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PV Adoption Enabled By Low-Carbon
Technologies:

Trade-offs between prosumer benefits and grid impacts

Alejandro Peña-Bello

Abstract

Solar rooftop photovoltaic (PV) systems are playing a key role in decarbonizing
the energy sector due to their modularity, cost reductions, high levels of social
acceptance, and policy support schemes. However, the stochastic nature of the solar
resource prevents PV systems from supplying electricity on demand, limiting its final
value as well as posing substantial challenges for their integration on the electricity
mix. This thesis focuses on technologies and strategies which can enable PV to
supply electricity on-demand at the distribution level, therefore increasing its value,
and final penetration into the energy system. We study which additional currently
unexploited economic benefit can be reaped by combining applications that allow
to maximize the consumer revenue (e.g., PV self-consumption), by minimizing grid
impacts (e.g., demand peak shaving, demand load shifting, and avoidance of PV
curtailment), and/or by accessing markets, at both local (e.g., peer-to-peer), and
national levels (e.g., frequency regulation).

Using technology assessment, energy system models at high temporal resolution
(≤ 1 hour) at the residential scale, statistical analysis, cluster analysis, optimiza-
tion and simulation as research methods, this project assesses the trade-offs between
consumers benefits (e.g., bill minimization) and grid impacts (e.g., maximum grid
relief) depending on the type of consumer, building characteristics, technologies,
control strategies, and business model. We analyze three levels that represent dif-
ferent business models, an individual household minimizing their bill, a local peer-to-
peer community, and a national aggregator providing frequency control. In general,
we find that electricity tariffs can effectively increase residential PV system flexi-
bility by enabling energy storage to perform different applications. In particular,
capacity-based tariffs can effectively mitigate distribution grid impacts by promot-
ing a reasonable exchange with the grid. In P2P communities, a fairer distribution
of community costs is needed to avoid distributional energy justice problems, since
pure consumers reap the highest financial benefits under the proposed market mech-
anism. Finally, we find the provision of frequency control by means of an aggregator
to be a profitable service for the prosumer reaching positive net present values.
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Adoption du PV rendue possible par les
technologies à faible émission de carbone:

Compromis entre les avantages pour les prosommateurs et les impacts
sur le réseau

Alejandro Peña-Bello

Résumé

Les systèmes solaires photovoltaïques (PV) sur les toits jouent un rôle clé dans la
décarbonation du secteur de l’énergie en raison de leur modularité, des réductions
de coûts, des niveaux élevés d’acceptation sociale et des programmes de soutien
politique. Cependant, la nature stochastique de la ressource solaire empêche les sys-
tèmes PV de fournir de l’électricité à la demande, limitant sa valeur finale et posant
des défis importants pour leur intégration dans le mix électrique. Cette thèse se con-
centre sur les technologies et les stratégies qui peuvent permettre au PV de fournir
de l’électricité à la demande au niveau de la distribution, augmentant ainsi sa valeur
et sa pénétration finale dans le système énergétique. Nous étudions quel avantage
économique supplémentaire actuellement inexploité peut être récolté en combinant
des applications qui permettent de maximiser les revenus des consommateurs (par
exemple, l’autoconsommation PV), en minimisant les impacts sur le réseau (par ex-
emple, l’écrêtement des pics de demande, le déplacement de la charge de la demande
et le contournement de la réduction du PV) , et/ou en accédant aux marchés, aux
niveaux locale (par exemple, peer-to-peer) et nationale (par exemple, régulation de
fréquence).

En utilisant l’évaluation des technologies, des modèles de systèmes énergétiques à
haute résolution temporelle (≤ 1 heure) à l’échelle résidentielle, l’analyse statistique,
l’analyse de cluster, l’optimisation et la simulation comme méthodes de recherche, ce
projet évalue les compromis entre les avantages pour les consommateurs (par exem-
ple, minimisation de la facture) et les impacts sur le réseau (par exemple, le soulage-
ment maximal du réseau) en fonction du type de consommateur, des caractéristiques
du bâtiment, des technologies, des stratégies de contrôle et du modèle commercial.
Nous analysons trois niveaux qui représentent différents modèles économiques, un
ménage individuel minimisant sa facture, une communauté P2P locale et un agréga-
teur national assurant le contrôle de la fréquence. En général, nous constatons que
les tarifs de l’électricité peuvent effectivement augmenter la flexibilité du système PV
résidentiel en permettant au milieu de stockage de l’énergie d’effectuer différentes
applications. En particulier, les tarifs capacitifs peuvent atténuer efficacement les
impacts sur le réseau de distribution en favorisant un échange raisonnable avec le
réseau. Dans les communautés P2P, une répartition plus équitable des coûts commu-
nautaires est nécessaire pour éviter les problèmes de justice énergétique distributive,
puisque les consommateurs purs récoltent les avantages financiers les plus élevés dans
le cadre du mécanisme de marché proposé. Enfin, nous trouvons que la fourniture
d’un contrôle de fréquence au moyen d’un agrégateur est un service rentable pour
le prosommateur atteignant des valeurs actuelles nettes positives.
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Description of terms used in this thesis:

Prosumer: In this work, households that are equipped with photovoltaic (PV)
systems and, therefore can both produce and consume electricity.

Low-carbon technologies: The term given to technologies that emit low levels
of CO2 emissions.

Self-consumption: The share of on-site generation that is auto-consumed.
Self-sufficiency or autarky: The share of local demand that is covered by the

on-site PV generation.
Demand load shifting: A load management technique that aims to move

demand from peak hours to off-peak hours of the day, with the idea of reducing
the total energy cost. It requires a differential tariff (e.g., double tariff, time-of-use
tariff).

Demand peak-shaving: It involves proactively managing overall demand to
eliminate demand spikes. This process lowers and smooths out peak loads, which
reduces the overall cost of electricity tariffs.

Capacity-based tariff: Also called demand charges, bill the peak electricity
demand (i.e., in $/kW) during a billing period (e.g., annual, monthly...). In this
study we use electricity tariffs with a mixed nature, with two components, one
volumetric and one capacity-based.

Curtailment: The deliberate reduction in output below what could have been
injected into the grid.

Hosting capacity: The amount of distributed generation for which distribution
network constraints are violated.

TSO: The transmission system operator is an entity entrusted with transporting
energy in the form of electrical power on a national or regional level, using fixed
infrastructure.

DSO: The distribution system operators are the entities responsible for dis-
tributing and managing energy from the generation sources to the final consumers.

BRP: Balance Responsible Parties are private legal entities that overlook the
balance of one or multiple access points to the transmission grid.

Reserve capacity: It refers to the remaining available power capacity [MW]
of a generator (e.g., in the upward direction, it is the difference between the power
generation operating point and the maximum power capacity of the generator) that
is ‘booked’ to be used, in case the TSO needs this power to provide ancillary services.

Regulating power: It refers to the energy [MWh] that is produced by a gen-
erator by deploying the above booked reserve capacity, following a request from the
TSO.

Upwards regulation: The increase of generation (or decrease of consumption)
provided by actors participating in the frequency market in the case that frequency
deviates below 50 Hz (in Europe).

Downwards regulation: The decrease of generation (or increase of consump-
tion) provided by actors participating in the frequency market in the case that
frequency deviates above 50 Hz (in Europe).
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Chapter 1

General introduction

In order to limit global warming to 1.5°C, a threshold the Intergovernmental Panel
for Climate Change (IPCC) suggests carbon neutrality by mid-21st century is es-
sential. This target is also laid down in the Paris agreement signed by 195 countries.
Since the energy system (including electricity, heat and transport) is responsible for
three quarters of the global greenhouse gas emissions (Ritchie and Roser 2020), the
massive integration of renewable energy resources is crucial for the energy system
decarbonization.

Solar photovoltaics (PV) is the renewable energy technology with the highest
growth rate, more than 33% per annum over the past decade (IRENA 2019), and
the steepest learning curve, above 20% reduction in module price for each doubling in
cumulative production capacity over the last 40 years (Equipment 2018). The main
reasons for such an unprecedented development lie on its simplicity and reliability,
requiring almost no maintenance, its scalability due to the modularity, and its low
cost, recently reaching a global weighted-average levelized cost of 0.057 USD/kWh
at the utility scale (IRENA 2021), and an all time low cost of 0.0104 USD/kWh
in Saudi Arabia in April 2021, for an utility-scale solar PV plant. This cost makes
PV competitive with the cheapest new fossil fuel-fired power generation capacity
(between 0.055-0.148 USD/kWh for coal-fired Chinese plants) (IRENA 2021).

PV modularity, cost reductions, high levels of social acceptance, and policy sup-
port schemes have enabled the installation of substantial amounts of generation
capacity embedded within the distribution network and close to domestic electricity
demand. The levelized cost of residential PV systems have declined between 49%
and 82% between 2010 and 2020, in countries such as Australia, Germany, Italy,
Japan and the United States (U.S.), reaching levelized cost range between 0.236-
0.055 USD/kWh in 2020 (IRENA 2021). Additionally, renewable energy policy
instruments such as the Feed-in Tariff (FiT) scheme, net metering and investment-
tax credits have made PV systems widely available in the residential sector. For
instance, at the end of 2020, countries with high residential PV penetration such
as Australia, Germany and the U.S. counted more than two million of residential
PV systems. However, the unexploited potential on single and two-family houses
is still of about 89% and 97% in Germany and the U.S., respectively (EUPD 2020;
Feldman, K. Wu, and Margolis 2021). Therefore, there is an enormous expansion
potential for distributed generation in the residential sector. Additionally, other
drivers of residential PV systems are their acceptance among the population, and
the (perception of) high retail electricity prices.

While being relatively cheap, clean and widely available, the massive integration
of PV systems challenges the existing grid, in particular when PV is highly dis-
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tributed. This is mainly because the distribution grid infrastructure was designed
exclusively to transfer electricity downstream from large power plants. Distribution
system operators (DSOs) must guarantee grid stability and power quality, however,
since PV injection was not considered in the planning of distribution grids, the lo-
cal PV feed-in affects the voltage of the distribution grid, as well as the operation
of critical devices such as transformers and lines (Gupta, Pena-Bello, et al. 2021).
Moreover, PV stochastic nature result into instantaneous variations of PV power
generation which leads to load shedding, and makes the management of grid fre-
quency more challenging (Abdoulaye et al. 2020). Another stability issue related to
high amounts of PV penetration is the temporal imbalance between peak demand
(usually after sunset) and PV generation, due to the large amount of dispatchable
power required to cover peak demand, a phenomenom known as the duck-curve
(Barbour, Parra, et al. 2018).

Unlike conventional centralized generation, PV production cannot be supplied
on-demand without incurring in additional costs and devices. To mitigate the prob-
lems posed by residential PV while supporting its further penetration, different
means are used. One common solution is demand side management, however, it
has a limited impact on the demand and is less appealing for households (Yilmaz,
Rinaldi, and Patel 2020). The main solution is the promotion of self-consumption.
Increased PV self-consumption results in lower PV feed-in, while the share of re-
newable energy continues to increase. The coupling of residential PV with other
low-carbon technologies allows to increase the share of on-site generation that is
auto-consumed. For instance, batteries can increase PV self-consumption by 10-24%
(Luthander, Widén, Munkhammar, et al. 2016). Further low-carbon technologies
can help decarbonizing other energy services, such as heating (heat pumps and ther-
mal storage) or transport (electric vehicles). In this study, we analyze the potential
of low-carbon technologies which enable the penetration of residential PV systems,
while reducing their burden on the distributed system. The main focus is on
energy storage, and in particular on residential batteries.

1.1 Aim and scope

The overall aim of this thesis is to analyze the potential of low-carbon technologies
which may enable the increased supply of PV-generated electricity on-demand at the
distributed level. As shown in Figure 1.1, we study PV integration at the residential
level and the way how low-carbon technologies, and business models, can make
investments more attractive for prosumers while minimizing grid impacts. The main
focus is on single-family houses (SFH) with existing PV systems (and heat pumps, in
Chapter 4), and the willingness to invest in energy storage. Moreover, we analyze two
new business models, namely, peer-to-peer communities and aggregators. We use
various techno-economic indicators (e.g., annual bill, self-consumption rate, NPV) to
understand the impact of these technologies on prosumers. Additionally, we use the
maximum power exchanged with the grid (import and export power, and referred
to as power flow) as an indicator of grid impacts.

Next, we formulate the specific research questions which motivate this thesis.
Contrary to PV systems, batteries are not yet cost-effective. In addition, PV sys-
tems have to be combined with other technologies to provide electricity on-demand
(Gupta, Soini, et al. 2020). Therefore, the combination of applications of energy
storage are considered to increase the financial revenue, while providing residential
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Figure 1.1: Schematic representation of this thesis with the key performance indicators, methods,
geography scope, applications, and devices per chapter.

PV installations with a certain level of flexibility. This can be expected to motivate
households to have a private energy storage system and to then tap into several
revenue streams. Therefore, the first research question is formulated as:

Research question A

To which extent can the combination of applications help to increase the
financial revenue of energy storage in the residential sector?

This thesis contributes to the field by proposing an open-source 24-h optimization
framework for battery dispatching (i.e., Battery Schedule OPtimizer for Residential
Applications, BASOPRA), subsequently expanded to optimize heat pumps and ther-
mal storage operation, for space heating and domestic hot water (DHW). This tool
allows us to combine different energy storage applications and assess their added
value. In particular, we explore the combination of the main residential application:
PV self-consumption, with secondary residential applications such as avoidance of
PV curtailment, demand load shifting, demand peak-shaving, electricity trading,
and frequency control. The combination of applications, also referred to as benefit
stacking, can be incentivized by the design of electricity tariffs and/or policy, and
therefore, different tariff structures are analyzed across this thesis. Since the same
energy storage technology is used for several applications, this implies trade-offs for
the prosumer and/or for the grid, not only in financial terms, but also in terms of
self-consumption, self-sufficiency and grid impact. In this sense, we formulate the
second research question as:
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Research question B

What are the trade-offs between prosumer benefits and grid impacts in single-
family houses with PV and energy storage with access to multiple revenue
streams?

Finally, with the deployment of distributed energy resources (DERs), new busi-
ness models are emerging (IRENA 2020). In this thesis, we analyze two new types
of electricity market participants encompassing a set of households and their DERs,
namely Peer-to-peer (P2P) communities and aggregators.

For P2P communities, previous research focused on the techno-economic per-
spective. However, factors other than financial incentives influence homeowners’
P2P trading decisions (Ecker, Spada, and Hahnel 2018; Hahnel, Herberz, et al.
2020). Therefore, there is still an open question about the influence of trading
preferences in P2P communities, which is formulated as:

Research question C

How does a P2P community based on actual trading preferences performs at
the individual, collective and grid level?

This thesis contributes new insights to the existing body of literature by extend-
ing the so-far socio-economic focus of P2P communities, integrating citizen prefer-
ences and decision-making strategies. By means of interdisciplinary research, we
were able to translate findings from psychology into performance indicators, which
are relevant for policy makers and other decision-makers, helping to the development
of human-centered energy systems.

1.2 Outline

Chapter 2 contributes to answering Research Questions A and B by proposing
an open-source 24-h optimization framework for energy storage dispatching (i.e.,
BASOPRA). The optimization framework is used to determine the best-suited bat-
tery technology depending on its size and the combination of applications (i.e., PV
self-consumption, avoidance of PV curtailment, demand load shifting and demand
peak-shaving), for individual households in Geneva, Switzerland and Austin, U.S.

Chapter 3 contributes to answering Research Questions A and B using a 1:1:1
sizing ratio for the design of the residential energy system, where for instance, an
annual electricity consumption of 5 MWh is assumed to be served by a nominal PV
capacity of 5 kWp and a battery capacity of 5 kWh. Additionally, we expand the
previous contribution by analysing the impact of the load profile and the annual
consumption for a PV-coupled battery system combining applications.

Chapter 4 extends the developed optimization framework to include heat pumps
and thermal storage operation (including space heating and domestic hot water),
contributing to answer Research Question A and B by comparing electric and ther-
mal storage performing several applications in single-family houses with different
thermal envelope quality in Geneva, Switzerland.

Chapter 5 studies the impacts of trading strategies in P2P communities, using
German data, directly answering Research Question C while addressing the social
dimension. Additionally, this chapter contributes to answer Research Question A
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and B by combining PV self-consumption with energy trading.
Chapter 6 explores, through the pooling of residential batteries, a sixth bat-

tery application: frequency control. This chapter contributes to answering Research
Question A and B, using four models allowing to calculate: i) the Swiss whole-
sale prices (GRIMSEL); ii) the cost of regulating power (LM); iii) the amount of
dispatched-by-design distribution system penetration, where batteries are deployed
in the distribution grid to dispatch the operation of traditionally stochastic pro-
sumption peak flows; and iv) the revenue and grid impact of the combination of
frequency control and PV self-consumption at the household level (extended BA-
SOPRA) in the Swiss context. A future-oriented scenario analysis is undertaken to
consider different stages of the Swiss energy transition, namely 2030 and 2050.

Chapter 7 summarizes the research work and provides overall conclusion, propos-
ing critical insights about the energy transition at the distribution level, as well as
recommendations for DSOs and policy makers. Recommendations for future re-
search are also made in this chapter.

It should be noted that each chapter of this thesis (excluding Chapter 1 and 7)
represents an article which is either published or to be submitted for peer-review in a
scientific journal. Therefore, some chapter sections may contain similar information
(e.g., input data), resulting in some redundancy, in particular, Chapters 2, 3 and
4. Additionally, some general premises across this work are i) perfect forecast of
load and generation within the 24-h optimization framework is assumed; ii) the
PV investment is not considered, iii) the FiTs are abolished and replaced by the
wholesale price, and iv) capacity-based tariffs are implemented for the residential
sector. Finally, beyond the scope of this thesis are the device size optimization,
and power flow analysis of the distribution network, although these topics are being
covered in current projects where the author is involved. Finally, electric vehicles
are not covered in this thesis, while they were included in related works in which
the author was involved (Gupta, Pena-Bello, et al. 2021; Hutty et al. 2021).
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Chapter 2

Household level - Electrochemical
storage Part A

Interest in residential batteries to supply photovoltaic (PV) electricity on demand
is increasing, however they are not profitable yet. Combining applications has been
suggested as a way to increase their attractiveness, but the extent to which this
can be achieved, as well as how the different value propositions may affect the
optimal battery technology, remain unclear. In this study, we develop an open-source
optimization framework to determine the best-suited battery technology depending
on the size and the applications combined, including PV self-consumption, demand
load-shifting, demand peak-shaving and avoidance of PV curtailment. Moreover,
we evaluate the impact of the annual demand and electricity prices by applying
our method to representative dwellings in Geneva, Switzerland and Austin, Texas
in the United States. Our results indicate that the combination of applications
helps batteries to approach to break-even by improving the net present value by
up to 66% when compared with batteries performing PV self-consumption only.
Interestingly, we find that the best-suited battery technology in Austin is lithium
nickel cobalt aluminum oxide (NCA) as for Geneva lithium nickel manganese cobalt
oxide (NMC) batteries reach in average a higher net present value than NCA-based
batteries. However, NCA-based batteries could be a more promising alternative in
the future.

2.1 Introduction

The modularity of solar photovoltaics (PV) is enabling the installation of substan-
tial amounts of generation capacity embedded in the distribution network close to
domestic electricity demand. In 2016, new installations in the residential sector of
the United States (U.S.) represented 67% of the PV installations with a nominal
power lower than 2 MW (Fu et al. 2017), while in Germany for the same year, new
PV installations in the residential sector accounted for 50% of the total number of
installations (Bundesnetzagentur 2017). This PV development has been facilitated
by the rapid decrease in cost of PV modules during the last decade, (e.g., in Ger-
many and the U.S. the price of installed rooftop systems has declined by 60% and
55% respectively since 2009) (Fu et al. 2017; Wirth and K. Schneider 2018). In
parallel with these cost declines, retail electricity prices have risen steadily for the
last decade across many countries (e.g., by 78% in Spain, 52% in Germany, and
48% in the U.K. since 2007) (Eurostat 2018), while the subsidies for PV electricity
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fed to the grid, referred to as feed-in tariffs (FiT), have markedly declined (e.g., by
71% in Germany since 2009) (Pyrgou, Kylili, and Fokaides 2016). Additionally, FiT
are being restricted, for example, there is a cap on the installed capacity that can
profit of the FiT in Australia and Switzerland (Husser, Pius 2017). Furthermore, the
stochastic nature of the solar energy resource prevents PV systems from supplying
electricity on demand as is possible with many other conventional technologies such
as fossil plants and hydro storage. All of these factors are significantly increasing
residential consumers’ interest in increasing the amount of self-generated PV that
they consume in-home (this is referred to as PV self-consumption) by using battery
systems (Husser, Pius 2017). Typical rates of PV self-consumption which ranges
between 20 and 40% for residential consumers can be increased by 13 to 24% when
battery storage is included in the system, using an elementary charging approach
(Luthander, Widén, D. Nilsson, et al. 2015).

In parallel with this increased consumer interest, battery costs, especially lithium-
ion technologies, are following a similar trend as experienced by PV systems and
the International Renewable Energy Agency (IRENA) reported a cost reduction of
65% since 2010 for lithium-ion batteries (IRENA 2017b). To encourage battery
development, dedicated subsidies have been implemented (CPUC 2017; Figgener,
Habershusz, et al. 2017). In Germany, more than 30000 new residential PV-coupled
battery systems have benefited from the federal program since 2013 and in 2017,
half of every small PV system was installed with a coupled battery as a result of
government economic incentives (Figgener, Habershusz, et al. 2017). Home battery
storage is still an emerging market but some projections estimate that households
and businesses may account for nearly 60% of installed storage capacity worldwide
by 2040 (Finance Bloomberg New Energy 2018).

Due to its great potential, many authors have investigated key factors impacting
on PV-coupled battery systems’ profitability. Previous studies have focused on
capital and operational expenditures associated with the design (Hesse, Martins, et
al. 2017) and operation (Pena-Bello, Burer, et al. 2017; Nyholm et al. 2016; Magnor
and Sauer 2016; Barbour and González 2018) of PV-coupled battery systems. In
addition to cost improvement, the simultaneous provision of various applications has
been presented as an alternative strategy to increase the economic attractiveness of
energy storage technologies thereby enabling accelerated deployment (Stephan et al.
2016; Parra and Patel 2019). The combination of different storage applications has
already been investigated at the distribution and transmission networks (Stephan et
al. 2016; Muller et al. 2017; Böcker et al. 2017) and for different battery technologies
(Battke et al. 2013). However, despite the fact that behind-the-meter systems are
anticipated to represent major business for stationary storage, previous research on
the simultaneous provision of various applications applied to these systems is scant.

The influence of solar resource, demand profiles, jurisdiction and electricity prices
across locations has been evaluated for PV self-consumption individually (Kazhami-
aka et al. 2017; Barbour and González 2018). Other authors investigated either
various types of applications or geographical dependence and/or using a technology-
agnostic approach (von Appen et al. 2015; Parra and Patel 2016; Magnor and
Sauer 2016; Sani Hassan, Cipcigan, and N. Jenkins 2017; Fares and Webber 2017;
Pena-Bello, Burer, et al. 2017; Zheng, Meinrenken, and Lackner 2014; Barbour and
González 2018; Nyholm et al. 2016; Tant et al. 2013; Santos, Moura, and Almeida
2014; Hesse, Martins, et al. 2017; Parra and Patel 2019; Hoppmann et al. 2014;
O’Shaughnessy et al. 2018b). Therefore, various battery technologies available in
the market have not been evaluated with the same method and for the full combi-
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nation of consumer applications.
The main aim of this work is to determine the best-suited battery technology

for various combinations of applications. For this, we develop an open-source op-
timization framework using linear programming to solve the management problem
of a PV-coupled battery system. The model is robust and can consider different
combinations of applications (e.g., PV self-consumption and demand load shifting),
tariff structures, export prices and battery characteristics such as aging, efficiency,
lifespan and cycles. Moreover, we evaluate which additional, currently unexploited
economic benefit can be reaped by combining applications and compare different
battery sizes. Our model can be used by consumers and utility companies to ex-
plore different batteries and electricity tariffs for a given demand, PV generation and
combination of applications. Importantly, the comparison of our results for Geneva
(Switzerland) and Austin (U.S.) allow us to understand whether or not the optimal
technology and break-even point for the various combinations of applications is ge-
ographically dependent in view of the different pricing structures, annual electricity
demand and irradiance of the two locations.

Considering the relevance of these research questions and in order to promote
the use of our model by other peers, we also make our model and data open. With
this, we contribute towards openness in energy research, which is lagging behind
other fields (Pfenninger, DeCarolis, et al. 2017). Open-source energy models permit
more meaningful collaboration among academics, allow to engage the public and
are important for energy policy communication and benefit not only academics but
the public in general (Pfenninger 2017; Pfenninger, DeCarolis, et al. 2017). In the
interest of transparency, and to boost collaboration and science reproducibility in the
energy field, this work joins other open-source efforts such as openmod, renewables-
ninja (Pfenninger and Staffell 2016) and the Linux Foundation Energy.

The remainder of this paper is structured as follows. The materials and methods
are presented in the next section. Section 2.3 gives the optimization results as
a function of the combination of applications, battery technology and geography.
Section 2.4 presents the implications of our results and finally the main conclusions
are presented.

2.2 Material and methods

Figure 2.1 is a schematic representation of our method. In first place, we specify
the input data for electricity demand and PV generation (Section 2.2.1). The appli-
cations and their combinations are subsequently defined along with the respective
electricity tariff structure (Section 2.2.2). Then, the battery technologies, system
topology, components and techno-economic indicators are presented (Sections 2.2.3,
2.2.4 and 2.2.5). Finally, the schedule optimization is described (Section 2.2.6).
Across the study we use USD as common currency for both locationsa.

2.2.1 Demand and PV generation

We use electricity consumption data with 15-minute temporal resolution monitored
in single dwellings in Western Switzerland (636 dwellings) and Austin, Texas (308
dwellings) during the year 2015. Considering this amount of data, we opt to form
representative consumer groups in order to reduce the computational time required.

aExchange rates used: 1 USD/CHF and 1.18 USD/EUR.
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Figure 2.1: Schematic representation of the modeling approach proposed

To generate these representative consumer groups, we employ clustering to produce
groups of consumers with similar behaviors. We split the consumers according to
their annual consumption into three separate groups, i.e., a low, medium and high
consumption group in both locations. Finally, within these three groups we cluster
based on the average daily load profile. We opt to produce four clusters in each
consumption bracket, noting that selecting the number of clusters in highly dimen-
sional data is a difficult task. From each cluster we select the household that is
closer to the centroid which is subsequently optimized. The results presented in
this study are the average of the four representative households of each cluster per
consumption bracket. For further information see Section A.1.1.

Environmental variables including outdoor temperature and horizontal solar ir-
radiance monitored across both locations are used to model PV generation. We
focus on the median PV size of the empirical distribution across Switzerland (i.e.,
4.8 kWp) (BFE 2018) and Texas (i.e., 5 kWp) (NREL 2018) for our baseline results
(i.e., unchanged PV size), while alternative scenarios including the 25th (i.e., 3.2
and 3.15 kWp for Geneva and Austin respectively) and 75th percentiles (i.e., 6.9
and 6.4 kWp for Geneva and Austin respectively) are shown in Section A.7.

2.2.2 Electricity tariff and battery applications

The operation of a residential battery as well as the number of applications it can
deliver depends on the tariff structure. Since there is not a market mechanism
incentivizing the export of electricity from residential batteries to the main grid,
this case is not considered either.

Electricity prices used in this study are based on available tariffs which are offered
by the local utility companies in the two locations. Both, single tariffs and double
tariffs (also called Time-of-Use tariffs, which have a peak and off-peak periods) are
considered in the analysis. In Geneva, double tariffs are applied all-year-round, while
in Austin, they are applied only in summertime. The export price is assumed to
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Table 2.1: Various electricity tariffs components depending on the bill structure and for the two
locations used in this study to test various battery applications.

Name Units Austin Geneva Based on

Flat Tariff USD/kWh 0.073 0.22 Energy

Double Tariffa
On-peakb USD/kWh 0.183 0.24 Energy

Off-peak USD/kWh 0.056 0.152 Energy

Export price USD/kWh 0.027c 0.047b Energy

Capacity-based tariff USD/kW/month 10.14 9.39 Power

Feed-in limit %kWp−PV 50% 50% Regulation

a When the capacity-based tariff is applied, the Double tariff is reduced
by 20% in Geneva and 30% in Austin.

b In the U.S. on-peak time is only from June to September from 1 p.m.
to 7 p.m. on weekdays. In Switzerland, on-peak time is all year-round
from 7 a.m. to 10 p.m. on weekdays and from 5 p.m. to 10 p.m. on
weekends.

c We use real hourly wholesale price for ERCOT and EPEXSPOT markets.
The price shown in the table is the average wholesale price.

be the wholesale electricity price as is the case for traditional electricity generators.
This is already the case in Switzerland for installations which are on the waiting list
to be granted a one-off subsidy for the capital investment in PV (Husser, Pius 2017)
and this is expected to become a widespread policy as a consequence of falling cost of
PV technology. We use 2015 wholesale electricity prices from the Electric Reliability
Council of Texas day-ahead market (ERCOT southern load zone) and from the
European Power Exchange day-ahead market for Switzerland (EPEXSPOT). It is
important to note that, apart from the electricity price, electricity bills include other
fixed costs as well, such as taxes and grid usage.

Capacity-based tariffs, which bill the peak electricity demand (i.e., in USD/kW)
during a billing period, have been widely applied for large consumers, typically be-
longing to the secondary and tertiary economic sectors. For residential customers
capacity-based tariffs have only being marginally applied (e.g., by the Arizona Pub-
lic Services in the U.S.), although their implementation is being suggested follow-
ing the penetration of air conditioning, heat pumps and electric vehicles (AEMC
2014). As a first attempt to include them we assume low capacity-based tariffs ap-
plied to large consumers by the local utilities in the two locations (i.e., around 10
USD/kW/month), taking a more conservative approach than other studies (e.g., see
(O’Shaughnessy et al. 2018b)). In order to ensure that the tariffs are revenue neutral
in average for all the households evaluated (i.e., the consumer bill remains similar),
the per-kWh rates are reduced by 20% in Geneva and 30% in Austin whenever the
capacity-based tariff is used. Finally, following the example in Germany, a (phys-
ical) feed-in limit of 50% of the nameplate PV-system capacity for both countries
is assumed as a preventive measure to keep the power system stable during periods
of high PV production (Hesse, Martins, et al. 2017). Table 2.1 provides the input
data for every battery application depending on the tariff structure.

On-grid batteries can perform up to 15 applications depending on the discharge
duration, scale and stakeholder (IRENA 2017a). Consumer applications refer to
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Figure 2.2: Schematic representation of the four applications analyzed in this study. a. PV
self-consumption, b. Avoidance of PV curtailment, c. Demand load shifting and d. Demand peak-
shaving. This figure is explanatory and does not fully represent the model constraints or approach,
which are suitably explained in the Section 2.2.6.

those which help consumer to minimize the electricity bill, with the number of rel-
evant applications depending on the bill structure. Considering the various compo-
nents of a household electricity bill, a residential battery can perform the following
applications (see Figure 2.2):

PV self-consumption (PVSC): PV surplus electricity is stored in a battery
and used later on to meet local demand when it is higher than PV generation
(see Figure 2.2 a.). The main driver is the price difference between the electricity
imported from the grid (i.e., retail price) and the electricity exported to the grid
(i.e., FiT or wholesale price as in this study).

Avoidance of PV curtailment (PVCT): In some regions with substantial
PV penetration, a feed-in limit is set above which PV power cannot be injected to
the grid to keep grid stability (see Figure 2.2 b.). Electricity dissipation is typically
done using the PV inverter (Hesse, Martins, et al. 2017). Batteries can prevent this
PV curtailment by storing this electricity and meeting local demand later on. The
implementation of PV curtailment is determined by regulation.

Demand load-shifting (DLS): A battery is used to exploit varying tariff dif-
ferentials (see Figure 2.2 c.). The battery charges from the grid when prices are
low (off-peak periods) and it discharges when they are high (peak periods). The
existence of varying-price tariffs is a prerequisite for demand load-shifting.

Demand peak-shaving (DPS): The discharge of a battery is used to reduce
the maximum power drained from the grid (in kW) used during a specified period.
Demand-peak-shaving can be used to mitigate demand electricity peaks which can
result in distribution network upgrading as well as expensive electricity supply (see
Figure 2.2 d.). The main driver is therefore the presence of a capacity-based com-
ponent in the electricity tariff.

Back-up power is excluded from this study since we focus on distribution areas
with a high level of grid stability (for both utilities referred in this study, the number
of minutes of power failure experienced by a typical customer in a year was below
100 minutes in 2016) (Lim and Yurukoglu 2018). However, we acknowledge that in
some locations back-up power is the main motivation for battery installation (e.g.,
Hawaii).
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Table 2.2: Battery specifications for the six technologies compared in this study. SOC denotes the
state of charge.

Technology Cathode
Material

Cycles
@ DoD

Maximum
lifetime
[years]

Roundtrip
Efficiency

Energy Costs
[USD/nominal kWh]

Maximum charge/
discharge rate [kW] ∆SOC Maximum

SOC
Minimum

SOC
Cycle & calendar

aging factor per yeara Reference

Li-ion NMC 5000 @ 100% 15 91.8% 410 0.4*C 1 1 0 0.059 & 0.07 ITP Renewables 2016; ITP Renewables 2017; Tesla 2015

NCA 8000 @ 100% 20 92.5% 650 1*C 1 1 0 0.047 & 0.05 Trina BESS 2017

LFP 6000 @ 100% 20 94% 980 2*C 1 1 0 0.024 & 0.05 ITP Renewables 2016; ITP Renewables 2017; Sony 2017

LTO 15000 @ 100% 25 96.7% 1630 4*C 1 1 0 0.003 & 0.04
Leclanche 2015,
personal
communication

Lead-acid VRLA 1500 @ 50% 10 85% 330 0.1*C 0.5 1 0.5 0.236 & 0.1 Hesse, Martins, et al. 2017; Sonnenschein 2013

ALA 4500 @ 70% 15 91% 750 1*C 0.7 0.9 0.2 0.06 & 0.07 ITP Renewables 2016; ITP Renewables 2017; Ecoult 2017

a The cycle aging factor is given for a 50% depth-of-discharge. For further information please refer to Section A.1.2.

2.2.3 Battery technologies

Battery technologies widely differ in cost, aging, lifetime and round trip efficiency
(IRENA 2017a), and we compare here six representative products of different tech-
nologies within both the lithium and lead-acid families. Within lithium-ion tech-
nologies, we include the most common technologies in grid applications, namely
lithium nickel manganese cobalt oxide (NMC) and lithium iron phosphate (LFP).
Additionally, we include lithium nickel cobalt aluminum oxide (NCA) which have
relative competitive installation costs, and lithium titanium oxide (LTO) that is the
more thermally stable technology and has extremely high cycle lifetime (IRENA
2017b). As for lead-acid we include traditional valve-regulated lead-acid (VRLA)
and advanced lead-acid (ALA). The latter incorporates an ultra-capacitor into a
conventional lead-acid cell, increasing efficiency and cycle life. Advanced lead-acid
batteries are currently in the demonstration phase and hence costs are currently
higher than for conventional lead-acid batteries. The selected representative prod-
ucts are compared with the most likely values found in the market according to
Schmidt et al. (2019) (the values are presented in the Section A.1.2).

The technical and economic battery input data required by the model were col-
lected from publicly available data-sheets and personal communication with repre-
sentative manufacturers. Table 2.2 presents the key specifications for the six battery
technologies defined by the type of cathode material. Other relevant values for the
techno-economic assessment of PV-coupled battery systems, such as the inverter
and converter efficiencies, discount rate and costs are given in Table 2.3. Three
currently available battery sizes were assessed, small (3 kWh), medium (7 kWh) and
large (14 kWh). Moreover, battery aging is modeled on a daily basis for the first
year using the maximum among the daily calendar factor and the daily cyclic fac-
tor. The former is calculated as the multiplicative inverse of the calendar lifetime,
whereas the cyclic aging factors are based on Woehler curvesb for every technology.
The cyclic aging is then given by the number of cycles per day at the given depth
of discharge (depth-of-discharge), divided by the maximum number of cycles at a
given depth-of-discharge (Sauer et al. 2009). Further details and a detailed example
of the aging model utilised for this study are presented in Section A.3.

2.2.4 PV-coupled battery system

This study focuses on the combined investment in a PV-coupled battery system;
more specifically, we analyze the techno-economic implications of adding a battery

bThe Woehler curves show the number of remaining cycles of a battery as a function of depth
of discharge until the end of lifetime. This curve is given by some battery manufacturers in data
sheets.
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Table 2.3: Values selected for the technical and economic assessment of PV-coupled battery sys-
tems.

Component Units Value Reference

Charge controller efficiency % 98 Energy 2017

Inverter efficiency % 94 Energy 2017

Bi-directional inverter cost [USD/kW] 600 Ardani et al. 2017

Bi-directional inverter lifetime years 15 Fu et al. 2017

Balance of plant cost [USD/kW] 100 Pena-Bello, Burer, et al. 2017

Installation costs [USD] 2000 Baumann and Baumgartner 2017

Operation and maintenance costs [USD/kW] 0 Tesla 2015; Sonnenschein 2013

Discount rate %/a 4 Stephan et al. 2016

End of life (EoL) % 70 Käbitz et al. 2013

Inverter load ratio (ILR) p.u. 1.2 Burger and Rüther 2006

system when purchasing a new PV system that would otherwise be installed on
its own. We consider a DC-coupled topology (i.e., coupled on the direct current
side) since a lower investment is required and the overall efficiency of stored PV
electricity is higher than in AC-coupled topologies (i.e., coupled on the alternating
current side) (Ardani et al. 2017). Moreover, the prevention of PV curtailment is
possible (for further information see Section A.1.3). Since manufacturers claim no
operational costs required for residential PV and battery technologies, we set them
to zero (Tesla 2015; Sonnenschein 2013). Installation costs are considered for the
inverter and battery and are assumed to be high for both countries (i.e., USD 2000).

2.2.5 Techno-economic indicators

Three complimentary indicators are used to analyze the techno-economic perfor-
mance of batteries coupled with PV systems, i.e., the PV system is excluded in the
analysis since we are interested in the decision of adding a battery. The levelized cost
of energy storage, LCOES (USD/kWh) quantifies the cost associated with the total
electricity supplied by the battery throughout the life of the system (see Eq. 2.1).
The second indicator is the levelized value of energy storage, LVOES (USD/kWh).
It quantifies the revenue associated with the battery discharge throughout the life of
the system (see Eqs. 2.2 and 2.3). Finally, the net present value (NPV) calculated
as the sum of the discounted cash flows over the lifetime of the battery system (Eq.
2.4) is used to appraise the overall impact of the system configuration and opera-
tion for each combination (geography, technology, consumer type and combination
of applications) on the economic profitability of residential batteries.

LCOES =

∑N
i=0

CAPEX
(1+r)i

+
∑N

i=1
OPEX
(1+r)i∑N

i=1
Edis

(1+r)i

(2.1)

LV OES =

∑N
i=1

CFBatti

(1+r)i∑N
i=1

Edis

(1+r)i

(2.2)

CFBatti = CFPV−Batti − CFPVi
(2.3)
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NPV =
N∑
i=1

CFBatti

(1 + r)i
−

N∑
i=0

CAPEX

(1 + r)i
(2.4)

Where CAPEX are the capital expenditures (in USD), OPEX are the operational
expenditures (in USD), r is the discount factor, Edis is the energy discharged from
the battery and N is the lifetime of the project (i.e., the same as the inverter which
in this study is considered to be 15 years). The cash flows of the PV-coupled battery
system are represented as CFPV−Batt, CFBatt are the cash flows due to the battery
only, and CFPV are the cash flows due to the PV system.

2.2.6 Optimization of the battery schedule

The management problem of a PV-coupled battery system is solved by Mixed Integer
Linear Programming, using Pyomo, an open-source tool for modeling optimization
applications in Python (Hart et al. 2012) and solved with CPLEX. The battery
schedule is optimized for every day (i.e., 24 h optimization framework) and we as-
sume perfect day-ahead forecast of the electricity demand load, solar PV generation
and wholesale prices in order to determine the maximum economic potential re-
gardless of the forecast strategy used. Battery aging was treated as an exogenous
parameter, calculated on daily basis and was not subject to optimization (for fur-
ther information we invite the reader to see section A.3). The temporal resolution of
the input data and simulation is 15 minutes, with this value providing a reasonable
compromise between the modeling real performance and computational speed (Beck
et al. 2016). The model objective function has two components, namely the energy
and power components of the electricity bill. As the tariff structure depends on the
applications considered, a boolean parameter activates the power-based factor of the
bill when is necessary.

Every optimization was run for one year and then the results are linearly-
extrapolated to reach the battery end of life. We assume 30% of capacity depletion
as the end of life (Käbitz et al. 2013) and when the battery lifetime exceeds the
inverter lifetime, the residual value of the battery is considered using straight-line
depreciation (Moore et al. 2015). Replacement is considered when the battery can-
not match the inverter lifetime which is taken as the project lifetime, we take a
conservative approach maintaining the same cost in the future discounted to the
present, due to the high uncertainty linked to future battery costs for different bat-
tery technologies. The analysis is done with same electricity prices for all years
across battery lifetime. The model objective function, constraints, variables and
parameters are presented below. The validation of the model can be found in Sec-
tion A.5. The model and the U.S. data (the Swiss data is confidential) are publicly
available in https://github.com/alefunxo/Basopra.

Min(

Energy-based tariff︷ ︸︸ ︷
t∑

i=0

(Egridi ∗ πimporti − EPV−gridi ∗ πexporti) + (Pmax−day ∗ πcapacity ∗ PS︸ ︷︷ ︸
Power-based tariff

)) (2.5)

Where the energy-based tariff is given by Egridi which is the electricity drawn from
the grid, πimporti is the import price (i.e., retail price), EPV−gridi is the PV-electricity
exported to the grid, πexporti is the export price (i.e., the wholesale price in this
study), all these variables have the sub-index i representing every time step from
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0 to t (i.e., 15-minutes step for this study). As for the power-based tariff, it is
given by Pmax−day, which is the maximum power required from the grid for the
day, πcapacity which is the capacity-based tariff (i.e., in USD/kW/day) and PS is a
boolean variable which indicate the use of demand peak-shaving in the combination
of applications. The objective function is subject to the constraints introduced
below.

Subject to:

Battery constraints:

SOCmin ≤ SOCi ≤ SOCmax (2.6)

Echari = EPV−batti + Egrid−batti (2.7)

Edisi ≤ (SOCi−1 − SOCmin) ∗ Cnom
batt (2.8)

Where, SOCmin and SOCmax are the minimum and maximum states of charge
and SOCi is the state of charge at the instant i, below and above which the battery is
never discharged and charged. Echari the energy charged into the battery, EPV−batti

is the PV energy flow to the battery and Egrid−batti is the grid energy flow to the
battery. Edis is the electricity discharged from the battery and Cnom

batt is the nominal
capacity of the battery.

Energy balance constraints:

Egridi = Egrid−loadi + Egrid−batti + Eloss−inv−gridi (2.9)

EPVi
= EPV−loadi + EPV−batti + EPV−gridi + EPV−curti + Eloss−convi + Eloss−inv−PVi

(2.10)
Eloadi = EPV−loadi + Egrid−loadi + Edisi ∗ ηinv (2.11)

SOCi =
(SOCi−1 ∗ Cnom

batt + Echari − Edisi − Eloss−batti)

Cnom
batt

(2.12)

Edisi = Ebatt−loadi + Eloss−inv−batti (2.13)

Energy balance constraints verify that all the energy flows sum up to the total
energy provided by the grid (Egridi), the PV system (EPVi

) and to cover the house-
hold demand (Eloadi), as well as to define the state of charge and the energy dis-
charged from the battery. The energy flows are represented using the convention
Efrom−to, for instance, EPV−grid is the energy from the PV system injected into the
grid. The losses are represented using the convention Eloss−device−dueto, for instance,
Eloss−inv−PV represents the losses in the inverter due to PV electricity flows. The
efficiencies are represented using the convention ηdevice, where the device can be the
converter (ηconv), the inverter (ηinv) or the battery (ηbatt).

Efficiency losses constraints:

Eloss−convi = (EPV−loadi +EPV−batti +EPV−gridi +Eloss−inv−PVi
) ∗ (1− ηconv) (2.14)

Eloss−biinvi = Eloss−inv−PVi
+ Eloss−inv−gridi + Eloss−inv−batti (2.15)

Eloss−inv−PVi
= (EPV−loadi + EPV−gridi) ∗ (1− ηinv)/ηinv (2.16)

Eloss−inv−gridi = Egrid−batti ∗ (1− ηinv)/ηinv (2.17)

Eloss−inv−batti = Edisi ∗ (1− ηinv) (2.18)

Eloss−batti = Echari ∗ (1− ηbatt) (2.19)
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Efficiency losses constraints account for the losses of the converter (Eq. 2.14), of all
the losses in the inverter (Eq. 2.15), of the losses in the inverter due only to the
PV (Eq. 2.16), of the losses in the inverter due to grid charging (Eq. 2.17), of the
losses in the inverter due to the energy discharged from the battery (Eq. 2.18), and
the losses in the battery (Eq. 2.19). Energy flows are, for convention, considered
after the inverter, to calculate the converter losses, the inverter efficiency has to be
considered (see Figure A.3). The PV curtailed is not taken into account as losses
and it is assumed to be curtailed at the converter.

Power constraints:
Pchari ≤ Pmax−char (2.20)

Pdisi ≤ Pmax−dis (2.21)

PPVi
≤ Pconv (2.22)

PPV−gridi + PPV−loadi + Pdisi + Ploss−inv−PVi
+ Ploss−inv−batti ≤ Pinv (2.23)

Pgrid−batti + Ploss−inv−gridi ≤ Pinv (2.24)

Power variables are designated using P and follow the same conventions previ-
ously presented. The battery maximum charging and discharging power are rep-
resented by Pmax−char and Pmax−dis. Pconv and Pinv represent the converter and
inverter rating.

Application selection:

PPV−gridi ≤ Plimit ∀ i if PV CT = 1 (2.25)

Egrid−batti = 0 ∀ i if DLS = 0 (2.26)

Pgridi ≤ Pmax−day ∀ i if DPS = 1 (2.27)

Since the model allows to select from a pool of applications (i.e., PV self-
consumption, avoidance of PV curtailment, demand load shifting and demand peak-
shaving), when one of the applications is selected the corresponding constraint is
applied (except for PVSC which is applied by default and includes all the constraints
mentioned above). Thus, when PVCT is selected, a constraint to the power feed-
in PPV−gridi is applied (Eq. 2.25), when demand load shifting is not applied (i.e.,
DLS=0), the battery cannot charge from the grid. Finally, when demand peak-
shaving is applied (i.e., DPS=1), a constraint on the maximum power drawn from
the grid Pgridi is applied (Eq. 2.27) and limited to the minimum possible power
(Pmax−day), which is a result from the optimization.

2.3 Results

Since we aim to determine the best-suited battery technology for various combi-
nation of applications and analyze the impact of geography and size, we present
first the results for a typical battery size of 7 kWh depending on the battery tech-
nology, location and for different combinations of applications and tariff structures
(see Table 2.5). PV self-consumption is common across all combinations since this
application is the baseline for residential batteries. Depending on the combination
of applications, different tariff structures are needed, thus combinations of tariffs are
done (e.g., if demand peak-shaving is combined with PV self-consumption, then a
combination of flat tariff with capacity-based tariff is made - combination 2 in Table
2.5). Afterward, we evaluate the impact of the battery size. All results are based
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Table 2.4: List of model parameters and variables.

Modeling parameters Name Units Modeling variables Name Units

Converter efficiency ηconv % PV generation fed to the load EPV−load kWh

Inverter efficiency ηinv % PV generation exported to the grid EPV−grid kWh

Inverter rating Pinv kW PV generation injected to the battery EPV−batt kWh

Battery Efficiency ηbatt % PV generation curtailed EPV−curt kWh

Maximum discharge power Pmax−dis kW Energy lost due to converter efficiency Eloss−conv kWh

Maximum charge power Pmax−char kW Total energy lost due to bi-directional
inverter efficiency Eloss−binv kWh

Battery nominal capacity Cnom
batt kWh PV energy lost due to bi-directional

inverter efficiency Eloss−PV inv kWh

Battery lifetime N years Grid energy lost due to bi-directional
inverter efficiency Eloss−gridinv kWh

Battery maximum state of charge SOCmax % Battery energy lost due to bi-directional
inverter efficiency Eloss−battinv kWh

Battery minimum state of charge SOCmin % Energy lost due to battery efficiency Eloss−batt kWh

Retail prices πimport USD/kWh Energy drained from the battery Edis kWh

Export prices πexport USD/kWh Energy injected to the battery Echar kWh

Capacity-based tariff πcapacity USD/kW Energy delivered from the battery to the load Ebatt−load kWh

Feed-in limit Plimit % Energy imported from the grid to the battery Egrid−batt kWh

Combination of applications [PVCT, PVSC, DLS, DPS] Boolean array Energy imported from the grid to the load Egrid−load kWh

Load demand Eload kWh Energy drained from the grid Egrid kWh

PV generation EPV kWh Maximum power drained from the grid Pmax−day kW

Optimization time framework t minutes Power related to any energy parameter Px = Ex/∆t kW

Temporal resolution ∆t fraction of hour State of charge SOCi %

on a representative (median of the distribution) fixed PV size in each geographical
region (4.8 kWp for Geneva and 5 kWp for Austin). Results for other PV sizes and
alternative combinations of applications are given in Sections A.6 and A.7.

Table 2.5: Various combination of applications and the respective electricity tariff structure com-
pared in this study. If the application indicator is ON, it means that the referred application is
included in the combination, same is valid for the electricity tariff structure indicators.

