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Abstract

Background: Obesity hypoventilation syndrome (OHS) is associated with increased cardiovascular morbidity. What
moderate chronic hypoventilation adds to obesity on systemic inflammation and endothelial dysfunction remains unknown.

Question: To compare inflammatory status and endothelial function in OHS versus eucapnic obese patients.

Methodology: 14 OHS and 39 eucapnic obese patients matched for BMI and age were compared. Diurnal blood gazes,
overnight polysomnography and endothelial function, measured by reactive hyperemia peripheral arterial tonometry (RH-
PAT), were assessed. Inflammatory (Leptin, RANTES, MCP-1, IL-6, IL-8, TNFa, Resistin) and anti-inflammatory (adiponectin, IL-
1Ra) cytokines were measured by multiplex beads immunoassays.

Principal Findings: OHS exhibited a higher PaCO2, a lower forced vital capacity (FVC) and tended to have a lower PaO2 than
eucapnic obese patients. HS-CRP, RANTES levels and glycated haemoglobin (HbA1c) were significantly increased in OHS
(respectively 11.1610.9 vs. 5.765.5 mg.l21 for HS-CRP, 55.9655.3 vs 23.3615.8 ng/ml for RANTES and 7.364.3 vs 6.161.7 for
HbA1c). Serum adiponectin was reduced in OHS (760662977 vs 1366067854 ng/ml). Endothelial function was significantly
more impaired in OHS (RH-PAT index: 0.2260.06 vs 0.5160.11).

Conclusions: Compared to eucapnic obesity, OHS is associated with a specific increase in the pro-atherosclerotic RANTES
chemokine, a decrease in the anti-inflammatory adipokine adiponectin and impaired endothelial function. These three conditions
are known to be strongly associated with an increased cardiovascular risk.
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Introduction

The obesity-hypoventilation syndrome (OHS) is defined by

obesity (BMI$30 kg/m2), and chronic alveolar hypoventilation

resulting in daytime hypercapnia (PaCO2.45 mmHg), after

exclusion of all other causes of alveolar hypoventilation (severe

obstructive or restrictive diseases, chest wall disorders, neuromus-

cular diseases)[1–3]. Patients suffering from OHS are considered to

be more severely affected compared to eucapnic obese patients. The

use of health-care resources is increased compared to usual obese

patients [4] and OHS is carrying a momentous cardiovascular

morbidity [2,5]. Compared with obese control subjects, patients

with OHS are statistically much more likely to have been diagnosed

with congestive heart failure (OR 9; 95% CI, 2.3–35), angina

pectoris (OR, 9; 95% CI, 1.4–57.1) and cor pulmonale (OR, 9; 95%

CI, 1.4–57.1) [4]. In obese, prospectively followed during 18 months

after hospital discharge, OHS patients had a higher rate of death

compared to simple obesity (23% versus 9%) [6].

Obesity is a disease state characterized by chronic systemic low

grade inflammation and associated inflammatory changes in the

adipose tissue [7–10]. OHS adds up on obesity several extra stimuli

that might increase the burden of chronic inflammation and as a

consequence its proatherogenic effects. Work of breathing is higher in

OHS compared to eucapnic obesity [11]. It has been demonstrated

that adding a load to the respiratory system is resulting in

proinflammatory cytokines release [12,13]. Up to 85% percent of

OHS patients are exhibiting sleep apnea, a disease condition, linked

with cardiovascular diseases [14]. Furthermore, OHS is character-
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ized by mild hypoxaemia during daytime, associated with extreme

oxygen desaturations during REM sleep and concomitant repeated

acute increases in PaCO2. In animal models and humans, hypoxia of

the adipose tissue has been shown to be associated with local fat

inflammation[15,16]. Thus, an aggravation in adipose tissues of

inflammatory state is conceivable in OHS. Finally, the pivotal

mechanism underlying daytime hypercapnia in OHS is the reduction

in ventilatory drive owing to central leptin resistance [17,18]. Central

leptin resistance results in high plasmatic levels of leptin and

preservation of peripheral actions of leptin such as increased

sympathetic outflow and cytokine production [19].

