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We study the nonequilibrium linear response of quantum elastic systems pinned by quenched disorder
with Schwinger-Keldysh real-time techniques complemented by a mean-field variational approach. We
find (i) a quasiequilibrium regime in which the analytic continuation from the imaginary-time replica
results holds provided the marginality condition is enforced, and (ii) an aging regime. The conductivity
and compressibility are computed. The latter is found to cross over from its dynamic to static value on a
scale set by the waiting time after a quench, an effect which can be probed in experiments in, e.g., Wigner
glasses.
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The dynamics and transport properties of glasses are the
object of current theoretical and experimental interest [1–
3]. The slow approach to the static limit and the accom-
panying aging phenomena [1] observed experimentally in
classical glasses is captured by a variety of models [2]. A
natural explanation for the slow dynamics is the existence
of a special organization of an exponentially large number
of metastable states.

Less is known when glasses evolve at very low tempera-
tures and quantum fluctuations become important as occurs
in Wigner [4,5] and Coulomb [6–10] glasses, as well as in
spin [11] and other systems [12] at low temperature. Aging
in the transport properties of Coulomb glasses was reported
recently [6]. Theoretically, electronic glasses have been
studied with numerical simulations in a classical limit [7]
or with the imaginary-time [8] or static [9,10] methods
combined with the replica trick applied to the isolated
model. Strictly, the latter allows one to describe the statics
and, via an analytical continuation to real time, the equi-
librium dynamics with infinitesimal dissipative coupling to
a bath. However, it is of a somehow broader use since it has
also given access to dynamical quantities such as the finite
frequency conductivity [13–15], and instanton calculations
allowed us to relate, in the presence of a bath, the
imaginary-time solution to the ultraslow dynamics (quan-
tum creep) [16]. Still, a rigorous treatment of a full non-
equilibrium relaxation requires special techniques devised
to deal directly with the real-time dynamics of dissipative
quantum systems [17,18]. Even in the infinitesimal cou-
pling limit, these are needed to ascertain the validity of
analytic continuations to real-time, especially for glassy
systems.

The compressibility of electronic glasses has been mea-
sured recently [19–21]. Being of thermodynamic nature, in
equilibrium it should only depend on the statics of the
problem. Conversely, its time dependence reflects an out
of equilibrium relaxation. Within an imaginary-time
(Matsubara) variational calculation [13,14,22] the static,

zero frequency, compressibility of a disordered Wigner
crystal was found to be nonzero and identical to the one
of the pure system. In contrast, the analytic continuation
yielded a vanishing result even in the small real frequency
limit. This hinted to the fact that aging effects could be
present [5,22] though a firm conclusion was clearly beyond
the imaginary-time calculation that assumes equilibrium at
the outset.

In this Letter we study the out of equilibrium relaxation
of a disordered Wigner crystal with the Schwinger-
Keldysh (SK) technique [23,24]. We find two two-time
regimes; one in which the equilibrium result is recovered
and another one in which the compressibility is reduced
and dominated by aging effects. Our calculation is per-
formed within a mean-field-like variational approximation.
We discuss its limits of validity as well as the relevance of
our results for experimental systems.

We model a disordered quantum crystal as

H �
Z
x
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�

�
Z
x
U�x��0 cosfQ�x� u�x��g; (1)

where m is the mass of the particles, �0 is the average
density, Q � 2�=a with a the interparticle spacing, andR
x �

R
ddx. � and u are conjugate operators

�u�x�;��x0�� � i@��x� x0�. U�x� is a random potential
with Gaussian statistics, U�x� � 0 and U�x�U�x0� �
��x� x0� with ��z� a function with finite range rf. This
model describes a large class of systems including charge
density waves [25,26] (with a phase � � 2�u=a), Wigner
crystals (upon generalization to a two component vector ~u)
[5,14], and Luttinger liquids in d � 1 [27].