Combination name
Applications Electricity tariff structure

PV Self-
consumption

(PVSC)

Avoidance of
PV curtailment

(PVCT)

demand load
shifting
(DLS)

Demand
peak-shaving

(DPS)

Flat tariff
(FT)

Double
tariff
(DT)

Capacity-
based
tariff

Feed-in
limit

Combination 1
(Baseline scenario) ON OFF OFF OFF ON OFF OFF OFF

Combination 2 ON OFF OFF ON ON OFF ON OFF

Combination 3 ON OFF ON OFF OFF ON OFF OFF

Combination 4 ON ON OFF OFF ON OFF OFF ON

Combination 5 ON ON ON ON OFF ON ON ON

2.3.1 Levelized cost

Figure 2.3 displays the levelized cost of energy storage for six battery technologies
and five combinations of applications in Geneva and Austin. Three major observa-
tions can be made. First, NCA and NMC-based batteries offer lower levelized cost
for all combinations, the former due to an elevated lifespan and a high number of
cycles, while for the latter the reason is a combination of low cost (technology with
the lowest cost after VRLA) and a reasonable compromise between number of cy-
cles and lifespan. Secondly, batteries performing in Austin offer lower cost per kWh
since they are heavily cycled, (i.e., the average battery in Austin supplies 62% more
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Figure 2.3: Levelized cost of energy storage of a 7 kWh battery for all battery technologies de-
pending on the type of combination of applications for Austin, U.S. (top) and Geneva, Switzerland
(bottom). The size of the PV system correspond to the median installed capacity across both
locations (i.e., 4.8 for Geneva and 5 kWp for Austin). The black point in the graph corresponds
to the optimization results for the most likely values for every technology in terms of battery pack
cost, calendric and cycle lifetime, depth of discharge and round-trip efficiency according to Schmidt
et al. (2019) (except for advanced lead-acid, for which there is no public data available beyond the
proposed manufacturer). Note that for the LCOES the lower is the bar the better are the results.

electricity throughout its lifetime than in Geneva). As for Geneva, the LCOES also
clearly decreases as household electricity consumption increases (demand data for
both countries is analyzed in Section A.2.1). These results have important implica-
tions for the energy transition since residential batteries cycle more for consumers
with large electricity consumption and consumers with low consumption could group
themselves under communities battery schemes in order to reach lower costs.

Finally, in terms of combination of applications, demand load-shifting increases
the use of the battery, reducing the levelized cost, particularly in Geneva where
battery use increases on average by 23% when demand load-shifting is included.
This is mainly due to the double tariff structure which is applied all year-round
and low PV surplus in winter, in contrast to Austin where there is a relatively
high PV surplus in winter and the double tariff is applied only during summertime.
Accordingly, demand load-shifting reduces the LCOES in average by 14% in Geneva
and by 9% in Austin.

Additionally, Figure 2.3 shows the optimization results for the most likely values
for every technology in terms of battery pack cost, calendric and cycle lifetime, depth
of discharge and round-trip efficiency according to Schmidt et al. (2019) (except for
ALA, for which there is no public data available beyond the proposed manufacturer,
for further information see Section A.1.2). These values are very close to the chosen
manufacturer. The greater difference corresponds to LTO chemistry, mainly due to
the great cost’s deviation (i.e., 1650 USD/kWh in this study vs. 1060 USD/kWh in
Schmidt et al. (2019)).

2.3.2 Levelized value

Figure 2.4 displays the levelized value for all battery technologies depending on the
combination of applications. The differences among technologies regarding added
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Figure 2.4: Levelized value of energy storage of a 7 kWh battery for all battery technologies de-
pending on the type of combination of applications for Austin, U.S. (top) and Geneva, Switzerland
(bottom). The size of the PV system correspond to the median installed capacity across both
locations (i.e., 4.8 for Geneva and 5 kWp for Austin). The black point in the graph corresponds
to the optimization results for the most likely values for every technology in terms of battery pack
cost, calendric and cycle lifetime, depth of discharge and round-trip efficiency according to Schmidt
et al. (2019) (except for advanced lead-acid, for which there is no public data available beyond the
proposed manufacturer). Note that for the LVOES the higher is the bar the better are the results.

value per-kWh for combinations that do not include demand peak-shaving is rel-
atively small (i.e., less than 9% for both countries). Conversely, ALA-based and
VRLA-based batteries add more and less value per-kWh respectively than other
battery chemistries when demand peak-shaving is included (on average 25% and
15%, respectively) because in both cases, less electricity is supplied by the battery
due to a shallower depth-of-discharge. However, in the case of ALA-based batteries,
the battery is used mostly for demand-peak-shaving since it is the application that
adds most value and this technology offers significant discharge rating (see Section
2.3.4). On the other hand, the cash flow is significantly lower for VRLA-based bat-
teries due to low depth-of-discharge (50%), efficiency (85%) and crucially the limited
power characteristics (i.e., maximum charge and discharge power of 0.1*C) leading
to lower levelized value. In terms of geography, more value per-kWh is added in
Geneva (i.e., in average 0.21 USD/kWh), compared to Austin. (i.e., in average 0.09
USD/kWh), due to higher electricity prices. Furthermore, when excluding demand
peak-shaving, batteries in households with higher demand create slightly more value
per-kWh due to a higher self-consumption. On the other hand, when demand peak-
shaving is included, batteries in Geneva households with lower demand create more
value per-kWh, due to a higher relative influence of the capacity-based tariff, i.e.,
the battery is primarily used for demand peak-shaving.

The addition of applications such as demand load shifting (combination 3) or
avoidance of PV curtailment (combination 4) to the baseline scenario (PV self-
consumption referred to as combination 1) adds only marginal value, however, when
the four applications are combined, the results are significantly better than the
combination of PV self-consumption and demand peak-shaving (i.e., value per-kWh
is on average 27% higher). This improvement is due to the synergies between demand
load shifting and demand peak-shaving (see Section A.6). Demand peak-shaving is
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the application adding most value per-kWh (i.e., 0.11 and 0.15 USD/kWh in the
U.S. and Switzerland, respectively), owing to the importance of the capacity-based
tariff in the final bill even if the bill is revenue neutral when it is added. The
LVOES obtained When the optimization is run using the most likely values for
every technology remains very similar (see the black points in Figure 2.4).

2.3.3 NPV

Figure 2.5 displays the net present value for all battery technologies depending on the
type of combination of applications for Geneva and Austin. It can be seen that due to
high costs (as well as reduced cycle life, depth-of-discharge and lifespan in the case of
VRLA) there is no positive economic case. However, we can see that the profitability
is markedly improved for most technologies by combining applications. Since the
battery operation adds more value in Geneva than in Austin, the NPV is higher as
a result. In the U.S., similar NPV across the consumption brackets is present, with
the clear exception of medium demand households using LFP-based batteries. This
exception is due to a replacement battery for consumers 3 months before the project
lifetime in this consumption bracket, which includes a supplementary investment to
replace the battery and therefore further reduces the net present value (the same
applies to high demand households for full combination of applications in Austin). In
terms of applications, the combination of PV self-consumption with demand peak-
shaving increases the NPV on average by 15%, which can be improved 6% more
when demand load-shifting is included. The NPV obtained When the optimization
is run using the most likely values for every technology remains very similar (see the
black points in Figure 2.4). The greater difference corresponds to LTO chemistry,
mainly due to the great cost’s deviation (i.e., 1650 USD/kWh in this study vs. 1060
USD/kWh in Schmidt et al. (2019)).

2.3.4 Impact of battery size

Figure 2.6 displays the average levelized cost, levelized value and net present value
across the three groups of consumers (see Material and methods Section and Sec-
tion A.1.1), for small (i.e., 3 kWh), medium (i.e., 7 kWh) and large (i.e., 14 kWh)
batteries performing simultaneously all consumer applications depending on the bat-
tery technology. Since batteries are heavily cycled in Austin, lower levelized cost is
reached. The per-kWh cost difference between the two countries increases when the
battery size increases. In Geneva, a large battery incurs higher per-kWh cost due
to relatively low number of cycles and higher capital expenditure. In contrast, in
Austin, large batteries reduce further the levelized cost.

VRLA and NMC-based batteries increase their added value when the battery
size increases. This is due to their lower charge and discharge rates (0.1*C and
0.4*C, respectively) which means that they need a large energy capacity to provide
significant power, while added value decreases with battery size for other chemistries
with larger charge and discharge rates. For small size batteries, NCA-based batteries
have better results in both countries, whereas VRLA batteries reach worst results for
the full combination of applications. NCA-based batteries are preferred in Austin
and very competitive with NMC-based batteries in Geneva for medium-sized batter-
ies, while for large-sized batteries NMC chemistry get the better net present value.
Overall, the net present value results of Figure 2.6 indicate that batteries in Geneva
are on average 13% (10% for small sizes, 16% for medium sizes and 12% for large
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Figure 2.5: Net present value of a 7 kWh battery for all battery technologies depending on the
type of combination of applications for Austin, U.S. (top) and Geneva, Switzerland (bottom). The
size of the PV system correspond to the median installed capacity across both locations (i.e., 4.8
for Geneva and 5 kWp for Austin). The black point in the graph corresponds to the optimization
results for the most likely values for every technology in terms of battery pack cost, calendric
and cycle lifetime, depth of discharge and round-trip efficiency according to Schmidt et al. (2019)
(except for advanced lead-acid, for which there is no public data available beyond the proposed
manufacturer). Note that the y-axis presents negative NPV for both countries, thus the lower is
the bar the better are the results.

sizes) more attractive than in Austin, due to higher value added as a result of higher
electricity electricity prices.

2.4 Discussion

Based on our experiments for Geneva and Austin, we find that NCA and NMC
are the best-suited battery technologies for various combinations of applications
(i.e., PV self-consumption, avoidance of PV curtailment, demand load shifting and
demand peak-shaving). When all the applications are combined NCA is the best-
suited battery technology in Austin, which represent a place with high irradiance, in
general high electricity consumption, low electricity prices and where the use of air
conditioning is extended. On the other hand, NMC-based batteries reach in average
a net present value 7% higher than NCA-based batteries (i.e., NPV is very similar)
in Geneva, where electricity consumption and irradiance are lower, electricity prices
higher and where there is no air conditioning in summer. The household demand
marginally affects the profitability of PV-coupled battery systems and we find the
NPV difference among the three consumption brackets for all technologies and com-
binations of applications is less than 10% (2% in the U.S. and 8% in Switzerland,
on average). On the other hand, geography impacts the battery’s economic viability
and the net present value of battery systems in Geneva are on average 16% more
attractive than in Austin, mainly due to higher electricity prices.

Despite significantly increasing the NPV, batteries simultaneously performing
several applications are not yet profitable under existing market conditions. How-
ever, further (expected) reductions in battery costs, together with combining battery
applications may hold the key towards household battery profitability. In particular,
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Figure 2.6: Comparison of the average LCOES (left), LVOES (middle) and NPV (right) for various
battery technologies performing simultaneously all consumer applications in Austin, U.S. (red) and
Geneva, Switzerland (blue) depending on the type of annual electricity demand, namely small (top),
medium (middle) and large (bottom).

adding demand peak-shaving to PV self-consumption brings clear benefits compared
to the baseline scenario (PV self-consumption only), especially for NCA and NMC-
based batteries (up to 66% higher NPV). It is expected that demand peak-shaving
would also introduce other benefits for the wider energy system, since electricity
peaks are typically met by more costly or carbon-intense generators across many
countries (this is not however the case of Switzerland where hydropower is used for
this purpose). Moreover, distribution system operators could also defer or even save
investment in infrastructure. Thus, demand peak-shaving is an application which
provides synergies for the consumer, utility companies and distribution system op-
erators. Demand load-shifting increases battery use but when demand peak-shaving
is not included in the combination, it barely increases the net present value, even
in Switzerland where double tariff is applied all year-round. Being a regulation-
based application, the avoidance of PV curtailment is more interesting from the
grid perspective than from the consumer perspective.

In the residential electricity market, small battery sizes offer the best economic
case. Despite a higher annual electricity demand in Texas compared to Geneva,
larger battery capacities are not economically justified and a small size battery (3
kWh in this study) obtains the best results in both locations. However, with (in-
stalled) cost reductions of 55%, medium size batteries will get more economically
attractive than small size batteries in both countries. From a market perspective,
further cost reduction of lithium-ion technologies may result in more market compe-
tition for NMC-based batteries which have the strongest position in the market at
the moment. For instance, NCA-based batteries are more suitable than NMC-based
ones when combining applications mainly due to higher charge and discharge rates,
cycles and extended lifespan, even if the price is higher, thus a cost reduction of
NCA-based batteries can compromise the leader position of NMC-based batteries
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Figure 2.7: Break-even point of a 7 kWh battery for all battery technologies depending on the
type of combination of applications, PV self-consumption only (blue), the full combination of
applications (green) and for comparison, the installed cost per kWh used in this study (red), for
the U.S. (right) and Switzerland (left). The size the PV system correspond to the median installed
capacity across both locations.

in the residential market.

In order to reach economic profitability, battery systems require further cost
reductions regardless of battery technology. Installation costs (including permitting,
inspection, interconnection, overhead, profit and installation labor) in Geneva and
Austin are assumed to be $ 2000 in this study (Baumann and Baumgartner 2017;
Ardani et al. 2017) but may reduce with increasing installation experience (learning
by doing) and market competition. Figure 2.7 displays the break-even point of a 7
kWh battery performing only PV self-consumption as well as all four applications
depending on the battery technology and location. The current installation cost
per kWh considering battery, inverter and installation are also given for reference
purposes. When all applications are combined, NCA-based batteries are closest to
profitability. They require only 35% reduction in installed costs to be profitable in
Switzerland and 40% in the U.S. NMC-based batteries in Switzerland require a 30%
reduction on installed costs, however, in the U.S. this increases up to 55%. Due to
higher electricity prices, profitability may be reached first in Switzerland even if PV
self-consumption is the only application, however, on average a reduction of 83%
in the cost per-kWh-installed, compared to today’s cost, is required. On the other
hand, when all applications are combined, a reduction of 52% is required. In the
case of the U.S., further reductions are needed (93% if only PV self-consumption is
addressed and 60% if all applications are combined). According to IRENA lithium-
ion batteries’, installation costs will be reduced by 60% on current levels by 2030
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(IRENA 2017a), thus residential batteries may reach profitability (without subsidies)
in both countries in the next decade if all applications are combined. This break-even
period may be however shorter if electricity prices increase.

NCA-based batteries already have the appropriate characteristics to combine
applications and expand their deployment. LFP-based batteries have suitable tech-
nical characteristics but a high number of cycles must be ensured. On the other
hand, LTO-based batteries can be considered as over-designed for household needs
which leads to higher cost, and if they are over-sized, entail a higher cost than other
battery types. NMC-based batteries are expected to lead the cost decline due to
their leader position in the market, however, technical specifications, mainly calen-
dar life, will need further development if manufacturers want to keep their dominant
position in a near future with residential batteries performing several applications
simultaneously. Advanced lead-acid batteries have competitive characteristics and
performance, however, shallow depth-of-discharge and high costs, penalize them
when compared with lithium-ion technologies. Therefore, only aggressive cost re-
ductions and significant technical improvements could lead to increase their market
share. The environmental dimension can be an important asset for this technology
since its recycling process has been already established and other criteria such as
their material criticality is far lower compared to lithium-ion batteries (Moss et al.
2013). Finally, already-mature traditional lead-acid batteries, which have limited
margin for improvement, are clearly less attractive for exploiting additional appli-
cations which appears to be a strategy that cannot be ignored.

2.5 Conclusions

The aim of this study was to determine the best-suited battery technology for various
combination of applications (i.e., PV self-consumption, avoidance of PV curtailment,
demand load shifting and demand peak-shaving) for two locations with different
irradiance profiles, electricity prices and average demand consumption (i.e., Austin,
U.S. and Geneva, Switzerland) and taking into account three battery sizes (i.e., 3, 7
and 14 kWh). We found that NCA and NMC are the best-suited batteries in both
locations and for all the combinations of applications, being NCA slightly better in
the U.S. example than NMC-based batteries.

Moreover, emerging from the present study, we contribute with four factors that
influence the economic profitability of a PV-coupled battery system: (a) The low
influence of annual household demand, which in this study varies from 4.9% in
Austin to 2.2% in Geneva; (b) the rather high impact of location (i.e., 18% higher
NPV in Geneva than in Austin), whose uncertainty is rather low since the electricity
bill structure and environmental factors are widely known; (c) the medium impact
of battery technology which depends not only on the technical characteristics, which
are already good for residential applications, but as well on battery costs which are
still high for the same niche and whose uncertainty is rather high; (d) the impact
of the combination of applications, which can be marked, especially with demand
peak-shaving, but there is rather high uncertainty since the number of applications
depends on local regulation by utility companies and policy makers.

Although our study proposes a robust framework to quantify the attractiveness
of batteries and the proposed models are rich in technology details, it is not without
limitations, which in turn call for future research. Other forecast strategies different
to perfect forecast could be introduced in the optimization framework, with this
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reducing the revenue. In addition, the design of future electricity tariffs including
time-of-use and capacity components is still a topic under investigation. In particu-
lar, capacity-based tariffs are expected to become more widespread since they offer
great cost reflectivity as well as revenue variability for network businesses in the
face of current and expected disruptions and conduct to flexibility (ACCC 2018).
Additionally, while the scope of the research presented in this paper is limited to
electricity demand in dwellings, future research should also incorporate heat and
transport demand and the trade-offs of different low carbon technologies such as
residential batteries, heat pumps and electric vehicles. Finally, the proposed opti-
mization framework could be extended to more geographies.

The open-source model used in this study is publicly available in https://
github.com/alefunxo/Basopra, and could be used for different PV generation pro-
files and demand profiles, as well as different tariff structures and batteries with
user-defined characteristics.
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Chapter 3

Household level - Electrochemical
storage Part B

Energy storage is a key solution to supply renewable electricity on demand and in
particular batteries are becoming attractive for consumers who install PV panels.
In order to minimize their electricity bill and keep the grid stable, batteries can
combine applications. The daily match between PV supply and the electricity load
profile is often considered as a determinant for the attractiveness of residential PV-
coupled battery systems, however, the previous literature has so far mainly focused
on the annual energy balance. In this paper, we analyze the techno-economic impact
of adding a battery system to a new PV system that would otherwise be installed
on its own, for different residential electricity load profiles in Geneva (Switzerland)
and Austin (U.S.) using lithium-ion batteries performing various consumer appli-
cations, namely PV self-consumption, demand load-shifting, avoidance of PV cur-
tailment, and demand peak-shaving, individually and jointly. We employ clustering
of the household’s load profile (with 15-minute resolution) for households with low,
medium, and high annual electricity consumption in the two locations using a 1:1:1
sizing ratio. Our results show that with this simple sizing rule-of-thumb, the shape
of the load profile has a small impact on the net present value of batteries. Overall,
our analysis suggests that the effect of the load profile is small and differs across lo-
cations, whereas the combination of applications significantly increases profitability
while marginally decreasing the share of self-consumption. Moreover, without the
combination of applications, batteries are far from being economically viable.

3.1 Introduction

Rooftop photovoltaic (PV) systems have played a critical role in deploying solar
energy owing to dramatic PV panel cost reductions (60% since 2010) driven by
market-stimulating policies such as feed-in tariffs (FiT), as well as ease of building
integration and low maintenance (IRENA 2017a; Kavlak, McNerney, and Trancik
2018). The progressive reduction of FiTs and the increase in electricity prices have
called for maximizing PV self-consumption, i.e., maximizing self-consumption of
auto-produced PV electricity. As a result, batteries are increasingly being coupled
to residential PV systems. The cost of batteries has also decreased by 65% since
2010 (IRENA 2017a), with dedicated incentives in several locations (CPUC 2017).

Factors such as system size, location, electricity tariff structure, applications per-
formed by the battery (also called services), PV generation and battery degradation
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impact the profitability of PV-coupled batteries. Most of these factors have already
been addressed in the literature (Weniger, Tjaden, and Quaschning 2014; Luthander,
Widén, Munkhammar, et al. 2016; Pena-Bello, Burer, et al. 2017; Truong et al. 2016;
Hesse, Martins, et al. 2017; Magnor and Sauer 2016). Overall, there is still a large
variation in the value which a battery can offer to consumers, across regions (Bar-
bour and González 2018). This variation can be partly explained by the household’s
electricity load profile (Schopfer, Tiefenbeck, and Staake 2018), but this factor has
received rather limited attention so far, in particular for batteries combining appli-
cations. Only for PV self-consumption, several authors have studied the impact of
the household’s load profiles. For example, Linssen et al. concluded that the pro-
file has a significant impact on the optimal PV-coupled battery configuration after
comparing three synthetic load profiles, different in terms of relation between peak
and base load and load fluctuations, that were scaled to a single annual electricity
consumption (Linssen, Stenzel, and Fleer 2017). Schopfer et al. also highlighted
that load profile is a key predictor of self-sufficiency and PV self-consumption ratios
according to the different machine learning models, and therefore key for taking
PV-coupled battery investment decisions (Schopfer, Tiefenbeck, and Staake 2018).

In the same way that the balance between PV generation and electricity demand
influences self-consumption, it should influence the value of a PV-coupled battery
performing other applications beyond PV self-consumption. However, earlier re-
search on batteries performing multiple applications at the household level has not
explored this yet. The review of O’Shaughnessy et al. found that apart from the to-
tal amount of electricity demand, the household’s electricity load profiles determine
the susceptibility to incentives for demand load shifting (using control of deferrable
loads) but this review addresses exclusively studies with PV electricity as the sole
input to the battery (O’Shaughnessy et al. 2018a). Among the literature focusing
on the combination of applications, Ratnam et al. assessed the benefit of demand
load-shifting for several households in Australia (Ratnam, Weller, and Kellett 2015).
They found that in most of the cases, but not in all, batteries performing demand
load-shifting help to reduce the electricity bill.

Against this background, the present paper aims to contribute to an improved un-
derstanding of the impact of electricity load profile on PV-coupled batteries combin-
ing applications. To do so, we optimize the schedule of battery operation depending
on considered applications, thereby including PV self-consumption, demand load-
shifting, demand peak-shaving and avoidance of PV curtailment, depending on the
tariff structure. We focus on the impact of the load profile, annual consumption and
combination of applications in two regions with very different climates, load profiles
and electricity consumption, namely, Geneva (Switzerland) and Austin (US). We
use a sizing ratio of 1:1:1 (e.g., an annual electricity consumption of 5 MWh leads
to a nominal PV capacity of 5 kWp and a battery capacity of 5 kWh) which is
commonly found in the literature (e.g., Litjens, Worrell, and van Sark (2018b) and
Weniger, Tjaden, and Quaschning (2014)).

The paper is structured as follows. The materials and methods are presented
in Section 3.2 which describes the input data, the system configuration, electricity
tariff design as well as the optimization setup and the techno-economic indicators.
Section 3.3 gives the clustering and optimization results as a function of the combi-
nation of applications, clusters and location. Section 3.4 presents a discussion of the
implications of our results and finally, Section 3.5 presents the main conclusions.
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3.2 Materials and methods

3.2.1 Demand data

Two datasets of measured electricity demand from 305 dwellings in Austin (U.S.,
from the Pecan Street project) and 636 in Geneva (Switzerland) are used in this
study, both with a temporal resolution of 15-minute throughout the year 2015. This
temporal resolution provides a reasonable compromise between modeling technol-
ogy performance and computational speed (Beck et al. 2016). Figure 3.1 presents a
normalized histogram (it shows the proportion of cases that fall into each of several
categories, with the sum of the heights equaling 1) of the electricity demand data
from Austin and Geneva. Households in Austin have a median electricity consump-
tion of 10.4 MWh p.a. (within a range of 2.9-23.9 MWh p.a.), while households in
Geneva have a median electricity consumption of 2.5 MWh p.a. (within a range of
0.2-7.4 MWh p.a. In terms of average yearly electricity consumption the American
households use 4.2 times more electricity than Swiss households from the datasets.
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Figure 3.1: Normalized distributions of annual household electricity consumption for our data from
(a) Austin, U.S. and (b) Geneva, Switzerland. Note that the scale of the horizontal axis differs for
Geneva and Austin

3.2.2 Load profile clustering

To generate representative consumer groups, we employ a clustering method. A
range of clustering methods has been employed to form consumer segments in the
previous literature (for a review of the clustering techniques applied to electricity
load data see Chicco (2012)). The k-means clustering method is one of the most
widely used due to its versatility and applicability to large datasets (Kwac, Flora,
and Rajagopal 2014; Xu, Barbour, and González 2017; Benıétez et al. 2014; Al-
Wakeel, J. Wu, and N. Jenkins 2017). Furthermore, it is important to normalize
the smart meter data to identify time series with equivalent consumption patterns,
instead of identical annual consumption (Tureczek, Nielsen, and Madsen 2018; Yil-
maz, Chambers, and Patel 2019). While this approach is successful for forming
groups of load profiles with similar shapes independent of consumption magnitudes,
in this work we also need to study the effect of differing levels of overall consump-
tion. Additionally, averaging the data suppresses the diversity of the electricity use
patterns within the individual household. Therefore, it is important to find a robust
analysis to identify clusters that explain the daily load profiles. Figure 3.2 shows
the methodology used in this study to cluster and characterise the households in
Geneva and Austin separately depending on the load patterns they exhibit, divided
into four steps: segmentation by consumption level, normalization, clustering daily
profiles and household classification.
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Figure 3.2: Methodological approach to electricity load profile characterisation through k-means
clustering: Steps 1, 2, 3 and 4 are described.

Table 3.1: Consumption brackets per location

Consumption bracket Austin [kWh p.a.] Geneva [kWh p.a.]

Low [2900,9052] [150, 2025]

Medium [9052, 12365] [2025,3170]

High [12365,24000] [3170,7400]

Step 1 (segmentation by consumption levels): We first compare the dis-
tributions of annual consumption across both locations and form groups with sim-
ilar consumption levels. Figure 3.1 shows that there are several non-representative
consumers with abnormally high annual consumption which are excluded from the
analysis. In particular, an annual consumption above 7500 kWh and 25000 kWh is
considered as an outlier in Switzerland and Texas respectively. We then split the
remaining consumers into three separate groups - a low annual consumption group
(0th-33rd percentile), a medium annual consumption group (34th-66th percentile)
and a high annual consumption group in both locations (67th-100th percentile). Ta-
ble 3.1 shows the boundaries of the categorization of yearly consumption levels for
both Geneva and Austin.

Step 2 (normalization): We normalize the electricity load profiles in each
sub-group (low, medium and high) in order to cluster the load profiles of the daily
curves as described by Eq. 3.1.

ec(t) =
lc(t)∑24
t=1 lc(t)

(3.1)

ec(t) is the normalized load at time t and lc(t) is the load of consumer c at time
t before normalization.

Step 3 (clustering of daily profiles): We then cluster each daily profile
within each sub-category of consumption levels (i.e., low, medium, high) as shown
in Figure 3.2, where PHNDM represents the daily profile of the household N at the
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day M. For example, if there are 50 households within the low consumption bracket
in Geneva, the total number of profiles used for clustering corresponds to 18250
(equivalent to 50 households x 365 days).

For clustering the normalized load profiles, we use the feature-based clustering,
since it improves cluster quality relative to using raw profile data (Yilmaz, Chambers,
and Patel 2019; Räsänen and Kolehmainen 2009). The principle of this approach
is to extract few features to explain the shape of the load profile, thereby reducing
the dimensionality of the time series (originally 15-minute data points) to avoid
“curse of dimensionality”, which refers to the fact that many algorithms become
intractable when the input is high-dimensional (Bellman 2015). Here, we focus
on three key periods to analyze PV-coupled battery systems. First, we divide the
daily profiles into three time periods based on the value of the mean load profile
throughout the day: night-time (12 am-10 am), daytime (10 am-6 pm) and evening
time (6 pm-12 am). It is important to note that cluster outcomes do not change
if the periods are shifted by ±1 h based on the work of Yilmaz, Chambers, and
Patel (2019) and Haben, Singleton, and Grindrod (2015). The average values of the
normalized profiles are calculated for each period, and they constitute the first three
features to be included in the cluster analysis. The fourth feature corresponds to the
mean standard deviation over the three periods, expressing variability in electricity
demand throughout the day. By using the k-means clustering method, we randomly
assign an initial set of centroids, and then move them in iterations to minimize the
objective function given in Eq. 3.2, which allows to identify the clusters. Here, j
indexes the clusters from 1 to K and i indexes the load profiles assigned to the
cluster j, where nj is the total number of shapes in the cluster j. ei,j is the i -th load
profile assigned to the cluster j and ζj is the centroid of the cluster j. Therefore, the
Euclidean distance metric between centroids and the normalized load profiles (J ) is
minimized. Finally, f is the feature index.

J =
K∑
j=1

nj∑
i=1

√√√√f=4∑
f=1

(ei,j(f)− ζj(f))2 (3.2)

The silhouette score (s) presented by Rousseeuw (1987), defined in Eq. 3.3, is
used to determine the optimal value for the number of clusters (k), where a is the
average intra-cluster distance, and b is the average shortest distance to another clus-
ter. Consequently, the silhouette score has a range of [-1, 1], where a score close to
+1 indicates a better performance of the clustering algorithm. The algorithm that
produces clusters with low intra-cluster distances (i.e., high intra-cluster similarity)
and high inter-cluster distances (i.e., low inter-cluster similarity) has a high silhou-
ette score. The k with the highest silhouette score corresponds to the optimum
number of clusters for each consumption group.

s =
b− a

max(a, b)
(3.3)

Step 4 (household classification): We then list the cluster IDs that each
household exhibit on a particular day for the whole year. As households use elec-
tricity differently on a daily basis, there are multiple cluster IDs over a period.
We, therefore, used the statistical mode of the cluster outcome to determine the
most common cluster ID for each household throughout the year, and classify that
household with the corresponding ID.
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3.2.3 PV generation

Outdoor temperature and horizontal solar irradiance monitored in both locations for
the year 2017 are used to model PV generation. Hourly solar irradiation and tem-
perature data from Austin, Texas was obtained from the National Solar Radiation
Database provided by NREL (https://nsrdb.nrel.gov/, accessed the 20.07.2020),
as for Geneva, the data was collected by the UNIGE (http://www.cuepe.ch/html/
meteo/archives-numeriques.html, accessed the 20.07.2020). We simulate PV gen-
eration using a standard one-diode model (Parra, Walker, and Gillott 2014) and
PV technology with a nominal efficiency of 18.6% (HIT photovoltaic module HIT-
N2XXSE10 datasheet n.d.), representative of the current state. The model also
includes a maximum power point tracker system, as is the case of most PV systems
in order to maximize the output regardless of the environmental conditions (tem-
perature and solar irradiance). The installed capacity of the PV system is modeled
based on the annual demand of each household with 1 kWp installed per 1 MWh of
annual demand (i.e., 1000 full-load hours) (Litjens, Worrell, and van Sark 2018b).

3.2.4 PV-coupled battery system

We analyze the techno-economic implications of adding a battery system to a new
PV system that would otherwise be installed on its own (we hereby disregard all
costs related to the PV system). We assume a DC-coupled configuration illustrated
in Figure 3.3, including an integrated inverter with a buck-boost charge controller
(i.e., a step-up and step-down converter combined), a maximum power point tracking
system and a bi-directional inverter (required to charge a battery from the main
grid). An inverter loading ratio (i.e., the ratio between the inverter rating and the
PV rating, referred to as ILR) of 1.2 is considered for this study (Burger and Rüther
2006). We simulate Lithium Nickel Manganese Cobalt Oxide (NMC) batteries since
this technology is currently dominating the residential market. The battery capacity
is coupled to the PV system in a one-to-one ratio, i.e., 1 kWh battery capacity per 1
kWp of PV installed. Following a conservative approach, we consider relatively high
installation costs for the battery and inverter, equal to 2000 USD in both countries,
regardless their nominal capacity (Baumann and Baumgartner 2017). We assume
that NMC batteries can use 100% of depth of discharge (DoD) (ITP Renewables
2016) and can be charged or discharged in 2.5 h (i.e., a C-rate of 0.4*C, where
C is the nominal capacity of the battery). Moreover, we consider the battery to
reach the end-of-life (EoL) when 30% of the nominal capacity is depleted (Pena-
Bello, Barbour, Gonzalez, Patel, et al. 2019). The techno-economic values for the
PV-coupled battery system used in this study are displayed in Table 3.2.

3.2.5 Electricity tariff design and battery applications

In this study, we consider all battery applications which help consumers to reduce
their bill, namely PV self-consumption, avoidance of PV curtailment, demand load-
shifting and demand peak-shaving, except for back-up power. Back-up power is
excluded since we focus on distribution areas with a high level of grid stability.
These consumer applications can be described as follows (see also Parra and Patel
(2019)): PV self-consumption, the predominant application for residential batteries,
uses the battery to store PV surplus electricity for later consumption. Avoidance of
PV-curtailment applies where grid regulators seek to maintain grid stability through
feed-in limitations, prohibiting injection of PV power into the grid above a threshold
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Figure 3.3: DC-coupled PV-battery system with integrated inverter used in this study. Arrows
indicate the direction of possible energy flows between the individual components.

Table 3.2: Values selected for the technical and economic assessment of PV-coupled battery sys-
tems. The cycle aging factor is given for a 100% depth-of-discharge.

Component Units Value Reference

Charge controller efficiency % 98 Energy 2017

Inverter efficiency % 94 Energy 2017

Bi-directional inverter cost USD/kW 600 Ardani et al. 2017

Bi-directional inverter lifetime years 15 Fu et al. 2017

Balance of plant cost USD/kW 100 Pena-Bello, Burer, et al. 2017

Installation costs USD 2000 Baumann and Baumgartner 2017

O&M USD/kW 0 Tesla 2015

Discount factor % p.a. 4 Stephan et al. 2016

End of life (EoL) % 70 Käbitz et al. 2013

ILR p.u. 1.2 Burger and Rüther 2006

Cycles at a given depth of discharge - 5000 @ 100% Tesla 2015

Battery lifetime Years 15 Tesla 2015

Battery roundtrip efficiency % 91.8 Tesla 2015

Battery Energy costs USD/nominal kWh 410 Tesla 2015

Maximum charge/discharge rate kW 0.4*C Tesla 2015

∆SOC % 100 ITP Renewables 2016

Maximum SOC % 100 ITP Renewables 2016

Minimum SOC % 0 ITP Renewables 2016

Cycle aging factor per cycle 0.00042 Based on Truong et al. 2016

Calendar aging factor per day 0.00038 Based on Truong et al. 2016
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level. The PV excess is stored in the battery and can be used at a later time, thereby
allowing to increase the share of renewable energy used. Demand load-shifting uses
the battery to exploit varying tariff differentials, shifting electricity consumption to
times with low price. Finally, demand peak-shaving uses energy stored in the battery
to reduce the maximum power drained from the grid (in kW) in order to mitigate
demand electricity peaks. These various applications are enabled by different retail
electricity tariff structures.

Demand-peak-shaving is performed if, in addition to a a volumetric component
(USD/kWh), the retail tariff also includes a capacity-based tariff (USD/kW) to
bill the peak demand. Capacity tariffs are being widely suggested following the
penetration of air conditioning, heat pumps and electric vehicles (AEMC 2014). In
order to ensure that the tariffs are on average revenue neutral for all the households
evaluated (i.e., the utility company does not charge more money for the same service
and the consumer bill remains in a similar range), the per-kWh rates are reduced by
20% and 30% in Geneva and Austin respectively, whenever the capacity-based tariff
is assumed. Additionally, currently where capacity tariffs are in place (typically for
higher voltage consumers) volumetric charges are lower.

For the volumetric component, we also compare a flat tariff, for which the battery
only performs PV self-consumption, and a double tariff (also referred to as a Time-
of-use tariff), for which demand load-shifting is also performed. Based on the current
offer from local utilities, the double tariff is applied throughout the year in Geneva,
but only in summer-time in Austin. Finally, a (physical) feed-in limit of 50% of
the PV nominal capacity (i.e., a user cannot inject PV electric power beyond 50%
of its PV rated power into the grid) is assumed in order to prevent instability on
the power system, which is a main concern during periods with large PV production
periods, following the example of Germany (Hesse, Martins, et al. 2017). This allows
a PV-coupled battery to get some value by avoiding PV curtailment.

Based on the sharp decline of FiT across many countries, the PV export price is
assumed to correspond to the wholesale electricity price, as is the case for traditional
electricity generators. Wholesale electricity prices from the day-ahead market for
Texas (from ERCOT southern load zone, average price of 0.027 USD/kWh) and
Switzerland (from EPEXSPOT, average price of 0.047 USD/kWh) are used. Table
3.3 displays the values of the electricity tariff used in this study. It is important to
highlight that electricity bills include also other fixed costs, such as taxes and grid
usage.

3.2.6 Optimization of the battery schedule

The management problem of a PV-coupled battery system is solved using the open-
source model presented in Pena-Bello, Barbour, Gonzalez, Patel, et al. (2019),
which relies on Pyomo, an open-source tool for modeling optimization applications
in Python (Hart et al. 2012) and is solved with CPLEX. The battery schedule is
optimized on a daily basis (i.e., 24 h optimization framework, with a resolution of 15-
minute) and we assume perfect day-ahead forecast of the electricity load profile, solar
PV generation and wholesale prices in order to determine the maximum economic
potential regardless of the forecast strategy used. Aging of the battery was treated
as an exogenous parameter, calculated on a daily basis, and therefore not subject
to optimization (for further information see Pena-Bello, Barbour, Gonzalez, Patel,
et al. (2019)).

The objective function, Eq. 3.4, minimizes the costs C incurred by the house-
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Table 3.3: Electricity tariff components depending on the bill structure used in this study. The peak
time in Geneva occurs from 7:00 to 22:00 on weekdays and from 17:00 to 22:00 for the weekends,
whereas it is from 13:00 to 19:00 for the weekends between June and September in Austin. The PV
export price corresponds to the wholesale price, with the given value corresponding to the average
wholesale price.

Name Units U.S. Switzerland Based on

Flat Tariff USD/kWh 0.07 0.22 Energy

Double Tariff
On-peak USD/kWh 0.18 0.24 Energy

Off-peak USD/kWh 0.06 0.15 Energy

Export price USD/kWh 0.03 0.05 Energy

capacity-based tariff USD/kW/month 10.14 9.39 Power

Feed-in limit %kWp−PV 50% 50% Power

holds, thereby considering two components, namely the energy and power compo-
nents of the electricity bill. The energy component is composed of the costs of
electricity imports and the reward for the electricity exports. The power component
relates to the maximum power used by the household. Here, i is the time of the
day, Egrid is the energy drained from the grid, EPV−grid is the energy exported to
the grid, πimporti is the import price, πexporti is the export price, Pmax−day is the
maximum power at each day, πcapacity is the capacity price (USD/kW/day) and PS
is a Boolean parameter to activate the power-based factor of the bill when necessary.

C = min(

Energy-based tariff︷ ︸︸ ︷
t∑

i=0

(Egridi · πimporti − EPV−gridi · πexporti) + (Pmax−day · πcapacity · PS︸ ︷︷ ︸
Power-based tariff

))

(3.4)

For further information on the constraints, parameters and validation of the
model please see (Pena-Bello, Barbour, Gonzalez, Patel, et al. 2019). The model
and the U.S. data (the Swiss data is confidential) are publicly available in https:
//github.com/alefunxo/Basopra (Accessed on 20.07.2020).

Every optimization is run for one year and then the results are linearly extrap-
olated to cover the PV’s entire lifetime (i.e., 30 years). We assume 30% of capac-
ity depletion as the battery’s end-of-life (Parra, Norman, et al. 2016) and assume
replacements of inverter and battery, in the case that the (replacement) battery
lifetime exceeds the project lifetime, the residual value of the battery is considered
using straight-line depreciation (Moore et al. 2015). We take a conservative ap-
proach maintaining the same battery cost for the future (discounted to the present),
due to the high uncertainty linked to future battery costs. The analysis is conducted
with identical electricity prices for all years across battery lifetime.

3.2.7 Techno-economic indicators

We use three indicators to compare the impact of the household’s load profile on the
attractiveness of the PV-coupled battery systems. As technical indicators, we use (i)
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the PV self-consumption (SC), which is the share of on-site generation that is auto-
consumed (Eq. 3.5), which is the most relevant indicator for prosumers who pursue
autarky. Although in this study all the applications provided by the battery deliver
power exclusively to the household, it is noteworthy to mention that in the case that
the battery is used to provide electricity to the grid for additional applications (e.g.,
frequency control), this energy should not be accounted for self-consumption. (ii)
The maximum peak flow shaved (PS) in the electricity exchange with the grid (Eq.
3.6), taking into account both import and export power flow, is a very relevant for
distribution grid planning. In addition, we use (iii) the Net Present Value (NPV)
to quantify the battery investment attractiveness, which is relevant for prosumers
from a financial point of view (see Eqs. 3.7 and 3.8). The NPV is calculated using
annual project cash flows (CF) taking into account the difference between the cash
flows from a PV-coupled battery system and a system with only PV.

SC =

∑N
i=0 (EPV−total−demand + EPV−batt−demand)∑N

i=0EPV

(3.5)

PS =
Pgrid−batt − Pgrid−nobatt

Pgrid−nobatt

(3.6)

CFBatti = CFPV−Batti − CFPVi
(3.7)

NPV =
N∑
i=1

CFBatti

(1 + r)i
−

N∑
i=0

CAPEX

(1 + r)i
(3.8)

In Eq. 3.5, EPV−total−demand is the PV generation used to meet the household
demand, EPV−batt−demand is the energy from the PV that is charged into the battery
and delivered to the household demand and EPV is the total PV generation. In Eq.
3.6, Pgrid−batt is the peak flow exchanged with the grid with a battery and Pgrid−nobatt

is the peak flow without a battery (i.e., only with a PV system). CFPV−Batti is the
cash flow of the PV-coupled battery system, CFPVi

is the cash flow of the PV system
alone and CFBatti is the cash flow due to the installation of the battery system in Eq.
3.7. Finally, CAPEX represents the total capital expenditures (excluding the PV
system), r is the discount factor (a weighting term that multiplies value to discount
it back to the present value), i is the year and N is the lifetime of the project in Eq.
3.8.

3.3 Results

We firstly present the clustering results, then the technical results and finally, the
NPV for PV-coupled systems as a function of the load profile, the electricity con-
sumption bracket (i.e., low, medium or high electricity consumption) and the lo-
cation (namely Austin and Geneva). We assess three combinations of applications.
First, a baseline scenario, where PV self-consumption is analyzed individually (using
a flat tariff). Secondly, PV self-consumption is combined with demand peak-shaving
(using a flat tariff and a capacity-based tariff), since it is reported to be the next
most attractive application for residential consumers (see Käbitz et al. (2013) and
AEMC (2014)). Finally, the combination of PV self-consumption, demand peak-
shaving (using a capacity-based tariff), demand load-shifting (using a Time of Use
-ToU- tariff, structured according to peak and off-peak times of day) and avoidance
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Table 3.4: Cluster nomenclature by consumption bracket and location. The assignation of every
household depends on the statistical mode of the cluster outcome to determine the most common
cluster ID throughout the year.

Consumption bracket Geneva Austin

Cluster id Number of households (%) Cluster id Number of households (%)

Low LC1 177 (27.8%) LC1 14 (4.6%)

LC2 43 (6.8%) LC2 86 (28.2%)

Medium MC1 14 (2.2%) MC1 24 (7.9%)

MC2 63 (9.9%) MC2 16 (5.2%)

MC3 57 (9.0%) MC3 60 (19.7%)

MC4 86 (13.5%) - -

High HC1 54 (8.5%) HC1 16 (5.2%)

HC2 71 (11.2%) HC2 26 (8.5%)

HC3 71 (11.2%) HC3 63 (20.7%)

of PV curtailment (using a physical feed-in limit). To highlight the statistically
significant differences across the results, a Shapiro-Wilk test is used to prove non-
normality of the results, followed by a paired Wilcoxon test with Holm procedure
to control the family-wise error rate. We report the p-values that indicate the prob-
ability of obtaining test results at least as extreme as the results actually observed,
assuming that the null hypothesis is correct.

3.3.1 Clustering results

Table 3.4 presents the distribution of cluster IDs (i.e., the statistical mode of daily
profiles) for each consumption level and location, including number and percentage
of households. Figure 3.4 shows the cluster centroids for daily electricity load profiles
with their average silhouette score for each sub-group and location. In Geneva two
clusters with similar shape are present across the three consumption brackets, one
with a high peak in the evening and one that is mostly flat. In Austin, there
are as well two similar clusters across the three consumption brackets with one
high peak around 16 h, the second one presents a high peak around 20 h. The
optimal number of clusters k for each approach was determined based on the highest
silhouette score. The silhouette analysis, displayed in Figure 3.5, shows the optimum
number of clusters for each combination of location and consumption bracket: k=2
for Texas-low; k=3 for Texas-medium; k=3 for Texas-high; and k=2 for Geneva-low;
k=4 for Geneva-medium; k=3 for Geneva-high). ). The silhouette scores improve as
more aggregation/averaging of profiles is applied, with the best scores resulting from
aggregating each day across all households and the worst scores for the approach
without aggregation (here in this paper we cluster one profile per household per
day hence silhouette scores are slightly lower than those published in literature for
average profiles).
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Figure 3.4: Centroids of the various clusters found for daily electricity profiles with their average
silhouette score for each sub-group and location. Note that the scale of the vertical axis differs for
Geneva and Austin.

Figure 3.5: Silhouette analysis for k-means clustering using the daily profile features (optimum
number of clusters, k=2 for Texas low ; k=3 for Texas-medium; k=3 for Texas-high and k=2 for
Geneva low ; k=4 for Geneva-medium; k=3 for Geneva-high).
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3.3.2 PV Self-consumption

The increase of PV self-consumption share due to addition of a battery to the PV
system ranges between 14-22% in Austin and 6-24% in Geneva, with median values
of 19% and 18%, respectively as shown in Figure 3.6 a. Regarding the combination
of applications, there is a slight reduction (2.6%) of the total PV self-consumption in
the households in Austin when other applications are performed together with PV
self-consumption (p-value<0.05). However, this is not the case for the households
in Geneva, which may suggest that there is no competition among applications as
is the case in Austin.

Regardless the combination of applications, the PV self-consumption increases
with electricity consumption in both countries (p-value<0.05). However, this in-
crease is small, with median differences between the low and high consumption
brackets of only 2% and 3% for Austin and Geneva, respectively (see Figure 3.6 b).
The load profile influences PV self-consumption (p-value<0.05) and it can differ by
up to 5% (e.g., LC1 vs. LC2 in Austin, see Figure 3.6 c), while it is more limited
when comparing households with a peak during daytime (dashed boxplots in Figure
3.6 c and d, e.g., MC2 and HC3 in Geneva) with those without a daytime peak, with
maximum median differences of 4% and 2.5% for Austin and Geneva, respectively.
Overall, the addition of a battery significantly increases the self-consumption, es-
pecially for households with a peak during daytime; the low penalty related to
combining all applications suggests that it is a smart strategy to follow.
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Figure 3.6: PV self-consumption (SC) of PV-coupled batteries. a) Comparing the impact of
the combination of applications per country; b) Comparing the consumption bracket impact per
country and per combination of applications; c) Comparing the impact of the load profile (cluster)
per consumption bracket and per combination of applications for Austin and; d) Comparing the
impact of the load profile (cluster) per consumption bracket and per combination of applications
for Geneva. Dashed boxplots represent households with peaks during daytime (i.e., from 10 am to
6 pm). The number of observation per cluster is indicated on top of the boxplots. The red dashed
lines and red points represent the median SC of the same PV system without battery support.
PVSC stands for PV self-consumption and DPS for demand peak-shaving.
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3.3.3 Peak-shaving

Figure 3.7 shows the results of peak flow reduction in absolute terms for PV-coupled
battery systems, for the three combination of applications we analyze. In the case
of PV self-consumption only, there is not incentives to reduce the peak (i.e., no
capacity-based tariff) and therefore, the peak in some cases can be even higher
than the case where PV systems are installed without a battery (i.e., 0 kW of
peak shaved). The combination of PV self-consumption and demand peak-shaving
reduces the median peak flow by 1.9 kW and 1.1 kW in Austin and Geneva, re-
spectively, when compared to the cases where the battery is used exclusively for
PV self-consumption (see Figure 3.7 a, p-values<0.05). Additionally, when demand
load-shifting (allowance to charge from the grid) and avoidance of PV curtailment
are included on top of the above mentioned applications (i.e., when all applications
are combined), the median peak flow is reduced further by 1.5 kW in Austin and
0.1 kW in Geneva, compared to the PV self-consumption and demand peak-shaving
combination (p-values<0.05). In total, peak flow reduction by up to 3.4 kW and
1.2 kW can be achieved in Austin and Geneva, respectively, which compared to the
median value of the maximum power demand across both datasets (7.9 kW and 3.8
kW), represents a substantial reduction of peak flow.

The peak flow reduction when there are incentives to reduce it, is moderately
affected by the annual consumption of the household (see Figure 3.7 b). For in-
stance, the median values of the peak flow are reduced more in households with
high electricity consumption than in households with low electricity consumption
when all applications are combined; for high electricity consumption households, it
is reduced by up to 5.1 kW in Austin and up to 1.6 kW in Geneva, whereas the
maximum reduction for low electricity consumption households amounts to 2.5 kW
and 0.6 kW in Austin and Geneva, respectively.