Thus, it seemed reasonable to hypothesize that OHS compared

to eucapnic obesity could be associated with increased systemic

inflammation and with an increased production of proinflamma-

tory adipocytokines. Furthermore Apovian et al. have recently

demonstrated that local adipose tissue inflammation is linked with

endothelial dysfunction [7]. We postulated that OHS patients

would exhibit a specific inflammatory response and a more severe

endothelial dysfunction than eucapnic obese, matched for BMI

and age.

Materials and Methods

Patients
Obesity hypoventilation syndrome (OHS) was defined by a body

mass index (BMI) above 30 kg/m2 and a PaCO2.6 kPa on daytime

blood gazes, without any significant airway obstruction (FEV1/

FVC,70%), history of heart failure or progressive neuromuscular

disease. OHS patients were compared to control subjects (eucapnic

obesity group), in a case control study design. Both groups of subjects

came from an obese database of subjects recruited by advertisement in

newspapers or addressed to the sleep laboratory for suspicion of

obstructive sleep apnea syndrome (OSAS). Among 104 obese in the

database at the time of the analysis, each OHS patient was matched

with up to 6 eucapnic obese. Patients were matched for two classes of

age (#60 or.60 years old), and three classes of body mass index

(30#BMI,35 kg.m22), (35#IMC,40 kg.m22), (BMI.40 kg.m22).

All the patients underwent a baseline screening visit including sleep

studies, respiratory assessment and cardiovascular function before been

potentially involved in a randomized interventional controlled study.

After this baseline visit, only those subjects having obesity hypoven-

tilation syndrome were randomized in a one month comparison

between non invasive ventilation and standard care. This randomized

controlled study is ongoing [clinical trial registration number:

NCT00603096]. The current study is reporting the results of a case

control comparison of two clusters of obese exhibiting or not OHS and

matched for age and BMI.

The study was approved by the university hospital ethics

committee. All patients signed a written informed consent.

Study design
Patients underwent an overnight polysomnography. After

waking up, in fasting state, a peripheral blood sample was drawn

and endothelial dysfunction was assessed by reactive hyperhemia

with finger plethysmographic methodology (RH-PAT). After

breakfast, Epworth sleepiness scale, pulmonary function tests,

arterial blood gases analysis, and ventilatory response to CO2 were

performed.

Study procedures
Polysomnography (PSG). An overnight PSG was performed

during spontaneous breathing in order to characterize abnormal

respiratory events during sleep according to standard criteria

[20,21] as previously described [22,23].

Biomarkers. After peripheral blood sampling, plasma

glucose and serum triglycerides levels were measured on

automat (Modular 700, Roche, Meylan, France). Serum insulin

was measured using a radio-immunometric sandwich assay (CIS

bio international, Gif-Sur-Yvette, France). Serum HS-CRP level

was measured using automated immunonephelometry (Behring

Nephelometer II Analyzer, Dade Behring, Germany).

Leptin, CCL5/RANTES (Regulated upon activation normal T-

cell express an secreted), CCL2/MCP1 (Monocyte chemo-

attractant protein 1), IL-6, IL-8, TNFa, Resistin, Adiponectin

and IL-1Ra were measured by commercially available multiplex

beads immunoassays (Fluorokine MAP Multiplex Human Cyto-

kine Panel and Obesity Panel, R&D Systems, Minneapolis, USA)

and read by the Bioplex 200 array reader (Bio-Rad Laboratories,

Hercules, CA, U.S.A.) which uses Luminex xMAPTM Technology

(Luminex Corporation, Austin, TX, U.S.A.).

Respiratory function and ventilatory responses to

CO2. Spirometry and plethysmography were measured accor-

ding to the European Respiratory Society recommendations [24].

CO2 chemo-sensitivity was assessed using Read’s method [25].

Endothelial Dysfunction. Endothelial dysfunction was

assessed by reactive hyperhemia with finger plethysmographic

methodology (RH-PAT, i.e Reactive Hyperhemia Peripheral

Arterial Tonometry) using Endo-PAT device (Itamar Medical

Ltd, Caesarea, Israel) as previously described [26,27]. RH-PAT

index was calculated as the natural logarithm of the average

amplitude of PAT signal after 90 to 120 second deflation divided

by average amplitude of the PAT signal during 210 second prior

the cuff inflation [28].

