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Estimating the causal tissues for complex traits

and diseases

Halit Ongen!—3®, Andrew A Brown!-3®, Olivier Delaneau!-3, Nikolaos I Panousis! -3, Alexandra C Nica!l,

GTEx Consortium* & Emmanouil T Dermitzakis!-3

How to interpret the biological causes underlying the
predisposing markers identified through genome-wide
association studies (GWAS) remains an open question. One
direct and powerful way to assess the genetic causality behind
GWAS is through analysis of expression quantitative trait loci
(eQTLs). Here we describe a new approach to estimate the
tissues behind the genetic causality of a variety of GWAS traits,
using the cis-eQTLs in 44 tissues from the Genotype-Tissue
Expression (GTEx) Consortium. We have adapted the regulatory
trait concordance (RTC) score to measure the probability of
eQTLs being active in multiple tissues and to calculate the
probability that a GWAS-associated variant and an eQTL tag
the same functional effect. By normalizing the GWAS-eQTL
probabilities by the tissue-sharing estimates for eQTLs, we
generate relative tissue-causality profiles for GWAS traits.

Our approach not only implicates the gene likely mediating
individual GWAS signals, but also highlights tissues where the
genetic causality for an individual trait is likely manifested.

Over the last decade, GWAS have become the norm in describing
genetic variants associated with common complex human diseases
and traits"2. Although an impressive number of GWAS findings have
been accumulated, the vast majority of the variants identified lie in
the noncoding genome3, rendering their biological interpretation dif-
ficult. Furthermore, GWAS identify genetic markers associated with
organismal traits and fail to pinpoint the specific tissues underlying
these associations*. Regulatory variants, such as eQTLs, identified
in multiple tissues could aid greatly in the interpretation of GWAS
results, not only by linking the noncoding genome to genes but also
by identifying the causal tissues behind the genetic associations®~7.
The GTEx project was founded with the intention of characterizing
eQTLs across multiple tissues® and currently comprises 44 tissues
from 449 individuals (70-361 samples per tissue) for a total of 7,051
transcriptomes (Supplementary Fig. 1). This makes GTEx an ideal
data set in which to determine the identity of the tissues from which

1Department of Genetic Medicine and Development, University of Geneva
Medical School, Geneva, Switzerland. 2Institute for Genetics and Genomics in
Geneva (iGE3), University of Geneva, Geneva, Switzerland. 3Swiss Institute of
Bioinformatics, Geneva, Switzerland. 4A list of members and affiliations
appears in the Supplementary Note. Correspondence should be addressed to
H.O. (halit.ongen@unige.ch) or E.T.D. (emmanouil.dermitzakis@unige.ch).

Received 8 February 2016; accepted 29 September 2017; published online
23 October 2017; doi:10.1038/ng.3981

the genetic causality of a GWAS trait arises. Here we aimed to take
advantage of this opportunity by first assessing the sharing of eQTLs
across tissues (the probability of an eQTL identified in one tissue
being active in other tissues) on an individual variant basis and then
using these estimates of tissue sharing to infer in which tissues, among
the 44 GTEx tissues, GWAS variants likely exert their functions.

RESULTS
Tissue specificity of eQTLs in the 44 GTEx tissues
For a given eQTL discovered in one tissue, we wanted to derive the
probability that this eQTL was active in each of the other 43 tissues.
Previously, methods have been described for joint eQTL discovery
across multiple tissues®, assessment of the tissue specificity of eQTLs
by integrating orthogonal data from biochemically active regions of
the genome in different cell types!?, and eQTL discovery using gene
networks!!; however, in this study, we aimed to quantify the probabil-
ity of two eQTLs, discovered separately in different tissues and that
colocalize, tagging the same underlying functional effect. We have
previously described the RTC score, which quantifies the extent to
which a colocalizing GWAS variant and eQTL (two variants located
in the same genomic region delimited by recombination hotspots) tag
the same functional variant!? (Online Methods and Supplementary
Fig. 2). This method can easily be extended to assess whether eQTLs
identified in two separate tissues represent a functional variant shared
by the two tissues (Online Methods). However, the RTC score is not a
probability in itself and is affected by the number of variants and the
linkage disequilibrium (LD) in a given region. Therefore, we derived
a probability from the RTC score by simulating two scenarios for each
region: (i) a scenario in which two variants tag different functional
effects (HO) and (ii) a scenario in which two variants tag the same
functional effect (H1). Subsequently, we generated a distribution cen-
tered on the real RTC score for the region and quantified the overlap
between this distribution and the distributions of simulated RTC
scores under HO and H1. We then applied Bayes’ theorem, in con-
junction with the overall tissue-sharing estimates quantified by the m;
statistic!?, to compute a probability of shared functional effect, which
we call P(shared), for a given RTC score in a given region (Online
Methods and Supplementary Figs. 3-5). By converting the RTC score
into a probability, we create a metric that accounts for differences in
power when calling shared functional effects in different regions and
that can be used to discover the tissue specificity of eQTLs.

Being able to calculate the probability of two variants sharing a func-
tional effect allowed us to estimate tissue sharing of eQTLs among the
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Figure 1 Estimates of tissue sharing for eQTLs among the 44 GTEX tissues. (a) Tissue-sharing matrix based on sharing probabilities calculated through
RTC. Rows correspond to discovery tissues and columns to replication tissues; hierarchical clustering was performed with the complete linkage method
using the Euclidian distances between the mean probabilities of sharing for each tissue pair. Each cell contains the mean probability of sharing
multiplied by 100. (b) Significant positive correlation between the mean probability of tissue sharing obtained by RTC and the & statistic.

