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Résumé

L’objectif de ce bref résumé est de mettre en valeur un certain nombre de
résultats que j’ai obtenu durant mon travail de thèse. Ce dernier n‘a pas voca-
tion à être exhaustif, pour plus de détails nous renvoyons le lecteur au chapitre
correspondant.

La réversibilité en mécanique quantique

L’émergence de l’irréversibilité dans les systèmes chaotiques classiques est re-
liée à la propriété dynamique de mélange et à la notion de "coarse-graining"
associée aux limitations de la résolution expérimentale. Ce mécanisme est ex-
trêmement réduit dans le cadre d’un traitement quantique. Cette limitation est
principalement due à une efficacité plus faible de la propriété de mélange et au
principe d’incertitude d’Heisenberg qui diminue le "coarse-graining".

En fait, il a même été montré par Shepelyansky [1], qu’il était possible d’obte-
nir une dynamique quantique quasiment parfaitement réversible, alors que l’équi-
valent classique est strictement irréversible. Cette irréversibilité classique est re-
liée aux erreurs d’arrondi inhérent aux simulations numériques (Voir Figure 1).
Cependant il a été réalisé assez rapidement que la connaissance des conditions
microscopiques qui gouvernent la dynamique quantique n’est pas accessible avec
une précision arbitraire. Par conséquent l’opération de renversion temporelle de
l’Hamiltonien ne peut être effectuée de façon exacte. Il y a donc bien un intérêt
fondamentale à étudier la sensibilité de la dynamique quantique par rapport à
une perturbation de l’Hamiltonien.

Ce constat remonte au travail fondateur de Peres [2]. La quantité fondamentale
de cette approche est l’écho de Loschmidt également dénommé la Fidélité,

ML(t) = |〈ψ0| exp[iHt] exp[−iH0t]|ψ0〉|2 (1)

avec laquelle on reconstruit, à un temps donner, un paquet d’onde étroit |ψ0〉 après
avoir inverser la dynamique à l’aide d’un Hamiltonien perturbé H = H0 +Σ . (on
pose ~ ≡ 1). La Fidélité quantifie la sensibilité de l’opération de renversement
du temps envers l’incertitude relative à l’Hamiltonien. Il s‘agit donc bien d’une
mesure de l’ irréversibilité quantique.
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Fig. 1: Dépendance temporelle de l’énergie de l’application standard suite à une inver-
sion temporelle. La ligne droite montre clairement l’irréversibilité de la diffusion clas-
sique. Ceci contraste pleinement avec l’évolution complètement réversible de la version
quantique Figure adaptée de Shepelyansky [1].

La notion de Fidélité apparaît assez naturellement dans le contexte de la
décohérence [3, 4] de système, possédant peu de degrés de liberté, couplé à un
environnement qui possède un grand nombre de degrés de liberté. Brièvement ,
la présence de la perturbation Σ dans la propagation du retour, permet de tenir
compte de l’effet du couplage avec l’environnement. Cette idée initialement déve-
loppée par Jalabert and Pastawski [5] a suscité un grand intérêt théorique [6–16],
pour une revue nous conseillons [17]. La source de cet intérêt était la prédiction
dans [5] d’un régime de perturbation où le comportement de la fidélité était prin-
cipalement gouverné par l’exposant de Lyapunov du systèmeML(t) ' exp[−λt].
Les limites de validité de ce régime ont été clarifiées par [6]. Ils démontrèrent
que la décroissance de la fidélité en fonction du temps est soit Gaussienne soit
exponentielle. Le régime Gaussien domine si la force de la perturbation est suffi-
samment faible. Lorsque la perturbation devient plus conséquente, la décroissance
devient exponentielle. Pour des perturbations pas excessivement élevée le taux
est donné par la règle d’or de Fermi, jusqu’à ce que cette dernière dépasse la
valeur de l’exposant de Lyapunov du système.

