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The clustering of galaxies in ongoing and upcoming galaxy surveys contains a wealth of cosmological

information, but extracting this information is a nontrivial task since galaxies and their host haloes are

stochastic tracers of the nonlinear matter density field. This stochasticity is usually modeled as the Poisson

shot noise, which is constant as a function of wave number with amplitude given by 1= �n, where �n is the

number density of galaxies. Here we use dark matter haloes in N-body simulations to show evidence for

deviations from this simple behavior and develop models that explain the behavior of the stochasticity on

large scales. First, haloes are extended, nonoverlapping objects, i.e., their correlation function needs to go

to �1 on small scales. This leads to a negative correction to the stochasticity relative to the Poisson value

at low wave number k, decreasing to zero for wave numbers large compared to the inverse exclusion scale.

Second, haloes show a nonlinear enhancement of clustering outside the exclusion scale, leading to a

positive stochasticity correction. Both of these effects go to zero for high k, making the stochasticity scale

dependent even for k < 0:1h Mpc�1. We show that the corrections in the low-k regime are the same in

Eulerian and Lagrangian space, but that the transition scale is pushed to smaller scales for haloes observed

at present time (Eulerian space), relative to the initial conditions (Lagrangian space). These corrections

vary with halo mass, and we present approximate scalings with halo mass and redshift. We also discuss

simple applications of these effects to galaxy samples with nonvanishing satellite fraction, where the

stochasticity can again deviate strongly from the fiducial Poisson expectation. Overall, these effects affect

the clustering of galaxies at a level of a few percent even on very large scales and need to be modeled

properly if we want to extract high precision cosmological information from the upcoming galaxy redshift

surveys.

DOI: 10.1103/PhysRevD.88.083507 PACS numbers: 98.80.�k, 98.65.Dx, 98.80.Es

I. INTRODUCTION

The three-dimensional distribution of galaxies has the
potential to tell us a lot about the physics governing our
Universe. However, the imprint of the composition and
history of our Universe on its structure is usually quantified
in terms of the linear power spectrum. From there it is a fair
way to go to connect to the distribution of luminous
objects. Due to the stochastic nature of the initial condi-
tions, the comparison between theory and observation has
to be made at a statistical level. Thus, it has become
common practice to reduce the data to n-spectra and to
find a way to push the theory as far as possible in order to
make predictions for the observed spectra. This means that
the theoretical prediction needs to account for the fact that
galaxies are only sampling the underlying matter distribu-
tion. While their distribution is clearly related to the matter
distribution, there are a number of distinct features present
in the galaxy distribution that are related to their discrete

nature and the fact that galaxies form preferentially in
high-density regions.
Due to the complicated nature of galaxy formation,

cosmological constraints from galaxy surveys are usually
obtained using a bias model [1]. The simplest local bias
models [2] assume a proportionality between the galaxy
and matter overdensities. As we will review in detail below
in Sec. II A, the auto-power spectrum of a sample of N
particles in a volume V is expected to have an additional
scale-independent shot noise (SN) component V=N. We
will refer to this Poisson prediction as fiducial stochastic-
ity. On top of the fiducial Poisson shot noise, there are
further contributions to the halo power spectrum that are
white only over a limited range of wave numbers and lead
to modifications in the k ! 0 limit. The latter will be
referred to as stochasticity corrections. For instance, the
studies of [3,4] found evidence for a sub-Poissonian
noise in the halo distribution in N-body simulations (see
also [5,6]) and used this concept to increase the informa-
tion content extractable from surveys by weighting haloes
accordingly. Subsequently, this approach was used to*baldauf@physik.uzh.ch
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improve constraints on primordial non-Gaussianity [7] and
redshift space distortions [8].

Thus far, the origin of these stochasticity corrections has
not been understood consistently. However, some authors
noted that realistic bias models would at some point need
to account for the finite size of haloes and the resulting
exclusion effects [9]. The effect of halo exclusion on the
power spectrum was previously discussed in [10] in a an
Eulerian setting. Here, we will argue that the exclusion
effect cannot be seen in isolation but has to be combined
with the nonlinear clustering, which can lead to positive
corrections on large scales. This approach partially alle-
viates the longstanding problem of nonvanishing contribu-
tions of the perturbative bias model on the largest scales,
where perturbative corrections are considered unphysical.
This paper aims at shedding light on the stochasticity
properties of halo and galaxy samples and tries to quantify
them where possible.

The paper breaks down as follows: We begin in Sec. II
with a short review of the standard Poisson shot noise for a
sample of discrete tracers. Then, in Sec. III we consider
some simple toy models to understand the effects of

exclusion on the power spectrum, before we go on to
discuss more realistic models for the clustering of dark
matter haloes in Sec. IV. In Sec. V we study the stochas-
ticity and correlation function for a sample of dark matter
haloes and a Halo Occupation Distribution (HOD) galaxy
sample in N-body simulations. Finally, we summarize our
findings in Sec. VI.

II. DISCRETE TRACERS

A. Correlation and power spectrum

The overdensity of discrete tracer particles (dark matter
haloes, galaxies, etc.) can generically be written as

�ðdÞðrÞ ¼ nðrÞ
�n

� 1 ¼ 1

�n

X
i

�ðDÞðr� riÞ � 1; (1)

where �n is the mean number density of the pointlike
objects, whereas nðrÞ is their local number density.
The two-point correlation of this fluctuation field is the
expectation value

h�ðdÞðrÞ�ðdÞð0Þi ¼ 1

�n2

*X
i;j

�ðDÞðr� riÞ�ðDÞðrjÞ
+
� 1

�n

*X
i

�ðDÞðr� riÞ
+
� 1

�n

*X
j

�ðDÞðrjÞ
+
þ 1

¼ 1

�n2
�ðDÞðrÞ

�X
i

�ðDÞðr� riÞ
�
þ 1

�n2

*X
i�j

�ðDÞðr� riÞ�ðDÞðrjÞ
+
� 1

¼ 1

�n
�ðDÞðrÞ þ 1

�n2

*X
i�j

�ðDÞðr� riÞ�ðDÞðrjÞ
+
� 1

¼ 1

�n
�ðDÞðrÞ þ �ðdÞðrÞ: (2)

We split the sum into an i ¼ j and an i � j part, corre-
sponding to the correlation of the discrete particles with
themselves and the correlation between different particles,
respectively. The second term in the last equality is the
reduced two-point correlation function of the tracers. The
first term arises owing to ‘‘self-pairs,’’ which are usually
ignored in the calculation of real space correlations. Taking
the Fourier transform of the last expression, the power
spectrum of the discrete tracers is

PðdÞðkÞ ¼ 1

�n
þ
Z

d3r�ðdÞðrÞ exp ½ik � r�: (3)

Self-pairs contribute the usual Poisson white noise 1= �n.
The only requirement is that the power spectrum be posi-
tive definite. This implies that the Fourier transform of the
two-point correlation �ðdÞðrÞ can be anything equal or
greater than �1= �n. In the limit k ! 0, in particular, the
power spectrum tends towards

PðdÞðkÞ ���!k!0 1

�n
þ
Z

d3r�ðdÞðrÞ; (4)

where the integral of �ðdÞðrÞ over the whole space can be
positive, zero, or negative (but greater than�1= �n) depend-
ing on the nature of the discrete tracers. This can lead to
super-Poisson or sub-Poisson white noise in the low-k
limit.

At k ¼ 0, the power spectrum is PðdÞð0Þ ¼ 0 because the

fluctuation field �ðdÞðrÞ is defined relative to the mean num-

ber density; hence, h�ðdÞi ¼ 0. This implies thatPðdÞðkÞ drops
precipitously on very large scales (so it must be discontinu-

ous at k ¼ 0) regardless of the value of
R
d3r�ðdÞðrÞ. To

convince ourselves that this is indeed the case, we can write
the Fourier modes of the tracer fluctuation field as

�ðdÞðkÞ ¼ 1

�n

X
i

exp ½ik � ri� �
Z

d3r exp ½ik � r�: (5)

To calculate �ðdÞ (k ¼ 0) (which is formally the difference
between two infinite quantities),wefirst assumeN,V � 1 at
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fixed average number density �n � N=V and then take the
limit N, V ! 1. We thus have, for the Fourier transform of
the density field,

�ðdÞðkÞ ¼ 1

�n

X
i

exp ½ik � ri� � V�ðKÞ
k;0 ; (6)

which for k ¼ 0 yields

�ðdÞð0Þ ¼ V

N
N � V ¼ 0: (7)

This obviously holds also for a finite numberN of tracers in a

finite volume V. Therefore, the fact that
R
d3r�ðdÞðrÞ can be

different from zero has nothing to do with the fact that

h�ðdÞi ¼ 0, nor with the so-called ‘‘integral constraint’’ that
appears when measuring an excess of pairs relative to a
random distribution in a finite volume [11–13].

B. The effect of exclusion with clustering

Let us now account for the fact that haloes are the center
of an ensemble of particles, which by definition cannot
overlap, and that these are clustered. Exclusion means it is
forbidden to have two haloes closer than the sum of their
radii R. This fact can be accounted for by writing the
correlation function of the discrete tracers as

�ðdÞ
hh ðrÞ ¼

(�1 for r < R

�ðcÞ
hh ðrÞ for r � R;

(8)

where the fictitious continuous correlation function �ðcÞ
hh ðrÞ

is defined for r 2 ½0;1� and would, for instance, be related
to the matter correlation function by the local bias model
(see Sec. IVA below). Enforcing this step at the exclusion
radius is certainly overly simplistic, since any triaxiality or
variation of radius within the sample will smooth out this
step. We will come back to this issue later.

