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How	to	interpret	the	biological	causes	underlying	the	
predisposing	markers	identified	through	genome-wide	
association	studies	(GWAS)	remains	an	open	question.	One	
direct	and	powerful	way	to	assess	the	genetic	causality	behind	
GWAS	is	through	analysis	of	expression	quantitative	trait	loci	
(eQTLs).	Here	we	describe	a	new	approach	to	estimate	the	
tissues	behind	the	genetic	causality	of	a	variety	of	GWAS	traits,	
using	the	cis-eQTLs	in	44	tissues	from	the	Genotype-Tissue	
Expression	(GTEx)	Consortium.	We	have	adapted	the	regulatory	
trait	concordance	(RTC)	score	to	measure	the	probability	of	
eQTLs	being	active	in	multiple	tissues	and	to	calculate	the	
probability	that	a	GWAS-associated	variant	and	an	eQTL	tag	
the	same	functional	effect.	By	normalizing	the	GWAS–eQTL	
probabilities	by	the	tissue-sharing	estimates	for	eQTLs,	we	
generate	relative	tissue-causality	profiles	for	GWAS	traits.	
Our	approach	not	only	implicates	the	gene	likely	mediating	
individual	GWAS	signals,	but	also	highlights	tissues	where	the	
genetic	causality	for	an	individual	trait	is	likely	manifested.

Over the last decade, GWAS have become the norm in describing 
genetic variants associated with common complex human diseases 
and traits1,2. Although an impressive number of GWAS findings have 
been accumulated, the vast majority of the variants identified lie in 
the noncoding genome3, rendering their biological interpretation dif-
ficult. Furthermore, GWAS identify genetic markers associated with 
organismal traits and fail to pinpoint the specific tissues underlying 
these associations4. Regulatory variants, such as eQTLs, identified 
in multiple tissues could aid greatly in the interpretation of GWAS 
results, not only by linking the noncoding genome to genes but also 
by identifying the causal tissues behind the genetic associations5–7. 
The GTEx project was founded with the intention of characterizing 
eQTLs across multiple tissues8 and currently comprises 44 tissues 
from 449 individuals (70–361 samples per tissue) for a total of 7,051 
transcriptomes (Supplementary Fig. 1). This makes GTEx an ideal 
data set in which to determine the identity of the tissues from which 

the genetic causality of a GWAS trait arises. Here we aimed to take 
advantage of this opportunity by first assessing the sharing of eQTLs 
across tissues (the probability of an eQTL identified in one tissue 
being active in other tissues) on an individual variant basis and then 
using these estimates of tissue sharing to infer in which tissues, among 
the 44 GTEx tissues, GWAS variants likely exert their functions.

RESULTS
Tissue	specificity	of	eQTLs	in	the	44	GTEx	tissues
For a given eQTL discovered in one tissue, we wanted to derive the 
probability that this eQTL was active in each of the other 43 tissues. 
Previously, methods have been described for joint eQTL discovery 
across multiple tissues9, assessment of the tissue specificity of eQTLs 
by integrating orthogonal data from biochemically active regions of 
the genome in different cell types10, and eQTL discovery using gene 
networks11; however, in this study, we aimed to quantify the probabil-
ity of two eQTLs, discovered separately in different tissues and that 
colocalize, tagging the same underlying functional effect. We have 
previously described the RTC score, which quantifies the extent to 
which a colocalizing GWAS variant and eQTL (two variants located 
in the same genomic region delimited by recombination hotspots) tag 
the same functional variant12 (Online Methods and Supplementary 
Fig. 2). This method can easily be extended to assess whether eQTLs 
identified in two separate tissues represent a functional variant shared 
by the two tissues (Online Methods). However, the RTC score is not a 
probability in itself and is affected by the number of variants and the 
linkage disequilibrium (LD) in a given region. Therefore, we derived 
a probability from the RTC score by simulating two scenarios for each 
region: (i) a scenario in which two variants tag different functional 
effects (H0) and (ii) a scenario in which two variants tag the same 
functional effect (H1). Subsequently, we generated a distribution cen-
tered on the real RTC score for the region and quantified the overlap 
between this distribution and the distributions of simulated RTC 
scores under H0 and H1. We then applied Bayes’ theorem, in con-
junction with the overall tissue-sharing estimates quantified by the π1 
statistic13, to compute a probability of shared functional effect, which 
we call P(shared), for a given RTC score in a given region (Online 
Methods and Supplementary Figs. 3–5). By converting the RTC score 
into a probability, we create a metric that accounts for differences in 
power when calling shared functional effects in different regions and 
that can be used to discover the tissue specificity of eQTLs.

Being able to calculate the probability of two variants sharing a func-
tional effect allowed us to estimate tissue sharing of eQTLs among the 
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44 GTEx tissues. Gold-standard methods used to quantify tissue shar-
ing of eQTLs, such as the π1 method, estimate overall sharing between 
tissues; in contrast, we aimed to estimate the probabilities of each 
eQTL being shared across tissues using π1 as the baseline. To ascertain 
a near-complete list of cis-eQTLs, we conducted conditional cis-eQTL 
discovery and identified 858–13,259 independent cis-eQTLs at a false 
discovery rate (FDR) threshold of FDR = 5% (Online Methods and 
Supplementary Fig. 6). Subsequently, we took the union of the eQTLs 
identified in all of the tissues (Online Methods) and calculated shar-
ing probabilities using the methodology described in the preceding 
paragraph. We found a high degree of eQTL sharing among biologically 
related tissues. For example, brain tissues formed a cluster indicating 
a high level of sharing among these tissues, coronary artery showed 
the highest degree of sharing with aorta, and uterus and ovary had 
the most eQTLs in common among all pairs of tissues (Fig. 1a and 
Supplementary Table 1). We compared these tissue-sharing estimates 
to the more commonly used π1 estimates13 and found that the two met-
rics were significantly positively correlated (r = 0.933, P < 1 × 10−300; 
Fig. 1b), confirming the validity of our approach. The advantage of 
RTC over π1 is that RTC can assess the tissue-sharing probabilities 
for an individual variant, whereas π1 estimates the overall sharing and 
cannot directly make a statement about individual eQTLs.

