
Ψ
(
[T,+∞)

)]
=
∫ ∞

T

∑
k∈Z

uk+g(s+ k2 logN)ds =
∑
k∈Z

uk+

∫ ∞

T

g(s+ k2 logN)ds

=
∑
k∈Z

uk+

∫
T+k2 logN

g(s)ds =
∫
R

ds
∑
k∈Z

uk+g(s)1s≥T+k2 logN

=
∫
R
g(s)

∑
k≤ s−T

2 log N

uk+ds =
∑
k≥0

u−k
+

∫
R
g(s)

(
1 + ω

) s−T
2 log N ds

Using a Taylor expansion of the function ln(1 + x) to the first order we see that

(1 + ω)
s−T

2 log N = exp
(

sω

2 logN − ωT

2 logN +O

(
(s− T )ω2

2 logN

))
By the monotone convergence theorem (or by computing the Gaussian integral directly), we find

E [Ψ ([T,+∞))] = e−ωT/2 logN u+

u+ − 1

∫
R
g(s) exp

(
sω

2 logN +O

(
(s− T )ω2

2 logN

))
ds

= exp
(

− ωT

2 logN + 1
2 log d

2 logN

)(
1 + 1

(d logN)1/4 + e−(d logN)1/2
)
,

where in the last step we split the integral between |s| ≥ (d logN)1/4 and |s| ≤ (d logN)1/4.
Setting T = β(t− α) we see that

E [Ψ ([T,+∞))] = e−t(1 + o(1)).

This shows the claim.

The next result is evident from Definition 3.7.

Lemma 3.46. Let Φ1 and Φ2 be two point processes on R and a, b ∈ R. Then for any κ ∈ R,

Dκ(Φ1,Φ2) = Db(κ−a)(Φ(b,a)
1 ,Φ(b,a)

2 ),

Combining (3.87) with 1
β (κsup + α) ≤ − log logN

2β ≪ κ, for κ defined in (3.8), we conclude that

Dκ

(
Φ+,Ψ+

)
≤ Dβ−1(κsup+α)

(
Φ+,Ψ+

)
= Dκsup

((
Φ+)(α,β)

,
(
Ψ+)(α,β)

)
→ 0.

This proves Theorem 3.8 in the supercritical regime.
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Asymptotic behavior of Φ− for d ≳ log N

In this section, we prove (i) of Theorem 3.12. The analysis of Φ− in the regime (logN)2 ≤ d ≤ N1/3−ε

is completely identical to the analysis of Φ+ in the same regime. We therefore only focus on the regime
logN − (log logN)2 ≤ d ≤ (logN)2.

The analysis of Φ− starts by combining (i) of Corollary 3.22, (iii) of Lemma 3.38 and the fact that

κ− ≪ κ

for κ− defined below (3.11) as κ defined in (3.15). The proof then unfolds as in the case Φ+, we skip the
details.

Asymptotic behavior of Φγ for 1
2 log N ≪ d ≲ log N

In this section, we prove (ii) of Theorem 3.12. We begin by recalling (i) of Corollary 3.22, (iii) of Lemma
3.38. Observe that

κ− ≪ κ

We define the generic error parameter

η = κ2 log d
d1/4(v(1) − vγ)1+ 1

2

Now we have τγ(εx∨∆x) ≤ d−1/4η, where εx is defined in (ii) of Corollary 3.22 and ∆x is the error in (3.80).
Similarly to (3.82), we define the process Σ ..=

∑
x∈[N ] δZx where

Zx ..=
{
τγθγ(vzx

− vγ) + d
√
αzx

(βzx
− 1) if Dzx

− duγ ≤
√
dκ

−∞ otherwise.

Note that we consider σγ − λ, so that the smallest eigenvalues of SpecL correspond to the largest values of
the point process Φγ . It thus makes sense to send larger eigenvalues to −∞ and not +∞.

We obtain a result similar to Lemma 3.39 and show that

Σ(Es+η) ≤ Φγ(Es) ≤ Σ(Es−η).

We can then use Proposition 5.29 to obtain a result similar to Lemma 3.41. For ℓ ≤ N1/3 and a1, . . . , aℓ ∈ R
we have

N ℓP
(∏
i∈[l]

Zi ≥ ai

)
=
(∏
i∈[l]

ρ̃γ(Ei)
)

+N ℓO

(
d3l2

N
(e−dd)ℓP

(
Pd ≤ duγ +

√
dκ
)ℓ)

,

where ρ̃γ is defined as ρ̃ in (3.84) but replacing u+ by uγ . We can then conclude that the error term is small,
by using the fact that

d3ℓ2
(
Ne−ddP(Pd ≤ duγ +

√
dκ)
)ℓ

≤ uℓκγ d
3ℓ2 ≤ N1/5,

as long as ℓ ≤ c logN
log uγ

for c > 0 small enough.
The rest of the proof is similar, as soon as we observe that ρ̃γ(Es+η) = O

(
K
)
, a bound equivalent to

(3.85). This concludes the proof for that last case.
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3.8 Eigenvector localization
In this section, we prove Theorems 3.10 and 3.13. We will proceed as in Section 3.7 and detail the steps for
Theorem 3.10 and d ≤ (logN)2. We will then explain briefly the adaptations required for d ≥ (logN)2 and
Theorem 3.13.

First, we observe that the hypotheses on d are stronger in Theorem 3.10 than they are in Theorem 3.8.
In particular, we suppose that

(log logN)1/4 ≤ d ≤ (logN)2 (3.88)

Lemma 3.47 (Level spacing for Σ). Let d be as in Theorem 3.8, κ as in (3.8) and η and Zx as defined in
(3.83) and (3.82). Under the assumptions of Corollary 3.19, for any a ∈ R we have

P
(
∃x ̸= y : Zx, Zy ≥ −κ, |Zx − Zy| ≤ η

)
≤ K2

Proof. Let us recall that for 1 ≤ d ≤ (logN)2, we have with high probability maxx∈[N ] Deg(x) ≤ du+ +
C
(

1 +
√

d
logN

)
, for C ≥ 1 large enough. This follows for instance from Bennett’s inequality. We deduce

that maxx Zx ≤ C v(u+)2
√
u+

≤ (logN)2 for N large enough.
Thus

P
(
∃x ̸= y : Zx, Zy ≥ −κ, |Zx − Zy| ≤ η

)
≤ qΣ,2

({
(s, t) : s, t ∈

[
−κ, (logN)2], |s− t| ≤ η

})
+ o(1),

where we used the two-point correlation measure qΣ,2 defined in (3.91) below. By covering the set in the
argument of qΣ,2 by square of the form [u− η, u+ η]2, we find, using Lemmas 3.41 and 3.40

P
(
∃x ̸= y : Zx, Zy ≥ −κ, |Zx − Zy| ≤ η

)
≤ 2

∑
u∈ηZ

1u∈[−κ,(logN)2]

(
ρ([u− η, u+ η]2) +O

(
e−(logN)1/5

+N−1/5
))

+ o(1)

≤ Kη
∑
u∈ηZ

1u∈[−κ,(logN)2]ρ([u− η, u+ η]) + κ+ (logN)2

η
O
(

e−(logN)1/5
+N−1/5

)
+ o(1)

≤ K2η + o(1).

In the last step, we used (3.88).

From now on we assume that instead of (3.7), K satisfies

K ≤ (log logN)1/2, (3.89)

such that K2η = o(1).
We conclude that under conditions (3.88) and (3.89), with high probability, all points of the process Σ

are separated by at least η. Let us recall the definition of Σ̃ from the proof of Lemma 3.39. Invoking this
result with smaller ε > 0, we conclude the following result.

Lemma 3.48. With high probability, each interval of the form[
Zx − η/4, Zx + η/4

]
, Zx ≥ −κ, (3.90)

contains exactly one point of Σ̃ and one point of Φ. Moreover the complement of the intervals in (3.90) in
the region [−κ,∞) contains no point of Σ̃ and no point of Φ.

Proof of Theorem 3.10 for d ≤ (logN)2. We work on the intersection of the high-probability events defined
in Proposition 3.18, Lemmas 3.47 and 3.48. Let λ be an eigenvalue of L satisfying λ̃ ..= θτ(λ−σ) ≥ −κ. Let
x be the unique vertex such that λ̃ ∈ [Zx − η/4, Zx + η/4] and v ..= w(x) defined in Proposition 3.28 and
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λ′ ..= Λx (recall the definition of Λx from (3.19) and (3.45a)).
Recalling the construction of the orthogonal matrix U in (3.21), we find ∥(L−λ′)v∥ ≤ ∥EW∥ = O

(
ω(logN)−4).

By Lemma 3.48, λ is the only eigenvalue of L in the interval [λ′ − ∆, λ′ + ∆] with ∆ ..= τθη/4. Now since
τθη = O

(
(logN)2(log logN)−2) we conclude by Lemma A.6

∥w − v∥ = O
((

logN
)−3/2

)
.

This concludes the proof.

In order to prove Theorem 3.10 we use (3.87) to show the analog of Lemma 3.48 for d ≥ (logN)2.

Lemma 3.49. Let Zx be the variables defined in (3.86). each interval of the form[
Zx − η/4, Zx + η/4

]
, Zx ≥ −κ,

contains exactly one point of Σgumb and one point of Φ.

Proof of Theorem 3.10 for d ≥ (logN)2. The proof is similar to the regime d ≤ (logN)2 but we do not use
the block diagonal approximation of L. to obtain approximate eigenvectors. Instead, we use the eigenvectors
wx(i) defined in (3.37).
Let λ be an eigenvalue of L satisfying λ̃ ..=

√
2 logN(vx −

√
2 logN − α) ≥ −κsup.. By Lemma 3.49, the

only eigenvalues of L in the interval [λ′ − ∆, λ′ + ∆] with ∆ = 1√
2 logN

By Lemma A.6, applied for the true

eigenvalue λ, the approximate eigenvalue
√

2 logN+α+λ̃, the approximate eigenvector wx and ∆ = 1√
2 logN

,

we find that if wλ is the true eigenvector corresponding to λ,

∥wx − wλ| = O
(√

2 logN
logN

)
= o(1).

In particular since wx|x = 1−o(1), we conclude that wλ is localized around x. This concludes the proof.

The proof of Theorem 3.13 is an adaption of the above argument. We do not do it in detail.

3.9 Auxiliary computations
Lemma 3.50. There exists δ > 0 such that if 1 ≤ d ≤ N and K ≤ Nδ then W± ⊆ U±.

Proof of Lemma 3.50. For x ∈ W− we have vx ≤
√
d(uγ−1)+δ logN√

d log d+10. If d ≥ 3
2 logN then

√
d(uγ−1) ≤

−
√

3
2 logN and so vx ≤

√
( 3

2 − δ) logN which is much smaller than
√

(1 + ε) logN if δ is small enough.
On the other hand if d ≤ 3

2 logN , then

vx ≤
√
d(uγ − 1) + δ

logN√
d log d

+ 10 ≤ −
√
d+ logN√

d
(1 + o(1)) + log K

log d
√
d

+ 10

≤ −
√
d+ 1 + δ

log d
logN√

d
+ 10 ≪ −

√
d+ (1 + ε) logN

log d
√
d

,

as soon as δ > 0 is small enough.
For x ∈ W+, similar.

Proof of Lemma 3.38. The various statements rely on a Taylor expansion in ∆t ≍ O(κ/
√
d). Note that if

t = vx then t√
d

+ 1 = αx.
The first point is proved by a first order, approximation of the function

f(t) = t+ 1
t

+ 1√
d
.
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around t∗ = σsup. (Note that f(vx) = vx + αx

vx
.) We compute easily f ′(t) = 1 − 1

t2 and f ′′(t) = − 2
t3 . Since

vx − t∗ = O
(
κ√
d

)
and t∗ − κ ≥ t∗/2 ≥

√
logN/2 we conclude that

vx + αx
vx

= f(σsup) +
(

1 −O
( 1

logN
))

(vx − σsup) +O
( κ2

d(logN)3/2

)
= vx + 1

σsup
+ 1√

d
+O

( κ

logN

)
.

The proof of (3.78) is similar. Starting from the definition of Λx in (3.19) we observe that

Λx = f(vx) + g(vx)d√
αx(βx − 1)

where

f(t) = t+
[1
t

+ 1√
d

][
1 + 1

t2

]
, g(t) =

√
td−1/2 + 1√

dt2
.

Around t∗ = v(u+) we expand f to the second order and g to the first order (i.e.ȧ constant). We find
f ′(t∗) = 1 − 1

t2∗
+O( 1

t3∗
), f ′′(t) = O( 1

t3∗
) and

g′(t) = O
( 1
dv(u+)2√

u+
+

√
u+

v(u+)3
√
d

)
= O

( 1√
du+v(u+)2

)
, |t− v(u+)| = O

(
κd−1/2).

We conclude that

Λx = f(v(u+)) +
(

1 − 1
v(u+)2

)(
vx − v(u+)

)
+ g(v(u+))d√

αx(βx − 1) +O
(κ2

d
∥f ′′∥ + κ√

d
∥g′∥

)
= σcrit,+ + θcrit,+(vx − v(u+)) + 1

τcrit,+
d
√
αx(βx − 1) +O

( κ√
dv(u+)3

)
.

For the last estimate we used the assertion from Proposition 3.18 ((iii)) we can bound (βx−1) = O(κ log logN
d3/2 ).

(3.79) is proved in the same way.
For (3.80), we introduce

f(t) = 1
d(v(1) − t)

[
1 +

t√
d

+ 1
v(1)(v(1) − t)

]
, g(t) =

t√
d

+ 1
√
dv(1)(v(1) − t)2

,

f ′(t) = 1
d(v(1) − t)2

[
1 +

t√
d

+ 1
v(1)(v(1) − t)

]
+ 1
d(v(1) − t)

v(1) + 1
d3/2v(1)(v(1) − t)3 ,

f ′′(t) = 2
d(v(1) − t)3

[
1 +

t√
d

+ 1
v(1)(v(1) − t)

]
+

v(1) + 1
d3/2v(1)(v(1) − t)3 +

3(v(1) + 1)
d3/2v(1)(v(1) − t) ,

g′(t) =
t+v(1)√

d
+ 1

√
dv(1)(v(1) − t)3

, g′′(t) =
2v(1)√
d

+ 6
√
dv(1)(v(1) − t)4

.

For t = vγ +O(κ/
√
d) we get, using |v(1)| ≥ 1

4
√
d, and using (βzx

− 1) = O
(
κ log logN√

logN

)
we get

f(t) =f(vγ) + t− vγ
d(v(1) − vγ)

[
1 + uγ

v(1)(v(1) − vγ) + 1√
d(v(1) − vγ)3

+ 1√
d(v(1) − vγ)4

]
+ (t− vγ)2

d2(v(1) − vγ)3 +O
( κ2

d5/2

)
,

g(t)(βzx
− 1) =g(vγ)(βzx

− 1) +O
( κ2 log(d)
d9/4(v(1) − vγ)3 + κ2

d5/2

)
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We conclude by observing that

g(vγ) + τγ = O(1
d
τγ)

by replacing 1
v(1)

by − 1
d .

The rest of this section is a remainder of [7, Appendix B]. For k ∈ N and Φ ..=
∑
x∈[N ] δZx

a point
process on R and

qΦ,k(F ) ..=
∑

x1,...,xk∈[N ]

P((Zx1 , . . . , Zxn
) ∈ F ) = N(N − 1) · · · (N − k + 1)P((Z1, . . . , Zk) ∈ F ). (3.91)

We have the following inclusion-exclusion principle.

Lemma 3.51. For any n,m ∈ N∗, k1, . . . , kn ∈ N, and disjoint measurable I1, . . . , In ⊆ R, we have

P(Φ(I1) = k1, . . .Φ(In) = kn) = 1
k1! · · · kn!

∑
l1,...,ln∈N

1∑
i
li≤m

(−1)
∑

i
li

l1! · · · ln! qΦ(Ik1×l1
1 × · · · × Ikn×lm

n )

+O
( 1
k1! · · · kn!

∑
l1,...ln∈N

1∑
i
li=m+1

1
l1! · · · ln!qΦ(Ik1×l1

1 × · · · × Ikn×lm
n )

)
Lemma 3.52 (Closeness between Poisson processes). Let Ψ, Ψ̃ be two Poisson processes with intensity ρ
and ρ̃ respectively. Then if ρ̃(Et) = ρ(Es)(1 + o(1)) uniformly in t ≥ −κ we have, for any fix n ∈ N∗,

P
( ⋂
i∈[n]

{
Ψ̃(Eti) ≤ ki

})
= P

( ⋂
i∈[n]

{
Ψ(Esi

) ≤ ki
})

+ o(1)

uniformly for k1, . . . , kn ∈ N∗ and s1, t1, . . . , sn, tn ≥ −κ satisfying |ti − si| ≤ |s− t|

Proof. It suffices to prove

P
( ⋂
i∈[n]

{
Ψ̃(Ii) = ki

})
= P

( ⋂
i∈[n]

{
Ψ(Ii) = ki

})
+ o(1)

for Ii disjoint intervals. Now because xk

k! ≤ ex for x ≥ 0, we can do a first order approximation

eρ̃(Et) ρ̃(Et)k
k! = eρ(Es) ρ(Es)k

k! + o(ρ(Es))

and this gives

P
( ⋂
i∈[n]

{
Ψ̃(Ii) = ki

})
− P

( ⋂
i∈[n]

{
Ψ(Ii) = ki

})
= 2no(1)

(∏
i∈[n]

eρ(Esi
) ρ(Esi)ki

ki!

)
= o(1).
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Chapter 4

Attached trees and spectral gap

For d ≥ logN , the idea of mapping the smallest degree vertices with the smallest eigenvalues works. However,
as d ≤ logN this is no longer the case as new minimal shapes appear. Smallest eigenvalues are no longer
in bijection with smallest degrees (which at this point is 1 in Gcc) but rather with maximal trees that are
connected to Gcc by exactly one edge.

4.1 Main results
Let Tt, t ∈ N∗, be the set of all trees on t vertices. By convention, we label the vertices of any tree in T ∈ Tt
by V (T ) = {1, . . . , t}. The set Tt is thus a finite set of cardinality tt−2 by Cayley’s theorem. For instance,
the set T1 consists of the trivial tree on one vertex. Let T =

⋃
s≥0 Ts and T≤t

..=
⋃

1≤s≤t Ts.
We define the line of length t ∈ N∗ as the graph Lt = ([t], E) with E = {(i, i + 1) : i ∈ [t − 1]}.The line is
a tree of size t and its Laplacian matrix is denoted by L(Lt). The spectrum of L(Lt) is real and lies in the
interval [0,∞) with exactly one zero eigenvalue. We define the deterministic quantity

λ∗(t) ..= inf
{
z ∈ R : 1 =

( 1
z − L(Lt)

)
11

}
, t ≥ 1, (4.1)

as the smallest eigenvalue of the matrix L(Lt)+111∗
1 (see Section 4.4). Note that, by a symmetry argument,

we could add 1t1∗
t .

A well-known fact about the Erdős-Rényi graph is that isolated vertices appear when the density d
becomes smaller than logN. A natural question is to ask for what regimes connected components and trees
of size t ∈ N∗ appear. This question leads to the following definition

d∗(t) ..= sup
{
d ≥ 0: 1

t

(
logN + (t+ 1) log t

)
≥ d− log d

}
, t ∈ N∗. (4.2)

The next theorem says that the spectral gap of the Laplacian is given by the spectral gap of lines. As
the regime d decreases, larger trees appear G and the spectral gap closes. The different regimes covered by
Theorem 4.1 are illustrated in Figure 4.1.

Theorem 4.1. Let ε > 0 and t ∈ N∗ and λ∗ as defined in (4.1). If t ≥ 2 and

(1 + ε)d∗(t+ 1) ≤ d ≤ (1 − ε)d∗(t), (4.3)

and λ2 denotes the smallest eigenvalue of L different from −
√
d, then

λ2 = −
√
d+ λ∗(t)√

d
+ o(d−1), (4.4)

holds with high probability.
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Remark 4.2 (Conventions I). We call a constant universal if it depends only on T. Likewise we call a
function or a matrix universal if it depends only T. For instance γ∗(t) is a universal constant as it can be
computed from the information contained in

⋃
1≤s≤t Ts × [s].

For instance, for a fixed tree of finite size T ∈ T and for x ∈ V (T ), the spectral gap of T is defined as the
second smallest eigenvalue of L(T ), λ2(T ). This is a universal constant. The function

((
L(T ) − z

)−1)
zz

is
a universal function. On the other hand L(T ) is not universal, since it depends on d which depends on N.

logNd∗(2)d∗(3)d∗(4)

. . . . . .

d∗(t)

ε

Leaves and small degree vertices.

G

T3 T2

G

Tt

G G

Figure 4.1: Illustration of the different regimes covered by Theorem 4.1.

Remark 4.3 (Localization of the eigenvectors). In the proof of Theorem 4.1, we identify the regions of
the graphs that generate the smallest eigenvalue and the proof shares a lot of points with the those of
Theorems 3.8 and 3.12 in Chapter 3. We believe the result could be extended into a localization result of
the eigenvectors corresponding to the smallest eigenvalues of L, in an analog to Theorems 3.10 and 3.13. We
do not pursue this here.

Remark 4.4 (Conventions II). Throughout this chapter the following conventions hold.

1. Any quantity depends implicitly on N unless mentioned otherwise.

2. For a square matrix M we write |M | the dimension of M and we denote by λi(M), i = 1, . . . , |M |, the
eigenvalues of M ordered increasingly

3. For a graph G, we define its Laplacian matrix and its rescaled Laplacian matrix as

L(G) ..= D(G) −A(G), L(G) ..= L(G) − d√
d

. (4.5)

4. For n ∈ N∗ with n ≤ N , any n-by-n matrix can be seen as an N -by-N matrix by embedding.

4.2 Another perspective on leaves
Consider the expression for an approximate eigenvalue generated by a leaf ((3.27) in Definition 3.20) and
the way this formula is derived in Proposition 3.35 and Lemma 3.38.

Let us consider the problem of finding the smallest eigenvalue for L|Br(x), where L is the Laplacian matrix
of an Erdős-Rényi graph with parameter d ≥ ( 1

2 + ε) logN , for some ε > 0 and x ∈ [N ] has degree one and
a fairly regular neighborhood Br(x), in the sense of Proposition 5.19. Consider the trivial graph T given by
the V (T ) = {x} and E(T ) = ∅ and the vertex set B ..= Br(x) \ {x} Now consider the normalized Laplacian
matrix of T , LT and the matrix LB ..= L|Br(x)\{x}.
By simple perturbation analysis, assuming ∥A∥ ≤ 3 as in Proposition 3.25 and assuming

max
y∈Br(x), y ̸=x

|vy| = O(dα)
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for some α > 0, we get ∥LB∥ = O(dα).
Consider the vector u ..= (1x − 1zx). Then L|Br(x) is a rank one perturbation of LB + LT since

L|Br(x) = LB + LT + 1√
d

uu∗.

Moreover, by interlacing of eigenvalues and basic perturbation theory, we know that, since SpecLT = {−
√
d}

and SpecLB ⊆ [−O(dα) +O(dα)], the matrix L|Br(x) has precisely one eigenvalue in [−
√
d,−O(dα)] which

is satisfies −
√
d ≤ λ ≤ −

√
d+ 2d−1/2. Moreover by Lemma A.8, we have the following equality

√
d = GLT

(λ)xx +GLB
(λ)zxzx

where GH(z) ..= (z−H)−1. We can use the resolvent formula from Lemma A.7 and the fact that miny ̸=x |λ−
vy| ≥ cd−1/2 for some c > 0 small enough to rewrite the above expression as

√
d = 1

λ+
√
d

+ 1
λ− vzx

+ 1
d(λ− vzx)2

∑
y∈S1(z), y ̸=x

1
λ− vy

+O
( 1
d5/2

)
,

for some λ ∈ [−
√
d,−

√
d+ 2√

d
]. In particular, bounding the last three terms by O(d−1/2) and inverting the

equation we see that

λ = −
√
d+ 1√

d
+O(d−3/2).

Let us set Λzx
(λ) ..= 1

λ−vzx
+ 1

d(λ−vzx )2

∑
y∈S1(z), y ̸=x

1
λ−vy

and t ..= d3/2(−
√
d+ 1√

d
− λ), we find

Λzx
(λ) = Λzx

(
−

√
d+ d−1/2 + td−3/2)

= 1
v1 − vzx

+ 1
d(v1 − vzx

)2

∑
y

1
v1 − vy

+O
( t

d5/2

)
.

We conclude that

λ = −
√
d+ 1√

d
+ 1
d

Λzx(0) +O
( t2

d7/2

)
Since t = O(1), we can now proceed as in the proof of Proposition 3.35 to transform the above expression
ΛL
x defined in (3.27).