For generic continuous clustering models, we can write
the Fourier transform of the correlation function asZ 1

0
d3r�ðdÞ

hh ðrÞj0ðkrÞ

¼ �
Z R

0
d3rj0ðkrÞ þ

Z 1

R
d3r�ðcÞ

hh ðrÞj0ðkrÞ

¼ �VexclWRðkÞ �
Z R

0
d3r�ðcÞ

hh ðrÞj0ðkrÞ

þ
Z 1

0
d3r�ðcÞ

hh ðrÞj0ðkrÞ

¼ �VexclWRðkÞ � Vexcl½WR � PðcÞ
hh �ðkÞ þ PðcÞ

hh ðkÞ; (9)

where the exclusion volume is Vexcl ¼ 4�R3=3, j0 is
the zeroth-order spherical Bessel function, the Fourier
transform of the top-hat window is given by

WRðkÞ ¼ 3
sin ðkRÞ � kR cos ðkRÞ

ðkRÞ3 ; (10)

and the notation ½A � B�ðkÞ describes a convolution integral

½A � B�ðkÞ ¼
Z d3q

ð2�Þ3 AðqÞBðjk� qjÞ: (11)

We also defined the continuous power spectrum as the full
Fourier transform of the continuous correlation function

PðcÞ
hh ðkÞ ¼

Z 1

0
d3r�ðcÞ

hh ðrÞj0ðkrÞ: (12)

Combining the above results with the fiducial stochasticity
contribution, we finally have, for the power spectrum of the
discrete tracers,

PðdÞ
hh ðkÞ ¼

1

�n
þ PðcÞ

hh ðkÞ � VexclWRðkÞ � Vexcl½WR � PðcÞ
hh �ðkÞ:

(13)

This equation is the basis of our paper, and we will thus
explore it in detail.
It is common practice to ignore the exclusion window

and to approximate the continuous power spectrum by the
linear local bias model, which yields, for the power spec-
trum of the discrete tracers in the Poisson model,

PðdÞ
hh ðkÞ ¼

1

�n
þ b21PlinðkÞ: (14)

This needs to be modified because of exclusion and
nonlinear effects. In practice, for k > 0, it is difficult to
separate the effects. Here we will formally define the
stochasticity effects discussed in this paper as a stochas-
ticity power spectrum [4],

ð2�Þ3�ðDÞðkþk0ÞCðkÞ
¼h½�hðkÞ�b1�mðkÞ�½�hðk0Þ�b1�mðk0Þ�i
¼ ð2�Þ3�ðDÞðkþk0Þ½PhhðkÞ�2b1PhmðkÞþb21PmmðkÞ�;

(15)

where b1 ¼ PhmðkÞ=PmmðkÞ is the first-order bias from the
cross correlation in the low-k limit. We then have in the
low-k limit,

PðdÞ
hh ðkÞ ¼ CðkÞ þ b21PlinðkÞ: (16)

One could make this generally valid at all k by defining
bðkÞ ¼ PhmðkÞ=PmmðkÞ, but we will not do this here and
instead will explore physically motivated models of
nonlinear bias. In this paper we are interested in the
stochasticity power spectrum CðkÞ and, in particular, its
limit as k ! 0.
What are the corrections arising from the exclusion and

deviations from the local bias model? In the low-k limit,

the window function scales as WRðkÞ���!k!0
1� k2R2=10.

Hence, the convolution integral leads to a constant term
plus corrections scaling as k2R2 times moments of the
continuous power spectrum,
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½WR �PðcÞ
hh �ðkÞ ���!k!0Z d3q

ð2�Þ3P
ðcÞ
hh ðqÞWRðqÞ

þk2R2
Z d3q

ð2�Þ3P
ðcÞ
hh ðqÞ

�
�
WRðqÞ

�
1

ðqRÞ2�
1

6

�
�sinðqRÞ

ðqRÞ3
�
: (17)

Thus, irrespective of the shape of the continuous power
spectrum on large scales, exclusion always introduces a
white (k0) correction on large scales.

Figure 1 illustrates the behavior of the correlation func-
tion of discrete tracers. In the very popular local bias
model, the clustering of dark matter haloes is modeled at

leading order as PðcÞ
hh ðkÞ ¼ b21PlinðkÞ. In configuration space

this leads to �ðcÞ
hh ðrÞ ¼ b21�linðrÞ, shown by the black dashed

line. We will consider this linear bias model as the fiducial
model on top of which we define corrections. Nonlinear
halo clustering suggests an enhancement proportional
to higher powers of the linear correlation function as
exemplified by the red dashed line. Our above arguments
suggest that this clustering model, if at all, can only be
true outside the exclusion radius. Inside this radius,
the probability to find another halo is zero, leading to

�ðdÞ
hh ðr < RÞ ¼ �1.
An intuitive understanding of the corrections can be

obtained in the k ! 0 limit, where the halo power spectrum

is given by an integral over the correlation function and can
thus be written as

PðdÞ
hh ðkÞ ���!k!0 1

�n
� Vexcl � b21

Z R

0
d3r�linðrÞ

þ
Z 1

R
d3r½�ðcÞ

hh;NLðrÞ � b21�linðrÞ�; (18)

where we introduced �ðcÞ
hh;NLðrÞ to account for generic non-

linear continuous models of the halo clustering. The red
and blue shaded regions in Fig. 1 show the negative
and positive corrections with respect to the linear bias
model for which we would have, in absence of exclusion,

PðdÞ
hh ðkÞ���!k!0

1= �n. Note that the nonlinear halo-halo correla-

tion function could in principle be smaller than the
linear bias prediction. Our above notion of a positive
correction arising from the nonlinear correction outside
the exclusion radius is solely based on local bias argu-
ments. In general, this statement should be relaxed (for an
example, see Appendix A) and the blue region could have
either sign.

III. TOY MODELS

To show that the exclusion can indeed lower the
stochasticity we perform a simple numerical experiment.
We consider a set of hard sphere haloes of radius R=2. For
this purpose, we distribute N particles randomly in a cubic
box ensuring that jxi � xjj>R for all pairs of particles

ði; jÞ. The corresponding correlation function is expected to
be zero except for scales r < R, where � ¼ �1 due to
exclusion. Thus we expect the fiducial stochasticity to be
lowered by 4�R3=3 in the k ! 0 limit. For an intuitive
derivation of the corrections to the power spectrum we will
consider a fixed number of particlesN in a finite volume V.
Using Eq. (6) the auto-power spectrum of the tracer parti-
cles can be written as [14]

PðdÞðkÞ ¼ 1

V
h�ðdÞðkÞ�ðdÞð�kÞi

¼ V

N2

X
i¼j

hexp ½ik � ðri � rjÞ�i

þ V

N2

X
i�j

hexp ½ik � ðri � rjÞ�i � V�ðKÞ
k;0

¼ 1

�n
þ V

N2

X
i�j

hexp ½ik � ðri � rjÞ�i � V�ðKÞ
k;0 : (19)

This yields for the hard sphere sample, which we consider
as a proxy for excluded haloes

PðdÞ
hh ðkÞ ¼

1

�nh
� 4�R3

3
WRðkÞ: (20)

In Fig. 2 we show the power spectrum of this
toy halo sample for R ¼ 8h�1 Mpc, N ¼ 800 and

0 2 4 6 8 10 12 14
2

1

0

1

2

3

4

5

r h 1Mpc

hh

FIG. 1 (color online). Cartoon version of the correlation func-
tion of discrete tracers. Continuous linear correlation function
(black dashed) and nonlinear correlation function (red dashed).
The true correlation function of discrete tracers (green solid line)
agrees with the nonlinear continuous correlation function outside
the exclusion scale and is�1 below, except for the delta function
at the origin arising from discreteness. Thus, there are two
corrections compared to the continuous linear bias model—a
negative correction inside the exclusion radius (red shaded) and
a positive one outside the exclusion radius due to nonlinear
clustering (blue shaded).
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V ¼ 3003h�3 Mpc3. We clearly see that the measured
power follows the exclusion corrected stochasticity. The
window is close to unity on large scales and decays at
k 	 1=R; i.e., the fiducial shot noise is recovered for high
k. This is a first indication for stochasticity not being scale
independent. Note that the above derivations are only true
in the limit, where the total exclusion volume is small
compared to the total volume and thus allows for a quasi
random distribution (about 0.8% volume coverage in
our case).

A. Satellite galaxies

Galaxies are believed to populate dark matter haloes. Let
us consider the simple case that each of the dark matter
haloes under consideration hosts a central galaxy that, as
the name suggests, coincides with the halo center plus a
fixed number Ns;h of satellite galaxies, such that the total

number of satellite galaxies is given by Ns ¼ Ns;hNh. For

simplicity, we will assume that the galaxies are distributed
according to a profile �sðrÞwith typical scale Rs around the
centers of the host halo centers. For long wavelength
modes k < 1=Rs, the Ns;h galaxies within one halo are

effectively one particle, which is why on large scales we
expect the stochasticity of the satellite galaxy sample to be
equal to that of the host haloes, and only for scales
k > 1=Rs can the modes probe the distinct nature of the
particles and the stochasticity goes to 1= �ns.

We can evaluate our model Eq. (19) to obtain the
satellite-satellite power spectrum

PðdÞ
ss ðkÞ ¼ V

Ns

þ V

N2
s

X
hi

X
sj2hi

X
sl�sj2hi

hexp ½ik � ðrj � rlÞ�i

þ V

N2
s

X
hi

X
sj2hi

X
hm�hi

X
sl2hm

hexp ½ik � ðrj � rlÞ�i

¼ V

Ns

þ V

Ns

ðNs;h � 1Þhexp ½ikRs��i2

� 4�R3

3
u2s ðkÞWRðkÞ

¼ 1

�ns
½1þ ðNs;h � 1Þu2s ðkÞ� � 4�R3

3
u2s ðkÞWRðkÞ:

(21)

Here � is the cosine of the angle between k and �rij ¼
ri � rj that is averaged over, usðkÞ is the normalized

Fourier transform of the galaxy profile �sðrÞ. For definite-
ness we will assume a delta function profile �ðrÞ ¼
�ðDÞðr� RsÞ=r2 corresponding to usðkÞ ¼ j0ðkRsÞ, where
j0 is the zeroth order spherical Bessel function. The two
terms in the above equation correspond to the one and
two halo terms in the halo model [15,16], the profile and
the fiducial shot noise arise from correlations between
particles in the same halo, whereas the exclusion term is
dominated by the correlation between distinct haloes. The
results of the numerical experiment are shown in Fig. 2 as
the green points. The model prediction is shown as the
green solid line and describes the simulation measurement
very well. On small scales the power is dominated by the
fiducial galaxy shot noise and on large scales the host halo
stochasticity dominates

PðdÞ
ss ðk 
 1=Rs; 1=RÞ ¼ 1

�nh
� 4�R3

3
;

PðdÞ
ss ðk � 1=Rs; 1=RÞ ¼ 1

�ns
:

(22)

While the distribution of satellite galaxies on a sphere of
fixed radius around the halo center is very peculiar and
unrealistic, the qualitative behavior is the same for all
profiles with finite support. In the case studied above, the
corrections to the fiducial galaxy shot noise 1= �nh are
always positive. This is due to the high satellite fraction.
As we will discuss below, this behavior might be com-
pletely different for galaxy samples with small satellite
fraction, where the exclusion effect can be more important
than the enhancement due to the satellites.