44 GTEx tissues. Gold-standard methods used to quantify tissue shar-
ing of eQTLs, such as the 7; method, estimate overall sharing between
tissues; in contrast, we aimed to estimate the probabilities of each
eQTL being shared across tissues using 7 as the baseline. To ascertain
a near-complete list of cis-eQTLs, we conducted conditional cis-eQTL
discovery and identified 858-13,259 independent cis-eQTLs at a false
discovery rate (FDR) threshold of FDR = 5% (Online Methods and
Supplementary Fig. 6). Subsequently, we took the union of the eQTLs
identified in all of the tissues (Online Methods) and calculated shar-
ing probabilities using the methodology described in the preceding
paragraph. We found a high degree of eQTL sharing among biologically
related tissues. For example, brain tissues formed a cluster indicating
a high level of sharing among these tissues, coronary artery showed
the highest degree of sharing with aorta, and uterus and ovary had
the most eQTLs in common among all pairs of tissues (Fig. 1a and
Supplementary Table 1). We compared these tissue-sharing estimates
to the more commonly used 7; estimates'3 and found that the two met-
rics were significantly positively correlated (r = 0.933, P < 1 x 107300;
Fig. 1b), confirming the validity of our approach. The advantage of
RTC over m; is that RTC can assess the tissue-sharing probabilities
for an individual variant, whereas 7, estimates the overall sharing and
cannot directly make a statement about individual eQTLs.

Unlike the m; estimate, our RTC-based probability of eQTL sharing
across tissues can be used to find the most likely set of tissues where an
eQTL effect is active. We accomplished this by calculating the sharing
probabilities for each eQTL in all combinations of the 44 GTEx tissues
(Online Methods). Moreover, we recorded the frequency of other tis-
sues identified in the set of most likely tissues for an eQTL. When we
considered the distribution of the number of tissues in which each
eQTL was likely to be active, the majority of eQTLs (94%) were active in
atleast one additional tissue, in agreement with previous findings®141

(Fig. 2a). Furthermore, the number of tissues with shared effects
decreased sharply as the number of tissues increased, but there was a
slight enrichment for eQTLs active across most or all of the 44 tissues
(Fig. 2a). When we assessed the eQTL sharing estimates among the
tissues in which significant eQTLs were found, we discovered that the
majority of the tissues exhibited higher degrees of tissue sharing; how-
ever, eQTLs in some outlier tissues, like testis and whole blood, showed
a higher degree of tissue specificity (Fig. 2b,c,e and Supplementary
Table 2). As each eQTL identified in a given tissue was predicted to
be active in a set of other tissues, we next identified the most frequent
other tissues included across all these sets. This was done to measure
the global impact of the individual estimates, unlike the tissue-shar-
ing comparison in the previous section where we only quantified
the global sharing between tissues. The results indicated that shared
eQTL effects were also more frequently observed for tissues with
biologically meaningful similarity. For example, brain tissues were
most similar to other brain tissues, ovary was most similar to uterus and
vagina, and left ventricle in heart was most similar to arterial append-
age in heart (Fig. 2d.f, Supplementary Fig. 7, and Supplementary
Table 3). In summary, our methodology uncovered outlier tissues
with eQTLs showing high degrees of tissue specificity and oth-
ers in which eQTLs showed high levels of sharing among tissues.
Tissue-sharing estimates for individual eQTLs identified biologically
relevant tissues as shared, indicating that the RTC method is capable
of assessing tissue specificity on a variant-by-variant basis.

Colocalization analysis of GWAS variants with GTEx eQTLs

Given that GTEx comprises a wide range of tissues and that our novel
methodology can assess tissue sharing for each eQTL variant identi-
fied in these tissues, we were in an unprecedented position to infer
candidate causal regulatory effects and their target genes that might
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Figure 2 Finding the most likely set of tissues where an eQTL effect is active. (a) Frequency distribution of the number of tissues in which an eQTL is
active (plotted for the union of eQTLs across all tissues), showing that most eQTLs are shared by at least one or a few other tissues in addition to the
original tissue whereas eQTL sharing among high numbers of tissues is rare. (b) Distribution of the number of other tissues in which an eQTL is active
for the significant (FDR = 5%) eQTLs in each of the tissues. The majority of eQTLs for each tissue are shared with other tissues, like those in brain
tissues; however, there are outlier tissues in which eQTLs have higher rates of tissue specificity, like testis and whole blood. In the box plots, the black
horizontal line represents the median, the boxes are delimited by the first and third quartiles, and whiskers extend to 1.5 times the box length; outlier
data points are represented as circles. (c) Testis as an example of a tissue with a higher degree of tissue specificity for eQTLs. (d) The top ten tissues
sharing eQTLs with testis. (e) Heart left ventricle as an example of a tissue sharing most of its eQTLs with other tissues. (f) The top ten tissues sharing

eQTLs with heart left ventricle.

mediate the associations of GWAS variants. Because RTC uses only
discovered GWAS variants, we were able to test GWAS variant-eQTL
overlap for all known GWAS variants and were not limited to GWAS
signals with available summary statistics or raw data, which thus far
are very sparse. To this end, we downloaded the NHGRI-EBI GWAS
catalog3 and filtered the complete list of 15,929 GWAS variants to
include 5,751 variants with genome-wide significant associations
(P < 5 x 1079) that overlapped with GTEx variants. We ran the RTC
analysis with the independent significant eQTLs (FDR = 5%) from
each of the tissues, which corresponded to 4,664 GWAS variants that
colocalized with eQTLs. Next, we created a null set of 5,751 variants
that were matched to the list of real GWAS variants on the basis of
minor allele frequency (MAF) and distance to the closest transcrip-
tion start site (TSS) (Online Methods and Supplementary Fig. 8).
We not only observed a large enrichment of high RTC scores across
the GWAS variant-eQTL colocalizations, but also found that sig-
nificantly fewer null GWAS variants colocalized with eQTLs (3,982
colocalizations; Fisher’s exact test, P=3 x 1078), confirming, as previously