La plupart des recherches précédemment citées sont restreintes à l’étude des
propriétés moyennes de la fidélité. La moyenne s’effectue soit sur les conditions
initiales soit sur un ensemble d’Hamiltoniens non perturbés ou un ensemble de
perturbations. Cependant les fluctuations d’une quantité physique contiennent
souvent plus d’informations que leurs moyennes. Pour conséquence, en suivant
une procédure similaire à l’approche semiclassique développée dans [5], nous avons
déterminé la variance de la fidélité σ2 [ML(t)] [18]. Nous avons montré que la
variance possède un comportement plus riche que sa moyenne. En particulier cette
dernière augmente de façon algébrique jusqu’à un temps critique tc après lequel
elle décroît. Cette décroissance est donnée, à l’ordre semiclassique dominant, par
la somme d’un terme classique relié à l’exposant de Lyapunov classique λ, un
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terme quantique relié à la règle d’or de Fermi Γ et un terme mixte

σ2 [ML(t)] ' α2(t)e−2λt +
2

N
e−Γt ΘτE(t) + 2α(t)e−(λ+Γ)t (2)

La comparaison de ce comportement avec celui de la fidélité moyenne, nous au-
torise à extraire l’exposant de Lyapunov dans une gamme de paramètres plus
large. En effet, de façon similaire à la fidélité moyenne, l’exposant de Lyapunov
peut s’obtient si on augmente de façon suffisante la perturbation afin d’atteindre
le régime Γ ≥ λ. Cependant contrairement à la moyenne, il est encore possible
d’obtenir l’exposant de Lyapunov pour le régime Γ ≤ λ. En effet pour des temps
plus cours que le temps Ehrenfest τE = λ−1 ln [N−1], le comportement de la va-
riance est contrôlée par le terme mixte (Troisième terme de Eq. (1.34))

Nos résultas sont confirmés par des simulations numériques, présentées à la
Figure 2. Dans la Figure 2a nous présentons la variance σ2 [ML] de la Fidélité
en fonction du temps, dans le régime de perturbation faible Γ� λ. Cette simu-
lation numérique illustre clairement, l’augmentation initiale de la variance suivie
par la décroissance exponentielle prévue par le second terme de Eq. (2). Nous
précisons ici qu’aucun paramètre d’ajustement n’a été utilisé, ceci apporte une
confirmation numérique importante concernant la validité du préfacteur N−1. La
Figure 2b illustre clairement la transition du régime quantique au régime classique
de saturation Lyapunov λ� Γ.

Ce travail sera discuté en détails au chapitre 2 et est publié dans [114].

Fig. 2: (a) Variance σ2 [ML] de la Fidélité en fonction du temps pour une perturbation
faible conduisant au régime FGR (Γ� λ). Les lignes fines correspondent aux prédictions
théoriques. (b) Variance σ2 [ML]de la Fidélité en fonction du temps dans le régime
Lyapunov (λ � Γ). La ligne solide indique la décroissance Lyapunov et fournit ainsi
une preuve numérique de l’existence de la saturation Lyapunov. (Pour plus de détails
voir chapitre 2)
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Le liens entre irréversibilité et décohérence, ne fut pas uniquement réservé
aux seuls plaisirs des théoriciens , mais fut également très prolifique au niveau
expérimental. En effet les expériences d’écho abondent en résonance magnétique
nucléaire (NMR) [19–21] (Echo de spin), en optique [22] (Echo de photon), dans
les réseaux optique [23] (Echo de paquet d’onde en mouvement) et en matière
condensée [25] (Echo de charge). Fondamentalement toutes ces expériences sont
basées sur le même principe ; qui consiste à effectuer un changement effectif de
la dynamique Hamiltoniènne par le jeux de changement d’axes [21]. De manière
assez surprenante, il est apparue que l’approche théorique basée sur l’écho de Lo-
schmidt était incapable d’interpréter un certain nombre de résultats expérimen-
taux. L’exemple le plus frappant est la décroissance gaussienne indépendante de
la perturbation trouvée en NMR [26], voir Figure 3. Les résultats reportés ici ont
été réalisé dans un cristal de ferrocene. Au sein de ces systèmes, la perturbation
peut être contrôlée par les expérimentateurs. La Figure 3 présente l’atténuation
de l’écho de polarisation en fonction du temps de refocalisation. Le résultat remar-
quable qui peut être observé dans cette dernière est que l’atténuation sature pour
des perturbations Σ faibles. Ce comportement n‘est pas prédit par la théorie de
l’écho de Loschmidt, en effet dans cette dernière une décroissance indépendante
de la perturbation est uniquement prévue pour une perturbation suffisamment
forte.