B. Central and satellite galaxies

We can also consider the cross-power spectrum between
halo centers (central galaxies) and the satellite galaxies. In
this case there is no Poisson shot noise, since the samples
are nonoverlapping and the power is dominated by a one-
halo term describing the radial distribution of the satellites
around the halo center

10
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3.5

4

4.5
x 10

4

k [h Mpc-1]

P
 [h

-3
 M

pc
3 ]

cc
cs
ss

FIG. 2 (color online). Power spectrum of a randomly distrib-
uted halo sample obeying exclusion (top, red points) and corre-
sponding model with (red solid line) and without (top, red
dashed line) exclusion. In a second step we populate these haloes
with Ngal ¼ 2 satellite galaxies, and calculate the auto power

spectrum of the satellite galaxies (central, green points) and their
cross-power spectrum with the halo centers (bottom, blue
points). The corresponding solid lines show our model predic-
tions, whereas the dashed lines show the naive expectation of
Poisson shot noise.
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PðdÞ
cs ðkÞ ¼ V

NhNs

X
hi

X
sj2hi

hexp ½ik � ðrj � riÞ�i

þ V

NhNs

X
hi

X
hj�hi

X
sl2hj

hexp ½ik � ðrl � riÞ�i

¼ 1

�nh
usðkÞ � 4�R3

3
usðkÞWRðkÞ: (23)

Here we have again a one halo term arising from correla-
tions of the halo center with satellites in the same halo and
a two halo term arising from the correlation of satellite
galaxies in one halo with the center of another halo. The
comparison with the result of the numerical experiment in
Fig. 2 shows very good agreement.

The above discussion is overly simplified as we assume
all haloes to be of the same mass and to host the same
number of galaxies. Any realistic galaxy sample will be
hosted by a range of halo masses (i.e. a range of exclusion
radii) and the number of galaxies per halo will also be a
function of mass.

The total galaxy power spectrum of the combined cen-
tral and satellite samples can be obtained as a combination
of the central-central, central-satellite and satellite-satellite
contributions

PggðkÞ ¼ ð1� fsÞ2PccðkÞ þ 2fsð1� fsÞPcsðkÞ þ f2sPssðkÞ;
(24)

where fs ¼ Ns=ðNc þ NsÞ is the satellite fraction. For
realistic satellite fractions for SDSS LRGs [17] fs 	 0:1,
the weighting of the central-central power spectrum domi-
nates over the contributions from the central-satellite and
satellite-satellite power spectra by factors of 9 and 81,
respectively. A more realistic galaxy sample based on
a HOD population of dark matter haloes in a N-body
simulation will be discussed in Sec. V F.

C. Toy model with clustering

Haloes are clustered, i.e., there is an enhanced probabil-
ity to find two collapsed objects in the vicinity of each
other to finding them widely separated. Let us discuss the
influence of this phenomenological result on our toy
model. For the sake of simplicity let us assume that haloes
always come in pairs, i.e., that there is a second halo
outside the exclusion scale at typical separation Rclust.
This will similarly to satellite galaxies residing in one
halo, lead to a positive k0 term on large scales, that decays
for k > 1=Rclust. In a more realistic setting, not all haloes
will come in pairs, some of them will be single objects,
others will come in clusters of n-haloes. Furthermore not
all of them will be separated by exactly the clustering
scale.

Some authors argued that any large scale k0 behavior in
the perturbation theory description of biasing is unphysical
and should be suppressed by constant but aggressive

smoothing [18] or by a k-dependent smoothing [19].
Based on the above considerations, we argue that such
terms are just a result of the clustering of haloes and thus
not unphysical. Whether the magnitude of these effects can
be covered by a perturbative treatment such as second-
order bias combined with perturbation theory, is a different
question, which wewill pick up later in Sec. IVB. For now,
let us note that such a k0 term is also predicted by biasing
models that go beyond the local bias model as for instance
the correlation of thresholded regions as discussed briefly
in the next subsection and for instance in [20]. Generally
the clustering scale exceeds the exclusion scale and thus
one should expect that the enhancement due to clustering
decays at lower k than the suppression due to exclusion.
This is actually what happens in the simulations as we will
show in Sec. V.

D. Density threshold bias

The spherical collapse model suggests that spherical
Lagrangian regions exceeding the critical collapse density
�c 	 1:686 segregate from the background expansion and
form gravitationally bound objects. Hence, the clustering
statistics of regions above threshold can tell us something
about the clustering of dark matter haloes and galaxies.
The study of [1] considered the correlation function of
regions whose density exceeds a certain value in a
Gaussian random field, smoothed with a top-hat window
of scale R. At the same time this paper pioneered bias
models, which are nothing but a large-scale expansion of
the full correlation function of thresholded regions. Let us
see how nonlinear or nonperturbative clustering can affect
the power spectrum on the largest scales in the full model.
The root mean square overdensity within the smoothed

regions is given by

�2
R ¼ 1

2�2

Z
dkk2W2

RðkÞPlinðkÞ: (25)

The correlation of thresholded regions can be calculated
exactly employing the two-point probability density func-
tion of Gaussian random fields. For simplicity, we will
consider regions of a fixed overdensity rather than regions
above threshold. The peak height � ¼ �c=�R can be
chosen based on the spherical collapse argument. For the
correlation function of regions of fixed overdensity one
obtains [1,20]

1þ �trðrÞ ¼ 1

�n2tr

1

ð2�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

RðrÞ=�4
R

q

� exp

"
��2 1� �RðrÞ=�2

R

1� �2
RðrÞ=�4

R

#
; (26)

where �ntr ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ�2

R

q
exp ½��2=2�. Here �RðrÞ is the

linear correlation function smoothed on scale R. In the
large distance, small correlation limit, the correlation
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function of the thresholded regions can be approximated by
a linearly biased version of the linear correlation function
�trðrÞ ¼ b21;tr�RðrÞwith b1;tr 	 �=�R. If one is interested in

an accurate description of the nonperturbative correlation
function on smaller scales, higher orders in the expansion
need to be considered. Comparing the expansion of
the correlation of thresholded regions in powers of the
smoothed correlation to the full nonperturbative result in
Eq. (26), we can investigate the convergence properties of
the linear bias model. The left panel of Fig. 3 shows the
correlation function of thresholded regions for a Gaussian
random field smoothed on R ¼ 4h�1 Mpc and the linearly
biased versions of the smoothed and unsmoothed linear
correlation functions.

We can now Fourier transform the correlation function
of thresholded regions and subtract out the linearly biased
power spectrum to obtain the correction introduced by the
nonlinear clustering

�PtrðkÞ ¼ FT½�tr�ðkÞ � b21;trPlinðkÞ: (27)

As we show in Fig. 3, there is a nonvanishing correction in
the k ! 0 limit that is approximately constant on large
scales and goes to zero on small scales. The presence of
such a correction was discussed in a slightly different
context in [20].

In its original form, the thresholded regions are a con-
tinuous field and thus do not include any exclusion. One
could however imagine that the patches defining the
smoothing scale do not overlap. In this case the correlation
function of thresholded regions should go to �1 for
r < 2R. To show how the exclusion scale affects the cor-
rection in the power spectrum we consider a few exclusion
radii smaller than two smoothing radii. As is obvious in

Fig. 3, increasing the smoothing scale first reduces the
scale-independent correction on large scales, compensates
for it completely, and then eventually leads to a negative
scale-independent correction for r ¼ 2R.

E. Peak bias model

While the thresholded regions provide a continuous bias
model, the peak model [21,22] goes beyond in identifying
a discrete set of points and providing the correlation func-
tion of these points. Most studies of the peak model to date
have focused on the large separation limit [23–25], where
closed form expressions for the peak correlation in terms of
the underlying linear correlation function and its deriva-
tives are possible. However, [26] calculated the one-
dimensional peak correlation function for a set of power
law power spectra and [27] computed the two-dimensional
peak correlation function for peaks in the CMB. The
reason for the restriction to one or two dimensions owes
to the dimensionality of the covariance matrix that needs to
be inverted for the calculation of the peak correlation. In a
one-dimensional field the covariance matrix is a six by
six matrix (field amplitude, first and second derivative at
two points).
Here we consider realistic�CDM power spectra in three

dimensions, smooth them on a realistic Lagrangian scale
R ¼ 2h�1 Mpc and evaluate the exact nonperturbative
one-dimensional correlation of peaks following the
approach of [26] (see Appendix B for a brief review).
Note that the correlation of field derivatives diverges for
top-hat smoothing, which is why we follow common praxis
and employ a Gaussian smoothing. The Gaussian smooth-
ing makes the correlators of field derivatives well behaved
but beyond that there is no physical motivation to employ
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FIG. 3 (color online). Kaiser bias [1] in configuration and Fourier space. Left panel: Unsmoothed (black dashed) and R ¼ 4h�1 Mpc
smoothed (black solid) linearly biased matter correlation functions b21;tr�ðrÞ and continuous correlation function of the thresholded

regions �trðrÞ (red dashed). The red solid line shows a simple implementation of exclusion imposed on the correlation function of the
thresholded regions. Right panel: Power spectrum correction arising from the nonlinear biasing (top line) and effect of increasing
exclusion for R ¼ 0, 4, 6, 8h�1 Mpc from top to bottom.
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this filter. We study a range of peak heights � and also a
range of bin widths in �. The peak correlation function
for four different bin widths is shown in the left panel
of Fig. 4.

The first remarkable observation is that peaks of a fixed
height don’t seem to obey exclusion, only after considering
a finite width in peak height, we can observe that the
correlation function goes to �1 on small scales. The
transition scale to the fixed peak height case increases
with bin with, i.e., wider bins have a larger exclusion
region. As above for the thresholded regions we can
expand the peak correlation function in the large distance
limit and obtain a bias expansion that has contributions
from the underlying matter correlation function and corre-
lation functions of the derivatives. Doing that, it becomes
obvious, that the linear matter bias is only assumed outside
of the BAO scale and that there is a distinct scale-
dependent bias that is partially described by the derivative
terms in the bias expansion. Fourier transforming the full
peak correlation function and subtracting out the linear
biased power spectrum we obtain the correction shown in
the right panel of Fig. 4. The qualitative behavior agrees
with the result obtained above for the thresholded sample
with an ad hoc exclusion scale. On large scales there is a
combination of clustering and exclusion effects, the clus-
tering decays first and then also the exclusion correction
goes to zero. Note that the projected one-dimensional
matter power spectrum scales as k0 one large scales and
thus doesn’t vanish in the k ! 0 limit. This fact makes the
distinction between clustering and stochasticity terms in
the one-dimensional peak model very difficult. We hope to
report on results for the full three-dimensional peak model
in the near future.