The compressibility � is defined as the change in density
in response to a change in chemical potential �. In linear
response, it is given by the q! 0 limit of the density-
density correlator. For (1) the long wavelength part of the
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density is ��x� � �0 	��0ru�x�, and the equilibrium
compressibility is � � limq!0��q;!n � 0� with
��q;!n� � �2

0q
2Gc�q;!n�,!n the Matsubara frequencies,

and Gc�q;!n� � hu
q;!n
uq;!n

i � hu
q;!n
ihuq;!n

i, where h. . .i
and � � � denote the thermal and disorder average, respec-
tively. Within the replica variational approach [13]

��q;!n� �
�2

0q
2

�m!2
n � cq2 � �1�1� �n;0� � I�!n�

; (2)

where �m � m�0, �1 	 �m!
2
p is a constant depending on

disorder, !p is the pinning frequency [13,26], and I�0� �
0. � is independent of disorder and simply given by

� � �2
0=c: (3)

Alternatively, the real-time compressibility, i.e., the re-
sponse to a time-dependent chemical potential, is given
by the retarded linear response. Naively, this can be ob-
tained from (2) by the standard analytical continuation
i!n ! !� i� that leads to [13]

��q;!� � �2
0q

2���m!
2 � cq2 ��1 � ~I�!���1; (4)

where ~I�!! 0� ! 0. Note that even performing the limit
!! 0 first while keeping q fixed one finds

� � lim
q!0

lim
!!0

��q;!� � 0; (5)

in disagreement with the result in (3).
The simplest example where such a difference arises is

an isolated two level system (e.g., a spin). The static
susceptibility in response to an external magnetic field is
� � 1=T, where T is the temperature (kB � 1). However,
the response to a time-dependent field is always zero,
leading to ��!! 0� � 0 at variance with the static result.
The difference is due to the existence of two degenerate
ground states in the unperturbed system. In the static
calculation one sums over both. The perturbation instead
is unable to induce transitions leading to zero response. In a
glass there may be no exact degeneracy between the multi-
tude of metastable states. Still, if they are close enough in
energy and their coupling is sufficiently weak one expects
a similar phenomenon.

To analyze this issue, we study the real-time dynamics of
model (1) using the SK technique. Let us sketch the main
steps of the calculation. The observables are computed
using a path integral on two fields, u�, that live on the
two sides of a closed time contour. The measure is given by
e�SK where SK is the (dimensionless) SK action SK �

i
@



�S�u�� � S�u��� and S�u� is the standard action for a
system described by (1). To take into account nonzero
temperature and dissipation we couple the system to a
thermal bath of independent harmonic oscillators [17].
By integrating them out we induce a coupling between
the fields u�. The average over disorder is easily done
without replicas and has a similar (coupling) effect. In
terms of the fields u � 1

2 �u� � u�� and û � 1
@
�u� � u��

the resulting action, Sav � S0 � Sd, depends on R�z� �
�2

0�Q cos�Qz� with �Q the Fourier transform of the dis-
order correlation at wave vector Q, and reads
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with
R
q! �

R ddq
�2��d

R d!
2� . The terms proportional to � arise

from the coupling to the bath and represent Ohmic dis-
sipation. For � infinitesimal, one recovers the intrinsic
dynamics of the quantum system. For the pure system
(R � 0) this action yields the equilibrium response ob-
tained by the analytic continuation of the Matsubara

representation. Sd can be rewritten as Sd �
2�2

0�Q

@
2 
R

xtt0 sin�Q@ûxt=2� sin�Q@ûxt0=2� cos�Q�uxt � uxt0 ��; it is
clear that the quantum action crosses over to the dynamic
Martin-Siggia-Rose action [28] when @! 0.

The disorder-averaged correlation and linear response
are defined as Cx�x0 �t; t0� �

1
2 hu

�
xtu�x0t0 � u

�
xtu�x0t0 i �

huxtux0t0 i and Rx�x0 �t;t
0�� i

@
hu�xt�u

�
x0t0 �u

�
x0t0 �i� huxtiûx0t0 i,

with Rx�x0 �t; t0� for t � t0 and hûxtûx0t0 i vanishing because
of causality. The brackets represent here an average with
the weight e�Sav . In the absence of disorder, C and R are
stationary, i.e., depend only on t� t0; their Fourier expres-
sions are

C0
q�!� �

�@! coth�@!2T�

��m!
2 � cq2�2 � �2!2 ;

R0
q�!� � ���m!2 � cq2 � i�!��1;

(7)

and they obey the fluctuation-dissipation theorem (FDT)

R0
q�!� � �

Z
!0

2 tanh�
@!
0

2 �

@�!�!0 � i��
C0
q�!