Unlike the π1 estimate, our RTC-based probability of eQTL sharing 
across tissues can be used to find the most likely set of tissues where an 
eQTL effect is active. We accomplished this by calculating the sharing 
probabilities for each eQTL in all combinations of the 44 GTEx tissues 
(Online Methods). Moreover, we recorded the frequency of other tis-
sues identified in the set of most likely tissues for an eQTL. When we 
considered the distribution of the number of tissues in which each 
eQTL was likely to be active, the majority of eQTLs (94%) were active in 
at least one additional tissue, in agreement with previous findings8,14,15  

(Fig. 2a). Furthermore, the number of tissues with shared effects 
decreased sharply as the number of tissues increased, but there was a 
slight enrichment for eQTLs active across most or all of the 44 tissues 
(Fig. 2a). When we assessed the eQTL sharing estimates among the 
tissues in which significant eQTLs were found, we discovered that the 
majority of the tissues exhibited higher degrees of tissue sharing; how-
ever, eQTLs in some outlier tissues, like testis and whole blood, showed 
a higher degree of tissue specificity (Fig. 2b,c,e and Supplementary 
Table 2). As each eQTL identified in a given tissue was predicted to 
be active in a set of other tissues, we next identified the most frequent 
other tissues included across all these sets. This was done to measure 
the global impact of the individual estimates, unlike the tissue-shar-
ing comparison in the previous section where we only quantified 
the global sharing between tissues. The results indicated that shared 
eQTL effects were also more frequently observed for tissues with  
biologically meaningful similarity. For example, brain tissues were 
most similar to other brain tissues, ovary was most similar to uterus and 
vagina, and left ventricle in heart was most similar to arterial append-
age in heart (Fig. 2d,f, Supplementary Fig. 7, and Supplementary 
Table 3). In summary, our methodology uncovered outlier tissues 
with eQTLs showing high degrees of tissue specificity and oth-
ers in which eQTLs showed high levels of sharing among tissues. 
Tissue-sharing estimates for individual eQTLs identified biologically  
relevant tissues as shared, indicating that the RTC method is capable 
of assessing tissue specificity on a variant-by-variant basis.

Colocalization	analysis	of	GWAS	variants	with	GTEx	eQTLs
Given that GTEx comprises a wide range of tissues and that our novel 
methodology can assess tissue sharing for each eQTL variant identi-
fied in these tissues, we were in an unprecedented position to infer 
candidate causal regulatory effects and their target genes that might 
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mediate the associations of GWAS variants. Because RTC uses only 
discovered GWAS variants, we were able to test GWAS variant–eQTL 
overlap for all known GWAS variants and were not limited to GWAS 
signals with available summary statistics or raw data, which thus far 
are very sparse. To this end, we downloaded the NHGRI-EBI GWAS 
catalog3 and filtered the complete list of 15,929 GWAS variants to 
include 5,751 variants with genome-wide significant associations  
(P < 5 × 10−8) that overlapped with GTEx variants. We ran the RTC 
analysis with the independent significant eQTLs (FDR = 5%) from 
each of the tissues, which corresponded to 4,664 GWAS variants that 
colocalized with eQTLs. Next, we created a null set of 5,751 variants 
that were matched to the list of real GWAS variants on the basis of 
minor allele frequency (MAF) and distance to the closest transcrip-
tion start site (TSS) (Online Methods and Supplementary Fig. 8). 
We not only observed a large enrichment of high RTC scores across 
the GWAS variant–eQTL colocalizations, but also found that sig-
nificantly fewer null GWAS variants colocalized with eQTLs (3,982  
colocalizations; Fisher’s exact test, P = 3 × 10−8), confirming, as previously  

described5,12,16, that GWAS variants frequently colocalize and likely 
share functional effects with eQTLs. Thus, at least some of these vari-
ants influence traits through regulatory effects (Fig. 3a), although 
colocalization between eQTLs and GWAS variants should not be 
interpreted as a causal relationship. We also observed a bimodal distri-
bution for probabilities of GWAS and eQTL variants tagging the same 
functional effect, where the majority of the probabilities were close to 
0, but there was also an enrichment for high probabilities (Fig. 3b).  
We have previously shown that RTC score is a better estimate of 
shared causality for two variants than pairwise LD metrics (r2 and 
D′)12. When we compared the RTC score between two variants to 
the corresponding r2 value, we observed that a high r2 value generally 
meant a high RTC score; however, many causal links found by RTC 
may be missed when using r2 as a metric, extending our previous 
finding that RTC is preferable to r2 when predicting causality (Fig. 3c, 
Supplementary Fig. 9, and Supplementary Table 4). Cases where r2 
was low (<0.1) and RTC was high (>0.9) were due to the level of LD in 
a given region; more specifically, these regions had significantly lower 
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LD (Mann–Whitney U test, P < 1 × 10−16) when compared to other 
regions in the genome, causing even weak linkage between the two 
variants to have a high RTC score (Supplementary Fig. 10). We tested 
how the probability of shared functional effect, as calculated with our 
new methodology, varied with the raw RTC score and show that this 
probability behaved as expected, with high RTC scores indicating a 
high probability of a shared functional effect for the GWAS and eQTL 
variants. However, the probability was highly variable across regions 
with the same RTC score, indicating the necessity of calculating this 
probability on a region-by-region basis (Fig. 3d).