IV. QUANTIFYING THE CORRECTIONS

Let us now try to quantify the stochasticity corrections
for a realistic halo sample. We expect the effect to be time
independent in the k ! 0 limit if the same sample of
particles is evolved under gravity. Thus, to minimize the
influence of nonlinearities, we will consider the protoha-
loes in Lagrangian space. In numerical studies of the effect,
we will later define the protohalo as the initial ensemble of
particles that form the Friends-of-Friends (FoF) haloes in
our final output at redshift zf ¼ 0.

A. Continuous halo power spectrum from local bias

The local Lagrangian bias model assumes that the initial
halo density field can be written as a Taylor series in the
matter fluctuations at the same Lagrangian position q

�hðq; �iÞ ¼ bðLÞ1 ð�iÞ�ðq; �iÞ þ bðLÞ2 ð�iÞ
2!

�2ðq; �iÞ

þ bðLÞ3 ð�iÞ
3!

�3ðq; �iÞ þ � � � ; (28)

where �i is the conformal time of the initial conditions
and q is the Lagrangian coordinate. We will follow the
approach of [28] where the smoothing scale is an unob-
servable scale, which should not affect n-point clustering
statistics on scales exceeding the smoothing scale. The
above model can be used as the starting point for a coevo-
lution of haloes and dark matter, which finally leads to a
Eulerian bias prescription. Recently, such a calculation was
shown to correctly predict nonlocal Eulerian bias terms
[29,30]. The peak background split (PBS) [31] makes
predictions for the Lagrangian bias parameters in the above
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FIG. 4 (color online). Clustering of peaks in a one-dimensional skewer through a density field smoothed with a Gaussian filter of
scale R ¼ 2h�1 Mpc (M 	 8:6� 1012h�1M�). Left panel: For fixed peak height the correlation function flattens out on small scales
(black), but with increasing bin width the exclusion becomes stronger. The width of the bin in peak height increases from dark to light
red. The linear local bias expansion is the same for all of these models and is shown by the dashed line. For reference we overplot the
Gaussian smoothing (dash-dotted) and the top-hat smoothing scale containing the same mass (dashed). Right panel: Corresponding
stochasticity correction �PpkðkÞ ¼ FT½�pk�ðkÞ � b21;pkPlinðkÞ for the fiducial bin width.
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equation, and the corresponding late time Eulerian local
bias parameters can then be obtained based on the spherical
collapse model. There is some evidence that the peak
model yields a better description of some aspects of the
initial halo clustering than the local Lagrangian bias
model. While we will briefly discuss these effects in
Appendix A, we refrain from using this model for the
modeling of the stochasticity corrections, since the peak
bias expansion beyond leading order has not been studied
in great detail and its implementation goes beyond the
scope of this study.

For the continuous power spectrum in the initial con-
ditions the local Lagrangian bias model predicts

PðcÞ
hh ðk; �iÞ ¼ ðbðLÞ1 Þ2D2ð�iÞPlin;0ðkÞ

þ 1

2
ðbðLÞ2 Þ2D4ð�iÞI22ðkÞ; (29)

where Dð�Þ is the linear growth factor and the scale-
dependent bias correction is described by

I22ðkÞ ¼
Z d3q

ð2�Þ3 Plin;0ðqÞPlin;0ðjk� qjÞ: (30)

This term leads to a positive k0 contribution in the low-k
regime. In this sense it deviates from typical perturbative
contributions to the power spectrum, which start to domi-
nate on small scales. For this reason, this term was partially
absorbed into the shot noise by [28]. We will explicitly
consider the term, since it describes the effect of nonlinear
clustering and is responsible for super-Poissonian stochas-
ticity. The cross-power spectrum between haloes and
matter is given by

PðcÞ
hmðk; �iÞ ¼ bðLÞ1 ð�iÞD2ð�iÞPlin;0ðkÞ (31)

and does obviously not contain any second-order bias
corrections. This statement remains true if higher-order
biasing schemes are considered, since higher-order biases
only renormalize the bare bias parameters [28].

Truncating the bias expansion is only valid if h�2i 
 1,
which is certainly satisfied on large scales in the initial
conditions, but not necessarily on the scales relevant for
halo clustering outside the exclusion radius. On these
scales one might have to consider all the higher-order local
bias parameters. It is beneficial to calculate this effect in
configuration space where the local bias model leads to a
power series in the linear correlation function

�ðcÞðrÞ ¼ X ðbðLÞi Þ2
i!

D2ið�iÞ�i
linðrÞ ���!�!1

exp

�
�

�c

�linðrÞ
�
:

(32)

The limit applies only in the high-peak limit and Press-
Schechter bias parameters [32]. We will restrict ourselves
to the quadratic bias model since it can account for the
main effects and since using higher-order biasing schemes

also requires more parameters to be determined. The Press-
Schechter and Sheth-Tormen prescriptions provide a rough
guideline for the scaling of bias with mass and redshift, but
fail to provide correct predictions for the bias amplitude.
Thus we obtain the bias parameters from fits to observables
not affected by stochasticity (such as the halo-matter cross-
power spectrum) and obtaining higher-order biases would
require higher-order spectra such as the bispectrum. Since
our discussion is mostly in Lagrangian space we will drop
the superscripts E and L from now on and absorb the
growth factors into the linear power spectra and correlation
functions.

B. Theory including clustering and exclusion

We can now use the bias model introduced above to
evaluate the discrete power spectrum Eq. (13). We have

PðdÞðkÞ¼ 1

�n
þb21PlinðkÞþ1

2
b22I22ðkÞ�b21Vexcl½WR �Plin�ðkÞ

�1

2
b22Vexcl½WR �I22�ðkÞ�VexclWRðkÞ: (33)

The splitting of I22, the nonlinear clustering term arising
from b2, is somewhat counterintuitive, since we expect this
term to be active only outside the exclusion scale.
Furthermore, there is no corresponding term in the halo-
matter or matter-matter power spectra that would cancel
the continuous I22. Thus we combine the continuous part
and the exclusion correction for the nonlinear clustering
term into a positive correction whose small-scale contri-
butions have been removed,

PðdÞðkÞ ¼ 1

�n
þ b21PlinðkÞ þ 1

2
b22I22ðk; RÞ

� b21Vexcl½WR � Plin�ðkÞ � VexclWRðkÞ: (34)

Here we defined the correction term,

I22ðk; RÞ ¼
Z 1

R
d3r�2ðrÞj0ðkrÞ: (35)

A simpler version of Eq. (34) has been presented in [10],
where the nonlinear clustering is neglected and the results
are presented in Eulerian rather than Lagrangian space.
In the k ! 0 limit the Fourier transform simplifies to a

spatial average over the correlation function

PðdÞðkÞ ���!k!0 1

�n
þ 1

2
b22

Z 1

R
d3r�2ðrÞ � b21

Z R

0
d3r�ðrÞ � Vexcl;

(36)

where the linear bias term vanishes due to PlinðkÞ ���!
k ! 00. The fact that the integral over �2 runs only from
the exclusion scale to infinity mitigates the smoothing
dependence of the correction, since smoothing on the scale
of the halo affects the correlation function only on the halo
scale, which is by definition smaller than the exclusion
scale.
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C. Stochasticity matrix

We will now consider the power spectrum for a set of
nonoverlapping halo mass bins. We will consider their
auto-power spectra and cross-power spectra between dif-
ferent halo mass bins i and j and denote this quantity Pij,

whereas the cross-power between a certain mass bin and
the matter is denoted Pi�. The sum over equal pairs in
Equation (19) is only present for the auto-power spectra
and thus the 1= �n shot noise affects only the diagonal entries
of the power spectrum matrix PijðkÞ. On the other hand,

exclusion affects also the off-diagonal matrix entries, since
by definition also haloes of different mass are distinct
objects and can thus not overlap. Furthermore, different
mass haloes are affected by nonlinear clustering, since the
probability to find any sort of massive object (M>M�) in
the vicinity of a massive object is enhanced. For simplicity
we will employ equal number density mass bins, which all
have the same fiducial shot noise 1= �n.

When trying to extract the amplitude and scale depen-
dence of the noise, we need to remove all the contributions
due to linear bias from the halo power spectra. For this
purpose, we will employ the stochasticity matrix as defined
in [4] (see also Eq. (15) for the definition of the diagonal),

ð2�Þ3�ðDÞðkþ k0ÞCijðkÞ
¼ h½�iðkÞ � b1;i�ðkÞ�½�jðk0Þ � b1;j�ðk0Þ�i; (37)

such that in terms of the power spectra, we have

CijðkÞ¼PijðkÞ�b1;iP�jðkÞ�b1;jP�iðkÞþb1;ib1;jP��ðkÞ:
(38)

The model introduced above can be straightforwardly
generalized to multiple mass bins and their respective
cross-power spectra by the following replacements
b21 ! b1;ib1;j, b

2
2 ! b2;ib2;j and R ! Rij ¼ ðRi þ RjÞ=2.

The exact form of the combined exclusion radius is some-
what debatable, but for now we will employ the arithmetic
mean. The resulting correction to the linear local bias
model is given by

CijðkÞ ¼ 1

�n
�ðKÞ
ij þ 1

2
b2;ib2;jI22ðk; RijÞ � Vexcl;ijWRij

ðkÞ
� b1;ib1;jVexcl;ij½WRij

� Plin�ðkÞ; (39)

where Vij ¼ 4�=3R3
ij. We see that the definition of the

stochasticity matrix removes all occurrences of the linearly
biased power spectrum. In Eulerian space both Phm and Phh

would have an additional contribution from b2I12, where
I12 describes the cross correlation between nonlinear bias
and nonlinear matter clustering. The term is defined as

I12ðkÞ¼
Z d3q

ð2�Þ3Plin;0ðqÞPlin;0ðjk�qjÞF2ðq;k�qÞ; (40)

where F2ðq1; q2Þ is the standard perturbation mode cou-
pling kernel [33]. The definition of the stochasticity matrix
also removes all occurrences of I12.