The impact of the load profile on the peak flow reduction achieved by batteries
in Austin is in general not statistically significant. The only case where there is a
statistically significant difference is when all applications are combined (i.e., right
panel in Figure 3.7 c), and the median values between households with peaks in
the evening (HC2) and with a peak during daytime (HC3) are compared, with a
median difference of 2.2 kW. For Geneva (Figure 3.7 d), when PV self-consumption
is combined with demand peak-shaving, the peak flow reduction in households with
medium annual demand and a flat load profile (MC3) is slightly lower (0.1 kW of
difference, p-value<0.05) than in households with a demand peak during daytime
(MC2) or with double demand peak (one during the day and one in the evening,
MC4). Similarly, in houses with high annual electricity demand, the differences be-
tween the households with a flat load profile (HC2) and other households is small
in power terms (0.3 kW, p-value<0.05). When all applications are combined, the
differences between the households presenting a flat load profile and those with a
peak in the evening (HC1) are no longer statistically different. The absence of statis-
tically significant differences among the different clusters (but within consumption
brackets) suggest a low impact of the load profile on the peak flow.
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Figure 3.7: Peak flow shaved by PV-coupled batteries. a) Comparing the impact of the combination
of applications per country; b) Comparing the consumption bracket impact per country and per
combination of applications; c) Comparing the impact of the load profile (cluster) per consumption
bracket and per combination of applications for Austin and; d) Comparing the impact of the load
profile (cluster) per consumption bracket and per combination of applications for Geneva. Dashed
boxplots represent households with peaks during daytime (i.e., from 10 am to 6 pm). The number
of observation per cluster is indicated on top of the boxplots. PVSC stands for PV self-consumption
and DPS for demand peak-shaving.

3.3.4 NPV

Figure 3.8 shows that NPVs remain negative (i.e., no profitability) in by far most
cases. To put the results into perspective, the NPVs can be compared to the total
investment costs of the battery system (i.e., including inverter, balance of plant,
installation costs and replacements to match the PV lifetime of 30 years): In Austin,
in average households lose 0.83 USD per dollar invested in a battery, while in Geneva,
households lose 0.67 USD per dollar invested. However, the combination of two or
more applications helps batteries to improve the economic case in both locations
(see Figure 3.8 a).

The NPV is negatively affected by and strongly dependent on the annual elec-
tricity consumption as shown in Figure 3.8 b. The differences of the median NPV
among the three consumption brackets are as high as 9200 USD in Austin, decreasing
to 1400 USD in Geneva, being statistically significant in both cases (p-values<0.05).
Interestingly, the combination of all applications in Geneva is able reverse the neg-
ative influence of the annual electricity consumption that can be seen when PV
self-consumption is the only application (see Figure 3.8 b, right panel).

In Austin, the differences within consumption bracket and across the clusters are
not statistically significant (see Figure 3.8 c). On the other hand, batteries perform-
ing PV self-consumption only in the households with medium annual consumption
in Geneva (i.e., in the range of 2025-3170 kWh) with a peak in the evening (MC1)
offer higher NPV (up to 230 USD, i.e., 5%) (p-values<0.05). Batteries in households
with flat load profiles (LC1, MC3 and HC2), generally achieve lower NPV (differ-

41



ences up to 250 USD, i.e., 6%), in particular when PV self-consumption is combined
with other applications. Finally, the combination of applications increases the eco-
nomic viability of the batteries up to 8400 USD in Austin and 2250 USD in Geneva
(p-values<0.05).
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Figure 3.8: NPV achieved by PV-coupled batteries. a) Comparing the impact of the combination
of applications per country; b) Comparing the consumption bracket impact per country and per
combination of applications; c) Comparing the impact of the load profile (cluster) per consumption
bracket and per combination of applications for Austin and; d) Comparing the impact of the load
profile (cluster) per consumption bracket and per combination of applications for Geneva. All
values presented in this graph refer only to the investment in the battery, i.e., the cost of the PV
panel is excluded. Dashed boxplots represent households with peaks during daytime (i.e., from 10
am to 6 pm). The number of observation per cluster is indicated on top of the boxplots. PVSC
stands for PV self-consumption and DPS for demand peak-shaving.

3.4 Discussion

Our results highlight the interest on the combination of applications (also called ser-
vices) at the residential level and the impact of the household electricity consumption
on the economic viability of installing a battery in an otherwise stand-alone PV sys-
tem. They show as well the limited impact of the load profile on the performance
and economic attractiveness of PV-coupled battery systems. The results of this
study are based on a 1:1:1 sizing ratio (e.g., an annual electricity consumption of 5
MWh leads to a nominal PV capacity of 5 kWp and a battery capacity of 5 kWh)
(Litjens, Worrell, and van Sark 2018b; Weniger, Tjaden, and Quaschning 2014).

3.4.1 Impact of combination of applications

Overall, batteries significantly increase self-consumption (ranging from 6-24%). Ac-
cording to our results, the combination of applications does not compromise total
PV self-consumption shares or only hardly does so. We find that there are not
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statistically significant differences in Geneva for batteries combining applications
with respect to the case of batteries performing PV self-consumption only, and in
Austin we find a limited decrease of total PV self-consumption (2.6%). In turn,
peak-shaving is positively affected by the combination of applications when PV
self-consumption is combined with demand peak-shaving (by up to around 20%).
Interestingly, charging the battery from the grid contributes to reduce the peak flow
with the grid by an additional 1.5 kW in Austin and a more modest 0.1 kW in
Geneva, when compared to the combination of PV self-consumption and demand
peak-shaving. The combination of applications boosts the economic attractiveness
of batteries, with increases by up to 8500 USD and 2250 USD in Austin and Geneva,
respectively. Combining applications leads to some positive NPV (up to 1342 USD)
in households with high electricity consumption in Geneva, reversing in this way the
negative impact of annual electricity consumption observed in all the other cases.
Additionally, battery applications such as demand peak-shaving and avoidance of
PV curtailment provide indirect benefits to the grid operation and stability that are
not captured in the NPV indicator but cannot be neglected.

A rule-of-thumb such as the 1:1:1 ratio is not reasonable for today’s households
with large annual consumption (e.g., Austin households) and in particular if the
battery is used only for PV self-consumption. Instead, batteries should be able to
combine applications to justify their large capacity and the related investment, which
call for a faster deployment of policies in this direction around the globe. Further
applications not included in this study should be considered, such as frequency
control (e.g., within a pool of batteries controlled by a centralized organization). In
households with more modest annual consumption, e.g., Swiss and other European
households, the above-mentioned ratio together with the combination of applications
can lead to positive economic cases, even with the current high costs of batteries (350
USD/kWh and 2000 USD for the installation). We find as well that the exclusive use
of the batteries for PV self-consumption is currently not profitable without subsidies.
The combination of applications and in particular the use of demand peak-shaving
(enabled by a capacity-based tariff) not only helps to reduce the stress on the grid
but helps as well to improve battery profitability for all household types, regardless
the consumption bracket or the load profile.

3.4.2 Impact of electricity annual consumption and load
profile

Under the sizing ratio of 1:1:1, the impact of the annual electricity demand on total
PV self-consumption is small, but statistically significant (i.e., 2% in Austin and
3% in Geneva). This is also the case for the maximum peak flow exchanged with
the main grid (i.e., accounting for import and export power), since higher annual
electricity consumption leads to higher battery sizes and higher reductions of the
peak (compared to the peak without the PV-coupled battery system) of 2.6 kW
(1 kW) in Austin (Geneva). Additionally, the impact of annual consumption on
profitability is remarkable, with differences in NPV larger than 9000 USD in Austin
and 1400 USD in Geneva, with large consumers being negatively affected due to
the installation of larger batteries (but not when all applications are combined).
Thus, small (or even no) battery systems should be preferred to maximize NPV
in the absence of the combination of applications, due to still high costs (Barbour
and González 2018; Pena-Bello, Barbour, Gonzalez, Patel, et al. 2019). However,
larger batteries will become more affordable as battery costs progressively decline,
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enabling further reduction of the peak flow exchanged with the main grid.
Finally, there is a limited impact of the load profile on the performance and

economic attractiveness of PV-coupled batteries combining applications. In the
Swiss case, the NPVs are slightly lower in households with mostly flat load profiles
compared to other load profiles (6% lower NPVs for clusters LC1, MC3 and HC2, see
Figure 3.8 d). Additionally, households with load peaks at the evening (e.g., MC2
in Geneva) achieve NPVs 5% higher than when the battery is used only for PV self-
consumption. On the other hand, in Austin, the load profile does not have an impact
on battery profitability, which suggest that the effect of load profile differs across
locations with different retail tariff values and electricity consumption thresholds.

3.4.3 Limitations and future research

Future research can apply the proposed method to analyze other locations with
different electricity load profiles and retail tariff values. The grid may benefit from
distributed storage in several ways, however, in this study we look at the problem
from a consumer perspective. Further research regarding the potential benefits to
the grid and extra remuneration mechanisms should be explored. The effect of future
load profiles (e.g., by better insulation of buildings in the U.S.) could also be studied.
Furthermore, alternative choices of battery sizing can be explored, which may lead
to different findings. In the same way, we acknowledge that a smaller value of the
DoD would lead to reduced aging, however, the amount of cycles per year would
also decrease and therefore the economic benefits steaming from the battery and its
economic viability. Alternative values of DoD should be investigated to precisely
quantify their effects on different performance indicators. Other alternatives to
physical storage such as virtual storage, as applied in some countries where the grid
may be used to store PV excess and may be taken back by the prosumer within
a certain period of time without charge should be explored, which may reduce the
prosumer investment while maintaining similar or higher shares of self-consumption.
Additionally, we suggest the use of larger datasets (the Austin dataset only includes
305 households), as is the case for Geneva (with 636 households), to increase the
number of observations which helps to produce results with statistically significant
differences.

3.5 Conclusions

In this study, we analyze the impact of the electricity load profile, the annual elec-
tricity consumption and the combination of applications, namely photovoltaic (PV)
self-consumption, avoidance of PV curtailment, demand peak-shaving, as well as de-
mand load-shifting (with grid-charging) for PV-coupled battery systems which are
sized with a 1:1:1 ratio (e.g., an annual electricity consumption of 5 MWh leads to
a nominal PV capacity of 5 kWp and a battery capacity of 5 kWh). The analysis is
carried out for Austin (U.S.) and Geneva (Switzerland), which have very different
climates, load profiles and electricity consumption levels. Our findings rely on tests
of statistical significance using 305 and 636 electricity load profiles with 15-minute
resolution monitored in Austin and Geneva.

Our results indicate that the type of load profile (established by clustering)
has a limited impact on the net present value (NPV) of PV-coupled batteries in
Geneva, Switzerland. For households with mostly flat profiles, the NPV is slightly
lower when combining applications compared to households with other types of load
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profile. Furthermore, batteries performing only PV self-consumption in households
with peaks in the evening have marginally higher NPV than other households. The
effect of the load profile is even less marked in Austin, Texas, U.S. where we found
practically no impact on peak-shaving and NPV in Austin, while total PV self-
consumption is positively affected in households with daytime peaks. In conclusion,
some slight differences in the effect of the load profiles were found for the two
locations indicating a relatively small influence which should be tested also for other
locations. If confirmed, the value of PV-coupled battery systems is not increased by
tariffs which are customized to the load profile of consumers based on our results.

Furthermore, we find that the NPV of batteries benefits most combining applica-
tions regardless of the annual electricity consumption level, load profile and location.
Interestingly, the total PV self-consumption rate of PV-coupled batteries is not com-
promised by the inclusion of other applications beyond PV self-consumption. This
finding confirms that batteries should be used for multiple applications, which in
turn needs regulatory changes. For instance, the inclusion of capacity-based tariffs
sends a signal to reduce peak demand. This offers synergies for consumers who in-
crease the value of their batteries and distribution system operators who reduce grid
stress. This conclusion is important for the economic viability of batteries, which
are crucial to support further decentralized PV penetration.
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Chapter 4

Household level - Thermal and
Electrochemical storage

Heat pumps play an important role in decarbonizing the heating supply of buildings
and they allow to increase the self-consumption of PV electricity, especially when
supported by electricity or heat storage. In this study, we develop an open-source
model to optimize PV-coupled heat pump systems with and without electricity and
heat storage and we compare their performance for three types of single-family
houses with different thermal envelope quality paired with 549 electricity profiles.
We analyze trade-offs between prosumer benefits and grid impacts, namely bill min-
imization, and maximum grid relief, depending on the type of storage and incentives
for grid peak reduction (i.e., a capacity-based tariff). We conclude that the use of
heat storage reduces the levelized cost of meeting the electricity demand between
13-26%, in particular when heat pumps are used for both space heating and domestic
hot water (DHW). Regarding total self-consumption rates, both storage technolo-
gies, namely batteries and hot water tanks (which supply both space heating and
DHW) achieve similar rates between (30-39%). In contrast, batteries are found to
be very effective in reducing the peak demand (14-17% compared to the baseline
scenario), but only if the retail tariff has a capacity-based component. Interestingly,
the quality of the envelope plays a key role and heat pumps can double the power
peak demand in poorly insulated houses, with thermal storage increasing the power
peak demand further up to 8%, compared to the baseline, regardless of the storage
technology. Thus, we conclude that thermal retrofitting of the building stock is
advisable to avoid the upgrading of the distribution grid.

4.1 Introduction

Heat supply is dominated by fossil fuels and in 2019, only 11% of the heat was sup-
plied by renewable energy sources worldwide (IEA 2020). This fossil dependency
is equivalent to a contribution of 40% to global CO2 emissions (equal to 13.3 gi-
gatonnes) in the same year. In Switzerland, space heating demand needs to be
significantly reduced as it represents more than two thirds of the total final energy
demand in the built environment (Streicher, Padey, Parra, Bürer, S. Schneider, et al.
2019). Energy retrofitting programs together with heat pumps are crucial elements
of the Swiss Energy Strategy 2050. Heat pumps operate with much higher effi-
ciency, referred to as coefficient of performance (COP), than condensing boilers or
furnaces, allowing to reduce the energy consumption in buildings by 15-70% (Staffell
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et al. 2012). The Swiss Federal Office of Energy anticipates that the number of heat
pumps sold per year will double by 2030, reaching 40.000 units p.a. (Dott, Acker-
man, et al. 2019). However, most heat pumps are installed in new buildings while
the retrofit rate in existing buildings is very low (less than 1% per year (Castelazzi
et al. 2019)) representing the main challenge for heat pump diffusion.

Solar photovoltaics (PV), which so far has mainly be used to decarbonize elec-
tricity supply, can be key to further decarbonize heat (IEA 2020; Rinaldi et al. 2020).
PV modularity and cost-reduction empower consumers that can now generate their
own electricity, becoming prosumers, thereby directly contributing towards the en-
ergy transition. However, the expansion of decentralized rooftop PV systems poses
a challenge to the power sector. Unlike conventional centralized generation, PV pro-
duction cannot be supplied on demand without incurring into additional costs and
devices. Moreover, for high distributed PV penetration levels, grid operators may
be forced to use rapid and expensive ramp-up of centralized power to match the de-
mand (this is referred to as the duck-curve problem (Barbour and González 2018)),
to shut-down baseload plants and/or to curtail PV electricity to avoid voltage issues
at the low and medium voltage grid levels (Wang 2018; Gupta, Pena-Bello, et al.
2021; Sichilalu and Xia 2015).

In order to supply PV electricity on demand and minimize grid impacts, there are
a number of flexibility strategies that allow to increase PV self-consumption (Lund
et al. 2015; Salpakari and Lund 2016). In this article, we focus on demand-side
management with heat pumps supported with electricity (batteries) and heat (hot
water tanks) storage. Heat pumps can increase PV self-consumption and simulta-
neously decarbonize space heating and domestic hot water (DHW) supply, which
so far mainly relies on fossil fuels (IEA 2019). When using local PV generation,
heat pumps can perform with high COP values (i.e., above 3) due to relatively high
ambient temperature at midday. Regarding storage, in addition to shift PV gener-
ation, storage can also be used to exploit time-varying electricity prices, charging
at low prices and discharging at high prices (prices in USD/kWhel), referred to as
demand load shifting (DLS) (Parra, Walker, and Gillott 2016; Luthander, Widén,
Munkhammar, et al. 2016). Furthermore, storage can be used to perform demand
peak-shaving (DPS), which consists of discharging for a short period of time, e.g.,
15 min, to reduce the maximum power exchanged with the grid (in kW terms). DPS
requires that the retail tariffs include a capacity-based component (USD/kWel) in
addition to the volumetric component (USD/kWhel)(Campana et al. 2021; Pena-
Bello, Barbour, Gonzalez, Yilmaz, et al. 2020).

Considering the high interest in both PV self-consumption and heat decarboniza-
tion, we focus on PV-coupled heat pumps assisted with electricity and heat storage
to meet both electricity and heat demand in single houses. This is an important topic
because the diffusion of PV and heat pumps is crucial for the energy transition but
influences the nationwide electricity peak demand, distribution grid stability, and
electricity infrastructure upgrade cost (Heymann et al. 2019). Thus, in this study
we aim to combine three storage applications for electric and heat storage, namely,
PV self-consumption, DLS and DPS.

Low carbon technologies such as PV, heat pumps, batteries and hot water tanks
have been a focal topic of the previous literature, however, control strategies of
all the above-mentioned technologies combined in smart houses has been rather
limited. When analyzing control strategies for heat pump integration, a smart re-
sponse to prices was considered (Patteeuw, Henze, and Helsen 2016; Verhelst et
al. 2012; Sweetnam et al. 2019). Studies focusing on PV-coupled heat pumps give
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priority to the increase of PV self-consumption (Franco and Fantozzi 2016; Thyge-
sen and Karlsson 2013; Prada et al. 2017), and combinations of applications have
been hardly considered, except for PV self-consumption and demand peak-shaving
(Williams, Binder, and Kelm 2012). However, these studies did not consider the
added flexibility of electricity or heat storage.

Only very few studies addressing heat pumps have so far analyzed combinations
of applications using energy storage. Liu et al., evaluated time-of-Use (ToU) tariffs
but only assessed the impact of heat pumps on the battery schedule (X. Liu et
al. 2019). They recommended to conduct a whole-system analysis to maximize PV
self-consumption while reducing battery capacity, which is achieved by directly using
more PV electricity in the heat pump. Terlouw et al. (2019) also considered ToU
tariffs when comparing electricity and heat storage to minimize the electricity bill
and CO2 emissions at the individual household and community levels . Large hot
water tanks shared by the community and small individual batteries help to minimize
the bill for communities and individual houses respectively. Another recent study
by Pimm et al. found that coupling heat pumps and small batteries can help to
keep the peak flow at the same levels as before installation of the heat pump (Pimm,
Cockerill, and Taylor 2018). However, the authors did not consider economic aspects
of the systems nor economic incentives for peak demand reduction.

Since the space heating demand of a residential building largely depends on
its insulation, some authors have compared different reference buildings (Tjaden,
Schnorr, et al. 2015) and assessed underfloor heating and radiators (Schuetz, Gw-
erder, et al. 2017). However, PV-coupled heat pumps assisted with electricity and
heat storage and their trade-offs for prosumers and distribution grids, in terms of PV
self-consumption and demand peak-shaving, have not yet been studied as a function
of the envelope quality.

To our knowledge, this is the first paper proposing a method to evaluate PV-
coupled heat pump systems, and to compare their lifetime performance when as-
sisted with electricity and heat storage, both individually and combined, for houses
with different envelope quality. The proposed open-source model optimizes the en-
ergy storage, and heat pump operation for a whole year and the results are then
scaled over a time period of 30 years (i.e., PV lifetime). Importantly, we analyze
the trade-offs between prosumer benefits, and the impacts on the grid, using three
types of houses with different thermal insulation, coupled with 549 electricity profiles
which allows us to provide robust results backed by statistical tests. Our open-source
model is applied to houses in Geneva, Switzerland, however, it can be adjusted to
locations with temperate climate and fast diffusion of PV and heat pumps. We
conclude that the quality of the envelope plays a key role and that the use of a heat
pump can result in doubling the power peak demand in poorly insulated houses even
when storage is present.

The remainder of this paper is structured as follows. The Input data and methods
are presented in Section 4.2 which describes the input data, the system configuration,
as well as the optimization setup and the techno-economic indicators. Section 4.3
presents the optimization results as a function of the system configuration, building
type and electricity tariff. Section 4.4 is a discussion of the implications of our
results and finally, Section 4.5 presents the main conclusions.
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Figure 4.1: Schematic representation of a PV-coupled heat pump system supported by electricity
and/or heat storage used in this study. The arrows indicate the direction of possible electricity
and heat flows between the individual components. The supply of domestic hot water (DHW) and
space heat (SH) is modelled with two different heat pumps (HP) whereas, in reality a single heat
pump is used. TS stands for thermal storage.

4.2 Material and methods

First, we define the input data for the model in Section 4.2.1, including various types
of houses, electricity and heat demand data, as well as the PV generation and the
electricity tariff structure. Secondly, the optimization is described in detail in Section
4.2.2, as well as the PV-coupled heat pump configurations including storage. Finally,
we present the techno-economic performance indicators in Section 4.2.4. Figure 4.1
is a schematic representation of a PV-coupled heat pump as considered in this study.
We use data from 2017 across this study.

4.2.1 Input data

Thermal characteristics of the houses

Based on the reference framework for buildings and space heating simulations of the
International Energy Agency (Dott, Haller, et al. 2013), we compare PV-coupled
heat pump systems in three archetypical single-family houses (SFH) with identical
living area (a two story SFH with 140 m2 of heated floor area) but different heat
demand, corresponding to 15, 45 and 100 kWhth /m2 p.a., referred to as SFH15,
SFH45 and SFH100 respectively. These values represent a very well insulated recent
building (i.e., Minergie-P in Switzerland or Passivhaus in Germany), a modern build-
ing from 2000-2010 (i.e., with a jagood thermal insulation of the building envelop)
and a renovated old building (before 1980) or equivalently, a building from around
1980-1990 (i.e., poorly insulated) respectively (Streicher, Padey, Parra, Bürer, S.
Schneider, et al. 2019). The SFH15 and SFH45 are assumed to have underfloor
heating running at up to 35◦C, which serves as heat storage directly coupled to the
heating system. As for the SFH100, modern low-temperature radiators operated at
around 50◦C are assumed (Dott, Haller, et al. 2013; Arteconi, Hewitt, and Polonara
2013; Vivian et al. 2020), i.e., without storage capacity. Space heat demand and
DHW demand are presented in Section B.1.
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Electricity, heat demand and PV generation

In order to model the mismatch between PV generation and total electricity de-
mand (including the consumption from appliances and the heat pump), we use data
of 549 houses with 15-minute temporal resolution monitored in SFH in Western
Switzerland (Pena-Bello, Barbour, Gonzalez, Patel, et al. 2019). Since only electric-
ity consumption was monitored, we link each electricity profile to SFH15, SFH45
and SFH100 heat demands, in order to analyze all possible combinations of electric-
ity and heat consumption, thereby considering that electricity and heat demand are
not directly correlated (if the heating system is not electric).

The space heating and DHW demands for the three types of houses are calculated
using a calibrated dynamic simulation tool (Schuetz, Scoccia, et al. 2018). The
simulation tool calculates the dynamics of the building and energy system by solving
the coupled differential equations of the individual components using a Runge-Kutta
integrator. The DHW draft profile is calculated using the DHWcalc tool (Jordan
and Vajen 2001) simulating the draft profile of a family with two adults and two
children. The simulation framework is implemented in C++ with Visual Studio
Community 2017 from Microsoft and the coupled differential equations models are
solved in a program implemented using the same programming language. Further
information can be found in Section B.1 and in Schuetz, Scoccia, et al. (2018).

We simulate PV generation using a standard one-diode model (Villalva, Gazoli,
and Ruppert Filho 2009; Y. Zhang et al. 2017) and PV technology with a nomi-
nal efficiency of 18.6% (HIT photovoltaic module HIT-N2XXSE10 datasheet n.d.),
representative of the current technology state. A sky model is used to transform
satellite data of horizontal solar irradiance into irradiance with a tilt angle of 30◦ and
facing south, which corresponds to the PV system orientation (Duffie and Beckman
2013). Outdoor temperature was collected locally in Geneva by the University of
Geneva (Ineichen 2013). The model also includes a maximum power point tracker
system, as is the case of most PV systems to maximize the output regardless of the
environmental conditions (temperature and solar irradiance). Finally, we consider
PV systems with a nominal capacity equal to the median size of the empirical PV
distribution across Switzerland, corresponding to 4.8 kWp (BFE 2018). The capac-
ity factor of the modelled PV system is 16.1%, which is in line with other results for
the same location (e.g., 15.7% in renewables.ninja for 2019) (Pfenninger and Staffell
2016).

Electricity tariffs

Electricity prices used in this study are based on available tariffs offered by the local
utility company in Geneva. We consider a ToU tariff, normally offered for heat
pumps. The export PV price is assumed to be equal to the wholesale electricity
price (based on the prices from the day-ahead European Power Exchange) as is the
case for traditional electricity generators.

Importantly, we also test the impact of adding a capacity-based tariff (also re-
ferred to as demand charges) to today’s tariff which is typically only volumetric. A
capacity-based tariff (in USD/kWel) represents a charge that is proportional to the
maximum peak power, considering import from and export to the grid. To reduce the
grid impacts of PV, heat pumps and electric vehicles and enabled by the deployment
of smart meters, capacity-based tariffs are already being tested in some countries,
e.g., France, Belgium, Austria and Sweden (Oualmakran et al. 2017; Azarova et al.
2018). In this study, a capacity-based tariff is modelled as 9.39 USD/kWel/month,

51



Table 4.1: Electricity tariff components depending on the bill structure used in this study. The
peak time occurs from 7 a.m. to 10 p.m. on weekdays and from 5 p.m. to 10 p.m. on weekends.
The export value corresponds to the wholesale price in the EPEXSPOT market. The price shown
corresponds to the average wholesale price.

Name Units Geneva Based on

ToU tariff
On-peak USD/kWhel 0.259 Energy

Off-peak USD/kWhel 0.165 Energy

Export price USD/kWhel 0.047 Energy

Capacity-based tariff USD/kWel/month 9.39 Power

while ensuring that the original overall electricity bill remains unchanged. This is
achieved after reducing the volumetric component of the double tariff by 20%. Table
4.1 provides all the relevant tariff data depending on the bill structure.

4.2.2 Optimization modeling

We propose a daily schedule optimization (starting at midnight) of the PV-coupled
heat pump system (see Figure 4.1). Every optimization was run for one year and
then the results are scaled over a time period of 30 years, corresponding to the life-
time of the PV system (Bauer et al. 2017). We consider replacements for all the
components of the system (see Section B.5 for more information). The open-source
Linear Programming model developed by Pena-Bello, Barbour, Gonzalez, Patel, et
al. (2019) is extended in this study to couple heating with heat pumps in combi-
nation with heat storage and electricity storage. We model eight PV-coupled heat
pump systems with and without thermal and electricity storage (see subsection
System configurations) using the open-source programming language Python. To
formulate the optimization problem, we use the Pyomo package (Hart et al. 2012), a
Python-based optimization modeling language and to solve the scheduling optimiza-
tion problem we use CPLEX, an optimization software package developed by IBM.
The model can be found in github https://github.com/alefunxo/BASOPRA_HP.
Perfect forecast is assumed for electricity and heat demand, PV generation and
wholesale prices in order to determine the maximum economic potential regardless
of the chosen forecast strategy. The objective function is the minimization of the
electricity bill which also includes a power-based component if a capacity-based is
included, as is indicated in Eq. 4.1.

C = min(

Energy-based tariff︷ ︸︸ ︷
t∑

i=0

(Egridi · πimporti − EPV−gridi · πexporti) + (Pmax−day · πcapacity · PS︸ ︷︷ ︸
Power-based tariff

))

(4.1)

Here, the energy-based tariff is given by Egridi [kWhel] which is the electricity
drawn from the grid; πimporti is the import price (i.e., retail price, in USD/[kWhel]);
EPV−gridi [kWhel ] is the PV-electricity exported to the grid; and πexporti is the
export price (in USD/[kWhel], assumed to be the wholesale price in this study).
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All these variables have the sub-index i representing every time step (corresponding
to 15-minute) from 0 up to 96 per day (represented by t). The capacity-based
tariff is given by Pmax−day [kW], which is the maximum power required from the
grid throughout the day; πcapacity is the capacity-based tariff (in USD/kWel/day);
and PS is a boolean variable which indicates the presence of the capacity-based
tariff (to enable demand peak-shaving). The objective function is subject to various
technical and energy system-related constraints which are presented hereafter. The
model validation can be found in Section B.6.

Heat pump modeling

We model a bivalent heat pump system, comprising an air to water heat pump and
an electric backup heater connected in series to meet all heating requirements when
the heat pump cannot meet them due, for instance, to under-sizing or to extremely
low temperatures. The characteristics of the heating system as a function of the
type of house are presented in Table 4.2. The sizing of the heat pump as well
as the specification of the supply and return temperatures follow the methodology
presented by the IEA (Dott, Haller, et al. 2013) and are presented in the Table B.3.

From a modeling perspective, the heat pump is virtually split into two parts
which separately provide space heat and DHW. By analogy with real heat pumps,
the two virtual parts cannot work at the same time and operate at different outlet
temperatures. Eqs. 2-5 describe the heat pump constraints. The constraint of
electricity demand is shown in Eq. 4.2, where Ehpi is the electricity required by the
heat pump, while EPV−hpi [kWhel], Ebatt−hpi [kWhel] and Egrid−hpi [kWhel] are the
PV electricity supplied to the heat pump, the battery and the grid, respectively.

Ehpi = EPV−hpi + Ebatt−hpi + Egrid−hpi (4.2)

The thermal power of the heat pump (Phpi , in kWth) (to meet the demand
load or store heat) must be lower or equal to the maximum thermal power output
(Php−max−thi

[kWth]) at each time step (Eq. 4.3)

Phpi ≤ Php−max−thi
(4.3)

Eq. 4.4 defines the relationship between the electricity supply and heat genera-
tion, where Ebui

[kWhel] is the electricity consumption of the backup heater; Q̇hp−hsi

[kWhth] and Q̇hp−shi
[kWhth] are the heat provided by the heat pump to the heat

storage and directly to the space heating load, respectively. The COP, defined as
the relationship between the heat flow (kWth) provided by the heat pump, and its
electrical power consumption (kWel) (the COP is therefore dimensionless), is cal-
culated at each time-step as a function of the outdoor temperature and the supply
temperature using a lookup table from a recognized heat pump manufacturer (see
Section B.3 (Hoval 2017; Gwerder and Schuetz 2019)).

Ehpi · COPi + Ebui
=

{
Q̇hp−hsi if heat storage

Q̇hp−shi
otherwise

(4.4)

Thermal mass and inertia of buildings can be substantial, e.g., allowing to keep
the indoor temperature at comfort level for up to 6 hr out of 24 hr (Berger and
Worlitschek 2018; Vivian et al. 2020). Thus, there is a delay between the thermal
supply and demand as a function of outdoor temperature and thermal resistance
(Berger and Worlitschek 2018). Making use of the thermal inertia of buildings, the
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heat pump does not need to be perfectly aligned to heat demand as long as the
total heat supplied within two hours matches the total demand within the same
period (Yao et al. 2018). Eq. 4.5 mathematically expresses the thermal inertia (or
flexibility) of 2 hr (8 blocks of 2 hr represented by the sub-index j), where Q̇loadi

[kWhth], Q̇hp−shi
[kWhth] and Q̇ts−shi

[kWhth] ] are the space heating demand, the
heat supplied by the heat pump for space heating and the heat supplied by the heat
storage for space heating, respectively.

∑8·(j+1)
i=8·j Q̇loadi =

{∑8·(j+1)
i=8·j Q̇ts−shi

if heat storage∑8·(j+1)
i=8·j Q̇hp−shi

otherwise

where j ∈ [0, 7] and i ∈ [0, 95]

(4.5)

Modeling of heat storage

Hot water tanks for space heating and DHW are modeled as perfectly mixed with
a homogeneous temperature (Tts [K]). Eqs. 4.6 and 4.7 present the change of heat
content in the tanks as a function of time (∆Q̇tsi [kWhth]) depending on the heat
balance determined by the inlet flow from the heat pump (Q̇hp−hs), the heat flow de-
livered to the demand load (Q̇load [kWhth]), including both space heating and DHW,
and the heat losses through the surface area to the surroundings (Q̇ts−loss [kWhth]).
The amount of thermal energy charged into the heat storage (Qtsi [kWhth]) is given
in Eq. 4.8 by the difference between the temperature of the heat storage at time i
(Ttsi [K]) and the supply temperature (Tsupplyi [K]), multiplied by the mass and the
specific heat of water.

∆Q̇tsi = Q̇hp−hsi − Q̇ts−shi
− Q̇loss−tsi (4.6)

∆Q̇tsi = (Ttsi − Ttsi−1
) ·mts · cpts (4.7)

Qtsi = (Ttsi − Tsupplyi) ·mts · cpts (4.8)

Moreover, hot water tanks for DHW and space heating operate between mini-
mum (Tsupplyi [K]) and maximum (Tsupplyi +Toffset [K]) temperature levels and they
are characterized by losses (Qloss−tsi [kWhth]), as presented in Eqs. 4.9 and 4.10.
Here, Uts [kW ∗m−2 ∗K−1 ], Ats [m−2] and ∆Ttsi [K] are the heat storage’s U-value,
surface, and the difference of temperature (between the heat storage and the set-
point temperature), respectively. The minimum temperature of the hot water tanks
is constrained by the supply temperature (Tsupply [K]; see Table 4.2). Furthermore,
the maximum temperature is given by the supply temperature plus the offset tem-
perature (i.e., ∆T [K]; see Table 4.2). It is assumed that the heat storage for space
heating provides heat at the supply temperature (Tsupply [K]), while the DHW tank,
provides hot water at 50◦C.

Tsupplyi ≤ Tts ≤ Tsupplyi + Toffset (4.9)

Q̇ts−lossi = Uts · Ats ·∆Ttsi (4.10)

For DHW, the same equations as above apply, assuming a dedicated heat pump
and a water tank of 200 l, according to the standard consumption of 50 l per person
and per day for a single-family house, as defined in the Swiss norm SIA 385/2
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Table 4.2: Heating system characteristics depending on the building type with identical heated
floor area of 140 m2 for a two stories single-family house.

Heat Pump SFH15 SFH45 SFH100

Required heat at the design point (kWth) 2.4 4.9 10.6

Supply temperature at the design

point (◦C)
35 35 50

Temperature difference at the design point (K)a 46 46 61

Generated heat demand at the design point (kWth) 4 4.8 9.7

HP Thermal capacity (kWth) 4 6 16

Working fluid 410a 410a 410a

Maximum electric demand at the design point(kWel) 1.7 2 6.6

Backup heaterb(kWth) 2 4 4

Space heating storage system SFH15 SFH45 SFH100

Type of storage Existingc Existingc Newd

Specific capacity of the heat release

of storage (kJ/K)
40000 40000 6300

Maximum ∆T (K) 1.5 1.5 10

Active building storage capacity based on

possible temperature difference (kJ)
60000 60000 63000

Equivalent water capacity

@ 10 K ∆T (l)
≈ 1500 ≈ 1500 1500

DHW storage system SFH15 SFH45 SFH100

Maximum ∆T (K) 20 20 20

Storage capacity based on

temperature difference (kJ)
16800 16800 16800

Water capacity (l) 200 200 200

a The design point was used to size the heat pump, using IEA methodology (IEA 2019).
b An electric backup heater with a COP of 1 is used to meet the peak heat demand, especially when

there is simultaneous DHW and space heating demands.
c An existing space heating storage refers to an active heat building storage, which is directly coupled to

the heating system, i.e., the thermal capacity of the heating system (radiator or underfloor heating),
contrary to the passive building storage which refers to the heat storage capacity of the activatable
building mass (which is not considered in this study) (Gwerder and Schuetz 2019).

d A new storage refers to a technical storage, which is the name given to a heat storage unit that is
installed in the building as an additional device (Gwerder and Schuetz 2019).

(Swiss Society of Engineers and Architects 2011). For space heating, a 1500 l hot
water tank is assumed for the SFH100. As for the SFH15 and SFH45, underfloor
heating allows to use the concrete of the floors and the heating water content as heat
storage (i.e., existing building storage), thus, we do not consider any additional cost,
since this feature is inherent to well insulated and retrofitted houses. This building
storage is modeled as a tank of 1500 l with 10 K of ∆T (equivalent to a 9520 l water
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tank with 1.5 K of ∆T ). The cost of the hot water tank for space heating is 66
USD/kWh (with a ∆T of 10 K) while for the DHW hot water tank the cost is 132
USD/kWh (with a ∆T of 20 K) (Fischer et al. 2016). Since the optimal storage size
is mainly determined by the PV size (Fischer et al. 2016), and since we pre-define
the nominal PV capacity with the Swiss median for all scenarios and for all houses,
no other tank sizes are considered. Furthermore, specific heat and U-values of 0.36
W ∗m−2 ∗K−1 and 1.16 Wh∗ l−1 ∗K−1 respectively are assumed for the tanks. The
characteristics of the heat storage are shown in Table 4.2. In the cases where heat
storage for space heating is not considered, a small buffer for space heating (100 l)
is included regardless of the building type to ensure provision of both DHW and
space heating (see Figure 4.2b and 4.2d).

Electricity storage modeling and other constraints

Electricity storage with batteries is assumed to be integrated with the PV-coupled
heat pump system using a DC-coupled topology since it is more affordable and
efficient than AC-coupled topologies (Ardani et al. 2017). We use a 7 kWhel NMC-
based battery, which is the benchmark lithium-ion technology at the moment, with
a pack cost of 335 USD/kWhel of nominal capacity, 5000 cycles at 93% depth-of-
discharge and a round-trip efficiency of 89% (Schmidt et al. 2019). A maximum
charge and discharge rates of 0.4*C are assumed (i.e., the battery can be completely
charged or discharged in 2.5 hr). A bi-directional inverter is used to charge the
battery from the grid and to exploit ToU tariffs and its cost is assumed to be 600
USD/kWel (Ardani et al. 2017). In the cases without electricity storage, we consider
a PV-inverter with a cost of 190 USD/kWel (Ardani et al. 2017).

The battery model, which includes ageing, and accounts for the electricity bal-
ance, the efficiency losses in the bi-directional inverter and power constraints for the
battery, as well as the characteristics of the converter and the inverter, has been
derived from a previous publication and presented in Section B.4 (Pena-Bello, Bar-
bour, Gonzalez, Patel, et al. 2019). Eq. 4.11 presents the constraint for demand
peak-shaving, where Pgridi [kWhel] is the power drawn from or injected to the grid
at any timestep and Pmax−day [USD/kWhel] is the daily maximum power required
from the grid. PS is the boolean flag indicating the presence of a capacity-based
tariff (as in Eq. 4.1).

Pgridi ≤ Pmax−day ∀ i if PS = True (4.11)

System configurations

Eight PV-coupled heat pump configurations are compared in this study. In the
baseline scenario, electricity and heat are provided using a PV-coupled heat pump
without electricity or heat storage (see Figure 4.2a). In this scenario, the exist-
ing storage of the SFH15 and SFH45 (i.e., the underfloor heating inherent to the
house heating system), is disregarded to allow a direct comparison with the SFH100
(where the existing storage is very small, since it only consists of the radiators with
a capacity below 100 l). In the configuration "Tank DHW” (see Figure2b), DHW
is provided by the heat pump through a directly coupled tank while a small buffer
for space heating is also considered (i.e., 100 l), in order to avoid the simultaneous
use of the two virtual heat pumps (i.e., modeling purposes). For DHW provision
without heat pumps, we assume another (non-electric) device, such as a gas boiler
which is, however, not included in this analysis. In the configuration "Tank SH",
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Figure 4.2: A schematic representation of the four heating system configurations used in this study,
regardless of the use of battery storage.

heat storage for space heating is considered; for the SFH15 and SFH45 the under-
floor heating is used as storage, whereas for the SFH100 a water tank with similar
capacity is assumed (equivalent to 1500 l with 10 K ∆T , see Figure 4.2c). A fourth
configuration referred to as "Tank SH and DHW" includes DHW provision and heat
storage for both space heating and DHW (see Figure 4.2d). Furthermore, the same
configurations including a battery are considered (see Table 4.3). In all cases, the
space heating demand is provided in rather conservative blocks of 2 hr (contrary
to cases where higher blocks of flexibility are considered, e.g., Yao et al. (2018);
Toradmal, Kemmler, and Thomas (2018); Schuetz, Gwerder, et al. (2017) and
Waser et al. (2019)), giving an additional degree of flexibility to the system without
compromising the thermal comfort. On the contrary, DHW is provided on-demand.

4.2.3 Distribution grid upgrading

The hosting capacity of distribution grids is being challenged by the addition of PV
and heat pumps, together with electric vehicles. When this limit is reached, the dis-
tribution system needs to be upgraded. PV technology creates reverse power flow,
potentially resulting in voltage violations and overloading of the distribution lines,
while heat pumps increase the peak electricity demand (Gupta, Pena-Bello, et al.
2021). The cost of distribution grid reinforcement depends on the location, e.g., the
type of urban setting, for Switzerland, a recent study finds costs between 51-213
USD/kWp for PV additions, and between 46-1385 USD/kW for heat pumps addi-
tions by 2035 (Gupta, Pena-Bello, et al. 2021). Therefore, important investments
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Table 4.3: Various PV-coupled heat pump and storage configurations assessed in this study. Note
that in all cases a 4.8 kWp PV system is included and a heat pump of 4 kWth, 6 kWth or 16 kWth

provides space heating (and in some cases DHW) for the SFH15, SFH45 and SFH100, respectively.
In the cases where DHW is not provided with a heat pump, an external fuel-based boiler is assumed
(outside the scope of the model presented in this study).

Configuration DHW provision
with HP

Space heating
tank size (l)

DHW tank size
(l)

Corresponding
heating system

No storage (Baseline scenario) No - - Figure 4.2a

Tank DHW Yes 100a 200 Figure 4.2b

Tank SH No 1500b - Figure 4.2c

Tank SH and DHW Yes 1500b 200 Figure 4.2d

Battery No - - Figure 4.2a

Battery and Tank DHW Yes 100a 200 Figure 4.2b

Battery and Tank SH No 1500b - Figure 4.2c

Battery, Tank SH and DHW Yes 1500b 200 Figure 4.2d

a Values for SFH15/SFH45/SFH100 respectively.
b SFH15 and SFH45 use the existing building storage (underfloor heating) which is considered equivalent

to this size of water reservoir with a ∆T of 10 K. SFH100 uses a tank of the stated size for space heating.

are needed into distribution grids to enable the penetration of these technologies,
which could be passed on to the consumers (Horowitz et al. 2018). At high PV
penetration, additional flexibility is required to supply PV electricity on demand
and keep the grid stability (Horowitz et al. 2018), with energy storage being a key
flexibility provider as discussed in this study.

4.2.4 Techno-economic indicators

We use four important indicators to analyze trade-offs between prosumer benefits
and grid impacts for the various system configurations: levelized cost, electricity
peak flow, self-consumption rate and self-sufficiency rate. The levelized cost of
meeting the electricity consumption, including the various energy services of the
house, namely space heating, hot water (if indicated) and all appliances, LCOE
(USD/kWhel). It is calculated as shown in Eq. 4.12, as the sum of the CAPEX
(including replacements) and operational expenditures (OPEX) considering the life-
time of the different technologies (PV, heat pump, tanks and battery), and divided
by the total electricity demand Etotal−demand, which encompasses the original electric-
ity demand for appliances and lighting plus the heat pump electricity consumption
(Blok and Nieuwlaar 2016). A discount factor, r, is used to account for the time
value of money, the risk associated with the project and the inflation.

LCOE =

∑N
i=0

CAPEX
(1+r)i

+
∑N

i=1
OPEX
(1+r)i∑N

i=1
Etotal−demand

(1+r)i

(4.12)

The different cost of constructing the buildings (SFH15, SFH45 and SFH100) or
of retrofitting them to the corresponding thermal characteristics are not considered.
For prosumers, we also use as indicators the self-consumption (SC), which is the
share of on-site PV generation that is used to cover the local electricity demand (in-
cluding the heat pump) and self-sufficiency (SS), which is the share of local demand
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(including appliances, lighting, and heat pump) that is covered by the on-site PV
generation as shown in Eqs. 4.13 and 4.14.

SC =

∑N
i=0 (EPV−total−demand + EPV−batt)∑N

i=0EPV

(4.13)

SS =

∑N
i=0 (EPV−total−demand + Ebatt−load)∑N

i=0 Etotal−demand

(4.14)

Here N refers to the system lifetime (30 y); EPV−total−demand is the share of PV
generation that directly meets local electricity demand; EPV−batt is the share of PV
generation that is charged into the battery; EPV is the total PV generation; and
Ebatt−load is the amount of electricity discharged from the battery to cover local elec-
tricity demand. We graphically visualize these two indicators in an energy matching
chart, which is a type of graph that shows the matching between PV generation and
demand for different types of buildings (see Figure 4.5)(Luthander, A. M. Nilsson,
et al. 2019). To analyze grid impacts, we finally consider the peak power flow which
is defined as the maximum between imports from and exports to the grid (Pimm,
Cockerill, and Taylor 2018).

4.3 Results

We present the results in three steps as a function of the thermal characteristics of
the houses. Every building type (i.e., SFH15, SFH45 and SFH100), was matched
with 549 electricity profiles (i.e., a total of 1647 profiles). Then, the optimization
was run throughout a full-year and the results were scaled over a time period of 30 yr
corresponding to the lifetime of the PV system. First, we display boxplots comparing
LCOE and peak flows per building type for each configuration with and without
demand peak-shaving (i.e., with and without the inclusion of a capacity-based tariff).
Secondly, we display an energy matching chart to analyze self-consumption (SC)
and self-sufficiency (SS) depending on the type of storage, namely batteries and
hot water tanks (with and without DHW provision). Likewise, the LCOEs and
peak flows are plotted in order to get an understanding of the trade-offs between
prosumer benefits and grid impacts. To highlight statistically significant differences
across the results, we perform a Shapiro-Wilk test to prove non-normality of the
results (Royston 1982), followed by a paired Wilcoxon test with Holm procedure
to control the family-wise error rate, to determine if two or more sets of pairs are
different from one another in a statistically significant manner (Hollander, Wolfe,
and Chicken 2013). All tests results are presented in Section B.8. The statistical
analyses were performed in R (R Core Team) (Team R Core and others 2013). We
use kWel and kWth to refer to electricity and heat respectively.

4.3.1 LCOE

Figure 4.3 displays the levelized cost of meeting the total electricity consumption
for the three building types and eight configurations. Four major observations can
be made. First, the LCOE of SFH15 (which corresponds to the Swiss Minergie-P or
German Passivhaus) are significantly higher (p − values ≤ 0.001) than for SFH45
(modern building from the years 2000-2010) or SFH100 (renovated building from be-
fore 1980 or a building from 1980-1990), in particular, when DHW provision is not
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Figure 4.3: Boxplots (N=549) of the levelized cost of meeting the total electricity consumption,
including space heating, hot water (if indicated) and all appliances, for all configurations depending
on the combination of applications and the type of house. The line in the middle of the box and
the number above the box represent the median LCOE. The box spans the first quartile to the
third quartile, and the whiskers extend up to 1.5 times the interquartile range from the top or
bottom of the box. PVSC stands for PV self-consumption, DLS for demand load shifting and DPS
for demand peak-shaving. Note that low values of LCOE are beneficial for the consumer.

considered. For example, the difference between the median values of SFH15 and
SFH100 reaches 0.17 USD/kWhel for a PV-coupled heat pump connected to a bat-
tery and in the presence of a capacity-based tariff. The reason for these differences
is twofold, on one hand the specific CAPEX and on the other hand, the electricity
consumption of the heat pumps leads to very different electricity demand depending
on the thermal envelope of the building, with medians of 8120 kWhel, 3420 kWhel

and 2260 kWhel p.a. for the SFH100, SFH45 and SFH15, respectively (see Section
B.7). Secondly, DHW provision, which accounts for around 1300 kWhel p.a. of heat
pump electricity consumption, reduces significantly the LCOE (p− values ≤ 0.001)
regardless of the type of house. Furthermore, the better the thermal insulation of
the house, the higher the impact of DHW on the LCOE. For instance, the median
LCOE value is reduced by 0.05 USD/kWhel, 0.11 USD/kWhel and 0.17 USD/kWhel

for a PV-coupled heat pump system assisted with thermal storage for space heating
and DHW in SFH100, SFH45 and SFH15, respectively, compared to the baseline
(without storage).

Thirdly, the use of batteries significantly increases the median LCOE values by
up to 0.08 USD/kWhel relative to the baseline (p − values ≤ 0.001), mainly as
a consequence of the CAPEX of the battery. Finally, the inclusion of a capacity
component in the retail tariff (to enable demand peak-shaving) entails a significant
increase of the LCOE (p − values ≤ 0.001) for houses with high thermal standard
due to the lower impact of the volumetric component of the electricity tariff on
the costs. The median increases of LCOE values due capacity-based tariffs are
0.05 USD/kWhel, 0.03 USD/kWhel and 0.01 USD/kWhel for SFH15, SFH45 and
SFH100, respectively.
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4.3.2 Peak flow

Figure 4.4 displays the peak flow depending on the system configuration and the
type of house. Three major observations can be made. First, the peak flow is signif-
icantly higher (p−values ≤ 0.001) in houses with poor thermal envelope (SFH100),
compared to houses with high (SFH45) and very high thermal performance (SFH15),
which is a direct result of the heat pump capacity. For instance, the median of the
peak flows across all configurations for SFH100 with (without) the capacity-based
tariff are 9.1 kWel (12.1 kWel), 5.3 kWel (6.5 kWel) more than for SFH15.

Secondly, heat pump operation has only a rather small impact on the peak flow
of SFH15 and SFH45, thanks to their envelope quality. Heat pumps only have a
peak power of 1.7 kWel and 2 kWel respectively, which is lower than the median peak
of the original demand for appliances and lighting (4.8 kWel, see the case "No HP
& no PV" in Figure 4.4). Furthermore, the peaks of the original demand and the
heat pump are not simultaneous. In contrast, for renovated old houses (SFH100),
the heat pump peak power (6.6 kWel) strongly impacts the peak flow, doubling the
original demand for appliances and lighting.