Comparison	of	RTC	to	another	colocalization	method,	coloc
We compared the probabilities of sharing generated by RTC to the 
scores obtained with another colocalization method, coloc17. As coloc 
requires summary statistics from GWAS results, we downloaded 
results from a meta-analysis of total cholesterol levels18 and calcu-
lated the probabilities of shared effect for genome-wide significant 
GWAS hits and liver eQTLs using both RTC and coloc. We found a 
strong significant positive correlation (r = 0.73; Mann–Whitney U test,  
P = 3.9 × 10−10; Online Methods and Supplementary Fig. 11) between 
the sharing probabilities calculated by the two methods, confirming 
the validity of our approach. To run coloc, we needed to intersect 
the lists of variants from the GWAS and eQTL discovery, hence pos-
sibly losing some of the most significant variants in a given region, a 

drawback our methodology does not have. Moreover, RTC assumes 
that there are two true signals in each region and specifically tests 
whether they are shared or independent, whereas coloc makes no such 
assumption. Thus, cases where there was a high RTC sharing probabil-
ity (≥0.9) and a relatively low coloc sharing probability (≤0.8) are due 
to coloc attributing a high probability to no GWAS effect in the region, 
one of the five probabilities that coloc calculates (Supplementary  
Fig. 12). Furthermore, we assessed the performance of each method 
using a simulation analysis (Online Methods and Supplementary Fig. 
13). We found that the two methods performed comparably (ρ = 0.801, 
P = 1.5 × 10−115). At a probability threshold of 0.9 in calling shared 
functional effect, RTC had a sensitivity of 0.91 and a specificity of 
0.95, whereas for coloc these measures were 0.66 and 1, respectively 
(Supplementary Fig. 14). On the other hand, if the two methods were 
matched on sensitivity, coloc had a higher specificity than RTC. As 
the simulation study was designed such that we calculated GWAS 
and eQTL P values for every variant in the regions, this result indi-
cates that, in scenarios where we know the GWAS and eQTL P values 
for every single variant in a given window, coloc would be the better 
choice, as it uses all the information in the locus.

Estimating	the	tissue-causality	profiles	of	GWAS	results
Although GWAS provide a list of markers that predispose to a certain 
disease or trait, they fail to identify the tissues where genetic causality 
arises. Given that we can test all filtered GWAS signals for eQTL over-
lap, we can attempt to address this gap in knowledge. However, we are 
limited to the tissues GTEx has sampled; thus, in some cases, the real 
causal tissue will be missing. This means that the exact property we are 
estimating is the relative contributions of the 44 tissues to the genetic 
causality of a given trait. To do this, we need to know not only whether 
colocalizing GWAS and eQTL variants are tagging the same functional 
effect, as inferred by RTC, but also the tissue-wide activity of the eQTL 
in question. We expected that weighting the probability of GWAS and 
eQTL variants being due to the same functional effect by the extent of 
tissue sharing for the eQTL would increase our power in detecting the 
causal tissue behind the genetic associations of a GWAS trait. To do this, 
for each eQTL in a given tissue that colocalized with a GWAS variant, we 
divided the probability of the GWAS variant and eQTL tagging the same 
functional variant by the sum of the tissue-sharing probabilities for the 
eQTL in that tissue. This enabled us to weight the GWAS variant–eQTL 
probabilities such that tissue-specific eQTLs would contribute to a tissue’s 
GWAS enrichment more than eQTLs that were shared with many other 
tissues. Next, for each disease in each tissue, we divided the sum of the 
normalized GWAS variant–eQTL probabilities from the previous step 
by the number of independent eQTLs in the tissue, thereby controlling 
for different eQTL discovery power across the 44 tissues; we call this our 
normalized tissue causality score (NTCS). Lastly, we exactly reproduced 
this analysis with the set of 5,741 null GWAS variants (Online Methods) 
and compared our NTCS in a tissue for the disease-associated variants to 
the score we observed under the null for that tissue. The ratio of the real 
GWAS NTCS to the score under the null was defined as the enrichment 
metric (Supplementary Table 5). Moreover, by comparing the distri-
butions of real NTCSs to the NTCSs under the null, we calculated a P 
value for the observed enrichment (Supplementary Table 6). We show 
that, by using our normalization technique, we could significantly reduce 
(Mann–Whitney U test, P = 1.9 × 10−18; Supplementary Fig. 15) the 
correlation between the number of eQTLs in a tissues and the GWAS 
enrichment metric, thus allowing us to estimate the relative contribution 
of tissues to the genetic causality of a trait.