V. EVALUATIONS AND COMPARISON
TO SIMULATIONS

A. The simulations and halo sample

Our numerical results are based on the Zürich horizon
zHORIZON simulations, a suite of 30 pure dissipationless
dark matter simulations of the�CDM cosmology in which
the matter density field is sampled by Np ¼ 7503 dark

matter particles. The box length of 1500h�1 Mpc, together
with the WMAP3 [34] inspired cosmological parameters
(�m ¼ 0:25, �� ¼ 0:75, ns ¼ 1, �8 ¼ 0:8), then implies
a particle mass of Mp ¼ 5:55� 1011h�1M�. The total

simulation volume is V 	 100h�3 Gpc3 and enables pre-
cision studies of the clustering statistics on scales up to a
few hundred comoving megaparsecs.
The simulations were carried out on the ZBOX2 and

ZBOX3 computer clusters of the Institute for Theoretical
Physics at the University of Zurich using the publicly
available GADGET-II code [35]. The force softening
length of the simulations used for this work was set to
60h�1 kpc, consequently limiting our considerations to
larger scales. The transfer function at redshift zf ¼ 0 was
calculated using the CMBFAST code of [36] and then
rescaled to the initial redshift zi ¼ 49 using the linear
growth factor. For each simulation, a realization of the
power spectrum and the corresponding gravitational
potential were calculated. Particles were then placed on a
Cartesian grid of spacing �x ¼ 2h�1 Mpc and displaced
according to a second-order Lagrangian perturbation
theory. The displacements and initial conditions were

TABLE I. Mean masses, exclusion radii, first and second-order
Lagrangian and Eulerian bias parameters for our z ¼ 0 halo
sample. Masses are in units of h�1M� and radii in units of
h�1 Mpc. The mass dependence of these parameters is also
plotted in Fig. 6. Note that the second-order bias parameter is
just a phenomenological fitting parameter used to get a reason-
able representation of the correlation function. We do not claim
that our fitting procedure yields an accurate second-order bias
parameter for the sample. For this purpose on has to employ the
bispectrum, which yields second-order bias parameters that are
in much better agreement with the peak-background split
expectation but fail to describe the correlation function.

Bin M RðLÞ
excl bðLÞ1 b2 bðEÞ1

I 1:14� 1013 2.6 7.80 1174.5 1.19

II 1:27� 1013 2.8 8.49 1206.0 1.22

III 1:42� 1013 2.8 9.24 1287.3 1.25

IV 1:62� 1013 3.0 10.70 1342.9 1.27

V 1:89� 1013 3.6 13.17 1357.7 1.31

VI 2:25� 1013 3.9 14.94 1404.2 1.38

VII 2:80� 1013 4.2 16.65 1635.7 1.45

VIII 3:72� 1013 4.9 21.92 1587.5 1.58

IX 5:65� 1013 5.8 29.42 1439.8 1.78

X 1:66� 1014 8.7 56.94 1346.5i 2.54
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computed with the 2LPT code of [37], which leads to
slightly non-Gaussian initial conditions.

Gravitationally bound structures are identified at red-
shift zf ¼ 0 using the B-FoF algorithm kindly provided by
Volker Springel with a linking length of 0.2 mean inter-
particle spacings. Haloes with less than 20 particles were
rejected such that we resolve haloes with M> 1:2�
1013h�1M�. The halo particles are then traced back to
the initial conditions at zi ¼ 49 and the corresponding
center of mass is identified. We split the halo sample into
ten equal number density bins with a number density
of �n ¼ 3:72� 10�5h3 Mpc�3, leading to a shot noise
contribution to the power at the level of PSN 	
2:7� 104h�3 Mpc3.

B. The correlation function in Lagrangian space

The corrections to the halo power spectrum in our model
are motivated by certain features in the halo-halo correla-
tion function. While the fiducial stochasticity affects the
correlation function only at the origin, the two other
effects, exclusion and nonlinear clustering, should be
clearly visible in the correlation function at finite distances.
For this purpose we measure the correlation function of the
traced-back haloes for our ten halo mass bins using direct
pair counting.

In Fig. 5 we show the correlation function for mass bin
V. The log-linear plot clearly shows that the correlation
function is �1 on small scales and shows a smooth tran-
sition to positive values around the exclusion scale visual-
ized by the vertical black line. The exclusion scale is fitted
both in the initial and final conditions as 0.8 times the
maximum in the correlation function and is shown in
Fig. 6. The ratio between the initial and final exclusion
radii is roughly 3 for all mass bins. The spherical collapse

model suggests that haloes collapse by a factor 5, but there
is no reason to believe that protohaloes that are in direct
contact in Lagrangian space are still touching each other
in Eulerian space. Thus it is reasonable to expect a some-
what smaller reduction in the exclusion scale. On large
scales 30h�1 Mpc< r < 90h�1 Mpc the correlation func-
tion is reasonably well described by linear bias shown
in the Figure as a dot-dashed line. We infer the linear
bias parameter from the ratio of halo-matter cross-power
spectrum and matter power spectrum on scales k < 1:5�
10�2h Mpc�1

b̂1;hm ¼ P̂hm

P̂mm

: (41)

See Fig. 14 and Appendix A for why we have to restrict the
linear bias fitting to large scales even in the initial con-
ditions. The advantage of the cross-power spectrum is that
it should be free of stochasticity contributions and fully
described by linear bias [38] on large scales.
There is a clear enhancement of the data in Fig. 5

compared to the linear bias model on small scales. Thus
we consider the quadratic bias model,

�ðcÞ
hh ðrÞ ¼ b21�mm;linðrÞ þ 1

2
b22�

2
mm;linðrÞ; (42)

and fit for the quadratic bias parameter on scales exceeding
the maximum. The resulting continuous correlation func-
tion is shown as the dashed line in Fig. 5. It does not fully
account for the enhanced clustering outside the exclusion
scale. The inferred bias parameters are given in Table I
and are shown in Fig. 6 and will be discussed in more
detail below. Note that the above fit is performed using
an unsmoothed version of the linear correlation function,
whereas the local bias model relies on an explicit
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FIG. 5 (color online). Example of the halo-halo correlation function of the traced back haloes for mass bin V. The vertical solid line
is the fitted exclusion radius. The dot-dashed line shows the linear bias contribution, whereas the dashed line shows linear plus
quadratic bias. Note that the second order bias parameter was fitted to the correlation function and does deviate quite strongly from the
PBS prediction. The red solid line shows a simple model for halo exclusion Eq. (42). In the right panel we show the integrand of the
Fourier transform r3�hhðrÞ, which is of essential importance for the stochasticity modeling.
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smoothing scale. Here, we argue that the smoothing scale
for the local bias model should be related to the Lagrangian
scale of the haloes and thus be smaller than the exclusion
scale. In this case, the smoothing scale does typically not
affect the scale dependence of the correlation function
(except for around the BAO scale).

In our above discussion we have assumed a sharp tran-
sition between the exclusion regime and the clustering
regime. This is certainly unphysical as is obvious in
Fig. 5. The smoothness is probably caused by a number
of phenomena, for instance mass variation within the mass
bins (should be quite small <1:3h�1 Mpc for the highest-
mass bin which has R 	 8h�1 Mpc and even smaller for
the lower-mass bins) or alignment of triaxial haloes. The
lack of a physically motivated, working model for the
transition forces us to employ a somewhat ad hoc func-
tional form for the step, which is based on a lognormal
distribution of halo distances (see Appendix C),

�ðdÞ
hh ðrÞ¼

1

2

�
1þerf

�
log10ðr=RÞffiffiffi

2
p

�

��
½�ðcÞ

hh ðrÞþ1��1: (43)

For alternative implementations of exclusion windows in
the context of the halo model see [39,40]. The resulting
shape of the correlation function is shown as the red solid
line, where the smoothing was chosen to be � 	 0:09 and
seems to be quite independent of halo mass. The model
clearly underestimates the peak in the data in the log-linear
plot. Our final goal is to construct an accurate model for the
effect of exclusion and nonlinear clustering on the power
spectrum. Thus, we should not only check the validity of

our model on plots of the correlation function itself but also
on the integrand in the Fourier integrals r3�hhðrÞd ln r. We
do so in the right panel of Fig. 5, where it is obvious that the
model does not reproduce the exact shape of the correlation
function outside of the exclusion scale. However, we cer-
tainly improved over the naive linear biasing on all scales
and obtained a reasonable parametrization of exclusion and
nonlinear clustering effects.
Let us now come back to the mass dependence of the

inferred bias and exclusion parameters. As we show in
Fig. 6, the linear bias b1 is in very good agreement with
the bias parameters inferred from a Sheth-Tormen mass
function [41] rescaled to the initial conditions at zi ¼ 49.
For the second-order bias we compare the measurement
from the correlation function to measurements from the
bispectrum of the protohaloes and the second-order bias
inferred from the Sheth-Tormen mass function. The latter
agrees reasonably well with the bispectrum measurement
reproducing the zero crossing in the theoretical bias func-
tion. Note that the bispectrum measurement (for details of
the approach see [29]) uses only large-scale information
and is thus a clean probe for second-order bias. Isolating
second-order bias effects in the correlation function is less
straightforward. With decreasing scale, higher and higher
bias parameters become important, and to our knowledge
there is no established scale down to which a certain
order of bias can be trusted to a given precision. Our
fitting procedure was led by the goal of obtaining a good
parametrization of the correlation function, which could
subsequently be used to calculate the corresponding power
spectra and the corrections to the linear bias model. Note

0

5

10

15
R

ex
cl

R
excl
init

R
excl
fin

r
1

r
30

1013 1014
1

2

3

4

M [h-1 M
sun

]

R
ex

cl
in

it
/R

ex
cl

fin

1013 1014
10

0

10
1

10
2

10
3

10
4

M [h-1 M
sun

]

b

b
1
 from P

hm

b
2
 from ξ

b
2
 from B

init

b
1
(L)

b
2
(L)
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that due to the functional form of Eq. (42) this fitting
approach allows inference of the magnitude of b2, but
not its sign. The second-order bias parameters obtained
in this way deviate significantly from the theoretical bias
function and the bispectrum measurement. The most se-
vere failure of the model is the imaginary b2 for the
highest-mass bin. In this case the deviation is connected
to corrections arising from the peak constraint, as we
explain in Appendix A. We find that the initial
Lagrangian second-order bias parameter in Fig. 6 can be
roughly fitted as follows,

b2¼1100

�
M

1013h�1M�

�
0:35

exp

�
�
�

M

1014h�1M�

�
2
�
: (44)

We will use this fitting function for extrapolation in mass
and redshift in Sec. VD. The initial second-order bias
parameters for halo samples identified at higher redshifts
(z ¼ 0:5 and z ¼ 1) are roughly the same as for the z ¼ 0
halo sample.