Figure 4.4 also shows that the impact of the type of storage depends on the
thermal characteristics of the house and the presence of a capacity-based tariff.
Batteries slightly reduce (increase) the peak flow by 0.8 kWel (1.3 kWel), depending
on whether a capacity-based tariff is in place or not (this result is statistically sig-
nificant, with p− values ≤ 0.001). In poorly insulated houses, heat storage slightly
reduces (increases) the peak flow by 1.2 kWel (0.7 kWel) depending on the capacity-
based tariff. With batteries as energy storage, the peak flow of PV-coupled heat
pumps varies very strongly depending on whether the electricity tariff includes or
not a capacity-based tariff, decreasing by 1.2 kWel and increasing by 2.6 kWel re-
spectively, regarding the base case (no storage), with differences being statistically
significant, with p− values ≤ 0.001 in both cases.

4.3.3 Graphical comparison electricity and heat storage

We compare electricity and heat storage, first in terms of self-consumption and self-
sufficiency (Figure 4.5), and secondly in terms of LCOE and peak flow (Figure 4.6),
assuming that a capacity-based tariff is included in the electricity tariff.

Figure 4.5 shows a limited increase in the median values of self-consumption
(2-6%) and self-sufficiency (3-4%) for the inclusion of a hot water tank for space
heating only (represented with a black circle, square and diamond according to the
type of house) for the three types of house (despite being statistically significant,
with p− values ≤ 0.001). When a heat pump is used to provide both space heating
and DHW, the increase in self-consumption is high (13-16%) and moderate for self-
sufficiency 6-9%) (values are statistically significant, with p− values ≤ 0.001). On
the other hand, adding a battery to the PV-coupled heat pump system leads to
important increases in self-consumption (15-16%) and self-sufficiency (11-29%), for
the three types of house (statistically significant, with p−values ≤ 0.001). Values for
other configurations are shown in Section B.8, and similar patterns can be observed.

Figure 4.6 shows a graphical comparison of the LCOE and the peak flow by
type of house for the different types of storage added to the PV-coupled heat pump
system. The inclusion of heat storage for space heating marginally reduces the
LCOE for SHF15, SFH45 and SFH100 by 0.03 USD/kWhel, 0.03 USD/kWhel and
0.02 USD/kWhel, respectively (p−values ≤ 0.001). More importantly, heat storage
allows to maintain the peak flow at the same levels as the baseline case and even
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Figure 4.4: Boxplots (N=549) of the peak flow defined as the maximum peak power, considering
import from and export to the grid, for all configurations depending number of storage applications
(PVSC is PV self-consumption, DLS is demand load-shifting and DPS is demand peak-shaving
with a capacity-based tariff) and the type of house (SFH15, SFH45 and SFH100). For comparison,
the original electricity load, without PV generation or heat pump is also displayed (No HP & No
PV). The line in the middle of the box and the number above the box represent the median peak
flow. The box spans the first quartile to the third quartile, and the whiskers extend up to 1.5
times the interquartile range from the top or bottom of the box. The dashed red line represent
the median of the classic electricity load distribution.
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Figure 4.5: Energy matching chart to analyze self-consumption (SC) and self-sufficiency (SS) for a
PV-coupled heat pump system as a function of the type of storage, namely, none (baseline case),
heat storage for space heating alone, heat storage for space heating and with DHW and finally, with
only a battery. The configurations presented here include a capacity-based tariff in the electricity
tariff. The big black circle, square and diamond represent the median by type of house.
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Figure 4.6: LCOE vs peak flow for a PV-coupled heat pump system as a function of the type of
storage, namely, none (the baseline case), heat storage for space heating alone, heat storage for
space heating and with DHW and finally, with only a battery. The configurations presented here
include a capacity-based tariff in the electricity tariff. The big black circle, square and diamond
represent the median by type of house.

helps to reduce it by 1.2 kWel in inefficient houses (SFH100). When DHW is added
as demand load, the LCOE decreases further by 0.16 USD/kWhel, 0.08 USD/kWhel

and 0.07 USD/kWhel for SHF15, SFH45 and SFH100, respectively. However, the
median peak flow in the older house is pushed to 9.6 kWel above the baseline median
value (which excludes DHW, see Table 4.3), while in the more efficient houses the
median peak flow remains at the same level.

On the other hand, the addition of a battery leads to an increase of the median
LCOE between 0.04-0.08 USD/kWhel depending on the type of house (statistically
significant, p − values ≤ 0.001). However, a battery decreases the peak flow if a
capacity-based tariff is present, with a median peak reduction between 0.8-1.2 kWel

depending on the type of house (p− values ≤ 0.001).

4.4 Discussion

Our results highlight some of the challenges, and opportunities associated with the
electrification of heat demand in the context of decarbonization. First, installing
heat pumps without retrofitting the thermal envelope, markedly increases (up to
twice) the peak flow in poorly insulated houses (i.e., SFH100). This increase is a
direct consequence of the size of the heat pump required to supply the heat demand.
Secondly, the provision of DHW using heat pumps and electric backup heaters en-
tails even a higher peak flow in poorly insulated houses. Consequently, thermal
retrofitting does not only help to reduce carbon dioxide emissions and to increase
comfort levels (Streicher, Padey, Parra, Bürer, S. Schneider, et al. 2019; Narula
et al. 2019), but also to reduce grid stress.

Thermal retrofitting allows to defer investments on distribution grid upgrading,
due to PV and heat pump penetration. In Switzerland, indicative costs of grid
upgrading under a conservative scenario of PV penetration (4.2 GWp) reach up to
0.49 billion USD, while they amount to 0.78 billion USD for 6.4 GWel of installed
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heat pump capacity (Gupta, Pena-Bello, et al. 2021). However, two main obstacles
have to be overcome. First, the low retrofitting rate of 1% p.a., has to be increased.
Secondly, the large investment for energy retrofitting, poses a second obstacle to
reduce grid stress. For instance, retrofitting houses which are originally not well
insulated (i.e., SFH100) to very high insulation standards (SFH15) costs around 730
USD/m2 (Streicher, Padey, Parra, Bürer, and Patel 2018; Streicher, Padey, Parra,
Bürer, S. Schneider, et al. 2019), i.e., 100.000 USD for a standard single-family
houses of 140 m2 as considered in this study. Additionally, the cost to improve the
thermal performance of all the SFH in Switzerland is of 35 billion USD (Streicher,
Mennel, et al. 2020). While these are very high prices for the tenants and may be
subject of subsidies from the government, the economic saving potential of more
than 50% for the Swiss residential building stock has been proved (Streicher, Padey,
Parra, Bürer, and Patel 2018). Nevertheless, the extent of the economic saving
potential for the distribution grid (avoidance of grid upgrade) remains an open
question.

We find that the implementation and design of capacity-based tariffs are funda-
mental to limit the grid impacts associated with the performance of PV and heat
pump technologies, as well as batteries charging from the grid (i.e., performing de-
mand load shifting). Capacity-based tariffs provide price signals for prosumers to
reduce their peak flow, which can help to defer distribution grid upgrades and to
recover a portion of network costs (Azarova et al. 2018). On the other hand, policy
makers and regulators need to carefully design such capacity-based tariffs in order to
avoid costly household bill expenditures (Azarova et al. 2018). We acknowledge that
although capacity-based tariffs have been widely applied for large consumers, their
application has so far been more limited for residential customers. However, there
are some first pilot projects and demonstrations, e.g., in the Netherlands, France,
Italy, Finland, and Spain (Hennig et al. 2020; EMI 2015; Prettico et al. 2019). Their
implementation for residential consumers is now being suggested following the pen-
etration of PV, air conditioning, heat pumps and electric vehicles. As shown in this
study, the performance of these various technologies modify the electricity demand
profile and in particular, they increases the peak demand, leading to voltage issues,
and overloading of lines and transformers (Perez-Arriaga, J. D. Jenkins, and Batlle
2017; Savelli and Morstyn 2021b; Fridgen et al. 2018).

It is important to highlight that energy storage can be a two-edged sword, reduc-
ing or increasing the peak flow depending whether a capacity-based tariff is present
or not. When capacity-based tariffs are included, batteries allow to reduce the peak
flow, even below the baseline case (which corresponds to houses with neither PV
nor heat pump) in houses that are well and very well insulated. In houses which
are poorly insulated, batteries also reduce the peak flow below the baseline as long
as DHW is not met using electricity (i.e., an additional heat generator is used to
meet DHW). Our results show a similar pattern for heat storage for space heating,
however, heat storage reduces less the peak flow, even with high capacity-based tar-
iffs (see Section B.10). The beneficial effect of heat storage could be increased by
increasing the offset temperature and/or by allowing further flexibility, beyond the
two hours-blocks assumed in this study. However, the use of larger tanks, under
the same conditions (PV size of 4.8 kWp, two hours-blocks and 10 K of temperature
difference) only increase self-consumption and self-sufficiency by 1 percentage point,
while the peak flow remains steady and the LCOE increases by 0.01 USD/kWhel

(see Section B.8). The peak flow is mainly determined by the PV export in well in-
sulated houses, whereas the peak demand is predominant in poorly insulated houses.
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This explains why the peak flow in well insulated houses is not reduced below the
threshold determined by the PV nominal capacity unless PV curtailment is imple-
mented.

The supply of DHW by heat pumps (around 1300 kWhel p.a.) is highly ben-
eficial for an investment of a PV-coupled heat pump system since it considerably
reduces the LCOE (up to 0.17 USD/kWhel) and increases the self-consumption rate
by more than 10%, while incurring in a relatively small extra capital investment
(960 USD). Conversely, DHW supply implies an increased peak flow in poorly in-
sulated houses (SFH100). As an important finding, the use of batteries enables a
significant increase in self-sufficiency and self-consumption, by up to 16% and 29%,
respectively. However, the still high cost of batteries increases the LCOE markedly
(up by 0.08 USD/kWhel). Thus, battery cost reduction is urgently needed to pave
the way towards win-win situations for prosumers and the grid, in particular for
well insulated houses. Finally, access to low financing costs (i.e., reflected by the
discount factor) is key to reduce the burden on prosumers who invest on low carbon
technologies to decarbonize the heating sector, followed by subsidies to reduce the
upfront cost of carbon-free technologies.

Our study proposes a robust framework to quantify the impacts of storage tech-
nologies on PV-coupled heat pump systems and the proposed model is rich in tech-
nology details. However, it is not without limitations, which in turn call for future
research. Our methodological approach includes some simplifications such as the
assumption of a steady state of the buildings’ thermal performance and of perfectly-
mixed water tanks. More detailed thermal modeling of both buildings and hot water
tanks would have increased the computation time markedly. Daily schedule opti-
mization could restrict heat storage flexibility and its economic case, but on the other
hand, a longer optimization windows increases the forecast uncertainty, in particu-
lar of demand peaks. Forecast strategies (perfect forecast is assumed in this study),
together with alternative optimization windows (midnight to midnight is assumed in
this study) may cut down the peak flow reductions and increase LCOE values. We
assume a rather limited thermal inertia of buildings implying that the heat supply
must match the heat demand for each 2 hr time interval. In contrast, more flexible
hot water tanks (larger size, higher temperature levels and stratification) and houses
could boost the role of heat storage. However, we argue that extra thermal inertia
and its associated flexibility (e.g., 24 hr) may not be representative for the entire
building stock, in particular for houses with poor envelope quality, calling for further
empirical evidence. In addition, we use a representative size of energy storage (both
electricity and heat) for comparability reasons, whereas alternative sizes may mod-
ify the trade-offs between prosumer benefits and grid impacts (inclusion of sizing
in the optimization could hence lead to different findings). Importantly, the design
of future electricity tariffs including ToU and capacity-based components calls for
further interdisciplinary research (Azarova et al. 2018). Future research can also
include electric vehicles and use our open-source optimization model with different
locations with temperate climate and fast diffusion of PV and heat pumps.

4.5 Conclusions and policy implications

This study analyzes the trade-offs between prosumer benefits and grid impacts for
PV-coupled heat pumps, providing space heating and domestic hot water for resi-
dential buildings characterized by different thermal performance. We also compare
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electricity and heat storage based on existing ToU tariffs and capacity-based tariffs.
Importantly, we find that energy retrofitting is effective (up to 50% smaller

peak flow in well insulated buildings) for decreasing the grid impacts of heating
electrification. Consequently, policy measures incentivizing building retrofitting are
beneficial not only for the owners and tenants, in terms of improved thermal comfort
and lower heating bills, but also for distribution grid operators that may defer (or
completely avoid) upgrades. Secondly, we recommend the following steps to increase
the share of PV self-consumption and self-sufficiency, based on our economic results,
in houses with a PV-coupled heat pump system: first, to supply domestic hot water;
secondly to install heat storage; and lastly, to use a battery.

Thirdly, the implementation and design of capacity-based tariffs are fundamental
to relieve grid impacts from PV, batteries and electric heating with heat pumps.
Based on our results, we conclude that heat storage reduces the levelized cost of
meeting the electricity consumption, in particular when heat pumps are used for
space heating and DHW, while it allows high self-consumption (30-39% comparable
with batteries). On the other hand, both heat storage and batteries are found to
be a two-edge sword, since they can either increase or decrease the peak demand
depending on the presence of capacity-based tariffs. Based on representative sizes
(i.e., 7 kWhel battery and 1500 l hot water tank), we conclude that batteries are
more effective than heat storage in increasing the self-sufficiency of houses with
PV-coupled heat pumps.

However, decarbonizing heating demand using local PV supply enabled by stor-
age is still costly (i.e., the cost of meeting the electricity related to the various
energy services of the house, including space heating, hot water and all appliances is
in the range of 0.55-0.71 USD/kWhel ) and therefore, appropriate policy incentives
are needed. In order to be economically efficient, research and innovation policy
should be designed in a way that reduces societal cost. Based on our analysis, we
recommend that policy should support research and incentives on levers which si-
multaneously maximize prosumer benefits and minimize their grid impacts, such as
building energy retrofitting, energy storage and capacity-based tariffs.

66



Chapter 5

Local level

Peer-to-peer (P2P) exchange of renewable energy is an attractive option to empower
citizens to actively participate in the energy transition. Whereas previous research
has assessed P2P communities primarily from a techno-economic perspective, little is
yet known about prosumer preferences for solar power trading. Importantly, impacts
of community members’ trading decisions on key performance indicators such as
individual electricity bills, community autarky, and grid stress remain unknown.
Here, we assess P2P trading decisions of German homeowners based on an online
experimental study and simulate how various decision-making strategies impact the
performance of P2P communities. The findings suggest that community autarky is
slightly higher when prosumers are enabled to trade energy compared to when they
merely aim to maximize their self-consumption. Our analysis moreover shows that
P2P energy trading based on human decision-making may lead to financial benefits
for prosumers and traditional consumers, and reduced stress for the grid.

5.1 Introduction

Renewable energy communities (RECs) are expected to play a key role in the tran-
sition towards clean and affordable energy. The European Union, for instance, has
put RECs in the spotlight of its energy strategy, the Clean Energy for all Euro-
peans Package (European Union 2018). It enacted the right of citizens to consume,
store, and sell self-generated renewable energy, either individually or in communi-
ties. RECs can be defined as renewable-based and distributed energy systems which
are embedded within or close to consumption centers (Carlisle, Elling, and Penney
2008). Members of RECs share several attributes including space and networks
and/or several interests, such as renewable electricity supplies and decarbonization,
and actively participate in the project across one or more phases (Council of Euro-
pean Energy Regulators 2019). RECs may enable citizens to actively engage in the
energy transition; for instance by participating in the collective investment in tech-
nology, the provision of self-generated electricity, and community decision-making
processes (Savelli and Morstyn 2021a; Council of European Energy Regulators 2019).

Several types of RECs have been discussed in previous literature, such as co-
operatives, self-consumption communities, virtual power plants, energy hubs, and
peer-to-peer (P2P) electricity trading communities (Devine-Wright 2019; Koirala
et al. 2016; Parra, Swierczynski, et al. 2017). Among them, P2P communities of-
fer citizens real-time market participation (Ableitner et al. 2020). Specifically, P2P
community members can buy and sell self-generated electricity on a local market;
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a characteristic that differentiates P2P communities from other forms of RECs. In
organic P2P electricity markets, which refer to fully distributed structures that rely
on grassroots initiatives from citizens (Parag and Sovacool 2016; Hahnel, Herberz, et
al. 2020), community members become an integral part of the community decision-
making process, determining how much and when renewable energy is shared within
the community (Lüth et al. 2018; Parag and Sovacool 2016; Wilkinson et al. 2020;
Dudjak et al. 2021). In such P2P markets, community members with photovoltaic-
coupled (PV-coupled) batteries have the highest degree of flexibility as they can
decide whether they want to sell electricity to other community members, or in-
crease their individual autarky.

It is indicated that a significant part of citizens from industrialized countries have
a positive attitude towards P2P energy communities, and would generally be willing
to participate in related projects. Previous studies involving citizens interested
in renewable energy indicate willingness-to-participate rates ranging between 74.5-
79.0% (Hahnel, Herberz, et al. 2020; Hackbarth and Löbbe 2020; Reuter and Loock
2017). In a representative UK survey, willingness-to-participate ranged from 54-
67% depending on characteristics of the P2P community such as its geographical
range (Fell, Schneiders, and Shipworth 2019). Moreover, 89.5% of a representative
sample of 998 Swiss citizens reported that they would prefer P2P electricity trading
to be based on their individual preferences over an entirely automatic decision-
making process (see Section C.1). However, trading decisions in the context of P2P
communities are complex, as multiple factors such as dynamic electricity prices, state
of charge (SOC) of batteries, and PV generation forecasts need to be considered.
Agents that both consume and produce energy (i.e., prosumers) further have to
make trade-offs, since selling self-generated electricity at high market prices can be
financially attractive, contribute to increased renewable energy consumption at the
community level and lower grid stress, but can also reduce individual autarky. In
contrast, prioritizing autarky at the individual level may forego financial benefits
from trading, as well as potentially intensify grid stress. In light of these trade-offs,
it is intriguing to ask under which conditions prosumers would be willing to provide
electricity to a P2P community, and whether their trading decisions would lead to
benefits at the individual, collective, and grid levels.

Recent research revealed factors that influence homeowners’ P2P trading deci-
sions (Hahnel, Herberz, et al. 2020; Ecker, Spada, and Hahnel 2018), but the impact
of such decisions on key performance indicators has not yet been sufficiently exam-
ined. Past research on P2P energy communities has primarily addressed techno-
economic aspects; for instance, underlying technologies (Andoni et al. 2019; Wörner
et al. 2019), and pricing mechanisms (N. Liu et al. 2017; Zhou, J. Wu, and Long
2018; Hutty et al. 2021). User behavior has been reported for small P2P pilot trials,
but has not been taken into account for the design and modeling of P2P commu-
nities yet (Ableitner et al. 2020). Instead, community members have been modeled
as rational agents with exclusively economic interests (Andoni et al. 2019; Wörner
et al. 2019; N. Liu et al. 2017; Zhou, J. Wu, and Long 2018; Hutty et al. 2021). This
reductive view on human preferences and decision strategies is at odds with theories
and empirical findings from psychology, which has illustrated that human prefer-
ences and decisions notably tend to deviate from assumptions made by standard
economic theory (Gigerenzer and Gaissmaier 2011; Simon 1955; Hahnel, Chatelain,
et al. 2020). Moreover, recent research on P2P energy trading has illustrated that
individuals vary in their trading preferences, and apply different decision-making
strategies in P2P scenarios rather than responding in a uniform fashion (Hahnel,
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Herberz, et al. 2020). Thus, integrating actual human preferences and P2P deci-
sion strategies in energy modeling can result in more realistic projections of the
potential of P2P communities at various levels. Finally, human-centered modeling
more adequately responds to the principal idea that P2P communities foster social
empowerment and participation in the energy transition (Ahl et al. 2019).

In this paper, we report an interdisciplinary approach, bridging psychology with
the engineering sciences in order to address the need for integrating human de-
cision preferences into the analysis of P2P energy communities. We first assessed
homeowners’ P2P trading preferences by means of an online experimental study and
then integrated the decision data into an energy simulation. Our findings show that
homeowners’ trading decisions can result in benefits at the individual, collective and
grid level. The benefits, however, vary across community members and depend on
the applied P2P trading strategy of prosumers. The findings inform the design of
P2P communities and provide new pathways towards human-centered REC design.

5.2 Material and methods

5.2.1 Experimental online study

Sample

The study was approved by the ethics committee of the Faculty of Psychology and
Educational Sciences of the University of Geneva, Switzerland and was conducted
in accordance with the ethical regulations of the university. All participants gave
their consent to take part in the study and received financial compensation for par-
ticipation. In total, 251 homeowners completed the study (of a total of 299 who
began the study; i.e., 48 participants decided not to finish the study). Data collec-
tion was assigned to a market research institute (Consumerfieldwork; experimental
study date: March 2020), which contacted panel members who owned a house and
were older than 18 years old. Demographic characteristics, as well as information
on PV and storage ownership and psychological variables of the full sample are de-
picted in Section C.2. The distribution of sex, age, educational level, and occupation
largely corresponded to the general population of German citizens (but see subsec-
tion Generalizability for deviations). Participants completed the study online. The
study was closed after the pre-defined number of 250 completions were attained.

Generalizability

The following aspects should be considered regarding the generalizability of our
results. We specifically assessed decisions of German homeowners based on the
rationale that homeowners should most likely be able to self-generate and trade
electricity. This resulted in a higher median age in our sample than that of the
German population, reflecting the circumstance that homeowners are on average
older than the overall population. Additionally, the amount of women in our sample
was slightly higher than in the German population. Moreover, trading decisions
were only based on participants that reported to be willing to take part in a P2P
community after a detailed information provision (70% of our sample, see subsec-
tion Pre-assessment and P2P decision task). Our rationale was to examine trading
decisions of individuals that are likely to be members of future P2P communities.
Table C.1 shows detailed demographic information on the total sample, the trading
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sample, and the non-trading sample. Furthermore, our analyses of trading decisions
were based on an experimental task using a predefined set of variables, and thus de-
cisions might deviate from those made in real life (see main text, section Limitations
and future pathways for a discussion). Finally, in order to test whether the results of
the simulated P2P community can also be transferred to communities with different
sizes and shares of PV and battery penetrations, we conducted sensitivity analyses
with various community configurations and sizes. This sensitivity analysis can be
found in Section C.4.

Pre-assessment and P2P decision task

Participants first answered a series of demographic questions including sex, age,
civil status, employment status, highest achieved educational degree, and household
size as well as their political ideology, general risk taking preferences, environmental
values, and renewable energy technology purchase intentions (see Table C.1). Partic-
ipants were then introduced to the P2P energy trading scenario which we designed
to reflect future conditions in a realistic and vivid manner. The decision scenario
was adapted from a recently published study by Hahnel et al. (Hahnel, Herberz,
et al. 2020). In the scenarios, participants were asked to imagine that they installed
PV modules on their roof to generate electricity as well as a 10 kWh battery in their
basement to store the generated electricity. The PV system generated electricity
with a levelized cost of €11 p/kWh, which was included as reference information
for comparison with the P2P market price. Inside the P2P community, participants
were able to trade electricity from their batteries.

Subsequently, the P2P choice task was introduced (see Figure C.1 for a visual-
ization of the task). Participants were instructed that they would face several inde-
pendent situations in the described scenario, and had to repeatedly decide whether
or not they wanted to sell 1 kWh electricity from their battery to the community.
In each situation, they were informed about the projected next PV surplus, the
SOC of their battery, and the P2P market price. Prior to the task, participants
were informed that when their battery was empty, they would have to buy their
energy at the current community market price. Similarly, when their battery was
fully charged they would have to sell their energy at the current market price. Af-
terward, participants reported their willingness to participate in the described P2P
community. The specific question was: ’In general, could you imagine being part
of an electricity community as described earlier, where electricity is traded among
members?’; Response options: (1) ’Yes, I can imagine that in principle’; (2) ’No,
I can’t imagine that in any case.’ When the answer was negative (i.e., 75 out of
251 participants, equivalent to 30% of the sample), participants were asked for the
reason, and then the study was closed for those individuals (see Section C.2 and
Figure C.2 for the reasons of respondents who did not want to participate in the
proposed P2P community). Only in case of a positive answer, participants were
forwarded to the energy trading section.

P2P experimental design

The P2P choice task was based on a 4 x 3 x 2 within-subjects design, with different
electricity prices being offered in the community (€4 p/kWh to €28 p/kWh in steps
of €8 p/kWh), SOC of the battery (30%–90% in steps of 30%), and time until the
next surplus (more than or less than 12 hours). All possible combinations of prices
and charging states were presented in a random order, resulting in a total of 24
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decisions. The dependent variable was participants’ choices to either sell electricity
from the battery to the P2P community or not.

During the task, a reminder box was displayed informing participants that the
levelized cost of PV was €11 p/kWh, that selling electricity would decrease the SOC
of their battery by 10% (corresponding to 1 kWh), that a full battery is sufficient
to cover the electricity demand for one day, approximately, and that their decisions
would be valid for a one hour interval and could be revised afterwards.

5.2.2 Simulation

Modeling

We developed an open-source model, schematically represented in Figure 5.1, to
analyze P2P communities including prosumers with and without batteries and tra-
ditional consumers. To understand the impacts and trade-offs of human decision-
making preferences and strategies towards P2P trading, we used a baseline case
with the same number of prosumers and consumers, as well as the same technol-
ogy capacities. In this baseline case, prosumers maximized their self-consumption,
which represented the status quo in Germany and many other countries after the
decline of FiT (Ruf 2018). Our open-source model is based on prosumpy, a toolkit
for the simulation and economic evaluation of self-consumption with solar home bat-
tery systems (Quoilin et al. 2016), which takes as inputs the community size, PV
and battery penetration, and the demand and generation datasets. The model and
data on which this article is based are available at https://github.com/alpebexo/
solar_communities.

Peak demand
and exportSelf-sufficiencySelf-

consumption Bill

Peak demand
and exportSelf-sufficiencySelf-

consumption Bill

Individual self-
consumption

Demand Retail and
Export pricesCommunity sizePV generation Survey subsample

(Prosumer behavior;
N=Community size)

P2P price
definitionP2P trading decision

Self-consumption
maximization

Demand Retail and
Export pricesCommunity sizePV generation

Self-consumption
maximizationP2P trading

Figure 5.1: Schematic representation of the proposed modeling of prosumers with PV
and batteries depending on the strategy. Households with a P2P trading strategy opt to
self-consume their PV generated electricity before choosing to trade electricity from their batteries
within the P2P community depending on the market price, the SOC and the time until the next
surplus (more than or less than 12 hours). Prosumers with a self-consumption strategy opt to
maximize their own self-consumption. They only inject surplus PV electricity into the main grid.

Community conformation

For both cases, P2P communities and self-consumption maximization, we considered
100 households in the same area behind a single PCC, which were fed by a single
Low-Voltage/Medium-Voltage transformer. The two strategies were compared at
the individual and at the aggregated levels (i.e., at the PCC). Table 5.1 shows the
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main assumptions and technology characteristics for both P2P community trading
and self-consumption maximization. We assumed 50% PV penetration (i.e., 50
households with PV) and 25% battery penetration (i.e., out of the 50 households
with PV, 25 have access to a battery) for the main analysis. Analysis of other PV
and battery penetration (25 and 75% for each device) scenarios and community sizes
(20, 40, 60, and 80 households) are shown in Section C.4.

Table 5.1: Main assumptions and characteristics of the technologies for the P2P trading and self-
consumption maximization strategies analyzed in this study. The mean values presented are for
1000 simulations.

Strategy Self-consumption maximization P2P trading

Number of simulations 1000 1000

Community size 100 100

Amount of households without PV nor battery 50 50

Amount of households with PV 50 50

Amount of households with PV and battery 25 25

Storage sitting Distributed Distributed

Retail price [EUR per kWh] 0,28 [0,04-0,28]

FiT [EUR per kWh] 0,04 [0,04-0,28]

Battery size [kWh per household] 10 10

Mean aggregated PV size [kW] 295 295

Mean aggregated demand [MWh per annum] 468.8 468.8

Simulation of trading preferences No Yes

Monte Carlo simulations

To increase the robustness of our results, we ran 1000 simulations for every commu-
nity, randomly assigning to every household a demand profile and a PV system’s
size (prosumers only), as well as a set of decisions of one participant from the ex-
perimental study (prosumers with PV and battery only). We then referred to the
mean values of the 1000 simulations across the figures in this paper.

Self-consumption maximization

Here, every prosumer, with and without batteries, maximized their own self-
consumption to avoid expensive electricity imports from the main grid at the re-
tail tariff. When the battery was full and PV generation was higher than demand,
surplus PV electricity was sold to the grid at the FiT (see Section C.6 for more infor-
mation). We used a flat tariff of €28 p/kWh as the retail price, which is close to the
reported average retail price for households in Germany for the second half of 2019
(€28.7 p/kWh) (Eurostat 2020). The FiT was assumed to be constant at €4 p/kWh,
which is close to the average German wholesale electricity price (€3.8 p/kWh) for
the years 2017-2019. Under this strategy, there was no electricity trading. However,
other households in the area can make use of the PV surplus electricity, contributing
to aggregated self-consumption and autarky (measured at the PCC). Battery grid
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charging and battery electricity injection into the main grid from the batteries were
not allowed under this strategy.

P2P community

First proposed in 2007 (Beitollahi and Deconinck 2007), P2P trading is based on an
interconnected platform that serves as an online marketplace where consumers and
producers ’meet’ to trade electricity directly, without the need for an intermediary
(IRENA 2020). In particular, we modeled an organic market (behind the PCC)
with a dynamic price structure (see subsection Pricing mechanism in P2P com-
munity) involving prosumers with and without batteries and traditional consumers
(Hahnel, Herberz, et al. 2020; IRENA 2020). Therefore, electricity can be sold to
the P2P community from both PV and battery systems. For the latter, we used
homeowners’ trading preferences derived from the experimental study, depending
on the market price, battery SOC, and time until the next PV surplus (see Sections
C.2 and C.6). Trading preferences were integrated into the simulation by randomly
allocating each household with PV and batteries a decision profile of one participant
from the experimental study.

Pricing mechanism in P2P community

Three assumptions were considered for the proposed P2P market: i) there is a com-
petitive equilibrium; ii) electricity demand is inelastic; and iii) the market operator
ensures that the platform is secured and trusted, and follows a balanced budget –
i.e., all payments effectively flow between households and the utility grid, or among
various households, without receiving any dedicated profit. There is a single market
price at any time.

The price of a good is inversely related to the quantity offered, according to
the law of supply and demand (N. Liu et al. 2017). Thus, the market price in-
creases alongside limited PV surplus available to be sold relative to the amount
of electricity demand, and vice versa. When PV surplus (including both PV and
batteries) is higher than the community electricity demand, and therefore surplus
PV electricity must be exported to the main grid at €4 p/kWh. Likewise, if the
community electricity demand is higher than surplus PV electricity, electricity must
be purchased from the main grid at the retail price (€28 p/kWh). To the extent
that demand and supply match and to the extent that prosumers are willing to sell,
electricity is available for trading inside the community, depending on prosumers
preferences. We used Eq. 5.1 to calculate the amount of electricity that could be
traded at every timeslot using the probabilities of selling electricity collected through
the experimental study. To determine the market price, we used a two-step method,
based on probabilities to sell (i.e., ex-ante, as opposed to actual sells): First, we
calculated the probabilities of selling electricity from the batteries when the SOC
was 60%, accounting for the time until the next PV surplus, using the data from
the experimental study. Second, for the amount of traded electricity (calculated
ex-ante, based on probabilities), we determined an equilibrium price for the P2P
market, i.e., supply is equal to demand, and approximated the equilibrium price to
those used for the experimental study (€4, €12, €20 and €28 p/kWh). Therefore,
the market price was constrained to be a step function, with the FiT as the lower
bound, and the retail price as the highest one (N. Liu et al. 2017). This dynamic
price structure resulted in a uniform price for all community members. See Section
C.6 for an example of two representative spring days.
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EP−traded,t = N ·
H∑

h=1

P ((1KWh)h,t|(SOC60%, t)) (5.1)

Where N is the number of batteries in the community, and
P ((1KWh)h,t|(SOC60%, t)) is the probability of trading 1 kWh from a pro-
sumer with a battery when the SOC is 60% depending on the time until the next
PV surplus based on the weather forecast.

Input data and assumptions

We used the distribution of PV sizes from the EEG register data and funding rates
(which can be found here https://bit.ly/37d0Q6L) with 841,783 registers of small
PV plants (≤ 10 kWp), from which we randomly generated for each Monte Carlo
simulation the PV size attached to each one of the considered households. The PV
generation was modeled using a single diode equivalent circuit model using outdoor
temperature and clear sky global irradiation on a horizontal plane at ground level
in Munich, Germany, taken from Soda-Pro (http://www.soda-pro.com/), from the
year 2015. We generated one year of data with a 15-minute resolution, of a 1 kWp PV
system that was afterwards scaled up to the PV size assigned to a given household. In
accordance with the experimental decision task, we used a 10 kWh battery system
with 100% depth-of-discharge. It is worth noting that battery degradation is an
important parameter to be considered by prosumers. Although we did not consider
it in this study, in order to avoid trading electricity without a proper economic
incentive, the battery degradation cost must be lower than the revenue created by
the P2P trading (for a detailed discussion see Section C.7). In terms of electricity
demand, we used electricity consumption data with a 15-minute temporal resolution
of residential load profiles from a published German dataset (Tjaden, Bergner, et al.
2015).

Key performance indicators definition

To evaluate the performance of the two considered strategies, we used two economic
indicators as well as three technical indexes. Firstly, we used the individual bill
(Eq. 5.2) and the aggregated bill (Eq. 5.3). Additionally, we utilized the Benefit
Index (BI, originally called participation willingness index (Zhou, J. Wu, and Long
2018)), which measures the percentage of prosumers who obtained more benefits by
participating in P2P communities than those using a self-consumption maximization
strategy, reflecting the overall financial benefit of the whole population (Eq. 5.4).

Billj =
t∑

i=0

(Egrid−to−housei · πretaili − Ehouse−to−gridi · πFiTi
) (5.2)

Billagg =
H∑
j=0

(Billj) (5.3)

BI = NLowerCost/N (5.4)

Where, for the household j at time i, Egrid−to−housei is the amount of energy con-
sumed and Ehouse−to−gridi is the amount of energy injected into the grid, πretaili and
πFiTi

are the retail prices and FiT respectively. In the case of the P2P community
there is one price for electricity import and export within the community: the P2P
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market price. The aggregated bill is the sum of the individual bills across the mem-
bers of the P2P community, with the same households considered to calculate the
aggregated bill for the self-consumption maximization strategy . In both strategies,
we did not consider any cost associated with the community membership. In Eq.
5.4, NLowerCost represents the number of prosumers with a lower energy cost when
they participate in the P2P community compared to the cost in the self-consumption
maximization strategy.

In terms of technical performance, we used the indicators: PV self-consumption,
which is the share of on-site PV generation (EPV ) that is used to cover one’s own
electricity demand (Edemand), and autarky, which is the share of one’s own total
demand that is covered by the on-site PV generation, at the individual and at the
aggregated levels, as defined in Eqs. 5.5 and 5.6. We graphically show these two
indicators in an energy matching chart (see Figure 5.2).

Self − consumption =
t∑

i=0

EPV−demandi + EPV−batti

EPVi

(5.5)

Autarky =
t∑

i=0

EPV−demandi + EPV−batti

Edemandi

(5.6)

Where, EPV−demand is the PV electricity directly consumed, EPV−batt is the
amount of PV electricity used to charge the battery, and EPV is the annual PV
generation. At the aggregated level, and to account for the interaction with the
grid, we used the peak-to-peak amplitude difference in order to measure the daily
variance of the interaction with the grid: in particular, the so-called duck-curve.
The peak-to-peak amplitude difference measures the distance between the lower
peak (maximum export of the day) and the higher peak (maximum import of the
day), which in graphical terms, is the distance from the bottom to the top of the duck
head (in kW, see Figure 5.3A). This indicator allowed us to highlight the differences
between the two strategies beyond the year maxima.

Grid modeling

We included a complementary model of the distribution grid based on Hartvigsson et
al. (2021a) and Hartvigsson et al. (2021b), using the average 15-minute profile of 100
households, and the PV profile with the same temporal resolution. We assumed that
the households are embedded into an area of 0.01 km2 in Germany. The proposed
distribution grid model takes a simplified approach of a radial distribution grid with a
uniform distribution of consumers in the area supplied by each transformer, involving
horizontal and vertical connection lines (see Section C.5 for more information). The
model considers the cost of installation for the distribution grid, taking into account
the transformer cost, and the cost per km of the line, and takes into account losses
and voltage constraints to calculate the transformer hosting capacity.

Statistical tests. To test for statistical differences across prosumer strategies,
we performed a Shapiro-Wilk test to inspect the non-normality of the data, followed
by a paired two-side Wilcoxon test with the Holm procedure to control the family-
wise error rate. When more than two samples were compared (analysis of P2P
trading groups), we used a Kruskal-Wallis test to test for differences. All statistical
test results are presented in Section C.10.
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5.3 Assessment and integration of prosumer
decision- making.

We first conducted an online experimental study with 251 German homeowners
willing to participate in a P2P community (see Methods for detailed sample infor-
mation). We assessed decisions to trade self-generated PV electricity within a P2P
community as a function of P2P market prices (€4 p/kWh to €28 p/kWh in steps
of €8 p/kWh), SOC of privately owned 10 kWh batteries (30%–90% in steps of
30%), and time until the next solar generation surplus (more than or less than 12
hours). Figure C.16 depicts trading decisions of the sample as a function of the
three above-mentioned factors.

We then integrated the data derived from the experimental study into an open-
source model of P2P communities. Specifically, we simulated an organic P2P com-
munity (Parag and Sovacool 2016; Hahnel, Herberz, et al. 2020), where members buy
and sell electricity directly among themselves, over a period of one year. Charging
the battery from the grid was not considered. The community was located be-
hind a single point of common coupling (PCC), a common interconnection point
for different consumers connected to the same utility power supply (Sivaraman and
Sharmeela 2021). The community encompassed 100 households in Germany, includ-
ing both prosumers (with PV or with PV and battery) and consumers. Considering
the future-oriented nature of P2P communities, we assumed a scenario with 50% PV
penetration, and 25% battery penetration (see Section C.4 for a sensitivity analysis
covering a broad range of community sizes, PV penetration, and battery penetra-
tion). In order to match demand and PV supply in the P2P community, we created
a dynamic price structure with a uniform price for all community members at a
given point in time. Furthermore, to increase the robustness of the results, we used
the Monte Carlo method to sample 1000 P2P communities, in which all households
were randomly assigned to an electricity demand profile (Tjaden, Bergner, et al.
2015), and prosumer households to a PV capacity, considering a representative dis-
tribution of PV plant sizes. Demand profiles and PV sizes were based on German
data. Additionally, for every simulation, each prosumer with a battery was ran-
domly assigned to a decision profile of one participant from the experimental study,
reflecting their individual trading decisions. The link between the experimental psy-
chological data and the simulation allowed us to determine for each point of time
in the simulation whether or not a respective prosumer household would be willing
to provide electricity to the community given the market price, battery SOC, and
surplus forecast.

To assess the impact of homeowners’ trading decisions at the individual, collec-
tive, and grid levels, we compared P2P communities with a baseline scenario with
the same installed technologies and capacities but a different strategy (see Table
5.1). We refer to this baseline strategy as self-consumption maximization. In this
baseline case, prosumers with PV-coupled batteries did not trade electricity from
their batteries, in contrast to P2P communities. Thus, only surplus PV electricity
was injected into the main grid, which is consumed locally if there is demand from
other neighboring households located behind the same PCC. These conditions reflect
the status quo in Germany at the time of data collection, in which a utility serves as
an intermediary among households. Accordingly, consumed electricity was bought
at the retail price (€28 p/kWh) and sold at the Feed-in Tariff (FiT, €4 p/kWh).
We compared both prosumer models (P2P and self-consumption maximization) us-
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ing various performance indicators, including the bill for prosumers and traditional
consumers as well as self-consumption and autarky at the individual and aggregated
level, measured at the PCC. Moreover, we accounted for grid exchanges in terms of
maximum power imported from and exported to the main grid, and for the so-called
’duck-curve’, which can be observed in areas with large PV generation (Kosowatz
2018). It reflects a need for fast-ramping up capacity after the sunset and represents
a major challenge for grid stability (Kosowatz 2018).

5.4 Impact of prosumer decision-making at the
individual level.

We find that P2P energy trading based on homeowners’ trading strategies may
lead to economic benefits for prosumers with and without batteries, as well as for
traditional consumers compared to the baseline case where households maximize
self-consumption (see Section C.3 for results considering a similar price structure
for both models). Figure 5.2A illustrates that annual electricity bills were lower for
all household types in P2P communities, compared to self-consumption maximiza-
tion. The largest reduction, corresponding to a median value of €262.2 per annum
(confidence interval based on 1000 simulations - CI 95% [€261.9; €262.6] per annum)
was observed for traditional consumers. Prosumers with only PV showed the lowest
annual bill reduction, with a median difference of €98.1 per annum (CI 95% [€97.9;
€98.2] per annum). This amount slightly increased to €115.3 per annum (CI 95%
[€114.7; €115.8] per annum) for prosumers with batteries. For consumers and pro-
sumers, the differences between a P2P community and the use of self-consumption
maximization strategy were statistically significant (p− values ≤ 0.001).

Figure 5.2B presents the distribution of the average self-consumption and au-
tarky for prosumers with PV-coupled batteries in P2P communities and the self-
consumption baseline. In P2P communities, in contrast to self-consumption max-
imization, individual self-consumption was on average reduced by 6.6 percentage
points (CI 95% [6.59; 6.61] percentage points) and autarky was reduced by 12.19
percentage points (CI 95% [12.17; 12.22] percentage points). For households with
only PV, the indicators remained unchanged. Furthermore, prosumers with PV-
coupled batteries were net producers of electricity regardless of the strategy, as
indicated by their position above the diagonal in Figure 5.2B. This means that their
aggregated annual PV generation was higher than their aggregated annual electricity
consumption.

5.5 Impact of prosumer decision-making at the
aggregated level.

Findings moreover show that P2P trading brings higher financial benefits for the
community members at the collective level. In the P2P community, the annual
aggregated bill was 22.8% lower (equivalent to €18479 per annum CI 95% [€18475;
€18484] per annum), compared to self-consumption maximization (p − values ≤
0.001; see Figure 5.2C). The economic benefits of P2P communities can be further
quantified through the benefit index (Zhou, J. Wu, and Long 2018), which measures
the percentage of households who obtain more financial benefits when taking part
in a P2P community (see Methods). We find that the benefit index ranges between
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Figure 5.2: Impact of P2P trading and self-consumption maximization (SC) strategies at the indi-
vidual and aggregated level (at the point of common coupling, PCC). a) Boxplot of the mean values
of the individual annual bill depending on the type of household; namely traditional consumer,
prosumer with PV, and prosumer with PV and battery for P2P trading and self-consumption
maximization. Boxplots show the median (horizontal line) and the interquartile range (IQR; box
outline). The whiskers extend from the hinge to the highest and lowest value that are within
1.5*IQR of the hinge, and the points represent the outliers. b) Energy matching chart at the
individual level, for prosumers with PV and batteries. This graphical approach assesses matching
between PV electricity generation and electricity demand, using self-consumption and autarky to
visualize improved matching with energy storage and demand load shifting. Note that for pro-
sumers with PV and without batteries, self-consumption and autarky are identical for P2P trading
and self-consumption maximization, and therefore are not presented in the figure. c) Boxplot of
the mean values of the aggregated bills at the PCC for P2P trading and self-consumption max-
imization. d) Energy matching chart at the aggregated level (PCC), thereby including all three
types of households. The diagonal line represents the net zero energy households on an annual
basis. Net producers of electricity are above the line and net consumers are below. The individual
p-values of the two-sided Wilcoxon test with the Holm procedure to control the family-wise error
rate are reported in the figure for panels b) and c), where N=1000 independent simulations.
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95-100% (median of 100%, CI 95% [99%; 100%]), indicating that the majority of
households benefited from P2P trading and dynamic prices.

Furthermore, trading within P2P communities led to a small but consistent
increase of both, self-consumption and autarky at the aggregated level relative
to prosumers maximizing self-consumption (see Figure 5.2D). Aggregated self-
consumption increased from 49.6% (CI 95% [49.5%; 49.7%]) to 51.9% (CI 95%
[51.8%; 52.0%]) while aggregated autarky increased from 48% to 50% on average.
This finding can be explained by a more flexible distribution of locally produced PV
electricity at the aggregated level, due to prosumers providing extra electricity from
their batteries in P2P communities.

5.6 Impact of prosumer decision-making at the
grid level.

In addition to the impact of P2P energy trading on households and communities,
we analyzed power exchanges with the distribution grid. We further analyzed dis-
tribution grid reinforcement, taking into account the distribution grid constraints,
which are vital factors for understanding future investments in electricity infrastruc-
ture (Gupta, Pena-Bello, et al. 2021; Heptonstall and Gross 2020; Hartvigsson et al.
2021a; Hartvigsson et al. 2021b). In order to visualize the duck-curve, we analyzed
the average weekly grid exchanges across one year for one randomly selected simu-
lation. As illustrated in Figure 5.3A, the data reflects a duck-curve pattern at the
PCC: PV electricity exported to the grid shows a maximum around midday when
solar generation is the highest. This grid injection is followed by a sharp ramp-up
of net electricity demand of 22 kW per hour in the early evening when prosumers
maximize self-consumption, due to both the solar sunset and electricity peak de-
mand. Importantly, we notice that P2P trading can help to reduce the magnitude
of the duck-curve by 10% when compared to self-consumption maximization (i.e.,
the ramp-up is 20 kW per hour for P2P). On average the import power peak in the
P2P community is reduced by 19% around 8 p.m. (i.e., a reduction from 58 to 48
kW). Furthermore, the peak in exported PV power is reduced by 5% (i.e., reduction
from 101 to 96 kW).

To compare the yearly differences in power exchanges with the grid, we used
peak-to-peak amplitude differences per season for 1000 simulations. Figure 5.3B
shows that the peak-to-peak reduction for P2P trading is maintained across all sea-
sons, with the largest reductions occurring in spring (10.88 kW - CI 95% [10.85 kW;
10.90 kW], i.e., 4.49% - CI 95% [4.48%; 4.50%]), and the smallest reductions occur-
ring in winter (4.96 kW - CI 95% [4.95 kW; 4.97 kW], i.e., 2.62% - CI 95% [2.61%;
2.62%], p− values ≤ 0.001). Additionally, we modeled a synthetic distribution grid
and transformer, including network constraints such as voltage violation, and cable
and transformer overloading (see Methods and Section C.5). Based on our analysis,
the main limiting factor to PV hosting capacity is transformer overloading, which
can be addressed if maximum grid import and export peaks are reduced. Therefore,
we analyzed the maximum grid import and export peaks across an entire year to un-
derstand whether P2P trading can alleviate them (see Figure 5.3C). We found that,
relative to self-consumption maximization, the maximum export peak is marginally
higher in a P2P community with a median difference of 1.69 kW (p−values ≤ 0.001,
CI 95% [1.67 kW; 1.71 kW]), while the maximum import peak is slightly lower with
a median difference of -3.54 kW across the year (CI 95% [-3.57 kW; -3.5 kW]).
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Figure 5.3: Impact of P2P community trading and self-consumption maximization strategies at the
grid level. a) Average imports and exports for one randomly selected simulation to illustrate the
duck-curve and peak-to-peak amplitude differences. Note that electricity exports are represented
by negative values, and electricity imports by positive values on the y-axis; b) Boxplots of seasonal
effect in grid exchange, based on the daily peak-to-peak amplitude difference. Boxplots show the
median (horizontal line) and the interquartile range (IQR; box outline). The whiskers extend
from the hinge to the highest and lowest value that are within 1.5*IQR of the hinge, and the
points represent the outliers. c) Boxplots of the maximum import and export peak throughout
the year across all simulations. The individual p-values of the two-sided Wilcoxon test with the
Holm procedure to control the family-wise error rate are reported in the figure for panels b) and
c), where N=1000 independent simulations.
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5.7 Impact of different prosumer P2P
decision-making strategies.

Finally, we examined the extent to which differences in P2P trading strategies impact
autarky and electricity costs at the individual and community levels, as well as their
impacts on the grid. To this end, we divided the sample into three groups based on
the distribution of participants’ trading decisions in the experimental task. Specif-
ically, we composed three subgroups that either traded electricity in a restrained
(those that are below µ-σ), moderate (those between µ-σ and µ+σ), or intensive
way (those that are above µ+σ); represented by the red, green, and blue area in
Figure 5.4A, respectively. We then created three P2P communities that were com-
posed by the same share of traditional consumers (50%) and prosumers (25% with
PV only, 25% with PV-coupled batteries), as in the previous analyses. The P2P
communities differed with respect to whether their prosumers with PV-coupled bat-
teries traded electricity in a restrained, moderate, or intensive way, using the three
created trading subgroups. This approach allowed us to examine how different trad-
ing patterns impact the performance of P2P communities (see Figure 5.4B and C;
see Figure C.17 for results on self-consumption).

The analysis points to an optimal trading window associated with a moderate
trading pattern, which led to relatively high autarky at both the individual (70.13%,
CI 95% [69.40%; 70.85%]) and community levels (49.71%, CI 95% [49.68%; 49.73%]).
This decision pattern also resulted in the highest economic benefits at the individual
level, with bill reductions for households with PV-coupled batteries of €46 and €43
per annum (CI 95% [€45; €47] and [€41; €45] per annum), compared to restrained
and intensive trading patterns (p − values ≤ 0.001). Similarly, it also resulted in
significant bill reductions of €1226 and €918 per annum at the community level,
compared to restrained and intensive trading respectively (CI 95% [€1224; €1254]
and [€911; €920] per annum, p− values ≤ 0.001). Moreover, the maximum weekly
peak-to-peak magnitude of the duck-curve was on average 4.8 percentage points
lower for moderate compared to restrained traders. In contrast, restrained traders
achieved higher autarky at the individual level (77.57%, [76.93%; 78.20%]), but lower
autarky at the community level compared to the moderate trading group (decrease
by 1.3 percentage points - CI 95% [1.2; 1.4], p − value ≤ 0.001). In contrast,
intensive trading resulted in the highest community autarky, leading to an increase
of 1 percentage points compared to moderate traders (CI 95% [0.9; 1.1], p−value ≤
0.001). Intensive trading has also the highest potential to reduce the duck-curve
magnitude as it was, on average, reduced by 2.5 percentage points compared to
moderate trading. However, this trading pattern reduced autarky at the individual
level by 14 percentage points compared to moderate traders (p − values ≤ 0.001).
Lower individual autarky resulted in higher bills for intensive traders, with a bill
increase of €44 per annum compared to moderate traders (CI 95% [€42; €46] per
annum, p− values ≤ 0.001), and statistically similar bills than restrained traders.