We investigated the overall pattern of tissue causality for GWAS traits and 
looked at specific examples. For each GWAS trait, we ranked enrichment  
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over the null for each of the tissues. Tissues that were ranked higher 
were estimated to contribute more to the genetic causality of a GWAS 
trait. Tissues that showed a depletion when compared to the null were 
considered to have no enrichment and we ignored the magnitude of 
the depletion, as biologically we expect a tissue to have a quantitative 
contribution to the development of a trait; depletion is not meaning-
ful as a quantity. We discovered that liver was the tissue most likely to 
be causal in most of the GWAS traits (11%), including, as expected, 
a variety of lipid measurements19,20 and uric acid levels21 (Fig. 4a, 
Supplementary Fig. 16, and Supplementary Table 7). Brain tissues 
were the top tissues relating to traits like height22, schizophrenia23,24, 
and age of onset of puberty25. Furthermore, for traits where we had a 
biological prior of a causal tissue and the tissue was assayed in GTEx, 
this tissue tended to be the tissue identified as most likely to be causal 
by our methodology. For example, the top causal tissue for coronary 
heart disease was coronary artery followed by liver; for schizophrenia, 
the top tissues were brain tissues; and for lipid metabolism traits, like 
total cholesterol levels, the top tissue tended to be liver (Fig. 4b–d). In 
the case of coronary heart disease, coronary artery is usually thought 

of as a ‘passenger’ tissue, where the effects of the disease are manifested 
rather than the tissue contributing to pathophysiology; however, our 
analysis identifies it as a likely causal tissue, indicating that there are 
potentially novel risk factors to be discovered. We also observed that 
there was overlap between the confidence intervals of tissues. While in 
some cases, like total cholesterol measurements, we had the statistical 
power to dissociate the top tissue from others, this was not the case 
in all diseases, indicating that we are still underpowered. However, 
larger sample sizes will likely make the tissues statically distinguish-
able, without affecting the ranking of the top tissues. Thus, we show 
that, by having access to eQTLs from multiple tissues and controlling 
for the tissue specificity of eQTLs using our new methodology, we can 
estimate the ranking of relevant tissues from which the genetic causality 
of GWAS traits arise.

Causal	tissues	correctly	identify	the	causal	gene	for	a	GWAS	
result
As we estimated the tissue causality profiles for GWAS traits, we can 
compare the causal genes for the GWAS associations between tissues 
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Figure 4 Patterns of tissue causality of GWAS traits. (a) Heat map of the tissue-causality profiles for tissues as given by log2-transformed enrichment 
over the null to any of the top 50 traits with the highest number of GWAS variants in the NHGRI-EBI GWAS catalog. Tissues that are depleted over the 
null are presented as zeros in this heat map, as biologically either a tissue is involved in a phenotype, which may be quantified, or it is not involved; 
thus, there should not be a magnitude of non-involvement. Darker shades of red indicate that higher likelihood of GWAS genetic causality is acting 
through the corresponding tissue. Rows correspond to the GWAS traits and columns to the tissues, and these are clustered with hierarchical clustering 
using the complete linkage method on the Euclidian distances calculated from the log2-transformed enrichment over the null. (b–d) Examples of traits 
with a prior on a biologically causal tissue: coronary heart disease (b), schizophrenia (c), and total cholesterol (d). On the primary y axis, the enrichments 
or depletions over the null per tissue are plotted as bars; on the secondary y axis, the number of GWAS variants that colocalized with eQTLs per tissue 
are plotted as a line. The horizontal black line indicates the null. On top of each of the bars is the −log10 Benjamini–Hochberg corrected P value for the 
enrichment or depletion. The 95% confidence interval of the enrichment or depletion as determined by bootstrapping the statistic 1,000 times is shown 
as a gray line. During each bootstrap iteration, we randomly sample, with replacement, both the observed probabilities of a given disease in a given 
tissue and the null probabilities in the same tissue, and we recalculate our statistic to assign confidence intervals to the enrichments or depletions.
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likely contributing to the genetic causality of GWAS traits and those 
that are not. We examined the rs12740374 variant in the 1p13 locus, 
which is not only associated with coronary artery disease26,27 and lipid 
measurements28, but is also one of the few GWAS noncoding loci where 
the mechanistic causes are well established29. Liver is a key tissue in both 
heart disease and lipid levels (Fig. 4b,d), and in liver the causal gene for 
the rs12740374 association is correctly identified as SORT1 (P(Shared) 
= 1)29. In tissues that do not contribute highly to the genetic causal-
ity of these traits, like testis and whole blood, we incorrectly identified 
another nearby gene, PSRC1, as the putative causal gene (P(Shared) = 
0.96 and 0.97, respectively; Fig. 5 and Supplementary Table 8). Notably, 
the tissues where SORT1 was correctly identified contribute significantly 
(Mann–Whitney P = 0.0004) more to the genetic causality of heart dis-
ease and lipid levels than tissues where the causal gene was different 
(Supplementary Fig. 17). Finally, in liver, the eQTL effect of rs12740374 

on SORT1 was ~2× more tissue specific when compared to its effect on 
PSRC1 (likely active in 12 versus 21 tissues, respectively), which down-
grades the colocalization with PSRC1 in our analysis. This result shows 
the importance of identifying the causal tissues for GWAS traits before 
stating which genes may be responsible for these associations.