Statistical analysis
Our main objective was to unmask differences in endothelial

dysfunction between OHS and eucapnic obese patients matched

for age and BMI. Our secondary goal was to assess inflammatory

parameters differences between the two groups. The first step was

to use univariate conditional logistic regression to compare the two

groups. Then, multivariate conditional logistic regression models

were used to examine the effects of potential confounders other

than those controlled for by matching, including parameters

unbalanced between groups. For all the tests, a significant level of

p,0.05 was used. SAS 9.1.3 package (SAS Institute, Cary, NC,

USA) software was used for statistical analysis. Results are

expressed as mean6SD.

Results

Patients characteristics
Fourteen obesity hypoventilation syndrome patients (OHS) were

compared to 39 ‘‘eucapnic obese’’ matched for age and BMI. By

definition, PaCO2 was more elevated in OHS than in obese group

(6.4560.39 vs 5.3160.44 kPa). PaO2 tend to be lower (9.7861.73

vs 10.7161.44 kPa). Anthropometrics, blood pressure and lung

function characteristics are reported in Table 1. Sex ratio was not

different between the two groups. OHS had significantly impaired

lung volumes. Compared to eucapnic obese (Table 2), OHS had

comparable severity in obstructive sleep apnea syndrome as

expressed by apnea+hypopnea index (AHI = 40628 for UO vs.

57654 for OHS). Three OHS patients had AHI#5/h compared to

two patients in the eucapnic obese group. OHS spent more time

during sleep with oxygen saturation (SpO2) less than 90% and had

lower nadir nocturnal SpO2. As shown in table 3, OHS had higher

glycated hemoglobin and tended to be more frequently treated for

hypertension. HOMA index reflecting insulin resistance was three

time higher in OHS than in eucapnic obese.

Endothelial Dysfunction in OHS
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Inflammatory and anti-inflammatory status

HS-CRP was significantly elevated in OHS compared to

eucapnic obese (mean6SD: 11.1610.9 vs. 5.765.5 mg.l21,

p,0.05). Serum level of RANTES, a pro-atherosclerotic chemo-

kine, was also significantly increased in OHS (55.9655.3 vs

23.3615.8 ng/ml, p = 0.04) (table 4). Others pro-inflammatory

cytokines, chemokines except MCP1, were not different between

the two groups. Adiponectin, an anti-inflammatory adipokine was

significantly lowered in OHS compared to UO (760662977 vs

1366067854, ng/ml p = 0.025). (table 4).

Endothelial dysfunction
Endothelial function was significantly more impaired in OHS

patients than in UO patients (RH-PAT index: 0.2260.06 versus

0.5160.11 respectively, odds ratio = 0.02 [0.01–0.48) p = 0.03].

Figure 1 depicts parameters which differed between OHS and

eucapnic obsese patients in univariate analysis. In a multivariate

analysis, after adjustment for potential confounders (i.e: FVC,

Sleep time spent with SpO2,90%, HbA1c), neither RANTES,

nor adiponectin and RH-PAT were independently associated with

the risk of having OHS.

Discussion

In this prospective controlled study, we compared for the first

time inflammatory status and endothelial function in obesity

hypoventilation syndrome and eucapnic obesity. We observed that

the proatherogenic chemokine RANTES (CCL5) increased

significantly whereas insulin sensitizing and antiatherogenic

adipokine adiponectin was significantly reduced in OHS patients.

Consistently, endothelial function was significantly more impaired

in obesity hypoventilation syndrome than in eucapnic obesity.

Not only obesity but many other systemic diseases like diabetes,

COPD, cardiovascular diseases or sleep apnea are associated with

an underlying pro-inflammatory state [8,29,30]. Although sharing

what is generally called ‘low-grade’ or ‘chronic’ inflammation, all

these diseases present different time course evolution and

prognosis. Moreover, obesity per se, is not a homogeneous

condition. It would be useful to distinguish subclasses of

inflammation among obese populations reflecting different risks

and allowing tailoring specific anti-inflammatory treatments. The

present study is the first to compare the serum profile of an

extensive panel of 9 chemokines and adipokines by multiplex assay

in OHS and eucapnic obese patients. Of all chemokines tested,

Table 1. Anthropometric characteristics and respiratory function.