5.8 Discussion

Our study, bridging experimental psychological research with robust energy model-
ing, indicates that social empowerment in P2P communities may lead to multiple
benefits for community members, including prosumers as well as traditional con-
sumers. Our findings have four key implications for industry, policymakers, and
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Figure 5.4: Impact of different P2P trading strategies on the individual and aggregated level (at the
point of common coupling, PCC). a) Distribution of trading decisions assessed in the experimental
study (a two-sided Shapiro-wilk test showed that the data is not significantly different from the
normal distribution; W=0.98957, p-value=0.2276). The x-axis represents the amount of decisions
to sell electricity to the community, covering the range from no trading at all (0 occurrences of
trading), to always trading (24 occurrences of trading). The distribution was divided into three
categories: restrained traders (red area: below µ-σ), moderate traders (green area: between µ-
σ and µ+σ), and intensive traders (blue area: above µ+σ). The y-axis represents the number
of participants for each trading value. b) Boxplots for autarky and annual bill for households
with PV-coupled batteries depending on trading group; note that for prosumers with PV and
without batteries, these performance indicators are identical across simulated P2P communities,
and therefore are not presented in the figure. Boxplots show the median (horizontal line) and
the interquartile range (IQR; box outline). The whiskers extend from the hinge to the highest
and lowest value that are within 1.5*IQR of the hinge, and the points represent the outliers. c)
Boxplots for autarky and annual bill at the aggregated level (PCC) depending on the trading
group. The individual p-values of the two-sided Wilcoxon test with the Holm procedure to control
the family-wise error rate and of the Kruskal-wallis test are reported in the figure for panels b)
and c), where N=1000 independent simulations.
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academics.
First, we find that traditional consumers obtain the highest financial benefits

in P2P communities. As consumers do not generate their own electricity, they
generally have higher electricity bills than prosumers, and thus have the largest
reduction potential (Figure 5.2). This finding has implications for distributional
energy justice; referring to the allocation of benefits and costs within a community
(K. Jenkins et al. 2016; Morstyn, Savelli, and Hepburn 2021; Carley and Konisky
2020). On the one hand, P2P communities can foster energy justice as they increase
access to renewable electricity at a low price, including households that do not have
the financial resources to invest in renewable energy technology. On the other hand,
investments in renewable energy technology need to pay off for community members
to ensure availability of locally generated electricity. A fair distribution of the costs
inherent to P2P communities, including investments in PV and storage systems,
may be achieved by differentiated membership fees in the function of a member
being a traditional consumer, prosumer with PV, or prosumer with both PV and
battery.

Second, we find that aggregated autarky was overall slightly lower when pro-
sumers maximized their self-consumption than when they shared energy within
P2P communities. Prosumers who aim to maximize their individual autarky para-
doxically reduce autarky at the aggregated level. In P2P communities, electricity
trading liberates battery capacity, enabling recharging with more self-generated PV
electricity when the next surplus occurs. In contrast, when prosumers aim to max-
imize self-consumption, their batteries remain idle for longer periods as no energy
is shared from their batteries. Therefore, P2P communities reduce yearly PV elec-
tricity exports to and imports from the grid, increasing autarky at the collective
level.

Third, our analysis of grid impacts shows that the duck-curve is flattened in P2P
communities compared to a strategy where prosumers maximize self-consumption,
ceteris paribus. P2P communities enable the supply of more PV electricity on-
demand reducing the duck-curve and thereby decreasing the need for cost-intensive
non-renewable energy supply, power balancing, and other ancillary services. How-
ever, extreme import peaks remain at similar levels for both types of prosumer
strategies. Thus, while P2P communities may help to flatten the duck-curve, they
can neither increase the hosting capacity of the distribution grids, nor defer their
final upgrade. In order to further reduce the impact of high PV penetration on the
grid (e.g., more than 75% of households with PV in the community, see Section C.5),
the implementation of flexibility strategies such as demand side management can
be considered. Implementing additional flexibility strategies would require close co-
operation between P2P communities and network operators. Policy-makers should
therefore promote such cooperation, and provide new regulation of data access, pri-
vacy, and cybersecurity to ensure that rights of P2P members are fully respected
when enabling network operators to procure flexibility using P2P resources.

Fourth, our interdisciplinary analyses show that homeowners apply different P2P
trading strategies (Hahnel, Herberz, et al. 2020) that may lead to more or less
beneficial outcomes for themselves and the community. Specifically, either overly
restrained or overly intensive trading strategies resulted in financial and autarky-
related disadvantages at the individual and community levels. Our results pinpoint a
moderate trading strategy to maximize benefits, reflecting decisions of the majority
of participants in our sample (see Figure 5.4). For the design of a P2P community,
this means that responsible stakeholders should dare to involve community members
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in the operation of P2P communities, since their decisions seem well-calibrated to
produce individual and collective benefits. As an additional effect, involvement
in P2P operations may increase social empowerment, which eventually may lead
to co-benefits, such as increased satisfaction, participation rates, and technology
investments.

5.9 Limitations and future pathways

Our interdisciplinary approach is novel, but not without limitations. Although our
methodology is based on the assessment of actual decisions of homeowners, it is im-
portant to note that these decisions were made in a controlled experimental setting.
In our experimental design, homeowners received a pre-defined set of information,
including energy prices, the SOC of their battery, and PV surplus forecasts. Our
rationale was based on literature illustrating that laypersons have limited knowl-
edge about energy-related variables and the energy system (Attari 2021; Marghetis,
Attari, and Landy 2019). We, therefore, limited our focus to the factors that were
previously identified as having a significant impact on homeowners’ trading decisions
(Hahnel, Herberz, et al. 2020; Wilkinson et al. 2020; Plewnia and Guenther 2020).
Our research can thus be a starting point for future research considering additional
factors in P2P trading including further technical information such as battery aging,
either provided to prosumers or integrated into energy simulations and algorithms.
For applications where batteries perform more cycles, such as batteries charging
from both a PV system and the grid, or for batteries performing benefit stacking,
aging may become relevant. Another limitation of our experimental approach is that
real life prosumer decisions might be influenced by situational factors such as time
constraints, which we did not consider in our experimental study. Large-scale field
trials including an in-depth analysis of user decision-making would thus be a natural
extension of our research, to increase external validity. Our findings can inform the
design of future field trials that should aim to include broad samples of prosumers
and consumers, and thereby go beyond existing pilot trials with restricted samples
(Ableitner et al. 2020).

A discussion of external validity is closely linked to the question of how individ-
ual decisions could be implemented in future P2P communities. While it would be
very demanding for prosumers to make each individual trading decision manually,
their decision preferences could be integrated into trading algorithms that would
administer trading in everyday life. To this end, prosumers would configure trading
algorithms by means of prototypical decision situations similar to those applied in
the present study, and the resulting decision profiles would then be used to cali-
brate decision algorithms. As illustrated in the Section C.1, 68.1% of citizens would
prefer this option in which a trading algorithm administers trading in everyday life
based on pre-assessed individual preferences, compared to 21.3% preferring manual
scheduling, and 10.5% preferring entirely automatic decisions. Taken together, our
research corroborates recent research on the need for responsible, human-centered,
algorithm design and demonstrated methodological pathways to achieve such design
objectives (Ransan-Cooper et al. 2021).

Future research can build upon our methodology to develop alternative pricing
mechanisms or auction systems that account for user preferences. It would be of
importance for such studies to exploit various means to integrate network charges in
P2P market prices in order to ensure a fair distribution of costs for citizens within

84



and outside the community. Considering that P2P communities reduce the use of
the main grid, reduced network charges for energy traded within the P2P community
compared to existing charges are conceivable. Additionally, network charges may be
distributed among community members according to their final peak flow (i.e., their
peak export and import), to avoid free-riding and to increase distributional fairness
within the community.

The grid-friendly operation of P2P communities should be further investigated
by applying more detailed distribution grid models, which take into account the
characteristics of local grids and trading decisions. Finally, the spectrum of consid-
ered technologies within P2P communities could be extended to other low-carbon
technologies, such as heat pumps and electric vehicles. Given the high storage
potential of electric vehicles, it is an intriguing question how prosumers would be
willing to trade electricity when using electric vehicle batteries. We consider that
future research with user-centered modelling approaches coupled with field trials can
provide a more complete understanding of citizens’ interactions in RECs, and thus
may inform the design of future RECs that achieve both citizen empowerment and
renewable flexibility procurement for the energy transition.



86



Chapter 6

National level

The Swiss Energy Strategy 2050 foresees, among other measures, a widespread adop-
tion and integration of renewable energy technologies, in particular, distributed solar
photovoltaics (PV). However, the massive increase of intermittent renewable gen-
eration capacity poses challenges for the control of the stability of the power grid.
Battery energy storage can enable the penetration of distributed PV in two differ-
ent ways. First, it increases the amount of PV self-consumption which makes PV
more attractive for final consumers. Second, batteries can provide grid and mar-
ket services to help keeping the grid stable. In this study, we aim to analyze the
techno-economic benefits for the consumer and the grid associated with a pool of
distributed storage, managed by an aggregator participating in the Swiss frequency
market, as well as potential trade-offs. To this end, we apply a residential battery
dispatching model to quantify the added value of frequency control for the prosumer.
We use imbalance prices to quantify the total cost for the TSO that is equivalent
to the payments to the frequency control service providers. Moreover, we look at
future scenarios calculating the required regulating power quantities for 2030 and
2050, however, the future economic potential of the frequency control service was
not calculated due to difficulties to model the manual frequency restoration reserve
prices.

6.1 Introduction

Distributed solar PV is expected to reach 530 GW globally by 2024 and it has
the highest growth potential across all the market segments mainly due to rapid
consumer adoption (IEA 2020). In the residential sector, financial considerations
speak for increased interest in PV, however, further motives have been found to
influence investing on PV (Korcaj, Hahnel, and Spada 2015). For example, self-
sufficiency, as the individual possibility to secure and control part of the energy
provision and to reduce dependence on energy providers (Korcaj, Hahnel, and Spada
2015), was found to partially influence the intention to adopt PV systems (Korcaj,
Hahnel, and Spada 2015; Ecker, Hahnel, and Spada 2017). Environmental motives
are also often reported as key reasons for investing in PV (Stern et al. 2017). Finally,
social influence plays an important role in the early take-off stage of the diffusion
curve (Korcaj, Hahnel, and Spada 2015; Rai and Robinson 2015; Curtius et al. 2018;
Alipour et al. 2020).

Massive residential PV integration poses several challenges to the distribution
network. Local PV feed-in affects the voltage of the distribution grid, as well as
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the operation of critical devices such as transformers and lines (Gupta, Pena-Bello,
et al. 2021; Holweger et al. 2020). Unlike centralized generation, PV output cannot
be easily controlled and would require large capacities of energy storage to enable
on-demand supply (Gupta, Soini, et al. 2020). Additionally, with residential PV
reaching grid-parity, defined as the cost level at which PV becomes competitive with
retail electricity prices, policy schemes such as Feed-in tariffs (FiT) have declined and
are now being phased out in different countries. This phase-out together with high
electricity retail prices, the need to control PV power generation to avoid excessive
PV power injection into the grid, are key drivers for PV self-consumption.

PV-coupled batteries can increase PV self-consumption while helping to mitigate
the grid impact of distributed PV through the simultaneous provision of multiple
applications (Stephan et al. 2016; Nousdilis, Christoforidis, and Papagiannis 2018;
Gardiner et al. 2020). Despite having a steep learning curve with a learning rate of
20% for all types of cells (Ziegler and Trancik 2021), batteries are not yet profitable
for the residential sector (do Nascimento and Rüther 2020; Litjens, Worrell, and van
Sark 2018a). Nevertheless, expected battery cost reductions together with the si-
multaneous provision of multiple applications can help residential batteries to reach
profitability before the end of the decade (Stephan et al. 2016; Gardiner et al. 2020;
Pena-Bello, Barbour, Gonzalez, Yilmaz, et al. 2020; Englberger, Jossen, and Hesse
2020). Among several applications, batteries can provide frequency control to con-
tinuously match supply and demand, thereby replacing fossil-fuel based generation
units, that are the conventional providers of frequency control.

Due to its great potential, diverse key factors impacting PV-coupled battery sys-
tems’ profitability have been investigated. Self-consumption maximization, which
is the principal residential application, has been the focus of various studies (Mo-
hamed et al. 2021; Mulleriyawage and Shen 2020; Nousdilis, Kryonidis, et al. 2020).
Authors have further studied other applications applications, either by comparing
or stacking them, including demand peak-shaving, load-shifting and avoidance of
PV curtailment (Mishra et al. 2020; Parra and Patel 2016; Pena-Bello, Barbour,
Gonzalez, Patel, et al. 2019; Pena-Bello, Barbour, Gonzalez, Yilmaz, et al. 2020).

Frequency regulation has been addressed mostly for commercial consumers. En-
glberger, Jossen, and Hesse (2020) considered the role of power electronics in the
combination of applications, taking into account not only energy but also power
applications. They found commercial batteries to be highly profitable under the
conditions of dynamic combination of applications (including self-consumption, de-
mand peak-shaving, energy arbitrage, and frequency regulation). Standalone bat-
teries combining the provision of frequency containment reserve (i.e., FCR, also
known as primary control) together with load-shifting were analyzed for commer-
cial consumers using approximate dynamic programming (Wen et al. 2021). Perez
et al. (2016) included the effect of battery degradation in the provision of energy
arbitrage and peak-shaving at the distributed level (to alleviate network congestion)
as well as frequency regulation, divided into reserve (for available power) and re-
sponse (for delivered energy). However, it is not clear from the study which types
of frequency restoration reserves were analyzed (e.g., FCR, automatic Frequency
Restoration Reserve - aFRR, or manual Frequency Restoration Reserve - mFRR).
The authors found battery degradation to mainly affect services related to the en-
ergy market (e.g., energy price arbitrage). Additionally, the effect of restraining
the battery state of charge (SOC) led to a revenue loss in the short-term that was
compensated by long-term revenues due to a longer battery lifespan.

For residential consumers, Engels, Claessens, and Deconinck (2017) presented a
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stochastic optimization of a residential battery providing FCR and self-consumption,
and showed that there is a clear complementarity in combining these two services.
Their combined provision added 25% of value compared to the use for frequency
control alone, and increased the value threefold when compared to self-consumption
alone. Hollinger et al. (2016) discussed the simultaneous provision of FCR and PV
self-consumption for a single house under current regulatory conditions and market
prices in Germany. Schopfer et al. (2017) modeled a virtual power plant able to
pool distributed residential batteries to participate in the provision of FCR. They
found the battery size to be a determining factor for the additional revenues that
an individual household can generate within a virtual power plant. A hierarchical
control with a double decision layer, one for the aggregator and one for the battery
itself, was found to be effective to reduce frequency violations in a simulated real
disturbance sequence, however, without the consideration of residential PV (Obaid
et al. 2020). The only study focused on the provision of aFRR (also known as
secondary control reserve) was prepared by Litjens, Worrell, and van Sark (2018a).
They found the combination of aFRR and self-consumption to be profitable for
residential and commercial consumers. Additionally, they found that the prioritized
provision of aFRR over self-consumption enhancement resulted in higher revenues,
but significantly reduced self-consumption.

Finally, Sossan et al. (2016) introduced the dispatched-by-design distribution
systems paradigm, where batteries are deployed in the distribution grid to compen-
sate traditionally stochastic prosumption peak flows. Along the same lines, Bozorg
et al. (2018) investigated the effect varying penetration levels of dispatched-by-
design distribution systems in the Danish bulk grid on the amount aFRR and mFRR
required to ensure a predefined level of grid reliability.

To conclude, the available literature shows a high potential for the combination of
self-consumption and frequency regulation (either FCR, aFRR or mFRR). However,
only a few studies have investigated aFRR which is a more flexible market than FCR,
compensating not only power availability, but also instantaneous energy balance,
with only a few residential profiles with PV-coupled systems having been studied
(Litjens, Worrell, and van Sark 2018a; Schelly 2014). Furthermore, mFRR has
received only marginal attention.

In this study, we aim to analyze the added techno-economic benefits for the pro-
sumer and the grid, associated with the pool of distributed storage under the man-
agement of an aggregator participating in the frequency market, taking Switzerland
as case study. We evaluate the trade-offs between prosumer and market applications,
namely PV self-consumption and frequency control, which are linked to different pro-
sumer motivations such as keeping its own electricity for itself (self-sufficiency) or
providing flexibility to the energy system, potentially with a higher economic bene-
fit. We use techno-economic indicators such as self-consumption, self-sufficiency, net
present value (NPV) of the battery as well as the levelized cost of energy storage,
for different shares of battery capacity dedicated to frequency control. We then
quantify the amount of reserve required to operate the Swiss electrical grid with a
level of reliability considering different Swiss scenarios for 2030 and 2050.

6.2 Material and Methods

To analyze the added techno-economic benefits for prosumers maximizing their PV
self-consumption that could be reaped via the aggregation of distributed storage
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participating in the Swiss frequency market, as well as potential trade-offs, we use
a residential battery dispatching model. In order to assess the impacts of renewable
energy penetration on frequency control, we consider different scenarios for 2030 and
2050, modeling the future Swiss electrical grid mix with a dispatch sector coupling
energy system model (referred to as GRIMSEL model - GeneRal Integrated Mod-
eling environment for the Supply of Electricity and Low-temperature Heat) which
minimizes the energy system costs. The optimal configuration of the Swiss energy
system, considering the energy system of various neighbouring countries, allows us
to determine the future spot electricity prices (or shadow prices). Then, to deter-
mine the energy capacity of battery storage required to operate the power systems
with the desired reliability level, a Monte Carlo simulation is used. Finally, we use
a linear model to estimate the price of regulating power (i.e., the energy that is
produced (absorbed) by a generator (consumer) by deploying the booked reserve
capacity, following a request from the TSO) and the imbalance costs. Note that
residential PV is not used for frequency control, only batteries.

6.2.1 The Swiss frequency control market

The Swiss energy balancing and imbalancing markets follow the European directives
(see below for further explanations). Switzerland counts with three balancing market
products, FCR (provided together with the other members of continental Europe),
aFRR and mFRR.

In Switzerland, FCR enters 0.5 minutes after a frequency deviation, then aFRR
is called up by the TSO (i.e., Swissgrid) after 30 seconds of outage, and it is provided
by online power stations working below the nominal capacity within the country,
and is typically completed after 15 minutes (Swissgrid 2020). If the cause of the
control deviation is not eliminated, aFRR gives way to mFRR, which is used for
adjusting major, longer-lasting control deviations. TSOs send electronically trans-
mitted messages to the providers, who within 15 minutes intervene to ensure the
supply of power. In Switzerland, mFRR and restoration reserves (i.e., RR or slow
tertiary control) are comparable products and integrated under a single product
(called tertiary control) (Swissgrid 2020).

FCR is a daily product procured two days before real-time operation, and positive
and negative power are jointly tendered (i.e., it is a symmetric product). Since 2018,
aFRR has been separated into positive and negative power (asymmetric product),
and it is procured on a weekly basis, and remunerated based on the Swiss market
price (SwissIX) ±20% (Swissgrid 2019). Finally, mFRR corresponds to present-
day fast and slow tertiary control reserves, it is an asymmetric product that is
provided during one week or four hours, with the weekly product being tendered on
Tuesdays and the four-hourly one day before real-time operation (Swissgrid 2020).
The remuneration of mFRR is based on the energy price specified by the bidder.
The power plants receive additional compensation for aFRR and mFRR energy, on
top of power availability.

Finally, the imbalance settlement, i.e., the process of allocating costs to market
actors that caused the imbalances, aims to charge (or pay) balance responsible par-
ties (BRPs) for their imbalances during an imbalance settlement period (15-minutes
in Switzerland). It includes incentives for the market to reduce imbalances while
transferring the financial risk of imbalances to the BRPs. In Switzerland, it is done
using the imbalance prices PShort and PLong, that are calculated using equations 6.1
to 6.4.
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PShort = (A+ P1) · α1 (6.1)

A = max(Pspot, PaFRR+ , PmFRR+) (6.2)

PLong = (B − P2) · α2 (6.3)

B = min(Pspot, PaFRR− , PmFRR−) (6.4)

where α1 is 1.1, α2 is 0.9, P1 is 1 Rp/kWh, and P2 is 0.5 Rp/kWh. Pspot is
the Swiss day-ahead spot price, PaFRR is the price of secondary control energy, and
PmFRR is the price of tertiary control energy. In the case equation 6.1 results in
a negative price, the factor α1 is replaced by α2. Similarly, in the case equation
6.3 results in a negative price, the factor α2 is replaced by α1 (Swissgrid 2018).
Upward regulating power prices (i.e., positive control) are then addressed by the
short imbalance prices (i.e., they are used when there is a deficit of energy and
positive control is activated) and downward regulating power prices (i.e., negative
control) are addressed by the long imbalance prices.

6.2.2 Modeling overview

We use an open-source 24-h optimization framework for battery dispatching (i.e.,
Battery Schedule OPtimizer for Residential Applications, BASOPRA) to analyze
PV-coupled battery systems combining applications and to assess their added value
(Pena-Bello, Barbour, Gonzalez, Patel, et al. 2019; Pena-Bello, Barbour, Gonzalez,
Yilmaz, et al. 2020; Pena-Bello, Schuetz, et al. 2021). The model has been modified
to allow the battery to perform frequency control (e.g., to provide upward regulation
by battery discharge), as a response to the input prices (i.e., the difference between
the spot price and the imbalance price). Thus, there is no obligation from the
prosumer perspective to participate in the frequency market if the proposed prices
are not economically attractive. Please note that it is the battery that provides
frequency control, not the PV system.

Eq. 6.5 presents the objective function of the model, which is publicly available
in https://github.com/alefunxo/Basopra_FC.

C = Min(

Energy-based tariff︷ ︸︸ ︷
t∑

i=0

(Egridi ∗ Pimporti − EPV−gridi ∗ Pexporti)−

(Egrid−batt ∗ Pdownwards + Edis−FC ∗ ηinv ∗ Pupwards︸ ︷︷ ︸
Frequency Control

))

(6.5)

Pupwards = PShort − Pspot (6.6)

Pdownwards = Pspot − PLong (6.7)

where the energy-based tariff is given by Egridi which is the electricity drawn from
the grid, Pimporti is the import price (i.e., retail price), EPV−gridi is the PV-electricity
exported to the grid, Pexporti is the export price (i.e., the spot price in this study),
with the sub-index i representing every time step from 0 to t (i.e., 15-minutes step

91

https://github.com/alefunxo/Basopra_FC


PV Array

Battery

FC


Electricity
Demand

Load

National
Grid

Bi-directional
DC/AC
Inverter

Integrated
Inverter

~~
DC/DC

Converter

Losses

Losses

Battery

SC
Single battery

Figure 6.1: Simplified schematics of the DC-coupled PV-battery system with integrated inverter
used in this study. Arrows indicate the direction of possible energy flows between the individual
components. A single battery is used to provide self-consumption maximization and frequency
control with dedicated capacity for each application.

for this study). As for the frequency control application, it is considered that pro-
sumers could provide upward regulating power by increasing their production (repre-
sented by the injection of electricity from the battery to the grid Edis−FC) or provide
downward regulating power by increasing their consumption (i.e., represented by the
battery charging Egrid−batt). Pupwards and Pdownwards are the differences between the
balance energy prices and the spot prices, in each direction.

Using the BASOPRA model we analyze the extra value for the prosumer provided
by PV-coupled battery systems, assuming that a fraction of the battery capacity is
used for PV self-consumption, which is the main application for prosumers, while
the other fraction of the battery capacity is used for frequency control, which is the
key application for an aggregator. We then investigate the trade-offs between PV
self-consumption and frequency regulation (see Figure 6.1).

Moreover, we consider two future years of the Swiss energy transition, 2030 and
2050. Based on the future scenarios from Rinaldi et al. (2020), we consider two
cases, business as usual (BAU), with a heat pump deployment similar to the rather
moderate current market diffusion rate, and a more ambitious "fossil phase-out"
case where all the residential sector fossil heating is progressively replaced by heat
pumps. In all the future scenarios, we consider a building stock retrofitting rate of
1%. Therefore, we explore four future scenarios, namely "2030 BAU", "2030 fossil
phase-out", "2050 BAU", and "2050 fossil phase-out".

With the scenarios defined, GRIMSEL, a quadratic dispatch and capacity re-
tirement model of the electricity supply in five countries (Switzerland, Austria,
Germany, France and Italy) (Soini, Parra, and Patel 2019) is used to identify opti-
mal power investments as a function of building retrofitting as well as distribution
capacity upgrade (Rinaldi et al. 2020). GRIMSEL approximates perfect electricity
market conditions by minimizing variable and fixed costs, while satisfying predefined
hourly demand under perfect foresight. GRIMSEL considers significant changes for
the Swiss residential sector, while for the other Swiss sectors, e.g., industry, only
the demand is modified. The model also takes into account changes in Germany,
France, Italy, and Austria, such as nuclear or coal phase-out, however, the model
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assumptions for these large countries are kept constant across the scenarios modeled
for Switzerland. Finally, GRIMSEL determines the resulting power assets required
to drive the decarbonization of the heating sector, as well as the resulting spot prices
for each scenario.

Using the power capacity per technology from GRIMSEL, we subsequently apply
a Monte Carlo simulation to investigate the effect of varying the penetration level of
dispatched-by-design distribution systems in the bulk grid on the amount of reserve
required to operate the global electrical grid with a predefined level of reliability. The
main hypothesis made in this model include: absence of significant changes on the
transmission system in the future, thus continuing to use the actual transmission
system of 163 internal buses and 18 international interconnections, according to
the Strategic Grid 2025 from Swissgrid (Swissgrid 2015); PV capacity distribution
is proportional to the hosting capacity of the nodes (Gupta, Sossan, and Paolone
2021); no use of imported and exported automatic or manual frequency regulation
services; compensation of only 25% of the imbalances regarding day-ahead forecasts
using Swissgrid resources, while the remaining 75% are either compensated through
the intraday market or internally by the BRPs (according to authors’ analysis of
Swissgrid imbalance data and ENTSO-E data); unavailability rate of generators as
reported by Guerrero-Mestre et al. (2020); mean time to repair assumed to be 1 hr
(instead of the average 8-24 hr), since following an unplanned outage, in less than an
hour the generation company could purchase energy from intraday markets or make
use of bilateral agreements in order to avoid mismatches and imbalances which would
be penalized by Swissgrid; finally, it is assumed that there is a comparable amount
of available automatic and manual reserve (i.e., aFRR and mFRR, respectively; 50-
50% distribution with respect to the total required reserves in each direction). This
model was run ten times per hour per scenario, due to its long computational time (3
to 4 hours per run). The outputs of the simulations are the probability distribution
of transmission system responses such as deployed regulating power (both automatic
and manual, as well as upwards and downwards).

A linear model is then used to determine the regulating power price, and thereby
the extra costs of using the regulating power market instead of the spot market to
fulfil a commitment made on the day-ahead market (Skytte 1999). For this purpose,
we use the spot price (from GRIMSEL) and the activated amount of regulating
power quantities in both directions (from the Monte Carlo simulation). Using linear
models and real data from 2019 to mid-2021, we calculate the aFRR prices using
the spot price (by definition the aFRR prices are the tied to spot price ±20%), and
mFRR prices using the spot price and the activated volume using Eq. 6.8 (see also
Table 6.1).

PX = a3 ∗ PSpot ∗QX + a2 ∗QX + a1 ∗ PSpot + b (6.8)

where X represents the type and direction of regulating power (i.e., aFRR or
mFRR, upwards or downwards), P refers to prices (spot or regulating power price)
and Q refers to the quantities of regulating power. Finally, a1, a2, a3 and b are
the linear model coefficients, that are displayed in Table 6.1. Supplementary Table
D.4 displays the differences between the reported (real) and the modeled regulating
power prices for the year 2020. Outliers (i.e., observations that lie at an abnor-
mal distance from other values) are difficult to predict, in particular for mFRR.
Moreover, it is noteworthy to mention that the amount of outliers also reduces the
proportion of the regulating power price variance that is explained by the indepen-
dent variables in the linear model (R2 in Table 6.1). Note that we opt to model the
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Table 6.1: Linear model coefficients of the regulating power price as a function of the spot price
and the regulating power quantities, based on real data from 2020.*,** and *** indicate 0.05, 0.01
and 0.001 significance levels, respectively.

a3 a2 a1 b R2

PaFRR+ 0 0 1.040559*** 8.529436*** 87.47

PaFRR− 0 0 0.76195*** 1.20292*** 92.10

PmFRR+ 8.46e− 06*** 4.75e− 05*** −8.31e− 03* 1.659 60.00

PmFRR− −4.90e− 06*** 1.65e− 04*** 0.1854*** -3.667*** 31.00

regulating power prices instead of the imbalance prices due to the low variance of
the imbalance prices that can be explained based on a linear model using the spot
price and the regulating power quantities as independent variables (R2 is equal to
30% for long and 7% for short imbalance prices).

Using the spot price and automatic and manual frequency reserves prices, the
imbalance prices are calculated based on Eqs. 6.1 to 6.4. The imbalance prices are
the prices seen from the TSO point of view (i.e., Swissgrid). Since the TSO has
to pay reserve and flexibility providers, the approach just explained allows us to
determine the cost of the transaction and in that way to transfer the cost to the
BRP, establishing the total cost of dispatched-by-design distribution systems.

6.2.3 Input data

A Swiss dataset comprising 636 households in Geneva (Pena-Bello, Barbour, Gon-
zalez, Yilmaz, et al. 2020) with a temporal resolution of 15-minute is used for the
BASOPRA model. This temporal resolution provides a reasonable compromise be-
tween modeling technology performance and computational speed (Beck et al. 2016).
Households included in the dataset have a median electricity consumption of 2.5
MWh per annum, within a range of 0.2-7.4 MWh per annum

We simulate PV generation using a standard one-diode model (Parra, Walker,
and Gillott 2014) and PV technology with a nominal efficiency of 18.6% (HIT pho-
tovoltaic module HIT-N2XXSE10 datasheet n.d.), representative of the current state
taking into account outdoor temperature and horizontal solar irradiance monitored
for the year 2017. The model also includes a maximum power point tracker system,
as is the case of most PV systems in order to maximize the output regardless of
the environmental conditions (temperature and solar irradiance). For this model,
the residential PV system sizes were established using a ratio of 1 kWp of PV for
each 1 MWh of annual energy consumption (Litjens, Worrell, and van Sark 2018a;
Hoppmann et al. 2014; Pena-Bello, Barbour, Gonzalez, Yilmaz, et al. 2020). Simi-
larly, the battery sizes installed are of 1 kWh for each MWh of electricity demand,
for instance, an annual electricity consumption of 5 MWh leads to a nominal PV
capacity of 5 kWp and a battery capacity of 5 kWh (see Supplementary Information
D.2.1 for further details on the model).

For the GRIMSEL model, the same input data that is presented by Rinaldi et al.
(2020) is considered, with a building stock retrofitting rate of 1% per annum, and
the use of air-source and ground-source heat pumps progressively replacing fossil
heating in future scenarios (BAU and Fossil phase-out, in 2030 and 2050), with
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Figure 6.2: Swiss grid topology

COP values as a function of the outlet temperature.
For the Monte Carlo simulation, the extended high voltage grid topology for

Switzerland including the interconnections with the neighboring countries is con-
sidered. The grid composed of 181 buses at either 380 kV or 220 kV connected
through 209 transmission lines and transformers is depicted in Figure 6.2, with a
total of 163 buses located in Switzerland and 18 in the neighboring countries. The
unavailability and failure rates of the main components like transmission lines and
transformers are obtained from the statistical data provided by European Network
of Transmission System Operators for Electricity (ENTSO-E). Overall, 36 power
generation units are connected to the grid representing medium and large power
plants with total capacity of 17.2 GW. The unavailability and the failure rates of
the generation units are determined as a function of the type of each unit according
to the statistical data available in Guerrero-Mestre et al. (2020). For the base case,
the total power demand is 8.1 GW which is distributed among the buses. Future
scenarios for the capacity of generation units and distributed generations are gen-
erated with GRIMSEL. Moreover, for each scenario GRIMSEL provides the power
generation per generation type, total demand, and interconnection power exchanges
with one-hour resolution for one year. In the power system reliability simulator, the
hourly generation, demand, and interconnection power are distributed among the
buses and additional scenarios for unavailability of units and components as well as
real-time uncertainties related to both demand and distributed renewable sources
are considered in order to find the amount of flexibility required for a secure oper-
ation of the system. These uncertainties represent the difference between real-time
power generation/demand and the outcomes of the markets (modeled in GRIMSEL)
based on normal distributions. For the outage and unavailability, the value of Mean
Time To Repair (in average between 8 to 24 hours) was assumed to be equal to 1
hour (Mousavi, Cherkaoui, and Bozorg 2012).

6.2.4 Electricity tariff design and battery applications

In this study, we consider the maximization of PV self-consumption in the residential
sector and frequency control through an aggregator. The procurement of frequency
regulation by means of an aggregator should be enabled by proper policy, whereas
the maximization of self-consumption does not depend on the electricity tariff. A flat
tariff of 0.22 USD/kWh throughout the year is assumed for all households. Based
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on the sharp decline of FiT across many countries, the PV export price is assumed
to correspond to the spot electricity price, as is the case for traditional electricity
generators. Spot electricity prices from the day-ahead market in Switzerland (from
EPEXSPOT, average price of 0.05 USD/kWh) are assumed. We use the difference
between the balance energy price and the spot price for the year 2020 (see Eqs. 6.6
and 6.7), to calculate the revenue from frequency control, with an average price of
0.28 USD/kWh for upward control and 0.17 USD/kWh for downward control.

6.2.5 Techno-economic indicators

We use several indicators to analyze the evolution of the frequency market and the
trade-offs between prosumer benefits and grid impacts when combining frequency
control and self-consumption. To quantify the trade-offs for the prosumer and the
grid, we study total self-consumption (TSC), which is the share of on-site PV gen-
eration that is used to cover the local electricity demand, and self-sufficiency (SS),
which is the share of local demand that is covered by the on-site PV generation
as shown in Eqs. 6.9 and 6.10. Additionally, we use the peak flow, i.e., the max-
imum between export and import power, and the equivalent full cycles (EFC, see
Eq. 6.11).

TSC =

∑N
i=0 (EPV−total−demand + EPV−batt)∑N

i=0 EPV

(6.9)

SS =

∑N
i=0 (EPV−total−demand + Ebatt−load)∑N

i=0 Etotal−demand

(6.10)

EFC =
η · EPV−bat

C
(6.11)

where EPV−total−demand is the share of PV generation that directly meets local elec-
tricity demand; EPV−batt is the share of PV generation that is charged into the
battery; EPV is the total PV generation; Ebatt−load is the amount of electricity dis-
charged from the battery to cover local electricity demand; and C is the battery
capacity.

In addition, we use the Net Present Value (NPV) to quantify the economic
viability of installing a battery in an otherwise stand-alone PV system, which is
relevant for prosumers from a financial point of view (see Eqs. 6.12 and 6.13). The
NPV is calculated using annual project cash flows (CF) taking into account the
difference between the cash flows from a PV-coupled battery system and a system
with only PV. We also use the levelized cost of energy storage, LCOES (USD/kWh),
that quantifies the cost associated with the total electricity supplied by the battery
throughout the life of the system (see Eq. 6.14).

CFBatti = CFPV−Batti − CFPVi
(6.12)

NPV =
N∑
i=1

CFBatti

(1 + r)i
−

N∑
i=0

CAPEX

(1 + r)i
(6.13)

LCOES =

∑N
i=0

CAPEX
(1+r)i

+
∑N

i=1
OPEX
(1+r)i∑N

i=1
Edis−D+Edis−FC

(1+r)i

(6.14)
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where CFPV−Batti is the cash flow of the PV-coupled battery system, CFPVi

is the cash flow of the PV system alone and CFBatti is the cash flow due to the
installation of the battery system in Eq. 6.12. The CAPEX represents the total
capital expenditures (excluding the PV system), the OPEX are the operational
expenditures (in USD), r is the discount factor (a weighting term that multiplies
value to discount it back to the present value), i is the year and N is the lifetime
of the project (30 years) in Eq. 6.13. Finally, Edis−D and Edis−FC are the energy
discharged to cover the local demand and the energy discharged used for frequency
control, respectively.

To quantify the total regulating power cost per year, the price of regulating
power is multiplied by the average regulating power quantity obtained form the ten
Monte Carlo simulations. To calculate the final cost of the imbalances that the TSO
should cover (and charge to the BRPs), the total regulating power per direction and
year is multiplied by the difference between the imbalance price and the spot price
(see Eqs. 6.15 and 6.16).

Costupwards = (Pupwards) ∗ (aFRR+ +mFRR+) (6.15)

Costdownwards = (Pdownwards) ∗ (aFRR− +mFRR−) (6.16)

6.3 Results

6.3.1 BASOPRA

The size of PV systems was established using a ratio of 1 kWp of PV for each 1 MWh
of annual electricity consumption (Litjens, Worrell, and van Sark 2018a; Hoppmann
et al. 2014; Pena-Bello, Barbour, Gonzalez, Yilmaz, et al. 2020). Similarly, the
capacity of the batteries was sized to match 1 kWh for each MWh of electricity
consumption. We set a reference case in which the batteries exclusively perform
PV self-consumption as an application. Then, we compare various scenarios where
the capacity of the batteries is shared to perform both PV self-consumption and
frequency control (including both aFRR and mFRR), increasing the ratio dedicated
to frequency control in steps of 25% up to 75%.

Self-consumption, self-sufficiency and equivalent full cycles

The median values of TSC and SS of residential PV-coupled batteries exclusively
used for PV self-consumption are 39.7% and 56.7%, respectively, as shown in Figure
6.3a. However, the amount of TSC and SS is moderately reduced when a share of
the battery capacity is further used for frequency control. With each increase of 25%
of the battery capacity share dedicated to frequency control, there is a reduction
of 4-5 percentage points on TSC and 6-7 percentage points on SS (p-values<0.05),
reaching 25.7% and 36.9%, respectively when 75% of the battery is used for frequency
control. Interestingly, the use of the battery for frequency regulation is significantly
more cycle intensive than the use of the battery for PV self-consumption. For
example, the median EFC values for a battery capacity share of 25%, 50% and
75% dedicated to frequency regulation are 456, 673 and 830 EFC per annum (p-
values<0.05), compared to 231 EFC per annum in the case for PV self-consumption
only. With such increase of EFC, the residential battery needs to be replaced up to
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(b) Self-sufficiency

Figure 6.3: Boxplots (N=636) of total self-consumption and self-sufficiency achieved by PV-coupled
batteries depending on the share of the battery dedicated to frequency control. The median value
for each boxplot is indicated in the figure

Table 6.2: Descriptive statistics of the peak flow (i.e., maximum between export and import
power) of households with PV-coupled batteries depending on the share of the battery dedicated
to frequency control.

FC Battery share Min Q1 Median Mean Q3 Max

0% 0.67 3.09 4.32 4.51 5.36 16.78

25% 0.64 3.34 4.72 4.87 5.82 18.81

50% 0.63 3.54 5.00 5.14 6.20 19.53

75% 0.67 3.63 5.16 5.31 6.51 20.27

five times throughout the PV lifetime, instead of one when it is used exclusively for
PV self-consumption.

Peak flow

Table 6.2 shows the peak flow (i.e., maximum between export and import power) for
the whole dataset of households, as a function of the share of the battery dedicated
to frequency control. As there is more capacity dedicated to frequency control, the
peak flow slightly increases from the reference case median peak flow of 4.3, to 4.7, 5
and 5.2 for a battery share of 25%, 50% and 75%, respectively, dedicated to perform
frequency control (p-values<0.05, except for the difference between 50% and 75%,
p-value=0.15).

Net present value and levelized cost

Figures 6.4a and 6.4b show the boxplots of the NPV and LCOES for all the house-
holds depending on the share of the battery dedicated to frequency control. The use
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Figure 6.4: Boxplots (N=636) NPV and LCOES achieved by PV-coupled batteries depending on
the share of the battery dedicated to frequency control. The median value for each boxplot is
indicated in the figure

of the battery exclusively for PV self-consumption yields negative NPV values with
a median of -3932 USD, and LCOES values of 0.55 USD/kWh. With the addition of
frequency control, the NPV increases considerably, reaching median values of -1098,
1598 and 3756 USD, for shares of battery capacity dedicated to frequency control of
25%, 50% and 75%, respectively. It should be noted that the NPV is positive even
taking into account the more frequent battery replacement related to the perfor-
mance of frequency control. As for LCOES, the median values decrease from 0.55 to
0.29, 0.21 and 0.18 USD/kWh. Especially the first step of increasing the frequency
control from zero to 25% allows to significantly decrease by 47% the LCOES, while
reducing TSC and SS levels by around 11%. All values are statistically significant
(p-values<0.05). Finally, the median revenue from upwards regulating power is
twice the revenue of downwards regulating power (346.3 USD per annum vs. 178
USD per annum), see Supplementary Table D.2, for descriptive statistics.

6.3.2 GRIMSEL results

For the four proposed future scenarios (i.e., 2030 BAU, 2030 fossil phase-out, 2050
BAU, and 2050 fossil phase-out), GRIMSEL models the Swiss energy system includ-
ing various types of consumers and urban settings. Table 6.3 presents the capacity
per technology for each scenario, showing that the output for PV capacity is close
to the Swiss 2050 target (i.e., 36 TWh of PV energy), equivalent to a PV capacity
of 31.5 GW, under the assumption of a capacity factor of 13% (Gupta, Sossan, and
Paolone 2021). Figure 6.5 displays the spot price distribution per scenario using
boxplots. The spot prices reflect the marginal costs of the most expensive power
plant used at a given moment. The spot prices are similar across the scenarios for
the same years but with respect to 2020 values, 2030 and 2050 median spot prices
are 3.5 and 4.7 times higher, respectively. This high difference in the spot price
reflects the use of the most expensive power plant, probably gas, and the future
increase in fuel prices (Rinaldi et al. 2020).
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Table 6.3: Installed capacity (in MW) and total demand (in TWh per annum) per technology per
scenario

Biomass Geothermal Li Batteries Mineral oil Natural gas Nuclear PV Pumped hydro Reservoirs Run of river VRFB Waste Wind onshore Demand

2020 191.3 13.0 0.0 64.5 675.6 2874.5 1666.0 2435.5 9698.3 5334.4 0.0 470.2 240.6 60.7

2030 BAU 585.7 88.3 2392.9 17.2 1751.8 1194.0 11520.7 2469.4 9833.4 5408.6 0.0 532.1 705.8 64.1

2030 Fossil phase-out 585.7 88.3 2393.1 17.2 1751.8 1194.0 11520.9 2469.4 9833.4 5408.6 0.0 532.1 705.8 64.9

2050 BAU 674.8 556.8 16948.6 0.0 3449.1 0.0 27767.9 2580.4 10275.3 5651.7 1885.4 535.0 2334.2 71.5

2050 Fossil phase-out 674.8 556.8 18233.7 0.0 3449.1 0.0 28171.4 2580.4 10275.3 5651.7 2272.7 535.0 2334.2 73.3
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Figure 6.5: spot price boxplot (N=8760) per scenario

6.3.3 Monte Carlo simulation results

Figure 6.6 shows the statistical distribution of regulating power for a single simula-
tion. Each simulation represents the occurrence of the uncertain parameters of the
system including generation and load forecast error at each bus, availability of the
transmission lines and transformers, and availability of generation units. Regarding
the scenarios, the inter-quartile range (IQR) of the regulating power per total load
distribution increases with the years, and remains similar within the same year. For
example, the mean IQR for the ten simulations is 0.0135 for 2020, and for 2030 BAU
and fossil phase-out scenarios, the mean IQR is 0.0152 and 0.0153, respectively. A
higher IQR indicates a greater chance of extreme positive or negative events, in this
case more regulated power per total load. A comparison of the activated reserves
can be found in the Supplementary Table D.3. Table 6.4 presents the results of the
Monte Carlo simulation per scenario.

Table 6.4: Average of the Monte Carlo simulation outputs per scenario per annum

2020 Real 2020 Modeled 2030 BAU 2030 Fossil phase-out 2050 BAU 2050 Fossil phase-out

Positive regulating power [GWh] 311.15 307.45 360.18 355.1 478.85 502.49

Negative regulating power [GWh] -340.88 -356.88 -428.68 -405.19 -501.36 -528.75

Positive regulating power per total demand 44.32 44.76 50.27 48.86 59.86 61.24

Negative regulating power per total demand -48.89 -52.03 -59.15 -55.16 -62.4 -64.71
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Figure 6.6: Regulating power per total load per scenario for one simulation

6.3.4 Linear model results

Making use of the spot electricity prices calculated with the GRIMSEL model and
the total regulating power from the Monte Carlo simulation, we calculate the total
annual cost per type of restoration reserve and per year, as indicated in Table 6.5.

For aFRR, the modeled values for the year 2020 are relatively close to the real
values, with percentage errors of 2.2% and 18.5%, for positive and negative control,
respectively. However, the errors for mFRR are important despite several efforts to
reduce them (including consideration of transmission congestion, peak and non-peak,
weekday and weekend, and seasonality). For more information about these errors,
refer to Table 6.1, which shows the linear model coefficients of the regulating power
price and the coefficient of determination, that is, the proportion of the variance
for the regulating power prices that is explained by the spot electricity price and
the regulating power. The coefficient of determination is very high for aFRR in
both directions (87% and 92%), but for mFRR it is much lower (60% and 31%).
These values for mFRR suggest that even if the predictors (the spot price and
the regulating power quantities) are able to explain a non-negligeable part of the
regulating power prices, the standard deviation of the errors is only 37% of the
standard deviation of the real mFRR+ price, and only 17% of the real mFRR−
price (differences in descriptive statistics are shown in Supplementary Table D.4).
This results in a underestimation of the total annual cost according to Table 6.5.
Positive mFRR, however, has been the more costly service in 2019 and 2020 (18.6
and 21.7 millions of Euros, respectively), accounting for 82 and 94% of the total
activation cost of the regulating power. Therefore, it is impossible for us to draw
conclusions on the total projected cost of frequency control.

Figure 6.7 shows the imbalance prices for each scenario, however, these depend on
the prices of the spot, aFRR and mFRR (see Eqs. 6.1-6.4), which make the modeled
imbalance prices highly uncertain and rather unreliable (see also Supplementary
Table D.4, for differences on descriptive statistics).
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Table 6.5: Total cost of regulating power in Millions of Euros per annum per scenario.

2020 real 2020 Modeled 2030 BAU 2030 fossil phase-out 2050 BAU 2050 fossil phase-out

CostaFRR+ 6,85 7.00 11,87 11,8 19,27 20,7

CostaFRR− -4,22 -5.00 -9,97 -9,51 -14,32 -15,37

CostmFRR+ 21,71 0,21 0,06 0,06 0,06 0,06

CostmFRR− -1,37 -0,51 -2 -1,91 -2,99 -3,22
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Figure 6.7: Boxplot (N=8760) of imbalance prices per scenario (based on the average regulating
power of ten Monte Carlo simulations)
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6.4 Discussion

Our results highlight that, to maximise the profitability of battery investments, pro-
sumers should also provide flexibility to the energy system with frequency control.
In this study, we consider that prosumers can directly participate in the frequency
control market, by providing upwards and downwards regulating power (i.e., with-
out considering the aggregator perspective in first instance). Without taking into
account the compensation for power availability (i.e., remuneration for availabil-
ity, in USD/kW), this approach allows us to consider the maximum revenues that
prosumers can draw from regulating power (i.e., energy service only).

From the prosumer perspective, in line with the results from previous research
(Schelly 2014; Engels, Claessens, and Deconinck 2017; Litjens, Worrell, and van Sark
2018b), it is clear that the provision of frequency control adds significant value, and it
makes economic sense to increase the share of the battery that is used for frequency
control. The combination of such application together with PV self-consumption
reduces the levelized cost of battery storage, while also increasing the NPV, despite
increasing ageing and related battery replacements. Importantly, the break even
point is reached for cases where at least 50% of the battery is used for frequency
control.

The use of the battery for frequency control also brings important trade-offs
for prosumers, since self-sufficiency is moderately reduced by 6-7 percentage points
with each increase of 25% of the battery capacity share dedicated to frequency
control. Considering that motivations for investing on PV-coupled battery systems
are diverse, e.g., self-sufficiency versus financial results (Korcaj, Hahnel, and Spada
2015), we argue that combining PV self-consumption and frequency control may not
appeal all prosumers despite the economic advantage. It is worth mentioning that
we did not find any indication of meaningful increase on the peak flow due to the
participation of distributed batteries in frequency control services, which suggests
that it is a grid-friendly strategy.

From our analysis of future scenarios for the Swiss energy system, we see that
the amount of regulating power (i.e., the sum of aFRR and mFRR in each direction)
is expected to increase by up to 60% throughout the energy transition, mainly due
to the projected massive increase in PV capacity (see Table 6.4). This expansion of
PV capacity will require further reserve capacities to be contracted by the TSO, to
preserve the frequency in the required region. The TSO, however, will not bear with
the cost of such reserve capacity and regulating power. This cost will be transferred
(as it is now) to the Balancing Responsible Parties that cause the imbalances in the
system, and this cost will probably be reflected in the bill of the final consumers of
electricity.