Clustering	of	diseases	with	common	pathophysiology	based	
on	tissue-causality	profiles
Finally, we asked how different diseases with shared pathophysiology 
differ with respect to which tissues contribute to their genetic causality.  
To this end, we investigated autoimmune and cardiometabolic diseases 
and used hierarchical clustering to group the individual diseases per 
their relative tissue-causality profiles. Among the autoimmune dis-
eases, we found that Crohn’s disease and ulcerative colitis formed a 
cluster, whereas celiac disease had a different tissue-causality profile 
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Figure 5 eQTL effects at the coronary artery disease (CAD)- and lipid levels–associated 1p13 locus. (a) Liver. (b) Whole blood. Points are the −log10 
(P value). eQTL associations for SORT1 are shown in green in liver and magenta in whole blood, and PSRC1 is shown in gray. The cyan line is the 
recombination rate, given in the secondary y axis, and the boxes highlight the positions of the two genes. The genome-wide significance threshold 
for eQTL associations is represented as the horizontal black line. In both tissues, the best eQTL association is genome-wide significant (FDR = 5%); 
however, the eQTL gene, for which the eQTL and the causal rs12740374 variant are tagging the same functional effect as identified by our method, is 
different. Liver, which we estimate to have a key role in both the development of CAD and the regulation of lipid levels, correctly identifies SORT1 as 
the causal gene for this GWAS association, as SORT1 was the strongest eQTL effect of rs12740374 in liver for all genes tested in cis, and the eQTL 
effect of this variant on SORT1 is ~2× more tissue specific than its eQTL effect on PSRC1. However, the more easily collectable whole blood, which is 
estimated not to contribute to these traits, fails to do so. If we had just whole-blood eQTLs and did not know the tissue-causality profile for these traits, 
we would have incorrectly identified PSRC1 as a putative causal gene.©
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and was most similar to multiple sclerosis. Type 1 diabetes and vitiligo 
seemed most similar to each other, and rheumatoid arthritis and lupus 
were clustered together. Asthma and psoriasis appeared markedly dif-
ferent when compared to other autoimmune disorders (Fig. 6a). For 
cardiometabolic diseases, blood pressure–related traits, coronary heart 
disease and hypertension, CAD or stroke phenotypes, and type 2 dia-
betes and stroke clustered together (Fig. 6b). We demonstrate that, by 
comparing the tissue-causality profiles of GWAS diseases, we can begin 
to disentangle the common as well as diverging biology underlying 
their development.

DISCUSSION
Here we describe a new approach that is designed to estimate the 
likely causal tissues underlying the genetic causality of GWAS traits. 
In this study, we use the eQTLs identified by the GTEx Consortium 
to find the relative contribution of the 44 tissues to the genetic cau-
sality of a given GWAS trait. The 44 tissues assayed in this study do 
not constitute a complete representation of all human tissues and 
thus will not be applicable to all GWAS and may fail to identify the 
real causal tissue as a result of it not being sampled; however, GTEx 
represents the most comprehensive eQTL data set of human tissues. 
Furthermore, in some cases, the tissues are not statistically distin-
guishable from each other, which may be owing to lack of power, 

lack of tissue specificity of GTEx cis-eQTLs, or the fact that GWAS 
traits truly operate through many diverse tissues. Given the tis-
sue and sample size limitations, there is room for improvement in 
determining true tissue causality profiles for GWAS traits. However, 
our analysis represents an unbiased and fairly complete profiling 
of the relative tissue contributions to GWAS genetic causality at an 
unprecedented scale. As the sample sizes and the number of tissues 
assessed for eQTLs and our resolution of the genetic etiology of com-
plex disorders increase, we expect our methodology to yield even 
more powerful conclusions. We believe that this type of approach 
will be paramount in the interpretation of new GWAS results using 
a publicly available data set, like GTEx, and will aid in the design 
of downstream functional experiments to identify the mechanistic 
causes of complex disorders and traits, as well as new avenues of 
treatment and prevention.

URLs. GTEx Portal, http://gtexportal.org/home/; QTLtools, https://
qtltools.github.io/qtltools/; Vital-IT, http://www.vital-it.ch/.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.
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Figure 6 Enrichment over the null of tissues signifying their contribution to the genetic causality of complex diseases. (a) Autoimmune diseases.  
(b) Cardiometabolic disorders. Rows list tissues, and columns list diseases. Darker shades correspond to higher contribution per tissue. The leftmost 
column shows the relative tissue contributions across all diseases combined. The hierarchical clustering of the diseases is shown as a dendrogram. 
Clustering was conducted with hierarchical clustering using the complete linkage method on the Euclidian distances calculated from enrichment 
over the null. The red number on each node of the dendrogram is the approximately unbiased bootstrap probability for each node as calculated by the 
pvclust30 R package using 1,000 bootstrap iterations.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE	METHODS
GTEx project. GTEx comprises 44 tissues, each having more than 60 samples, 
collected from 7,051 post-mortem biopsies from 449 individuals, where each 
tissue has a different number of samples (Supplementary Fig. 1). For details 
of data production and quality control, see ref. 31.

Conditional eQTL discovery. Multiple independent signals for a given expres-
sion phenotype were mapped using a greedy forward stepwise regression algo-
rithm followed by a backward selection step. First, the set of GTEx eGenes for 
a given tissue is taken and the maximum beta-adjusted P value (correcting for 
multiple testing across the SNPs) over these genes is taken as the gene-level 
threshold. Then, for each gene, FastQTL32 is run iteratively. At each iteration, 
it performs a cis scan of the window, correcting for all previously discovered 
SNPs and all standard GTEx covariates. If the beta-adjusted P value for the 
peak SNP is not significant at the gene-level threshold, the forward stage is 
complete and the procedure moves on to the backward step. If the P value is 
significant, the peak SNP is added to the list of discovered eQTLs as an inde-
pendent signal and the forward step moves on to the next iteration.

Once the forward stage is complete for a given gene, we have a list of associ-
ated SNPs; we refer to these as forward signals. The backward stage consists 
of testing each forward signal separately, controlling for all other discovered 
signals. To do this, for each forward signal, we run a cis scan over all variants 
in the window in FastQTL32 using all standard covariates and all other dis-
covered signals as covariates. If no SNP is significant at the gene-level thresh-
old, the signal being tested is dropped; otherwise, the peak SNP from the 
scan is chosen as the variant that represents the signal best in the full model 
(Supplementary Fig. 6).