OHS (14) Eucapnic Obese (39) Odds Ratio (95% CI)

Sex F/M 9/5 26/13 0.83 (0.24–2.81)

Age (years) 57610 56610 0.99 (0.90–1.09)

BMI (kg/m2) 41.065.2 40.965.1 1.02 (0.85–1.23)

Waist/Hip ratio 0.9860.06 0.9460.1 1.52 (0.32–7.15)

Clinical SBP (mmHg) 133623 132612 1.00 (0.96–1.05)

Clinical DBP (mmHg) 7569 80610 0.96 (0.90–1.02)

FVC (% predicted value) 72624 92617 ** 0.93 (0.89–0.98)

TLC (% predicted value) 90617 99612 1 0.95 (0.90–1.00)

FEV1/FVC (%) 8468 7968 0.11 (0.97–1.28)

CO2 sensitivity (l/min/mmHg) 1.460.9 2.461.5 1 0.51 (0.25–1.06)

OHS: Obesity hypoventilation syndrome; BMI: Body Mass index; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; FVC: forced vital capacity, expressed as
percentage of predicted value; TLC: total lung capacity as percentage of predicted value; FEV1/FVC: forced expiratory volume in 1 second on forced vital capacity ratio;
CO2 sensitivity: Central CO2 chemo-sensitivity was assessed using Read’s method [25]. Results are expressed as mean6SD.
1: p,0.1; *: p,0.05 **: p,0.01 using univariate conditional logistic regression.
doi:10.1371/journal.pone.0006733.t001

Table 2. Sleep structure and sleep associated disorders breathing.

OHS (14) Eucapnic Obese (39) Odds Ratio (95% CI)

Total Sleep Time (min) 341666 338683 1.00 (0.99–1.01)

Sleep 1–2 (% of total sleep time) 7569 72610 1.05 (0.95–1.15)

Sleep 3–4 (% of total sleep time) 568 768 0.98 (0.87–1.10)

REM Sleep (% of total sleep time) 1967 2168 0.96 (0.87–1.06)

AHI (n/h) 57654 40628 1.01 (0.99–1.03)

Respiratory-related m-arousals(n/h) 50636 36620 1.02 (0.99–1.04)

Mean nocturnal SpO2 (%) 8965 9164 0.90 (0.78–1.03)

Nadir nocturnal SpO2 (%) 65615 76610 * 0.94 (0.89–0.99)

Sleep time spent with SpO2,90% (%) 44635 19621 * 1.04 (1.01–1.08)

REM: Rapid eye movement sleep; AHI: Apnea-hypopnea index; SpO2: oxygen saturation Results are expressed as mean6SD.
1: p,0.1; *: p,0.05 using univariate conditional logistic regression.
doi:10.1371/journal.pone.0006733.t002
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RANTES was seen to be significantly elevated. RANTES is a

chemokine that has been involved in atherogenesis [31], and that

is also related to coronary heart disease risk in middle age subjects

[32]. Circulating RANTES level is elevated in symptomatic

coronary artery disease [33] and is also acutely increased in

unstable angina pectoris during severe ischemic symptoms [34].

RANTES is expressed by activated platelets, lymphocytes and

adipocytes [35,36]. As a result circulating RANTES concentra-

tions are elevated in obese rats [37], during human obesity,

impaired glucose tolerance and type 2 diabetes [38]. The design of

the present study did not allow identifying the main source of

plasmatic RANTES but we can speculate on a predominant

visceral fat and/or activated platelets origin for RANTES. Indeed,

Hosegai et al. [15] have shown that local adipose tissue hypoxia in

mice dysregulates adipokines production. In the present study,

OHS patients exhibited more severe daytime hypoxaemia and

nocturnal oxygen desaturations compared to matched eucapnic

obese. Thus, mild hypoxaemia during daytime and severe

desaturation during sleep, the later representing an additional

hypoxic insult, might favor RANTES production by adipose

tissue. On the other hand, thromboembolism is 4 fold increased in

mortality in OHS compared to eucapnic obesity [6], suggesting a

pro-coagulant state in OHS potentially linked to platelet

activation. Platelets are the main source of RANTES and the

interplay between RANTES and platelets allow monocytes arrest,

a determinant pathway in atherosclerosis initiation [36]. Further

studies directly addressing local fat inflammation and platelets

activation in the specific population of OHS are required to

elucidate the respective contribution of these two pathways in

RANTES up-regulation.