In this chapter, we will show how this argument can be applied to cases where T is a tree of any finite
size. We do not prove convergence of the eigenvalue process towards a Poisson Point Process, but the proof
could be extended with additional work. This chapter should be thought of as a proof of concept.

4.3 Burned graph
In this section, we study how trees in Gcc (the macroscopic connected component of G) contribute to the
spectrum of L in the interval

[
−

√
d,−

√
d+d−1/2]. We first give a more precise meaning to what we consider

to be a tree in G. Indeed any pair x, y ∈ [N ] of neighbors is technically a tree of size two if we restrict
the graph G to the two vertices {x, y}. However we are interested by configurations that look like trees even
when embedded in G.

Definition 4.5 (Embedded trees of Gcc). Let us fix ζ ∈ N and consider the graph G restricted to the
vertices of degree smaller than ζ,

Gζ ..=
(

U(ζ),
{

(x, y) ∈ E : x, y ∈ U(ζ)
})
, U(ζ) ..= {x ∈ [N ] : Dx ≤ ζ}.
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We define L ..= L(G, ζ) to be the connected components of size 1. For t ∈ N∗, t > 1, we define Tt ..= Tt(G, ζ)
to be the connected components of Gζ of size t.
We define T≤t

..=
⋃

1<s≤t Ts. For U ∈ T, we define

T (U)(G, ζ) ..= {T ∈ T (ζ) : G|T = U}. (4.6)

We call the parameter ζ > 0 the cut. It is usually fixed for the whole graph given some density d. Of
course we usually set the cut to be larger than the size of the trees we are studying. We exclude the trees on
one vertex on purpose since those are studied separately as small degree vertices. Note that a consequence
of Definition 4.5 is that there is no inclusion between trees: if Y, Y ′ ∈ T≤t(ζ) and Y ̸= Y ′, then Y ∩ Y ′ = ∅.
An illustration of Definition 4.5 is shown in Figure 4.2.

Definition 4.6 (Tree configurations). For ℓ ∈ N and ζ, t ∈ N∗, we define Tt(ζ, ℓ) to be the subset of Tt(ζ)
consisting of all trees Y ∈ Tt(ζ) with precisely ℓ edges connecting Y to G \ Y,

|E(G \ Y, Y )| =
∑
x∈Y

∑
y∈[N ]\Y

Axy = ℓ.

We call the elements of the set S1(Y ) the anchors of Y and the edges E(Y, S1(Y )) the links.
The configuration of the tree Y ∈ T is the tuple configG(Y ) ..= (T,A) where T ∈ T, A ⊆ [|T |], and A is the
image of the anchors of Y under the isomorphism T ∼ Y. In particular A = ∅ if Y has no anchors.
We define T≤t(ℓ), Tℓ(≤ ℓ) and T≤t(≤ ℓ) similarly, by the obvious adaptations.

Note that for ζ ≥ t− 1, Tt(ζ, 0) is the set of all isolated connected components of size t with no cycles.

a) b) c) d)

Figure 4.2: Illustration of Definition 4.5 with ζ = 2. Only the configuration that are circled belong to U(ζ).
The red configurations (a and d) are trees and belong to T≤4(ζ) while the green configuration (b) is a leaf
(or a small degree vertex) and belongs to T1(ζ). Although the restriction of G to the two vertices in c would
be a tree of size two, this does not belong to U(ζ).

For ζ > 0, we define the collection of subsets

U(ζ) ..= T (ζ) ∪ L(ζ), T (ζ) ..=
⋃
t≥2

⋃
Y ∈Tt(ζ)

Y, L(ζ) ..=
⋃

Y ∈T1(ζ)

Y. (4.7)

By the way, recalling Definition 4.5, we see that L(ζ) consists of vertices of small degree, which have no
small degree neighbors. We define the subset of all vertices belonging to some element of U(ζ) as

U(ζ) ..=
⋃

Y ∈U(ζ)

⋃
x∈Y

{
x
}
.

The set T (ζ) is the set of all trees and the set L(ζ) is the set of vertices of small degree that are not trees
(i.e. vertices of degree at least 2).



4.3. BURNED GRAPH 113

For τ ≥ 0, we introduce

Vτ (ζ) ..=
{
x ∈ [N ] : vx ≤ (τ − 1)

√
d, x /∈ U(ζ)

}
. (4.8)

Burne The set Vτ consist of vertices with small degrees, that is x ∈ [N ] that satisfy Dx ≤ τ
√
d. We remove

vertices that belong to some element of U(ζ). We usually drop the ζ and simply write Vζ .
For e = (x, y) ∈ E(G) we define the rank-one matrix

B(e) ..= 1√
d

(1x − 1y)(1x − 1y)∗.

We call the subtraction of B(e) from L(G) the burning-off of edge (xy).

Lemma 4.7 (No cycles around U(ζ)). Let t∗ ∈ N∗, d as in (4.2),

10 + t ≤ r ≤ log logN, max(t, 10) ≤ ζ ≤ 2t. (4.9)

There exists η > 0 such that with probability 1 −O
(
N−η), the balls

(
Br(U) : U ∈ U(ζ)

)
are trees.

Proof. By Lemma 5.6, we find that

P
[
∃U ∈ U(ζ), Br(U) contains a cycle

]
≤

∑
Y⊆[N ], |Y |=|U |

P
[
Br(U)contains a cycle|S1(Y )

]
P[G|Y = U ]

≤ 1
N

(
C(d+ |U |ζ)

)2r+1(2r)2
( d
N

)|U |(
Ne−ddζ

)|U |−1

≤ (4Crd)2r+1e−d|U |dζ+|U | ≤ (4Crd)2r+ζ+|U |+1e−d = O
(
N−η)

where, using d ≥ 1+ε
t∗+1 logN and r, ζ, |U | = O(1) , we chose η ≤ 1

t∗+1 in the last equality.

We need the following observation which ensures that no vertex has too many neighbors in Vτ .

Lemma 4.8. Let t ∈ N∗, ε > 0 and d ≥ (1 + ε)d(t). Then for k > t, there exists η > 0 such that

P
[

inf
x∈[N ],Dx≥k

∣∣S1(x) \ Vτ
∣∣ ≤ 1

]
= O

(
N−η).

Proof. By Lemma B.5 P[x ∈ Vτ ] ≤ 2 exp
(
−d(1 + τ log τ)

)
we see that for k ≥ 0

P
[
∃x ∈ [N ]

∣∣S1(x) ∩ Vτ
∣∣ ≥ k

]
≤ 2Ndke−kd(1+τ log τ)Ndke−(1+ε)(1+τ log τ) = O

(
N−η),

where we chose k > t and τ, η > 0 small enough.

Let us recall that for every t∗ ∈ N∗, if d satisfies (4.3), then

P
[
max
x∈[N ]

Dx ≥ C
√
d
]

≤ N−2, (4.10)

for some constant C = C(t∗) > 0.

Proposition 4.9 (Burned graph). Let t∗ ∈ N∗, d as in (4.2),

10 + t ≤ r ≤ log logN, max(t, 10) ≤ ζ ≤ 2 max(t, 10). (4.11)

Then there exists τ, η > 0 such that with probability 1 − O
(
N−η), there exists a graph Gτ,ζ , V ⊂ [N ] and

E ⊂ E(G), such that satisfies the following properties

(i) The graphs G and Gτ,ζ have the same number of connected components and differ only by E meaning
that

L(G) = L(Gτ,ζ) +
∑
e∈E

B(e).
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(ii) For every Y, U ∈ U(ζ), Y ̸= U , either dτ,ζ(U, Y ) = 2 or dτ,ζ(U.Y ) ≥ r.

(iii) The set V characterises the overlap of Bτ,ζr/2(T ) with U(ζ) ∪ Vτ , in the sense that V ⊆
⋃
x∈U(ζ) S

τ,ζ
1 (x)

and

Bτ,ζr (T ) ∩ Vτ ̸= ∅ ⇔ ∃x ∈ V ∩ Vτ , such that S1(T ) = {x}, T ∈ T (ζ),
Bτ,ζr/2(T ) ∩Bτ,ζr/2(T ′) ̸= ∅ ⇔ ∃x ∈ V such that S1(T ) = S1(T ′) = {x}, T, T ′ ∈ T (ζ,G).

(iv) If a subset of vertices Y ⊂ [N ] becomes a tree (in the sense of Definition 4.5) in Gτ,ζ , either Y is a
vertex of degree 1 or there exists U ∈ T (ζ), |U | < t − 2 such that Y is obtained from extending U by
y ∈ S1(U).

(v) The set V cannot intersect too many large trees, meaning that

sup
v∈V

∣∣U(ζ) ∩Bτ,ζr (v)
∣∣ ≤ t∗, sup

T∈Tu

∣∣Br(T ) ∩ E
∣∣ ≤ t∗ − u sup

T∈Tu

∣∣V ∩Br(T )
∣∣ ≤ t∗ − u, 1 ≤ u ≤ t∗.

(vi) In particular, for every T ∈ Tt∗ , Br(T ) ∩ E = Br(T ) ∩ V = ∅.

Proof. We work on the event defined by Lemma 4.7 with r as r + 2t∗.
We first remove those edges that connect elements of U(ζ) to Vτ . Let Y ∈ U(ζ). For every x ∈ Vτ ∩ Br(Y )
we consider the unique path of length at most r such that

P ..=
{

(xi, xi+1) : i ∈ [k], x0 = x, xk ∈ T, (xi, xi+1) ∈ E(G)
}
.

If |P | = 1, and removing the edge (x0, x1) creates a new connected component, we add x to V . Otherwise
we add the edge (x0, x1) to E.
We now make the elements of U(ζ) distant whenever possible. For every Y, U ∈ U(ζ), U ̸= Y , such that
U ∩Br(Y ) ̸= ∅, we consider the unique path of length smaller than r that links the two subsets,

P ..=
{

(xi, xi+1) : i ∈ [k], x0 ∈ U, xk ∈ T, (xi, xi+1) ∈ E(G)
}
.

By Definition 4.5, |P | ≥ 2, since otherwise U and Y would be equal. There are three cases. First if |P | > 2,
we can add the edge (x1, x2) to E. Second if |P | = 2 and removing either (x0, x1) or (x1, x2) creates a
new connected component, we add x1 to V . Third if |P | = 2 and it is possible to remove either (x0, x1) or
(x1, x2) without creating a new connected component, we add that edge to E. Now (i) - (iv) follows from
the construction of V and E once (v) and (vi) are established.

Up to now the construction is purely deterministic and does not involve probabilistic estimates. The
following formula allows us to measure how likely it is to see high concentrations of elements of U(ζ) in a
small neighborhood in G. Let T ∈ Tt, t ∈ N∗, l, k ∈ N, t1, . . . , tl ∈ N∗. Let us define the event

Ω ..=
{

∃T, Tj ∈ U(ζ), |Tj | = tj d(T, Tj) ≤ r, ∀j ∈ [l] and xi ∈ Vτ (ζ), d(T, xi),≤ r, ∀i ∈ [k]
}
.

For Y ⊂ [N ] and T ∈ T, we define the event

Ω(Y, T ) ..=
{
G|Y = T, max

y∈Y
Dy ≤ ζ

}
.

Then we can see that

Ω =
⋃

Y,Y,T,x,z

{
Ω(Yj , Tj), Ω(Y, T ), Xi ∈ Vτ (ζ), Yj ∈ Y, Tj ∈ T, xi ∈ x, P ∈ E(G),∀P ∈ z

}
,

where the union is taken over all collections of disjoint subsets {Y (i)
1 , . . . , Y

(i)
ti }, i = 0, 1 . . . , l (with t0 = t

by convention), collection of trees T = (T0, . . . , Tl) with Tj ∈ Tj , vertices xi ∈ [N ], i = 1, . . . , k and paths
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P ∈ z that link Y to Yi and xj , i ∈ [l], j ∈ [k] respectively.
Then, again using the fact that d(Y, U) ≥ 2 for any distinct pair of trees Y, U ∈ U(ζ), it is easy to see that

P(Ω) ≤ Nd(k+l)(r+1)
k∏
j=1

P
(
Dxj

≤ τd
) ∑
T∈T

l∏
i=0

P (Ω(Yi, Ti))

≤ Nd(k+l)(r+1)e−kd+kdτ log τ
(

e−d ζ

d

)w l∏
i=0

tti−2
i

≤ Ne−(w+k)d+kdτ log τζwtw∗ τ
k(logN)2r(k+l)

(
1 +O

(
(logN)2

N

))w+k

,

(4.12)

where we wrote w ..= t+
∑l
i=1 ti and used Lemma B.5 in the last step. Using the fact that d ≤ 1− ε

2
t∗

we find
that, for any r = O(1),

P(Ω) ≤ CN1− (w+k)(1−ε/2)
t∗ +kdτ log τ (logN)3r(k+l),

for some constant C > 0. From this estimate and the fact that limτ→0 τ log τ = 0, we deduce that (v) and
(vi) hold for τ and η small enough.

T1

T2,1

T2,2

T3,1

T3,3

Macroscopic component
Gcc e1v1

v2

T3,2

r

e2

Figure 4.3: Illustration of Proposition 4.9 for d∗(6) ≪ d ≤ d∗(5). T1 is a maximal tree of size 5 and belongs
to A. The groups T2,· and T3,· constitute bouquets of total size 5 and for 4. The group T3,· can be split into
T3,1 and T3,2, T3,3 by cutting either e1 or e2. Without loss of generality we cut e1 and store it in E. In the
burned graph Gτ,ζ , T3,1 has a regular neighborhood and thus T3,1 ∈ C. On the other hand, we cannot slit
the groups T2,· and T3,2 and T3,3 because doing so would require to disconnect the graph G (or rather create
a new connected component). Those four trees belong to B. The vertex v2 represents a vertex with a small
degree (Dx ≤ ζ) but which is not per se a tree. v2 ∈ L(ζ).

We partition T τ,ζ(ζ) in the three classes

A ..= {U ∈ T (ζ) : Br(U) = Bτ,ζr (U), S1(U) ∩ V = ∅},
B ..= {U ∈ T (ζ) : Br(U) = Bτ,ζr (U), ∃v ∈ V, S1(U) = {v}},
C ..= T (ζ) \

(
A ∪ B

)
,

D ..= T τ,ζ(ζ) \ T (ζ).

(4.13)
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In words, the set A consists of all trees whose neighborhood is the same in G and in Gτ,ζ . Those trees have
no problems in their vicinity, i.e. Br(T ) contains no element of Vτ and no other trees. B consist of trees
T ∈ T (ζ), which have a unique anchor in Gτ,ζ which in addition is an element of Vτ or is the unique anchor
Gτ,ζ of another tree T ′ ∈ T (ζ). Note that in both cases, the anchor of T ∈ B lies in the set V. C consists
of trees whose neighborhood might have been altered (they do not belong to A) but which do not have any
other tree in their neighborhood in Gτ,ζ . Finally D gathers the trees that were created as a result of the
burning procedure.
Lemma 4.10. Under the hypotheses of Proposition 4.9, for any given tree T ∈ T, most of its representatives
in G did not see their neighborhood changed. There exists C > 0 such that∣∣T (T )(G, ζ) ∩

(
B ∪ C

)∣∣ ≤ CN−η∣∣T (T )(G, ζ) ∩ A
∣∣, ∀T ∈ T,

where A ..= {U ∈ T (ζ) : Br(U) = Bτ,ζr (U)} and B ..= T (ζ) \ A.

Proof. Let us fix U ∈ T and abbreviate A ..=
∣∣T (U)(G, ζ) ∩ A

∣∣ and B ..=
∣∣T (U)(G, ζ) ∩

(
B ∪ C

)∣∣. Let us recall
the event Ω introduced in the proof of Proposition 4.9. Then using the estimate (4.12) as well as Lemma
4.24 we find

E|B| ≤ P
[
vx ≤ (τ − 1)

√
d
]n

E|A|, E|B|2 = E|B|
(

1 +O
(dt2
N

))
, E|A|2 = E|A|

(
1 +O

(dt2
N

))
We can conclude using a second-moment argument that with probability 1 −O(u−2)

|A| = E|A|
(
1 +O

(
u−2)), |B| = E|B|

(
1 +O

(
u−2))

and thus, u = Nη = O
(
e−d/4), for η small enough and choosing η = 1

4(t+1) , u = Nη ≤ e−d/4 and τ > 0
small enough such that ed(τ log(e/τ)−1) ≤ N−1/2(t+1) ≤ e−d/2 and we deduce that |B| ≤ N−η|A|, holds with
probability 1 −O

(
N−η). This concludes the proof.

4.4 Finite trees
In this section, we study the spectrum of trees of finite size and in particular, we establish that if t ∈ N∗,
λ∗(t), as defined in (4.1), is the minimizer of some natural quantity defined for all finite trees of size smaller
or equal to t.

For T ∈ T we write L(T ) the Laplacian matrix of the tree T . A few general statements are known about
the spectra of the matrices L(T ), T ∈ Tt. For instance if λi, i ∈ [t], denote the eigenvalues of T ordered
increasingly, it is known that

0 = λ1 < λ2 < . . . < λt ≤ (t− 1) + 2
√
t.

A quantity of general interest is the spectral gap defined as the smallest non-trivial eigenvalue λ2. We are
interested in a similar quantity. Let us define

γ(T, i) ..= inf
{
z ∈ R : 1 =

( 1
z − L(T )

)
ii

}
, i ∈ [|T |]. (4.14)

The parameter γ(T, i) is a deterministic value that lies in the interval
(
0, λ2(L(T ))

)
. It can take different

values depending on the choice of i ∈ [|T |] as is shown in Figure 4.4.
For t ∈ N∗, let us define

γ∗(t) = min
T∈T≤t

min
i∈[|T |]

γ(T, i). (4.15)

An important result is that γ∗ is a strictly decreasing function of t ∈ N∗ (see Lemma 4.11). The underlying
mechanism is that a tree T ′ of size t+ 1 can be obtained from a tree T of size t by adding a new vertex to
it. The spectral properties of the Laplacian matrix of T ′ can then be understood as a rank-one perturbation
of the Laplacian matrix of T and a zero matrix (see Figure 4.4).

The next lemma shows that γ∗(t) is minimized by a tree of size t.
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λ0 = 0 λ1 λt

1
γ(T, 2)

γ(T, 1)

(
1

z−L(T )

)
11(

1
z−L(T )

)
22

Figure 4.4: Illustration of (4.14). A tree T ∈ T might generate different spectral gaps depending on the
vertex we use to connect it to the rest of the graph.

Lemma 4.11. For every t ∈ N∗, there exists c∗
..= c∗(T≤t) > 0 such that

γ∗(t+ 1) ≤ γ∗(t) − c∗,

and for every T ∈ T≤t,

max
i∈[|T |]

γ(T, i) ≤ λ2(L(T )) − c∗. (4.16)

Proof. Let us fix t ∈ N∗ and T ∈ Tt. For i ∈ [t], we define M(T, i) ..= L(T ) − 1i1∗
i . The matrix M(T, i) is a

Hermitian matrix obtained by a rank one perturbation of the Laplacian of T . By Lemma A.3, we have

GM(T,i)(z) = GL(T )(z) +GL(T )(z)1i1∗
iGM(T,i)(z).

Therefore z is an eigenvalue of M(T, i) if and only if 1 =
(
GL
)
ii

(z). We conclude that

γ(T, i) = min{λ : λ ∈ σ(M(T, i))}.

If T ∈ T≤T , then we can choose a finite constant cT that satisfies (4.16). Then we can take c∗ = minT∈T≤T
cT

to get the statement uniform in all trees of size at most t.
Let T ∈ T<t and i ∈ [|T |] be such that γ(T, i) = γ∗(t). Let us view L(T ) as a (t + 1)-by-(t + 1) matrix

with the last row and column equal to zero. We can construct a tree T ′ by adding one neighbor to some
vertex of T , for instance 1. Then the matrix L(T ′) ..= L(T ) + ee∗, e ..= 1t+1 − 11, is the Laplacian matrix
of T ′. Since L(T ′) is a rank-one perturbation of L(T ), M(T ′, i) is also a rank-one perturbation of M(T, i).
Thus there exists c∗ > 0 depending on T and i such that

γ∗(t+ 1) ≤ min
λ∈σ(M(T ′,i))

λ ≤ min
λ∈σ(M(T,i))

λ− c∗ = γ∗(t) − c∗,

where we used the fact that (T, i) is chosen as the minimizer of γ(T, i). This concludes the proof, since in
particular

Note that the proof of Lemma 4.11 gives a way to construct for any t ∈ N∗, a minimal pair (T, i), in the
sense that γ(T, i) = γ∗(|T |), iteratively in t− 1 steps.

Let t ∈ N and let us define the line on t vertices as the tree

Lt ..= ([t], E), E ..= {(i, i+ 1) : 1 ≤ i < t}.
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The following lemma says that the tree Lt anchored at one of its extremity is the solution to γ∗(t), meaning
that minT,i γ(T, i) = γ(Lt, x) where the minimum is taken over trees of size t and x = 1 or x = t.
Before stating the lemma, observe that, for T ∈ Tt, i ∈ [t] and t ∈ N∗, we have

γ(T, i) = inf
u∈Rt

⟨u, L(T )u⟩ + |u(i)|2
∥u∥2 . (4.17)

The first term on the numerator of the right-hand side is just the Dirichlet energy of u on the tree T and is
known to be equal to

⟨u, L(T )u⟩ =
∑

(x,y)∈E(T )

(u(x) − u(y))2.

Let us denote by E(u) ..= ⟨u, L(T )u⟩ + |u(i)|2
The next lemma shows that λ∗(t) = γ∗(t).

Lemma 4.12. Let t ∈ N∗. The minium of (γ(T, i)) taken over T ∈ T≤t and i ∈ [|T |] is obtained when T is
a line and i an extremal point.

Proof. We first note that by Lemma 4.11, we can consider T ∈ Tt. Moreover since

E(u) = ⟨u, L(T )u⟩ =
∑

(x,y)∈E

|u(x) − u(y)|2 ≥
∑

(x,y)∈E

||u(x)| − |u(y)||2,

and thus we can assume u(x) ≥ 0 for every x ∈ [t].
Let us now change to a dual approach. We will fix u(i) > 0 and (u(x) − u(y)) ∈ R and thus fix E and try to
maximize ∥u∥. Then

∥uT,i∥2 =
∑
x∈T

|u(x)|2 =
∑
x∈T

∣∣∣u(i) +
∑

(a,b)∈Pi→x

(u(b) − u(a))
∣∣∣2, (4.18)

where we denoted by Pi→x the unique path from i to x in T. Let us denote by f : (Tt, [t]) → ∥uT,i∥2. We
will show that

f(Lt, 1) = f(Lt, t) = max
T,i

f(T, i), f(Lt, 1) > max
T ̸=Lt, x ̸=1,t

f(T, i) + c, (4.19)

for some constant c > 0. Let us denote by Once (4.19) is established, we can write using (4.17)

E(u)
∥uLt,1∥

<
E(u)

∥uT,i∥2 + ε
≤ E(u)

∥uT,i∥2 − εγ∗(t),

for any valid choice of u and any (Lt, t) ̸= (T, i) ̸= (Lt, 1). Therefore, since by Lemma 4.11 γ∗(t) > c > 0,
for some c > 0, we can conclude using (4.17) by seeing that when comparing a tree (T, i) with (Lt, 1), the
numerator remains the same and the denominator increases.

We turn to the proof of (4.19). For the maximum, we can suppose that u(a) − u(b) ≥ 0 if b ∈ Pi→a, i.e.
if we need to visit b before reaching a when starting from i. In other words, u is increasing when going away
from i. Let us write pn, n = 1, . . . , t − 1, the values {|u(x) − u(y)| : (x, y) ∈ E(T )} and qn ..= p(n) those
values sorted decreasingly,

q1 ≥ q2 ≥ . . . ≥ qt−1 ≥ 0.

Then E(u) =
∑
n∈[t−1] p

2
n =

∑
n∈[t−1] q

2
n. Moreover, suppose a, b ∈ [t], (a, b) ∈ E and l + 1 = d(a, i) =

d(b, i) + 1 for some l ≥ 0. Then, by ordering, u(a) − u(b) ≤ ql. Therefore, for any x ∈ [T ], we have

∑
(a,b)∈Pi→x

(u(a) − u(b)) ≤
d(i,x)∑
l=1

ql.
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Plugging this into (4.18), we ge

∥uT,i∥2 =
∑
x∈T

∣∣∣u(i) +
∑

(a,b)∈Pi→x

(u(a) − u(b))
∣∣∣2 ≤

∑
x∈T

∣∣∣u(i) +
d(i,x)∑
l=1

ql

∣∣∣2 ≤
t∑

k=0

∣∣∣u(i) +
k∑
l=1

ql

∣∣∣2.
The only case where we have equality is if T is a line and i an extremal point. This proves the right-hand
side of (4.19).