Regulatory trait concordance score. The methodology described in this sec-
tion is implemented in QTLtools33. When assessing tissue specificity of eQTLs, 
we use the same method; however, in that case, the GWAS variant becomes 
an eQTL in a different tissue.

RTC method. The RTC algorithm assesses the likelihood of a shared func-
tional effect between a GWAS SNP and an eQTL by quantifying the change in 
the statistical significance of the eQTL after correcting the eQTL phenotype 
(here, gene expression) for the genetic effect of the GWAS SNP and com-
paring its correction impact to that of all other SNPs in the interval12. We 
mapped all common autosomal variants in each of the tissues to the recom-
bination hotspot intervals as defined by McVean et al.34. These coordinates 
were transformed into GRCh37 coordinates using the liftOver tool35. The 
RTC method is as follows: for a GWAS variant falling into the same region 
flanked by recombination hotspots (a coldspot) as an eQTL, with N variants 
in a given coldspot:

1.  Correct the phenotype for each of the variants in the region separately by 
linear regression, yielding N pseudo-phenotypes (residuals);

2. Redo the eQTL variant association with all of these pseudo-phenotypes;
3.  Sort (in decreasing order) the resulting P values and find the rank of the 

eQTL to GWAS SNP–pseudo-phenotype among all eQTL to pseudo-phe-
notype associations;

4. RTC = (N – rankGWAS SNP)/N.

This results in an RTC score that ranges from 0 to 1, where higher values indi-
cate a more likely shared functional effect for the GWAS and eQTL variants 
(Supplementary Fig. 2). If there are multiple independent eQTLs for a given 
phenotype, the RTC for each independent eQTL is assessed after correcting 
the phenotype for all the other eQTL variants for that phenotype. This correc-
tion is done using linear regression and taking the residuals after regressing 
the phenotype with the other eQTLs. For example, for eQTLindependent 1, the 
phenotype tested is equal to the residuals resulting from the following linear 
model: phenotype ~eQTLindependent 2 + … + eQTLindependent N.

Simulating RTC scores under the null hypothesis (H0). The H0 scenario arises 
when two variants in a coldspot tag different functional effects. To simulate 
this, we do the following:

1.  For a coldspot that harbors colocalized GWAS and eQTL variants (eQTLreal), 
we randomly pick two hidden causal variants (GWAScausal and eQTLcausal);

2.  We find two variants (GWAS and eQTL) that are linked (r2 ≥ 0.5) to the 
hidden causal variants (GWAScausal and eQTLcausal, respectively);

3.  We generate a pseudo-phenotype for eQTLcausal based on the β and inter-
cept of eQTLreal and randomly distributed residuals of eQTLreal;

4.  We rerun the RTC analysis with this new pseudo-phenotype and using the 
GWAS and eQTL variants.

We repeat these steps 200 times for each coldspot with an eQTL and a GWAS 
variant, in all of the 44 tissues separately, and record the H0 RTC distributions 
for each region (Supplementary Figs. 3 and 18). Multiple independent eQTLs 
are handled as described in the previous section.

Simulating RTC scores under the alternate hypothesis (H1). The H1 scenario 
arises when two variants tag the same functional variant. The scheme here is 
exactly the same as for H0, except that there is only one hidden causal variant 
and both the GWAS and eQTL variants are randomly selected from variants 
that are linked to the same hidden causal variant. This is implemented as 
follows:

1.  For a coldspot that harbors colocalized GWAS and eQTL variants (eQTLreal),  
we randomly pick one hidden causal variant (eQTLcausal);

2.  We find two variants (GWAS and eQTL) that are linked (r2 ≥ 0.5) to the 
hidden causal variant;

3.  We generate a pseudo-phenotype for eQTLcausal based on the β and inter-
cept of eQTLreal and randomly distributed residuals of eQTLreal;

4.  We rerun the RTC analysis with this new pseudo-phenotype and using the 
GWAS and eQTL variants.

We repeat these steps 200 times for each coldspot with an eQTL and a GWAS 
variant, in all 44 tissues separately, and record the H1 RTC distributions for 
each region (Supplementary Figs. 4 and 18).

Conversion of RTC score into a probability of sharing. Each region is char-
acterized by an RTC score for a GWAS–eQTL localization and a distribution 
of RTC scores under the null and alternate hypotheses. We can use these and 
Bayes’ theorem to estimate the probability of the two variants having the same 
functional effect for a given RTC score, expressed as P(shared|RTC = rtc). To 
estimate the probability of overall sharing by GWAS and eQTL variants in a 
given tissue, we first calculate the eQTL P values for the GWAS variants from 
which we calculate the π1 statistic, which estimates the proportion of true 
positives13, and this becomes our overall probability of sharing, P(shared), and 
by extension the overall probability of not sharing, P(not shared), is defined as  
1 – π1(π0). To estimate P(RTC = rtc|shared) and P(RTC = rtc|not shared), 
we do the following (Supplementary Fig. 5). First, we merge and sort the 
RTC values ascertained from simulations under the null and alternative  
hypotheses. We then take 10% of the values flanking our real RTC score to 
produce a range from which we can estimate a point probability. For example, 
200 simulations under H0 and H1 would result in 400 values, which we sort 
and use to find the position of the real RTC value in this distribution; if this 
happens to be the 100th value, we take the 60th and 140th simulated RTC 
values to define our range. Subsequently, we calculate the proportion of values 
within the range identified in the previous step under H0, which equates to 
P(RTC = rtc|not shared), and the proportion of overlap with this range under 
H1 becomes P(RTC = rtc|shared). Finally, we apply Bayes’ theorem to estimate 
P(shared|RTC = rtc): 

P rtc
p rtc

p rtc
( )

( | )
( | )

shared|RTC
RTC shared

RTC notshared
= =

= ∗
=

p1
∗∗ + = ∗p p0 1p rtc( | )RTC shared

This was done for each region and each tissue separately.