Whereas proatherogenic RANTES increased significantly,

insulin sensitizing and antiatherogenic adipokine adiponectin

was significantly reduced in our OHS patients. Obesity-related

cardiovascular diseases are associated with decreased plasma levels

of adiponectin [39,40]. Hypoadiponectinemia correlates signifi-

cantly and independently with coronary artery disease [41] and

more generally plasma adiponectin levels are an inverse predictor

of cardiovascular outcome [39]. In our study, as for RANTES, the

severity of sleep apnea and REM sleep related desaturations

together with moderate daytime hypoxaemia, may play a major

role as it has been demonstrated that local hypoxia at the

abdominal fat level reduced adiponectin release by the adipocytes

[15]. In the present study, we evidenced for the first time that

hypoadiponectinemia is further reduced in OHS compared to non

OHS obese subjects. This result is in accordance with the OHS

observational cohorts data, demonstrating a higher prevalence of

cardiovascular diseases as well as increased mortality of OHS

patients [2,6]. We also found that OHS patients tend to used more

antihypertensive agents had higher insulin resistance and were

more frequently treated by glucose lowering medications.

However, strong evidence base medicine is lacking in this field

and epidemiological studies in different subclasses of obesity are

desirable to more clearly delineate the respective metabolic and

cardiovascular risk of different subgroups of obese subjects with

and without daytime hypoventilation [42].

As we have demonstrated a specific pattern of inflammation and

a decrease in adiponectin levels, we also observed an aggravated

endothelial dysfunction in OHS patients [43]. This is supporting a

particular cardiovascular risk associated with OHS as endothelial

dysfunction is an early key event of atherosclerosis and a strong

Table 3. Cardiovascular, metabolic status and history.

OHS (14) Eucapnic Obese (39) Odds Ratio (95% CI)

Treated hypertension , % 86 54 1 4.74 (0.85–26.53)

Diabetes, % (Treated for diabetes, %) 54 (43) 29 (21) 3.00 (0.80–11.34)

Statins, % 43 23 1.89 (0.50–7.09)

Fast blood insulin level, mu.mL21 22.7621.1 11.267.9 1 1.06 (0.99–1.12)

Fast blood glucose level mmol/l 7.563.8 6.562.7 1.15 (0.90–1.48)

HOMA – IR (G*I/22.5) 9.8613.0 3.262.4 1 1.14 (0.98–1.33)

HbA1c, % 7.364.3 6.161.7 * 8.76 (1.02–75.00)

Triglycerids, g/l 1.6960.8 1.460.7 1.75 (0.70–4.40)

HDL cholesterol, g/l 0.4160.13 0.4060.1 1.51 (0.40–5.72)

LDL cholesterol, g/l 1.060.4 1.360.5 1 0.23 (0.05–1.09)

Total Cholesterol, g/l 1.860.5 2.060.6 0.34 (0.08–1.39)

HOMA-IR was calculated with the formula: Fast blood glucose level*Fast blood insulin level/22.5; HbA1c: Glycated haemoglobin; HDL: High density lipoprotein; LDL:
Low density lipoprotein. Results are expressed as mean6SD. 6SD.
1: p,0.1; *: p,0.05 using univariate conditional logistic regression.
doi:10.1371/journal.pone.0006733.t003

Table 4. Serum levels of 9 cytokines in Obesity
Hypoventilation Syndromes (OHS) compared to
‘‘uncomplicated obese’’ (UO) patients.