4.5 Proof of Theorem 4.1
In this section, we prove Theorem 4.1. The strategy is to first study the spectrum of the matrix L(Gτ,ζ) in
the interval

[
−

√
d,−

√
d + ζd−1/2]. This is done using rank-one perturbation theory (see Lemma A.8) and

geometric properties of the burned graph Gτ,ζ . From that analysis we construct a block diagonal approxi-
mation of L(Gτ,ζ). We then use the interlacing of eigenvalues to transfer information from SpecL(Gτ,ζ) to
SpecL(G). Finally we use the fact that the neighborhood of maximal trees generates the smallest spectral
gaps (Lemma 4.11) and that they are identical in G and Gτ,ζ ((v) of Proposition 4.9) to conclude.

The two following propositions give estimates on the smallest eigenvalues generated by trees in the graph
Gτ,ζ described in Proposition 4.9.

Proposition 4.13 (Rigidity for A and C). Let t∗ ∈ N∗, ε > 0 and r, ζ, τ as in (4.11). Then there exists
c∗ = c∗(T≤t) such that for any α ∈ (0, 1/4) the following holds with probability 1 −O(e−d2α).

(i) For each T ∈ A ∪ C, the matrix L(Gτ,ζ) has at most t eigenvalues, µ1 < µ2 < . . . < µt in the interval
(−

√
d,−

√
d+ 2ζ).

(ii) For each T ∈ A ∪ C, if |S1(T )| = 1, then

µ1 = −
√
d+ γT,xT√

d
+
{
δT,xT

d +O
(
dα

d3/2

)
, |T | = t∗

O
(
d−1), else.

(4.20)

(iii) For each T ∈ A ∪ C, if |S1(T )| > 1, then

µ1 = −
√
d+

γT,xT (1) + c∗√
d

+ Λ(zT ), Λ(zT ) = O(d−3/2) (4.21)

(iv) For each T ∈ A ∪ C, if wn, denotes the eigenvector corresponding to µn then for 1 ≤ i ≤ r

∥wn|Si(T )∥ = O

(
1
di/2

)
, ⟨wm , (L− µn)wn⟩ = O

(
1
dr/2

)
, n,m ∈ [t]. (4.22)

The proof of Proposition 4.13 is deferred to Section 4.6.

Proposition 4.14 (Rigidity for B, D and L(ζ)). Let t∗ ∈ N∗, ε > 0 and r, ζ, τ as in (4.11). Then there
exists c∗ = c∗(T≤t) such that for any α ∈ (0, 1/4) the following holds with probability 1 −O(e−d2α).

(i) For each U ∈ B ∪ L(ζ), the matrix L(Gτ,ζ)|Br(U) has at most t eigenvalues, µ1 < µ2 < . . . < µt in the
interval (−

√
d,−

√
d+ 2ζ).

(ii) For each U ∈ B for n ≥ 1 then

µ1 ≥ −
√
d+ γ∗(t) + c∗√

d
+ o(d−1) (4.23)
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(iii) If x ∈ L(ζ) then

µ1 ≥ −
√
d+ 5

4
√
d
. (4.24)

(iv) For each U ∈ U(ζ), if wn, denotes the eigenvector corresponding to µn then for 1 ≤ i ≤ r

∥wn|Si(U)∥ = O
( 1
d(i−t)+/2ζi−t

)
, ⟨wm , (L− µn)wn⟩ = O

(
d− r−t

2

)
, n,m ∈ [t]. (4.25)

The proof of Proposition 4.14 is deferred to Section 4.6

Lemma 4.15 (Equi-probability of trees). Let 1 < d < N and t ∈ N∗. Then for any T ∈ Ts and x ∈ [s],
1 ≤ s ≤ t we have with probability 1 −O

(
N1−3η)

∣∣{U ∈ Ts(1) : U = T, U ∩ S1(G \ U) = {x}
}∣∣ = 1

ss−3Nw(t)
(
1 +O( 1

Nη
)
)

Proof. This comes from the independence of the entries of A. For T ⊆ [N ], conditioned upon the event that
T ∈ Tt the probability of seeing either of the tt−2 trees is the same.

Proposition 4.16 (Trivial eigenvector and other small connected components). There are at most O(Nη)
connected components and the microscopic ones have at most t vertices and are trees. Moreover there exists
η > 0 and a normalized eigenvector q supported on the complement of

⋃
T∈T (ζ)τ,ζ Br(T ), such that

∥∥(L(Gτ,ζ) − d−1/2)q
∥∥ = O

(
N−η

)
Proof. Similar to the proof of Proposition 3.27. Use∣∣∣ ⋃

T∈T (ζ)

Br(T )
∣∣∣ = O

(
dr+1Ndζe−d

)
= O

(
N−η

)
,

for η > 0 small enough, using the fact that d
logN > c > 0 for some small enough constant c > 0.

The following result is a restatement of Proposition 3.25. If d is as in (4.3), then

∥A− EA∥ ≤ 2
√
t, (4.26)

with very high probability. Here A denotes the adjacency matrix of the graph G.

Proof of Theorem 4.1. We begin by understanding the spectrum of L(Gτ,ζ). Let us set t ∈ N∗, r ≥ 10 + t,
c∗ = c∗(T≤t) and η > 0 small enough so that the results of Proposition 4.13, 4.14, 4.16 and Lemma 4.15
hold with probability 1 −O

(
e−dη)

. We work on this event in the rest of the proof.
On this event, there exists an orthogonal matrix U such that

Lτ,ζ = U


ν 0 0 E∗

ν 0
0 U 0 E∗

0 0
0 0 U ′ E∗

1 0
Eν E0 E1 X 0
0 0 0 0 Y

U∗ (4.27)

where ν = −
√
d+O(N−η) for some constant η > 0 small enough. The diagonal block U corresponds to the

eigenvalues generated by the neighborhood of trees belonging to A and C. The diagonal block U corresponds
to the eigenvalues generated by the neighborhood of trees belonging to B and of small degree vertices (i.e.
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L(ζ)). From (4.22) and (4.25), we see that ∥Ei∥ = O(d−5), for i ∈ [3] and ∥Eν∥ = O(N−η). From (4.23)
and (4.24), we see that

min
λ∈U

λ = −
√
d+ γ∗(t)√

d
+O

(
d−1).

Let w be an eigenvector orthogonal to the eigenvectors from the first 1 + |U| + |U ′| columns of U. Then
∥w|U(ζ)∥

2 = O
(
d−1), by (4.22) and (4.25). If λ ∈ SpecX, we thus have Orthogonal eigenvectors can put

maximum weight 1√
ζ

on U(ζ). Therefore σ(X) ⊆ [ζ,−∞) since

λ ≥ ζ − C√
d

− ∥A− EA∥ ≥ −
√
d+ d−1/2.

This shows that the block X does not contribute any eigenvalue to the interval [−
√
d,−

√
d+ d−1/2].

Finally, Y corresponds to the microscopic connected components of Gζ . Using (4.16), we find

SpecY ⊆
⋃

T∈T≤t

⋃
λ∈Spec(L(T ))

{
λ
}

⊆
⋃

T∈T≤t

SpecL(T ) ⊆ [−
√
d+ γ(t) + c∗√

d
,+∞).

We can now reconstruct the matrix L(G) via the equality

L(G) = L(Gτ,ζ) +
∑
e∈E

B(e) = U


ν 0 0 E∗

ν 0
0 U 0 E∗

0 0
0 0 U ′ E∗

1 0
Eν E0 E1 X 0
0 0 0 0 Y

U∗ +
∑
e∈E

B(e).

Since B(e) is a non-negative rank one matrix, all the lower inequalities derived for the spectrums of the
blocks of U∗L(Gτ,ζ)U remain valid by interlacing of eigenvalues.
We will now show that the spectrum of the block U is not perturbed too much. Let w be an eigenvector
with corresponding eigenvalue λ ≤ −

√
d + 2t√

d
and ∥w|T ∥ = 1 − o(1) for some T ∈ A. Then by (4.13) and

(4.22) we have ∥∥∥∥∥∑
e∈E

Bew

∥∥∥∥∥ = O(d−r),

and therefore w is an approximate eigenvector of L(G), with error O
(
d−r). We conclude that there exists

an eigenvalue at λ + O
(
d−1). Using Lemma 4.15 the configuration (T, x) ∈

⋃
u≤t Tu × [u] that minimizes

γ(T, x) appears with high probability as soon as d ≤ (1 − ε)d∗(t, 1). Finally, by Lemma 4.12, we can identify
precisely the minimizing configuration (T, x) as being the line attached to the rest of the graph by one of its
extremity. This concludes the proof.

4.6 Spectrum around trees
In this section we consider d ≥ 1 to be the density parameter of the Erdős-Rényi graph. We set t∗ ∈ N∗ and
d as in (4.2). We work only on the graph Gτ,ζ defined in Proposition 4.9. We drop the superscript τ, ζ in
the rest of this section. Let us write Ξτ,ζ , τ, ζ > 0, the event on which the results of Lemma 4.7, Lemma 4.8
and Proposition 4.9 and (4.10) hold. All the results stated in this section hold on the event Ξτ,ζ and can
thus be seen as deterministic results.

Suppose Y ∈ T (ζ) and Y is isomorphic to some finite tree T ∈ T. Then there is a natural way to associate
the anchors of Y with numbers of {1, . . . , |T |}.

We first state a general result about the eigenvalues of finite trees.
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Lemma 4.17. Let t ∈ N∗, T ∈ Tt. Then

SpecL(T ) ⊆ [0, 2t], 2
t2

≥ λ2(L(T )) − λ1(L(T )) > 0.

Proof. First of all, it is well-known that the Laplacian matrix has positive spectrum, just take the eigenvector
q ..= 1√

t
1T . To show that λ2 > 0, observe that if w ∈ Rt is a normalized vector such that

⟨w , L(T )w⟩ =
∑
x,y

(wx − wy)2 = 0,

then wx = wy for every x, y ∈ [t]. Therefore if w ̸= q, necessarily ⟨w , L(T )w⟩ > 0.
Second of all, L(T ) = D(T ) − A(T ) where D(T ) is the diagonal matrix with the degrees on the diagonal
and A(T ) is the adjacency matrix of T. Now since maxx∈T ≤ t − 1 and ∥A∥ ≤ 2

√
maxx∈T Dx ≤ 2

√
t− 1.

Therefore ∥L(T )∥ ≤ t− 1 + 2
√
t− 1 ≤ 2t, as soon as t ≥ 4. For t = 2, 3 we compute explicitly the spectrum

of the two trees of size 3 and 2 and find that the bound ∥L(T )∥ ≤ 2t still holds.

Lemma 4.18 (Spectrum around ideal trees with one anchor). Let t ∈ N∗, T ∈ Tt. There exists a constant
cgap

..= cgap(T ) > 0 such that on the event Ξτ,ζ , for every Y ∈ (A ∪ C) ∩ T (T ), with configG(Y ) = (T, {a}),
a ∈ [t], the following holds.
The matrix L|Br(T ) has precisely t eigenvalues smaller than −

√
d + t. Moreover its smallest eigenvalue λ1

and λ2 satisfy

λ1 = −
√
d+ γ(T, a)√

d
+ δ(T, a)√

d(
√
d+ vz)

+O
(
d−3/2), λ2 ≥ λ1 + cgap√

d
, (4.28)

where {z} = S1(Y ) and γ is defined in (4.14) and δ is a universal constants in the sense of Remark 4.2.
The eigenvectors (u(i))i∈[t] of L|Br(T ) corresponding to the t smallest eigenvalues satisfy

∥w|Br(T )\Bi(T )∥ = O
(( 1√

d

)i+1)
, i ≥ 0. (4.29)

Proof. We work on the event Ξτ,ζ . Let us write M ..= Lζ |Br(Y ). The matrix M can be written as a rank one
perturbation of a block diagonal matrix

M =
[
M1 0
0 M2

]
+B((x, z)), M1

..= L(T ), M2
..= M |Br(Y )\Y . (4.30)

Since T is a tree, we know by Lemma 4.17 ∥L(T )∥ ≤ 2t. Moreover on Ξτ,ζ , the graph Br(Y ) \ T is a tree
and we deduce

∥d−1/2A|Br(Y )\T ∥ ≤ 2
√

maxy∈[N ] Dy

d
≤ C,

for some constant C ≥ 0 that depends only t∗. This allows us to deduce that

Spec
(
M2
)

⊆
[

min
y∈Br(Y )\T

vy − C,+∞
)

⊆
[
(τ − 1)

√
d− C,+∞

)
. (4.31)

Here we used Proposition 4.9 (iii) and the fact that Y ∈ A∪C to derive the lower bound on miny∈Br(T )\T vy.

We also observe that SpecM1 ⊆
[
−

√
d,−

√
d+ 2t√

d

]
and that λ1(M1) = λ1(L(T )) −

√
d = −

√
d. Since M is

a rank-one perturbation of the block matrix
[
M1 0
0 M2

]
, the interlacement of eigenvalues tells us that

−
√
d = λ1(M1) < λ1(M) < λ2(M1) < λ2(M) · · ·λt(M1) < λt(M) ≤ λt(M1) + ∥B(xT , zT )∥ ≤ −

√
d+ 4t√

d
,
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where we used the fact that ∥B(xT , zT )∥ ≤ 2d−1/2. The first claim of the theorem immediately follows.
We will now use perturbation theory to compute the precise location of λi, i ∈ [t]. By Lemma A.8 with

H =
[
M1 0
0 M2

]
and e = (1x − 1z)d−1/2 we find that

√
d =

( 1
t−M1

)
xx

+
( 1
t−M2

)
zz
, t ∈ R. (4.32)

By the change of variable t = −
√
d+ θ√

d
, for θ ∈ (0, λ2(L(T ))), (4.32) becomes

1 =
( 1
θ − L(T )

)
xx

+ g
(

−
√
d+ θ√

d

)
, g(t) ..=

( 1
t−M2

)
zz
. (4.33)

We will solve (4.33) on the interval IT ..= (0, λ2(L(T ))).
We first use the spectral gap between Spec(M2) and (−

√
d, λ2(M1)) to linearize the function g around

−
√
d. By (4.31), the smallest eigenvalue of M2 is at distance at least τ

2
√
d of λ2(M1). We deduce that

|g(t)| = O
(
d−1/2) and |g′(t)| =

∣∣( −1
(z−M2)2

)
zz

∣∣ = O
(
d−1) for every t ∈ [−

√
d, 2λt(M1)]. By a Taylor expansion

to the first order, we find (see the proof of Proposition ??)

g
(

−
√
d+ θ√

d

)
= g
(
−

√
d
)

+O
(
d−3/2) = −1√

d+ vz
+O

(
d−3/2), (4.34)

on Ξ.
Let us introduce the function

f : R \ Spec(L(T )) → R, f(t) =
( 1
t− L(T )

)
xx
.

This function is universal, in the sense of Remark 4.2. The function f is smooth and invertible on the open
interval I ..= (0, λ2(L(T ))). By Taylor’s theorem, there exists C, c > 0, such that [1 − 2c, 1 + 2c] ⊆ I,

max
|u−1|≤c

|(f−1)′′(u)| ≤ C.

and thus

f−1(1 + ε) = f−1(1) + (f−1)′(1)√
d

ε+O(ε2), ∀|ε| ≤ c. (4.35)

We see that the solution θ of (4.33) is given by the self-consistent equation

θ = f−1
(

1 + g
(
−

√
d+ θ/

√
d
))
.

Using (4.34) and (4.35), this becomes

θ = f−1(1) + (f−1)′(1)
[ −1√

d+ vz
+O

(
d−3/2)]+O

(
d−1

)
= f−1(1) − (f−1)′(1)√

d+ vz
+O

(
d−1).

Setting

γ(T, x) ..= f−1(1), δ(T, x) ..= −(f−1)′(1), Λ(z) ..= 1√
d(

√
d+ vz)

,

and deduce that the smallest real solution t of (4.32) lies in the interval (−
√
d, λ2(M1)) and satisfies

t = −
√
d+ γ(T, x)√

d
+ δ(T, x)√

d(vz +
√
d)

+O
(
d−3/2).
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We conclude the first part of (4.28).
The eigenvalues λi(M), 2 ≤ i ≤ t, can be computed in the same way, by solving (4.32) on every interval
(λi(M1), λi+1(M1)), i = [t] (with λt+1(M1) = +∞ by convention). If θi, i = [t], denote the t solutions
of (4.33), we see that, as soon as we bound g(z) = o(1), there exists c > 0, depending on f , such that
mini ̸=j |θi − θj | > c. The constant c is universal since it depends only on f and thus the second part of
(4.28).

We now turn to the proof of (4.29). The argument is in many ways similar to the one found for the
analog statement in the proof of Proposition 3.34 in Chapter 3.

Let Q ..=
∑
u/∈T 1u1∗

u be the projection onto the vertices in Br(T ) \ T. Let µ = λi and w = wi for some
i ∈ [t]. The eigenvalue eigenvector equation becomes

(QMQ− µ)Qw = −QA(1 −Q)w, (4.36)

where A ..= A|Br(T ). Again using the fact that ∥A∥ ≤ C, for some constant C > 0, we see that

SpecQMQ ⊂
[
min
u/∈T

vu − ∥A∥ − ∥B((x, z))∥,+∞
)

⊂
[(τ

2 − 1
)√
d,+∞

)
,

and thus, using the fact that µ ≤ −
√
d+ 4td−1/2,

∥w|S1(T )∥ ≤ ∥Qw∥ ≤
∥A|Br(x)∥

∥(QLQ− µ)∥ = O
(
d−1/2). (4.37)

The bound for 2 ≤ i ≤ r is proved similarly. This concludes the proof.

Lemma 4.19 (Spectrum around ideal trees with many anchors). Let t ∈ N∗, T ∈ Tt. There exists a constant
cgap

..= cgap(T ) > 0 such that on the event Ξτ,ζ , for every Y ∈ (A ∪ C) ∩ T (T ) such that configG(Y ) = (T,A),
|A| > 1, the following holds.
The matrix Lζ |Br(T ) has precisely t eigenvalues smaller than

√
d+ 2t. The smallest eigenvalue λ1 satisfies

λ1 ≥ −
√
d+ maxa γ(T, a) + cgap√

d
, λ2 ≥ λ1 + cgap√

d
, (4.38)

where γ is defined in (4.14).
The eigenvectors (u(i))i∈[t] of L(G|Br(Y )) corresponding to the t smallest eigenvalues satisfy

∥w|Br(T )\Bi(T )∥ = O
(( 1√

d

)i+1)
.

Proof. Let us fix Y ∈ A ∪ C, ℓ ..= |S1(T )| and abbreviate xi ..= xYi , zi
..= zYi , for i ∈ [ℓ]. We assume that

γ(T, xi) ≥ γ(T, xi+1). Writing M ..= L|Br(T ), we introduce

Mk
..= M −

ℓ∑
i=k+1

B((xi, zi)), k ∈ [ℓ].

Then Mk corresponds to the graph Br(T ) with the edges (xi, zi), k ≥ i removed (note that Mℓ = M). We
will show that there exists c > 0, depending only on T , such that

λ1(M2) > λ1(M1) + c√
d
. (4.39)

In words, adding a connection between T and Br(T ) \ T shifts the smallest eigenvalue of the matrix by a
factor of order d−1/2. (4.38) will then follow from (4.39) since B is a positive rank-one perturbation and
Mℓ = M.
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We begin by computing the smallest eigenvalue of M1. We copy the proof of Lemma 4.18 (notice that in
the graph corresponding to M1, the tree Y has one anchor) and we see that

λ1(M1) = −
√
d+ γ(T, x1)√

d
+O

(
d−1).

We apply Lemma A.8 one more time. Here we crucially use the fact that Br(Y ) does not contain any cycle.
Setting H = M1 and e = (1x2 − 1z2)d−1/2, we see that H is a block diagonal matrix (one block corresponds
to Y and the region around z1 and the other to the region around z2) and we find that that λ1(M2) satisfies
the equation

√
d =

( 1
t− L(T )

)
x2x2

+
( 1
t−M1

)
z2z2

, t ∈
(
λ1(M1), λ2(M1)

)
.

We can use the fact that Br(Y ) is a tree and a spectral gap argument, similar to the one in the proof of
Lemma 4.18 to bound

∣∣∣ 1
t−M1

∣∣∣
z2z2

= O
(
d−1/2). Using the change of variables z = −

√
d + θ√

d
, this equation

becomes

1 =
( 1
θ − L(T )

)
x2x2

+O
(
d−1/2), λ1(M1) < θ < λ2(M1). (4.40)

Since the function f(t) ..=
(

1
θ−L(T )

)
x2x2

is smooth and bijective on the open interval (λ1(L(T )), λ2(L(T ))),
it admits a smooth inverse f−1. Observe that if |θ − λi(L(T ))| ≤ 1/10, i = 1, 2, and N is large enough,
(4.40) cannot be satisfied. This shows that

λ1(M1) + 1
10

√
d

≤ λ1(M2) ≤ λ2(M1) − 1
10

√
d
.

Choosing cgap < 1
10 , we conclude (4.39). The statement about the eigenvectors is proved as its analog of

Lemma 4.18.

Proof of Proposition 4.13. Combine Lemmas 4.18 and 4.19.

We now turn to the slightly more tedious proof of Proposition 4.14. We first establish results analogous
to Lemma 4.18 for elements of D and L. The argument for L is a simple perturbation argument (it is a
simplified version of Proposition 3.34 of Chapter 3). The argument for D relies on (iv), which states that
elements of D are of size ≤ t∗ − 1.

Lemma 4.20. [Spectrum around small single vertices] On the event Ξτ,ζ the following hold. If x ∈ L(ζ)
and S1(x) ∩ V = ∅ the smallest eigenvalue of L|Br+1(x) is greater than

λ1 ≥ −
√
d+ 1√

d

(
1 +O

(
d−1)).

Proof. This follows from Lemma ??, the smallest eigenvalue of M ..= L|Br+1(x) is given by

µ = vx + 1
d

∑
y∈S1(x)

1
vx − vy

+O
( 1
d3/2

)
= vx + αx

vx
+O

( 1
d3/2

)
≥ v(1) − 1√

d
+O

( 1
d3/2

)
.

Lemma 4.21. There exists c∗ > 0 depending on T≤t∗ such that on Ξτ,ζ the following hold. For every Y ∈ D,
we have

λ1(L|Br(Y )) ≥ −
√
d+ γ∗(t∗) + c∗√

d
.



126 CHAPTER 4. ATTACHED TREES AND SPECTRAL GAP

Proof. This follows from Proposition 4.9 (iv). If Y ∈ D, this means that either Y is a single vertex with
degrees more than t∗ or |Y | < t − 1. In that, it follows from the fact that the eigenvalue is greater than
γ∗(t∗ − 1) > γ∗(t∗).

We now turn to the analysis of the spectrum generated by the neighborhoods of elements of B. This is
the most technical part of the section. The key observation which is formulated in Lemma 4.22 allows us to
compare the spectrum generated by two or more trees that share one common anchor. For such a collection
of trees having total weight t, there is a tree of size t that generates a smaller spectral gap.

We partition B using the equivalence relation

Y ∼ Y ′ ⇔ S1(Y ) ∩ S1(Y ′) ̸= ∅.

For {Y1, . . . , Yl} = [Y ] ∈ B/ ∼, we define the total size of the equivalence class as |[Y ]| ..=
∑
i Yi. We call an

equivalence class a bouquet of trees. The trees of any bouquet share a unique common anchor.
The next results state that if the common anchor of an equivalence class of trees is in Vτ , then the

eigenvalue generated by the restriction of Lτ,ζ to the neighborhood of anchor is not minimal. It basically
relies on the fact that by Proposition 4.9, this situation is only possible if the size of the equivalence class is
strictly smaller than t∗.

Lemma 4.22. Let t ∈ N∗ and v ∈ V , [Y ] ∈ B/ ∼ such that the common anchor of [Y ] is v. On the event
Ξτ,ζ , if v ∈ Vτ , there exists a constant c > 0 such that

λ1(L|Br(v)) ≥ −
√
d+ γ∗(t∗) + c∗√

d
. (4.41)

If Y ..=
⋃
Y ∈[Y ] Y , the eigenvectors (u(i)), i ∈

[
|Y |
]
, corresponding to the

∣∣Y ∣∣ smallest eigenvalues satisfy

∥w|Br(Y )\Bi(Y )∥ = O
(
d−i/2

)
, i ≥ 1.