0�: (8)

In particular, @ ImR0
q�!� � tanh�
@!=2�C0

q�!
0�. Since the

long wavelength part of the density and the current are,
respectively, ��x� � �0 � ��0ru�x; t� and j�x� �
�0@tu�x; t�, in linear response the compressibility and con-
ductivity are given by

��q;!� � q2�2
0Rq�!�; 	�!� � �i!�2

0Rq�0�!�:

(9)

Inserting the free values in (7) one recovers (3) for the
static compressibility and 	�!� � �2

0=��� i!�m� for the
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static conductivity which, in the limit �! 0, reproduces
the Drude form, Re	�!� � �0�

m ��!�.
In the presence of disorder, one derives self-consistent

mean-field equations for Cq�t; t0� and Rq�t; t0�, where t � 0
is the time when the system is quenched into the disordered
state and set in contact with the bath. We show only the
equation for the response (see [29] for details):

��m@2
t � �@t � cq2�Rq�t; t0� � ��t� t0� �

Z t

0
ds��t; s�


 �Rq�t; t
0� � Rq�s; t

0��;

(10)

with the self-energy ��t; s� � � 4
@

ImV 0� ~B�t; s� �
i@ ~R�t; s�� and V�z� � ��2

0�Qe
��1=2�Q2z. The tilde denotes

an integration over q [e.g., ~R�t; s� �
R
q Rq�t; s�] and

Bq�t; t0� � Cq�t; t� � Cq�t0; t0� � 2Cq�t; t0�.
Analysis of this equation in the long time limit t; t0 ! 1

shows that, as in the classical case [30] and the quantum
dissipative p-spin model [17,18], the model exhibits two
two-time regimes. First, for fixed t� t0 the two-time func-
tions are stationary, Rq�t; t0� ! rq�t� t0� and Bq�t; t0� !
bq�t� t0�, and the FDT (8) holds. For more separated
times, there is an asymptotic aging solution, Rq�t; t0� !
RAq �t; t

0�, as discussed below. The equation for rq�t� t0� is
obtained from (10) by a careful separation of time scales
along the lines of [31]. Its solution reads

rq�!� � �cq
2 �M� i�!� �m!

2 � ��!���1; (11)

with the self-energy ��!� �
R
1
0 d��e

�i!� � 1����� and

���� �
2

@

X
	��1

i	V0�~b��� � i@	~r����: (12)

The constant M � limt!1
R
t
0 ds��t; s� �

R
�1
0 d�0���0�,

the so-called anomaly, arises from the contribution of the
aging time scales to the FDT regime. Using FDT,

~b�t� �
Z
!

2�1� e�i!t�@�1� 2fB�!��Im~r�!�; (13)

where fB�!� � 1=�e
@! � 1�. The last self-consistency
condition follows from matching the FDT regime with
the aging one. Taking t0 ! t� in (10) yields �cq2 �

M�RAq �t; t
�� � �A�t; t��rq�! � 0�, and the existence of a

nonvanishing aging solution with RAq �t; t0� ! 0 as t0 ! 0
requires the ‘‘marginality condition’’

1 � �4V00�b1�
Z
q
�cq2 �M��2; (14)

where b1 � limt!1
~b�t�. One can explicitly check [29]

that the solution in the FDT regime coincides with the
analytical continuation of the saddle-point solution of the
replica variational approach to the Matsubara action per-
formed in appendix D of [13]. More precisely, Gc�q;!n�
identifies (after analytic continuation) with rq�!�. Simi-

larly, I�i!n ! !� i�� ! ~I�!� � ���!�, �1 ! M, B!
b1, where B is defined in (31) in [13]. Importantly, this
correspondence holds only if the replica symmetry break-
ing scheme is the one using the marginality condition (14).
This choice, advocated in [13] for being the only one
leading to a gapless conductivity, was often used since
and is hereby fully justified within the SK formalism.
Note that in d � 1 and for � � 0 model (1) has an addi-
tional stable 1 step replica symmetry breaking solution that
is then discarded in the Matsubara treatment. The SK
formalism also allows one to obtain the response for finite
�. The low frequency behavior of the conductivity changes
from Re	�!� 	 �0!