Although we will use this b2 fit to predict the resulting
stochasticity corrections, we do not believe that the
observed scale dependence of the correlation function is
solely a second-order bias effect. We checked an expansion
of Eq. (42) to higher orders in the correlation function
using peak-background split bias parameters. Even up to
tenth order there is no considerable improvement in the fit.
Thus we argue that the enhancement is a nonperturbative
effect (e.g. peak bias) and consider the �2 scale dependence
as a reasonably well working phenomenological parame-
trization rather than a physical truth. We hope to shed more
light on this issue in a forthcoming paper.

C. Stochasticity matrix

In Fig. 7 we show the diagonals of the stochasticity
matrix measured in our simulations in Lagrangian space
(zi ¼ 49) and Eulerian space (zf ¼ 0). The most remark-
able observation in this plot is the agreement between the
results, given the different amplitude of the growth factors
and the linear bias parameters at these two times. This is a
result of the fact, that gravity cannot introduce or alter k0

dependencies [42] due to mass and momentum conserva-
tion. This can for instance be seen in the low-k limit of
standard perturbation theory [33]: The mode coupling term
P22 is a gravity-gravity correlator and thus scales as k4,
whereas the propagator term P13 is a gravity-initial condi-
tion correlator and scales as k2Plin.
For the highestmass bin there is a clear suppression of the

noise level on the largest scales which then asymptotes to
the fiducial value 1= �nh at a scale k 	 1=R 	 0:3h Mpc�1.
Since the radius of the halo shrinks during collapse, this
scale is found at a higher wave number in Eulerian space.
For the less massive haloes the behavior is not completely
monotonic. On large scales we find a noise level slightly
exceeding the fiducial value. Going to higher wave numbers
the fiducial value is crossed, the residual reaches a mini-
mum and finally asymptotes to 1= �n. This behavior can be
explained as follows: the clustering scale exceeds the
exclusion scale and as we have argued in Sec. III C, the
enhanced correlation on the clustering scale leads to a
positive contribution on the largest scales that decays for
lowerwave numbers than the negative exclusion correction.
The wave number at which the stochasticity asymptotes

to its fiducial value in the final field is at fairly high wave
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FIG. 7 (color online). Diagonals of the stochasticity matrix �ij. Left panel: Initial conditions zi ¼ 49. Right panel: Final field zf ¼ 0.
There is remarkable agreement in the large-scale amplitude between initial conditions and final field besides the strong difference in
the bias parameters and growth factors. We highlight this fact by the horizontal dashed lines that have the same amplitude in both
panels and are matched to the large-scale stochasticity matrix in the initial conditions. For both panels, there is clear evidence for
stochasticity going to fiducial 1= �n for high wave numbers, and a modification due to exclusion and clustering for k � 1=R, where R is
the scale of the halo at the corresponding redshift. Note the different scaling of the k scale in the two plots. The mass increases from
blue to orange, i.e., top to bottom.
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numbers, exceeding the Nyquist frequencies of both
Nc ¼ 512 and Nc ¼ 1024 grids. To probe smaller scales
we employ a mapping technique [43,44] that allows us to
resolve small scales without having to increase the grid
size beyond Nc ¼ 512. The technique consists of splitting
the box into n parts per dimension and adding these parts to
the same grid. This allows inference of each lth mode but
also increases the Nyquist frequency by a factor l. We use
several different mapping factors l ¼ 4, 6, 12, 20, 50 to
probe all the scales up to k 	 20h Mpc�1.

In Fig. 8 we show the diagonals of the stochasticity
matrix for one and two mass bins respectively. For the
one-bin case we select all the haloes in our simulation,
effectively combining all the ten mass bins resulting in
M1bin ¼ 3:84� 1013h�1M�. For the two-bin case we com-
bine the five lightest and the five heaviest mass bins,
resulting in masses M2bin;I ¼ 1:47� 1013h�1M� and

M2bin;II ¼ 6:21� 1013h�1M�. The plot shows both the

initial condition and the final stochasticity and the two
agree very well in the low-k limit. The stochasticity cor-
rection does not depend on the fiducial stochasticity and
thus the scale dependence of the total stochasticity is more
pronounced in the wider mass bins due to their lower
fiducial shot noise. Interestingly the stochasticity correc-
tion for the 1-bin case vanishes in the low-k limit, but is
negative in the intermediate regime. This is a sign of a
perfect cancellation between exclusion and nonlinear clus-
tering. The final stochasticity seems to be a k-rescaled
version of the initial stochasticity. Finally, let us stress
that the power spectrum of the wide bins cannot be
obtained by a summation of the contributing bin-power
spectra from the ten bin case since one has to account

for the off-diagonal components of the stochasticity
matrix.
In the left panel of Fig. 10 we compare our model

Eq. (39) to the measured stochasticity matrix of the ten
bins in the initial conditions. The only modification to the
model is that we replace the hard cutoff by the smoothed
transition Eq. (43). We employ the parameters obtained in
the fit to the corresponding halo correlation functions in
Sec. VB. The data points in the plot are copied from Fig. 7.
Given the differences between the model and the correla-
tion functions in Fig. 5, there is a reasonably good agree-
ment both in large-scale amplitude and scale dependence
of the stochasticity correction. We can conclude that while
being a relatively crude fit to the correlation function, our
model can account for the major effects, exclusion and
nonlinear clustering. The drawback is that this model lives
in Lagrangian space and cannot be straightforwardly
applied to the halo power spectrum in Eulerian space.
In Fig. 15 we show the off-diagonal terms of the sto-

chasticity matrix in the initial conditions and our corre-
sponding model predictions. As for the diagonals discussed
above, the corrections can be either positive or negative,
depending on whether exclusion or nonlinear clustering
dominates The model predictions are in reasonable agree-
ment with the measurements except for the highest mass
bin. This failure is connected to the fact that the b2
parameter for the highest mass bin is imaginary, i.e., we
have to set the second-order bias term in the cross corre-
lations to zero. This is a severe problem of our overly
simplistic model, which is related to the importance of
the peak effects for the correlation function of the highest
mass bin (see Appendix A).
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FIG. 8 (color online). Left panel: Diagonals of the stochasticity matrix for one mass bin containing all the haloes in our simulation.
Open points show the initial condition measurement, whereas the filled points show the final value. The horizontal thick solid line

shows the fiducial shot noise 1= �n ¼ 2680h�1 Mpc. The Eulerian bias is bðEÞ1 ¼ 1:49. On the largest scales there seems to be a

cancellation between the exclusion and nonlinear clustering contributions, resulting in no net correction to the fiducial shot noise. Right
panel: Same as left panel but for splitting our haloes into two mass bins with equal number density. The upper red points are the

measurement for the lighter, lower-bias bin bðEÞ1 ¼ 1:25 and the lower blue points are for the more massive, higher-bias bin bðEÞ1 ¼
1:74. The fiducial shot noise is 1= �n ¼ 5362h�1 Mpc. Note that both mass bins show a significant scale dependence of the stochasticity.
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Let us try to gain some more insight on where the
stochasticity corrections arise in Lagrangian and Eulerian
space. For this purpose we consider the configuration space
version of the diagonal of the stochasticity matrix defined
in Eq. (38),

CiiðrÞ ¼ �iiðrÞ � 2b1;i�i�ðrÞ þ b21;i���ðrÞ: (45)

The stochasticity level in the k ! 0 limit is then given by

CijðkÞ ���!k!0Z 1

0
d ln rr3�ijðrÞ: (46)

In Fig. 9, we show the above integral as a function of the
upper integration boundary where the full large scale sto-
chasticity correction would be obtained by taking this
boundary to infinity. Comparing the contributions in the
initial conditions and the final configuration, we clearly see
that the large-scale stochasticity arises on different scales
at the two times. We clearly see that the negative stochas-
ticity corrections are dominated at much smaller scales in
the final configuration as compared to the initial condi-
tions. At these scales the halo-matter and matter-matter
correlation functions are dominated by the one halo term,
i.e., the halo profile, which complicates quantitative pre-
dictions of the exclusion effect in the final configuration
and motivates our Lagrangian approach.

D. Redshift and mass dependence of the correction

The subtraction of the fiducial 1= �n shot noise from
the power spectrum will lead to a biased estimate of the
continuous halo power spectrum. Thus, estimating the
bias as

b̂1;hh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂hh � 1= �n

P̂mm

s
(47)

will lead to a flawed estimate of the bias. Indeed, it has
been found in simulations that the biases estimated from
the auto- and cross-power spectra are generally not in
agreement [45,46]. Studying for instance Table I in [46]

we see that b̂1;hh exceeds b̂1;hm for low-mass haloes at

redshift 0 indicating that the fiducial shot noise subtraction
underestimates the true noise level. For high-mass objects
the opposite happens; the bias from the cross-power
exceeds the bias from the auto-power indicating that the
employed 1= �n shot noise subtraction overestimates the true
noise level.
Let us try to understand this effect in more detail. Based

on our model, subtraction of the fiducial shot noise on large
scales leaves us with the linear bias term plus the stochas-
ticity correction,

P̂hhðkÞ � 1

�n
¼ �PhhðkÞ þ b21PlinðkÞ ¼ b̂21;hhP̂mmðkÞ; (48)

where in absence of shot noise in the cross-power spectrum

b1 ¼ b̂1;hm. Thus we have for systematic error on the linear

bias parameter,

�b1
b1

¼ b̂1;hh
b1

� 1 	 1

2

�Phh

b21Pmm

: (49)

Consequently, the ratio b̂1;hh=b̂1;hm is a function of mass

and redshift due to the mass and redshift dependence of the
parameters of the model. We show the k dependence of the
bias correction in Fig. 10. Since we don’t have a reliable
model to relate the scale-dependent stochasticity matrix
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FIG. 9 (color online). Cumulative contributions to the stochasticity correction up to scale r [see Eq. (45)] in configuration space for
our ten mass bin sample. Open symbols show negative contributions and filled symbols positive contributions. Left panel: Initial
conditions. Right panel: Final configuration at z ¼ 0. We clearly see that the corrections in the initial conditions are dominated on
larger scales than in the final configuration, where the negative corrections are clearly in the one-halo regime, where both the halo-
matter and matter-matter correlation functions are highly nonlinear. This gives further motivation for the modeling of the effect in
Lagrangian space. The horizontal solid (dashed) lines show the positive (negative) stochasticity corrections inferred from Fig. 7.
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from Lagrangian space to the one in Eulerian space we
employ the scale-dependent stochasticity model from
Lagrangian space but divide by the present day linear
power spectrum. This procedure should provide a reason-
able estimate for the bias corrections on large scales. The
linear bias is usually estimated close to the peak of the
linear power spectrum, where it is approximately flat and
where nonlinear corrections are believed to be negligible.
As a result, the bias correction is also fairly flat and would
lead to a 1% overestimation of bias for low mass objects
and a 3–4% underestimation for clusters. This behavior can
qualitatively explain the deviations found in [46].