Fig. 3: Atténuation de l’écho de polarisation en fonction du temps de refocalisation dans
un système de Ferrocene, pour différentes valeurs de la perturbation. La ligne solide
représente la régression gaussienne et montre l’ indépendance du taux de décroissance
envers la perturbation ; adaptée de H.M. Pastawski et al. [26].

Lorsque nous nous sommes attaqué au problème, nous avons réalisé que l’en-
vironnement devait être traité avec précaution. En pratique, dans une expérience
d’écho, seulement une inversion temporelle imparfaite est réalisée sur un sous-
ensemble restreint de degrés de liberté. Dans le but de capturer l’essentiel de la
physique présente dans ce type d’expérience, nous avons développé la notion de
Fidélité partielle,

MB(t) =
〈
ψ1

∣∣Tr2

[
e−iHbte−iHf tρ0e

iHf teiHbt
] ∣∣ψ1

〉
, (3)
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où seulement une partie des degrés de liberté du système sont renversés par
rapport au temps. (L’Hamiltonien lié à la propagation avancée Hf et celui lié a
la propagation retardée ne diffèrent que par une renversion temporelle partielle
du système) Nous avons dénommé ce dernier "l’écho de Botzmann" MB(t). Le
Chapitre 3 est consacré à cet objet et nos résultats sont publiés dans [27].

Fig. 4: Graphe principal : Echo de Boltzmann en fonction du temps pour une pertur-
bation fixée mais pour différentes valeurs de la force du couplage avec l’environnement.
Les ligne continues correspondent de droite à gauche à une augmentation de l ’intensité
du couplage. Les lignes pointillées donnent la décroissance exponentielle théorique, ces
derrières sont en bon accord avec les numériques . Encart :MB pour un couplage donné
et différentes petites perturbations. La ligne pointillée indique la prédiction théorique
qui est indépendante du couplage. (Pour plus de détails voir chapitre 3)

Nous avons présenté un calcul semiclassique et montré que même si l’opéra-
tion de renversion temporelle est effectuée aves de plus en plus de précisions, le
taux de décroissance sature à une valeur déterminée par le couplage avec l’en-
vironnement. Lorsque la perturbation expérimentalement contrôlable est réduite
l’écho de Boltzmann est donné par

MB(t) ' exp[−(Γf + Γb)t] (4)

où Γf,v est la dispersion de la règle d’or de Fermi induite par les couplages avec
l’environnement. Nous avons confirmé nos résultas numériques par des simula-
tions (voir Figure 4). Le Graphe principal démontre clairement la décroissance
exponentielle de l’écho de Boltzman et sa forte dépendance envers le couplage. De
plus, l’encart illustre la situation des faibles perturbations où la décroissance est
seulement déterminée par le couplage. Enfin, nous montrons que pour de faibles
interactions l’écho de Boltzman atteint un régime Gaussien indépendant de la
perturbation

MB(t) ' exp[−(U2
f + U2

b) t2/2]. (5)
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Ceci pourrait bien être l’explication de la décroissance indépendante de la per-
turbation de l’écho de polarisation observée en NMR [26].

Abandonnant de façon temporaire, la notion de décohérence, nous avons été
attiré par l’étude de quantité plus proche des besoins expérimentaux. Nos re-
cherches ont été en grande partie motivées par la diffusion de neutrons [28–30], que
nous avons tenté de comprendre de façon plus profonde. Dans ce but , nous avons
introduit un nouvel écho que l’on a baptisé "Echo de déplacement" [31]. [127].

MD (t) =
∣∣ 〈α| e−iPx̂eiĤteiPx̂e−iĤt |α〉 ∣∣2. (6)

Ce dernier est relié aux moyennes d’ensemble des fonctions de corrélation Yjj (P, t)
qui sont présents dans les expériences diffusion de neutron et l’émission/absorption
Mössbauer. Physiquement l’écho de déplacement mesure la décroissance de la fidé-
lité, pour laquelle on reconstruit un paquet d’onde, par une inversion temporelle,
suite à un déplacement P dans l’espace de phase. Dans la limite semiclassique,
nous montrons que le taux de décroissance est généralement donné par l’exposant
de Lyapunov de la dynamique classique. De plus pour des petits déplacements,
nous montrons que la décroissance Lyapunov à temps court, est suivie, en raison
d’effet quantique, par un givre de la décroissance à une valeur bien supérieure à
la valeur ergodique. La moyenne de l’écho de déplacement est,

〈MD(t)〉 ∝
[
α e−λt +

g(|P|L)

(|P|L)2

]
, (7)

où g(|P|L) est une fonction oscillante dont la forme exacte dépend de la dimension
du système.