described>1219, that GWAS variants frequently colocalize and likely
share functional effects with eQTLs. Thus, at least some of these vari-
ants influence traits through regulatory effects (Fig. 3a), although
colocalization between eQTLs and GWAS variants should not be
interpreted as a causal relationship. We also observed a bimodal distri-
bution for probabilities of GWAS and eQTL variants tagging the same
functional effect, where the majority of the probabilities were close to
0, but there was also an enrichment for high probabilities (Fig. 3b).
We have previously shown that RTC score is a better estimate of
shared causality for two variants than pairwise LD metrics (r? and
D’)12. When we compared the RTC score between two variants to
the corresponding 12 value, we observed that a high 2 value generally
meant a high RTC score; however, many causal links found by RTC
may be missed when using r? as a metric, extending our previous
finding that RTC is preferable to > when predicting causality (Fig. 3c,
Supplementary Fig. 9, and Supplementary Table 4). Cases where r2
was low (<0.1) and RTC was high (>0.9) were due to the level of LD in
a given region; more specifically, these regions had significantly lower
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Figure 3 RTC score compared to other pairwise variant metrics.

(a) Frequency distribution of RTC values for eQTLs from the 44 GTEx
tissues showing an enrichment in high RTC scores. (b) Distribution of
the probabilities of GWAS and eQTL variants tagging the same functional
effect. (¢) RTC score compared to r2. High RTC score tends to mean high
LD between two variants; however, low LD does not necessarily result in
a low RTC score, indicating that the RTC score is independent of the LD
between two variants. (d) Sharing probability calculated from simulations
as compared to raw RTC score. Low RTC scores are much less likely to
correspond to sharing than high RTC scores; however, there is substantial
variation between regions. The density plots in ¢ and d were generated
using the smoothScatter function in R statistical computing software,
which produces a smoothed color-density representation of a scatterplot,
obtained through a kernel-density estimate. Darker shades of blue indicate
a higher density of points in the scatterplot. Black points correspond to
individual data points.

LD (Mann-Whitney U test, P < 1 x 1071) when compared to other
regions in the genome, causing even weak linkage between the two
variants to have a high RTC score (Supplementary Fig. 10). We tested
how the probability of shared functional effect, as calculated with our
new methodology, varied with the raw RTC score and show that this
probability behaved as expected, with high RTC scores indicating a
high probability of a shared functional effect for the GWAS and eQTL
variants. However, the probability was highly variable across regions
with the same RTC score, indicating the necessity of calculating this
probability on a region-by-region basis (Fig. 3d).

Comparison of RTC to another colocalization method, coloc

We compared the probabilities of sharing generated by RTC to the
scores obtained with another colocalization method, coloc!”. As coloc
requires summary statistics from GWAS results, we downloaded
results from a meta-analysis of total cholesterol levels!® and calcu-
lated the probabilities of shared effect for genome-wide significant
GWAS hits and liver eQTLs using both RTC and coloc. We found a
strong significant positive correlation (r = 0.73; Mann-Whitney U test,
P =3.9x 10719 Online Methods and Supplementary Fig. 11) between
the sharing probabilities calculated by the two methods, confirming
the validity of our approach. To run coloc, we needed to intersect
the lists of variants from the GWAS and eQTL discovery, hence pos-
sibly losing some of the most significant variants in a given region, a

ANALYSIS

drawback our methodology does not have. Moreover, RTC assumes
that there are two true signals in each region and specifically tests
whether they are shared or independent, whereas coloc makes no such
assumption. Thus, cases where there was a high RTC sharing probabil-
ity (20.9) and a relatively low coloc sharing probability (<0.8) are due
to coloc attributing a high probability to no GWAS effect in the region,
one of the five probabilities that coloc calculates (Supplementary
Fig. 12). Furthermore, we assessed the performance of each method
using a simulation analysis (Online Methods and Supplementary Fig.
13). We found that the two methods performed comparably (p = 0.801,
P =1.5x 10711%). At a probability threshold of 0.9 in calling shared
functional effect, RTC had a sensitivity of 0.91 and a specificity of
0.95, whereas for coloc these measures were 0.66 and 1, respectively
(Supplementary Fig. 14). On the other hand, if the two methods were
matched on sensitivity, coloc had a higher specificity than RTC. As
the simulation study was designed such that we calculated GWAS
and eQTL P values for every variant in the regions, this result indi-
cates that, in scenarios where we know the GWAS and eQTL P values
for every single variant in a given window, coloc would be the better
choice, as it uses all the information in the locus.