With an increase in future reserve capacities, the figure of an aggregator in a
future energy system is conceivable. However, in order to enable the emergence of
aggregators, TSO requirements to provide aFRR and mFRR should evolve to allow
the pool of such distributed energy resources. The relaxation of some of the require-
ments for prequalification, for instance on the verification of each individual asset
that participates in the frequency regulation provision, would facilitate a business
model for aggregators (Leisen, Steffen, and C. Weber 2019).

This paper also highlights the challenges associated with modeling prices of fre-
quency control, and in particular those of manual frequency restoration reserves
(mFRR). The mFRR prices proved to be hard to model, most probably due to their
definition through auctions using pay-as-bid strategies. Moreover, it is difficult to
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predict the future prices of mFRR, and therefore, there is an inherent uncertainty
linked to this service. Accordingly, aggregators should be careful when designing
the contract of mFRR services from distributed batteries to avoid economic losses.
Deeper insight could be obtained by analysing the real probabilities of winning bids
on the procurement of aFRR and/or mFRR in each direction. From the aggregator
perspective, the provision of aFRR in Switzerland is more straightforward, since the
prices are tied to the spot price, and therefore more easily forecasted for short time
periods (e.g., intraday). Moreover, the upward regulating power (i.e., the increase
of generation using both aFRR and mFRR) proved to offer more economic appeal
for prosumers, since the median of the value associated to upwards frequency con-
trol was twice of the median value associated to downwards frequency control (i.e.,
median annual values of 346 USD and 178 USD per annum, respectively), across all
the cases.

The limitations of this study lie mainly on the fact that we consider the max-
imum revenues that can be drawn from frequency control provision, for which we
consider both aFRR and mFRR products, that are weekly or four-hourly products,
and therefore the provision of both products may not be guaranteed throughout
the whole year. Additionally, our analyses are based on the maximum economic
potential since we assume that residential batteries can deliver the four frequency
control services (namely aFRR+, aFRR−, mFRR+, and mFRR−) all year round,
which may not be plausible in reality (see for instance the work of Biggins et al.
(2022) on probabilities to get auction bids accepted in the UK frequency market).
Another caveat to be considered, is the accumulation of the model-specific uncer-
tainties about parameter values, input data or model structure, which leads to a
cascade of uncertainty. Moreover, while the future diffusion of heat pumps has been
accounted for in our model, their use for frequency control has not been considered.
Similarly, we have not considered the electricity demand increase due to the grow
of the electric vehicle market, which could become important in the coming years,
also for aggregators providing frequency services. From the regulatory point of view,
Switzerland is expected to join the European integration of frequency control ser-
vices, MARI, PICASSO and TERRE. This European integration would change the
requirements to participate and potentially reduce the amount of regulating power
required in the future, since it would be an integrated European service, however,
at the moment it is still unclear whether Switzerland will be part of such integra-
tion as a third-country or not due to the lack of an electricity agreement with the
European Union. Finally, further uncertainty is linked to Swissgrid’s plan to carry
out a reform of the pricing mechanism to improve market liquidity and price signals,
by harmonising prices and creating incentives for an efficient balancing (Swissgrid
2020).

6.5 Conclusions

This paper quantifies the various impacts for prosumers related to the use of PV-
coupled batteries for increasing their self-sufficiency and providing flexibility to the
whole energy system with frequency control, under the management of an aggrega-
tor. We present an open-source PV-coupled battery model which use input data of
historical market prices data for 2020 and monitored smart meter electricity con-
sumption from 636 Swiss households. We quantify the Swiss capacity requirements
of dispatched-by-design distribution systems, where batteries are deployed in the

104



distribution grid to dispatch the operation of traditionally stochastic prosumption
peak flows. Finally, we attempt to model future frequency control prices with lim-
ited data (spot prices and regulating power quantities), which proved to be complex,
in particular for mFRR.

According to our results, the participation of prosumers in the frequency con-
trol market through an aggregator makes economic sense, since performing both
frequency control and PV self-consumption significantly reduces the levelized cost
and increases the net present value, in spite of the considerably reduced battery
lifetime as a consequence of frequency control. However, the self-consumption and
self-sufficiency rates of prosumers are reduced by 6 and 4 percentage points, as the
share of the battery dedicated to frequency control increases by 25%. This limi-
tation may prevent some prosumers who prioritize self-sufficiency from joining an
aggregator. Based on our results, we also recommmend that prosumers interested
in providing frequency control consider a 25% share of the batteries dedicated to
frequency control, for which an attractive trade-off between LCOES on the one hand
and total PV self-consumption and self-sufficiency levels on the other is found. A
25% may also be accepted by a large share of prosumers, since most of the battery
capacity is still used to run their own houses.
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Chapter 7

Conclusions

7.1 Summary

This thesis aims to contribute to the literature by analyzing trade-offs between pro-
sumers benefits, in particular in the residential sector, and grid impacts for various
PV-coupled battery configurations. As distributed PV is expected to continue to
massively grow in the context of the energy transition across the globe, increased
stress on the distribution grid is expected mainly due to PV feed-in, but also to
the increase of peak power demand through the decarbonization of the transport
and heating sectors. To mitigate these impacts in a decarbonized energy system,
synergies among low-carbon technologies are required. Increased levels of flexibility
facilitate the integration of high amounts of PV, since they optimize grid asset use
to maintain the balance between demand and supply, can manage network conges-
tion, and defer network reinforcement. However, this flexibility needs to be enabled
through incentives and managed by technology and algorithms that allow the users
to respond in real-time to such incentives.

Through this study, we seek to shed light on different technologies and strategies
to jointly increase prosumers benefits and to reduce the stress on the distribution
grid. The use of PV-coupled batteries, heat pumps, and thermal storage is studied
and compared when promoting self-consumption, flexibility, and services to the grid
such as peak reduction and frequency control while quantifying the benefits for the
prosumers. We further explore the unexploited economic benefit that can be reaped
by adding different applications performed by the storage system, along with the
increase of self-consumption, referred to as the combination of application or benefit
stacking. In a first instance, we analyze avoidance of PV curtailment, demand load
shifting, demand peak-shaving, peer-to-peer trading and frequency control, on top
of PV self-consumption. These applications respond to different policy mechanisms,
incentives and tariff structures. In this regard, we address the following two research
questions:

Research question A

To which extent can the combination of applications help to increase the
financial revenue of energy storage in the residential sector?
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Research question B

What are the trade-offs between prosumer benefits and grid impacts in single-
family houses with PV and energy storage with access to multiple revenue
streams?

To answer these questions, we develop an open-source 24-h optimization frame-
work for battery dispatching (i.e., Battery Schedule OPtimizer for Residential Appli-
cations, BASOPRA), subsequently expanded to optimize heat pumps and thermal
storage operation, for space heating and domestic hot water (DHW). This optimiza-
tion framework allows us to explore the performance of the storage systems when
combining applications such as self-consumption, avoidance of PV curtailment, de-
mand shifting, demand peak-shaving, and frequency control.

The operation of smart residential storage systems and heat pumps, and the
applications that can be considered, mainly depend on the energy tariff structure
(e.g., capacity-based tariffs) and on energy policy and regulation (e.g., PV curtail-
ment). In the context of this thesis, we consider the deployment of capacity-based
tariffs to reduce the grid impacts of PV, heat pumps, and EVs in the near future.
Additionally, we consider the possibility of a physical feed-in limit of 50% of the
nameplate PV-system capacity as a preventive measure to keep the power system
stable during periods of high PV production, and the reduction of the feed-in tariffs,
which is assumed to match the wholesale electricity price as is the case for traditional
electricity generators.

Furthermore, we look into two emerging electricity market participants, namely
aggregators and P2P communities. The former are considered in the case of residen-
tial batteries providing frequency control, to pool together enough storage capacity
to participate in the Swiss frequency market, whereas the latter are considered
to explore the influence of trading preferences, translating the findings from the
psychological research to the engineering field, and expanding the development of
human-centered energy systems, which leads to the last research question of this
thesis:

Research question C

How does a P2P community based on actual trading preferences performs at
the individual, collective and grid level?

We address this question through an interdisciplinary study that assesses P2P
trading decisions of German homeowners on the basis of an online experimental
study, and simulates how various decision-making strategies could impact the per-
formance of P2P communities.

7.2 Key findings in the context of the energy
transition

The studies in this thesis build upon the importance of decentralized energy storage,
and in particular, of lithium-ion batteries, for the energy transition as means to
increase PV adoption while reducing PV impacts on the distribution grid. However,
batteries are not yet cost-effective. Economies of scale, innovation, and competition
between different types of lithium-ion batteries have enabled average lithium-ion
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battery cell cost to drop by 82% since 2012, but further cost reductions are still
required, in particular, for residential storage to become cost-effective.

In order to make residential storage cost-effective, we study how the combination
of applications can contribute to earlier break-even points for residential batteries
than when batteries are used only for PV self-consumption, in two different geogra-
phies, Geneva (Switzerland) and Austin (U.S.). In order to reach economic prof-
itability, batteries require further cost reductions regardless of battery technology.
When all applications are combined, NCA-based batteries are closest to profitabil-
ity. They require only 35% reduction in total costs to be profitable in Switzerland
and 40% in the U.S. NMC-based batteries in Switzerland require a 30% reduction
in total costs, however, in the U.S. this increases up to 55% (see Figure 2.7). Anal-
ogously, from the prosumer point of view, it represents an increase of the battery
Net Present Value (NPV) of the battery system by 66%. The combination of appli-
cations hence allows to reach cost-effectiveness of residential storage more quickly
under the condition of adequate incentives, while incentivizing the prosumers to
optimize the use of their batteries. Importantly, the combination of applications for
residential batteries significantly increases their value without substantially reducing
the battery life nor prosumer’s PV self-consumption (see Subsection 3.3.2).

In addition, we have highlighted the importance of energy policy and electricity
tariff design to alleviate grid stress, modify prosumer interactions with the grid
and mitigate the impact of PV penetration. We analyzed the impact of regulation-
based PV curtailment and found it to be more interesting from the grid perspective
than from the prosumer perspective, offering indirect benefits for grid operation and
grid stability that cannot be neglected. On the other hand, PV curtailment can
potentially discourage prosumers to install large PV systems, depending on how PV
curtailment is enforced from the regulatory side. Moreover, we evaluated the use of
TOU tariffs to reduce the consumption of grid electricity during peak time, which in
general increases the number of cycles of the battery due to grid charging at off-peak
time, reducing the levelized cost of the battery, and provides synergies with demand
peak-shaving. However, it barely increases the NPV of batteries.

Throughout this thesis, we explore the combination of volumetric tariffs and
capacity-based tariffs. The main reason for the promotion of capacity-based tariffs
is the reduction of electricity consumption due to PV penetration and therefore the
decrease of the prosumers’ contribution to cover the grid costs, resulting in losses for
the DSOs. Capacity-based tariffs may hence allow DSOs to recover their investment
while ensuring the supply of energy and the safety of the grid.

Capacity-based tariffs can additionally be seen as a mechanism to reduce the
impact of PV feed-in on the distribution grid, incentivizing batteries to perform
demand peak-shaving while increasing self-consumption. Capacity-based tariffs can
also provide benefits for the wider energy system, since electricity peaks are typically
met by more costly and carbon-intense generators, and therefore the reduction of
such peaks may lead to a reduction of energy costs and carbon dioxide emissions
at the aggregated level. Moreover, at the residential level, batteries performing
demand peak-shaving, which is enabled by capacity-based tariffs, were found to have
on average a 15% higher NPV than other combination of applications. Therefore,
through the implementation of capacity-based tariffs, prosumers with smart systems
and residential storage can help to reduce the stress on the grid while improving
battery profitability for all household types, regardless of the consumption bracket
or the load profile. Regarding the impact of capacity-based tariffs on residential
heating decarbonization (see Chapter 4), we found that depending on their presence
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or absence, energy storage can be a two-edged sword by either reducing or increasing
the household’s peak flow compared to a base case without energy storage. Without
capacity-based tariffs an increase in peak demand is, therefore, to be expected as
electrification of the heating sector advances, in particular in poorly insulated single-
family houses.

However, capacity-based tariffs may incur significantly higher costs for some
households and may consequently have a disruptive impact if implemented without
accompanying measures (Azarova et al. 2018). In addition, for the Swiss case, un-
der the presence of capacity-based tariffs, it was found that the power exported by
prosumers determined the maximum peak flow in well-insulated houses (i.e., reno-
vated and new single-family houses, see Chapter 4). Depending on the regulatory
framework, charging prosumers for their power injections into the main grid may
not be possible (as is the case in Switzerland today), to avoid charging the users two
times for the same service (if prosumers have already been charged on the imported
power). This opens a new regulatory debate as the countries pursue the energy tran-
sition, since policy-makers aim to rapidly increase PV penetration to decarbonize
the energy system, and DSOs need to continue to ensure the security of the distri-
bution grid (and their revenue), but they may not be in the position to address the
main cause of future power peaks, i.e., PV installations. In the particular case of
Switzerland, where most PV installations are expected to be roof-mounted, larger
residential installations than those assumed in this thesis (based on the median res-
idential size or on the total demand) are expected as PV cost declines and therefore
higher peaks of injected power.

Concerning the decarbonization of the heating sector, the differences in building
envelope quality were found to be crucial for the grid impact of single-family houses
using heat pumps. In modern and renovated single-family houses, the peak flow
after the installation of PV and heat pumps was found to remain around the same
values as before the installation of both systems. However, in poorly insulated
single-family houses, the need to install larger heat pumps to cover the heat demand
induces an increase in the peak flow that can only be slightly reduced when capacity-
based tariffs are used. Therefore, in addition to reduce carbon dioxide emissions
and increasing comfort levels (Streicher, Padey, Parra, Bürer, S. Schneider, et al.
2019; Narula et al. 2019), thermal retrofitting has an important role to play in the
reduction of grid stress in the future decarbonized heating sector.

We found that prosumers with PV-coupled heat pumps systems aiming to in-
crease their share of PV self-consumption and self-sufficiency in an economically
viable way should use their heat pump to also supply domestic hot water next to
space heat. This reduces the levelized cost of electricity consumption and it increases
the self-consumption by 10%, while representing only a small extra capital invest-
ment for the DHW storage (around 1000 CHF, in Switzerland). As a second step,
the installation of a heat storage system allows to increase self-consumption and
self-sufficiency by another 2 to 6 percentage points at relatively low cost. Batteries
are the last option, mainly due to their high cost, despite their capacity to increase
self-consumption and self-sufficiency by 2-20% beyond the levels of the previously
mentioned systems.

For P2P communities, we found evidence that social empowerment may lead to
benefits for the community members, independently whether they are prosumers or
traditional consumers. The latter were found to reap the highest financial benefits
under the proposed market mechanism, which may lead to distributional energy jus-
tice problems, since the actors that invest less enjoy higher benefits. Therefore, fairer
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distribution of P2P community costs should be explored, for instance, through dif-
ferentiated membership costs. In terms of power exchanges with the grid, despite the
reduction of average power peaks due to higher self-consumption at the aggregated
level in P2P communities, compared to a traditional self-consumption maximization
strategy, the extreme events (i.e., maximum power drained and injected) remained
unchanged. This result implies the need to introduce other strategies to reduce grid
stress at the community level, as the ones previously discussed here (e.g., PV curtail-
ment or capacity-based tariffs), or to further use of flexibility through demand-side
management or changed prosumer behavior through incentives, before tapping into
more costly solutions at the distributed level such as the installation of voltage
regulated distribution transformers or even grid reinforcement.

Finally, we considered the procurement of frequency regulation by means of an
aggregator. According to our results, the provision of such a service can be a prof-
itable service for the prosumer, but it is linked to a high degree of uncertainties that
should be mainly bore by the aggregator at the moment of bidding and committing
assets to provide frequency control services. In line with previous research, frequency
control was found to bring high value to the battery, considerably reducing the me-
dian levelized cost from 0.55 to 0.29 USD/kWh when only 25% of the PV-coupled
battery capacity is dedicated to frequency control. In this same case, the median
net present value increases by USD 2830, however, the battery lifetime is consider-
ably reduced from 13 to 9 years due to additional cycling for frequency control. As
expected, there is a trade-off, which implies a reduction in self-consumption and self-
sufficiency, however, it is moderated up to 6 and 4 percentage points, respectively,
as the share of the battery dedicated to frequency control increases by 25%. This
limitation may prevent some prosumers who prioritize self-sufficiency from joining
an aggregator. Prosumers and aggregators interested in entering the frequency mar-
ket may consider testing the economic viability with a 25% share of the batteries
dedicated to frequency control, for which an attractive trade-off between LCOES on
the one hand and total self-consumption and self-sufficiency levels on the other is
found.

The amount of regulating power was found to increase by up to 60% across the
energy transition, mainly as a result of the PV capacity increase. This increment in
regulating power opens the door to new business models, like aggregators, in partic-
ular, because distributed energy resources, such as PV, batteries, electric vehicles,
and heat pumps, continue to grow. However, the future revenues from frequency
regulation services were found to be difficult to model, reflecting a high degree of
uncertainty for the aggregator’s business model.

7.3 Summary for policy and decision-makers

Figure 7.1 displays a summary of the trade-offs that are found across this thesis,
in the form of a schematic. Please note that the comparisons are done inside every
chapter and not across chapters since some hypothesis, applications and indicators
change from chapter to chapter. Moreover, in Chapter 4 for the three analyzed
devices (battery, DHW storage and space heating storage), two options appear
depending on the presence or absence of a capacity-based tariff, and therefore of
demand peak shaving.
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Figure 7.1: Schematic representation of the trade-offs per chapter. The comparisons are made
within chapters and not across chapters. The asterisk (*) indicates a dependency on the presence
of a capacity-based tariff. The neutral emoji indicates indifference. Note that in Chapter 4 we
compare PV self-consumption and demand load shifting with PV self-consumption, demand load
shifting and demand peak shaving. In Chapter 5, ind. stands the for individual level and com.
stands for the community level, and the comparison of P2P is made with prosumers following
a self-consumption strategy. In Chapter 6 the comparison is between PV self-consumption and
frequency control (FC).

Recommendation I:

Electricity tariffs which fit for the purpose can effectively increase residential
PV system flexibility, e.g., by enabling energy storage to perform different
applications that can help to reduce the grid stress and increase the financial
benefits for the prosumers.

Recommendation II:

Capacity-based tariffs can effectively mitigate distribution grid impacts by
promoting a reasonable exchange with the grid, but should be carefully de-
signed to avoid disruptive impacts on households’ budgets while ensuring DSO
revenue.

Recommendation III:

Under current technology costs, the following steps are recommended to in-
crease the share of PV self-consumption and self-sufficiency in single-family
houses with PV-coupled heat pump systems: first, to supply also domestic
hot water in addition to space heating; secondly to install heat storage; and
lastly, to use a battery.
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Recommendation IV:

Systematic building energy retrofitting holds the key to substantial energy
savings, carbon dioxide emissions reduction, and to help alleviate the impact
of electrification of the heating sector on the grid.

Recommendation V:

In P2P communities, a fairer distribution of community costs is needed to
avoid distributional energy justice problems, since pure consumers reap the
highest financial benefits under the proposed market mechanism.

Recommendation VI:

P2P communities are useful to reduce the so-called duck-curve (based on aver-
age power exchanges with the grid), but not to mitigate the maximum power
exchanges with the grid. Therefore, other mechanisms to reduce the impact
on the grid should be explored.

Recommendation VII:

The provision of frequency control by means of an aggregator can be a prof-
itable service for the prosumer reaching positive NPV (with a median value
of USD 3756) and lower levelized cost of storage (up to 67% reduction with
respect to a battery providing PV self-consumption only), but it is linked to
a high degree of uncertainties that should be mainly bore by the aggregator.

Recommendation VIII:

Frequency control provision by residential batteries was found to reduce self-
consumption and self-sufficiency by 6 and 4 percentage points as the share of
the battery dedicated to frequency control increases by 25%. Furthermore,
the battery lifetime decreases to five years (with 75% of the battery used
for frequency control) instead of 13 years, when the battery is used for PV
self-consumption only (median values), due to the increase in the number of
cycles.

Recommendation IX:

The amount of regulating power was found to increase by up to 60% across
the energy transition, mainly as a result of the PV capacity increase.

7.4 Future work

The presented work could be advanced in several different directions to further in-
crease and accelerate PV penetration, supporting the energy transition, and reducing
the distribution grid stress. In particular, in a near future with a high penetration
of EVs, it is important to assess the behavior of EVs under different tariff scenarios
and policy incentives, as well as their synergies or trade-offs when compared to sta-
tionary storage providing grid services. Moreover, the role of EVs at the community
scale, and the role of trading preferences with respect to the possibility to allow a

113



third actor to interact with their vehicle appear as the next steps to continue the
research on human-centered energy systems.

The inclusion of power flow analysis and the analysis from the DSO point of view
are as well two important next steps to better understand the impact of low-carbon
technologies as enablers for PV. These analyses should be done together with local
DSOs since the data is not publicly available and the results of such studies may
be interesting for local actors, however, they may lose generalizability due to the
significant differences among distribution grids across different areas and countries,
therefore calling for a sufficiently large number of distribution grids to be assessed.
Different forecast strategies and their accuracy may lead to different results. Hav-
ing assumed perfect foresight, forecast strategies were not within the scope of this
thesis. However, their financial implications for the prosumers may be significant,
in particular when monthly capacity-based tariffs are involved. Capacity-based tar-
iffs with lower resolution (e.g., weekly or daily) can result in better results for the
prosumers and the grid, due to lower errors of forecasting and higher capability of
adaptation from the prosumers.

The analysis of buildings’ thermal inertia and its simplified representation in
the model (average inertia) could lead to more accurate results, in particular for
buildings with poor envelope quality. However, this needs further empirical analysis
and dedicated modeling.

Alternative pricing mechanisms or auction systems that account for user prefer-
ences in P2P communities should be explored. Finally, in order to ensure the validity
of the results presented, large-scale field trials, including an in-depth analysis of user
decision-making, would be a logical extension of this work.
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Appendix A

Supplementary Information -
Electrochemical storage Part A

A.1 Material and method

Fig. A.1 is a schematic representation of our method. In first place, we specify the
input data for electricity demand and PV generation (Section A.1.1). The appli-
cations and their combinations are subsequently defined along with the respective
electricity tariff structure (Section A.1.1). Then, the battery technologies, system
topology and components are presented (Sections A.1.2 and A.1.3). Thirdly, our
schedule optimization is described (Section A.1.4). Finally, we present the techno-
economic performance indicators (Section A.1.5). Across the study we use USD as
common currency for both locationsa.

A.1.1 Input data

Demand and PV generation

We use electricity consumption data with 15-minute temporal resolution monitored
in single dwellings in Western Switzerland (636 dwellings) and Austin, Texas (308
dwellings) during the year 2015. Considering this amount of data, we opt to form
representative consumer groups in order to reduce the computational time required.
To generate these representative consumer groups, we employ clustering to produce
groups of consumers with similar behaviors. We split the consumers according to
their annual consumption into 3 separate groups, i.e., a low, medium and high
consumption group in both locations. Finally, within these 3 groups we cluster based
on the average daily load profile. We opt to produce 4 clusters in each consumption
bracket, noting that the selecting the number of clusters in highly dimensional data
is a difficult task. From each cluster we select the household that is closer to the
centroid which is subsequently optimized. The results presented in this study are
the average of the four representative households of each cluster per consumption
bracket.

Environmental variables including outdoor temperature and horizontal solar ir-
radiance monitored across both locations are used to model PV generation. We
simulate PV generation using a standard one-diode model and PV panel input data
with a nominal efficiency of 18.6%, representative of the current state of the art

aExchange rate used: 1 USD/CHF.
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Figure A.1: Schematic representation of the modeling approach proposed.

(HIT photovoltaic module HIT-N2XXSE10 datasheet n.d.). The model also includes
a maximum power point tracker system, as is the case of most PV systems, to max-
imize the output regardless of the environmental conditions. The PV system’s in-
stalled capacity is modeled based on the empirical distribution across Switzerlandb

and Texasc (see Section 1.3 of the supplementary information). We finally focus on
the median PV size of the distributions for our baseline results (i.e., unchanged PV
size), while alternative scenarios including the 25th and 75th percentile are shown
in Section 5 of the supplementary information.

Electricity tariff and battery applications

The operation of a residential battery as well as the number of applications it can
deliver depends on the tariff structure. In this study we include all existing consumer
applications (see Fig. A.2), excluding back-up power since we focus on distribution
areas with a high level of grid stability (for both utilities referred in this study, the
number of minutes of power failure experienced by a typical customer in a year was
below 100 minutes in 2016d). Since there is not a market mechanism incentivizing
the export of electricity from residential batteries to the main grid, this case is not
considered either.

Electricity prices used in this study are based on available tariffs which are
offered by the local utility companies in the two locations. Both, single tariffs and
double tariffs (with a peak and off-peak periods) are considered in the analysis.
In Switzerland, double tariffs are applied all-year-round, while in the U.S. they
are applied only in summertime. The export price is assumed to be the wholesale

bSwiss Federal Office of Energy
chttps://openpv.nrel.gov
dFor the utility in Texas, the number of minutes of power failure amounted to 95.6 minutes

(which is 30% lower than the average in the U.S. (Lim and Yurukoglu 2018) ) while it was only
7.8 minutes in the canton of Geneva.
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Table A.1: Various electricity tariffs components depending on the bill structure and for the two
locations used in this study to test various battery applications.

Name Units U.S. Switzerland Based on

Flat Tariff USD/kWh 0.073 0.22 Energy

Double Tariff
On-peaka USD/kWh 0.183 0.24 Energy

Off-peak USD/kWh 0.056 0.152 Energy

Export price USD/kWh 0.027b 0.047b Energy

Capacity tariff USD/kW/month 10.14 9.39 Power

Feed-in limit %kWp−PV 50% 50% Regulation

a In the U.S. on-peak time is only from June to September from 1 p.m. to 7
p.m. on weekdays. In Switzerland, on-peak time is all year-round from 7
a.m. to 10 p.m. on weekdays and from 5 p.m. to 10 p.m. on weekends.

b We use real hourly wholesale price for ERCOT and EPEXSPOT markets.
The price shown in the table is the average wholesale price.

electricity price as is the case for traditional electricity generators. This is already
the case in Switzerland for installations which are on the waiting list to be granted
a one-off subsidy for the capital investment in PV (Husser, Pius 2017) and this
is expected to become a widespread policy as a consequence of falling cost of PV
technology. We use 2015 wholesale electricity prices from the day-ahead market for
Texas (ERCOT southern load zone) and Switzerland (EPEXSPOT). It is important
to note that, apart from the electricity price, electricity bills include other fixed costs
as well, such as taxes and grid usage.

Capacity tariffs, which bill the peak electricity demand (i.e., in USD/kW) during
a billing period, have been widely applied for large consumers, typically belonging
to the secondary and tertiary economic sectors. For residential customers capacity
tariffs have only being marginally applied (e.g., by the Arizona Public Services in the
U.S.), although their implementation is being suggested following the penetration of
air conditioning, heat pumps and electric vehicles (AEMC 2014). As a first attempt
to include them we assume capacity tariffs applied to large consumers by the local
utilities in the two locations. Finally, following the example in Germany, a (physical)
feed-in limit of 50% of the nameplate PV-system capacity for both countries is
assumed as a preventive measure to keep the power system stable during periods of
high PV production (Hesse, Martins, et al. 2017). Table 2.1 provides the input data
for every battery application depending on the tariff structure.

For the baseline scenario, we assume a flat retail tariff and the exclusive usage
of batteries for PV self-consumption in agreement with most residential grid-tied
battery systems installed worldwide (Pena-Bello, Burer, et al. 2017). Then, the bill
structure is modified by adding step by step the components shown in Table A.2
(Combination 2-5) and the various combinations of applications are therefore always
tested including PV self-consumption. For instance, in combinations assuming a
double tariff instead of a flat tariff, we assume inclusion of demand load-shifting as
strategy. Finally, a case in which all applications are combined is also presented
below while results for other combinations including three applications are shown
in Section 5 of the Supplementary Information.
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Figure A.2: Schematic representation of the four applications analyzed in this study. a. PV self-
consumption, b. Avoidance of PV curtailment, c. Demand load shifting and d. Demand peak
shaving.

Table A.2: Various combination of applications and the respective electricity tariff structure com-
pared in this study. If the application indicator is ON, it means that the referred application is
included in the combination, same is valid for the electricity tariff structure indicators.

Combination name
Applications Electricity tariff structure

PV Self-
consumption

(PVSC)

Avoidance of
PV curtailment

(PVCT)

demand-load
shifting
(DLS)

Demand peak
shaving
(DPS)

Flat tariff
(FT)

Double
tariff
(DT)

Capacity
tariff

Feed-in
limit

Combination 1
(Baseline scenario) ON OFF OFF OFF ON OFF OFF OFF

Combination 2 ON OFF OFF ON ON OFF ON OFF

Combination 3 ON OFF ON OFF OFF ON OFF OFF

Combination 4 ON ON OFF OFF ON OFF OFF ON

Combination 5 ON ON ON ON OFF ON ON ON
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Table A.3: Battery specifications for the six technologies compared in this study. SOC denotes the
state of charge.

Technology Cathode
Material

Cycles
@ DoD

Maximum
lifetime
[years]

Roundtrip
Efficiency

Energy Costs
[USD/nominal kWh]

Maximum charge/
discharge rate [kW] ∆SOC Maximum

SOC
Minimum

SOC
Cycle & calendar

aging factor per yeara Reference

Li-ion NMC 5000 @ 100% 15 91.8% 410 0.4*C 1 1 0 0.059 & 0.07 (ITP Renewables 2016; ITP Renewables 2017; Tesla 2015)

NCA 8000 @ 100% 20 92.5% 650 1*C 1 1 0 0.047 & 0.05 (Trina BESS 2017)

LFP 6000 @ 100% 20 94% 980 2*C 1 1 0 0.024 & 0.05 (ITP Renewables 2016; ITP Renewables 2017; Sony 2017)

LTO 15000 @ 100% 25 96.7% 1630 4*C 1 1 0 0.003 & 0.04
(Leclanche 2015),
personal
communication

Lead-acid VRLA 1500 @ 50% 10 85% 330 0.1*C 0.5 1 0.5 0.236 & 0.1 (Hesse, Martins, et al. 2017; Sonnenschein 2013)

ALA 4500 @ 70% 15 91% 750 1*C 0.7 0.9 0.2 0.06 & 0.07 (ITP Renewables 2016; ITP Renewables 2017; Ecoult 2017)

a The cycle aging factor is given for a 50% depth-of-discharge. For further information please refer to the section 2 of the supplementary information.

A.1.2 Battery technologies

We compare and optimize the operation of the most deployed battery technolo-
gies for residential applications, including the two main families, lithium-ion and
lead-acid. A total of six different technologies are analyzed: for the lithium family,
these include lithium nickel manganese cobalt oxide (NMC), lithium nickel cobalt
aluminum oxide (NCA), lithium iron phosphate (LFP), and lithium titanium oxide
(LTO) batteries; and for the lead-acid family, we consider traditional valve regu-
lated lead-acid (VRLA) and advanced lead-acid (ALA) batteries. The technical and
economic battery input data required by the model were collected from publicly
available data-sheets and personal communication with representative manufactur-
ers. Table A.3 presents the key specifications for the six battery technologies defined
by the type of cathode material. Three currently available battery sizes were as-
sessed, small (3 kWh), medium (7 kWh) and large (14 kWh). Moreover, aging is
modeled on a daily basis for the first year using the maximum among the daily
calendar factor and the daily cyclic factor. The former is calculated as the multi-
plicative inverse of the calendar lifetime, whereas the cyclic aging factors are based
on Woehler curvese for every technology. The cyclic aging is then given by the num-
ber of cycles per day at the given depth of discharge (depth-of-discharge), divided
by the maximum number of cycles at a given depth-of-discharge (Sauer et al. 2009).
Further details are presented in Section 2 of the Supplementary Information.

A.1.3 PV-coupled battery system

This study focuses on the combined investment in a PV-coupled battery system;
more specifically, we analyze the techno-economic implications of adding a battery
system when purchasing a new PV system that would otherwise be installed on its
own. We consider a DC-coupled topology since a lower investment is required and
the overall efficiency of stored PV electricity is higher than in AC-coupled topologies
(Ardani et al. 2017). Moreover, the prevention of PV curtailment is possible (for
further information see section 3 of supplementary information). The DC-coupled
system used in this study is illustrated in Fig. A.3 and it includes an integrated
inverter with a buck-boost charge controller with a maximum power point tracking
system and a bi-directional inverter (required to charge from the grid). An inverter
loading ratio (i.e., the ratio between the inverter rating and the PV rating, referred
to as ILR) of 1.2 is considered for this study (Burger and Rüther 2006). Since
manufacturers claim no operational costs required for residential PV and battery
technologies, we set them to zero (Tesla 2015; Sonnenschein 2013). Installation

eThe Woehler curves show the number of remaining cycles of a battery as a function of depth
of discharge until the end of lifetime. This curve is given by some battery manufacturers in data
sheets.
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Table A.4: Values selected for the technical and economic assessment of PV-coupled battery sys-
tems.

Component Units Value Reference

Charge controller efficiency % 98 Energy 2017

Inverter efficiency % 94 Energy 2017

Bi-directional inverter cost [USD/kW] 600 Ardani et al. 2017

Bi-directional inverter lifetime years 15 Fu et al. 2017

Balance of plant cost [USD/kW] 100 Pena-Bello, Burer, et al. 2017

Installation costs [USD] 2000 Baumann and Baumgartner 2017

O&M [USD/kW] 0 Tesla 2015; Sonnenschein 2013

Discount rate %/a 4 Stephan et al. 2016

End of life (EoL) % 70 Käbitz et al. 2013

ILR p.u. 1.2 Burger and Rüther 2006

costs are considered for the inverter and battery and are assumed to be high for
both countries (i.e., $ 2000). Other technical and economic characteristics of the
PV-coupled battery system considered in this study are shown in Table A.4.

A.1.4 Optimization of the battery schedule

The management problem of a PV-coupled battery system is solved by Linear Pro-
gramming, using Pyomo, an open-source tool for modeling optimization applications
in Python (Hart et al. 2012) and solved with CPLEX. The model parameters and
variables are presented in Table A.5. The battery schedule is optimized for every
day (i.e., 24 h optimization framework) and we assume perfect day-ahead forecast
of the electricity demand load, solar PV generation and wholesale prices in order to
determine the maximum economic potential regardless of the forecast strategy used.
Aging was treated as an exogenous parameter, calculated on daily basis and was
not subject to optimization (for further information see section 2 of the supplemen-
tary information). The temporal resolution of the input data and simulation is 15
minutes , with this value providing a reasonable compromise between the modeling
real performance and computational speed (Beck et al. 2016). The model objective
function have two components, namely the energy and power components of the
electricity bill. As the tariff structure depends on the applications considered, a
boolean parameter activates the power-based factor of the bill when is necessary.

Every optimization was run for one year and then the results are linearly-
extrapolated to reach the battery end of life. We assume 30% of capacity depletion
as the end of life (Käbitz et al. 2013) and when the battery lifetime exceeds the
inverter lifetime, the residual value of the battery is considered using straight-line
depreciation (Moore et al. 2015). Replacement is considered when the battery can-
not match the inverter lifetime which is taken as the project lifetime, we take a
conservative approach maintaining the same price in the future discounted to the
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Figure A.3: DC-coupled PV-battery system with integrated inverter used in this study. Arrows
indicate the direction of possible energy flows between the individual components.

presentf. The analysis is done with same prices for all years across battery life-
time. The validation of the model can be found in Section 4 of the supplementary
information. The objective function and constraints are presented below.

Min(

Energy-based tariff︷ ︸︸ ︷
t∑

i=0

(Egridi ∗ πimporti − EPV−gridi ∗ πexporti) + (Pmax−day ∗ πcapacity ∗ PS︸ ︷︷ ︸
Power-based tariff

))

(A.1)

Subject to:
Battery constraints:

SOCmin ≤ SOCi ≤ SOCmax (A.2)

Echari = EPV−batti + Egrid−batti (A.3)

Edisi ≤ (SOCi−1 − SOCmin) ∗ Cnom
batt (A.4)

Energy balance constraints:

Egridi = Egrid−loadi + Egrid−batti + Eloss−inv−gridi (A.5)

EPVi
= EPV−loadi + EPV−batti + EPV−gridi + EPV−curti + Eloss−convi + Eloss−inv−PVi

(A.6)
Eloadi = EPV−loadi + Egrid−loadi + Edisi ∗ ηinv (A.7)

SOCi =
(SOCi−1 ∗ Cnom

batt + Echari − Edisi − Eloss−batti)

Cnom
batt

(A.8)

fThis due to the high uncertainty linked to future battery prices for different battery technolo-
gies.
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Edisi = Ebatt−loadi + Eloss−battinvi (A.9)

Efficiency losses constraints:

Eloss−convi = (1− ηconv) ∗ (EPV−loadi + EPV−batti + EPV−gridi) (A.10)

Eloss−biinvi = Eloss−inv−PVi
+ Eloss−inv−gridi + Eloss−inv−batti (A.11)

Eloss−inv−PVi
= (EPV−loadi + EPV−gridi) ∗ (1− ηinv) (A.12)

Eloss−inv−gridi = Egrid−batti ∗ (1− ηinv) (A.13)

Eloss−inv−batti = Edisi ∗ (1− ηinv) (A.14)

Eloss−batti = Echari ∗ (1− ηbatt) (A.15)

Power constraints:
Pchari ≤ Pmax−char (A.16)

Pdisi ≤ Pmax−dis (A.17)

PPV−gridi + PPV−loadi + Pdisi + Ploss−biinvi ≤ Pinv (A.18)

PPV−gridi + PPV−batti + PPV−loadi + Ploss−convi ≤ Pinv (A.19)

Pgrid−batti + Ploss−inv−gridi ≤ Pinv (A.20)

Application selection:

PPV−curti ≤ Plimit ∀ i if PV CT = 1 (A.21)

Egrid−batti = 0 ∀ i if DLS = 0 (A.22)

Pgridi ≤ Pmax−day ∀ i if DPS = 1 (A.23)

A.1.5 Techno-economic indicators

Three complimentary indicators are used to analyze the techno-economic perfor-
mance of batteries coupled with PV systems, i.e., the PV system is excluded in the
analysis since we are interested in the decision of adding a battery. The levelized cost
of energy storage, LCOES (USD/kWh) quantifies the cost associated with the total
electricity supplied by the battery throughout the life of the system (see Eq. A.24).
The second indicator is the levelized value of energy storage, LVOES (USD/kWh).
It quantifies the revenue associated with the battery discharge throughout the life
of the system (see Eqs. A.25 and A.26). Finally, the net present value (NPV)
calculated as the sum of the discounted cash flows over the lifetime of the battery
system (Eq. A.27) is used to appraise the overall impact of the system configura-
tion and operation for each combination (geography, technology, consumer type and
combination of applications) on the economic profitability of residential batteries.

LCOES =

∑N
i=0

CAPEX
(1+r)i

+
∑N

i=1
OPEX
(1+r)i∑N

i=1
Edis

(1+r)i

(A.24)

LV OES =

∑N
i=1

CFBatti

(1+r)i∑N
i=1

Edis

(1+r)i

(A.25)

CFBatti = CFPV−Batti − CFPVi
(A.26)

NPV =
N∑
i=1

CFBatti

(1 + r)i
−

N∑
i=0

CAPEX

(1 + r)i
(A.27)
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Table A.5: List of model parameters and variables.

Modeling parameters Name Units Modeling variables Name Units

Converter efficiency ηconv % PV generation fed to the load EPV−load kWh

Inverter efficiency ηinv % PV generation exported to the grid EPV−grid kWh

Inverter rating Pinv kW PV generation injected to the battery EPV−batt kWh

Battery Efficiency ηbatt % PV generation curtailed EPV−curt kWh

Maximum discharge power Pmax−dis kW Energy lost due to converter efficiency Eloss−conv kWh

Maximum charge power Pmax−char kW Total energy lost due to bi-directional
inverter efficiency Eloss−binv kWh

Battery nominal capacity Cnom
batt kWh PV energy lost due to bi-directional

inverter efficiency Eloss−PV inv kWh

Battery lifetime N years Grid energy lost due to bi-directional
inverter efficiency Eloss−gridinv kWh

Battery maximum state of charge SOCmax % Battery energy lost due to bi-directional
inverter efficiency Eloss−battinv kWh

Battery minimum state of charge SOCmin % Energy lost due to battery efficiency Eloss−batt kWh

Retail prices πimport USD/kWh Energy drained from the battery Edis kWh

Export prices πexport USD/kWh Energy injected to the battery Echar kWh

Capacity tariff πcapacity USD/kW Energy delivered from the battery to the load Ebatt−load kWh

Feed-in limit Plimit % Energy imported from the grid to the battery Egrid−batt kWh

Combination of applications [PVCT, PVSC, DLS, DPS] Boolean array Energy imported from the grid to the load Egrid−load kWh

Load demand Eload kWh Energy drained from the grid Egrid kWh

PV generation EPV kWh Maximum power drained from the grid Pmax−day kW

Optimization time framework t minutes Power related to any energy parameter Px = Ex/∆t kW

Temporal resolution ∆t fraction of hour State of charge SOCi %

A.2 Demand, PV generation and tariffs data

A.2.1 Demand datasets

Two demand datasets covering Austin, Texas in USA and a western Swiss city
with 15-minute smart meter data covering the whole year 2015 were used in this
study. For Austin the data were obtained from the Pecan Street project, for 322
households, as for the 667 Swiss dwellings data confidentiality agreements apply,
however we treated the data as if it was from Geneva. In terms of average yearly
electricity consumption the American household use 3.7 times more electricity than
Swiss households from the datasets. The two cities present a completely different
consumption behavior, while in Austin there is a clear seasonality with a summer
peak that is the double of winter or fall consumption, in Geneva summer is the less
electricity-demanding season and winter and fall present comparatively only 16%
more electricity demand. In terms of monthly average consumption, in Austin, ex-
cluding summer months, the average consumption is 837 kWh/month and almost
two times greater during summer months. On the other hand, in Geneva a clear
mean of 274 kWh/month is maintained all year-round with a slightly lower con-
sumption in spring and fall (see Fig. A.4).

A.2.2 Demand clustering

Rather than run individual simulations for all the household consumers (322 US
households and 667 Swiss households), which would lead to very long simulation
times, we instead aim to find representative consumers which exemplify typical
consumption patterns within the datasets for both countries. Therefore, for both
the US and CH we create groups of consumers with similar behaviour in terms of the
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Figure A.4: Average consumption per household in both locations, Geneva, Switzerland is shown
in red while Austin, Texas is presented in blue. a. Per season and b. Per month.

shape and overall magnitude of their average daily load profiles. From each group,
we then select the consumer whose load is closest to the centroid of the group,
designating that consumer as the representative from that group. Simulations are
run for each representative consumer for all scenarios.

To generate the representative consumer groups, we employ a clustering method.
In the literature, a range of clustering methods have been employed to form consumer
segments (for a review of the clustering techniques applied to electricity load data see
(Chicco 2012)), however k -means is the most commonly used clustering framework
and has been used in a range of studies regarding household load profiles i.e. (Kwac,
Flora, and Rajagopal 2014; Xu, Barbour, and González 2017; Benıétez et al. 2014;
Al-Wakeel, J. Wu, and N. Jenkins 2017). Therefore, we form our consumer groups
using k -means clustering.

When clustering daily load profiles, it is a normal step to normalise the load
profiles, bringing the daily shapes to a similar scale for pattern recognition (Kwac,
Flora, and Rajagopal 2014; Xu, Barbour, and González 2017). This is described by
Equation A.28:

ec(t) =
lc(t)∑t=24

t=1 lc(t)
(A.28)

ec(t) is the normalised load at time t and lc(t) is consumer c’s load at time t
before normalisation.

While directly clustering normalised load profiles is effective for forming groups
of load profiles with similar shapes independent of consumption magnitudes, in this
work we also want to study the effect of differing levels of overall consumption.
Therefore, first we look at the distributions of total yearly consumption in both
locations and form groups with similar consumption levels. As shown in Figure A.5,
there are several consumers with abnormally high consumption in both locations
(above 7500 kWh in Switzerland is considered an outlier and above 25000 kWh
in Pecan Street is considered an outlier) and we do not consider these consumers,
since our ultimate aim is to find representative consumer groups. We then split the
remaining consumers whose consumption is within our defined normal range into 3
separate groups - a low consumption group, a medium consumption group and a
high consumption group in both locations. The low consumption group is defined by
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Figure A.5: Distributions of annual household electricity consumption for our data from a. Austin,
USA and b. Geneva, Switzerland.

consumers in the 0th—33rd percentiles, the medium consumption group is defined by
consumers in the 34th—66th percentiles, and the high consumption group contains
consumers with yearly consumption greater than the 67th percentile.

After forming the consumption brackets based on overall consumption, we further
subdivide these by clustering according to the load shape. We use the k-means
clustering method, which randomly assigns an initial set of centroids, and then
iteratively moves these to minimize the objective function shown in Equation A.29.

J =
K∑
j=1

nj∑
i=1

√√√√t=24∑
t=1

(ei,j(t)− ζj(t))2 (A.29)

Here, j indexes the clusters from 1 to K and i indexes the load shapes assigned
to cluster j, where nj is the total number of shapes in cluster j. ei,j is the ith load
shape assigned to cluster j and ζj is the centroid of cluster j. As can be seen, we
minimise the Euclidean distance between centroids and the normalised load profiles.

Since we cluster average daily load profiles, we ultimately produce groups with
similar average behaviours, recognising that there may be significant deviation away
from the average daily load shape for an individual on any given days (Kwac, Flora,
and Rajagopal 2014; Xu, Barbour, and González 2017). We opt to produce 4 clusters
in each consumption bracket, noting that the selecting the number of clusters in
highly dimensional data where it is not known is a difficult task. However, to
provide some justification we look at the variance explained by the cluster centroids
compared to the total variance in the data. Figure A.6 shows the elbow plots for
both locations, and illustrates that in general the additional variance accounted for
by an extra cluster diminishes below 5—7% after adding more than 4 clusters.

The clusters in each consumption bracket for both locations are shown in Figure
A.7.

A.2.3 PV generation

In this section we refer to a generation profile generated for each location using
a PV installation of 1 kWp of nominal power. In terms of yearly generation, a
PV system in Austin generates 15% more electricity than the same PV system in
Geneva. The capacity factor in Austin is 18.8% while in Geneva is 16.3%, being
these values congruent with related literature (Pfenninger and Staffell 2016). We
assume the same generation for every PV system for every household in this study
being then adjusted according to the PV size distribution in each location. Fig. A.8
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Figure A.6: The percentage variance explained against the number of clusters. a. The total
percentage variance explained as a function of the number of clusters for Austin and b. the
increase in variance explained between the cluster centroids by adding an additional cluster. c.
and d. show the respective plots for Switzerland

Figure A.7: The clusters formed for a. Austin and b. Geneva.
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Figure A.8: Electricity generation of a 1 kWp PV installation in both locations, Geneva, Switzer-
land is shown in red while Austin, Texas is presented in blue. a. Per season and b. Per month.

presents the differences per season and per month between the two locations, as can
be observed throughout the year Austin have more generation than Geneva, except
during spring when the PV system in Geneva produces 11% more electricity than
in Austin. As for fall and winter, a PV system in Austin produces 75% and 34%
more electricity than the same PV system in Geneva, respectively. In summer the
difference is less than 6%.

The distribution of PV sizes for both locations and the first, second and third
quartiles are presented in Fig. A.9. Since A limit of 10 kWp of nominal power
for residential systems is usually used by national reports (Fu et al. 2017; Husser,
Pius 2017), we selected the same limit for this study. We take into account all
the country installations under the mentioned threshold, as for USA we take only
Austin installations under the same threshold. For both datasets the three quartiles
are very close, the first quartile is 3.15 kWp and 3.2 kWp for Austin and Geneva,
respectively, as for the third quartile Austin presents a smaller system size (6.4 kWp)
than Geneva (6.9 kWp). The medians are again very close, being only 0.2 kW greater
in Austin (5 kWp) than in Geneva.

A.2.4 Tariffs

Energy tariffs are based on “Electricité vitale Bleu” for households in Geneva and
on TOU for residential customers in Austin. Both, single tariffs and double tariffs
are considered in the analysis.

A.2.5 Export prices

In general, Swiss export prices are larger than prices in Texas with average daily
prices of 0.04 USD/kWh and 0.027 USD/kWh respectively. However, the differences
among average electricity prices per season indicate a general trend in Geneva where
spring and summer months are usually low (around 0.033 USD/kWh) while fall and
winter prices are around 0.047 USD/kWh (see figure A.10). As for Austin, prices are
similar among winter, spring and fall (around 0.024 USD/kWh), however in summer
prices are larger (0.035 USD/kWh in average) but can be as high as 2.25 USD/kWh.
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Figure A.9: PV system size distribution smaller than 10 kWp for a. Switzerland (22807 data
points) and b. Texas (4295 data points). The dashed lines represent the dataset first, second
(median) and third quartiles.
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Figure A.10: Electricity prices in both locations, Geneva, Switzerland is shown in red while Austin,
Texas is presented in blue. a. Per season and b. Per month.
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A.3 Aging

Battery aging and durability are parameters with a great uncertainty for battery
energy storage technologies (Hesse, Schimpe, et al. 2017). In this paper, we model
battery aging process through the battery capacity depletion since it limits the
battery lifetime. The aging behavior is typically divided in two, calendar aging
(when the battery is standby) and cycle aging (when the battery is used) (Sauer
et al. 2009). We acknowledge the battery aging process is non-linear, particularly
in the first hundreds of cycles, but as pointed out in earlier papers, capacity losses
can be assumed to be linear without compromising lifetime predictions markedly
(Hesse, Martins, et al. 2017; Sauer et al. 2009) and this approach is followed in
this study. Furthermore, previous studies have reported that one of the two aging
factors dominates (typically cycle aging for small batteries) in typical operation
conditions (Sauer et al. 2009), thus the model can be simplified across the different
technologies through the use of the maximum of both, see Eq. A.30. The aging
factor is calculated in daily basis.