Nos résultats sont corroborés par des simulations numériques. Figure 5a pré-
sente l’écho de déplacement en fonction du temps et confirme clairement l’exis-
tence de la décroissance Lyapunov. La Figure 1.12b présente la saturation de
l’écho dont la dépendance envers le déplacement est conforme à celle prévue par
le second terme de Eq. (7).

Ces aspects seront traités avec plus de détails au chapitre 4 et sont publiés
dans [127]. Nos résultats sont actuellement testés expérimentalement sur des sys-
tèmes de pièges à atomes froids dans le laboratoire du Mara Prentiss de l’ uni-
versité d’Harvard [32].
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Fig. 5: (a) Echo de déplacement en fonction du temps. Les lignes pointillées corres-
pondent à la décroissance Lyapunov prédite théoriquement . Ces dernières sont en
accord avec les simulations numériques. (b) Valeur de la saturation de l’écho de dépla-
cement. La ligne rouge pointillée indique la prédiction théorique. (Pour plus de détails
voir chapitre 4)

Intrication et décohérence

Bien que les mesures d’écho quantifient la sensibilité des trajectoires quan-
tiques par rapport à une variation d’un paramètre de contrôle extérieur, un écho
n’est pas intrinsèquement une mesure directe de la décohérence. La décohérence
est principalement due aux interactions avec l’environnement, aucune opération
de renversion par rapport au temps n‘est requise. La question fondamentale à
laquelle on doit répondre concerne la notion d’interaction entre deux systèmes
quantiques. Le traitement de l’interaction au niveau quantique n’est pas une tache
facile. Si nous citons E. Schrödinger [33],

When two systems (. . . ) enter into temporary interaction (. . . ),
and when after a time of mutual influence the systems separate again,
then they can no longer be described in the same way as before, viz.
by endowing each of them with a representative of its own. 1

Ceci définit la notion de corrélations quantiques entre systèmes, habituellement
nommée intrication.

Dans le cadre de la décohérence, l’analyse des corrélations quantiques entre un
système et un environnement est fondamentale. Nous nous sommes donc plongés
dans l’étude des propriétés d’intrication d’un système de deux particules en in-
teraction. Ces propriétés sont mesurées par la matrice de densité réduite, obtenue
en traçant sur les degrés de liberté d’une des deux particules. Si nous numéro-

1Lorsque deux systèmes (. . . ) entrent temporairement en interaction (. . . ), et lorsque après
une durée d’influences mutuelles les systèmes se séparent de nouveau, ils ne peuvent plus être
décrit de la même manière que précédemment, c.a.d par la simple donnée de leur représentation
propre
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Fig. 6: Deux études numériques sur la génération l’intrication dans un système chao-
tique. (a) représente le taux d’intrication linéaire d’un "kicked top" couplé en fonction
du paramètre de mesure du chaos ; adaptée de Miller and Sarkar [35] ; (b) représente
le taux de production d’intrication d’un "kicked top" couplé en fonction du paramètre
de mesure du chaos ; adaptée de A. Tanaka et al. [36]. La dépendance linéaire trouvée
par [35] semble contredire l’ indépendance obtenue par [36]. Cette apparente contradic-
tion est bien expliquée par l’existence de deux régimes d’intrication [37,38].

tons chaque particule et nommons la matrice densité du système complet η(t).
La matrice réduite relative à la première particule indexée 0 est donnée par,

η0(t) = Tr1 [η(t)] . (8)

Si cette matrice de densité réduite représente un état mélangé, les particules sont
intriquées. Une bonne mesure du degré d’intrication est habituellement fournie
par l’entropie de Von Neumann.