Tissue sharing of eQTLs using the RTC score. The methodology  
described above can also be used to assess tissue specificity of eQTLs; when 
doing so, the GWAS variant in the previous section becomes an eQTL in a 
different tissue.

Taking the union of eQTLs across the 44 tissues. To quantify tissue sharing 
in every region that harbors an eQTL in any of the 44 tissues, we took the 
union of significant eQTLs. First, we mapped all the significant eQTLs in all 
the tissues to recombination coldspots. Subsequently, if certain tissues did not 
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have a significant eQTL in a given coldspot for a given gene, we took the most 
significant variant associated with the expression of that gene in that coldspot 
for all the missing tissues.

Tissue-sharing calculations. Tissue-sharing calculations were conducted  
for pairs of tissues in both directions: that is, we tested the union of eQTLs 
found in the previous section for tissue A (discovery tissue) in tissue B  
(replication tissue) and also, reciprocally, for tissue B in tissue A. This resulted 
in 1,892 separate runs for the 44 tissues. The RTC score calculations and  
simulations were conducted as described above. The sharing probabilities are 
calculated using the same method as above, but with the following excep-
tion: we use different P(shared) estimates for eQTLs that are significant in 
either of the two tissues and eQTLs that are not significant in either tis-
sue. The method of estimating P(shared) is the same; that is, we calculate 
the P values of eQTLs for tissue A in tissue B and determine the π1 statistic  
(Supplementary Fig. 19).

Most likely set of tissues in which an eQTL is active. As this method yields a 
probability of sharing for each eQTL variant in tissue A with all the other 43 
tissues, we can calculate the set of tissues in which each eQTL is most likely 
to be active. This is accomplished in the following manner:

1.  Because RTC is a metric that is designed to assess a whole region, we 
condense the values for each separate coldspot. To estimate probabili-
ties of sharing by tissue A and tissue B, we take the mean of the pairwise 
estimates in both directions, that is, the mean of tissue A in tissue B and  
the mean of tissue B in tissue A. If there are multiple independent eQTLs  
in a coldspot, then we take the combination of values with the high-
est sharing probabilities. This results in a vector of 44 probabilities for  
each coldspot;

2. We iterate over the number of tissues, that is, 1 to 44, and call this N;
3.  At each iteration, we identify the most likely set of N tissues in which an 

eQTL is active. This is done by sorting (in decreasing order) the 44 sharing 
probabilities and multiplying the product for the top N sharing probabilities 
by the product of 1 minus the sharing probabilities for the remaining 44 
– N tissues. This yields the maximum probability of an eQTL being active 
in only N tissues;

4.  Once we have all the probabilities for 1 to 44 tissues, we take the maxi-
mum of these, which corresponds to the most likely number of tissues,  
called n. The set of tissues in which an eQTL is most likely to be active 
is defined as the top n tissues in the sharing probability vector sorted in 
decreasing order.

Validation of tissue-sharing estimates from RTC with π1. Considering all signifi-
cant independent eQTLs in tissue A, we took the mean of the probabilities of 
their being shared with tissue B as the replication probability of eQTLs from 
tissue A in tissue B. We then compared this mean probability to the π1 statistic 
for replication of eQTLs from tissue A in tissue B. Briefly, the π1 statistic, which 
is obtained by evaluating a P-value distribution, assesses the proportion of 
the P values that do not originate from the null distribution of P values, thus 
quantifying the proportion of true signal in the data.

Response operator curve for using r2 to call shared effects. We took RTC 
scores ≥0.9 to indicate a real shared functional effect for GWAS and eQTL 
variants12. Subsequently, using different r2 thresholds (from 0 to 1, separated 
by steps of 0.01), we asked what percentage of the shared signals based on 
r2 had RTC scores ≥0.9 (true-positive rate of r2) and what percentage of the 
shared signals based on r2 had RTC scores <0.9 (false-positive rate of r2) if 
we called the effects for variant pairs with r2 values equal to or greater than 
the given threshold as shared and those for variants with r2 values below this 
threshold as not shared.

Tissue enrichments for GWAS traits. Generation of a matched set of null vari-
ants for real GWAS variants. For each real GWAS variant, we calculated the 
MAF and the distance to the closest TSS. We then selected one matched null 
variant for each real GWAS variant such that the null variant’s MAF was ±2.5% 
with respect to the real GWAS variant’s MAF and the relative distance to the 
closest TSS was ±5 kb with respect to the corresponding distance for the real 
GWAS variant. This resulted in 5,741 matched null GWAS variants.