Proof. Consider the trees T1, . . . , Tk that make up the class [Y ]. By Proposition 4.9 (iv) we know that
|[Y ]| =

∑
i|Ti| < t∗. The common anchor v has at least two neighbors outside of Y since ζ > t∗ + 2 and, by

Lemma 4.8, the vertex Dv −Dτ,ζ
v ≤ t∗. Let x1, . . . , xDτ,ζ

v −1 be the neighbors of v and define the matrix

L′ ..= L|Br(v) −
Dτ,ζ

v −1∑
i=3

B
(
(v, xi)

)
.

The graph G′ that corresponds to the matrix L′ is the graph with a single ideal tree of size t′ ..= |[Y ]| + 1
with two anchors. Note that t′ ≤ t∗. Let Y ′ ..= Y ∪ {v}. Then Y ′ is a tree in G′, with configuration
configG′

(Y ) = (T ′, A), T ′ ∈ T≤t∗ and A ⊂ [t′].
A straightforward adaptation of the proof of Lemma 4.19 (the argument did not use the fact that the anchors
were different) shows that there exists c∗ > 0, depending only on T ′ and A such that

λ1(L′) ≥ −
√
d+ γt′ + c∗√

d
+O

(
d−3/2) ≥ −

√
d+ γt∗ + c∗√

d
+O

(
d−3/2)

Since B(e) is a positive rank-one perturbation, we know that λ1(L′) ≤ λ1(L|Br(v)) and (4.41) follows.
The statement about the eigenvectors corresponding to the smallest eigenvalues is proved analogously to

(4.29). We can use equation (4.37) but only starting at S2(Y ), because it might be that |vv +
√
d| = O(1).

However, we know, by construction, that Br(Y ) \ S1(Y ) contains no other vertex in Vτ . This concludes the
proof.

There remains to rule out the case of a bouquet of trees of total size t∗. Such a configuration might a
priori generate an eigenvalue smaller than γ∗(t∗). The next lemma is the key result of the section and insures
that a bouquet of trees is strictly smaller than a single tree constructed out of the trees of the bouquet.
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T2,1

T2,2

T ′

λ(L1) ≥ λ(L2) + c∗√
d

L1
L2

Figure 4.5: Schematic representation of Lemma 4.23

Lemma 4.23. Let t ∈ N∗ and [Y ] ∈ B/ ∼ be a bouquet of trees with common anchor v ∈ V that satisfies
v /∈ Vτ . There exists a constant c∗ > 0 depending on the elements of T≤t∗ such that on the event Ξτ,ζ ,

λ1(L|Br(z)) ≥ −
√
d+ γ∗(t) + c∗√

d
≥ −

√
d+ γ∗(t∗) + c∗√

d
. (4.42)

If Y ..=
⋃
Y ∈[Y ] Y , the eigenvectors (u(i)), i ∈

[
|Y |
]
, corresponding to the

∣∣Y ∣∣ smallest eigenvalues satisfy

∥w|Br(Y )\Bi(Y )∥ = O
(( 1√

d

)i)
, i ≥ 1.

Proof. Let {Y1, . . . , Yn} = [Y ], n ≥ 2 be the trees that make up the bouquet. Let configG(Yk) = (Tk, Ak),
xk ..= S1(v) ∩ Yk and tk ..= |Tk| t ∈ [n]. Observe that |Ak| = 1 (every tree of the bouquet has exactly one
anchor) by Proposition 4.9 (iii) and write {ak} = Ak. Let us pick k ∈ [n] such that γ(Tk, ak) and define

L0
..= L(G)|Br(z) −B((z, xk)).

The graph that corresponds to L0 is the graph G where we disconnected the tree Yk by burning the edge
(z, xk). Note that the matrix L0 has an isolated block that corresponds to L(Tk). If Q(i) ..=

∑
x∈Yi

1x1∗
x,

i ∈ [k], denotes the projection on the vertices of Yi, then L(Tk) = Q(k)L0Q
(k) corresponds to the (now)

disconnected component Yk . The other block in the matrix L0 is M (k) ..=
(
1 −Q(k))L0

(
1 −Q(k)). We have

the following block diagonal representation

L0 =
[
L(Tk) 0

0 M (k)

]
. (4.43)

Let us denote by ˜..=
∑
i ̸=k ti the total size of the bouquet with Yk removed. By perturbation theory and

Lemma 4.17, we know that L0, respectively M (k), has exactly t̃ eigenvalues in
[
−

√
d,−

√
d + 3(t̃+tk)√

d

]
, re-

spectively t̃. Moreover, since L(Tk) is a linear shift of a Laplacian matrix, we know that the spectrum of L0
contains exactly one eigenvalue at −

√
d (every connected component generates a trivial eigenvalue).

We will now analyze how the tk eigenvalues of L(Tk) interact with the t̃ smallest eigenvalues of M (k)

under a rank-one perturbation.
Let us denote by wi, i ∈ [t̃], the eigenvectors that correspond to λi(M (k)). The first step of the proof is to
show that

∃y ∈ Y , and a constant c > 0, such that |w1(y)|2 > c. (4.44)

We will first need to derive a localization estimate on the eigenvectors of M (k) that correspond to its smallest
eigenvalues. By Proposition 4.9 (ii) we know that Br(z) ∩ Vτ = ∅, meaning that

min
z∈Br(Y )\Y

vy ≥ (1 − τ)
√
d. (4.45)
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Since ∥A|Br(z)∥ = O(1) on the event Ξτ,ζ , there is a spectral gap of size τ
3
√
d between the t̃ first eigenvalues

of M (k) and the rest of the spectrum. Let us denote

SpecM (k) = Λ1 ∪ Λ2, |Λ1| = t̃, Λ1 ⊂
(

−∞,−
√
d+ 3t̃d−1/2

)
, Λ2 ⊂

((τ
3 − 1

)√
d,+∞

)
(4.46)

Using (4.36) and (4.37), we find ∥∥Qwλ

∥∥ = O
(
d−1/2), λ ∈ Λ1,

where Q is the projection on the vertices Br(v) \ Y , Q ..= 1 −Q and Q ..=
∑
i ̸=kQ

(i).
We deduce that

max
λ∈Λ1

∑
u∈Br(Y )\Y

∣∣wλ(u)
∣∣2 = O

(
d−1) (4.47)

Since the matrix L0 is a block diagonal matrix, (4.47) translates immediately to the eigenvectors of M (k) In
particular, if µ = λ1(M (k)), there exists y ∈

⋃
i ̸=k Ti such that |wµ(y)| ≥ 1

2t̃ . Indeed this where not the case.
Then we would have

∥wµ∥2 = 1 =
∑

x∈|M(k)|

|wµ(x)|2 ≤ t̃

2t̃ +O
(
d−1) < 2

3 .

Since M (k) is a sub-block of L0, this result is identical for the eigenvectors corresponding of L0 corresponding
to SpecL0 \ SpecL(Tk). This establishes (4.44).

We now look at two different ways to attach the tree Yk back to the rest of the graph. The first way is
to simply recreate the original graph. The second way is to create a new graph by attaching Yk at the point
y ∈ Y constructed in (4.44). In the former case, we add the edge (xk, z) and in the latter, we add the edge
(xk, y). (see Figure ??? for a visual representation of the procedure.)
These two different graphs correspond to the matrices L0,+

..= L0 +B((xk, z)) and L0,−
..= L0 +B((xk, y)).

Let us denote by Ty the tree that contains y. Those matrices have the following block representations

L0 =

L(Tk) 0 0
0 L(Ty) E0
0 E∗

0 M

 , L0,− =

L(Tk) Ey 0
E∗
y L(Ty) E0

0 E0 M

 , L0,+ =

L(Tk) 0 Ek
0 L(Ty) E0
E∗
k E∗

0 M

 , (4.48)

where Ek ..= − 1√
d
1v1∗

xk
and Ey ..= − 1√

d
1y1∗

xk
, and E0

..= − 1√
d
1v1∗

xy
(here xy ..= Ty ∩ S1(v) denotes the

point of Ty attached to z) and M ..= L(Gτ,ζ)|Br(z)\(Ty∪Tk) (compare with (4.43)).
We will now show that there exists a constant c∗ > 0, depending only on the configurations of the tree

in the bouquet (i.e. universal in the sense of Remark 4.2) such that

λ1(L0,−) + c∗√
d

≤ λ1(L0,+). (4.49)

Using |[Y ]| ≤ t∗ and iterating (4.49) k − 1 times, we will be able to conclude (4.42).
The rest of the argument is devoted to the proof of (4.49). We denote λ+

..= λ1(L0,+) and λ−
..= λ1(L0,−)

We begin by applying Lemma A.8 to the matrix H = L0 two times, first with e = Ek and then with e = Ey.
From (4.43) and (A.11), we see that λ± satisfy the self-consistent equations

√
d =

(
1

λ+ − L(Tk)

)
xkxk

+
(

1
λ+ −M (k)

)
vv

and
√
d =

(
1

λ− − L(Tk)

)
xkxk

+
(

1
λ− −M (k)

)
yy

,

(4.50)

and both lie in the open interval

I ..=
(

−
√
d, min (λ2(L(Tk)), µ)

)
.
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Recall that µ was defined earlier as being the smallest eigenvalue of M (k). Let us introduce the functions

f, f̃ : I → R, f(s) =
(

1
s−M (k)

)
yy

, f̃(s) = 1
2t̃(s− µ) .

By definition of I and y (recall (4.44) with c = 1/2t̃), we find, for every s ∈ I,

f̃(s) =
∑

λ∈SpecM(k)

|wλ(y)|2
s− λ

≤ |wµ(y)|2
s− µ

≤ 1
2t̃(µ− s) = f(s) ≤ 0. (4.51)

We conclude that if λ̃ ∈ I satisfies the implicit equation

√
d =

(
1

λ̃− L(Tk)

)
xkxk

+ f̃(λ̃),

then λ− ≤ λ̃ (see illustration below).
Observe now that λ̃ only depends on the spectrum of the L(Tk) and on the integer t̃.

We deduce that there exists a constant c1 > 0, depending only on T≤t̃ such that(
λ̃− c1√

d
, λ̃+ c1√

d

)
⊂ I. (4.52)

Indeed if s is too close to −
√
d then the contribution of f̃(s) becomes too large to reach for the equality to

hold. In particular

λ− ≤ λ̃ ≤ min (λ2(L(Tk)), µ) − c1√
d
. (4.53)

We now turn to the analysis of λ+, defined as the solution to the left-hand side equation in (4.50). Either
λ+ ∈

(
λ̃+ c1d

−1/2,min (λ2(L(Tk)), µ)
)
, in which case (4.49) holds with c∗ = c1. Or

λ+ ∈ I ′, I ′ ..=
(

−
√
d+ C1d

−1/2,min (λ2(L(Tk)), µ) − c1d
−1/2

)
.

Note that we used the same argument as before to prevent λ+ from being too close to −
√
d.

Let us introduce the change of variable λ± = −
√
d+ θ±√

d
. Similarly to what was done in the proof of Lemma

4.18 (see (4.32) and (4.33)), we find that θ± solve the implicit equations

1 = fTk,ak
(θ+) +

(
1

θ+ − (
√
dM (k) + d)

)
vv

, and 1 = fTk,ak
(θ−) +

(
1

θ− − (
√
dM (k) + d)

)
yy

, (4.54)

on the interval

I ′′ ..= (c1, J − c1) , J ..= min
(
λ2(L(Tk),

√
dµ+ d)

)
= O(1),

Here we introduced the (universal) function

fTk,ak
(s) ..=

(
1

s− L(Tk)

)
xkxk

, s ∈ I ′′.

Recalling (4.46), we see that for every s ∈ I ′′, we have

0 ≤
(

1
(
√
dM (k) + d) − s

)
vv

=
∑
λ∈Λ1

|wλ(v)|2

(
√
dλ+ d) − s

+
∑
λ∈Λ2

|wλ(v)|2

(
√
dλ+ d) − s

≤ Ct̃

d
+ 3
τd

= O
(
d−1) . (4.55)
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Here we used (4.47) and the fact that

inf
µ∈Λ1

|λ+ − µ| ≥ c1d
−1/2 ⇒ inf

µ∈Λ1
|θ+ − (

√
dµ+ d)| ≥ c1,

to control the contribution of the sum over Λ1.
Furthermore, recalling (4.51), we know that∣∣∣∣ ( 1√

dM (k) + d− s

)
yy

∣∣∣∣ = f̃
(√

ds+ d
)

≥ 1
2t̃(s− J) ≥ c3, s ∈ I ′′. (4.56)

where c3 > 0 is a universal constant (it depends only on Tk and t̃).
Inverting (4.54) and using (4.55) and (4.56), we see that θ± solve the equation

θ± = f−1
Tk,ak

(1 + ε±), |ε+ − ε−| ≥ c3

2 , ε− ≍ 1, ε+ = O
(
d−1/2

)
. (4.57)

On the interval I ′′, there exists C > 0, that depends on fTk,ak
such that 1

C ≤ f ′
Tk,ak

≤ C. Therefore, by the
mean value theorem, we deduce that

θ− − θ+ ≥ 1
(ε− − ε+)C ≥ c4 > 0.

Since c4 > 0 is a constant that only depends on c1 and fTk,ak
, it is universal. We conclude that

λ+ ≥ λ− + c4√
d
,

which shows (4.49) and concludes the proof.

λ0(Tk) = 0 µ

γ(T, 1)

c1

fTk,ak (s)

f̃(s)

λ̃

λ+

ε+
ε−

µ

c4c1 λ+λ−λ−

λ0(Tk)

Figure 4.6: Illustration of (4.52) (left-hand scheme) and (4.57)



4.7. QUANTITATIVE ESTIMATES ON TREES AND BOUQUETS 131

4.7 Quantitative estimates on trees and bouquets
Let

w(t) ..= tt−2dte−td, t ∈ N∗. (4.58)

This quantity describes the probabilistic price to pay to obtain a tree of size t.
Let n, r, ζ ∈ N∗ and t = (t1, . . . , tn) where ti ∈ N are fixed integers. Let

Nt
..=
∣∣{Ti ∈ Tti(ζ) : dist(T1, Ti) ≤ r, ti ∈ t}

∣∣ (4.59)

the number of bouquets.
The following heuristics gives us the number of bouquets we can expect to see at a given regime 1 ≤ d ≤ N

(note that we only consider finite collections of finite trees). The price to see a tree of size t ∈ N can be
approximated by the quantity w(t) and the size of the ball of radius r is dr+1 (geometric series in d).
Therefore the chance to see a bouquet of size t should be dr+1∏

i w(ti) and thus

Nt ∼ Ndr+1
∏
i

w(ti).

In particular, the number of trees of size t should be approximately (up to factors dr) equal to the number
of bouquets of total size t. This heuristics is formalized in the next lemma.

Lemma 4.24 (Second moment). Then

E[|Tt|] = Nw(t)td
(

1 +O
( t2d
N

))
,

E[|Tt|2] = E[|Tt|]2
(

1 +O
(dt2
N

)) (4.60)

as well as

E
[
Nt,r

]
= Ndr+1w(t)2

(
1 +O(. . .)

)
E[N 2

t,r] = E
[
Nt,r

]2(1 +O
( t2r2

N

)) (4.61)

where w(t) ..=
∏
t∈t w(t).

Proof of Lemma 4.24. Let t, c ∈ N, Y =
{
y1, . . . , yt

}
⊆ [N ], x ∈ [N ] \ Y and T ∈ Tt. Let us abbreviate

U(Y, x, T ) ..=
{
G|Y = T, S1(Y ) ∩ Y c =

{
x
}}
.

Then, abbreviating U = U(Y, x, T ) we find

T (U(Y, x, T )) =
(∑
i∈[t]

Ayix

) ∏
(i,j)∈E(T )

Ayiyj

∏
(i,j)/∈E(T )

(1 −Ayiyj )
∏

y∈Y, z∈[N ]\Y

(1 −Azy) (4.62)

and recalling (4.58), we see that

P(U(Y, x, T )) = t
( d
N

)t(1 − d

N

)Nt(1−O(t/N)) = N−tw(T )
(
1 +O(t2d/N)

)
.

Let ti ≥ 0, Ti ∈ Ti, Yi =
{
yi1, . . . , y

i
ti

}
⊆ [N ], i = 1, 2 disjoint subsets and x ∈ [N ] \ (Y1 ∪ Y2). Let

U(
{
Y1, Y2

}
,
{
x1, x2

}
,
{
T1, T2

}
, r) ..={

G|Yi
= Ti : Si(Yi) ∩ [N ] \ Yi =

{
xi
}

: i = 1, 2 and dist(x1, x2) ≤ r
}
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then similarly as before we can compute

w(T1, T2) ..= P(U(
{
Y1, Y2

}
,
{
x1, x2

}
,
{
T1, T2

}
, 0)) = t1t2

( d
N

)t1+t2e−(t1+t2)d
(

1 +O
( (t1 + t2)2

N

))
(4.63)

and a similar but slightly more involved computation gives

w(T1, T2, r) ..= P(U(
{
Y1, Y2

}
,
{
x1, x2

}
,
{
T1, T2

}
, r)) (4.64)

=
( d
N

)r+t1+t2
t1t2e−(t1+t2)ddr+1

(
1 +O

(d(t1 + t2)
N

))
(4.65)

Using (4.58) and Cayley theorem for the number of trees on t vertices, we find

E[|Tt|] =
∑
U

w(T ) = Ndtw(t)
(

1 +O
(1
t

+ t2d

N

))
.

To prove the second moment bound, we extend over all possible pairs (U, V ) and use that conditioned on
E(U, V ) the events T (U) and T (V ) are independent. We have

E[|Tt|2] =
∑
U,V

P[T (U) ∩ T (V )] =
∑
U,V

P[T (U), T (V )|E(U, V )]E[E(U, V )] =

∑
U,V

(Ndtw(t))2 +
(

1 +O
(dt1t2
N

))
= E[|Tt|]2

(
1 +O

(dt2
N

))
Similarly, we compute the first and second moments of Nt1,t2(r) using (4.64) and the summation over all
possible pairs is given by w(t1, t2).



Chapter 5

Graph geometry

5.1 General properties
We recall from Chapter 2 the notion of very high probability. Most of our statements do not in general hold
with very high probability but we nevertheless often use this notion to bound very unlikely events. Very
high probability bounds are thus mostly used within proofs.

Definition 5.1 (High and very high probability). An event Ω holds with high probability if P[Ω] → 1.
An event holds with very high probability if for every ν ≥ 0, there exists Cν ≥ 0 such that P[Ω] ≥ 1 − CνNν .

In this chapter we study properties of the Erdős-Rényi graph. In particular probabilistic properties. We
define the degree, respectively the normalized degree of a vertex, as

Dx
..=
∑
y ̸=x

Axy, vx ..= Dx − d√
d

, x ∈ [N ].

Note the random variables Dx, x ∈ [N ], each follow a BN,d/N distribution and are very weakly correlated

E
[(
Dx − d

)(
Dy − d

)]
= E

[(
Axy − d

N

)2]
= Var(Z), x, y ∈ [N ], (5.1)

where Z ∼ Bernoulli(d/N).
For Y ⊆ [N ], we denote A(Y ) as the |Y |-by-|Y | matrix defined by ((A(Y ))xy)x,y∈Y = (Axy)x,y∈Y . We also
introduce the number of connections between two sites

E(Y,Z) =
∑
y∈Y

∑
z∈Z

Ayz, Y, Z ⊂ [N ]

and write E(Y ) ..= E(Y, Y ).

Lemma 5.2 (High degree probability). For any ν ≥ 0, there exists Cν ≥ 0 such that we have

P
(

max
x∈[N ]

Dx ≤ ∆
)

≥ 1 − CνNν , ∆ ..= ∆(d,N, Cν) =
{
d+ Cν

√
d logN ifd ≥ 1

2 logN
Cν logN

log logN−log d ifd ≤ 1
2 logN.

(5.2)

Moreover for α ≥ 0, we have

P[Dx ≥ αd] ≤ 2
N

e(u+−α)d log(u+). (5.3)

133
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Proof. The random variables Dx, x ∈ [N ], each follow a BN,d/N distribution. Using Lemma B.3 and a union
bound gives

P
[
max
x∈[N ]

Dx ≥ ∆
]

≤ NP
[
D1 ≥ ∆

]
≤ Ne−dh(∆/d),

where h is defined in (B.1). Now since

∆
d

=
{

C
( logN

d

)1/2
ifd ≥ 1

2 logN,
C logN
d log(logN/d) ifd ≤ 1

2 logN,

we conclude that if Cν is large enough, the right-hand side of the above equation is bounded by CνN−ν .
To obtain (5.3), we again apply Lemma B.3 and do a first order approximation of h.

Remark 5.3. The bound (5.2) is of course very rough. As hinted at by Lemma B.4 and the very weak
correlations between degrees (5.1), the law of extreme values of (vx : x ∈ [N ]) should follow the law extreme
law of N independent normal distributions. In that case we expect maxx∈[N ] vx ∼

√
2 logN for d ≫ logN.

On the other hand for d ≲ logN , we cna expect maxx∈[N ] Dx to behave as the maximum of N independent
Pd variables, for which an explicit formula is derived in Lemma B.7.

The following is a standard result about the connectivity of the Erdős-Rényi graph. This is proved for
instance in [16, Theorem 7.3].

Lemma 5.4. For d ≥ logN , the Erdős-Rényi graph is connected and its radius is logN
log d (1 + o(1)) with high

probability.
For d < logN , the Erdős-Rényi is disconnected with high probability.

The connectivity properties of the Erdős-Rényi graph are not not crucial in our work. However some
understanding of the behavior of small connected components is useful. In particular the next result, [5,
Corollary A.15].

Lemma 5.5. There exists C > 0 such that if C ≤ d ≤ N , the number of All small components of G
have at most O(log d/N) vertices with very high probability. All small components of G are trees with high
probability. The giant component of G has at least N(1 − e−d/4) vertices with high probability.

An important property of the Erdős-Rényi graph is that it is relatively sparse and in particular contains
few cycles in given neighborhoods. The next lemma states that there is a strong relation between the regime
of d and the probability to find a cycle in some region of the graph. The result is found in [6, Lemma 5.5]

Lemma 5.6 (Few cycles in small balls). For k, r ∈ N, x ∈ [N ], there is C > 0 such that

P
(

|E(G|Br(x))| − |Br(x)| + 1 ≥ k|S1(x)
)

≤ 1
Nk

(
C(d+ |S1(x)|)

)2kr+k(2kr)2k. (5.4)

A useful property of the Erdős-Rényi graph is that it enjoys some regularity in its growth. This a
restatement of [6, Lemma 5.4]

Lemma 5.7 (Concentration of Si(x)). Let 0 ≤ d ≤ N , x ∈ [N ]. then there are constants C, c > 0 such that

P
(

(1 − ε− CEi)d|Si(x)| ≤ |Si+1(x)| ≤ (1 + ε+ CEi)d|Si(x)|
∣∣∣A(Bi−1(x))

)
≥ 1 − 2 exp

(
−cd|Si(x)|ε2) (5.5)

on the event |Bi(x)| ≤
√
N , where Ei ..= d|Si(x)|

N + 1√
N
.

Proof. This is [6, (5.16)] the proof of which does not require any lower bound on Dx.

The next lemma is an example of how we can accurately control the size of some set of vertices, for
instance leaves. A similar proof can be made for any similar subset of vertices. The idea is always to use
the small and explicit correlation between pairs of vertices.
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Lemma 5.8. Let 0 < d < N1/5,

P
[
|L| − E|L| ≥ tE|L|

]
= O

(
t−2).

For d ≥ N1/5, |L| = 0 with high probability.

Proof. The proof is based on a second-moment argument. We first compute the expectation of the number
of leaves, using Lemma B.5 and introducing Z ∼ Pd, we have

E|L| = NP(Z = 1)
(
1 +O

(
N−1)) = Ne−dd

(
1 +O

(
N−1)) .

We can already conclude by a union bound that

P[L > 1] ≤ Ne−dd ≤ N−3/5, d > N1/5.

The second moment of |L| can be computed as

E|L|2 = NP(Z = 1)
(
1 +O

(
N−1))+

∑
x̸=y

E
[
E
[
1Dx=11Dy=1|Axy

]]
= Ne−dd

(
1 +O

(
N−1))+N(N − 1)

(
d

N

(
1 − d

N

)2(N−1)
+
(

1 − d

N

)
P(Z = 1)2 (1 +O

(
N−1)))

= Ne−dd
(
1 +O

(
N−1))+N(N − 1)

(
d

N
e−2d+O

(
d2/N

)
+
(

1 − d

N

)
d2e−2d (1 +O

(
N−1)))

= N2e−2dd2
(

1 +O
(d3

N

))
=
(
E|L|

)2(
1 +O

(d3

N

))
In the second equality we used the independence of Dx, Dy, x ̸= y, conditioned on Axy (this simply means
that two vertices are only correlated if the edge between them is open).
We can conclude using Chebyshev’s inequality

P
(

|L| − E|L| ≥ tE|L|
)

≤
E|L|2 −

(
E|L|

)2

t2
(
E|L|

)2 ≤ 2t2
(

1 +O
(d3

N

))
.