S (η0) = −Tr [η0 ln (η0)] . (9)

Néanmoins d’un point de vue technique, il est plus commode de calculer la trace
du carré de la matrice densité réduite [4],

P(t) = Tr0

[
η2

0(t)
]
. (10)

Cette quantité est communément appelée Pureté P(t). La pureté et l’entropie
linéaire Slin (η1) = 1 − P(t) qui lui est associée, ont l’avantage d’ être calculable
analytiquement et sont reliées à l’écho de Loschmidt [34]. De plus, puisque nous
considérons uniquement des états globalement purs, l‘entropie linéaire et de Von
Neumann se comportent de la même façon.
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Dans le cadre restreint du chaos quantique, la question de l’origine de la
production de l’intrication au sein d’un système dynamique, fut un sujet assez
controversé. En effet les premières tentatives de détermination du taux d’intrica-
tion ont été numériques. Dans un premier temps Miller et Sarkar [35] ont fourni
des preuves numériques très convaincantes que l’intrication était renforcée par la
présence du chaos et même déterminée par l’exposant de Lyapunov (Voir Figure
6). Cependant ces résultats furent remis en question par Tanaka et al. [36] , dont
les travaux numériques montrèrent aucune augmentation de l’intrication due à
la présence du chaos (Voir Figure 6). La Figure 6a présente le taux moyen d’in-
trication linéaire, obtenue par Miller et Sarkar pour un système de deux "kick
tops quantiques " couplés. La dépendance linéaire du taux d’intrication envers
l’exposant de Lyapunov est clairement illustrée. La Figure 6b présente des ré-
sultats numériques obtenus par Tanaka et al. sur le même système. Ici pour un
chaos suffisamment fort le tau d’intrication sature à une valeur indépendante
du paramètre de mesure du chaos. Il est crucial de comprendre que bien que
les deux simulations ont été effectuées sur le même système, elle ont été réalisé
dans deux régimes différents ; un chaos faible (petit exposant de lyapunov mais
encore strictement positif) pour Miller et Sarkar et un chaos fort pour Tanaka
et al.. Sur la base de notre expérience du semiclassique [37], nous avons résolu
cette apparente contradiction et étudié la transition quantique-classique dans ce
type de système [38]. Ceci sera traité au chapitre 5. Nous avons montré comment
une interaction, qui s‘annule dans la limite classique, génère de l’intrication entre
deux particules initialement non intriquées, sans influencer leurs dynamiques clas-
siques. Pour des dynamiques chaotiques, le taux d’intrication sature au niveau
de l’exposant de Lyapunov du système lorsque que l’on augmente la force de
l’interaction. La décroissance de la pureté est donnée par

P(t) = e−2Γ01t + α0(t)e−λ0t + α1(t)e−λ1t (11)

Si on se limite à l’intrication entre particules (λ0 = λ1) ou si on considère
que la particule 1 joue le rôle de l’environnement (λ1 � 1), Eq.( 11) distingue 2
régimes de décroissance exponentielle pour la pureté :

1. Le régime de la règle d’or de Fermi, P(t) ∝ e−2Γ01t, si Γ01 ≤ λ0. Il correspond
à un régime purement quantique généré par le couplage entre les deux
particules.

2. La décroissance exponentielle liée à l’exposant de Lyapunov du système,
P(t) ∝ e−λ0t, si λ0 ≤ Γ01. Il correspond à un régime purement classique
généré par la dynamique classique du système.

Nous avons confirmé numériquement l’existence de ces deux régimes. La Figure 7
présente la Pureté obtenue pour un système de deux "kick rotors" couplé. La
Figure 7a présente le régime à fort couplage dans lequel le régime Lyapunov est
atteint. Ces numériques correspondent à ceux obtenus par Miller et Sarkar. La
Figure 7b considère le régime de faible couplage en comparaison au chaos, et
confirme clairement l’existence d’un régime quantique. Ce dernier correspond à
celui étudié par Tanaka.
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Fig. 7: (a) Graphe principal : La Pureté de la matrice densité réduite dans le régime de
Lyapunov de couplage fort, l’axe des temps a ete rééchelonné par l’exposent de lyapunov
du système. Encart : La Pureté de la matrice densité réduite en fonction du temps,
lorsque l’on augmente la force du couplage. (b) La Pureté de la matrice densité réduite
dans le régime FGR (Γ01 ≤ λ0 )l’axe des temps a ete rééchelonné par la dispersion de
la règle d’or de Fermi. ( Pour plus de details vois chapitre 5)