In Fig. 11 we show the amplitude of the low-k limit of
the stochasticity correction for ten equal halo mass bins at
redshifts z ¼ 0, 0.5, 1. We overplot the theoretical expec-
tation based on our model, linear bias parameters from the
peak background split and second-order bias parameters
obtained from our phenomenological b2 relation in
Eq. (44). In particular, we calculate the Lagrangian bias
parameters and exclusion radii corresponding to the halo
samples at z ¼ 0, 0.5, 1 and use them to predict the
stochasticity correction. As a general result we can see
that there is a negative correction for high masses and a
positive correction for low masses with a zero-crossing
scale that decreases with increasing redshift. The model
captures the trends in the measurements relatively well. We
are also overplotting the low-k amplitude of the SN for the
one- and two-bin samples at z ¼ 0 as the squares and
diamonds. Besides the fact that these bins are much wider
and thus have lower fiducial shot noise, the low-k ampli-
tude is in accordance with the model and also narrower
mass bins of the same mass. This fact supports our con-
jecture, that the stochasticity correction does not depend on

the fiducial shot noise, but rather on mass (via the exclu-
sion scale and the linear and nonlinear bias parameters).
The negative correction for high masses is dominated by
the exclusion term, whose amplitude depends on the linear
bias parameter and the exclusion scale. The latter is a
function of mass but not a function of redshift, whereas
the bias increases with redshift and thus the negative
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correction at high masses also increases with redshift. The
positive correction at the low-mass end depends on the
second-order bias parameter. In our fits to the correlation
function we found that this parameter is roughly constant
for the three different redshifts under consideration.

E. Eigensystem and combination of mass bins

The stochasticity matrix can be diagonalized as

X
j

CijV
ðlÞ
j ¼ 	ðlÞVðlÞ

i ; (50)

where VðlÞ
i are the eigenvectors and 	ðlÞ the corresponding

eigenvalues. The eigenvector corresponding to a low
eigenvalue can be used as a weighting function in order
to construct a halo sample that has the lowest possible
stochasticity contamination [4]. Furthermore, the eigenval-
ues allow for a clean separation of the exclusion and
clustering contributions to the total noise correction. We
show the measurement and comparison to our model in
Fig. 12. The data show pronounced low and high eigenval-
ues with most of the eigenvalues identical to the fiducial
shot noise. The high eigenvalue is probably related to the
nonlinear clustering and the low eigenvalue to exclusion.
The model also predicts eight of the ten eigenvalues to
agree with the fiducial shot noise as well as one high and
one low eigenvalue. The exact agreement is not perfect,
which is probably due to an imperfect representation of the
off-diagonal stochasticity terms. The main problem with
the off-diagonals is to estimate the exclusion radii. The
right panel of Fig. 12 shows the eigenvectors correspond-
ing to the eigenvalues. The eigenvector corresponding to
the low eigenvalue is clearly connected to the mass, i.e., the

exclusion volume, whereas the eigenvector corresponding
to the high eigenvalue is clearly connected to the second-
order bias.
So far we have concentrated on the stochasticity correc-

tion for narrow mass bins and quantified them in terms of
the corresponding stochasticity matrix. If all the correc-
tions were linear in the parameters of the model, all we
needed to do is to calculate the corresponding mean
parameters of the sample and use them to calculate the
stochasticity correction for the combined sample.
However, the corrections are in general a nonlinear func-
tion of the parameters. The wider the mass bins the less
exact is a bulk description by a set of mean parameters. It
should be more exact to consider subbins and combine
them. Thus we need to calculate the stochasticity correc-
tion for narrow mass bins M 2 ½Mi; �Mi�i ¼ 1; . . . ; h.
Then, when considering samples that span a wide range
of halo masses or realistic galaxy samples, we need to
weight the prediction for the stochasticity correction
accordingly. The weighted density field is then

~� ¼
P

i wi�iP
i wi

(51)

and the corresponding noise level of the combined sample
is given by

~C ¼
P

ij wiCijwj

ðPi wiÞ2
: (52)

For halo samples the weighting is given by the mean
number density in a mass bin,

wi ¼
Z �M

M
dMnðMÞ: (53)
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A similar weighting scheme can be derived for galaxies for
the two-halo term in the context of the halo model.

F. A realistic galaxy sample

Let us now see how the stochasticity matrix behaves for a
realistic galaxy sample. In Halo Occupation Distribution
(HOD) models [47,48] the occupation number NgðMÞ
is usually split into a central and a satellite component
Ng ¼ Nc þ Ns. In Fig. 13 we show the stochasticity of

the Luminous Red Galaxy (LRG) sample described in
[49,50]. The total number density of the LRGs is �ng ¼
7:97� 10�5h�3 Mpc3 corresponding to a fiducial shot
noise of 1= �ng 	 1:25� 104h�3 Mpc3. The effective sto-

chasticity level for the full sample is SNeff ¼ 1:09�
104h�3 Mpc3, corresponding to a correction of �Pgg ¼
�1:8� 103h�3 Mpc3. The satellite fraction of the galaxy

sample is 4.9%. Let us try to understand the total correction
based on the constituent central, satellite and central-
satellite cross-power spectra. The sum of these three
components weighted according to Eq. (24) agrees with
the measured stochasticity of the full sample. The central-
central power spectrum dominates the negative stochastic-
ity correction on large scales with a weighted correction of
ð1� fsÞ2�Pcc ¼ �2100h�3 Mpc3 The satellite-satellite
power spectrum has a positive one halo contribution on
large scales that contributes a weighted correction of
f2s�Pss ¼ þ570h�3 Mpc3 The central-satellite cross-
power spectrum changes sign but contributes about�Pcs ¼
�370h�3 Mpc3 at k ¼ 0:03h Mpc�1. The amplitude of
these corrections could in principle be understood based
on a accurate model for the stochasticity correction of
the host haloes and the halo model. In this context the
corrections are given as [15,16]

Pð1hÞ
cc ðkÞ ¼ 1

�nc
(54)

Pð1hÞ
ss ðkÞ ¼ 1

�ns
þ 1

�n2s

Z
dMnðMÞNs;hðMÞ½Ns;hðMÞ � 1�u2ðkjMÞ�ðNs;h � 1Þ (55)

Pð1hÞ
cs ðkÞ ¼ 1

�nc �ns

Z
dMnðMÞNc;hðMÞNs;hðMÞuðkjMÞ�ðNs;h � 1Þ (56)

Pð2hÞ
cc ðkÞ ¼ 1

�n2c

Z
dMnðMÞNc;hðMÞ

Z
dM0nðM0ÞNc;hðM0ÞPhhðkjM;M0Þ (57)

Pð2hÞ
ss ðkÞ ¼ 1

�n2s

Z
dMnðMÞNs;hðMÞuðkjMÞ

Z
dM0nðM0ÞNs;hðM0ÞuðkjM0ÞPhhðkjM;M0Þ (58)

Pð2hÞ
cs ðkÞ ¼ 1

�ns �nc

Z
dMnðMÞNc;hðMÞ

Z
dM0nðM0ÞNs;hðM0ÞuðkjM0ÞPhhðkjM;M0Þ: (59)
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FIG. 13 (color online). Stochasticity of anHOD implementation of a Luminous RedGalaxy sample. The full sample is shown by the red,
filled circles and the bare shot noise is shown by the top thin solid red line. We split the sample into the central-central (cyan diamonds and
cyan dashed thin line), satellite-satellite (green squares and green thick dashed line) and central-satellite (black crosses and black thick solid
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satellite fraction of fs ¼ 4:9% ([49,50]). Right panel: Same as left panel, but for a satellite fraction of fs ¼ 8:5%.
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On large scales we have uðkjMÞ ! 1. Furthermore the
halo-halo power spectra can be again split into a linear
bias part bðMÞbðM0ÞPðkÞ and a correction term accounting
for the discreteness of the host haloes. For the central
galaxy sample our model yields a correction of �Pcc 	
�1000h�3 Mpc3. More accurate predictions would re-
quire a better model of the stochasticity corrections, which
in turn requires a better model of exclusion and nonlinear
biasing.

We also consider a slightly modified galaxy sample with
a larger satellite fraction fs ¼ 8:47%. For this purpose we
create a copy of each satellite galaxy at twice its separation
from the host halo center. The resulting stochasticity prop-
erties are shown in the right panel of Fig. 13. In contrast to
the previous case the actual stochasticity now exceeds the
fiducial shot noise due to the strong positive contribution of
the satellite-satellite one halo term.

VI. CONCLUSIONS

In this paper we discuss effects of the discreteness and
nonlinear clustering of haloes on their stochasticity in the
power spectrum. The standard model for stochasticity is
the Poisson shot noise model with stochasticity given as the
inverse of the number density of galaxies, 1= �n. Motivated
by the results in [4], we study the distribution of haloes in
Lagrangian space and estimate the effect of exclusion and
nonlinear clustering of protohaloes on the stochasticity.
These induce corrections relative to 1= �n in the low-k limit.
Exclusion lowers and nonlinear clustering enhances the
large-scale stochasticity. The total value of the large-scale
stochasticity depends on which of the two effects is
stronger, but the amplitude of the correction does not
directly depend on the abundance of the sample. These
stochasticity corrections must decay to zero for high k,
implying they are scale dependent in the intermediate
regime. The transition scale is related to either the exclu-
sion scale of the halo sample under consideration or to the
nonlinear clustering scale. At the final time (Eulerian
space), these transition scales shrink due to the nonlinear
collapse, but the low-k amplitude of the stochasticity
agrees with Lagrangian space, as expected from mass
and momentum conservation.