Typically a 20% reduction of the initial capacity is applied to define the end
of life (EoL) of a battery (Sauer et al. 2009), especially for industrial application
since under this value the manufacturers do not guarantee the battery performance.
However, lower values are often stated for residential applications which are less
demanding (Hesse, Martins, et al. 2017; Käbitz et al. 2013), in this study we use a
30% capacity depletion as EoL.

Calendar losses have been previously modeled using the Arrhenius formula since
they are mainly dependent on the battery temperature (Käbitz et al. 2013). How-
ever, the temperature is controlled by the battery management system in new models
available in the market. Therefore, the proposed model neglects its effect on the bat-
tery aging. Eq. A.31 defines daily calendar aging as the multiplicative inverse of
the battery calendar lifetime.

As for the cyclic aging, we use a similar approach as the presented by Magnor
et al. (Sauer et al. 2009) which is based on Woehler curvesg for different battery
technologies. We extend this method to other technologies adapting the maximum
number of cycles performed by the battery. The cyclic aging is then given by the
number of cycles per day at the given DoD, divided by the maximum number of
cycles at a given DoD, as indicated by Eqs.

A.32 and A.33.
agingd = max(cycd, cald) (A.30)

cald =
1

Battcal−life

(A.31)

DoD⋆ =

∑t
i=1Edisi

Enom
batt

(A.32)

cycd =
NDoD⋆

cyclesd

NDoD⋆

max

(A.33)

The Woehler curves used in this study are displayed in Fig. A.11 and the equa-
tion that mathematically describes every curve is presented in Table A.6. Each
curve is based on manufacturers’ datasheets.

gThe Woehler curves show the number of cycles of a battery as a function of depth of discharge
until the end of lifetime. This curve is given by most battery manufacturers in data sheets.
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Figure A.11: Woehler curves for every technology used in this study.

Table A.6: Number of cycles for every technology used in this study.

Technology Number of cycles as a function of DoD Reference

LTO exp

(
log(DoD)−log(771.51)

−0.604

)
− 45300 XALT 60Ah High Power Lithium-Ion LTO Cell 2018

LFP exp

(
log(DoD)−log(70.869)

−0.54

)
+ 1961.37135 Omar et al. 2014

NCA exp

(
log(DoD)−log(1216.7)

−0.869

)
+ 4449.67011 Trina BESS 2017

NMC exp

(
log(DoD)−log(1E8)

−2.168

)
Truong et al. 2016

ALA exp

(
log(DoD)−log(37403)

−1.306

)
+ 330.656417 FCP-1000 Lead Carbon Battery 2018

VRLA exp

(
log(DoD)−log(667.61)

−0.988

)
Sonnenschein 2013
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A.4 PV-coupled battery system

This topology allows to select a smaller inverter (i.e., increase the ratio between
the inverter rating and the PV rating beyond 1) and store otherwise clipped energy
(Denholm, Margolis, and Eichman 2017). Likewise, this topology prevents from
curtailing PV export exceeding a regulatory threshold as in Germany where PV
generators with a installed capacity of maximum 30 kW must be able to reduce the
feed-in power in case of network overload or limit the power supply of the PV-system
to the grid to 70% of installed capacity which can be enforced to 50% if a storage
installation is funded by the government subsidy program (Bundestag Deutscher
2017; KfW Bank 2016)hi.

DC -coupled systems require a single power conversion to store energy (through
the charge controller), whereas AC-coupled systems require two power conversions
(from the PV array through the PV inverter and then through a bi-directional
inverter to the battery). Therefore, in applications where PV output storage is
frequent, DC-coupled systems are generally more efficient than AC-coupled systems.
In the DC-coupled system, the efficiency of the charge controller is set at 98% while
that from the bi-directional DC/AC inverter is set at 95% (Energy 2017). Thus,
the DC/AC efficiency from the PV system to the grid or to the demand load is
93%. On the other hand, when PV electricity is stored, one must consider battery
roundtrip efficiency, therefore lowering efficiency depending on battery technology,
for instance, it goes down to 79% for the VRLA. As for grid charging, the AC-
AC efficiency (i.e., grid-to-battery-to-load efficiency) is within a range of 76% (for
VRLA) to 87% (for LTO).

h§9 subsection 2
iIn the literature curtailed and clipped energy are often interchangeable, however in this work we

use the term “clipped energy” to refer to wasted energy due to technical restrictions (e.g., inverter
rating) while “curtailed energy” is used when we refer to wasted energy due to legal restrictions.
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A.5 Model validation

In order to validate the model, some test scenarios with intuitive solutions for the
optimum schedule of operation of the battery are considered. The three scenarios
are run with a LFP battery with a large capacity (100 MWh) and efficiency of 100%.
The demand is considered to be constant at 100 kW.

In the first case, presented in figure A.12, the time-series test price presents a
single time slot with a low price of 10 USD/kWh and a peak price of 100 USD/kWh.
The battery charging and discharging limits are set at 2*C. The output is as expected
a schedule where the battery is charged in the low-price time slot and discharged
afterwards.

Figure A.12: Result for optimization of the single off-peak time slot test case. The output schedule
for charge (positive y-axis) and discharge of the battery with the given price input.

In the second test, shown in figure A.13 the time-series test price is a square
wave varying between 100 USD/kWh and 10 USD/kWh. The battery charging and
discharging limits are set at 100 kW. Therefore, we would expect the optimized
result to output a schedule that charged when the prices are low, then discharged
to cover the demand when the prices are high. The figure of the model results is an
excellent fit with the expected schedule. A positive power flow means the battery is
charging.

In the last test, shown in figure A.14 the time-series test price is a sinus wave
varying between 50 USD/kWh and -50 USD/kWh. The battery charging and dis-
charging limits are set at 100 kW. Therefore, we would expect the optimized result
to output a schedule that charged when the prices are lower than 0 USD/kWh, then
discharged to cover the demand when the prices are high. We can see how at the
end of the day, the battery charges only when prices are strictly below 0 USD/kWh,
since the battery does not charge if it does not need the energy before the end of
the day.
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Figure A.13: Result for optimization of the square wave price test case. The output schedule for
charge (positive y-axis) and discharge of the battery with the given price input.

Figure A.14: Result for optimization of the sinus wave price test case. The output schedule for
charge (positive y-axis) and discharge of the battery with the given price input.
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A.6 Other combinations of applications

Results are presented here for a typical size of 7 kWh depending on the battery
technology and for both locations. Since we aim to analyze the impact of geography,
battery technology and size on the attractiveness of the combination of applications,
our baseline results are based on a representative (median) fixed PV size in each
geographical region. Three additional combinations of applications are analyzed
besides the five presented in the main paper. In order to give the reader a point of
comparison, PV self-consumption only and the full combination of applications are
as well deployed.

The main result drawn from Figs. A.15,A.16 and A.17 is the influence of demand
load shifting when combined with PV self-consumption and demand peak shaving,
which helps to reduce the levelized cost and slightly enhance the added value. At
the end it results in an improved NPV which is significantly higher than the scenario
where avoidance of PV curtailment is combined with the same two applications.
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Figure A.15: Levelized cost of energy storage of a 7 kWh battery for all battery technologies
depending on the type of combination of applications for the U.S. (top) and Switzerland (bottom).
The size the PV system correspond to the medium installed capacity across both locations.
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Figure A.16: Levelized value of energy storage of a 7 kWh battery for all battery technologies
depending on the type of combination of applications for the U.S. (top) and Switzerland (bottom).
The size the PV system correspond to the medium installed capacity across both locations.
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Figure A.17: Net present value of energy storage of a 7 kWh battery for all battery technologies
depending on the type of combination of applications for the U.S. (top) and Switzerland (bottom).
The size the PV system correspond to the medium installed capacity across both locations.
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A.7 PV size impact

Fig. A.18 displays the average LCOES, LVOES and NPV across the three groups
of consumers, for the 25th, median and 75th quartiles of the PV size distribution
for Switzerland and Fig A.19 for the U.S., for a 7 kWh battery performing simulta-
neously all consumer applications depending on the battery technology.

In general, the combination of applications reaches smaller levelized cost, higher
levelized value and higher NPV for all batteries, with the exception of LFP-based
batteries in the U.S. when median PV size is assessed (due to replacement near
the end of life). Moreover, the difference between a battery performing PV self-
consumption only and one performing all the applications simultaneously is higher
as the PV size raises for the levelized value and the NPV, as for the levelized cost
the difference diminishes with PV size.
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Figure A.18: Comparison of the average LCOES (left), LVOES (middle) and NPV (right) for
various battery technologies and a 7 kWh battery performing only PV self-consumption (red)
and all consumer applications simultaneously (blue) in Switzerland, depending on the size of PV,
namely small (top), medium (middle) and large (bottom).
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Figure A.19: Comparison of the average LCOES (left), LVOES (middle) and NPV (right) for
various battery technologies and a 7 kWh battery performing only PV self-consumption (red) and
all consumer applications simultaneously (blue) in the U.S., depending on the size of PV, namely
small (top), medium (middle) and large (bottom).
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Appendix B

Supplementary Information -
Thermal and Electrochemical storage

B.1 Heat demand

The space heating and DHW demands for the three types of houses are calculated
using a calibrated dynamic simulation tool (Schuetz, Scoccia, et al. 2018), and are
presented in Fig. B.1. The simulation tool calculates the dynamics of the building
and energy system by solving the coupled differential equations of the individual
components using a Runge-Kutta integrator (see the end of this section for imple-
mentation details). The coarse model layout is shown in Fig. B.2.
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Figure B.1: Space heat demand for the three types of houses and domestic hot water demand for
the year 2017.
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Figure B.2: Dynamic building and energy system model configuration. The system is simulated
by solving the coupled differential equation model describing the individual components.

The dynamics of the building are described by the model presented in Eq. B.1

∂Troom

∂t
= −H · (Troom − Tamb) + g · I + Q̇emitter−system + Q̇internal (B.1)

adapted from Burmeister et al. (Burmeister and Keller 1998). This model de-
scribes the change of the room temperature Troom and considers the current ambient
temperature Tamb, the solar radiation I, the heat flux generated by the emitter sys-
tem Q̇emitter−system [kWhth] and the internal heat loads Q̇internal. The building is
characterized by three coefficients: C for the lumped heat storage capacity; g the
solar factor; and H the lumped losses. These values are calculated based on the
specifications of the three reference simulation buildings SFH15, SFH45 and SFH100
with an annual heating energy demand of 15, 45 and 100 kWhth/m

2 as defined in the
Reference framework for system simulation (Dott, Haller, et al. 2013). The internal
heat loads Q̇internal are taken from the Reference framework for system simulation
(Dott, Haller, et al. 2013) according to SIA2024 (Swiss Society of Engineers and
Architects 2015).

The heat flux of the emitter system to the building is described by the radiator
equation (Eq. B.2).

Q̇emitter−system = Q̇design ·

(
Tin+Temitter−system

2
− Troom

∆Tdesign

)nr

(B.2)

Here, Q̇emitter−system is the heat flux to the room; Q̇design is the design capacity of
the emitter system at the design temperature split ∆Tdesign; Tin describes the inlet
temperature of the emitter system (given by the pipe temperature); Temitter−system is
the temperature of the emitter system; and nr is the radiator exponent. The dynam-
ics of the emitter system is modeled as a one-node storage model with Q̇emitter−system

as a loss term and the heat contribution of inlet and outlet pipe (see Fig. B.2). For
SFH15 and SFH45, a floor heating system is modelled (radiator exponent 1.1), for
SFH100, a radiator-based system is modelled (radiator exponent 1.3). The radia-
tor exponent describes the relation between the mean temperature difference and
the heat output of the radiator. This exponent is important since the relationship
between the two is non-linear (Østergaard and Svendsen 2016a). The radiator expo-
nents of 1.1 and 1.3 correspond to the values describing heat emissions from typical
underfloor heating systems and radiators, respectively (Østergaard and Svendsen
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2016b; Dott, Haller, et al. 2013). The design powers of the emitter systems are
chosen to match the heat demand at −10◦C ambient temperature. In the energy
system model the heating source is connected to the emitter systems via two pipes
modelled as a one-node storage model. The heating source is modelled as a resis-
tance heater with an efficiency of 100%, i.e., the consumed energy is the energy
inserted into the pipes or the energy system, which allows us to model the heat
demand independently from the energy system (a heat pump in this paper, that
is modeled afterwards). The heating system is controlled such that a target room
temperature of 20◦C is maintained within a dead band of 1◦C. The climatic data
are taken for Geneva. The energy demand for the DHW preparation is integrated
in the energy demand of the heating source. The energy demand for DHW is cal-
culated based on a DHW profile assuming that the water is heated from an inlet
temperature of 15◦C to target temperature of 60◦C. The DHW profile are calculated
using the DHWcalc tool (Jordan and Vajen 2001) simulating the DHW profile of a
family with two adults and two children. The coupled differential equations model
are solved in a program implemented in C++ using Visual Studio 2017 community
edition and the boost library version 1.64.0.). The heat load is determined based on
hourly integrals of the energy demand of the houses simulated in the dynamic model
and it is resampled to 15-min to match the electricity demand resolution(Schuetz,
Scoccia, et al. 2018).

B.2 Heat pump sizing and modelling

To size the air-source heat pump, both the design point and the heat emission sys-
tem’ supply temperature have to be calculated. Following the reference framework
for system simulations of the IEA (Dott, Haller, et al. 2013, Appendix A), the distri-
bution of the outdoor temperature (see Fig. B.3) is used and the design temperature
is defined as the lowest temperature to lie in the confidence interval of 0.99 (i.e.,
where z = 2.57 ∗ σ). For the case of Geneva, the design temperature is −11◦C (see
Fig. B.3). Then, as shown in Fig. B.4, the heat load at the design temperature is
calculated as an extrapolation of a linear fit to the daily heating power consumption
(Dott, Haller, et al. 2013, Appendix D).
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Figure B.3: Left: temperature distribution for Geneva, with sine fit (red curve); Right: Probability
density distribution of temperature deviation from sine fit for Geneva.

-10.0 -5.0 0.0 5.0 10.0 15.0 20.0
Ambient Temperature [°C]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Po
we

r [
kW

]

Heat load at design
temperature
for SFH15= 2.4 kW

Heat load at design
temperature
for SFH45= 4.9 kW

Heat load at design
temperature
for SFH100= 10.6 kW

linear fit SFH15
linear fit SFH45
linear fit SFH100
SFH15
SFH45
SFH100

(a)

-10.0 -5.0 0.0 5.0 10.0 15.0 20.0
Ambient Temperature [°C]

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Te
m

pe
ra

tu
re

 [°
C]

Supply temperature
for SFH15 and SFH45
Supply temperature
for SFH15 tank
Supply temperature
for SFH100
Return temperature
for SFH100

(b)

Figure B.4: (a): Heat load at the design temperature and required heating power of the building
in function of the outside temperature of the three building types SFH100, SFH45, SFH15; (b):
Supply and return temperatures as a function of the ambient temperature of the building types
SFH100, SFH45 and SFH15 with a heating limit at the ambient temperature of 15◦C

To calculate the heating system’ supply and return temperatures, represented
in see Fig. B.4, we use the average daily outdoor temperature and the set-point
temperature (20◦C), following the IEA approach (Dott, Haller, et al. 2013, Section
5 and Appendix E).

The closest heat pump size in Fig. B.5 that meets the peak heat demand load
at the design temperature is used, in case the closest heat pump size is not able
to provide the required heat power at the design point, a backup heater is used to
supply the missing power (its COP is assumed to be one, and is assumed to be
connected to the thermal storage).
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B.3 Heat pump lookup table

Figure B.5: Lookup table for heat pump size, COP and power calculations used in this study
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B.4 Electric storage modelling

SOCmin ≤ SOCi ≤ SOCmax (B.3)

Echari = EPV−batti + Egrid−batti (B.4)

Edisi ≤ (SOCi−1 − SOCmin) ∗ Cnom
batt (B.5)

SOCi =
(SOCi−1 ∗ Cnom

batt + Echari − Edisi − Eloss−batti)

Cnom
batt

(B.6)

Edisi = Ebatt−loadi + Ebatt−hpi + Ebatt−hpwi
+ Eloss−battinvi (B.7)

B.5 System lifetime

Every optimization was run for one year and then the results are scaled over a time
period of 30 years, corresponding to the PV lifetime (Bauer et al. 2017). The battery
is assumed to reach its end of life once the capacity has decreased by 30% (Pena-
Bello, Barbour, Gonzalez, Yilmaz, et al. 2020). We consider replacements for all the
components of the system and take a conservative approach by keeping the same
capital cost for future components, which are discounted to the present considering
the time value of money. If the lifetime of a replaced component exceeds 30 years, the
residual value of the component is deduced from the capital expenditures (CAPEX)
using straight-line depreciation and a discount factor of 4% (Moore et al. 2015).
Table B.1 shows the present value of the CAPEX per device for each type of house
considered in this study, including replacements. The specific technology costs for
PV, battery, heat pumps and hot water tanks are given in Table B.2.

Table B.1: CAPEX (USD) including replacements for the various technologies included in this
study depending on the type of house. Detailed values are presented in Table B.2

Device Size SFH15 SFH45 SFH100 Reference

PV 4.8 [kWp] 10360 10360 10360 Bauer et al. 2017

Heat pump 4/6/16 [kWth] 10300 15500 41200 Fischer et al. 2016

Batterya 7 [kWhel] 12120 13180 13280 Schmidt et al. 2019

Tank SH 17.4 [kWhel] 0b 0b 1790 Fischer et al. 2016

Tank DHW 4.7 [kWhel] 960 960 960 Fischer et al. 2016

a Average values to account aging.
b The concrete of the floors and the heating water content are used as existing heat storage
and thus no additional costs are considered.
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Table B.2: Values selected for the technical and economic assessment of PV-coupled heat pump
systems supported by electricity and heat storage.

Component Units Value Reference

PV size [kW] 4.8

PV lifetime [years] 30 Bauer et al. 2017

PV module cost [USD/kW] 1032 Bauer et al. 2017

PV Balance of plant cost [USD/kW] 240 Bauer et al. 2017

PV Installation costs (labour costs) [USD/kW] 514 Bauer et al. 2017

PV Installation costs (other costs) [USD/kW] 163.5 Bauer et al. 2017

PV O&M [USD/kW] 103 Bauer et al. 2017

PV inverter cost [USD/kW] 190 Fu et al. 2017

PV inverter lifetime years 15 Fu et al. 2017

Inverter efficiency % 94 Pena-Bello, Barbour, Gonzalez, Yilmaz, et al. 2020

ILR p.u. 1.2 Burger and Rüther 2006

Charge controller efficiency % 98 Pena-Bello, Barbour, Gonzalez, Yilmaz, et al. 2020

Bi-directional inverter cost [USD/kW] 600 Ardani et al. 2017

Bi-directional inverter lifetime years 15 Fu et al. 2017

Battery pack cost [USD/kWhel ] 335 Schmidt et al. 2019

Battery balance of plant cost [USD] 2000 Baumann and Baumgartner 2017

Battery O&M [USD/kW] 0 Schmidt et al. 2019

Battery round-trip efficiency % 89 Schmidt et al. 2019

End of life (EoL) % 70 Pena-Bello, Barbour, Gonzalez, Yilmaz, et al. 2020

HP lifetime [years] 20 Fischer et al. 2016

HP module cost [USD/kW] 1650 Fischer et al. 2016

HP Installation costs [USD/kW] 2200 Fischer et al. 2016

HP O&M % of CAPEX p.a. 1.1 Fischer et al. 2016

Hot water tank lifetime [years] 20 Fischer et al. 2016

Hot water tank cost @ 10 K ∆T [USD/kWhth] 66 Fischer et al. 2016

Hot water tank cost @ 20 K ∆T [USD/kWhth] 132 Fischer et al. 2016

Hot water tank Installation costs [USD/kWhth] 0 Fischer et al. 2016

Hot water tank O&M [USD/kWhth] 0 Fischer et al. 2016

Discount factor %/a 4 Pena-Bello, Barbour, Gonzalez, Yilmaz, et al. 2020

EUR to USD rate p.u. 1.1
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B.6 Optimization model validation

In order to validate the model, some test scenarios with intuitive solutions for the
optimum schedule of operation of the battery and the heat pump, separately, are
considered. For the battery, we use a scenario using a battery with a capacity of 20
kWhel and efficiency of 100%. We use the demand of one day for a randomly selected
house from the dataset. Figure B.6, presents the time-series test price with a time
slot with a low price of 20 USD/kWhel and a peak price of 100 USD/kWhel. The
battery charging and discharging limits are set at 2*C. The output is as expected
a schedule where the battery is charged in the low-price time slot and discharged
afterwards.
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Figure B.6: Result for battery scheduling optimization of the off-peak time slot test case. On top
the electricity demand and imports are shown. In the middle the state of charge of the battery is
displayed. At the bottom the price is displayed.

As for the heat pump, we use three test scenarios. The first one, as in the case of
the battery presents the time-series test price with a time slot with a low price of 20
USD/kWhel and a peak price of 100 USD/kWhel. The thermal storage is charged at
when prices are low and discharged at once when there is heat demand, as displayed
in B.7. It is worth to recall that we assume an intrinsic thermal flexibility of the
houses of 2 hours.
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Figure B.7: Result for heat pump and thermal storage scheduling optimization of the off-peak time
slot test case. On top the heat demand and heat provided by the HP are shown. The second panel
shows the HP electricity demand (note the COP of 1.8, at that time of the day, which is a function
of the outdoor temperature). The third panel displays the amount of energy stored in the storage
tank. Finally, at the bottom the price is displayed.

The second test scenario consists of a heat pump without storage of any kind. As
in the previous case, there is a time slot with low price. Moreover, the heat demand
is extended across two 2-hour-blocks to show the behavior of the heat supply. As
shown in Figure B.8, when the prices are low, the heat pump provides the heat to
cover the demand of the first 2-hours block, later on a second peak represents the
delivery of heat to cover the demand of the second block. Finally, Figure B.9 displays
a situation where the low price does not match the heat demand and therefore, the
heat pump cannot profit from the price difference and is forced to cover the heat
demand at the same time as it appears.
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Figure B.8: Result for heat pump scheduling optimization of the off-peak time slot test case. On
top the heat demand and heat provided by the HP are shown. The middle panel shows the HP
electricity demand (note the COP of 1.8, at that time of the day, which is a function of the outdoor
temperature). Finally, at the bottom the price is displayed.
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Figure B.9: Result for heat pump scheduling optimization of the off-peak time slot test case. On
top the heat demand and heat provided by the HP are shown. The middle panel shows the HP
electricity demand (note the COP of 1.8, at that time of the day, which is a function of the outdoor
temperature). Finally, at the bottom the price is displayed.
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Table B.3: List of model parameters and variables.

Modeling parameters Name Units Modeling variables Name Units

Converter efficiency ηconv % PV generation fed to the load EPV−load kWhel

Inverter efficiency ηinv % PV generation exported to the grid EPV−grid kWhel

Inverter rating Pinv kW PV generation injected to the battery EPV−batt kWhel

Battery Efficiency ηbatt % PV generation curtailed EPV−curt kWhel

Maximum discharge power Pmax−dis kW Energy lost due to converter efficiency Eloss−conv kWhel

Maximum charge power Pmax−char kW Total energy lost due to bi-directional
inverter efficiency Eloss−binv kWhel

Battery nominal capacity Cnom
batt kWhel

PV energy lost due to bi-directional
inverter efficiency Eloss−PV inv kWhel

Battery lifetime N years Grid energy lost due to bi-directional
inverter efficiency Eloss−gridinv kWhel

Battery maximum state of charge SOCmax % Battery energy lost due to bi-directional
inverter efficiency Eloss−battinv kWhel

Battery minimum state of charge SOCmin % Energy lost due to battery efficiency Eloss−batt kWhel

Retail prices πimport USD/kWhel Energy drained from the battery Edis kWhel

Export prices πexport USD/kWhel Energy injected to the battery Echar kWhel

Capacity tariff πcapacity USD/kW Energy delivered from the battery to the load Ebatt−load kWhel

Feed-in limit Plimit % Energy imported from the grid to the battery Egrid−batt kWhel

Combination of applications [PVCT, PVSC, DLS, DPS] Boolean array Energy imported from the grid to the load Egrid−load kWhel

Load demand Eload kWhel Energy drained from the grid Egrid kWhel

PV generation EPV kWhel State of charge SOCi %

Space heat demand (SH) Qload kWhth PV generation fed to the HP for SH EPV−hp kWhel

Domestic heat water demand Qdhw kWhth PV generation fed to the HP for DHW EPV−hpw kWhel

Nominal power of the HP PHPnom kW Energy from the battery fed to the HP for
SH

Ebatt−hp kWhel

Coefficient of Performance COPi - Energy from the battery fed to the HP for
DHW

Ebatt−hpw kWhel

Temperature minimum of SH tank Ttsmin
K Energy from the grid fed to the HP for SH Egrid−hp kWhel

Temperature maximum of SH tank Ttsmax K Energy from the grid fed to the HP for
DHW

Egrid−hpw kWhel

Temperature minimum of DHW tank Ttswmin
K Thermal energy in the SH tank Qts kWhth

Temperature maximum of DHW tank Ttswmax K Thermal energy in the DHW tank Qtsw kWhth

U-value SH tank Uts kW ∗m−2 ∗K−1 Thermal energy lost in the SH tank Qlossests kWhth

U-value DHW tank Utsw kW ∗m−2 ∗K−1 Thermal energy lost in the DHW tank Qlossestsw kWhth

Surface SH tank Ats m2 Thermal energy flow from SH tank to SH Qts−sh kWhth

Surface DHW tank Atsw m2 Thermal energy flow from DHW tank to DHW Qtsw−dhw kWhth

Specific heat SH tank fluid cpts kWh ∗ kg−1 ∗K−1 Thermal energy supplied by the HP to the
SH tank

Qhp−ts kWhth

Specific heat DHW tank fluid cctsw kWh ∗ kg−1 ∗K−1 Thermal energy supplied by the HP to the
DHW tank

Qhpw−tsw kWhth

Mass SH tank fluid mts kg Thermal energy supplied by the HP SH demand Qhp−sh kWhth

Mass SH tank fluid mtsw kg Temperature of the SH tank Tts K

Configuration [Batt, heating, ts, DHW] Boolean array Temperature of the DHW tank Tts K

Optimization time framework t minutes - Maximum power drained from the grid Pmax−day kW

Temporal resolution ∆t fraction of hour Power related to any energy parameter Px = Ex/∆t kW
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B.7 Total electricity demand
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Figure B.10: Boxplots (N=549) of the total electricity demand including appliances, lighting and
heat pump, for all configurations depending number of storage applications (PVSC is PV self-
consumption, DLS is demand load-shifting and DPS is demand peak-shaving with a capacity-based
tariff) and the type of house (SFH15, SFH45 and SFH100). The line in the middle of the box
represents the median electricity use. The box spans the first quartile to the third quartile, and
the whiskers extend up to 1.5 times the interquartile range from the top or bottom of the box.

B.8 Other results
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Figure B.11: Boxplots (N=549) of the injected power, for all configurations depending number
of storage applications (PVSC is PV self-consumption, DLS is demand load-shifting and DPS is
demand peak-shaving with a capacity-based tariff) and the type of house (SFH15, SFH45 and
SFH100). The line in the middle of the box represents the median electricity use. The box spans
the first quartile to the third quartile, and the whiskers extend up to 1.5 times the interquartile
range from the top or bottom of the box.
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Figure B.12: Boxplots (N=549) of the total electricity charged from the grid to the battery, for all
configurations depending number of storage applications (PVSC is PV self-consumption, DLS is
demand load-shifting and DPS is demand peak-shaving with a capacity-based tariff) and the type
of house (SFH15, SFH45 and SFH100). The line in the middle of the box represents the median
electricity use. The box spans the first quartile to the third quartile, and the whiskers extend up
to 1.5 times the interquartile range from the top or bottom of the box.
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Figure B.13: Boxplots (N=549) of the total electricity bill accounting for appliances, lighting
and heat pump, for all configurations depending number of storage applications (PVSC is PV self-
consumption, DLS is demand load-shifting and DPS is demand peak-shaving with a capacity-based
tariff) and the type of house (SFH15, SFH45 and SFH100). The line in the middle of the box
represents the median electricity use. The box spans the first quartile to the third quartile, and
the whiskers extend up to 1.5 times the interquartile range from the top or bottom of the box.
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Figure B.14: Boxplots (N=549) of the self-consumption, for all configurations depending number
of storage applications (PVSC is PV self-consumption, DLS is demand load-shifting and DPS is
demand peak-shaving with a capacity-based tariff) and the type of house (SFH15, SFH45 and
SFH100). The line in the middle of the box represents the median electricity use. The box spans
the first quartile to the third quartile, and the whiskers extend up to 1.5 times the interquartile
range from the top or bottom of the box.
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Figure B.15: Boxplots (N=549) of the self-sufficiency, for all configurations depending number
of storage applications (PVSC is PV self-consumption, DLS is demand load-shifting and DPS is
demand peak-shaving with a capacity-based tariff) and the type of house (SFH15, SFH45 and
SFH100). The line in the middle of the box represents the median electricity use. The box spans
the first quartile to the third quartile, and the whiskers extend up to 1.5 times the interquartile
range from the top or bottom of the box.
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Figure B.16: Energy matching chart to analyze self-consumption (SC) and self-sufficiency (SS) for
a PV-coupled heat pump system as a function of the type of storage, namely, none (baseline case),
heat storage for DHW, heat storage for space heating and with DHW and finally, with DHW
storage and a battery. The configurations presented here include a capacity-based tariff in the
electricity tariff. The big black circle, square and diamond represent the median by type of house.
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Figure B.17: LCOE vs peak flow (top) for a PV-coupled heat pump system as a function of the
electricity storage size, namely, small (3 kWh), medium (7 kWh), and large (14 kWh); Energy
matching chart (bottom) to analyze self-consumption (SC) and self-sufficiency (SS) for a PV-
coupled heat pump system as a function of the electricity storage size, namely, small (3 kWh),
medium (7 kWh), and large (14 kWh). The configurations presented here include a capacity-based
tariff in the electricity tariff. The big black circle, square and diamond represent the median by
type of house.
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Figure B.18: LCOE vs peak flow (top) for a PV-coupled heat pump system as a function of the
electricity thermal size, namely, normal (17.5 kWh), and large (52.5 kWh); Energy matching chart
(bottom) to analyze self-consumption (SC) and self-sufficiency (SS) for a PV-coupled heat pump
system as a function of the thermal storage size, namely, normal (17.5 kWh), and large (52.5 kWh).
The configurations presented here include a capacity-based tariff in the electricity tariff. The big
black circle, square and diamond represent the median by type of house
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B.9 Statistical tests

Table B.4: Results of Shapiro test performed on different subsets for Figures 4.3 and 4.4 of the
main paper.

PVSC and DLS PVSC, DLS AND DPS PVSC and DLS PVSC, DLS AND DPS

Figure subset W p-value W p-value Fig. 4.4 subset W p-value W p-value

LCOE SFH15 Fig. 4.3 No HP No PV Peak flow SFH15 Fig. 4.4 No HP No PV

Fig. 4.3 Baseline 0,9657 7,95E-10 0,97999 1,09E-06 Fig. 4.4 Baseline 0,81892 <2.2e-16 0,77253 <2.2e-16

Fig. 4.3 Tank DHW 0,97951 8,22E-07 0,99134 0,0033 Fig. 4.4 Tank DHW 0,84277 <2.2e-16 0,7744 <2.2e-16

Fig. 4.3 Tank SH 0,96814 2,36E-09 0,98217 4,15E-06 Fig. 4.4 Tank SH 0,7994 <2.2e-16 0,77285 <2.2e-16

Fig. 4.3 Tank SH and DHW 0,97971 9,28E-07 0,99135 0,003338 Fig. 4.4 Tank SH and DHW 0,82455 <2.2e-16 0,77442 <2.2e-16

Fig. 4.3 Battery 0,96461 4,98E-10 0,96904 3,56E-09 Fig. 4.4 Battery 0,78572 <2.2e-16 0,35877 <2.2e-16

Fig. 4.3 Battery and tank DHW 0,97994 1,06E-06 0,98327 8,40E-06 Fig. 4.4 Battery and tank DHW 0,77419 <2.2e-16 0,36624 <2.2e-16

Fig. 4.3 Battery and tank SH 0,96279 2,31E-10 0,96983 5,16E-09 Fig. 4.4 Battery and tank SH 0,78133 <2.2e-16 0,36075 <2.2e-16

Fig. 4.3 Battery and tank SH and DHW 0,97818 3,82E-07 0,98277 6,07E-06 Fig. 4.4 Battery and tank SH and DHW 0,7778 <2.2e-16 0,36873 <2.2e-16

SFH45 Fig. 4.3 No HP No PV SFH45 Fig. 4.4 No HP No PV

Fig. 4.3 Baseline 0,9791 6,48E-07 0,98892 4,64E-04 Fig. 4.4 Baseline 0,87929 <2.2e-16 0,77306 <2.2e-16

Fig. 4.3 Tank DHW 0,98192 3,54E-06 0,99169 4,45E-03 Fig. 4.4 Tank DHW 0,89746 <2.2e-16 0,77496 <2.2e-16

Fig. 4.3 Tank SH 0,9798 9,73E-07 0,98937 6,60E-04 Fig. 4.4 Tank SH 0,85769 <2.2e-16 0,77316 <2.2e-16

Fig. 4.3 Tank SH and DHW 0,98211 4,00E-06 0,99188 5,21E-03 Fig. 4.4 Tank SH and DHW 0,87473 <2.2e-16 0,77512 <2.2e-16

Fig. 4.3 Battery 0,97674 1,71E-07 0,98401 1,36E-05 Fig. 4.4 Battery 0,81298 <2.2e-16 0,3609 <2.2e-16

Fig. 4.3 Battery and tank DHW 0,98013 1,19E-06 0,98656 7,97E-05 Fig. 4.4 Battery and tank DHW 0,77557 <2.2e-16 0,36888 <2.2e-16

Fig. 4.3 Battery and tank SH 0,9793 7,26E-07 0,98215 4,10E-06 Fig. 4.4 Battery and tank SH 0,83445 <2.2e-16 0,36522 <2.2e-16

Fig. 4.3 Battery and tank SH and DHW 0,98275 6,00E-06 0,9849 2,48E-05 Fig. 4.4 Battery and tank SH and DHW 0,75742 <2.2e-16 0,3742 <2.2e-16

SFH100 Fig. 4.3 No HP No PV SFH100 Fig. 4.4 No HP No PV

Fig. 4.3 Baseline 0,98031 1,32E-06 0,98205 3,84E-06 Fig. 4.4 Baseline 0,73406 <2.2e-16 0,32685 <2.2e-16

Fig. 4.3 Tank DHW 0,97881 5,48E-07 0,98074 1,72E-06 Fig. 4.4 Tank DHW 0,68744 <2.2e-16 0,4223 <2.2e-16

Fig. 4.3 Tank SH 0,97993 1,06E-06 0,98182 3,32E-06 Fig. 4.4 Tank SH 0,48729 <2.2e-16 0,41031 <2.2e-16

Fig. 4.3 Tank SH and DHW 0,97885 5,61E-07 0,98074 1,72E-06 Fig. 4.4 Tank SH and DHW 0,51377 <2.2e-16 0,38675 <2.2e-16

Fig. 4.3 Battery 0,98059 1,57E-06 0,98164 2,97E-06 Fig. 4.4 Battery 0,60603 <2.2e-16 0,37434 <2.2e-16

Fig. 4.3 Battery and tank DHW 0,97965 8,95E-07 0,9801 1,16E-06 Fig. 4.4 Battery and tank DHW 0,47703 <2.2e-16 0,4475 <2.2e-16

Fig. 4.3 Battery and tank SH 0,9805 1,49E-06 0,98195 3,61E-06 Fig. 4.4 Battery and tank SH 0,76735 <2.2e-16 0,37721 <2.2e-16

Fig. 4.3 Battery and tank SH and DHW 0,97994 1,06E-06 0,97964 8,89E-07 Fig. 4.4 Battery and tank SH and DHW 0,81946 <2.2e-16 0,46405 <2.2e-16
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Table B.5: Results of Wilcoxon pairwise tests performed on different subsets for Figures 4.3 and
4.4 of the main paper.

PVSC and DLS PVSC, DLS and DPS PVSC and DLS PVSC, DLS and DPS

Figure subset A subset B p-value p-value Figure subset A subset B p-value p-value

LCOE SFH15 Fig. 4.3 Baseline Tank DHW <2.2e-16 <2.2e-16 Power SFH15 Fig. 4.4 Baseline Tank DHW 0,1663 1

Fig. 4.3 Baseline Tank SH 1,30E-09 <2.2e-16 Fig. 4.4 Baseline Tank SH 0,3811 1

Fig. 4.3 Baseline Tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Tank SH and DHW 1 1

Fig. 4.3 Baseline Battery <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery 7,60E-16 <2.2e-16

Fig. 4.3 Baseline Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Battery and tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank DHW Tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Tank SH 0,0015 1

Fig. 4.3 Tank DHW Tank SH and DHW 0,0055 0,00071 Fig. 4.4 Tank DHW Tank SH and DHW 0,3811 1

Fig. 4.3 Tank DHW Battery 1,40E-06 <2.2e-16 Fig. 4.4 Tank DHW Battery 6,70E-11 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank SH 2,50E-07 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank SH 5,70E-13 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Tank SH and DHW 1,66E-01 1

Fig. 4.3 Tank SH Battery <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Battery and tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery 4,60E-03 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery 2,40E-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank SH 0,0043 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Battery Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Battery Battery and tank DHW 2,10E-13 1

Fig. 4.3 Battery Battery and tank SH 1 <2.2e-16 Fig. 4.4 Battery Battery and tank SH 1 1

Fig. 4.3 Battery Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Battery Battery and tank SH and DHW 7,90E-11 1

Fig. 4.3 Battery and tank DHW Battery and tank SH <2.2e-16 1,30E-15 Fig. 4.4 Battery and tank DHW Battery and tank SH 5,30E-11 1

Fig. 4.3 Battery and tank DHW Battery and tank SH and DHW 1,00E+00 0,00724 Fig. 4.4 Battery and tank DHW Battery and tank SH and DHW 3,59E-01 1

Fig. 4.3 Battery and tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Battery and tank SH Battery and tank SH and DHW 7,00E-07 1

SFH45 Fig. 4.3 Baseline Tank DHW <2.2e-16 <2.2e-16 SFH45 Fig. 4.4 Baseline Tank DHW 0,18535 1

Fig. 4.3 Baseline Tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Tank SH 0,09976 1

Fig. 4.3 Baseline Tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Tank SH and DHW 0,997712 1

Fig. 4.3 Baseline Battery <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Battery and tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank DHW Tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Tank SH 0,00036 1

Fig. 4.3 Tank DHW Tank SH and DHW 1,00E-14 <2.2e-16 Fig. 4.4 Tank DHW Tank SH and DHW 0,0992 1

Fig. 4.3 Tank DHW Battery <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery 1,00E-10 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank SH 4,60E-15 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Tank SH and DHW 1,23E-01 1

Fig. 4.3 Tank SH Battery <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Battery and tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery 5,60E-05 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank SH 4,80E-05 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Battery Battery and tank DHW <2.2e-16 7,80E-09 Fig. 4.4 Battery Battery and tank DHW 7,70E-12 1

Fig. 4.3 Battery Battery and tank SH 1 1,20E-13 Fig. 4.4 Battery Battery and tank SH 0,07577 1

Fig. 4.3 Battery Battery and tank SH and DHW <2.2e-16 5,40E-15 Fig. 4.4 Battery Battery and tank SH and DHW 4,20E-08 1

Fig. 4.3 Battery and tank DHW Battery and tank SH <2.2e-16 0,0082 Fig. 4.4 Battery and tank DHW Battery and tank SH 7,90E-04 1

Fig. 4.3 Battery and tank DHW Battery and tank SH and DHW 1 0,0202 Fig. 4.4 Battery and tank DHW Battery and tank SH and DHW 3,13E-01 1

Fig. 4.3 Battery and tank SH Battery and tank SH and DHW <2.2e-16 0,4597 Fig. 4.4 Battery and tank SH Battery and tank SH and DHW 7,12E-02 1

SFH100 Fig. 4.3 Baseline Tank DHW <2.2e-16 <2.2e-16 SFH100 Fig. 4.4 Baseline Tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Tank SH and DHW 0,00019 <2.2e-16

Fig. 4.3 Baseline Battery <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Baseline Battery and tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank SH 0,16499 <2.2e-16

Fig. 4.3 Baseline Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Baseline Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank DHW Tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Tank DHW Tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Tank SH and DHW <2.2e-16 0,56271

Fig. 4.3 Tank DHW Battery <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery <2.2e-16 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank SH 2,50E-08 <2.2e-16

Fig. 4.3 Tank DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Tank SH and DHW <2.2e-16 1

Fig. 4.3 Tank SH Battery <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery <2.2e-16 0,00034

Fig. 4.3 Tank SH Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH Battery and tank SH <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank SH <2.2e-16 0,04825

Fig. 4.3 Tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery 1 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank DHW <2.2e-16 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank SH 0,033 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank SH 0,0023 <2.2e-16

Fig. 4.3 Tank SH and DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Tank SH and DHW Battery and tank SH and DHW <2.2e-16 <2.2e-16

Fig. 4.3 Battery Battery and tank DHW 0,06 8,10E-08 Fig. 4.4 Battery Battery and tank DHW 3,90E-09 <2.2e-16

Fig. 4.3 Battery Battery and tank SH <2.2e-16 3,80E-05 Fig. 4.4 Battery Battery and tank SH <2.2e-16 0,01961

Fig. 4.3 Battery Battery and tank SH and DHW <2.2e-16 4,40E-14 Fig. 4.4 Battery Battery and tank SH and DHW 2,00E-06 <2.2e-16

Fig. 4.3 Battery and tank DHW Battery and tank SH 1 <2.2e-16 Fig. 4.4 Battery and tank DHW Battery and tank SH <2.2e-16 <2.2e-16

Fig. 4.3 Battery and tank DHW Battery and tank SH and DHW <2.2e-16 0,0055 Fig. 4.4 Battery and tank DHW Battery and tank SH and DHW <2.2e-16 0,00876

Fig. 4.3 Battery and tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16 Fig. 4.4 Battery and tank SH Battery and tank SH and DHW <2.2e-16 <2.2e-16
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Table B.6: Median LCOE in USD/kWhel for the three types of houses, depending on the CAPEX
reduction per device and configuration for various configurations of PV-coupled heat pumps,
thereby assuming that the retail tariff includes a capacity-based component. The median val-
ues for which the LCOE reduction is higher than for the baseline scenario (i.e., without CAPEX
reduction) are printed bold .

CAPEX reduction Baseline Tank SH Tank SH and DHW Battery

SFH15 0.71 0.68 0.52 0.79

No

reduction
SFH45 0.6 0.57 0.49 0.68

SFH100 0.55 0.53 0.48 0.60

SFH15 0.71 0.68 0.52 0.72

Battery

50%
SFH45 0.60 0.57 0.49 0.63

SFH100 0.55 0.53 0.48 0.57

SFH15 0.67 0.64 0.5 0.76

HP 50% SFH45 0.57 0.54 0.46 0.64

SFH100 0.5 0.48 0.44 0.55

SFH15 0.67 0.64 0.49 0.75

PV 50% SFH45 0.57 0.55 0.46 0.65

SFH100 0.54 0.53 0.47 0.58

B.10 Sensitivity analysis

In this section, we address the influence of three major input parameters, namely,
i) the CAPEX of PV, heat pump, battery and space heating storage tank in Table
B.6 (we exclude the DHW tank since the CAPEX is relatively low), ii) the discount
factor in Table B.7 and iii) the impact of the capacity-based tariff on the power peak
flow in Table B.8. This is done for the baseline PV-coupled heat pump system and
configurations with electricity and heat storage for space heating.

According to Table B.6, a 50% reduction in the CAPEX of a heat pump has the
greatest effect on the LCOE for the poorly insulated houses (SFH100), reducing the
LCOE by 0.05 USD/kWhel (9%). In well and very well insulated houses (SFH45 and
SFH15), the CAPEX of the battery has the greatest effect on the LCOE, and for ex-
ample a 50% reduction would improve the LCOE by 0.05 (7%) and 0.07 USD/kWhel

(9%), respectively.
The discount factor (i.e., 4%) has a marked impact on the LCOE, which is also

statistically significant (p − values ≤ 0.001). For example, the LCOE increases by
0.15 USD/kWhel (21%) for the SFH15 if the discount factor increases from 4% to
8% in the baseline scenario (see Table B.7). A higher discount factor represents a
higher time value of money and uncertainty and thus, reduces the economic viability.

Finally, Table B.8 firstly shows that, the peak flow is not very sensitive to the
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Table B.7: Median LCOE in USD/kWhel for the three types of house, depending on the discount
factor and for various configurations of PV-coupled heat pumps considering that the retail tariff
includes capacity-based component. In bold are presented the median LCOE values for the baseline
scenario (discount factor equal to 4%) are presented in bold.

Configuration Discount factor SFH15 SFH45 SFH100

Baseline 0.63 0.54 0.49

Tank SH 2% 0.61 0.51 0.46

Battery 0.68 0.58 0.52

Baseline 0.71 0.60 0.55

Tank SH 4% 0.68 0.57 0.53

Battery 0.79 0.68 0.6

Baseline 0.78 0.67 0.62

Tank SH 6% 0.75 0.64 0.60

Battery 0.92 0.78 0.69

Baseline 0.86 0.75 0.70

Tank SH 8% 0.83 0.71 0.67

Battery 1.05 0.89 0.79

value of the capacity-based component of a retail tariff. Secondly, there is a threshold
value of the capacity component below which energy storage cannot reduce the peak
flow further, which is mainly given by the PV export peak (3.8 kWel in this study).
To reduce the peak flow under these circumstances, PV curtailment would be needed.
PV-coupled heat pump systems increase the peak flow if retail tariffs do not include
a capacity-based component, even when supported by electricity or heat storage.



Table B.8: Median peak flow in kWel for the three types of house, depending on the capacity-based
tariff for the configurations of PV-coupled heat pumps with heat storage and with battery. The
peak import is shown in parentheses. In bold is presented the capacity-based tariff used across
this study.

Capacity-based tariff Space heating storage Battery

(USD/kWel/month) SFH15 SFH45 SFH100 SFH15 SFH45 SFH100

0 4.8 (4.8) 5.3 (5.3) 10.8 (10.8) 5.8 (5.8) 6.3 (6.3) 13.7 (13.7)

1.2 4.6 (4.6) 4.8 (4.8) 7.7 (7.7) 3.8 (2.6) 3.8 (3.2) 10.6 (10.6)

4.7 4.6 (4.6) 4.6 (4.6) 7.7 (7.7) 3.8 (2.5) 3.8 (2.9) 7.7 (7.7)

9.4 4.6 (4.6) 4.6 (4.6) 7.7 (7.7) 3.8 (2.5) 3.8 (2.6) 7.7 (7.7)

18.8 4.6 (4.6) 4.6 (4.6) 7.7 (7.7) 3.8 (2.5) 3.8 (2.5) 7.7 (7.7)
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Appendix C

Supplementary Information - Local
level

C.1 P2P electricity trading and individual
preferences

Personal preferences concerning how P2P trading decisions should be administered
in everyday life were assessed using the Swiss Household Energy Data Survey (S.
Weber et al. 2017), a representative survey of energy behaviors conducted in April
2019. In order to achieve a representative sample of the Swiss population, quotas
on age, gender, region, and living situation (i.e., tenants and owners) were applied.
After conducting a P2P decision task similar to the one applied in the present study,
998 participants were asked to report their preference about how their decisions
should be executed in a P2P community. Choice options: (1) “I decide manually
each time to sell self-generated electricity or not” (response rate: 21.34%), (2) “A
computer system executes the decisions to sell or not sell electricity based on my
pre-set preferences” (response rate: 68.14%), and (3) “A computer system executes
all decisions without my influence” (response rate: 10.52%).

C.2 Experimental study and survey

Overall, 299 German homeowners started the study. Out of these participants, 251
completed it, i.e., we got a response rate of 84%. This section provides an overview
and summary of the two key analytical points of the study. See Supplementary
Table C.1 for the characterization of the sample.
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Table C.1: Characterization of the total sample as well as the sub-samples including both the
respondents who took part in the P2P electricity trading experiment and the respondents who did
not. The following terms apply: PV = photovoltaic system, EV = electric vehicle, ESS = energy
storage system. To show statistically significant differences among the participants willing to take
part in the P2P trading strategy and the participants that were not interested in taking part in the
P2P community, we use the two-sided t test and a chi-square test for categorical data. Significant
differences are marked as follows: ***p < .001; **p < .01; *p < .05.