This concludes the proof.

Lemma 5.9. Let L be defined as the set of vertices of degree 1. Then

P
[
|L| − E|L| ≥ tE|L|

]
= O

(
t−2).

Finally, we show a bound on the size of the adjacency matrix of a tree.

Lemma 5.10. Let A be the adjacency matrix of a graph with maximal degree q + 1, for some q ≥ 0. Then
∥A∥ ≤ q + 1. Moreover if A is the adjacency of a tree then ∥A∥ ≤ 2√

q.

Proof. The first claim is obvious by the Schur test on the operator norm or alternatively Gershgorin circle
theorem. Let V,E be the vertex and edge sets of the graph in question. To prove the second claim, choose
a root vertex o and denote by Cx the set of children of the vertex x ∈ V. Then for any vector w = (wx) we
have ∣∣⟨w , Aw⟩

∣∣ =
∣∣∣∣∑
x,y

wxAxywy

∣∣∣∣ = 2
∣∣∣∣∑
x∈V

∑
y∈Cx

wxwy

∣∣∣∣ ≤
∑
x∈V

∑
y∈Cx

(
1

√
q
w2
x + √

qw2
y

)

≤ q + 1
√
q
w2
o +

∑
x ̸=o

(
q

√
q
w2
x + √

qw2
x

)
≤ 2√

q
∑
x∈V

w2
x.

Here we used Young’s inequality in the third step and in the fourth step the fact that each vertex in the sum
appears at most q times as parent. This concludes the proof.
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5.2 Exclusion principle
The analysis of extreme eigenvalues of the Erdős-Rényi graph is centered around the study of extreme events,
such as high-degree vertices, low-degree vertices, leaves and trees. Such events are called low-probability
events. The Erdős-Rényi graph enjoys a probabilistic property that makes its typical realizations well suited
to study simultaneously those events. Indeed low probability configurations that happen simultaneously on
the graph are with high probability far away from one another on the graph. We call this mechanism the
local exclusion principle. For our use, it is important that this exclusion mechanism works well on some
sufficiently large distance r ≥ 1.

• For large-degree vertices, Lemma 5.12 as soon d is small enough, the local exclusion principle is ap-
plicable. There are two underlying mechanisms behind this fact: first we define large-degree vertices
in such a way that their expected number is always smaller than

√
N . Second the radius of the graph

grows as logN
log d .

• For small-degree vertices, Lemma 5.13, the situation is more complex since for values of d smaller than
logN , the expected number of small-degree vertices behaves as Ne−d. Therefore the local exclusion
principle only makes sense down to some regime d∗ ≫ 1

2 logN .

• For small- and large-degree vertices in dense regimes, Proposition 5.16, we cannot hope to make their
neighborhood disjoint. Indeed the radius of G is logN

log d with high probability and thus if d = Nε, ε ≥ 1
n ,

n ≥ 1, it is impossible to have a local exclusion principle on radius n neighborhoods.

Remark 5.11 (Difference with [6]). In [5], the authors use the exclusion principle for distance of the order
r = O(logN). We usually only require r = O(1). This difference explains why perturbation theory makes
sense for L for a wider range of regimes of d than is makes sense of A.

Let us recall the definition of U±(ε), ε > 0 from (3.12). We introduce two events, Ξ±(r, ε), r ∈ N∗, ε > 0,
that check if there exist some pair of elements of U± that are close to each other in G. Let

Ξ+(r, ε) ..=
{

∃x, y ∈ U+(ε) : y ∈ B2r(x)
}
,

Ξ−(r, ε) ..=
{

∃x, y ∈ U−(ε) : y ∈ B2r(x)
}
.

(5.6)

Lemma 5.12 (Large vertices are not neighbors). Let 1 ≤ d ≤ (logN)2. For r ∈ N∗, ε > 0, we have

P
(
Ξ+(r, ε)

)
= O(N−η), 0 < η < ε− (r + 1) log d

logN . (5.7)

Proof. Let us fix ε > 0 and r ∈ N∗ and introduce

Ξ(k) ..=
{

∃x ∈ [N ] : x ∈ U+(ε), |U+(ε) ∩Br(x)| ≥ k
}
, k ∈ N∗.

Using Lemma B.3 when d ≥ logN and (5.3) for d ≤ logN and using the fact that |h(α + t/d) − h(α)| =
O((t/d)2), uniformly for t ∈ R we get, for t ≥ 0,

P
(
vx ≥ u+(ε) − t√

d

)
≤ P

(
vx ≥ u+(ε) − t√

d

)(
1d≥logN + 1d≤2 logN

)
≤ N−(1+ε)/2eCt

2/d + 2
N

ed log(u+)( 1−ε
2 )et log(u+)

(5.8)

for some constant C > 0.
For Y ⊆ [N ] fixed, let us define

δy(Y ) ..=
∑
z∈Y

(
Ayz − 1

N

)
, y ∈ Y. (5.9)
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Then conditioned on A(Y ), the quantities {Dy − δy(Y ) : y ∈ Y } are independent. We have, for n ∈ N∗,

P
[
vx ≥ u+(ε), vyi

≥ u+(ε), i ∈ [k]
]

≤ P
[
vx ≥ u+(ε) − k + n√

d

](k+1)
+ P

[
max
i∈[k]

δyi
≤ n

]
.

For k ≤ (logN)2, we have

P
[
Ξ(k)] ≤ N

(
d(r+2) − 1
d− 1

)k[(
P
(
vx ≥ u+(ε) − k + n√

d

))k+1
+
(

(k + 1)d
N

)n]
. (5.10)

Now setting k = 1 and n ≤ 2 we find, setting t = 3 in (5.8) and taking the union bound over all possible
open paths between x and y1, we find

P[Ξ+(r)] ≤ P[Ξ(1)] ≤ CNdr+1
[
N−1−ε′

(1 +O(1/d)) + d2

N2

]
= O(N−η), (5.11)

for η ≤ ε− (r+1) log d
logN .

Note that from (5.10), we could derive results for r ≫ 1 if we allowed k to be greater than 1. This is
what is done for instance in [6, Section 5].

Lemma 5.13 (Small vertices). For c > 0, there exists 0 < η < ε < c such that if ( 1
2 +c) logN ≤ d ≤ (logN)2,

P
(
Ξ−(r, ε)

)
= O(N−η). (5.12)

Moreover for ε > 0 there exists a constant K ..= K(ε, r) ≥ 0 such that if d ≥ 1
2 logN +K log logN then

P
(
Ξ−(r, ε)

)
= O(e−K log logN/2) (5.13)

Proof. Let us fix 0 < ε < 1
2 and abbreviate U−

ε = U . and d ≥ 1
2 logN + ϕ for some ϕ ≥ 0 to be set later.

Let us first deal with the case d ≥ ( 1
2 + c) logN . Then by Lemma B.3 and since ε−1 ≤ ε

√
d we have

P[x ∈ U ] ≤ max
(
P[vx ≤

√
(1 + ε) logN ],P[vx ≤ ε

√
d]
)

= max
(
−e(1−ε)2d ∨N− 1+ε

2 = O(N− 1+ε
2 )
) (5.14)

for ε < 1 − 1
1+2c and where we chose ε′ < ε in the last step. We can use (5.11) directly, with k = 1, without

accounting for extra error terms.

P(Ξ−(r)) ≤ Nd(r+1)N−1−ε′
= O(N−η)

for η < ε′ < ε. As we are looking at small vertices, removing the δi defined in (5.9) does not increase the
probability; small degree events are positively correlated. Therefore Since ε′ can be made as close as possible
to ε by choosing C1 large, we conclude (5.12).
Turning to (5.13) we first suppose without loss of generality that 1

2 logN + 2
ε ≤ d ≤ 2

3 logN and set
ϕ ..= d − 1

2 logN . Let us recall that in that regime u− = 1
d for d ≤ logN and that in this regime the

condition for x ∈ U− becomes Dx ≤ k∗
..= εd ∧ log d

ε(d− 1
2 logN)∨1 .

Let Y ∼ Poisson(d) and k∗
..= ⌈ε−1⌉, for some c′ > 0. Clearly k∗ ≤ (1 − c)d for some c > 0. We can thus

use Lemma B.5 and Stirling’s formula to find that

P
[
Dx ≤ 1

ε

]
≤ k∗

d
P[Y = k∗](1 +O(d2/N)) ≤ e−dek∗(1+ 1

k∗ +log(d/k∗))
(

1 +O

(
1
k∗

))
≤ 2 exp

(
−1

2 logN − ϕ+ C
log d
ε

)
.

(5.15)
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for some C ..= C(ε) ≥ 0. Using (5.11) on more time we get

P
(
Ξ−(r, ε)

)
≤ Ndr+2

(
P
[
Dx ≤ 1

ε

])2

= exp
(

(r + 2) log d− ϕ+ C
log d
ε

)
≤ O

(
e−K log logN)

where in the last step we set ϕ ≥ 2K(r, ε) log logN . This concludes the proof.

5.3 Pruning in dense regime
In this section, we focus on the high-density regimes, i.e. Nε ≤ d ≤ N

1
2 −ε, for some ε > 0. In the rest of this

section we write U(τ) ..= U+(τ) ∪ U−(τ) and denote by a superscript τ the objects that relate to the pruned
graph Gτ . We first prove a basic separation result for regimes d ≪ N1/2.

Proposition 5.14. Let ε > 0, and 1 ≤ d ≤ N
1
2 −ε. Then for 2 − ε

2 < η < 2, the balls
(
B2(x) : x ∈ U(η)

)
are disjoint with probability 1 −O

(
N−ε

)
.

Proof. We find that

P
[
∃x ∈ U(η), y ∈ B1(x) ∩ U(η)

]
≤ CNd2

(
P
(
x ∈ U(η)

))2
≤ CN1+(1−2ε)−(2−ε/2) = O

(
N−ε

)
.

For d ≪ N1/3, we can construct prune G so as to obtain stronger separation properties. We can construct
a graph Gτ such that on this graph vertices in U+(τ) ∪ U−(τ) are at a distant at least 3 from each other
and their neighborhoods do not overlap too much.

Proposition 5.15. Let ε > 0, τ ∈ (1 − ε/2, 1) and Nε ≤ d ≤ N
1
3 −ε. There exists η > 0 such that with

probability 1 −O
(
N−η) there is a graph Gτ that satisfies the following conditions

(i) the balls
(
B1(x) : x ∈ U(τ)

)
are disjoint trees and

Sτ1 (x) ∩ Sτ2 (y) = ∅, x, y ∈ U(τ), x ̸= y. (5.16)

(ii) Each edge in G \ Gτ is incident to at least one vertex in U(τ) and

max
x∈E(G\Gτ )

Dx = O(1).

(iii) For each x ∈ U(τ)

1
d

∑
y∈Sτ

1 (x)

v(τ)
y = O

(
d−1/2)

Proof. For (5.16), we use Lemma 5.2 to find

P
[
∃x, y ∈ (τ) : |S1(x) ∩ S2(y)| ≥ k

]
≤ C1N

−ε
(C2d

3

N

)k
+ C2N

−2

for C1, C2 ≥ 0 coming from (5.17) and Lemma 5.6 respectively. For k ≥ 1
τ , the right-hand side is bounded

by O
(
N−η), for η > 0 small enough. If u ∈ S1(x) ∩ S2(y), we add the edge (xu) to Eτ . By the previous

equation, we see that with probability 1 −O
(
N−η), there are at most O(1) such edges for each x ∈ U(τ).
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For (iii), we observe that conditioned on S1(x) the random variable 1
d

∑
y v

(τ)
y follows the same law as

1
d3/2

(
Z − d2) where Z ∼ Bd(N−|S1(x)|),d/N . Therefore using Lemma B.3, we find

P

[
1
d

∑
y

v(ε)
y ≥ t

]
≤ 2e−d2t2/2.

Setting t = 1/
√
d yields a bound O

(
N−1).

For d ≪ N1/6, we obtain even stronger separation properties that allow us to prove the block diagonal
decomposition of L.
Proposition 5.16 (Pruning). Let ε > 0, τ ∈ (2 − 2ε, 2) and (logN)1+ε ≤ d ≤ N

1
6 −ε. Then there exists

η > 0, such that with probability 1 −O
(
N−η) there exists a graph Gτ such that

(i) The balls
(
Bτ3 (x) : x ∈ U(τ)

)
are disjoint trees.

(ii) Each edge in G \ Gτ is incident to a least one vertex in U(τ) and

max
x∈E(G\Gτ )

Dx = O(1).

(iii) For each x ∈ U(τ), ∣∣{y ∈ Bτ2 (x) : |vx| ≥ (logN)1/4}∣∣ = O
(√

logN
)
.

Proof. Let Eτ ⊆ E(G) be the set of edges that will be removed to create Gτ . By Lemma B.3, we find

P
(
x ∈ U(τ)

)
≤ 2N− c

2

(
1−

√
logN/d

)
, x ∈ [N ], (5.17)

and so, following the same logic as in the proof of Lemma 5.12, for k ≥ 0

P[∃x ∈ U(τ) : |U(τ) ∩B2(x)| ≥ k] ≤ Nd6k
[
exp
(

− (k + 1)τ
2 logN

(
1 − k + n√

dτ logN

))
+ k exp

(
−n2N

dk

)]
,

holds for any n ≥ 0. Setting n = 10 and k ≥ 10
τ , the right-hand side is bounded by O

(
N−1). Therefore by

deleting at most O(1) edges per vertex, the balls B1(x), for x ∈ U(τ) can be made disjoint. We add those
edges to Eτ .
We will now prove that with high probability,∑

y∈S1(x)

|S1(x) ∩ S1(y)| = O(1), x ∈ U(τ)

By Lemmas 5.2 and 5.6 and (5.17), we see that there exists C ≥ 0 such that, for r, k ≥ 0,

P
[
∃x ∈ U(τ) : |E(Br(x))| − |V (Br(x))| − 1 ≥ k|S1(x)

]
≤ C1N

− τ
2

(
1−

√
logN/d

) (2d+ C2 logN
)2kr+k

k2k

Nk−1 + C2N
−2,

for C1, C2 ≥ 0 coming from (5.17) and Lemma 5.6 respectively. For r = 1 and k ≥ 1
2ε we see that the

right-hand side is bounded by O
(
N−η) for η > 0 small enough. This shows that the cycles in the balls

B1(x), x ∈ U(τ), can be removed by deleting at most O(1) from every x ∈ U(τ). We add those edges to Eτ .
The proof of (iii) follows from Lemma B.3 as we find

P
[
x ∈ U(τ) : y1, . . . , yk ∈ B2(x), |vyi

| ≥ (logN)1/4, i ∈ [k]
]

≤ C1d
3N1− τ

2 e
1
2k

√
logN

(
1−

√
logN/d

)
,

for some constant C1 ≥ 0. For k ≥ C2
√

logN , the right-hand side is bounded by O
(
N−η), for η > 0 small

enough.
The graph Gτ is obtained from the graph G by removing every edge in Eτ . This concludes the proof.
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Remark 5.17. From the proof of Proposition 5.16 it becomes evident why the upper bounds on d are
introduced. The bound d ≪ N1/3 is necessary if we want the graph to be sparse enough. Intuitively we want
a distance of 3 between vertices of U(τ). But the radius of an Erdős-Rényi with parameter d/N is about
logN/ log d. Therefore at d = N1/3 we would have a radius precisely equal to 3.
The bound d ≪ Nτ/4 is necessary to prevent the vertices of U(τ) to be too numerous.

5.4 Neighborhood of large-degree vertices
In this section, we analyze the properties of the graph G in the neighborhood of large vertices. Before stating
the technical results that we use in Chapter 3, we give some intuition about the mechanisms we exploit.

Let X ∼ Pd. As we mentioned in the introduction of Chapter 3, the Poisson distribution of parameter
N can be to some extend well-approximated by a normal law. Indeed, using Stirling’s formula, for k ≫ 1,

P(X = k) = exp
(
k log d− log k! − d

)
= exp

(
k log(d/k) − k − d+ 1

2 log(2πk)(1 + o(1))
)

For k = d+ a
√
d, this becomes

P(X = k) = exp
(
k log

(
1 + ad−1/2

)
+ k − d

)
= exp

(
−(d+ a

√
d)
(
a√
d

− a2

2d +O

(
a3

d3/2

))
+ a

√
d

)
= exp

(
−a2

2 +O

(
a3
√
d

))
.

As long as a6 ≪
√
d, we can morally think of X0 as a N (0, 1) variable. However, it is clear that the largest-

degree vertices of G do not satisfy this assumption when d ≲ logN. Indeed, as Lemmas 5.2 and B.7 show,
the maximal degree of G stays is of order logN

log(logN/d) , which is much larger than O(d) for small values of d.
However, we can use the sparsity of the Erdős-Rényi graph to say that if the degree of the vertex x is

very large (meaning x ∈ W+(κ)), then the region of G around x has exhausted its "rare event potential".
This is a similar idea that underlines the local exclusion principle introduced in Section 5.2. Therefore the
other quantities in Br(x), r ≥ 1, that we would be interested in, might be close to their expectation. In
particular, we are often interested in the statistics of the sphere of radius 2 around x,

βx ..= |S2(x)|
|S1(x)|d − 1, x ∈ [N ].

Then it is clear that conditioned on |S1(x)|, the random variable d|S1(x)|βx follows a P|S1(x)|d distribution.
Since Br(x) has exhausted its "rare event potential", whenever x ∈ W+(κ), we can then argue that the normal
approximation of Poisson variables is valid for βx. This idea is used the present section (see Propositions 5.19
and 5.21) to control roughly the statistics of observables in the neighborhood of Br(x), x ∈ W+(κ). The
idea is pushed even further in Section 5.6 where the variable βx is very closely approximated by a N (0, 1)
variable.

Let us first make some a priori observations. The set u+(ε) is defined so that P[x ∈ u+(ε)] ≪ N−1/2.
On the other hand, we get directly from (5.3) and from the definition of W+(κ) in (3.16)

P
[
x ∈ W+(κ)

]
≤

{
2 logN
N , if d ≥ (log logN) logN,

2
N e2κ log(u+) if d ≤ (log logN) logN.

(5.18)

In particular we can always write P
[
x ∈ W+(κ)

]
≤ 2

N e2κ log(u+).

Lemma 5.18 (Behavior of βx). For any ε > 0, 1 ≤ d ≤ N
1
2 −ε, we have with very high probability,

(βx − 1) = C


log(logN/d)√

d
, d ≤ logN√

logN
d , d ≥ logN,

x ∈ U+(ε). (5.19)
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Moreover for κ as in (3.15) and α ∈ (0, 1), there exists c > 0 such that,

(
βx − 1

)
= O

( v2
x

αx
√
d logN

)
, x ∈ W+(κ), (5.20)

holds with probability 1 −O
(
e−c

√
logN/2(log logN)3)

.

Proof. The first clain is obtained by Lemma 5.7 and union bound. We find

P[∃x ∈ U+(ε), (βx − 1) ≥ t] ≤ N1/2e−cdu+(ε)t2 , t ≥ 0.

for some constant c > 0. Choosing t as in the right-hand side of (5.19) and using the definition of u+(ε), we
conclude.

To prove (5.20), we use again Lemma 5.7 but this time with the bound (5.3). Let x ∈ W+(κ). If
d ≥ (log logN) logN , then by Lemma 5.2, v2

x

αx

√
d logN ≤ Cd−1/2 with very high probability, for C ≥ 0 large

enough. A direct application of (5.3) gives

P[∃x ∈ W+, (βx − 1) ≥ C
αxv

2
x√

d logN
] ≤

∑
x∈[N ]

P(x ∈ W+(κ))P
[
(βx − 1) ≥ C

αxv
2
x√

d logN
∣∣S1(x)

]
≤ 2elog logN−cd/C2

≤ e−cd/2,

for some universal c > 0.
If d ≤ (log logN) logN , v2

x

αx

√
d logN ≤ 1√

d log(logN/d) . By Lemma 5.7 we find

P
[
∃x ∈ W+, (βx − 1) ≥ C

v2
x

αx
√
d logN

]
≤ exp

(
κ log(logN/d) − c(du+ − κ)

(log(logN/d))2

)
,

for some universal c > 0. The right-hand side is bounded O
(
e−c

√
logN/2(log logN)3) (here we use that du+ ≥√

logN(log logN)−1 )

Proposition 5.19 (Neighborhood of x ∈ U+). For any r ∈ N∗ and 0 < ε < 1/2. If r = O(1), there exists
K, c∗ > 0 such that for 0 < η < ε/2 if

K ≤ d ≤ (logN)2 (5.21)

the following holds with probability 1 −O(N−η). Define

ψ+
..=
√

logN ∨ 1
2

logN√
d log(logN/d)

(5.22)

(i) The balls
(
G|Br+2(x) : x ∈ U+(ε)

)
are disjoint trees.

(ii) For each x ∈ U+(ε/2), for every y ∈ Br(x) \ {x},

vx − vy ≥ c∗ψ+, |vy| ≤ ψ+.

(iii) For each x ∈ U+(ε/2), and α ∈ (0, 1),∣∣{y ∈ Br(x)||vy| ≥ (logN)α
}∣∣ ≤ C(logN)1−2α.

(iv) For each x ∈ U+(ε/2),∣∣∣∣ |Si+1(x)|
d|Si(x)| − 1

∣∣∣∣ = O

((
logN
d|Si|

)−1/2)
,

∣∣∣∣ |Si(x)|
Dxdi−1 − 1

∣∣∣∣ = O

((
logN
dDx

)−1/2)
, 1 ≤ i ≤ r. (5.23)
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(v) For each x ∈ U+(ε/2), ∑
y∈Si(x)

v2
y = O

(
Dxd

i−1(log logN)2
)
, 1 ≤ i ≤ r.

Proof. We work on the event Ξ+(r + 2, ε). Observe that u+(ε) defined (3.12) and ψ+ defined in (5.22) are
analogous. By (5.2), (5.8) and Lemma 5.6, there exists C > 0, such that

P[∃x ∈ U+(ε), G|Br+2(x) contains a cycle]

≤
∑
x∈[N ]

P
(

|E(G|G|Br+2(x))| − |G|Br+2(x)| + 1 ≥ k|S1(x)
)
P(x ∈ U+(ε))

≤
(
N

1−ε
2 + 2

N
exp
(
d log(u+)

(
1 −

√
1 − ε

2

)))(Cr(d+ logN)
)4r

N
= O

(
N−η),

for η < 1. This proves that there are no cycles in G|Br+2(x) on a high probability event. This proves (i).
For (ii) let us fix ε̃ ∈ (0, ε). Then there exists c > 0 such that we have

u+(ε) − u+(ε̃) > cψ+.

Moreover by Lemma 5.12, Ξ+(r+ 2, ε̃) holds with high probability. We conclude the first assertion. For the
second assertion, observe that if c > 0, a reasoning analogous to (5.11) yields

P
[
∃x ∈ U+(ε), ∃y ∈ Br(x) : |vy| ≥ (1 − c)ψ+

]
≤ CNdr+2N− 1+ε

2 N− 1−ε′
2 = Cdr+2N− ε−c

2 = O(N−η/2),

for c and η small enough. This proves (ii).
Similarly for (iii), we find that for k ∈ N∗ and t ≥ 0, we have

P
[
∃
{
y1, . . . , yk

}
⊆ Br(x) : |vyi

| ≥ (logN)α|S1(x)
]

≤ CDxd
r−1e−ck(logN)2α

+ P
(∣∣G|Br(x)

∣∣ ≥ CDxd
r−1
)
.

The second term on the left-hand side can be made smaller than O
(
N−ν) by choosing C = Cν large

enough and using Lemma 5.7 inductively on 1 ≤ i ≤ r. The first term is smaller than N−η as soon as
k = C(logN)1−2α for C > 0 large enough.
(iv) follows from [6, Lemma 5.4]. Indeed for ν = 2, there exists K2 ≥ 0 such that on the event{

K2 logN/d ≤ Dx ≤
√
N(2d)−r}

then (5.23) hold with probability O
(
N−2). Choosing K in 5.21 large enough, this condition is always satisfied

for x ∈ U+(ε). This prove (iv).
For the last point, let us work only one the event defined by all previous points. Let us fix x ∈ U+(ε). Then
Br(x) is a tree on which (5.23) hold. Let us define

Ni,k(y) ..=
{
y ∈ Si(x) : d2ek ≤ (Dy − d)2 ≤ d2ek+1}.