While the presented model can explain the observed
trend of modified stochasticity at a qualitative level, the
quantitative agreement is not perfect. This is related to our
imperfect modeling of the Lagrangian halo correlation
function with a local bias ansatz. A more realistic modeling
might be possible in the full framework of peak biasing
in three dimensions, as the one-dimensional results in
Sec. III E indicate.

We also discuss the effects of satellite galaxies, when a
galaxy sample with a nonvanishing satellite fraction is
considered. In this case the stochasticity can dramatically
deviate from the auxiliary 1= �n value on large scales. In this
case one has to identify the number density of host haloes

to infer the stochasticity on large scales and account for the
fact that on scales below the typical scale of the satellite
profile there is a transition to the fiducial Poisson shot noise
of the galaxy sample.
Finally, we consider the stochasticity matrix of haloes of

different mass. We show that diagonalization of this matrix
gives rise to one eigenvalue with a low amplitude, with the
eigenvector that approximately scales with the halo mass.
This provides an explanation to the stochasticity suppres-
sion with mass weighting explored in [3,4]. It would be
interesting to explore how the stochasticity corrections
imprint themselves in the halo bispectrum, which is a
promising probe of inflationary physics [51] and whose
measurement becomes realistic in present and upcoming
surveys [52].
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APPENDIX A: PERTURBATIVE PEAK EFFECTS
IN THE INITIAL CORRELATION FUNCTION

As pointed out by [45], there is strong numerical evi-
dence for the presence of k2-terms in the linear bias of
protohalo. Such terms in fact appear in all the Lagrangian
bias factors predicted by the peak model, as can be seen
from a large scale expansion of the peak correlation func-
tion [23,24]. In the particular case of the peak-matter cross
correlation, the linear bias expansion is exact on all scales
[25] and agrees with the average density profile derived in
[21]. Under the assumption that haloes are represented by
peaks, we thus have for the halo-matter power spectrum in
the initial conditions,

PhmðkÞ ¼ b1ð1þ 
�k
2ÞWG;Rpk

ðkÞPðkÞ; (A1)

where WG;Rpk
is the Gaussian filter of scale Rpk. Note that

the peak smoothing scale is not necessarily related to
the exclusion scale. Similarly one can expand the peak-
peak correlation function on large scales and obtain a
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scale-dependent linear bias relation that would relate to the
halo-halo power spectrum of the form

PhhðkÞ 	 b21ð1þ 
�k
2Þ2W2

G;Rpk
ðkÞPðkÞ: (A2)

One has to be careful when considering the correspondence
between large scales in the correlation function and small
wave numbers in the power spectrum. As we stressed
above, the amplitude of the low-k power spectrum is
tightly coupled to the small scale correlation function.
Thus, there is no reason to believe that the large-scale
expansion of the correlation function will yield a correct
description of the low-k power spectrum. As we will dis-
cuss in more detail below, a correct description of the
low-k power spectrum in the peak model requires higher
order bias expansions or a nonperturbative evaluation of
the full peak correlation function.

Given the functional form of the halo-matter power
spectrum in the initial conditions we can fit for the linear
bias b1, the relative peak bias 
� and the smoothing scale
Rpk. We show the corresponding scale-dependent bias in

the left panel of Fig. 14. This plot also shows the linear
local (i.e. scale independent) bias parameter used in the
main text as the horizontal dashed line.

We can use the inferred bias parameters and peak
smoothing scale to calculate the corresponding imprint
on the halo-halo correlation function. As we show in the
right panel of Fig. 14, the correlation function deviates
significantly from the naı̈ve linear scale-independent bias
prediction shown as the horizontal dash-dotted line. On
scales exceeding r 	 25h�1 Mpc, the measured correla-
tion function is in much better correspondence with the
linear peak bias shown as the solid red line. Below

25h�1 Mpc the peak correlation fails to predict the scale
dependence and does actually worse than the linear scale-
independent bias. This had to be expected, since the linear
peak bias is only accurate on large scales, and on smaller
scales higher-order bias corrections need to be taken into
consideration. In fact, comparison between the linear
peak bias and the full numerical evaluation of the one-
dimensional peak model, suggests that 20–30h�1 Mpc is a
typical breakdown scale for the linear peak bias. We will
explore the convergence properties of the perturbative peak
model in more detail in a forthcoming paper.
While accurately predicting the functional form of the

scale-dependent bias, the mass dependence of the coeffi-
cients deviates from the predictions of the peak model. The
main reason for discussing the peak corrections here, is
that the presence of the peak corrections invalidates the
simple b2 fitting procedure following Eq. (42). In this
simple approach we consider the linear bias from the
low-k limit of the cross-power spectrum and consider the
positive correction b22�

2 on top of it. The right panel of
Fig. 14 rather suggests that the quadratic bias corrections
need to be considered on top of the linear peak bias.
Furthermore the peak model predicts several second-order
bias contributions in contrast to the one bias contribution
arising from the local model. Fitting the second-order peak
bias parameters would require higher-order spectra, such
as the protohalo bispectrum and even the second-order
biasing might not be sufficient to explain the upturn
in the halo-halo correlation function. We thus restrict
ourselves to the simple local model and stress that the
quadratic bias parameters are a phenomenological fit
rather than a true quadratic bias and we thus don’t expect
them to be in accordance with the peak-background split
prediction.
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APPENDIX B: THE ONE-DIMENSIONAL
PEAK MODEL

Here we review the major steps in the derivation of the
one-dimensional peak model following [26]. As mentioned
before, the peak model associates maxima of the density
fields with the formation sites of dark matter haloes. Thus,
we are interested in the clustering statistics of these points.
For simplicity we will only consider a one-dimensional
field, which would be for a example a skewer through the
full three-dimensional cosmological density field. The
number density of peaks can be written as a sum over delta
functions at the peak positions xpk,

npkðxÞ ¼
X
pk

�ðDÞðx� xpkÞ; (B1)

and �pkðxÞ ¼ npkðxÞ= �npk � 1. Using that the first derivative

of the field vanishes at the peak position, we can expand the
density field around the peak position

�ðxÞ 	 �ðxpkÞ þ 1

2
�00ðxpkÞðx� xpkÞ2: (B2)

Taking the derivative, we obtain

�0ðxÞ 	 �00ðxpkÞðx� xpkÞ: (B3)

Using the transformation properties of the Dirac delta,
we have

�ðDÞðx� xpkÞ ¼ �00ðxpkÞ�ðDÞð�0Þ: (B4)

This expression is known as the Kac-Rice formula [24,53].
The mean number density is readily obtained as an integral
over the one-point probability density function of the field
amplitude, slope, and curvature,

�npk ¼ hnpkðxÞi ¼
Z

dyP1ptðyÞ�00�ðDÞð�0Þ; (B5)

where y ¼ ð�; �0; �00Þ. The two-point correlation function
is then given by

h�pkðx1Þ�pkðx2Þi
¼
Z

dYP2ptðjx1 � x2j;YÞ�pkðx1Þ�pkðx2Þ (B6)

¼ 1

�n2pk

Z
dYP2ptðjx1�x2j;YÞ�00

1�
00
2�

ðDÞð�0
1Þ�ðDÞð�0

2Þ�1;

(B7)

where Y ¼ ð�1; �
0
1; �

00
1 ; �2; �

0
2; �

00
2 Þ. The one- and two-point

probability density function (PDF) are given by

P1ptðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ3 detmp exp

�
� 1

2
ym�1yT

�
;

P2ptðYÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ6 detMp exp

�
� 1

2
YM�1YT

�
:

(B8)

The symmetric 6� 6 covariance matrix of the field
amplitude and derivatives Mij ¼ hYiYji can then be

written as

M ¼ m BðrÞ
BTðrÞ m

 !
; (B9)

where the constituent block matrices are given by

m ¼
�2

0 0 ��2
1

0 �2
1 0

��2
1 0 �2

2

0
BB@

1
CCA;

BðrÞ ¼
�0ðrÞ ��1=2ðrÞ ��1ðrÞ
�1=2ðrÞ �1ðrÞ ��3=2ðrÞ
��1ðrÞ �3=2ðrÞ �2ðrÞ

0
BB@

1
CCA:

(B10)

The only remaining ingredient for the evaluation of
Eq. (B7) are the correlators of field amplitudes and
derivatives, which we obtain by smoothing the three-
dimensional density field with a Gaussian filter and
considering its values and derivatives along one coordi-
nate axis, which we choose to be the z direction without
loss of generality,

�ðnþmÞ=2ðrÞ ¼
Z d3k

ð2�Þ3 ð�1Þnði�kÞnþm

� exp ½i�kr�PðkÞWG;Rpk
ðkÞ; (B11)

where � ¼ k̂ � ẑ. The moments of field amplitudes and
derivatives are then given as �2

ðnþmÞ=2 ¼ �ðnþmÞ=2ð0Þ.

APPENDIX C: THE EXCLUSION KERNEL

Let us assume, that there is some scatter around the
mean exclusion radius R of some sample due to triaxiality
and a finite width of the mass bin. Let us furthermore
assume that this scatter is lognormally distributed such
that the PDF is given by

fðrÞ ¼ 1

x�
ffiffiffiffiffiffiffi
2�

p exp

�
� ln 2ðr=RÞ

2�2

�
: (C1)

Let us now calculate the probability of finding a pair with
an actual separation that is smaller than the scale under
consideration,

FðrÞ ¼
Z r

0
dr0fðr0Þ ¼ 1

2

�
1þ erf

�
ln ðr=RÞffiffiffi

2
p

�

��
: (C2)

To find a pair at separation r, its exclusion scale needs to be
smaller than the actual separation and the total probability
is given as a product of the fiducial probability of finding a
pair in a nonexcluded sample and the probability that the
actual exclusion scale is smaller than r,
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�~PðrÞ ¼ FðrÞ�PðrÞ
¼ �n½1þ �ðdÞðrÞ��V
¼ FðrÞ �n½1þ �ðcÞðrÞ��V: (C3)

We can now infer the correlation of the discrete tracers,

�ðdÞðrÞ ¼ FðrÞ½1þ �ðcÞðrÞ� � 1: (C4)

In the main text we use the logarithm to base 10 for
convenience rather than the natural logarithm. The corre-
sponding scatters are related by a simple rescaling by a
factor of log 10e 	 0:43.
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