2=�m!3
p� to Re	�!� 	

����
�
p

!3=2=!3
p

[32].
We now turn to the compressibility, i.e., the (linear)

response of the density to a small change in chemical
potential of amplitude �� applied between times tw and
t (see Fig. 1). One finds

��q; t; tw� �
���t�
��

����������0
�

�2
0q

2

cq2 �M�t; tw�
: (15)

As t� tw increases one distinguishes two regimes. For
!�1
p � t� tw � tw the response is dominated by the

‘‘FDT regime’’ and it is stationary; moreover M�t; tw� �
M and the compressibility vanishes [��q; t; tw� ! 0 when
q! 0], recovering (5). If, instead, t� tw 	 tw, the re-

sponse is dominated by the aging regime and M�t; tw� �

M� 4
R~b1

~BA�t;tw�
V 00�z�X�z�dz, where X�z� is the FDT viola-

tion ratio [17,30,31] as a function of z � ~B. For � infini-
tesimal, X�z� coincides with X ! u, z! B�u� as found in
the replica solution with (14) [13]. ~B has an aging form and
its detailed scaling depends on the model. In d � 1; 2 one
finds M�t; tw� ’ MF�h�t�=h�tw��, where F and h are scal-
ing functions. When times are very separated t� tw � tw,
M�t; tw� tends to zero and, from (15), the compressibility is
the constant (3). At intermediate time scales a mass is
always present and the compressibility depends on the
wave vector q. For a finite size system of size L one can
estimate that the compressibility crosses over from being
essentially zero to the thermodynamic one when

�Lc=L�
2 >M�t; tw�=M; (16)

[Lc �
������������
c=�m

p
!p is the Larkin pinning length]. The char-

timet

µ

µ+δµ

0 w t

FIG. 1. Sketch of the variation of the chemical potential;
dc (solid line) and ac (dashed line), for a system quenched at
time t � 0. The density is measured at time t.
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acteristic time scale to realize such evolution is the waiting
time tw. This potentially provides a direct experimental
way to check for aging in these systems. Alternatively, one
can apply an ac perturbation as typically done in experi-
ments (see Fig. 1, and [1] for a similar discussion on the ac
magnetic susceptibility of classical spin glasses) and obtain
different results by tuning the period, �, of the perturbation.
Short �’s select the FDT contribution and thus a vanishing
compressibility while very long �’s do not erase the con-
tribution from the aging regime yielding a constant com-
pressibility as in (3). The crossover in � is typically of the
order of tw.

The above results are consistent with the picture that
upon a change of chemical potential the system is first
trapped in quasiequilibrium in a metastable state. Since
these states are pinned the charge cannot fluctuate and the
compressibility is essentially zero. On the other hand, if the
change in chemical potential is maintained for a long time,
the system explores other metastable states, the charge
being allowed to change in the process, thereby leading
to a finite response [33]. The mean-field solution presum-
ably overestimates the separation between metastable
states. Transitions can occur through activated processes
due to quantum or thermal fluctuations (so-called creep).
Although treating such processes is difficult, a possible
modification of (15) is

��q; t; tw� �
�2

0

c
F�qL�tw�; h�t�=h�tw�� (17)

with F�0; y� � 0, F�x;1� � F�1; y� � 1. Classical creep
arguments [34] based on barriers growing as L
 suggest
L�t� � Lc � h�t� with h�t� � �T lnt�2=
. Extensions incor-
porating quantum effects, as in [16], are needed to com-
plete this picture.

In addition, the approach developed here allows one to
generalize the mode-coupling theory to low-temperature
glasses with quantum fluctuations and no quenched disor-
der (see [2] for a discussion of the classical limit).
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