Using Bennett’s inequality we find that if ℓi,k(t) ..= |Si(x)|+t
d (ek/2 ∧ ek), then for 1 ≤ j ≤ r and

P
[
|Ni,k| ≤ ℓi,k ∀i ≤ j, k ∈ Z with k ≤ log logN

∣∣S1(x)
]

≥
(
1 − r log logNe|Si(x)|−|Si(x)|−t) ≥ 1 −O

(
r log logNe−t).

By (ii), |vy| ≤ C
√

logN for every y ∈ Br(x), y ̸= x and for some C > 0 large enough. We can thus set
t = 2 logN and condition on |S1(x)| to find

∑
y∈Si(x)

(Dy − d)2 ≤ d|Si(x)| +
⌈logψ⌉∑

k=−⌊log d⌋

d2ek+1Ni,k

≤ d|Si(x)| + (d|Si(x)| + logN)(log d+ logψ)

≤ d|Si(x)|
(

1 + logN
d|Si(x)|

)
(log d+ logψ) ≤ CDxd

i log logN
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with probability greater than 1 − N−2. Taking a union bound over U+ we conclude. This concludes the
proof.

We now derive better estimates that are valid in the neighborhood of W+(κ). We need the following
technical result which is [7, Lemma 9.1].
Lemma 5.20. Let x ∈ [N ], and Xy

..= (Ny(x) − d)2 − d, for any x ∈ [N ] \ {x}. Then the following holds

(i) For any γ ∈ (0, 1/2), there is C > 0 such that for any α ∈ [−d−1−2γ , d−1−2γ ], we have

E[exp(αXy1Xy≤d1+2γ )|Bk(x)] ≤ exp(Cα2d2) + C|α|d2e−cd2γ

if |Bk(x)| ≤
√
N.

(ii) For any k, the random variables (Xy)y∈Sk(x) are i.i.d. conditioned on Bk(x).

(iii) For any γ ∈ (0, 1/2), there are c > 0 and C > 0 such that P(Xy ≥ d1+2γ |Bk(x)) ≤ Ce−cd2γ

.

Proposition 5.21 (Refined of analysis of G|Br(x), x ∈ W+). For 0 < α < 1/12 and r = O(1), there exits
K, c > 0 depending on α such that if

K ≤ d ≤ (logN)2

then following holds with probability 1 −O
(
e−cω(α)).

(i) For each x ∈ W+(κ)
(βx − 1) = O

(κ log logN√
logN

)
.

(ii) For each x ∈ W+(κ)

max
y ̸=x

|vy| ≤ C(log logN)2,
∣∣{y ∈ Br(x) : |vy| ≥ dα

}∣∣ ≤ O
(κ log logN

d2α

)
.

(iii) For each x ∈ W+(κ)∑
y∈Si(x)

v2
y = Dxd

i−1
(

1 +O
(ω(α)2

√
Dx

))
+ (log logN)61d2α≤log logN , 1 ≤ i ≤ r.

Proof. Let α ∈ (0, 1
2 ) and r = O(1). We work on the event defined by Propositions 5.19. The proof of (i)

is similar to Lemma 5.18. We use (5.3), the fact that u+ ≥ C logN
d log logN and Lemma 5.7 with ε2 = κ log(u+)2

logN
and a union bound.
Let us write

Ω1(x, t, k) ..=
{

∃y1, . . . yk ∈ Br(x) : |vyi | ≥ t, yi ̸= x, i ∈ [k]
}
.

Using (5.14) and (B.2), we find

P
( ⋃
x∈W+

Ω1
(
x,C(log logN)2, 1

))
≤ CDxd

rNP(x ∈ W+)P[vy ≥ C(log logN)2]

≤ C exp
(
κ log(u+) + r log d+ log(Dx)

)[
N−c2/2 ∨ exp

(
−dh

(C(log logN)2
√
d

))]

≤ C exp

2κ log(u+) + (r + 1) log d− 2C2(log logN)4

3
(

1 + c
(
C(log logN)2

9d

)1/2
)


≤ C exp
(

−C(log logN)3

2

)
= O

(
−ecω(α)),
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for c small enough and C large enough so that κ log logN ≤ C
2 (log logN)2. Here we used log(Dx) ≤ log(u+)+

log d in the third inequality and κ = O(log logN) in the fourth inequality.
We also have

P
( ⋃
x∈W+

Ω1(x, dα, k)
)

≤ C exp
(
κ log(u+) + k(r + 1) log d− k

3d2α

2(3 + dα− 1
2 )

)
.

For d2α ≥ log logN , we can set k = 1 and the term inside the exponential is dominated by −c(log logN∨d2α),
for c > 0 small enough. On the other hand, for d2α ≤ log logN in order to get a dominant negative factor
in the exponential, we must impose

(r + 1) log d− d2α 3
8 < 0,

which is satisfied for d ≥ K1(r, α). Setting k ≥ Cκ log logN
dα , for C ≥ 0 large enough, the above probability is

bounded by exp
(
−C

2 κ log logN
)
. This finishes the proof of (ii).

We now turn to (iii) and write∑
y∈Si(x)

v2
y =

∑
y∈Si(x)

v2
y1|vy|>dα +

∑
y∈Si(x)

v2
y1|vy|≤dα . (5.24)

We begin with the first sum. Observe that by (ii), it is zero with high probability when d2α ≥ log logN . To
study smaller values of d, let us introduce

Nk(x, i) ..=
∣∣ {y ∈ S1(x) : d2ek ≤ (Dy − d)2 < d2ek+1} ∣∣, k ≥ 0, i ∈ [r].

We find, using Bennett’s inequality and (5.2), for any ν > 0 there are Cν , cν > 0 such that, for 1 ≤ i ≤ r,

P
[
Nk(x, i) ≥ n||Si(x)|

]
≤
(

|Si(x)|
n

)
e−cdn(ek∧ek/2) ≤ exp

(
n
[
log
(
|Si(x)|

)
− cd

(
ek ∧ ek/2)]). (5.25)

By Lemma 5.2 and (5.23), r = O(1) and d ≤ log logN we have log(|Si(x)|) ≤ 2 log logN . Therefore

P[Nk(x, i) ≥ n||Si(x)|] ≤ (logN)−2n +O
(
N−η), k ≥ k∗

..= log
(4 log logN

cd

)
, i ∈ [r],

where the term O
(
N−η) comes from Proposition 5.19.

Writing Nk(x) ..=
∑r
i=1 Nk(x, i) and using r = O(1), we find that

P
[
∃x ∈ W+(κ), i ∈ [r], k∗ ≤ k ≤ log logN : Nk(x) ≥ C log logN

]
≤ NP

(
x ∈ W+(κ)

)
P
[
Nk(x, i) ≥ C log logN/r

∣∣∣|Si(x)|
]

≤ eκ log(u+)(logN)−C log logN/r +O
(
N−η) = O

(
e−cω(α)),

for C ≥ 0 large enough. Here we used (5.3) to bound P(x ∈ W+(κ)). Now since by (ii), |vy| = O
(
(log logN)2)

for y ̸= x, we can bound k ≤ kmax
..= log log logN and find that with probability 1 − O

(
e−cω(α)), for each

x ∈ W+(κ),

∑
y∈Si(x)

v2
y1|vy|>dα ≤

k∗∑
k=(1−α) log d

dek+1|Nk(x, i)| + C

kmax∑
k=k∗

(log logN)5

≤ C
κ log logN
d1+α + (log logN)5kmax ≤ (log logN)6,

holds for each x ∈ W+(κ) with probability 1 − O
(
e−cω(α)). Here we used (ii) in the second inequality and

dek∗ ≤ Cd(log logN)D as well as κ = O((log logN)2) and d ≤ log logN in the last inequality.
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We now turn to the second sum in (5.24) which is amenable to Lemma 5.20. For x ∈ W+(κ), and some
universal C > 0 and c > 0 , we get

P
(∣∣∣ 1

|Si(x)|
∑

y∈Si(x)

(v2
y − 1)1|vy|≤dα

∣∣∣ ≥ t
∣∣∣|S1(x)|

)
+ 1x∈W(κ)O(e−cd2α

)

= P
(∣∣∣ ∑

y∈Si(x)

((Dy − d)2 − d)1(Dy−d)2≤d1+2α

∣∣∣ ≥ t|Si(x)|d
∣∣∣|S1(x)|

)
+ 1x∈W(κ)O(e−cd2α

)

≤ 2 inf
z∈[0,d−1−2γ ]

e−ztd|Si(x)|(eCz2d2
+ Cd2ze−cd2α)|Si(x)| + 1x∈W(κ)O(e−cd2α

).

Suppose that

Cd1−2αe−cd2α

≤ 1,

which is satisfies as soon as d ≥ K2(α, c). Using the inequality 1 + x ≤ ex, we find

inf
z∈[0,d−1−2γ ]

e−ztd|Si(x)|(eCz2d2
+ Cd2ze−cd2α)|Si(x)| ≤ inf

z∈[0,d−1−2γ ]
e−ztd|Si(x)|+Cz2d2|Si(x)| ≤ e− t2|Si(x)|

4C

where we optimized in z at z∗ = t
2Cd and set t = Cω(α)2√

|Si(x)|
for C > 0 large enough. If α < 1/12 and

d ≤ (logN)2 then z∗, which is the minimizer of the expression in the infimum, satisfies z∗ ∈ [0, d−1−2α].
Moreover since |Si(x)| ≥ Dx ≥ c logN

log(logN/d) for d ≥ K3 = K(r, α), with K defined in Proposition 5.19, we
get the correct value for the error term.
Taking a union bound over x ∈ [N ], we conclude using (5.3) and

eκ log(u+)e−cω(α)2
≤ e−cω(α)2/2 = O

(
e−cω(α)

)
(5.26)

since κ log(u+) ≤ (log logN)3.
Taking d ≥ max(K1,K2,K3) concludes the proof.

5.5 Neighborhood of small-degree vertices
In this section we study the neighborhood of small-degree vertices. At the begin of Section 5.5, we explained
how the presence of large-degree vertex can be used to control the neighborhood of that vertex, in particular
excluding the occurrence of extreme events (with high probability). While this method works just as well
for small-degree vertices when d ≫ logN, it fails when d ≤ logN. The reason for this is easy to understand:
if you consider the distribution of all degrees as an histogram on the real axis (see Figure 5.5), then lowering
the value of d will push the histogram to the left. However, degrees can only take non-negative values and
it is thus only possible to push the histogram so far left before hitting the vertical line y = 0. This has the
annoying consequence that the number of small-degree vertices becomes polynomially large.

In particular, seeing small-degree becomes less unlikely and thus seeing extreme events in the neighbor-
hood of small-degree vertices becomes less unlikely.

P
[
Pd ≥ du+ − C

]
=

uC+
N

(1 + o(1)) ≪ e−d d
C

C! = P
[
Pd ≥ du− + C

]
,

for d ≤ logN, since then du− = 1. This is an adversarial effect against which we must fight and it prevents
us from reaching the regime d ≥ 1

2 logN + C log logN, for C = O(1).
The following lemma is an a priori estimate on βx − 1 which will be refined later.

Lemma 5.22 (Behavior of βx, x ∈ U−). Let ε > 0 and ( 1
2 + ε) logN ≤ d ≤ N

1
2 −ε. Then, with very high

probability for all x ∈ [N ]

(βx − 1) = C
√

logN
d
√
u−

(5.27)
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d1 = N0.4
N = 2000 d2 = 1

2 logN

Figure 5.1: We sample N = 2000 independent BN,d random variables. The global statistics of this sampling
resembles the global statistics of (Dx : x[N ]). On the left-hand side, we set d = N0.4 ≫ logN and
d = 1

2 logN < logN on the right-hand side.

Proof. Same proof as Lemma 5.18.

Proposition 5.23 (Neighborhood of x ∈ U−). Let K, ε, α > 0, d as in (3.29) and r ≥ 0. Then if r = O(1),
there exists c∗ > 0 such that the following holds with probability 1 −O

(
e−c∗(logN)c∗ )

.

(i) The balls
(
Br(x) : x ∈ U−(ε)

)
are disjoint trees.

(ii) For each x ∈ U−(ε)∣∣∣∣ |Si+1(x)|
d|Si(x)| − 1

∣∣∣∣ = O

(
logN
d

|Si|−1/2
)
,

∣∣∣∣ |Si(x)|
Dxdi−1 − 1

∣∣∣∣ = O

(
logN
d

D−1/2
x

)
, i ∈ [r].

(iii) For each x ∈ U−(ε) there exists y∗ ∈ Br(x), such that

min
y∈Br(x) y ̸=x

|vx − vy| ≥ 1d≤(1−ε/2) logNc∗
√

logN + c∗(logN)c∗ , max
y∈Br(x)

|vy| = O
(√

logN
)
,

and ∣∣∣{y ∈ Br(x) : |vx − vy| ≤ c∗
√
d}
∣∣∣ ≤ 1. (5.28)

(iv) For each x ∈ U−(ε) ∣∣∣{y ∈ Br(x) : |vy| ≥ dα}
∣∣∣ = O

(
d1−2α).

Proof. The fact that the balls Br(x), x ∈ U−(ε) are disjoint follows from the stronger Lemma 5.13. The fact
that Br(x) contains no cycles follows from Lemma 5.6 as in the proof of Proposition 5.19. This proves ((i)).
((ii)) is proved exactly as in Proposition 5.19.
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By Lemma 5.6, there exists C > 0 such that maxx∈U−(ε)|Br(x)| ≤ Cdr with probability 1 − O
(
N−2). If

d ≥ (1 − ε/4) logN , using Lemma B.3 we find

P[∃x ∈ U−(ε), ∃y ∈ Br(x) |vy| ≥ t] ≤ CN
1−ε

2 dre−t2/2 +O
(
N−2).

If d ≥ (1 + ε/4) we can choose t =
√

(1 − ε/4)s and if d ≤ (1 + ε/4), t =
√

(1 − ε/4) logN , to bound the
left-hand side is bounded by O

(
N−η) for 0 < η < ε/5. In both cases we can conclude that

min
y∈Br(x), y ̸=x

|vx − vy| ≥
√
ε logN/4, x ∈ U−(ε),

with probability 1 −O
(
N−η). In particular (5.28) follows trivially in that regime.

If d ≤ (1−ε/4) logN , then x ∈ U−(ε) is by definition the set of vertices such that Dx ≤ 1/ε = O(1). Denoting
n ..= ⌈1/ε⌉ we see that the condition |vy−vx| ≤ c(logN)c implies Dy ≤ (1−η)d for any 0 < η < 1− c(logN)c+n√

d
.

Since c < 1/2, we can find a constant η > 0 satisfying this condition and can thus apply Lemma B.5. We
find

P[∃x ∈ U−(ε), ∃y ∈ Br(x), vy ≤ c(logN)c] ≤
∑

x∈U−(ε)

∑
y∈Br(x), y ̸=x

P
[
vy ≤ c(logN)c

]
≤ CNe−2ddr+n exp

( c
2 log(d)(logN)c

)
+O

(
N−2) = O

(
e−2(logN)1/K + c

2 (logN)2c)
= O

(
e−c∗(logN)c∗

)
,

where in the last inequality we chose c∗ ≤ 1
2K ∧ 1

2 . The assertion about maxy|vy| is proved analogously.
For (5.28), we find, again using Lemma B.5,

P
[
∃x ∈ U−(ε), ∃y1, . . . , yk ∈ Br(x), vyi ≤ c

√
d, i ∈ [k]

]
≤ CNe−3ddr+nke2cd log(1/c)

(
1 +O

(d2

N

))
+O

(
N−2) ≤ Ce−3(logN)1/K

dr+nkN− k−1
2 +k(c log(1/c)),

and the right-hand side is bounded by O
(

e−c∗(logN)c∗
)

as soon as k ≥ 2 for 0 < c < c∗ small enough.
The proof of (iv) is analogue Proposition 5.19 (iii).

Lemma 5.24 (Behavior of βzx , x ∈ We(κ) ). Let ε > 0 and ( 1
2 + ε) logN ≤ d ≤ N

1
2 −ε. We have with high

probability, for every x ∈ W,

(βzx
− 1) = C

κ log d
(logN)3/4

Proof. Similar proof as for Lemma 5.18 with the observation that by Lemma 5.13, minx|S1(zx)| ≥ c d
log d , for

some c > 0 small enough. We have by Lemma 5.7

P[∃x ∈ We(κ), (βx − 1) ≥ ε] ≤ P[∃x ∈ W, (βx − 1) ≥ ε,Ξ1(r, ε)] + P[Ξ1(r, ε)c]
≤ eκ log d exp

(
−cd3/2(v1 − vzx)ε2)+ P[Ξ1(r, ε)c],

where we used |S1(z)| =
√
d(v1 − vzx

) + 1.
Since (v1 − vzx

) ≥ cdc for some c > 0 by (ii) of Proposition 5.23, we can make this probability smaller than
Ce−dc by choosing Setting ε = Cκ log d/d3/4 for C ≥ 0 large enough.

Proposition 5.25 (Neighborhood of x ∈ W−(κ)). Let α, ε > 0 and

logN − (log logN)2 ≤ d ≤ (logN)3/2.

Then for c∗ > 0, the following holds with probability 1 −O
(

e−c∗d
2α
)
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(i) For each x ∈ W−(κ),

max
y∈Br(x), y ̸=x

|vy| = O
(
dα
)

(ii) For each x ∈ W−(κ),

∑
y∈Si(x)

v2
y = Dxd

i−1
(

1 +O

(
dα

(logN)1/2

))
, 1 ≤ i ≤ r.

Note that we could improve ((i)) by showing that maxy∈Br(x), y ̸=x|vy| = O
(
(log logN)2) with probability

1 −O
(

e(log logN)2
)

. However, since we want to cast all results of Proposition 3.21 under one common bound
and since dα is enough for our purpose, we do not pursue this improvement.

Proof. Using Lemma B.5, we find that

P
[
x ∈ W−(κ)

]
≤ eκ log d ∨Ne−ddκ̃.

We can then proceed as in the proof of (ii) Proposition 5.21 to prove that

P
[
∃x ∈ W−(κ), y ∈ Br(x), y ̸= x |vy| ≥ Cdα

][
eκ log d ∨Ne−ddκ̃

]
e−Cd2α

= O
(

e−c∗d
2α
)
,

for c∗ > 0 small enough. We deduce that with probability 1 −O
(

e−c∗ log logN
)

, for any α > 0,

∑
y∈Si(x)

|vy|2 =
∑

y∈Si(x)

|vy|21|vx|≤dα .

Therefore we can prove (ii) as we proved (iii) in Proposition 5.21. We skip the details.

Proposition 5.26 (Neighborhood of x ∈ Wγ(κ)). Let K, ε > 0, d as in (3.28) and r ≥ 0 and κ, κ̃ as in
(3.29). Then there exists c∗ > 0 such that the following holds with probability 1 −O

(
e−c∗(logN)c∗ )

.

(i) For each x ∈ Wγ(κ),

max
y∈Br(x)\B1(x)

|vy| = O
(
(log logN)2)

(ii) For each x ∈ Wγ(κ), if y∗
..= argminz∈Br(x)vz, then

vy∗ ≥ vγ +O
( dc∗

√
d log(d− 1

2 logN)

)
, min

z∈Br(x), z ̸=x,y∗
|vx − vz| ≥ c∗

√
logN.

(iii) For each x ∈ Wγ(κ),

∑
y∈Si(x)

v2
y = |Si(x)|

(
1 +O

(
dα

(logN)3/2

))
, 2 ≤ i ≤ r.

Proof. (i) is proved as (ii) of Proposition 5.21, using the fact that we defined Wγ(κ) such that

P
[
x ∈ Wγ(κ)

]
= O

(
eκ log d

)
.
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We skip the details.
Turning to (ii) we use Lemma B.5

P
[
∃x ∈ U−(ε), ∃y ∈ Br(x), vy ≥ ve(γ) − t√

d

]
= CdrNde−dP[Pd ≤ duγ − t] +O

(
N−2)

≤ Cdr+1utγ ≤ Cer+1 log d−t log(uγ ).

Setting t = dc

log(uγ ) and using (B.8) we prove (ii)
The second point is proved by first restricting ourselves to Ω− the event Ξ =

{
maxy∈Br(x), y ̸=x|vy| ≤

C(log logN)2} which by (i). Then for any α > 0, we have

1Ξ
∑

y∈Si(x)

v2
y =

∑
y∈Si(x)

v2
y1v2

y≤dα .

The sum on the right-hand side can be analyzed using Lemma 5.20 as was done in Proposition 5.19. We
skip the computations.

5.6 Decorrelation results
Let us introduce the d−dependent function

Q(u, v) ≥ P(Pdv − dv ≥ w
√
dv). (5.29)

We recall [7, Proposition 7.1]

Proposition 5.27 (Decorrelation). Suppose that 1 ≤ d ≤ N1/12 and k ≤ N1/12. Let v1, . . . , vk ∈ N satisfy
2 ≤ v1, . . . , vk ≤ N1/4 and w1, . . . , wk ∈ R. Then

P

( ⋂
i∈[k]

{
|S1(i)|

}
= vi, |S2(i)| ≥ ui

)
=
∏
i∈[k]

P(Pd = vi)P(Pdvi
≥ ui) +O

(
N−1/3

∏
i∈[k]

P(Pd = vi) +N−k−1
)

for any u1, . . . , uk ∈ N.

We need the following variations of [7, Proposition 7.1]. Let us introduce the scaling parameters

a =
√

2 logN + 1
2 log(4π logN), b =

√
2 logN.

Proposition 5.28 (Decorrelation in dense regime). Let ε > 0 and (logN)1+ε ≤ d ≤ N1/3 and k ≤ (logN)ε/3

Let w1, . . . , wk ∈ R. Then,

P
( ⋂
i∈[k]

{
vi ≥ a + 1

bwi
})

= 1
Nk

∏
i∈[k]

e−wiO
(

1 + (logN)−ε/6
)

+O
(
N−1/4

∏
i∈[k]

P
(
Pd − d ≥

√
db
))

Proof. We first recall that the degrees, which are distributed as Binomial (N, d/N) variables, can be very
well approximated by Poisson law of parameter d. By Lemma B.5 we have, for t ≥ 0

20P
(
BN,d/N ≥ t

)
= P(Pd ≥ t) +

∑
n≥t

e−d d
n

n!

(
1 +O

(
n2

N

))
= P(Pd ≥ t) +O

(
t3

N

)
.
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We define Ξ the event that no vertex in [k] are neighbors and decompose Ξc =
⊔

U
{
G|[k] = U

}
, where the

union ranges over the set of nonempty graphs U on [k]. Thus we estimate

P

 ⋂
i∈[k]

{
vi ≥ a + 1

bwi
} = E

∏
i∈[k]

1vi≥a+ 1
bwi

1Ξ

+ E

∏
i∈[k]

1vi≥a+ 1
bwi

1Ξc


We write li the degree of the vertex i in U and ui = d+

√
d(a + 1

bwi). By (B.5) we find

E

∏
i∈[k]

1vi≥a+ 1
bwi

1Ξc

 =
∑
U

E

∏
i∈[k]

1vi≥a+ 1
bwi

∣∣∣A[k]

1G|[k]=U


=
∑
U

E

∏
i∈[k]

P
(
P(N−k+1)d/N ≥ ui − li

)(
1 +O

(
v2
i + d2 + t3

N

) ∣∣A[k]

)
=
∑
U

E

∏
i∈[k]

P(P(N−k+1)d/N ≥ ui)
(vi
d

)li (
1 +O

(
v2
i + d2 + t3

N

) ∣∣A[k]

)
=

k(k−1)
2∑
l=1

(k(k−1)
2
l

)(
d

N

)l ∏
i∈[k]

P (Pd ≥ ui)
(

1 +O

(
kd+ v2

i + d2 + t3

N

))

= O

((
1 + k

N1/3

)(
1 + k2d

N
+ dkk2

Nk

)) ∏
i∈[k]

P (Pd ≥ ui)

where we split the last sum between l ≤ k and k ≥ l in the last equality.
On the event Ξ, the variables vi are independent conditioned on A[k] and distributed as BN−k,d/N . But if
X ∼ BN−k,d/N , we have

P
[
X ≥ d+

√
d
(

a + wi
b

)]
= e−d

d+Cν

√
dω∑

k=d+
√
d(a+ wi

b )

dk

k!O
(

ek
2/N
)

+O
(
N−ν),

for Cν > 0 that depend on ν > 0. Choosing ν = 10 and abbreviating ω = 1√
d
(a + wi

b ), we get

d+Cν

√
dω∑

k=d+
√
d(a+ wi

b )

dk

k! = e−d
(C−1)

√
dω∑

k=0

ed(1+ω)ek√
2πd(1 + ω + k/d)

exp
(

−d
(

1 + ω + k

d

)
log
(

1 + ω + k

d

))

= e−d
(C−1)

√
dω∑

k=0
(1 + ω)−d(1+ω)−k ed(1+ω)ek√

2πd(1 + ω)
(
1 +O

(
d−1))

exp
(

−d
(

1 + ω + k

d

)(
k

1 + ω
− k2

d(1 + ω)2 +O

(
1√
d

)))

= (1 + ω)−d(1+ω)√
2πd(1 + ω)

(C−1)
√
d∑

k=0
(1 + ω)−k

(
1 +O

(
d−1/2

))
= (1 + ω)−d(1+ω)√

2πd(1 + ω)

∑
k≥0

(1 + ω)−k
(

1 +O
(
d−1/2

))
.