Calculation of tissue enrichments over the null. We applied our method-
ology as described above to variants from the NHGRI-EBI GWAS catalog3  
downloaded on 15 June 2015 and the significant independent eQTLs identified 
in all 44 tissues. We filtered the catalog for GWAS variants that had reported  
P < 5 × 10−8. This yielded in 5,751 unique GWAS variants from 742 diseases 
or traits that overlapped with GTEx variants. To normalize the GWAS vari-
ant–eQTL probabilities of tissue specificity for the eQTL in a given GWAS 
variant–eQTL colocalization for a given disease, we divided the GWAS vari-
ant–eQTL sharing probability in a given tissue by the sum of the tissue-sharing 
probabilities of that eQTL in that tissue. This enabled us to increase the impact 
of tissue-specific eQTLs on disease tissue enrichment as compared to tissue-
shared eQTLs. Subsequently, we took the sum of all normalized GWAS vari-
ant–eQTL probabilities for a disease in each tissue and divided by the number 
of independent eQTLs in each of the tissues, thereby accounting for the differ-
ent power of discovery among the 44 tissues, and this became our NTCS. We 
then redid the analysis exactly as described here with the matched null GWAS 
variants and recalculated an NTCS for all of the 5,741 null variants in each of 
the tissues. Subsequently, we compared the distribution of real GWAS NTCS 
values for a given disease in a tissue to the null distribution in the same tissue. 
When making such a comparison for a particular disease, we scaled the NTCS 
for the null distribution such that the null NTCS was of the same order as the 
real NTCS, as the denominator in this calculation is a sum and the numbers of 
variants for a disease and null variants are different. This was accomplished by 
multiplying the null NTCS value by the ratio of the number of real GWAS vari-
ants assessed to the total number of null GWAS variants. Finally, to calculate a  
P value for enrichment, we compared the distribution of real NTCS values to 
that for the null variants using the Mann–Whitney test. We tested how our 
enrichment metric correlated with the number of independent eQTLs for each 
disease before and after our normalization scheme. Before normalization, a clear 
majority of the diseases exhibited a significant correlation between the number 
of eQTLs and GWAS tissue enrichment values, whereas after normalization 
only 11 diseases were still significantly associated (Supplementary Fig. 15).  
In the following equations, calculation of NTCS is described, where T is a given 
tissue; G is a GWAS trait; Gn is the total number of GWAS-associated variants 
for the trait; GWAS P(shared) Gi eQTLi is the probability that a GWAS variant 
Gi and colocalizing eQTLi tag the same functional variant; T P(shared) eQTLi 
is the tissue-sharing probability of eQTLi in tissue T with other tissues; Tn is 
the total number of eQTLs in tissue T; Nn is the total number of null variants; 
and Ni is a null variant. 

NTCS
GWAS shared eQTL

shared eQTL

Null NTCS

= × =∑1
1T

P G
T Pn

i i

ii
Gn ( )

( )

== × =∑G
N T
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n
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i i

ii
Nn GWAS shared eQTL

shared eQTL
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( )1

The enrichment score for GWAS trait G in tissue T is defined as the NTCS 
over the null NTCS, and the P value is calculated using a Mann–Whitney 
test comparing the distributions containing each of the ith elements in the 
formulas for the real GWAS and under the null.

Comparison of RTC P(shared) with coloc. Because the coloc method requires 
summary statistics from GWAS, we cannot directly compare the methodolo-
gies for all GWAS variants assessed with RTC in this manuscript. However, 
we downloaded summary statistics from a GWAS meta-analysis of total cho-
lesterol levels originating from 188,577 individuals18. We then mapped all 
variants with GWAS P < 5 × 10−8 to the same recombination regions used in 
the RTC analysis, keeping only the most significant GWAS variant in a given 
region. Subsequently, we ran the RTC analysis with this set of GWAS variants 
associated with total cholesterol in the same way as described previously. We 
then calculated the eQTL P values for all the variants in a given region for 
the genes that colocalized with the total cholesterol GWAS list and also their 
MAFs. These data were then merged with the overlapping total cholesterol 
GWAS P values for each gene and region separately. These values were inputted 
into the coloc R package using the coloc.abf() function, to calculate probabili-
ties of the two variants tagging the same functional effect. Finally, we compared 
the P(shared) value obtained from RTC for each gene and region with the 
corresponding coloc H4 probability (where the traits are associated and share 
a single causal variant; the same probability assessed with RTC).
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Simulations to compare RTC and coloc. We randomly chose 256 regions 
delimited by recombination hotspots across the genome and subsequently 
extracted the genotypes in these regions from the 1000 Genomes Project Phase 
3 release only for European samples36. In each region, we randomly selected 
a causal variant using HAPGEN2 software37, and we simulated a GWAS with 
10,000 cases and controls where each alternate allele conferred risk of 1.1 to the 
disease phenotype. We then randomly selected 500 controls from genotypes 
generated by HAPGEN2, which made up our eQTL cohort. In each region, 
we simulated two scenarios: the null where the eQTL and GWAS tagged inde-
pendent causal effects and the alternate where the variants are due to the same 
underlying effect. Thus, we randomly selected one eQTL variant that had  
r2 < 0.2 with the causal GWAS variant for the null and another eQTL variant 
with r2 > 0.8 with the causal GWAS as the alternate case. Then, we created a 
phenotype for each of the two eQTL variants chosen on the basis of randomly 
selected β values from a distribution of β values for real eQTLs and random 
error (normally distributed) for each genotype. The GWAS P values necessary 
for coloc were generated using logistic regression, and eQTL P values were 
generated using linear regression. Finally, we ran both coloc and RTC for each 
of the 256 regions for both the null and alternate hypotheses.

Accession codes. The GTEx data used in this paper are available through con-
trolled access at the database of Genotypes and Phenotypes (dbGaP) under 
accession phs000424.v6.p1.

Data availability. Data from the study are available from the authors upon 
reasonable request. A Life Sciences Reporting Summary is available.
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was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. QTLtools was used in the analysis, which is referenced in the manuscript
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For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

N/A

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

N/A
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