OHS (14)
Eucapnic
Obese (39)

Odds Ratio
(95% CI)

IL1-Ra, ng/ml 1.661.4 1.761.9 1.00 (0.99–1.01)

MCP1, pg/ml 172672 216676* 0.98 (0.97–0.99)

IL8, pg/ml 6.863.4 18 .8645.3 1 0.88 (0.75–1.02)

TNFa, pg/ml 2.862.2 2.761.2 1.04 (0.68–1.58)

LEPTIN, ng/ml 92.5659.2 110.4682.5 0.99 (0.98–1.01)

IL6, pg/ml- 1.961.1 1.761.0 1.78 (0.80–3.93)

RESISTIN, ng/ml 6.862.8 7.164.7 0.96 (0.82–1.13)

RANTES, , ng/ml 55.9655.3 23.3615.8 * 1.03 (1.02–1.06)

ADIPONECTIN, ng/ml 760662977 1366067854* 0.15 (0.03–0.70)

1: p,0.1; *: p,0.05, using univariate conditional logistic regression.
doi:10.1371/journal.pone.0006733.t004
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predictor of incident cardiovascular events [44–46]. Arkin et al.

[42] have recently suggested that endothelial dysfunction aggra-

vates with increased degree of obesity, being more severe in super

obese (.50 kg/m2) than in morbidly obese (.40 kg/m2). They

assumed that more visceral fat in super obese patients can be an

explanation for their results. As the expected prevalence of OHS is

more than 50% in super obese patients versus only 30% in

morbidly obese [6], we suggest that OHS-induced inflammation

may be a complementary explanation. This is leading to propose a

systematic measurement of blood gazes both in clinical practice

and in research protocols in obese. In our study, even supra

normal values of PaCO2 were significantly linked with RANTES

elevation and endothelial dysfunction.

Conditional multivariate analysis did not allow to demonstrate

that endothelial dysfunction (i.e: RH-PAT) as well as inflammatory

status (i.e: high levels of RANTES/low levels of ADIPONECTIN-

MCP1) were independently associated with OHS. Actually,

hypoxia both sustained (morbid obesity) and/or intermittent

(OSAS) is acknowledged as triggering inflammatory pathways

mediated by the transcription factor nuclear factor kappa B (NF-

kB) and hypoxia-inducible factor 1 (HIF-1). Particularly, NF-kB is

a key player in inflammatory and innate immune responses.

Circulatory proinflammatory cytokines are then increased and at

the end these inflammatory processes directly induce endothelial

dysfunction[47,48]. Moreover, there is a close relationship

between insulin resistance, known to be associated with low serum

adiponectin level [49] and endothelial dysfunction[50]. Thus, it

appears that inflammatory cytokines, nocturnal desaturation,

glycated haemoglobin and endothelial dysfunction form a vicious

cycle where each results in worsening of the other.

Limitations of the study
Several limitations of this study need to be pointed out. Firstly,

the sample size of the study (n = 53) is relatively limited. However,

in quality assessment before including the studies in the

metaanalysis of predicting factors to having OHS, Kaw et al.

keep prospective studies with case-control design including at least

10 patients with hypercapnia [1]. Our study corresponds to these

criteria. Secondly, owing to the sample size, boundaries for classes

of matching criteria were relatively wide. However, the sub-classes

of BMI used in the study are corresponding to the classical

definitions for moderate to morbid obesity [51].

Clinical implications, research and therapeutic
perspectives

Our study demonstrated that obesity hypoventilation syndrome

is a specific cluster in obesity associated with specific inflammation

and aggravated endothelial dysfunction. Whether RANTES

Figure 1. Comparison between Obesity Hypoventilation Syndrome (OHS) compared to eucapnic obese patients in RH-PAT, Sleep
time spent with SpO2,90%, FVC (% predicted value), glycated haemoglobin, serum levels of RANTES, Adiponectin and MCP1. TST:
total sleep time.
doi:10.1371/journal.pone.0006733.g001

Endothelial Dysfunction in OHS
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elevation will allow delineating suitable specific therapeutic targets

in this particular subgroup of obese needs to be addressed in future

studies [37,52]. However, this already have clinical implications as

individuals with elevated RANTES levels have higher risk to

develop diabetes mellitus despite intensive lifestyle intervention

than individuals with lower RANTES levels [53]. Moreover, non

invasive ventilation the current first line therapy of OHS should

now be evaluated, in randomized controlled trials, not only

regarding its effects on PaCO2, sleep and quality of life but also for

its cardiovascular and metabolic impact.
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