Estimating the tissue-causality profiles of GWAS results
Although GWAS provide a list of markers that predispose to a certain
disease or trait, they fail to identify the tissues where genetic causality
arises. Given that we can test all filtered GWAS signals for eQTL over-
lap, we can attempt to address this gap in knowledge. However, we are
limited to the tissues GTEx has sampled; thus, in some cases, the real
causal tissue will be missing. This means that the exact property we are
estimating is the relative contributions of the 44 tissues to the genetic
causality of a given trait. To do this, we need to know not only whether
colocalizing GWAS and eQTL variants are tagging the same functional
effect, as inferred by RTC, but also the tissue-wide activity of the eQTL
in question. We expected that weighting the probability of GWAS and
eQTL variants being due to the same functional effect by the extent of
tissue sharing for the eQTL would increase our power in detecting the
causal tissue behind the genetic associations of a GWAS trait. To do this,
for each eQTL in a given tissue that colocalized with a GWAS variant, we
divided the probability of the GWAS variant and eQTL tagging the same
functional variant by the sum of the tissue-sharing probabilities for the
eQTL in that tissue. This enabled us to weight the GWAS variant-eQTL
probabilities such that tissue-specific eQTLs would contribute to a tissue’s
GWAS enrichment more than eQTLs that were shared with many other
tissues. Next, for each disease in each tissue, we divided the sum of the
normalized GWAS variant-eQTL probabilities from the previous step
by the number of independent eQTLs in the tissue, thereby controlling
for different eQTL discovery power across the 44 tissues; we call this our
normalized tissue causality score (NTCS). Lastly, we exactly reproduced
this analysis with the set of 5,741 null GWAS variants (Online Methods)
and compared our NTCS in a tissue for the disease-associated variants to
the score we observed under the null for that tissue. The ratio of the real
GWAS NTCS to the score under the null was defined as the enrichment
metric (Supplementary Table 5). Moreover, by comparing the distri-
butions of real NTCSs to the NTCSs under the null, we calculated a P
value for the observed enrichment (Supplementary Table 6). We show
that, by using our normalization technique, we could significantly reduce
(Mann-Whitney U test, P = 1.9 x 10718; Supplementary Fig. 15) the
correlation between the number of eQTLs in a tissues and the GWAS
enrichment metric, thus allowing us to estimate the relative contribution
of tissues to the genetic causality of a trait.

We investigated the overall pattern of tissue causality for GWAS traits and
looked at specific examples. For each GWAS trait, we ranked enrichment
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Figure 4 Patterns of tissue causality of GWAS traits. (a) Heat map of the tissue-causality profiles for tissues as given by log,-transformed enrichment
over the null to any of the top 50 traits with the highest number of GWAS variants in the NHGRI-EBI GWAS catalog. Tissues that are depleted over the
null are presented as zeros in this heat map, as biologically either a tissue is involved in a phenotype, which may be quantified, or it is not involved;
thus, there should not be a magnitude of non-involvement. Darker shades of red indicate that higher likelihood of GWAS genetic causality is acting
through the corresponding tissue. Rows correspond to the GWAS traits and columns to the tissues, and these are clustered with hierarchical clustering
using the complete linkage method on the Euclidian distances calculated from the log,-transformed enrichment over the null. (b—d) Examples of traits
with a prior on a biologically causal tissue: coronary heart disease (b), schizophrenia (c), and total cholesterol (d). On the primary y axis, the enrichments
or depletions over the null per tissue are plotted as bars; on the secondary y axis, the number of GWAS variants that colocalized with eQTLs per tissue
are plotted as a line. The horizontal black line indicates the null. On top of each of the bars is the —log,o Benjamini—-Hochberg corrected P value for the
enrichment or depletion. The 95% confidence interval of the enrichment or depletion as determined by bootstrapping the statistic 1,000 times is shown
as a gray line. During each bootstrap iteration, we randomly sample, with replacement, both the observed probabilities of a given disease in a given
tissue and the null probabilities in the same tissue, and we recalculate our statistic to assign confidence intervals to the enrichments or depletions.

over the null for each of the tissues. Tissues that were ranked higher
were estimated to contribute more to the genetic causality of a GWAS
trait. Tissues that showed a depletion when compared to the null were
considered to have no enrichment and we ignored the magnitude of
the depletion, as biologically we expect a tissue to have a quantitative
contribution to the development of a trait; depletion is not meaning-
ful as a quantity. We discovered that liver was the tissue most likely to
be causal in most of the GWAS traits (11%), including, as expected,
a variety of lipid measurements!'®20 and uric acid levels?! (Fig. 4a,
Supplementary Fig. 16, and Supplementary Table 7). Brain tissues
were the top tissues relating to traits like height?2, schizophrenia?324,
and age of onset of puberty?>. Furthermore, for traits where we had a
biological prior of a causal tissue and the tissue was assayed in GTEx,
this tissue tended to be the tissue identified as most likely to be causal
by our methodology. For example, the top causal tissue for coronary
heart disease was coronary artery followed by liver; for schizophrenia,
the top tissues were brain tissues; and for lipid metabolism traits, like
total cholesterol levels, the top tissue tended to be liver (Fig. 4b-d). In
the case of coronary heart disease, coronary artery is usually thought

of as a ‘passenger’ tissue, where the effects of the disease are manifested
rather than the tissue contributing to pathophysiology; however, our
analysis identifies it as a likely causal tissue, indicating that there are
potentially novel risk factors to be discovered. We also observed that
there was overlap between the confidence intervals of tissues. While in
some cases, like total cholesterol measurements, we had the statistical
power to dissociate the top tissue from others, this was not the case
in all diseases, indicating that we are still underpowered. However,
larger sample sizes will likely make the tissues statically distinguish-
able, without affecting the ranking of the top tissues. Thus, we show
that, by having access to eQTLs from multiple tissues and controlling
for the tissue specificity of eQTLs using our new methodology, we can
estimate the ranking of relevant tissues from which the genetic causality
of GWAS traits arise.