Total sample

(100%)
CI 95%

Taking part

(70%)
CI 95%

Not interested

(30%)
CI 95%

Significant

difference

Sex

Female 53,0% n/a 50,6% n/a 58,6% n/a No

Age (mean) 52,6 [50,8; 54,4] 51,6 [49,4; 53,8] 55 [52,0; 58,0] No

Civil status

Single 15,9% n/a 18,3% n/a 10,7% n/a ***

In a relationship 15,9% n/a 16,4% n/a 14,7% n/a **

Married 58,2% n/a 54,5% n/a 66,9% n/a ***

Divorced 5,2% n/a 5,1% n/a 5,4% n/a No

Widow 4,8% n/a 5,7% n/a 2,7% n/a *

Employment status

Student 4,8% n/a 6,3% n/a 1,3% n/a **

Unemployed 6,0% n/a 6,3% n/a 5,4% n/a No

Full-time 42,2% n/a 43,8% n/a 38,5% n/a ***

Part-time 22,3% n/a 24,4% n/a 17,4% n/a ***

Retiree 24,7% n/a 19,3% n/a 37,5% n/a No

Education

Secondary school 9,2% n/a 7,4% n/a 13,4% n/a No

High school 33,9% n/a 31,8% n/a 38,8% n/a **

Abitur 21,5% n/a 23,2% n/a 17,4% n/a ***

Bachelor 8,8% n/a 8,0% n/a 10,7% n/a No

Master 24,7% n/a 26,7% n/a 20,1% n/a ***

PhD 2,0% n/a 2,9% n/a 0,0% n/a *

Energy mix

100% fossil 11,9% n/a 9,1% n/a 18,4% n/a No

100% renewable 27,9% n/a 27,8% n/a 28,1% n/a ***

Fossil/renewable mix 32,3% n/a 35,8% n/a 24,1% n/a ***

Do not know 27,9% n/a 27,2% n/a 29,5% n/a **

PV possession 13,5% n/a 17,7% n/a 3,7% n/a

ESS possession 0,05% n/a 0,05% n/a 0,04% n/a

Purchase intention1

PV 2,4 [2,3; 2,6] 2,7 [2,5; 2,9] 1,7 [1,5; 1,9] ***

EV 2,1 [1,9; 2,3] 2,3 [2,1; 2,5] 1,6 [1,4; 1,9] ***

ESS 2,5 [2,4; 2,7] 2,8 [2,6; 3,0] 1,8 [1,5; 2,1] ***

Heat pump 2,3 [2,1; 2,4] 2,5 [2,3; 2,7] 1,8 [1,5; 2,1] ***

Others

Household members (mean) 2,5 [2,4; 2,7] 2,57 [2,4; 2,7] 2,4 [2,2; 2,6] No

Political ideology2 5,2 [5,0; 5,4] 5,1 [4,9; 5,3] 5,4 [5,1; 5,7] No

Risk seeking3 5,4 [5,1; 5,7] 5,7 [5,4; 6,0] 4,8 [4,2; 5,4] **

Respect of the earth4 6,2 [6,0; 6,4] 6,3 [6,1; 6,5] 5,9 [5,6; 6,3] No

Unity with nature4 5,9 [5,7; 6,1] 6,1 [5,8; 6,3] 5,6 [5,1; 6,0] *

Environmental protection4 6,4 [6,2; 6,5] 6,6 [6,4; 6,8] 5,8 [5,4; 6,2] ***

Pollution prevention4 6,3 [6,1; 6,5] 6,4 [6,2; 6,6] 6 [5,6; 6,3] *

1 Technology purchase intention (within next 5 years) ranged from 1 – very small intention to 5 – very strong intention.
2 political ideology ranged from 1 – extremely left to 10 – extremely right.
3 risk seeking ranged from 0 – not willing to take risks at all to 10 – very willing to take risks.
4 altruistic and biospheric values ranged from 0 – opposite to my life principles to 8 – of supreme importance.
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C.2.1 P2P Decision task

Supplementary Figure C.1 displays one example of the P2P choice task, based on a 4
x 3 x 2 within-subjects design with the different electricity prices being offered in the
P2P community (€0.04 per kWh to €0.28 per kWh in steps of €0.08 per kWh), SOC
of the battery (30–90% in steps of 30%), and time until the next surplus (more than
or less than 12 hours). All possible combinations of price and SOC were presented
in random order resulting in a total of 24 decisions. The dependent variable was
participants’ choices to either sell electricity from the battery to the community or
not.

Current electricity price in 
your electricity community

Current state of your 
battery: 

20 Cent/kWh 30%

Surplus electricity is produced again in 
12 hours at the earliest

Weather forecast

Now In 12 h In 24 h

You do not produce electricity surplus at this moment. You can, however, 
sell electricity from your electricity storage within your electricity community 
or keep it in your electricity storage under the following conditions.

Would you sell electricity within your electricity community or keep it 
in your electricity storage under these conditions?

Sell
(Provide to electricity 

community) 

Keep
(Leave in electricity storage) 

Figure C.1: Example of the trading decision task. Based on the experimental P2P decision
task in the online study. Please note that this figure is slightly different to the task displayed
to participants, since some icons were changed due to copyright reasons. The source of weather,
electricity, and battery icons: Microsoft PowerPoint; source of solar module icon: Martin Markstein
from thenounproject.com, licensed under CC BY 3.0.

C.2.2 Willingness to participate in P2P communities

The large majority of the sample (70%) admitted to be interested in becoming a
member of a P2P community. On the other hand, those who declared their reluc-
tance to be part of a P2P community claimed several reasons. Since a broad range
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Figure C.2: Reported reasons why participants are not interested in becoming a mem-
ber of a P2P community. a): Detailed reasons to not be part of the P2P community. b):
Aggregated categories of reasons to not be part of the P2P community.

of reasons were given by the participants, we aggregate them in categories. Sup-
plementary Figure C.2 shows the most stated reasons given and the corresponding
categories. The most important categories of reasons to not be part of the P2P
community were "Independence" (75%), "Supply satisfaction" (59%), "Complex-
ity" (57%), "Lack of trust" (57%) and "Selectivity" (31%, i.e., refers to the choice
with whom the members of P2P communities want to trade with). Almost two
thirds of the sample declared to be familiar with trading (64%), but only 42% of the
sample indicated to have a high tendency to trade. Beyond the factual answers of
the participants reluctant to take part in P2P communities, we found statistically
significant differences on risk aversion by willingness to participate in P2P commu-
nities, in that the group that expressed reluctance to participate in P2P trading
was more risk averse than the group that expressed willingness to be part of a P2P
community (p− values ≤ 0.005).

C.3 Individual self-consumption with P2P price
structure

In order to verify the validity of our results, here we implemented a self-consumption
maximization strategy using the same pricing mechanism as in a P2P community;
results are presented in Supplementary Figure C.3 and C.4. In this way, we con-
firmed that P2P communities performed better than the self-consumption maxi-
mization strategy, even under a similar price structure. At the individual level, self-
consumption and autarky in the self-consumption maximization strategy remained
unchanged while were reduced in P2P communities. The annual bill, however, was
smaller under the self-consumption maximization strategy with P2P price structures
than in the self-consumption maximization strategy evaluated in the main paper,
and even lower in P2P communities, except for prosumers with PV only.
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At the aggregated level, self-consumption and autarky under the self-
consumption maximization strategy remained at equal levels while comparatively
higher in P2P communities. As for the aggregated bill, P2P prices help to reduce
it for the self-consumption maximization strategy, however, P2P communities re-
mained, comparatively, the best option to reduce the electricity bill.

Since there were no supplementary exchanges of electricity when changing the
price structure under the self-consumption maximization strategy, the power ex-
changes remain unchanged, thus we do not show them here. Finally, the Benefit
Index that compares the share of households that are better-off being part of a P2P
community compared with pursuing a self-consumption maximization strategy, even
under a similar price structure, is 72.5%.
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Figure C.3: Comparison of self-consumption maximization strategy under traditional
retail tariff and FiT, self-consumption maximization strategy with P2P price struc-
ture, and P2P communities at the individual level. a): Boxplots of annual self-consumption.
Boxplots show the median (horizontal line) and the interquartile range (IQR; box outline). The
whiskers extend from the hinge to the highest and lowest value that are within 1.5*IQR of the
hinge, and the points represent the outliers. b): Annual autarky. c): Annual bill for all types
of prosumers. Note that self-consumption and autarky are presented only for the prosumers with
PV and battery, since for the other cases these indicators do not change. The individual p-values
of the two-sided Wilcoxon test with the Holm procedure to control the family-wise error rate are
reported in the figure for panels b) and c), where N=1000 independent simulations.
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Figure C.4: Comparison of self-consumption maximization strategy under traditional
retail tariff and FiT, self-consumption maximization strategy with P2P price struc-
ture, and P2P communities at the aggregated level. a): Boxplot of the annual bill. Boxplots
show the median (horizontal line) and the interquartile range (IQR; box outline). The whiskers
extend from the hinge to the highest and lowest value that are within 1.5*IQR of the hinge, and the
points represent the outliers. b): Annual self-consumption. c): Annual autarky. The individual
p-values of the two-sided Wilcoxon test with the Holm procedure to control the family-wise error
rate are reported in the figure for all panels, where N=1000 independent simulations.

C.4 Sensitivity analysis

In order to verify the validity of our results, we implemented a sensitivity analy-
sis of self-consumption, autarky and the annual cost to PV penetration, battery
penetration and community size at both the individual and community level. Sup-
plementary Figure C.5 displays the results at the individual level. The increase
of battery penetration reduced the annual bill of classical consumers, however, it
increased the annual bill of prosumers with PV and battery. For prosumers with
PV only there was an optimal level of battery penetration that remains to be stud-
ied. Self-consumption and autarky levels remained at similar levels at the individual
level, independently of the PV and battery penetrations.
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Figure C.5: Sensitivity of the key performance indicators with respect to community
size, PV and battery penetration at the individual level, depending on the type of
prosumer. a): Annual bill. b): Annual self-consumption. c): Annual autarky. Note that self-
consumption and autarky are not presented only for the classical consumers, since these indicators
are zero.

Results of the community level are shown in Figure C.6. We found an important
impact of PV and battery penetration in the community, whereas the community size
impact was reduced at both levels. As PV and battery penetrations increased, the
autarky at the community level increased, while the self-consumption and the annual
bill reduced, which suggests a saturation beyond a given threshold of technology
penetration, which remains to be studied.
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Figure C.6: Sensitivity of the key performance indicators with respect to community
size, PV and battery penetration at the aggregated level. a): Annual bill. b): Annual
self-consumption. c): Annual autarky.
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C.5 Distribution grid

C.5.1 Overview of the distribution grid design, problems
and solutions

The approach of distribution system operators (DSOs) to design distribution grids
mainly considered the demand of their consumers and centralized power supply pro-
vided by a public grid infrastructure (in a safe and efficient manner). To ensure
reliable electricity supply under peak demand, DSOs estimate the peak power de-
mand of an area and use this estimate to size the grid assets (Ruf 2018). Peak
demand per household in Germany ranges from 2-6 kW for households with tra-
ditional appliances and from 7-13 kW for households with electric heating, e.g.,
electric boilers for domestic hot water (Heinhold 1965). Moreover, to estimate the
peak demand of the area, DSOs consider the active power and a coincidence factor
that varies depending on the number of customers (being 1 for one household and
between 0.2-0.4 for a very large number of consumers Heinhold 1965; Hartvigsson
et al. 2021a; Hartvigsson et al. 2021b). In Germany, a three-phase connection is
commonly used to connect households (Ruf 2018), which improves the power factor,
voltage stability and reduces losses.

Now, with the increase of distributed energy resources such as electric vehicles,
and heat pumps as well as an increasing amount of electronic devices, the peak
power per household is increasing. Moreover, PV systems pose a new challenge to
the distribution grid infrastructure, which was designed to provide electricity and
not to absorb it. Important challenges for DSOs in Germany have been caused by
a high number of small PV systems, as well as some large PV systems which are
installed far away from the load in rural areas (Ruf 2018). DSOs must guarantee
grid stability and power quality, however, since PV injection was not considered
in the planning of distribution grids, the local PV feed-in affects the voltage of the
distribution grid, as well as the operation of critical devices such as transformers and
lines (Gupta, Pena-Bello, et al. 2021). These effects have to be taken into account
in both the planning as well as a safe and efficient operation of the electric grid.

The amount of distributed generation for which constraints are violated is de-
noted as hosting capacity (Bollen and Hassan 2011). The hosting capacity is highly
dependant on local conditions, such as transformer size, amount of consumers cov-
ered by a transformer, lines length, local consumption and PV generation matching
(based on irradiance and PV panels orientation). Three main problems arise from
PV feed-in in the low voltage distribution grid area, namely, grid voltage alteration
due to load profile modification, thermal loading of lines and transformers due to
violations of the thermal limits of the devices, and reverse power flow, in the case
that feed-in in the distribution grid exceeds local consumption (i.e., the low voltage
distribution grid area then operates as a power plant instead of a demand hub).

The hosting capacity of an existing grid is determined by its topology, assets
and local conditions. In Germany the main limiting factors of the hosting capacity
are voltage increase and lack of transformer capacity(Ruf 2018; Bayer et al. 2018;
Hartvigsson et al. 2021a; Hartvigsson et al. 2021b). Cable capacity is the least
common problem. Usual techniques to increase hosting capacity without incur-
ring in traditional grid reinforcement are voltage regulated distribution transformers
(VRDT), PV curtailment, capacity-based tariffs, demand side management, reac-
tive power compensation by PV inverters, and energy storage (Ruf 2018; Pena-Bello,
Barbour, Gonzalez, Patel, et al. 2019).

170



Standard long-term solution grid reinforcement is slow to implement and costly
(Varela et al. 2017), and therefore DSOs search to avoid it. VRDT are transform-
ers with on-load tap changers at the low-voltage level. The tap changer varies the
transformer ratio, controlling the value of the secondary voltage under load (Ruf
2018). This technique has been widely applied in high voltage to medium voltage
transformers but only recently developed for medium voltage to low voltage com-
mercial devices. With VRDT, a decoupling of the low voltage grid from the medium
voltage grid is achieved and the voltage band is increased (even doubled) at the low
voltage level (Hinz and Sojer 2012). In Germany, however, VRDTs are not widely
available and its cost is 1.5 to 2 times higher compared with regular distribution
transformers (van Amelsvoort 2014), which is still lower than grid reinforcement
(Schwarz and Kollmann 2014). PV curtailment is a regulation measure that refers
to the limitation (in power terms) of PV feed-in. In some regions with substantial
PV penetration, a feed-in limit is set to keep the grid stability. Electricity dis-
sipation is typically done using the PV inverter (Pena-Bello, Barbour, Gonzalez,
Patel, et al. 2019). Reactive power compensation by PV inverters allows to reduce
voltage deviations operating the PV inverters at power factors lower than 1, how-
ever, it increases the losses at the inverter (Vlahinić et al. 2019). This technique is
particularly interesting in distribution grids with high shares of PV (Vlahinić et al.
2019). Demand side management consists of demand loads shifting in time to match
renewable generation, and/or lower electricity prices (Fidalgo, Couto, and Fournie
2016). Eligible loads for demand side management include air conditioning, heating
and refrigeration (displaceable load) and also a small percentage of other household
devices, e.g., wet appliances, which when matched with PV surplus may alleviate
grid stress. Capacity-based tariffs which are proportional to the maximum peak
power (i.e., in €/kW) during a billing period, have been widely applied for large
consumers. To reduce the grid impacts of PV, heat pumps and electric vehicles and
enabled by the deployment of smart meters, capacity-based tariffs are already being
tested in some countries, e.g., France, Belgium, Austria and Sweden (Pena-Bello,
Schuetz, et al. 2021). Capacity-based tariffs provide price signals for prosumers to
reduce their peak flow, which can help to defer distribution grid upgrades and to
recover a portion of network costs. However, its implementation requires thoughtful
roll-out to allow households to adapt to new price signals (Azarova et al. 2018).
Finally, energy storage is able to increase self-consumption (and therefore reduce
PV feed-in), and provide additional applications such as avoidance of PV curtail-
ment (if PV curtailment is enforced), peak shaving (reduction of the peak flow, if
capacity tariffs are implemented), as well as ancillary services (Pena-Bello, Barbour,
Gonzalez, Patel, et al. 2019; Battke et al. 2013).

C.5.2 Distribution grid modeling

In this section, the results of a complementary model of a distribution network
based on Hartvigsson et al. are presented (Hartvigsson et al. 2021a; Hartvigsson et
al. 2021b). This model uses a top-down approach, from a DSO perspective, to design
a distribution grid and the transformer capacity based on several parameters, e.g.,
nominal voltage, fuse rating, population density, load coincidence, etc. Using the
average 15-min profile of 100 German houses used in this study, the model calculates
the required capacity of the transformer to cover the demand in a given area. We
assumed that the community is conformed entirely by single-family houses, in a rural
area, and within a surface of 0.01 km2. The model relies on the coincidence factor
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to calculate the peak demand, and focuses on the longest feeder, e.g., a continuous
stretch of cable or power line, from each transformer. The coincidence factor allows
us to simplify comparisons and reduce the complexity of the problem and make
it computational feasible, however, it may cause a bias towards voltage violations
in the results. Moreover, it excludes the impact of harmonics and flicker, which is
generally small(Hartvigsson et al. 2021a; Hartvigsson et al. 2021b). The distribution
grid model includes costs for the transformers and cables (for both low voltage
and medium voltage lines). It takes into account losses and voltage constraints to
calculate the transformer hosting capacity. The distribution network model takes
a simplified approach of a radial distribution network with a uniform distribution
of customers in the area supplied by each transformer and with horizontal and
vertical connection lines (see Supplementary Figure C.7) (Hartvigsson et al. 2021a;
Hartvigsson et al. 2021b). For detailed information on the model, please refer to
Hartvigsson et al. 2021a; Hartvigsson et al. 2021b.

Figure C.7: Schematic representation of the simplified approach of the distribution
network with uniform distribution of customers. The red dot represents the MV/LV trans-
former, while the black dots represent the customers.

Two options were modeled: first, the model used the least costly option to allo-
cate the transformer capacity. Second, the model was modified to cover the demand
of the 100 households using a single transformer, following the assumption in this
study of a single point of common coupling (PCC) for the whole community. The
results of the simulations are presented in Supplementary Table C.2. The difference
of cost between the two options was in the range of €415-6570 (i.e., 0.5-9.3%). The
hosting capacity ranged between 500-1250 kW, whereas the main limiting factor was
always the transformer capacity (the other limiting factors being voltage increase
and cable capacity), which is in line with the literature(Ruf 2018; Bayer et al. 2018;
Hartvigsson et al. 2021a; Hartvigsson et al. 2021b).

Overall, our results indicate that for a PV size distribution between 1-10 kWp
(with a median of 6 kWp) and the PV penetration scenarios of 25%, 50%, and 75%,
the transformer can allocate the amount of PV in every scenario, with the maximum
feed-in power being 160 kW, 303 kW. and 450 kW, respectively. However, in the cases
where the hosting capacity is close to being reached (e.g., a PV penetration equal or
higher to 75% and a single transformer of 1 kVA), P2P gently reduces the maximum
feed-in (6%), but other flexibility solutions should be explored such as demand-side
management and reactive power compensation by PV inverters (Fidalgo, Couto,
and Fournie 2016; Vlahinić et al. 2019).
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Table C.2: Results of transformer allocation and hosting capacity using the model presented by
Hartvigsson et al. (Hartvigsson et al. 2021a; Hartvigsson et al. 2021b), and adapted for the
present study. Two options are presented, least cost and a single transformer used to feed the
whole community. The peak demand is directly related with a 20 A fuse installed at the household
level.

Variable Least cost (Option a) One single transformer (Option b)

Fuse rating [A] 20 20 20 20 20 20 20 20 20 20 20 20

Nominal voltage [V] 400 400 400 400 400 400 400 400 400 400 400 400

Margin 1 1,2 1,5 1,8 2,1 2,4 1 1,2 1,5 1,8 2,1 2,4

Hosting capacity 600 600 1000 1000 1000 1250 500 800 800 1000 1000 1250

Capacity per customer 6 6 10 10 10 12,5 5 8 8 10 10 12,5

Solar energy 921498,8 921498,8 1535831,4 1535831,4 1535831,4 1919789,2 767915,7 1228665,1 1228665,1 1535831,4 1535831,4 1919789,2

Feeder length 0,081 0,081 0,081 0,081 0,081 0,11 0,11 0,11 0,11 0,11 0,11 0,11

Transformer capacity 315 315 500 500 500 1250 500 800 800 1000 1000 1250

Number of transformers 2 2 2 2 2 1 1 1 1 1 1 1

Customers per feeder 13 13 13 13 13 25 25 25 25 25 25 25

Customers per transformer 50 50 50 50 50 100 100 100 100 100 100 100

Peak demand 446,4 446,4 446,4 446,4 446,4 446,4 446,4 446,4 446,4 446,4 446,4 446,4

Cost [SEK] 714066,5 714066,5 776194,5 776194,5 776194,5 840912,3 747205,3 780391,3 780391,3 805161,3 805161,3 840912,3

Cost [€] 70692,59 70692,59 76843,26 76843,26 76843,26 83250,32 73973,33 77258,74 77258,74 79710,97 79710,97 83250,32

Limiting factor Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap. Tr. Cap.

Overcost [€] - - - - - - 3280,7 6566,2 415,5 2867,7 2867,7 0,0

Overcost % - - - - - - 4,6% 9,3% 0,5% 3,7% 3,7% 0,0%

C.6 Modeling

In this paper, we analyzed P2P communities with a size of 100 households and
compared them with a baseline strategy where prosumers aimed to maximize their
self-consumption, i.e., the status quo in Germany (and many other countries), where
185,000 prosumers were maximizing their self-consumption with individual batter-
ies in 2019 (Figgener, Stenzel, et al. 2021). We compared these two strategies
at the individual, and at the aggregated level, using key performance indicators
such as self-consumption, autarky, and peak demand. The aggregated level corre-
sponds to a single point of Common Coupling (PCC), which matches the size of
the community for P2P trading. For both strategies, we further considered a single
low-voltage/medium-voltage transformer behind the single PCC, using 15-minute
resolution demand and PV generation data (see Section C.5 for more details).

C.6.1 Self-consumption maximization

Supplementary Figure C.8 illustrates the self-consumption maximization strategy
(baseline) for which prosumers aimed to minimize electricity imports from the main
grid at the retail price by using their local PV generation on-site (instead of being
exported to the main grid with the FiT). First, PV generation met the household
demand if they matched, and any PV surplus was used to charge the battery until it
was full. On the other hand, the battery discharged to meet the household electricity
demand if demand was greater than PV generation until it was empty. Surplus PV
electricity from prosumers was injected into the local grid and was considered to be
consumed locally if there was demand from other neighboring houses located behind
the same PCC. For this strategy, we also calculated the aggregated autarky and self-
consumption at the PCC, which was then compared with the values obtained with
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P2P communities. Moreover, Supplementary Figure C.9 is a flowchart that displays
the schedule of a PV-coupled battery system maximizing self-consumption at every
time step, as well as the amount of PV electricity that was directly self-consumed
and exported to the grid. Supplementary Figure C.10 shows the aggregated flows
for two representative spring days achieved with the self-consumption maximization
strategy.

Figure C.8: Schematic representation of the self-consumption maximization strategy.
Source: Own elaboration. Source of solar panel roof and electricity tower icons: Creative Mahira
from thenounproject.com. Source of house icon: Larea from thenounproject.com. Icons licensed
under CC BY 3.0.
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Figure C.9: Flowchart of the energy management model for self-consumption maxi-
mization strategy.
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Figure C.10: Energy flows of the self-consumption maximization strategy. a): Sample of
two days with aggregated flows at the PCC. b): Aggregated SOC. c): Aggregated grid exchanges.

C.6.2 P2P communities

Supplementary Figure C.11 illustrates a P2P community where PV trading occurred
among the same households considered for the baseline strategy assuming the same
PCC. Households’ surplus PV generation was traded within the P2P community,
and only if there was not any community demand to be met locally, residual PV
electricity was sold to the main grid at the FiT. Electricity from batteries was
traded according to the prosumers’ preferences given in Supplementary Figure C.1.
Moreover, Supplementary Figure C.12 displays a flowchart of the schedule of a PV-
coupled battery system trading electricity in a P2P community at every time step,
as well as the amount of PV electricity that was directly self-consumed and exported
to the grid. Likewise the self-consumption maximization strategy, PV generation
met the household demand if they matched, and any PV surplus was used to charge
the battery until it was full.

Figure C.11: Schematic representation of the P2P community. Source: Own elaboration.
Source of solar panel roof and electricity tower icons: Creative Mahira from thenounproject.com.
Source of house icon: Larea from thenounproject.com. Icons licensed under CC BY 3.0.
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Figure C.12: Flowchart of the energy management model for the P2P community.

On the other hand, the battery discharged to meet the household electricity
demand if demand was greater than PV generation until it was empty. Surplus
PV electricity from prosumers was injected into the local grid and was considered
to be consumed locally if there was demand from other neighboring houses located
behind the same PCC. If the household demand was satisfied and the battery was
full, the remaining PV electricity was traded into the P2P community. Furthermore,
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the battery can then be discharged to cover the household demand or to trade into
the P2P community taking into account the consumer preferences. Supplementary
Figure C.13 shows the aggregated flows at the PCC for the same two representative
spring days achieved by P2P community trading. Trading achieved with batteries
within a P2P community (in blue in the Supplementary Figure C.13), as well as the
P2P market price are shown in the bottom box.

Figure C.13: Energy flows of the P2P trading strategy. a): Sample of two days with
aggregated flows at the PCC. b): Aggregated SOC. c): Aggregated grid exchanges and P2P
prices.

C.6.3 Flowchart of the pricing mechanism in P2P
community

Supplementary Figure C.14 displays a flowchart of the pricing mechanism in P2P
communities. Supplementary Figure C.15 shows the energy flows at the aggregated
level, with time slots when there is PV surplus at the aggregated level represented
in green.
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Figure C.14: Flowchart of the pricing mechanism in P2P community.
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Figure C.15: Energy flows at the aggregated level, showing the market price behavior
in P2P communities in presence of surplus (green areas). a): Aggregated PV generation
and demand at the community level. b): Aggregated State of Charge (SOC) of the 25 batteries
across the P2P community. c): Market price.
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C.6.4 Comparison of the households’ main motivations in
both strategies.

Table C.3: Comparison of the role of each type of household for P2P communities and the baseline
case in which prosumers maximize their self-consumption. In parentheses are presented the nature
of the motivations.

Prosumer
strat-
egy

Type of
house-
hold Prosumer with battery Prosumer Traditional consumer

P2P community

Self-determined trad-
ing of their PV elec-
tricity to other com-
munity members at
higher value than the
FiT (economic, social
and environmental)

Weather-
constrained
trading of their
PV electricity to
other commu-
nity members
at a higher
value than the
FiT (economic,
social, and envi-
ronmental)

Purchasing of local
PV electricity at a
lower or equal price
than the conventional
grid electricity (eco-
nomic, social, and en-
vironmental)

Self-consumption
maximization

Avoiding conven-
tional grid electricity
imports at a high
price by using their
local PV generation
directly and with
storage (economic,
and environmental)

Avoiding conven-
tional grid electricity
imports at a high
price by using their
local PV generation
directly (economic,
and environmental)

Purchasing main grid
electricity at conven-
tional price (retail tar-
iff) with a high share
of PV surplus elec-
tricity generated by
neighbours (environ-
mental)

C.7 Impact of battery degradation on P2P trading

In this study, battery degradation was not considered for neither of both battery
strategies, namely, P2P trading and self-consumption. There are two main reasons
for this. First, we do not model technology cost for PV nor battery systems that
can be very heterogeneous within a P2P community (i.e., different technologies and
costs). We assume the use of similar technologies and capacities in both strategies,
namely, P2P trading and self-consumption maximization. In our paper, we focus on
the extra value brought by P2P trading regarding individual self-consumption max-
imization, which is the main objective pursued by battery owners nowadays (Parra
and Patel 2019; Dong et al. 2021). Second, degradation costs will be significantly
lower than the value generated by batteries in the near future and, therefore, we
do not consider them. This assumption is based on a comparison between cost and
revenue of batteries which is explained below, assuming lithium-manganese-cobalt-
oxide (NMC) batteries for our simulations with the following technical characteristics
now: 5000 EFC, 15 years of lifetime, and 91% round trip efficiency.

The assumption that degradation costs will be significantly lower than the value
generated by batteries can be derived as follows for the strategy of self-consumption
maximization. The economic driver for a battery to increase PV self-consumption
is given by Eqs. C.1 and C.2.

RevPV SC = Edbat · Pe − EPV−bat · PFiT (C.1)
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RevPV SC = EPV−bat · Pe · (η −
PFiT

Pe

) (C.2)

Whereas the revenue per kWh charged is given by Eq. C.3

RevPV SC = Pe · (η −
PFiT

Pe

) (C.3)

Where Pe is the retail price, PFiT is the Feed-in Tariff, η is the battery round-
trip efficiency,Edbat and EPV−bat are the energy charged into and discharged from the
battery, respectively. We modeled self-consumption maximization with the following
electricity prices: PFiT=€0.04 per kWh and Pe =€0.28 per kWh, which resulted in
a battery revenue of €0.215 per kWh.

Battery aging/degradation results from both cycle and calendar losses which
reduce the battery capacity throughout its lifetime, both in operation and stand-by,
respectively. The state of health (SOH) of a battery has been used in the literature
to measure the continuous loss of capacity of a battery (in parallelism with the state-
of-charge, SOC). A percentage of the initial battery capacity is used for assessing
the end of the lifetime, typically corresponding to 70% or 80% (Truong et al. 2016;
Hesse, Martins, et al. 2017; He et al. 2018). For this study, we use a lithium-
ion battery with 5000 EFC before the remaining capacity reaches 80%. The cost
associated per kWh (Eq. C.7), taking a uniform degradation rate over the battery
life cycle approach(Truong et al. 2016; Hesse, Martins, et al. 2017; He et al. 2018),
can be derived using Eqs. C.4- C.7:

CAPEX = C · Costbat (C.4)

EFC =
η · EPV−bat

C
(C.5)

Costdeg =
CAPEX

EPV−bat

(C.6)

Costdeg =
η · CAPEX

EFC · C
(C.7)

Where Costbat is the cost of the storage medium per kWh assumed to be €390
per kWh for this exercise, C is the nominal capacity of the battery, EFC are the
equivalent full cycles and CAPEX is the capital expenditure. Considering the
above-mentioned battery characteristics, the degradation cost is equal to €0.072
per kWh. Therefore, in the case of self-consumption, the revenue stemming from
the battery is markedly higher (threefold higher) than the cost of using the battery,
and a profit can be easily made.

For batteries integrated in a P2P community, a similar approach can be used
using the local market price PP2P , instead of the retail price in Eq. C.2. With
PFiT=€0.04 per kWh, the minimum PP2P that makes the revenue positive should
be higher than the FiT to counterbalance the round trip efficiency penalty, and
equal to €0.044 per kWh. But if we consider the same degradation cost, the local
market price (PP2P ) should be higher than €0.123 per kWh
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RevP2P = PP2P · (η − PFiT

PP2P

) > Costdeg (C.8)

Based on these calculations, we conclude that either the battery CAPEX should
be reduced by 55% or the EFC increased by the same amount (ceteris paribus) to
achieve a revenue which is higher than degradation cost when the local market price
is €0.04 per kWh (this is the lowest market price, which can be up to €0.28 per
kWh). Given the projected development of battery technologies, this cost reduction
seems to be feasible in the near future (in particular, some batteries available in
the market already offer more than 8000 cycles - e.g., trinaBEss at similar prices,
although it is a different chemistry Trina BESS 2017). Additionally, based on Eq.
C.8, the minimum price at which trading electricity from batteries is profitable
(which depends on the battery and the P2P market price specifications), should be
properly indicated to the prosumers and incorporated into the battery scheduling
management to avoid trading electricity without a proper economic incentive.

C.8 Willingness to sell
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Figure C.16: Willingness to sell electricity within the P2P community based on the
experimental study. Decisions to sell self-generated PV electricity to the P2P community as
a function of P2P market prices (€0.04 per kWh to €0.28 per kWh in steps of €0.08 per kWh),
SOC of privately owned 10 kWh batteries (30–90% in steps of 30%), and time until the next solar
generation surplus (more than or less than 12 hours) as factors.
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C.9 P2P community modeling for communities
with different patterns of trading
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Figure C.17: Results of the P2P community modeling for communities with different
patterns of trading. a) Boxplots for self-consumption for households with PV-coupled batteries;
b) Boxplots for self-consumption at the aggregated level (PCC). Boxplots show the median (hor-
izontal line) and the interquartile range (IQR; box outline). The whiskers extend from the hinge
to the highest and lowest value that are within 1.5*IQR of the hinge, and the points represent
the outliers. The individual p-values of the two-sided Wilcoxon test with the Holm procedure to
control the family-wise error rate and of the Kruskal-wallis test are reported in the figure for panels
b) and c), where N=1000 independent simulations.
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C.10 Statistical results

Table C.4: Characterization of the amount of selling decisions (figure 3A of the main paper) and
benefit index.

Amount of selling decisions Benefit Index

min 1 0,95

1st Q 9 0,99

median 12 1

mean 11,81 0,9951

3rd Q 14 1

max 22 1

SD 4,213264 0,007416
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Table C.5: Results of the two-sided Shapiro–Wilk test for normality performed on different subsets
for all figures of the main paper.

Figure subset W p-value

1A self-consumption maximization strategy: prosumers with PV and battery 0,99741 0,1121

1A P2P trading strategy: prosumers with PV and battery 0,99845 0,5209

1A self-consumption maximization strategy: prosumers with PV 0,99881 0,7621

1A P2P trading strategy: prosumers with PV 0,99867 0,665

1A self-consumption maximization strategy: traditional consumers 0,99877 0,7321

1A P2P trading strategy: traditional consumers 0,9987 0,6859

1C self-consumption maximization strategy 0,99767 0,00018

1C P2P trading strategy 0,99807 0,001031

2B self-consumption maximization strategy: Winter 0,96382 <2.2e-16

2B P2P trading strategy and Winter 0,96365 <2.2e-16

2B self-consumption maximization strategy: Fall 0,97445 <2.2e-16

2B P2P trading strategy and Fall 0,97893 <2.2e-16

2B self-consumption maximization strategy: Summer 0,93737 <2.2e-16

2B P2P trading strategy and Summer 0,94228 <2.2e-16

2B self-consumption maximization strategy: Spring 0,92196 <2.2e-16

2B P2P trading strategy and Spring 0,94301 <2.2e-16

2C self-consumption maximization strategy 0,94829 <2.2e-16

2C P2P trading strategy 0,93998 <2.2e-16

2D self-consumption maximization strategy 0,99788 0,000441

2D P2P trading strategy 0,99812 0,001287

3B self-consumption: restrained trading 0,96077 <2.2e-16

3B self-consumption: moderate trading 0,95488 <2.2e-16

3B self-consumption: intensive trading 0,93678 <2.2e-16

3B autarky: restrained trading 0,94145 <2.2e-16

3B autarky: moderate trading 0,97376 <2.2e-16

3B autarky: intensive trading 0,98371 <2.2e-16

3B bill: restrained trading 0,97461 <2.2e-16

3B bill: moderate trading 0,98259 <2.2e-16

3B bill: intensive trading 0,98315 <2.2e-16

3C self-consumption: restrained trading 0,95673 <2.2e-16

3C self-consumption: moderate trading 0,97253 <2.2e-16

3C self-consumption: intensive trading 0,95941 <2.2e-16

3C autarky: restrained trading 0,98927 <2.2e-16

3C autarky: moderate trading 0,9787 <2.2e-16

3C autarky: intensive trading 0,98934 <2.2e-16

3C bill: restrained trading 0,9881 <2.2e-16

3C bill: moderate trading 0,98847 <2.2e-16

3C bill: intensive trading 0,98782 <2.2e-16
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Table C.6: Results of the two-sided Wilcoxon test with the Holm procedure to control the family-wise error rate performed on different subsets for figures 1 and 2 of
the main paper.

Figure subset A subset B W p-value

1A self-consumption maximization strategy and prosumers with PV and battery P2P trading strategy prosumers with PV and battery 867091 <2.2e-16

1A self-consumption maximization strategy and prosumers with PV P2P trading strategy prosumers with PV 854860 <2.2e-16

1A self-consumption maximization strategy and traditional consumers P2P trading strategy traditional consumers 999817 <2.2e-16

1C self-consumption maximization strategy P2P trading strategy 8996625 <2.2e-16

2B self-consumption maximization strategy and Winter P2P trading strategy and Winter 1.7494e+10 <2.2e-16

2B self-consumption maximization strategy and Fall P2P trading strategy and Fall 3,7E+09 <2.2e-16

2B self-consumption maximization strategy and Summer P2P trading strategy and Summer 2E+09 <2.2e-16

2B self-consumption maximization strategy and Spring P2P trading strategy and Spring 7,8E+08 <2.2e-16

2C self-consumption maximization strategy P2P trading strategy 4029705 <2.3812e-16

2D self-consumption maximization strategy P2P trading strategy 5036670 <1.249e-15
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Table C.7: Results of the two-sided Kruskal-Wallis test performed on different subsets for figure 3
of the main paper.

Figure variable in function of χ2 df p-value

3B Self-consumption trading 617,66 2 <2.2e-16

3B autarky trading 2012,9 2 <2.2e-16

3B Bill trading 19,56 2 5.656e-5

3C Self-consumption trading 4349,7 2 <2.2e-16

3C autarky trading 12060 2 <2.2e-16

3C Bill trading 811,36 2 <2.2e-16
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Appendix D

Supplementary Information -
National level

D.1 The energy market

D.1.1 The European energy market

Electricity generation and consumption must be equal at all times in order to pre-
serve a balanced grid. When deviations appear, the grid frequency is affected, and
large frequency deviations can lead to grid instabilities and blackouts (van der Veen
and Hakvoort 2016).

The European wholesale electricity market counts with two features, self-dispatch
and balancing responsibility, that help obtain a balanced grid (Lago et al. 2021).
The self-dispatch obliges market participants to submit projected generation and
consumption schedules ahead of time, while making their own decisions regarding
the electricity dispatch, contrary to the case where a system operator makes the
dispatch decision in a centralized way (e.g., in the U.S. (Lago et al. 2021)). On the
other hand, balancing responsibility puts a financial responsibility to the market
participants for deviations from their schedules, to cover the cost of grid imbalances.

To adjust their schedules and avoid the financial responsibility for deviations,
market participants can trade in three different markets. The forward market al-
lows to trade electricity from weeks to months in advance. The day-ahead market
allows trade of electricity up to 24-h in advance. Finally, the intraday market,
the most liquid market, running 24/7, allows electricity trading up to 0-minutes
before delivery time and with contracts of 1-h, 30-minute and 15-minute. Due to
unplanned outages and the uncertainty of electricity generation and consumption,
imbalances are still possible. To ensure real-time balancing, the balancing market
was conceived.

The European balancing market

The balancing market is the institutional arrangement that establishes market-based
balance management in an unbundled electricity market (van der Veen and Hakvoort
2016). Where balancing is defined as all actions and processes, on all timelines,
through which Transmission System Operators (TSOs) ensure, in a continuous way,
to maintain the system frequency within a predefined stability range (ENTSO-E
2014).
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Each TSO is responsible for the real-time balance in its control area. Balancing
markets, separated into balancing capacity markets and balancing energy markets,
allow TSOs to procure the resources needed to balance the system. In balancing
capacity markets, contracted Balancing Service Providers (BSPs) are paid an avail-
ability payment (Meeus 2020). Contracting is done one year ahead up to one day
ahead of delivery in order to make sure of real-time balancing energy availability.
The BSPs contracted in the balancing capacity market then offer their balancing
energy in the balancing energy markets (Meeus 2020). The volume of activated
energy depends on real-time imbalances. The capacity markets are mainly national
or regional and only some aspects have an European reach.

Europe counts with five synchronous areas, in these areas the use of primary,
secondary and tertiary frequency control used to be recurrent, however, the defini-
tions were not aligned. In 2017, the System Operation Guideline and the Electricity
Balancing Guideline introduced a new terminology of standard energy balancing
products per balancing process to facilitate the sharing of balancing energy across
borders at the European level (Meeus 2020).

Real-time imbalances between electricity generation and consumption are mea-
sured by the deviation of the nominal system frequency (50 Hz in Europe). To
restore the balance in the power system three processes are triggered. However,
before giving way to the three processes, the rotational masses of synchronous gen-
erators (system inertia) counteract imbalances by repressing the rate of change of
frequency. This inertia in future the power system will be smaller due to the in-
creasing amount of (asynchronous) renewable plants, which reduces grid stability
(Motte-Cortés and Eising 2019; Bovera et al. 2021).

The first and fastest process is the regulation process, that contains the frequency
containment reserves (FCR, equivalent to primary control), that makes part of the
frequency containment process (Meeus 2020). A solidarity mechanism is in place to
reduce the amount of FCR procurement in each country and the FCR procurement
is done per synchronous area (Meeus 2020). The FCR is a service that starts within
30 seconds and spans over 15 minutes, combines upward and downward balancing,
and is remunerated only for its capacity availability.

The second process is the frequency restoration process, which is divided into au-
tomatic frequency restoration reserves (aFRR, equivalent to secondary control), and
manual frequency restoration reserves (mFRR, equivalent to fast tertiary control).
This response is organized in the load frequency control (LFC) area. In general,
LFC area is the same than the TSOs’ control area (Meeus 2020). In the future it is
expected that TSO operate jointly across a synchronous area. This process starts
after the frequency containment process, to relieve FCR, and is used to restore the
frequency within a predefined time. aFRR are usually provided by synchronous units
or units with a fast response, to follow TSO’s request within one minute. mFRR
relieves aFRR, and has two standard products, that differ in the activation mode,
a scheduled activation that can only be activated at one point in time, and a direct
mFRR that can be activated at any point of time following the point of scheduled
activation of the quarter hour for which the bid is submitted and until the point of
scheduled activation of the subsequent quarter hour. Both aFRR and mFRR are
separated into upward and downward balancing, and are remunerated per available
capacity and energy balancing.

The final process is the reserve replacement process, which is the slowest one and
can need 30 minutes to be fully activated. The standard product can be activated
during periods multiples of a quarter hour and is done manually and according to a
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schedule.

D.1.2 Imbalance settlement

Market parties have a balance responsibility. Balance responsible parties (BRPs) are
market participants that are financially responsible for keeping supply and demand
within their portfolio in balance. In case of imbalances, they have to be settled with
the TSO. An imbalance is a deviation between generation, consumption and com-
mercial transactions of a BRP within a given imbalance settlement period. There
are two types of imbalance, deterministic and uncertain. The former arises when it
is not possible to match the contract length in the energy market with instantaneous
changes in demand and supply. Whereas the latter is inherent to the uncertainty of
demand and supply forecasting (e.g., errors in forecasting and plant shut downs).
Imbalances can be positive and negative. A positive imbalance is a situation in
which BRPs demand unexpectedly exceeds electricity generation causing a need for
additional supply, and viceversa for the negative imbalance.

The imbalance settlement is the process of allocating cost to market actors that
caused the imbalances, and thus, it aims to charge (or pay) BRPs for their imbal-
ances during an imbalance settlement period (from 15-minute to 1-h depending on
the country). It aims at recovering the costs of balancing the system and include
incentives for the market to reduce imbalances while transferring the financial risk
of imbalances to BRPs.

D.2 Models

D.2.1 PV-coupled battery system

We analyze the techno-economic implications of adding a battery system to a new
PV system that would otherwise be installed on its own (we hereby disregard all costs
related to the PV system). We assume a DC-coupled configuration illustrated in
Figure D.1, including an integrated inverter with a buck-boost charge controller (i.e.,
a step-up and step-down converter combined), a maximum power point tracking sys-
tem and a bi-directional inverter (required to charge a battery from the main grid).
An inverter loading ratio (i.e., the ratio between the inverter rating and the PV rat-
ing, referred to as ILR) of 1.2 is considered for this study (Burger and Rüther 2006).
We simulate Lithium Nickel Manganese Cobalt Oxide (NMC) batteries since this
technology is currently dominating the residential market. Following a conservative
approach, we consider relatively high installation costs for the battery and inverter,
equal to 2000 USD, regardless their nominal capacity (Baumann and Baumgartner
2017). We assume that NMC batteries can use 100% of depth of discharge (DoD)
(ITP Renewables 2016) and can be charged or discharged in 2.5 h (i.e., a C-rate of
0.4*C, where C is the nominal capacity of the battery). Moreover, we consider the
battery to reach the end-of-life (EoL) when 30% of the nominal capacity is depleted
(Pena-Bello, Barbour, Gonzalez, Patel, et al. 2019). The techno-economic values for
the PV-coupled battery system used in this study are displayed in Table D.1.
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Figure D.1: DC-coupled PV-battery system with integrated inverter used in this study. Arrows
indicate the direction of possible energy flows between the individual components.

Table D.1: Values selected for the technical and economic assessment of PV-coupled battery sys-
tems. The cycle aging factor is given for a 100% depth-of-discharge.

Component Units Value Reference

Charge controller efficiency % 98 Energy 2017

Inverter efficiency % 94 Energy 2017

Bi-directional inverter cost USD/kW 600 Ardani et al. 2017

Bi-directional inverter lifetime years 15 Fu et al. 2017

Balance of plant cost USD/kW 100 Pena-Bello, Burer, et al. 2017

Installation costs USD 2000 Baumann and Baumgartner 2017

O&M USD/kW 0 Tesla 2015

Discount factor % p.a. 4 Stephan et al. 2016

End of life (EoL) % 70 Käbitz et al. 2013

ILR p.u. 1.2 Burger and Rüther 2006

Cycles at a given depth of discharge - 5000 @ 100% Tesla 2015

Battery lifetime Years 15 Tesla 2015

Battery roundtrip efficiency % 91.8 Tesla 2015

Battery Energy costs USD/nominal kWh 410 Tesla 2015

Maximum charge/discharge rate kW 0.4*C Tesla 2015

∆SOC % 100 ITP Renewables 2016

Maximum SOC % 100 ITP Renewables 2016

Minimum SOC % 0 ITP Renewables 2016

Cycle aging factor per cycle 0.00042 Based on Truong et al. 2016

Calendar aging factor per day 0.00038 Based on Truong et al. 2016
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(b) Battery lifetime.

Figure D.2: Boxplots (N=636) of EFC and lifetime of residential batteries depending on the share
of the battery dedicated to frequency control. The median value for each boxplot is indicated in
the figure

D.3 Results

D.3.1 BASOPRA

Figs. D.2a and D.2b show the equivalent full cycles and the battery lifetime depend-
ing on the share of the battery capacity dedicated to frequency control. Note that
the amount of EFC doubles when going from zero to 25% of the battery capacity is
dedicated to frequency control, which reduces the median battery lifetime from 13
years to 9 years.

D.3.2 Monte Carlo simulation

To validate the Monte Carlo simulation, we compare the results for automatic and
manual restoration reserve from the model to the real data from 2020 extracted
from Swissgrid in Table D.3. The total activated reserves in 2020 were 311.15
GWh upwards and -340.88 GWh downwards according to Swissgrid, whereas for
the modeled activated reserves were 307.45 and -356.88 GWh, respectively (average
of ten simulations).

D.3.3 Linear Model

To validate the linear model, we compare the results for automatic and manual from
the model to the real data from 2020 extracted from Swissgrid in Table D.4. Figure
D.4 shows the comparison of the modeled and real data of prices for aFRR and
mFRR in each direction.
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Figure D.3: Boxplots (N=636) of power flow (i.e., the maximum between the import and export
power) of PV-coupled battery systems depending on the share of the battery dedicated to frequency
control. The median value for each boxplot is indicated in the figure

Table D.2: Descriptive statistics of frequency control associated value per share of dedicated battery
and direction

Share of battery Direction Min 1Q Median Mean 3Q Max

25% Upwards 16.2 136.3 191.6 207 258.2 560.7

25% Downwards 8.81 65.88 91.4 98 122.45 254.8

50% Upwards 31.79 278.86 390.56 421.93 532.86 1137.7

50% Downwards 17.98 143.16 200.63 215.24 269.35 560.23

75% Upwards 48.56 392.54 549.66 591.15 740.13 15558.74

75% Downwards 27.9 207.6 287.5 307.8 385.9 842.1
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Table D.3: Descriptive statistics of the reported and the modeled regulating power price, for the
year 2020. Data in MWh except for the column Sum where data is in GWh.

mean std min 25% 50% 75% max sum [GWh]

Real aFRR+ 16.6 23.7 0.0 1.9 6.8 21.9 256.9 145.7

Modeled aFRR+ 17.5 15.5 0.0 9.0 13.5 20.0 156.5 153.7

Real aFRR- -18.7 23.5 -232.1 -26.4 -9.5 -2.5 0.0 -163.9

Modeled aFRR- -20.4 19.4 -212.4 -23.0 -15.1 -9.8 0.0 -178.4

Real mFRR+ 22.7 57.1 0.0 0.0 0.0 14.3 788.0 198.8

Modeled mFRR+ 17.5 15.5 0.0 9.0 13.5 20.0 156.5 153.7

Real aFRR- -21.0 48.0 -889.8 -16.3 0.0 0.0 0.0 -183.9

Modeled mFRR- -20.4 19.4 -212.4 -23.0 -15.1 -9.8 0.0 -178.4

Table D.4: Descriptive statistics of the reported and the modeled imbalance prices, for the year
2020. Data in Eur/MWh.

mean std min 25% 50% 75% max sum

Real avg price aFRR+ 42.6 15.6 13.8 32.6 42.2 51.6 147.0 373.0

Modeled avg price aFRR+ 43.9 15.4 -53.5 34.3 44.6 52.9 140.4 384.7

Real avg price aFRR- 26.5 11.2 -68.5 18.5 27.6 33.7 61.4 231.9

Modeled avg price aFRR- 27.1 11.3 -44.2 20.1 27.6 33.7 97.7 237.5

Real avg price mFRR+ 16.3 99.2 0.0 0.0 0.0 12.7 5389.3 142.7

Modeled avg price mFRR+ 1.4 0.1 0.6 1.3 1.4 1.5 2.1 12.1

Real avg price mFRR- 3.7 14.7 -273.6 0.0 0.0 0.0 56.3 32.8

Modeled avg price mFRR- 2.6 2.7 -14.8 0.9 2.8 4.2 19.8 23.1

Real long 17.4 18.1 -477.6 11.0 19.6 25.9 94.8 152.5

Modeled long 2.4 14.8 -301.5 -0.6 -0.6 -0.6 51.2 21.4

Real short 61.8 94.6 -4.5 46.3 57.1 68.2 4681.1 541.4

Modeled short 54.1 106.2 16.3 37.2 48.2 59.0 5929.3 473.7
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Figure D.4: Comparison of regulating power price reported and modeled for the year 2020
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