In the last equality, we used the fact that (1 + ω)(C−1)
√
dω = O

(
N−C/2) = O

(
d−1/2) to complete the series.
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Using k2/N = O
(
d−1/2), we find

P
[
X ≥ d+

√
d
(

a + wi
b

)]
= edω(1 + ω)−d(1+ω)√

2πd(1 + ω)

∑
k≥0

ω−k
(

1 +O
(
d−1/2

))
= exp

(
dω − d(1 + ω) log(1 + ω) − 1

2 log(4π logN)
)

= exp
(
dω − d(1 + ω)

(
ω + ω2

2 (1 + εi)
)

− 1
2 log(4π logN)

)
= 1
N

e−wi(1+εi),

for εi = O
(
(logN)−ε/2) . In the third equality, we used log(2πd) + log(ω) = log(4π logN). Therefore, using

the fact that d ≥ logN , we find using k ≤ (logN)ε/3 and maxi εi = O
(
(logN)ε/2),

E

∏
i∈[k]

1vi≥a+ 1
bwi

1Ξ

 =
∏
i∈[k]

P
(

Pd ≥ d+
√
d(a + wi

b )
)

= 1
Nk

∏
i∈[k]

e−wi

(
1 +O

(
kmax

i
εi

))
=
∏
i∈[k] e−wi

Nk

(
1 +O

(
(logN)−ε/6

))
.

This concludes the proof.

Proposition 5.29 (Decorrelation for leaves). Let 1
2 logN ≤ d ≤ (logN)2. Let K ≥ 0, k ≤ (N/Kd)1/2 and

2 ≤ v1, . . . , vk ≤ Kd and w1, . . . , wk ∈ R. Then

P
( ⋂
i∈[k]

{
Di = 1, dαzi

= vi, d
√
αzi

(βzi − 1) ≥ wi
})

=
∏
i∈[k]

P(Pd = vi)Q(vi, wi)

+O
(
d3k2

N
(e−dd)k

∏
i∈[k]

P(Pd = vi)
)

Proof. Let us abbreviate by A(vi) ..=
{
Di = 1, dαzi = vi

}
and B(wi) ..=

{
d
√
αzi(βzi − 1) ≥ wi

}
.

For l ≥ 1 we define Ξl as the event that there is no geodesic in G of length l connecting to distinct vertices
of [k]. We use the abbreviation Ξ≤j

..=
⋂
i≤j Ξj . We define Mi for 0 ≤ i ≤ 5 and Ei for 1 ≤ i ≤ 5 to be

Ml
..= E

∏
i∈[k]

1A(vi)∩B(wi)1Ξl
· · · 1Ξ1

 , El ..= E

∏
i∈[k]

1A(vi)∩B(wi)1Ξc
l

· · · 1Ξ1

 .
Now since vi ≥ 2, Ξc1 never happens it would mean that i, j ∈ [k] form a disconnected component.

We tackle Ξc2 ∪ Ξc3 at the same time. On the event Ξ1 the possible configurations of AB1([k]) can be
decomposed in two steps. First we look for elements of [k] that are at distance 2. Since [k] consist only of
leaves, this can be express as a sum over all possible partitions of [k] with at least one non-trivial block,
denoted P<k. We say B0([k]) ∼ Π if, up to permutation, the two functions i 7→ zi and i 7→ πi are the same.

E

[∏
i

1A(i)∩B(i)1Ξc
2∪Ξc

3
1Ξ1

]

= E

 ∑
Π∈P<k

∏
i

1Di=1
∑

s∈([N ]\[k])Π

E

 ∏
i∈[|Π|]

1vsπi
=vi−|πi|−1

∏
x∈πi

Asπi
x

(
d

N

)|πi|−1 ∣∣B0([k])

1B0([k])∼Π1Ξc
3
1Ξ1


=

∑
Π∈P<k

E

∏
i

1Di=1

(
d

N

)k−|Π| ∏
i∈[|Π|]

1vsπi
=vi−|πi|−11B0([k])∼Π1Ξc

3
1Ξ1

 .
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Then, given Π ∈ P<k, we look among the unique vertices z1, . . . , zk, which are now in bijection with Π their
connections. This can be done by decomposing

⊔
U
{
G|S1([k]) = U

}
where the union ranges over the set of

nonempty graphs U on (Π). Let us denote li the degree of zi for i ∈ [k] in A(S1(z)) and by l = |U| the number
of edges of U. We have

E

[∏
i

1A(i)∩B(i)1Ξc
2∪Ξc

3
1Ξ1

]

=
∑

Π∈P<k

(
d

N

)k−|Π|

E

∑
U

∏
i

1Di=1
∏

i∈[|Π|]

1vsπi
=vi−|πi|−11B0([k])∼Π1G|S1([k])=U1Ξc

3
1Ξ1


≤

∑
Π∈P<k

∑
U

(
d

N

)k−|Π|+l∏
i

P(BN,d/N = 1)
∏

i∈[|Π|]

P(BN−2k+1,d/N = vi − |sπi | − li + 1)

where we used the fact that conditioned on U on the event
{
B0([k]) ∼ Π

}
∩
{
G|S1([k]) = U

}
the degrees of

zi are independent. We can now use Lemma B.5 to approximate the probabilities of the Bernoulli variables.
Let n to denote the size of Π and l the number of edges of U. We have

E

[∏
i

1A(i)∩B(i)1Ξc
2∪Ξc

3
1Ξ1

]
= (e−dd)k

∑
Π∈P<k

∑
U

(
d

N

)k−|Π|+|U|

∏
i∈[n]

P(BN−2k+1,d/N = vi − |sπi
| − li + 1)

= (e−dd)k
∑

Π∈P<k

∑
U

(
d

N

)k−|Π|+|U|

∏
i∈[n]

P(Pd = vi)
(vi
d

)|sπi
|−1+li

(
1 +O

(
v2
i + d2 + 4k2

N

))

≤ (e−dd)k
k−1∑
n=1

n(n−1)
2∑
l=1

Ck−n+l
(
k

n

)
nk−n

(
n(n− 1)/2

l

)(
d

N

)k−n+l

∏
i∈[|Π|]

P(Pd = vi)
(

1 +O

(
d2 + k2 + kd

N

))

where in the last step we used the assumption vi ≤ Cd, for some C ≥ 0.
By the binomial theorem we have

k−1∑
n=1

n(n−1)
2∑
l=1

Ck−n+l
(
k

n

)
nk−n

(
n(n− 1)/2

l

)(
d

N

)k−n+l
≤

k−1∑
n=1

(
k

n

)
nk−n

(
Cd

N

)k−n(
1 + Cd

N

)n(n−1)/2

≤ Cdk

N

k−1∑
n=1

(
k

n

)(
Cdn

N

)k−1−n(
1 +O

(
cdn

N

))n
≤ Cdk

N

(
1 + Cdk

N
+O

(
Cdk

N

))k
≤ Cdk

N

(
1 +O

(
dnk2

N

))
= O

(
(logN)4

√
N

)

where in the last equality we used the fact that dnk2

N = O(1) and k ≤
√
N.

The remainder of the proof is very similar to the proof of [7, Proposition 7.1]. We now turn to Ξ4. We can
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decompose Ξ4 =
⋂

1≤x<y≤k Ξ4,xy. By a union bound, we estimate

E4 ≤ E

∏
i∈[k]

1|S1(zi)|=vi
1Ξ≤31Ξ4

 ≤
∑

1≤x<y≤k

E

∏
i∈[k]

1|S1(zi)|=vi
1Ξ≤31Ξ4,xy


≤

∑
1≤x<y≤k

 ∏
i∈[k]\{x,y}

P(|S1(zi)| = vi,Ξ≤3)E[1|S1(zx)=vx|1|S1(zy)=vy|1Ξ4,xy
1Ξ≤3 ]


where in the last step we used that the sets (S1(zi))i∈[k] are independent condition on Ξ≤3. We estimate

E[1|S1(zx)=vx|1|S1(zy)=vy|1Ξ4,xy
1Ξ≤3 ] ≤ E

 ∑
w∈S1(zx)

E
[
1|S1(zy)=vy|Azyw

∣∣S1(zx)
]

1|S1(zx)|1Azxzy =0

 ,
and use that on the event

{
Azxzy

= 0
}

and for any zy ∈ S1(x) we have

E
[
1|S1(zy)=vy|Azyw

∣∣S1(zx)
]

≤ C
vzy

N
P(Pd − vy),

using again Lemma B.5. Hence

E[1|S1(zx)=vx|1|S1(zy)=vy|1Ξ4,xy
1Ξ≤3 ] ≤ C

d

N
P(Pd − vy)E

[
|S1(zx)|1|S1(zx)=vx|

]
≤ C

d

N
P(Pd = vy)P(Pd = vx)

and therefore

|E4| ≤
∏
i∈[k]

P(Pd = vi).

Next we estimate E5. We have

P(Ξc5|A(B1([k]))) ≤ E

 ∑
1≤i<j≤k

∑
x∈S2(i)

∑
y∈S2(j)

Axy
∣∣A(B1([k]))1Ξ≤4

 ≤ d

N

∑
i∈[k]

|S2(i)|

2

We estimate |S2(i)| ≤ (d+Ck logN)2 with probability N−k−2 for some universal constant C. We get, using
the independence of (S1(vzi))i∈[k] on Ξ≤4

E5 ≤ d3k2

N

∏
i∈[k]

P(Pd = vi).

We can now turn to M5 and use the independence of (S2(zi))i∈[k] on the event Ξ≤5 This is done exactly
as in [7, Proposition 7.1] and we skip the details.
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Appendix A

Matrix theory

In this appendix, we recall some well-known identities for the Green function and its minors.

A.1 Green function identities
In this section, we set N ∈ N∗ and M ∈ CN×N to be a general Hermitian matrix. Our results are usually
stated first for general M and then for M of the form M = V − H − R, where H ∈ CN×N is a general
Hermitian matrix with zeroes on the diagonal and the matrices V and R are defined in (2.3). In particular
let us abbreviate

f ..= d
√
γ
.

We also recall the notation G(T ), G̃(T ) and G̃(T,u), u /∈ T ⊂ [N ], from Definitions 2.10 and 2.13.
Lemma A.1 (Ward identity). For a general Hermitian matrix M , we have∑

y∈[N ]

|Gxy(z)|2 = ImGxx
Im z

.

For x /∈ T ⊂ [N ], we have
(T )∑
y

|G(T )
xy |2 = ImG

(T )
xx

Im z
,

(T )∑
y

|G̃(T )
xy |2 = Im G̃

(T )
xx

Im z
,

Lemma A.2 (Schur’s complement formula). Provided all of the following inverse matrices exist, the inverse
of a block matrix is given by(

A B
C D

)−1
=
(

−A−1 −A−1BD−1

−D−1CA−1 D−1CA−1BD−1 +D−1

)
=
(
A−1BD−1CA−1 +A−1 −A−1BD−1

−D−1CA−1 D−1

)
,

where we defined

A ..= A−BD−1C, D ..= D − CA−1B.

For a general M , we have

1
Gxx

= Mxx − z −
(x)∑
a,b

MxaG
(x)
ab Mby. (A.1)

155
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In particular for M as in (2.5), we have

1
Gxx

= vx − f

N
− z +

(x)∑
a,b

HxaG
(x)
ab Hby + f

N

[ (x)∑
a,b

G
(x)
ab Hby +

(x)∑
a,b

HxaG
(x)
ab

]
+ f2

N2

(x)∑
a,b

G
(x)
ab . (A.2)

Lemma A.3 (Second resolvent identity). Let A,B ∈ CN×N , for N ∈ N∗. Then

GA −GB = GA(A−B)GB . (A.3)

In particular for M as in (2.5), u /∈ T ⊂ [N ], we have

G̃(Tu)
xy − G̃(T,u)

xy = −
(Tu)∑
a

G̃(Tu)
xa HxaG̃

(T,u)
ay (A.4)

On the resolvent identities see for instance [42, Section VI.3].

Proof. Equation (A.3) is a standard result in complex analysis. Setting A = M̃ (Tu) and B = M̃ (T,u), we
find that (A−B)xy = −δxyHxu for x, y /∈ T ∪ {u} and the result follows.

Lemma A.4 (Off-diagonal entries of G). For any Hermitian matrix M ∈ CN×N we have

G(u)
xy = −G(u)

xx

(x)∑
a

MxaG
(x)
ay , x ̸= y. (A.5)

In particular for M as in (2.5), for T ⊂ [N ], we have

G̃(T )
xy = −G̃(T )

xx

[(Tx)∑
a

HxaG̃
(T,x)
ay + f

N

(Tx)∑
a

G̃(T,x)
ay

]
, x ̸= y, x, y ∈ [N ] \ T. (A.6)

Proof. The first two equalities in (A.5) are classical results and can be found for instance in [14, Lemma
3.5]. The second identity (A.6) follows from the definition of M in (2.5) and by applying (A.5) to the matrix
M̃ (T ).

Lemma A.5 (Subblocks of G). For any Hermitian matrix M ∈ CN×N and for u ∈ [N ] and x, y ̸= u , we
have

G(u)
xy = Gxy − GxuGuy

Guu

= Gxy +Gxu

(u)∑
b

MubG
(u)
by = Gxy +Guu

(u)∑
a

G(u)
xaMua

(u)∑
b

MubG
(u)
by

(A.7)

In particular for M as in (2.5), we have, for u /∈ T ⊂ [N ] and x, y /∈ T ∪ {u},

G̃(T,u)
xy − G̃(T )

xy =G̃(T )
xu

[(Tu)∑
a

HuaG̃
(T,u)
ay + f

N

(Tu)∑
a

G̃(T,y)
ay

]
(A.8a)

= G̃(T )
uu

(Tu)∑
a

G̃(T,u)
xa Hau

(Tu)∑
b

HubG̃
(T,u)
by − f

N
G̃(T )
uu

[(Tu)∑
a

G̃(T,u)
xa Hau

(Tu)∑
b

G̃
(T,u)
by

−
(Tu)∑
a

G̃(T,u)
xa

(Tu)∑
b

HubG̃
(T,u)
by

]
+ f2

N2 G̃
(T )
uu

(Tu)∑
a,b

G̃
(T,u)
ab .

(A.8b)
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Proof. The first two equalities in (A.7) are classical results and can be found for instance in [14, Lemma
3.5]. The second equality follows by applying (A.5) to G̃(T )

xu , since x ̸= u.
The equalities in (A.8) follow from the definition of M and M̃ (T ) and from (A.7) applied to the matrix
M̃ (T ).

Observe that by combining (A.4) with (A.8), we find

G̃(Tu)
xy − G̃(T )

xy = G̃(T )
xu

(Tu)∑
a

(
Hxa + f

N

)
G̃(T,u)
ay −

(Tu)∑
a

G̃(Tu)
xa HuaG̃

(T,u)
ay , (A.9)

and the terms G̃(T,u) can then be expanded using (A.4)

A.2 Perturbation theory
The following result is [7, Lemma E.1].

Lemma A.6. Let M be a Hermitian matrix. Let ε,∆ > 0 satisfy 5ε ≤ ∆. Let λ ∈ R and suppose M
has a unique eigenvalue µ in [λ− ∆, λ+ ∆], with corresponding normalized eigenvector w. If there exists a
normalized eigenvector v such that ∥(M − λ)v∥ ≤ ε, then

µ− λ = ⟨v , (M − λ)v⟩ +O
(ε2

∆

)
, ∥w − v∥ = O

( ε
∆

)
.

The following is a standard result that can be found in many reference books, see for instance [46].

Lemma A.7. Let A,B be Hermitian matrices. The eigenvalues of A and A − B interlace and differ from
at most ∥B∥. Moreover

1
z − (A−B) = 1

z −A
− 1
z −A

B
1

z − (A−B) , z ∈ C \
(
SpecA ∪ SpecA−B

)
. (A.10)

Lemma A.8. Let H ∈ Rn×n, n ∈ N∗, be an Hermitian matrix with eigenvalues λi and corresponding
eigenvectors vi, i ∈ [n]. If e ∈ Rn and θ ∈ R∗, then λ(θ) ∈ R is an eigenvalue of H + θee∗ if and only if

1
θ

=
n∑
i=1

⟨e, vi⟩2

λ(θ) − λi
. (A.11)

Proof. Let v(θ) be the eigenvector of H + θee∗ associated to λ(θ), we have (λ(θ) − H)v(θ) = θ⟨e, v(θ)⟩e.
Moreover since θ ̸= 0, λ(θ) /∈ Spec(H) and therefore λ(θ) −H is invertible. We find

1
θ
v(θ) = ⟨e, v(θ)⟩(λ(θ) −H)−1e.

By applying e∗ on both sides of this equation we obtain θ−1 = ⟨e, (λ(θ) −H)−1e⟩ which is precisely (A.11).

Definition A.9 (Paths and cycles). Let G = (V,A, x∗) be some finite graph with vertex set V , adjacency
matrix A ∈ {0, 1}V×V and with one distinguished vertex x∗ ∈ V . For x, y ∈ V and k ∈ N∗, we define

P(x, y, k) ..=
{
P : {0, . . . , k} → V : P (0) = x, P (k) = y, A(P (j−1),P (j)) = 1, ∀j ∈ [k]

}
,

to be the set of all paths in G of length k starting at x and finishing at y. A path of length k can be seen
as a sequence of k + 1 elements of V , written (P (0), P (1), . . . , P (k)).
For P ∈ P(x, y, k), we define

Ran(P ) ..= {P (i) : 0 ≤ i ≤ k}, N(P ) ..= {i ∈ {0, . . . , k} : P (i) = x∗},
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the range of the path and the times at which the path P visits the distinguish vertex x∗ . We also define
N(P )∗ ..=

{
0, . . . , k

}
\N(P ).

We denote by C(x, k) ..= P(x, x, k) the set of cycles of length k rooted in x, i.e. paths such that P (0) =
P (k) = x and by

T (k) ..= {P ∈ C(x∗, k), |N(P )| = 2}, k ∈ N∗, (A.12)

the set of cycles of length k rooted in x∗ which visit x∗ exactly twice.

The following is an adaptation of an argument found in [35].

Proposition A.10. Let n ∈ N∗, V = Diag(v0, . . . , vn), v ∈ Rn+1, be a diagonal matrix and G =
({0, . . . , n}, A, 0) be a graph as in Definition A.9. Let

H ..= fA, λ ..= v0, ψ ..= min
i>0

|vi − λ|,

for some f > 0. Then if ψ ≥ 4∥H∥, the matrix V − H has precisely one eigenvalue in the interval [λ −
∥H∥, λ+ ∥H∥] that we denote µ.
If in addition G is a tree, we have, for 1 ≤ k ≤ n,

µ = λ+
k−1∑
l=1

l−1∑
e=0

E2l(e) +O

(
k∥H∥2k(|λ| + ψ)

ψ2k

)
, (A.13)

where

El(e) ..= (−1)e
(e+ 1)!f

l
∑

P∈C(0,l),|N(P )|=2+e

( ∏
i∈N(P )∗

1
v0 − vP (i)

) ∑
i1,...,ie∈N(P )∗

e∏
j=1

1
v0 − vP (ij)

, l ∈ N∗ (A.14)

The letter e in (A.14) stands for excess, as the paths that contribute to El(e), for some l, e ≥ 1 visit 0
more than the minimal amount. A cycle that visits 0 five times has excess 5 − 2 = 3, for instance.
Before proving Lemma A.10 we introduce the following notions.

Definition A.11 (Shift and equivalence classes). Let G = (V,A, x∗) be as in Definition A.9. For k ∈ N∗, we
define the shift operator Tk which maps cycles onto cycles in the following way. For P ∈ C(x, l), x ∈ V (G),
we set

Tk
(
P (0), P (1), . . . , P (l)

) ..=
(
P (k), P (k + 1), . . . , P (l − 1), P (0), P (1), . . . , P (k)

)
.

In words, Tk simply changes the root of the cycle by starting and ending at the (k+ 1)th vertex of the cycle.
For l ≥ 0, we define the equivalence relation ∼l on

⋃
x∈V C(x, l) by P ∼l P

′ if and only if there exists
0 ≤ k ≤ l such that TkP = P ′.

Now observe that any cycle P with |N(P )| > 0 can be written as TkP ′ for some k ∈ [l], P ′ ∈ C(0, l) with
|N(P ′)| = |N(P )| + 1.
We will now partition the space P(l) ..=

⋃
x∈V (G) C(x, l) according to the equivalence relation P ∼ P ′ if and

only if there exists k ∈ [l] such that P = TkP
′. Let P ∈ P(l) \ T (l) such that |N(P )| = 1 + e, i.e. a loop that

does not start at 0 but visits zero 1 + e times. Then |T (l) ∩ [P ]∼| = e+ 1, since the order of the excursions
away from zero is fixed but we have e+ 1 ways to choose the first excursion.

Lemma A.12. For l ∈ 2N∗ and P ∈ C(x, l) \ T (l) with |N(P )| ≥ 1, we have∣∣[P ]∼l
∩ T (l)

∣∣ = |N(P )| − 1,

Proof. For a cycle P with |N(P )| ≥ 1, we define an excursion as the trajectory of P between two times in
N(P ). Let P ∈ C(x, l) \ T (l), and E0, E1, . . . , E|N(P )|. We define Ti ∈ T (l), i = 1, . . . , |N(P )|, as the paths
(Ei, Ei+1, . . . E0 ∪ E|N(P )|, . . . , Ei−1). Then Ti ∈ [P ]∼l

for every i. Moreover there are no other elements in
[P ]∼l

∩ T (l). This concludes the proof.
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Proof of Lemma A.10. We set M ..= V − H. By Lemma A.7 and the assumption that ψ ≥ 4∥H∥ we find
a unique eigenvalue of M that lies in [λ− ∥H∥, λ+ ∥H∥] which we call µ. Before we start the proof, let us
stress the fact that λ is the eigenvalue of V corresponding to the diagonal entry v0 and µ is its counterpart
in Spec(M).
Applying the second resolvent identity (A.10) 2k times, k ∈ N∗ , we find

1
z −M

= 1
z − V

+ 1
z − V

H
1

z −M
=

1∑
i=0

1
z − V

(
H

1
z − V

)i
+ 1
z − V

(
H

1
z − V

)1
H

1
z −M

=
2k−1∑
i=0

1
z − V

(
H

1
z − V

)i
+ 1
z − V

(
H

1
z − V

)2k−1
H

1
z −M

,

(A.15)

for any z ∈ C \
(
Spec(M) ∪ Spec(V )

)
.

Let us consider the contour in the complex plan Γ ..= ∂B2ψ(λ). From the assumption ψ ≥ 4∥H∥, we conclude

Int(Γ) ∩
(
Spec(M) ∪ Spec(V )

)
=
{
λ, µ

}
, min

(
inf
z∈Γ

|z − λ|, inf
z∈Γ

|z − µ|
)

≥ ψ. (A.16)

Using Cauchy’s integral formula we conclude that

µ = 1
2πi

∮
Γ

Tr
( z

z −M

)
dz =

2k−1∑
l=0

P (l) +R(2k − 1), (A.17)

where we introduced, for l ∈ N

P (l) ..= 1
2πi

∮
Γ

Tr
(

z

z − V

(
H

1
z − V

)l)
dz, R(l) ..= 1

2πi

∮
Γ

Tr
(

z

z − V

(
H

1
z − V

)l
H

1
z −M

)
dz. (A.18)

We will show that

P (l) = 1l∈2N

( ∑
P∈T (l)

∏
i/∈N(P )

f

λ− vi
+

l−1∑
e=1

E2l(e)
)
, R(l) = O

(
l
∥H∥l+1

ψl
|λ| ∨ ψ

ψ

)
. (A.19)

Owing to the definitions in (A.18), we see that (A.17) becomes µ =
∑k−1
l=0 P (2l) + R(2k − 1) and, given

(A.19), we will be able to conclude (A.13).
We begin with the control of R. Let us denote by {ei}0≤i≤n the canonical basis, which is also an eigenvectors
basis of V , and by

{
uβ
}
β∈Spec(M) the eigenvectors of M. Using the identities

1 =
n∑
i=0

eie
∗
i =

∑
β∈Spec(M)

uβu
∗
β , TrB =

n∑
i=0

e∗
iBei =

∑
β∈Spec(M)

u∗
βBuβ , B ∈ C(n+1)×(n+1), (A.20)

for l ≥ 1, we find

(2πi)R(l) =
n∑

i0,...,il=0

∑
β∈Spec(M)

∮
Γ

z

z − vi0

l∏
j=1

Hij−1,ij

z − vij
⟨eil , Huβ⟩ 1

z − β
⟨uβ , ei0⟩dz.