Causal tissues correctly identify the causal gene for a GWAS
result

As we estimated the tissue causality profiles for GWAS traits, we can
compare the causal genes for the GWAS associations between tissues
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Figure 5 eQTL effects at the coronary artery disease (CAD)- and lipid levels—associated 1p13 locus. (a) Liver. (b) Whole blood. Points are the —logig
(P value). eQTL associations for SORTI are shown in green in liver and magenta in whole blood, and PSRC1 is shown in gray. The cyan line is the

recombination rate, given in the secondary y axis, and the boxes highlight the

positions of the two genes. The genome-wide significance threshold

for eQTL associations is represented as the horizontal black line. In both tissues, the best eQTL association is genome-wide significant (FDR = 5%);
however, the eQTL gene, for which the eQTL and the causal rs12740374 variant are tagging the same functional effect as identified by our method, is

different. Liver, which we estimate to have a key role in both the development

of CAD and the regulation of lipid levels, correctly identifies SORTI as

the causal gene for this GWAS association, as SORT1 was the strongest eQTL effect of rs12740374 in liver for all genes tested in cis, and the eQTL
effect of this variant on SORT1 is ~2x more tissue specific than its eQTL effect on PSRC1. However, the more easily collectable whole blood, which is

estimated not to contribute to these traits, fails to do so. If we had just whole-

we would have incorrectly identified PSRCI as a putative causal gene.

blood eQTLs and did not know the tissue-causality profile for these traits,

likely contributing to the genetic causality of GWAS traits and those
that are not. We examined the rs12740374 variant in the 1p13 locus,
which is not only associated with coronary artery disease?*?” and lipid
measurements®$, but is also one of the few GWAS noncoding loci where
the mechanistic causes are well established?’. Liver is a key tissue in both
heart disease and lipid levels (Fig. 4b,d), and in liver the causal gene for
the rs12740374 association is correctly identified as SORT1 (P(Shared)
= 1)®. In tissues that do not contribute highly to the genetic causal-
ity of these traits, like testis and whole blood, we incorrectly identified
another nearby gene, PSRCI, as the putative causal gene (P(Shared) =
0.96 and 0.97, respectively; Fig. 5 and Supplementary Table 8). Notably,
the tissues where SORTI was correctly identified contribute significantly
(Mann-Whitney P = 0.0004) more to the genetic causality of heart dis-
ease and lipid levels than tissues where the causal gene was different
(Supplementary Fig. 17). Finally, in liver, the eQTL effect of rs12740374

on SORT1 was ~2x more tissue specific when compared to its effect on
PSRCI (likely active in 12 versus 21 tissues, respectively), which down-
grades the colocalization with PSRCI in our analysis. This result shows
the importance of identifying the causal tissues for GWAS traits before
stating which genes may be responsible for these associations.

Clustering of diseases with common pathophysiology based
on tissue-causality profiles

Finally, we asked how different diseases with shared pathophysiology
differ with respect to which tissues contribute to their genetic causality.
To this end, we investigated autoimmune and cardiometabolic diseases
and used hierarchical clustering to group the individual diseases per
their relative tissue-causality profiles. Among the autoimmune dis-
eases, we found that Crohn’s disease and ulcerative colitis formed a
cluster, whereas celiac disease had a different tissue-causality profile
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Figure 6 Enrichment over the null of tissues signifying their contribution to the genetic causality of complex diseases. (a) Autoimmune diseases.

(b) Cardiometabolic disorders. Rows list tissues, and columns list diseases. Darker shades correspond to higher contribution per tissue. The leftmost
column shows the relative tissue contributions across all diseases combined. The hierarchical clustering of the diseases is shown as a dendrogram.
Clustering was conducted with hierarchical clustering using the complete linkage method on the Euclidian distances calculated from enrichment
over the null. The red number on each node of the dendrogram is the approximately unbiased bootstrap probability for each node as calculated by the

pvclust30 R package using 1,000 bootstrap iterations.

and was most similar to multiple sclerosis. Type 1 diabetes and vitiligo
seemed most similar to each other, and rheumatoid arthritis and lupus
were clustered together. Asthma and psoriasis appeared markedly dif-
ferent when compared to other autoimmune disorders (Fig. 6a). For
cardiometabolic diseases, blood pressure-related traits, coronary heart
disease and hypertension, CAD or stroke phenotypes, and type 2 dia-
betes and stroke clustered together (Fig. 6b). We demonstrate that, by
comparing the tissue-causality profiles of GWAS diseases, we can begin
to disentangle the common as well as diverging biology underlying
their development.

DISCUSSION

Here we describe a new approach that is designed to estimate the
likely causal tissues underlying the genetic causality of GWAS traits.
In this study, we use the eQTLs identified by the GTEx Consortium
to find the relative contribution of the 44 tissues to the genetic cau-
sality of a given GWAS trait. The 44 tissues assayed in this study do
not constitute a complete representation of all human tissues and
thus will not be applicable to all GWAS and may fail to identify the
real causal tissue as a result of it not being sampled; however, GTEx
represents the most comprehensive eQTL data set of human tissues.
Furthermore, in some cases, the tissues are not statistically distin-
guishable from each other, which may be owing to lack of power,

lack of tissue specificity of GTEx cis-eQTLs, or the fact that GWAS
traits truly operate through many diverse tissues. Given the tis-
sue and sample size limitations, there is room for improvement in
determining true tissue causality profiles for GWAS traits. However,
our analysis represents an unbiased and fairly complete profiling
of the relative tissue contributions to GWAS genetic causality at an
unprecedented scale. As the sample sizes and the number of tissues
assessed for eQTLs and our resolution of the genetic etiology of com-
plex disorders increase, we expect our methodology to yield even
more powerful conclusions. We believe that this type of approach
will be paramount in the interpretation of new GWAS results using
a publicly available data set, like GTEx, and will aid in the design
of downstream functional experiments to identify the mechanistic
causes of complex disorders and traits, as well as new avenues of
treatment and prevention.

URLSs. GTEx Portal, http://gtexportal.org/home/; QTLtools, https://
qtltools.github.io/qtltools/; Vital-IT, http://www.vital-it.ch/.

METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.
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ONLINE METHODS

GTEx project. GTEx comprises 44 tissues, each having more than 60 samples,
collected from 7,051 post-mortem biopsies from 449 individuals, where each
tissue has a different number of samples (Supplementary Fig. 1). For details
of data production and quality control, see ref. 31.

Conditional eQTL discovery. Multiple independent signals for a given expres-
sion phenotype were mapped using a greedy forward stepwise regression algo-
rithm followed by a backward selection step. First, the set of GTEx eGenes for
a given tissue is taken and the maximum beta-adjusted P value (correcting for
multiple testing across the SNPs) over these genes is taken as the gene-level
threshold. Then, for each gene, FastQTL3? is run iteratively. At each iteration,
it performs a cis scan of the window, correcting for all previously discovered
SNPs and all standard GTEx covariates. If the beta-adjusted P value for the
peak SNP is not significant at the gene-level threshold, the forward stage is
complete and the procedure moves on to the backward step. If the P value is
significant, the peak SNP is added to the list of discovered eQTLs as an inde-
pendent signal and the forward step moves on to the next iteration.

Once the forward stage is complete for a given gene, we have a list of associ-
ated SNPs; we refer to these as forward signals. The backward stage consists
of testing each forward signal separately, controlling for all other discovered
signals. To do this, for each forward signal, we run a cis scan over all variants
in the window in FastQTL3? using all standard covariates and all other dis-
covered signals as covariates. If no SNP is significant at the gene-level thresh-
old, the signal being tested is dropped; otherwise, the peak SNP from the
scan is chosen as the variant that represents the signal best in the full model
(Supplementary Fig. 6).

Regulatory trait concordance score. The methodology described in this sec-
tion is implemented in QTLtools33. When assessing tissue specificity of eQTLs,
we use the same method; however, in that case, the GWAS variant becomes
an eQTL in a different tissue.

RTC method. The RTC algorithm assesses the likelihood of a shared func-
tional effect between a GWAS SNP and an eQTL by quantifying the change in
the statistical significance of the eQTL after correcting the eQTL phenotype
(here, gene expression) for the genetic effect of the GWAS SNP and com-
paring its correction impact to that of all other SNPs in the intervall2. We
mapped all common autosomal variants in each of the tissues to the recom-
bination hotspot intervals as defined by McVean et al.34. These coordinates
were transformed into GRCh37 coordinates using the liftOver tool**. The
RTC method is as follows: for a GWAS variant falling into the same region
flanked by recombination hotspots (a coldspot) as an eQTL, with N variants
in a given coldspot:

1. Correct the phenotype for each of the variants in the region separately by
linear regression, yielding N pseudo-phenotypes (residuals);

2. Redo the eQTL variant association with all of these pseudo-phenotypes;

3. Sort (in decreasing order) the resulting P values and find the rank of the
eQTL to GWAS SNP-pseudo-phenotype among all eQTL to pseudo-phe-
notype associations;

4. RTC= (N - rankGWAS SNP)/N'

This results in an RTC score that ranges from 0 to 1, where higher values indi-
cate a more likely shared functional effect for the GWAS and eQTL variants
(Supplementary Fig. 2). If there are multiple independent eQTLs for a given
phenotype, the RTC for each independent eQTL is assessed after correcting
the phenotype for all the other eQTL variants for that phenotype. This correc-
tion is done using linear regression and taking the residuals after regressing
the phenotype with the other eQTLs. For example, for eQTLiydependent 1> the
phenotype tested is equal to the residuals resulting from the following linear
model: phenOtYPe NeQTLindependentZ tot eQTLindependent N-

Simulating RTC scores under the null hypothesis (HO). The HO scenario arises
when two variants in a coldspot tag different functional effects. To simulate
this, we do the following:

1. Fora coldspot that harbors colocalized GWAS and eQTL variants (eQTL ),
we randomly pick two hidden causal variants (GWAS s, and eQTL yya1)s

2. We find two variants (GWAS and eQTL) that are linked (2 > 0.5) to the
hidden causal variants (GWAS s, and eQTL a1, respectively);

3. We generate a pseudo-phenotype for eQTL,, based on the ffand inter-
cept of eQTL,¢, and randomly distributed residuals of eQTL,,);

4. We rerun the RTC analysis with this new pseudo-phenotype and using the
GWAS and eQTL variants.

We repeat these steps 200 times for each coldspot with an eQTL and a GWAS
variant, in all of the 44 tissues separately, and record the HO RTC distributions
for each region (Supplementary Figs. 3 and 18). Multiple independent eQTLs
are handled as described in the previous section.

Simulating RTC scores under the alternate hypothesis (H1). The H1 scenario
arises when two variants tag the same functional variant. The scheme here is
exactly the same as for HO, except that there is only one hidden causal variant
and both the GWAS and eQTL variants are randomly selected from variants
that are linked to the same hidden causal variant. This is implemented as
follows:

1. Fora coldspot that harbors colocalized GWAS and eQTL variants (eQTL ),
we randomly pick one hidden causal variant (eQTL ,ysa1);

2. We find two variants (GWAS and eQTL) that are linked (r2 > 0.5) to the
hidden causal variant;

3. We generate a pseudo-phenotype for eQTL s, based on the fand inter-
cept of eQTL,., and randomly distributed residuals of eQTL,,};

4. We rerun the RTC analysis with this new pseudo-phenotype and using the
GWAS and eQTL variants.

We repeat these steps 200 times for each coldspot with an eQTL and a GWAS
variant, in all 44 tissues separately, and record the H1 RTC distributions for
each region (Supplementary Figs. 4 and 18).