By Cauchy’s theorem, if the integrand has no poles in the interior of Γ, then the integral vanishes. We
conclude that at least one of the summands must create a pole. Therefore one of the l + 2 sums is actually
trivial, as it is reduced for instance to ij = 0 or β = µ. Using (A.20) one more time, we can resorb the l+ 1
other sums to conclude

(2πi)R(l) =
l∑

k=0

∮
Γ

z

z − λ

〈
e0 ,

(
H

1
z − V

)l−k
H

1
z −M

( 1
z − V

H
)k
e0

〉
dz

+
∮

Γ

z

z − µ

〈
uµ , H

1
z − V

( 1
z − V

H
)l
uµ

〉
dz.
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Using (A.16), we find

|R(l)| ≤ l + 2
2π

∮
Γ

dz sup
z∈Γ

(∣∣∣∣ z

z − λ

∣∣∣∣+
∣∣∣∣ z

z − µ

∣∣∣∣)∥H∥l+1

ψl+2 ≤ 4(l + 2)|Γ| ∥H∥l+1

ψl+1
|λ| ∨ ψ

ψ
.

Using the fact that |Γ| = O(ψ) proves the second equality in (A.18).
We will now control P (l) using the geometric properties of the graph G. Since the canonical basis is an

eigenvector basis of V , we see, using (A.20), that the terms that contribute to the trace are in one-to-one
correspondence with elements of

⋃
x∈V (G) C(x, l). In particular, since G is a tree, there are no odd-length

cycles and so P (l) = 0 when l is odd. Moreover by (A.16) and Cauchy’s theorem, we see that cycles that
do not visit the distinguished vertex 0 will have a vanishing contribution after integration around Γ. We
conclude

(2πi)P (l) = 1l∈2Nf
l
∑

x∈V (G)

∑
P∈C(x,l),|N(P )|>0

∮
Γ
z

l∏
i=0

hP (i)(z)dz, (A.21)

where we introduced the meromorphic functions

hi(z) ..= 1
z − vi

, 0 ≤ i ≤ n, l ∈ N, z ∈ C \ {vi}.

We will now enumerate all the paths that contribute to the right-hand side of (A.21) using elements of C(0, l).
Let us recall Definition A.11.

Let us write P(2l), the set of equivalence of T (2l). For every equivalence class C ∈ P(2l) , we choose a
representative PC ∈ C ∩ T (2l). Then by Lemma A.12, we find⋃

x∈V (G)

⋃
C∈C(x,l),|N(P )|>0

{
P
}

=
⋃

C∈P(2l)

( ⋃
P∈C∩T (2l)

{
P
}

∪
⋃

k∈[l]\N(PC)

{
TkPC

})
. (A.22)

Therefore to compute (A.21) it suffices to study the contribution of every term on the right-hand side of
(A.22) separately. Let P ∈ C(0, l). The poles in Int(Γ) of the function z

∏
i hP (i)(z) correspond to elements

of N(P ). Using Cauchy’s integral formula we find, for some C ∈ P(2l), denoting by PC a representative of
C which is in T (2l). Let us write ν ..= |N(PC)|. Using Cauchy’s integral formula we find

1
2πi

∮
Γ

∑
P∈C

z

l∏
i=0

hP (i)(z)dz = 1
2πi

∮
Γ

(
z

∑
k∈N(PC)

l∏
i=0

hTkPC(i)(z) + z
∑

k/∈N(PC )

l∏
i=0

hTkPC(i)(z)
)

dz

= 1
2πi

∮
Γ

(
z

l∏
i=0

hPC (i)(z)
(
ν − 1

)
+ z

∑
k/∈N(PC)

l∏
i=0

hTkPC(i)(z)
)

dz

= ν − 1
(ν − 1)!

(
d
dz

)ν−1(
z

∏
i/∈N(PC)

hPC (i)(z)
)∣∣∣∣

z=λ
+ 1

(ν − 2)!

(
d
dz

)ν−2(
z

∑
k/∈N(PC)

∏
i/∈N(TkPC )

hTkPC(i)(z)
)∣∣∣∣

z=λ
.

We used the fact that paths in T (2l)∩C have ν poles inside Γ while paths in C \T (2l) have ν−1 poles. This
explains the different orders of the derivatives. Now observe that since there are exactly |T (2l) ∩C| = ν − 1
and since the contribution of any two paths P, P ′ ∈ T (2l) ∩ C is the same, we have

1
2πi

∮
Γ

∑
P∈C

z

l∏
i=0

hP (i)(z)dz

= 1
(ν − 2)!

(
d
dz

)ν−2[ d
dz

(
z

∏
i/∈N(PC )

hPC(i)(z)
)

+ z
∑

k/∈N(PC )

∏
i/∈N(TkPC)

hTkPC (i)(z)
]∣∣∣∣
z=λ

.



A.3. RAYLEIGH-SCHRÖDINGER COEFFICIENTS 161

We now use the fact that( d
dz

)l
hi(z) = (−1)ll!hi(z)l+1, z ∈ C \ {vi}, 0 ≤ i ≤ n, l ≥ 0. (A.23)

and the fact that the vertex P (k) is visited one more time by TkPC than by PC to pull out a factor hP (k)(z)
from the sum on right-hand side. We find

1
2πi

∮
Γ

∑
P∈C

z

l∏
i=0

hP (i)(z)dz

= 1
(ν − 2)!

(
d
dz

)ν−2[ ∏
i/∈N(PC)

hPC (i)(z)
(

1 − z
∑

k/∈N(PC )

hP (k)(z)
)

+ z
∑

k/∈N(PC )

hPC(k)(z)
∏

i/∈N(PC)

hPC (i)(z)
]∣∣∣∣
z=λ

= 1
(ν − 2)!

(
d
dz

)ν−2[ ∏
i/∈N(PC)

hPC (i)(z)
]∣∣∣∣
z=λ

= 1
(ν − 1)!

∑
P∈C∩T (2l)

(
d
dz

)ν−2[ ∏
i/∈N(PC)

hPC (i)(z)
]∣∣∣∣
z=λ

,

where in the last step, we used the fact that C ∩ T (2l) = ν − 1 and all paths that set have the same
contribution.
Now since ∑

P∈C(0,l),|N(P )|≥2

(⋆) =
∑

P∈C(0,l),|N(P )|=2

(⋆) +
∑
e≥1

∑
P∈C(0,l),|N(P )|=2+e

(⋆), (A.24)

we see E0(2l) in (A.19) appears naturally as the contribution of all T (l), that is of all cycles that visit 0
exactly twice, namely that start and end at 0.
If |N(P )| = 2 + e, for some e ∈ N∗, where the letter e stand for excess, we again use (A.23) to find

1
(e+ 1)!

(
d
dz

)e[ ∏
i/∈N(P )

hP (i)(z)
]

= (−1)e
( ∏
i/∈N(P )

hP (i)(z)
) ∑
i1,...,ie /∈N(P )

e∏
j=1

hP (ij)(z).

Now since there are no loops in the graph, we see that e ≤ l
2 − 1. Indeed every path in P ∈ C(0, l) can

come back to 0 at most l/2 times. By accounting for the fact that P (0) = 0 = P (l), |N(P )| ≤ l
2 + 1 and

so e ≤ l
2 − 1. Imposing the last condition in (A.24) and then into (A.21) shows (A.19). This concludes the

proof.

A.3 Rayleigh-Schrödinger coefficients
In Lemma A.10, we provide an elegant geometric interpretation of perturbation theory in the specific case
where we perturb a diagonal matrix by the adjacency of a graph with an underlying tree structure. In this
section, we explain how this idea generalizes to the so-called Rayleigh-Schrödinger coefficients.

Let V and H be matrices and

M(x) ..= V + xH, x ∈ C.

Suppose λ ∈ Spec(V ) is a simple eigenvalue of V with associated eigenvector v.
It is known (see [35]) that there exist an open set 0 ∈ U ⊊ C and analytic functions λ(x) and v(x) defined

on U such that λ(0) = λ, v(0) = v and (λ(x), (v)) is the eigenvalue-eigenvector pair of M(x) for all x ∈ U.
The two natural questions are

1. What is the radius of convergence of the functions λ(x) and v(x)?

2. What are the coefficients of power series that describe the two functions?
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Let P and Q denote the spectral projections of H onto the eigenspace spanned by v and the generalized
eigenspaces of all other eigenvalues, respectively. Let

S ..= −Q(H − λ)−1Q,

denote the reduced resolvent. Since the eigenvalue λ is simple, the matrix S is well-defined.
In order to solve the perturbation, it is customary to choose u0 to be normalized, ∥u0∥ = 1, so that

Pu(x) ..= u0 and Pun = 0 and Qun = un for all n ≥ 1.

Proposition A.13. Let

λn = u∗
0Hun−1, un = SHun−1 −

n−1∑
k=1

λn−kSuk, n ≥ 0, (A.25)

with λ0 = λ and u0 = u. Let

ε = ∥S∥∥H∥ max(1, ∥P∥).

The power series expansions

λ(x) =
∑
k≥0

λkx
k, u(x) =

∑
k≥0

ukxk,

converge for |x| ≤ 1
4ε . Moreover, there is a universal constant C > 0 such that for |x| ≤ 1

15ε∥∥∥∥u(x) −
n∑

m=0
umxm

∥∥∥∥ ≤ C
(
15ε|x|

)n+1
,

∥∥∥∥λ(x) −
n∑

m=0
λmx

m

∥∥∥∥ ≤ C∥P∥∥H∥(15ε|x|)n. (A.26)

Before showing Proposition A.13, we make a couple of remarks. In quantum mechanics class, the
Rayleigh-Schrödinger are introduced by comparing the coefficients in the eigenvalue-eigenvector equation
(see for instance [43, Chapter 11])

(V + xH)
(
v0 + xv1 + x2v2 + . . .

)
= (λ0 + xλ1 + x2λ2 + . . .)

(
v0 + xv1 + x2v2 + . . .

)
. (A.27)

The zeroth order term is just the unperturbed eigenvalue-eigenvectors equation V v = λv and the first order
equation is

Hv1 + V v0 = λ0v1 + λ1v0.

Pushing this analysis to the second order already leads to solving problems like the perturbed quantum
harmonic oscillator or the Stark effect. However, the size of the error incurred by stopping at order k ∈ N∗

is a question that is rarely addressed.
In the context of Proposition A.10, we can identify the matrix H with fA, v with 10, λ with v0 and Q

with the projection on all the vertices except x0. Let us set f = 1. In particular, the first and second order
terms of the perturbation can be read from (A.25) as

λ1 = 1∗
0fA10 = 0, v1 = −Q 1

H − v0
QAu0 = −Q 1

H − v0
Q1S1(0) =

∑
x∈S1(0)

1
v0 − vx

1x,

λ2 = 1∗
0

( ∑
x∈S1(0)

1
v0 − vx

1x
)

10 =
∑

x∈S1(0)

1
v0 − vx

.

We recognize in the last line the expression for E2(0) and in the identity λ1 = 0 the fact that the odd rank
terms do not contribute. Note how the reduced resolvent S is the analog of (A.15). However, the reader
can already appreciate how the formulation in terms of paths from (A.14) is easier to understand than the
recursive formulas from (A.25).
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Proof of Proposition A.13. Let us abbreviate an ..= ∥un∥. Recalling ∥u0∥ = 1 and the definition of ε, and
plugging the left-hand side of (A.25) into the right-hand side, we get the recursion

a0 = 1, an+1 ≤ ε

n∑
k=0

an−kak. (A.28)

We claim that the power series

f(x) ..=
∞∑
n=0

anx
n,

converges in a neighborhood of the origin.
We give two proofs. First let us consider the function g(x) ..=

∑∞
n=1 bnx

n where b0 = 1 and bn+1
..=

ε
∑n
k=0 bkbn−k. Then by (A.28), we get an ≤ bn and thus f converges absolutely whenever g does.

Now observe that formally the recursive definition of the coefficients bn leads to

g(x)2 =
( ∞∑
n=0

bnx
n

)2
=

∞∑
n=0

( n∑
k=0

bkbn−k

)
xn =

∞∑
n=0

1
ε
bn+1x

n = 1
εx

( ∞∑
n=0

bnx
n − b0

)
= 1
εx

(
g(x) − 1

)
.

Hence g satisfies the equation εxg2−g+1 = 0 which can be solved explicitly for the initial condition g(0) = 1,

g(x) = 1 +
√

1 − 4εx
2 .

This is analytic in the disc of radius (4ε)−1 around the origin.
The second proof proceeds by induction, showing that

an ≤ rn

(n+ 1)2 . (A.29)

The case n = 0 is clear since a0 ≤ 1. For the induction we get

ε

n∑
k=0

rn

(n− k + 1)2(k + 1)2 ≤ 2εrn
⌊n/2⌋∑
k=0

1
(n− k + 1)2(k + 1)2

≤ 8εrn
(n+ 2)2

⌊n/2⌋∑
k=0

1
(k + 1)2 ≤ 8εrn

(n+ 2)2
π2

6 ≤ rn+1

(n+ 2)2 ,

where we chose

r ..= 4π2

3 ε.

The second proof gives a slightly worse radius of convergence. However, we can use (A.29) to bound the
error term, for ε|x| < 1/5,∥∥∥∥u(x) −

n∑
m=0

umxm
∥∥∥∥ ≤

∑
k≥n+1

akx
k ≤

∑
k≥n+1

(4π2εx)k
3k(k + 1)2 ≤ (15ε|x|)n+1

∞∑
k=0

ck

(k + 1)2 ,

for some c < 1. Setting C to bound the series on the right-hand side, we conclude the first estimate of (A.26).
The right-hand side of (A.26) is follows from the inequality

|λn| ≤ ∥P∥∥H∥∥un−1∥.

This concludes the proof.
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Appendix B

Probability appendix

Proposition B.1 (Central Limit Theorem). Let Xi, i ∈ N be a sequence of independent identically dis-
tributed centered random variables with variance 1 and bounded moments. Then, if Sn ..= 1√

n

∑n
i=1 Xi, for

any −∞ < a < b < ∞ we have

P(Sn ∈ [a, b]) = (1 + o(1)) 1√
2π

∫ b

a

e−t2/2dt.

Proposition B.2 (Stirling’s approximation). For any n ≥ 1, we have
√

2πn
(n

e

)n
e 1

12n+1 ≤ n! ≤
√

2πn
(n

e

)n
e 1

12n .

B.1 Statistics of Bernoulli and Poisson distributions
Throughout this section, we denote by Bn,p a Bernoulli distribution with parameters n ∈ N∗ and p ∈ [0, 1]
and by Pd a Poisson distribution with parameter d ≥ 0.
We introduce the function

h : [0,+∞) → [0,+∞), h(α) = (1 + α) log(1 + α) − α. (B.1)

Note that often we use the Taylor expansion of h to the second order in the neighborhood of zero

h(a) = a2

2 − a3

6(1 + t(a))2 , a ≥ 0.

Lemma B.3 (Benett’s inequality). For 0 ≤ µ ≤ n, a > 0, we have

P(Bn.µ/n − µ ≥ aµ) ≤ e−µh(a), P(Bn.µ/n − µ ≤ −aµ) ≤ e−µa2/2 ≤ e−µh(a), (B.2)

and a2

2(1+a/3) ≤ h(a) ≤ a2

2 .

Lemma B.4 (Comparaison of Poisson and normal laws). For 0 ≤ ξ ≤ 1/6. Then for µ ≥ 1 and t ≤ µξ we
have

P[Pµ ≥ µ+ √
µt] = G(t)(1 +O(µ3ξ−1/2)).

Lemma B.5 (Poisson approximation of a Bernoulli). Let n ∈ N∗, Y ∼ Pd, Z ∼ Bn,d/n. Then there is a
universal constant C > 0 such that if d, k ≤

√
n/C∣∣∣∣P[Z = k]

P[Y = k] − 1
∣∣∣∣ = O(k2/n). (B.3)
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Moreover if k < (1 − ε)d for ε > 0 then there exists C = C(ε) > 0 such that

P[Z < k] = CP[Z = k]k
d

[
1 +O(d2/n)

]
. (B.4)

Moreover

P(Bn,d/n = v) = P(Pd = v)
(

1 +O
(v2 + d2

n

))
. (B.5)

Proof. This is a restatement of [11, Lemma 3.3] for lower tails of Poisson variables, that is for values of k
smaller than d. The first statement is proven similarly since the only condition used is k, d ≤

√
N. For the

second equation

P[Z < k] =P[Z = k]
k−1∑
l=1

d−l(1 − d

N

)l l−1∏
j=0

k − j

1 − k−j
N

≤P[Z = k]
k∑
l=1

(k
d

)l exp
(

− ld
N +O

(
ld2

N2

))
exp
(
− k
N +O

(
k3

N

))
≤P[Z = k]k

d

(k/d)k
1 − (k/d) exp

(k − ld

N
+O

( ld2 +Nk3

N2

))
=CεP[Z = k]k

d

[
1 +O(d2/N)

]
.

B.2 Extreme value statistics
Remark B.6. For d ≫ logN , the extreme value statistics of P(d) are well-described by the extreme value
statistics of N (0, 1). Indeed for k = d+

√
da, for some k ∈ N we have

log k! = k log d+ k log
(
1 + ad−1/2)− k + 1

2 log(2πk)(1 + o(1))

and thus, writing h(x) = (x+ 1) log(x+ 1) − x,

P[Y = k] = dk

k! e−d = exp
(
k log d− log k! − d

)
= exp

(
dh
(
1 + ad−1/2)(1 + o(1))

)
= e−a2/2+O

(
a3d
)
.

The error term is o(1) as soon as |k − d| ≪ d. This is guaranteed for d ≫ logN as Lemma B.7 shows.

Recall that if Y ∼ Pd

P(Y = k) = exp
(
f(k/d) +O(1/k)

)
.

where f = fd was defined in (3.2).

Lemma B.7 (Upper tail of a Poisson distribution). Let d ≤ logN , Y ∼ Pd and u+ be defined in (3.3).
Then there exists C > 0 and c ∈ (0, 1) such that

dx+ = logN − d+ log(logN/d)
1 + c log(logN/d) . (B.6)

and, for k ∈ Z we have

P[Pd = ⌊dm⌋ + k]
P[Pd = ⌊dm⌋] = uk+

[
1 +O

( k2

du+

)]
(B.7)
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Proof. We have
x∗ log(x∗/d) + x∗ = logN − d+ log(

√
2πx∗)

which we estimate from below using x∗ ≤ C logN, for C > 0 large enough and from above using x ≥ d. This
proves (B.6).
To prove (B.7) we use Stirling’s approximation to find

P[Pd = ⌊du+⌋ + k]
P[Pd = ⌊du+] =

(
d

⌊du+⌋

)k 1∏k−1
i=0 (1 + i

l )
.

A Taylor expansion on the product allows us to conclude.

In the next lemma, we use n instead of N to distinguish the case where we are looking at the minimal
degree on the whole graph or at the minimal degree on the set of neighbors of leaves.

Lemma B.8 (Lower Tail of a Poisson distribution). Let n ∈ N and d ≥ 1, Y ∼ Pd and define

m∗(n) ..= f−1
d

(
logn
d

)
∨ 1
d
, m∗ < 1

as well as
α(k) ..= P[Pd = ⌊dm∗⌋ + k]

P[Pd = ⌊dm∗⌋] , k ∈ Z,

and d∗ is the solution of the implicit equation d− log d = logn.

1. If d∗ ≤ d = O(logn) there exists a ∈ (0, 1) depending on n such that

dm∗(n) = g

1 + a log d+O(log d/d) , α(k) = (m∗)k
[
1 +O

(
k2

dm∗

)]
. (B.8)

2. If d ≤ d∗ then dm∗(n) = 1 and α(k) = dk(1 +O(d−1)).

Proof. According to (B.3) we must solve

1 = n exp(−dfd(k/d)). (B.9)

Let us define g ..= g(n, d) = d− logn. Taking log on both sides we find

g(n) = k
[
1 + log(d) − log(k) − 1

2k log(2πk)
]
.

We now estimate h(k) ..= log k + 1
2k log(2πk) from below by 1 − log(

√
2π) ≥ 0.05 for k ≥ 1 and from above

by log d(1 +O(d−1)). Because h(k) is monotonously increasing for k ≥ 1 we find

g(n)
1 +O(log d/d) ≤ k∗ ≤ g(n)

1 + log d(1 +O(d−1)) .

Observe that dm∗ ≥ 1 and deduce (B.8). To prove the statement regarding α(k) we recall the Stirling
approximation, if Z ∼ Pd then

P[Pd = ⌊dm∗⌋ + k]
P[Pd = ⌊dm∗] =

(
d

l

)k 1∏k−1
i=0

(
1 − i

l

) .
We conclude with a Taylor expansion of the second term.
The second point follows from analysing f and observing that d∗ is the threshold below which ne−df(1/d) ≥
1.
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Appendix C

Notations

Generic mathematical notations

• N, Z, R, C usual number sets.

• [N ] ..= {1, . . . , N}, N ∈ N.

• f ≪ g or f = o(g) : limx→∞
f(x)
g(x) = 0.

• f ≫ g : limx→∞
f(x)
g(x) = ∞.

• f = O(g) : ∃C > 0 such that f ≤ Cg

• f ≍ g: ∃C, c > 0 such that cg ≤ f ≤ Cg.

• ≈ : generic estimation symbol. Has no specific meaning and is used for informal discussions.

• ∥ · ∥ ≡ ∥ · ∥2 : the ℓ2 norm. For v ∈ Rn, ∥v∥2 ..=
∑n
k=1 |v(k)|2.

• ∥ · ∥∞ : the ℓ∞ norm. For v ∈ Rn, ∥v∥∞
..= supk=1,...n |v(k)|.

Generic probability notations

• Bern(p) Bernoulli random variable of parameter p ∈ [0, 1].

• Bn,p binomial distribution of parameters n ∈ N∗ and p ∈ [0, 1].

• Pd Poisson random variable of parameter d ∈ R≥0.

• X
(d)= Y : X is equal in distribution to Y.

• X1, . . . Xn
i.i.d.∼ Y : the variables Xi, i = [n], are independent identically distributed with law Y.

• Xn ⇒ X : the variables Xi, i ≥ 1, converge in distribution towards the law of X.

Graph notations

• d = dG : graph distance.

• Si(x) ..= {y ∈ V (G) : d(x, y) = i} : sphere of radius i around x, i ∈ N and x ∈ V (G).

• Bi(x) ..= {y ∈ V (G) : d(x, y) ≤ i} : ball of radius i around x, i ∈ N and x ∈ V (G).

• G|T , T ⊂ [N ] : the restriction of the graph to the subset of vertices T ,

G|T ..=
(
T, {(x, y) ∈ E(G) : x, y ∈ T}

)
.
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• Deg(x) = Dx : degree of the vertex x ∈ [N ].

• vx ..= Dx−d√
d

, x ∈ [N ].

• αx ..= Dx

d , x ∈ [N ].

• βx ..= |S2(x)|
|S1(x)|d − 1, x ∈ [N ].

Generic matrix notations.

• For G a graph, A(G) is the adjacency matrix of G, D(G) the matrix of degrees and L(G) ..= D(G) −
A(G) the Laplacian of G.

• M |T for M ∈ RN×N and T ⊂ [N ] : the restriction of the matrix M to T ,

M |T ..=
(
Mxy : x, y ∈ T

)
.

• M (T ) for M ∈ RN×N and T ⊂ [N ] : the restriction of the matrix M to T c,

M (T ) ..=
(
Mxy : x, y /∈ T

)
.

• For M ∈ RN×N a Hermitian matrix, we denote by λ1(M) ≤ λ2(M) ≤ · · · ≤ λN (M) the eigenvalue of
M sorted decreasingly.

• For M ∈ RN×N we denote by SpecM the spectrum of M . For λ ∈ SpecM, we denote by wλ the
eigenvector associated to λ.
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