Conversion of RTC score into a probability of sharing. Each region is char-
acterized by an RTC score for a GWAS-eQTL localization and a distribution
of RTC scores under the null and alternate hypotheses. We can use these and
Bayes’ theorem to estimate the probability of the two variants having the same
functional effect for a given RTC score, expressed as P(shared|RTC = rtc). To
estimate the probability of overall sharing by GWAS and eQTL variants in a
given tissue, we first calculate the eQTL P values for the GWAS variants from
which we calculate the m; statistic, which estimates the proportion of true
positives'3, and this becomes our overall probability of sharing, P(shared), and
by extension the overall probability of not sharing, P(not shared), is defined as
1 - m(mp). To estimate P(RTC = rtc|shared) and P(RTC = rtc|not shared),
we do the following (Supplementary Fig. 5). First, we merge and sort the
RTC values ascertained from simulations under the null and alternative
hypotheses. We then take 10% of the values flanking our real RTC score to
produce a range from which we can estimate a point probability. For example,
200 simulations under HO and H1 would result in 400 values, which we sort
and use to find the position of the real RTC value in this distribution; if this
happens to be the 100th value, we take the 60th and 140th simulated RTC
values to define our range. Subsequently, we calculate the proportion of values
within the range identified in the previous step under HO, which equates to
P(RTC = rtc|not shared), and the proportion of overlap with this range under
H1 becomes P(RTC = rtc|shared). Finally, we apply Bayes’ theorem to estimate
P(shared|RTC = rtc):

P(RTC=rtc|shared)* m;
(RTC=rtc|notshared) * 7y + p(RTC=rtc|shared)*m;

P(shared|RTC=rtc)=
p

This was done for each region and each tissue separately.

Tissue sharing of eQTLs using the RTC score. The methodology
described above can also be used to assess tissue specificity of eQTLs; when
doing so, the GWAS variant in the previous section becomes an eQTL in a
different tissue.

Taking the union of eQTLs across the 44 tissues. To quantify tissue sharing
in every region that harbors an eQTL in any of the 44 tissues, we took the
union of significant eQTLs. First, we mapped all the significant eQTLs in all
the tissues to recombination coldspots. Subsequently, if certain tissues did not
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have a significant eQTL in a given coldspot for a given gene, we took the most
significant variant associated with the expression of that gene in that coldspot
for all the missing tissues.

Tissue-sharing calculations. Tissue-sharing calculations were conducted
for pairs of tissues in both directions: that is, we tested the union of eQTLs
found in the previous section for tissue A (discovery tissue) in tissue B
(replication tissue) and also, reciprocally, for tissue B in tissue A. This resulted
in 1,892 separate runs for the 44 tissues. The RTC score calculations and
simulations were conducted as described above. The sharing probabilities are
calculated using the same method as above, but with the following excep-
tion: we use different P(shared) estimates for eQTLs that are significant in
either of the two tissues and eQTLs that are not significant in either tis-
sue. The method of estimating P(shared) is the same; that is, we calculate
the P values of eQTLs for tissue A in tissue B and determine the 7, statistic
(Supplementary Fig. 19).

Most likely set of tissues in which an eQTL is active. As this method yields a
probability of sharing for each eQTL variant in tissue A with all the other 43
tissues, we can calculate the set of tissues in which each eQTL is most likely
to be active. This is accomplished in the following manner:

1. Because RTC is a metric that is designed to assess a whole region, we
condense the values for each separate coldspot. To estimate probabili-
ties of sharing by tissue A and tissue B, we take the mean of the pairwise
estimates in both directions, that is, the mean of tissue A in tissue B and
the mean of tissue B in tissue A. If there are multiple independent eQTLs
in a coldspot, then we take the combination of values with the high-
est sharing probabilities. This results in a vector of 44 probabilities for
each coldspot;

2. We iterate over the number of tissues, that is, 1 to 44, and call this N;

3. At each iteration, we identify the most likely set of N tissues in which an
eQTL is active. This is done by sorting (in decreasing order) the 44 sharing
probabilities and multiplying the product for the top N sharing probabilities
by the product of 1 minus the sharing probabilities for the remaining 44
- N tissues. This yields the maximum probability of an eQTL being active
in only N tissues;

4. Once we have all the probabilities for 1 to 44 tissues, we take the maxi-
mum of these, which corresponds to the most likely number of tissues,
called n. The set of tissues in which an eQTL is most likely to be active
is defined as the top # tissues in the sharing probability vector sorted in
decreasing order.

Validation of tissue-sharing estimates from RTC with 1t;. Considering all signifi-
cant independent eQTLs in tissue A, we took the mean of the probabilities of
their being shared with tissue B as the replication probability of eQTLs from
tissue A in tissue B. We then compared this mean probability to the 7 statistic
for replication of eQTLs from tissue A in tissue B. Briefly, the 7; statistic, which
is obtained by evaluating a P-value distribution, assesses the proportion of
the P values that do not originate from the null distribution of P values, thus
quantifying the proportion of true signal in the data.

Response operator curve for using r2 to call shared effects. We took RTC
scores >0.9 to indicate a real shared functional effect for GWAS and eQTL
variants!2. Subsequently, using different r? thresholds (from 0 to 1, separated
by steps of 0.01), we asked what percentage of the shared signals based on
r? had RTC scores >0.9 (true-positive rate of r?) and what percentage of the
shared signals based on r> had RTC scores <0.9 (false-positive rate of r2) if
we called the effects for variant pairs with 72 values equal to or greater than
the given threshold as shared and those for variants with r? values below this
threshold as not shared.

Tissue enrichments for GWAS traits. Generation of a matched set of null vari-
ants for real GWAS variants. For each real GWAS variant, we calculated the
MAF and the distance to the closest TSS. We then selected one matched null
variant for each real GWAS variant such that the null variant’s MAF was +2.5%
with respect to the real GWAS variant's MAF and the relative distance to the
closest TSS was £5 kb with respect to the corresponding distance for the real
GWAS variant. This resulted in 5,741 matched null GWAS variants.

Calculation of tissue enrichments over the null. We applied our method-
ology as described above to variants from the NHGRI-EBI GWAS catalog?
downloaded on 15 June 2015 and the significant independent eQTLs identified
in all 44 tissues. We filtered the catalog for GWAS variants that had reported
P < 5x 1078 This yielded in 5,751 unique GWAS variants from 742 diseases
or traits that overlapped with GTEx variants. To normalize the GWAS vari-
ant-eQTL probabilities of tissue specificity for the eQTL in a given GWAS
variant-eQTL colocalization for a given disease, we divided the GWAS vari-
ant-eQTL sharing probability in a given tissue by the sum of the tissue-sharing
probabilities of that eQTL in that tissue. This enabled us to increase the impact
of tissue-specific eQTLs on disease tissue enrichment as compared to tissue-
shared eQTLs. Subsequently, we took the sum of all normalized GWAS vari-
ant-eQTL probabilities for a disease in each tissue and divided by the number
of independent eQTLs in each of the tissues, thereby accounting for the differ-
ent power of discovery among the 44 tissues, and this became our NTCS. We
then redid the analysis exactly as described here with the matched null GWAS
variants and recalculated an NTCS for all of the 5,741 null variants in each of
the tissues. Subsequently, we compared the distribution of real GWAS NTCS
values for a given disease in a tissue to the null distribution in the same tissue.
When making such a comparison for a particular disease, we scaled the NTCS
for the null distribution such that the null NTCS was of the same order as the
real NTCS, as the denominator in this calculation is a sum and the numbers of
variants for a disease and null variants are different. This was accomplished by
multiplying the null NTCS value by the ratio of the number of real GWAS vari-
ants assessed to the total number of null GWAS variants. Finally, to calculate a
P value for enrichment, we compared the distribution of real NTCS values to
that for the null variants using the Mann-Whitney test. We tested how our
enrichment metric correlated with the number of independent eQTLs for each
disease before and after our normalization scheme. Before normalization, a clear
majority of the diseases exhibited a significant correlation between the number
of eQTLs and GWAS tissue enrichment values, whereas after normalization
only 11 diseases were still significantly associated (Supplementary Fig. 15).
In the following equations, calculation of NTCS is described, where T'is a given
tissue; G is a GWAS trait; G,, is the total number of GWAS-associated variants
for the trait; GWAS P(shared) G; eQTL; is the probability that a GWAS variant
G;and colocalizing eQTL; tag the same functional variant; T P(shared) eQTL;
is the tissue-sharing probability of eQTL; in tissue T with other tissues; T}, is
the total number of eQTLs in tissue T; N,, is the total number of null variants;
and N; is a null variant.

G, GWAS P (shared)G;eQTL;

i=l T P(shared)eQTL;

N, GWAS P (shared)N;eQTL;
i=1 T P(shared)eQTL;

1
NTCS—EXZ

NullNTCS =22 xy
NnTn

The enrichment score for GWAS trait G in tissue T is defined as the NTCS
over the null NTCS, and the P value is calculated using a Mann-Whitney
test comparing the distributions containing each of the ith elements in the
formulas for the real GWAS and under the null.

Comparison of RTC P(shared) with coloc. Because the coloc method requires
summary statistics from GWAS, we cannot directly compare the methodolo-
gies for all GWAS variants assessed with RTC in this manuscript. However,
we downloaded summary statistics from a GWAS meta-analysis of total cho-
lesterol levels originating from 188,577 individuals'8. We then mapped all
variants with GWAS P < 5 x 1078 to the same recombination regions used in
the RTC analysis, keeping only the most significant GWAS variant in a given
region. Subsequently, we ran the RTC analysis with this set of GWAS variants
associated with total cholesterol in the same way as described previously. We
then calculated the eQTL P values for all the variants in a given region for
the genes that colocalized with the total cholesterol GWAS list and also their
MAFs. These data were then merged with the overlapping total cholesterol
GWAS P values for each gene and region separately. These values were inputted
into the coloc R package using the coloc.abf() function, to calculate probabili-
ties of the two variants tagging the same functional effect. Finally, we compared
the P(shared) value obtained from RTC for each gene and region with the
corresponding coloc H4 probability (where the traits are associated and share
a single causal variant; the same probability assessed with RTC).
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Simulations to compare RTC and coloc. We randomly chose 256 regions
delimited by recombination hotspots across the genome and subsequently
extracted the genotypes in these regions from the 1000 Genomes Project Phase
3 release only for European samples®. In each region, we randomly selected
a causal variant using HAPGEN2 software?’, and we simulated a GWAS with
10,000 cases and controls where each alternate allele conferred risk of 1.1 to the
disease phenotype. We then randomly selected 500 controls from genotypes
generated by HAPGEN2, which made up our eQTL cohort. In each region,
we simulated two scenarios: the null where the eQTL and GWAS tagged inde-
pendent causal effects and the alternate where the variants are due to the same
underlying effect. Thus, we randomly selected one eQTL variant that had
r2 < 0.2 with the causal GWAS variant for the null and another eQTL variant
with 72 > 0.8 with the causal GWAS as the alternate case. Then, we created a
phenotype for each of the two eQTL variants chosen on the basis of randomly
selected P values from a distribution of  values for real eQTLs and random
error (normally distributed) for each genotype. The GWAS P values necessary
for coloc were generated using logistic regression, and eQTL P values were
generated using linear regression. Finally, we ran both coloc and RTC for each
of the 256 regions for both the null and alternate hypotheses.

Accession codes. The GTEx data used in this paper are available through con-
trolled access at the database of Genotypes and Phenotypes (dbGaP) under
accession phs000424.v6.pl.

Data availability. Data from the study are available from the authors upon
reasonable request. A Life Sciences Reporting Summary is available.
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