Finalement dans le régime de saturation Lyapunov, la fonction de Wigner à
une particule suit la dynamique classique de plus de plus précisément dès que l’on
rentre de plus en plus profondément dans le régime semiclassique. Ceci démontre
que le principe de correspondance quantique-classique ne requière au niveau mi-
croscopique aucune limite haute température, ni la présence d’un couplage avec
un large nombre de dégrés de liberté extérieur. La Figure. 8 présente l’évolution
temporelle d’une distribution classique (en haut à gauche), et trois évolutions
dans l’espace de phase de la fonction de Wigner à une particule : (i) (en haut
à droite) pour le système libre ; (ii) and (iii) (en bas gauche et droite) pour un
système couplé dans le régime Lyapunov. En bas de gauche à droite, on entre de
plus en plus profondément dans la limite semiclassique. La distribution classique
et la fonction de Wigner se correspondent de mieux en mieux dans cette limite.
(On note qu’il ne faut point considérer 4 réplications fantômes due à la procédure
numérique utilisée (voir chapitre 5) .

Nous sommes actuellement en train de généralisée cette procédure au cas de
l’intrication à plusieurs particules. Cette extension est basée sur la concurrence
généralisé développée par Mintert et al. [39].
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Fig. 8: Representation de l‘espace de phase pour une distribution classique (en haut à
gauche), la distribution quantique de Wigner non couplée (en haut à droite) et couplée
(en bas gauche et droite), avec une augmentation de la limite semiclassique de gauche
et droite. (Pour plus de détails voir chapitre 5)

Transport quantique et déphasage

Nous avons appliqué les connaissances acquises lors de nos investigations sur
la décohérence, au problème plus pratique du transport quantique dans les sys-
tèmes mésoscopiques. En effet ce domaine possède de nombreux phénomènes,
comme la localisation faible [46, 47] ou les fluctuations universelles de conduc-
tances (UCF) [48,49]. Ces dernières représentent une des manifestations les plus
spectaculaires de la cohérence quantique. Il reste encore difficile à accéder expéri-
mentalement à l’effet du déphasage sur le transport à travers ce type de systèmes.
Cependant le transport mésoscopique a l’avantage de permettre une étude expé-
rimentale de ces phénomènes.

D’un point de vue théorique, les méthodes semiclassique ont été très rapide-
ment employées [41–43] et ont montrées un pouvoir prédictif certains. Effective-
ment, lorsque le mouvement des électrons est balistique et chaotique, les proprié-
tés de transport sont bien décrites par la théorie des matrices aléatoires (RMT).
Cependant suite au travaux fondateurs de Aleiner et Larking [40] une nouvelle
échelle de temps doit être considérée, le temps d’Ehrenfest τE. Le temps d’Ehren-
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fest correspond au temps durant lequel un paquet d’onde bien localisé (largeur
∝ λF) se disperse jusqu’à atteindre une échelle de longueur macroscopique (L) ;
τE ∝ λ−1 ln [L/λF].

Dès que τE devient un paramètre essentiel, cette universalité est brisée. Dans
ces conditions la théorie des matrices aléatoire cesse de décrire correctement les
propriétés de transport. (Voir Figures 9).

Fig. 9: L’abscisse correspond à l’axe chaotique de retour au domaine classique. Pour
un temps d’Ehrenfest τE plus grand que le temps de séjours dans la cavité τD, des
corrections non universelles doivent être pris en compte. L’ordonnée correspond à la
transition quantique-classique reliée déphasage. Ce diagramme présente quatre régimes.
Le régime purement quantique (secteur en haut à gauche) bien décrit par la RMT et les
méthodes semiclassique, le régime non universel quantique (secteur en haut à droite)
bien décrit par l’approche semiclassique et quasiclassique [40], le régime de décohérence
universelle (secteur en bas à gauche) obtenu via le traitement RMT où semiclassique
de modèle plus ou moins phénoménologique, et enfin le domaine non universel classique
(secteur en bas à droite) qui constitue l’objet de la Partie V de cette thèse.

Il est important de réaliser que si le temps de déphasage τφ est l’échelle de
temps après laquelle les interférences quantique disparaissent, le temps d’Ehren-
fest τE est une nouvelle échelle qui gouverne leurs apparitions. Dun coté l’étude de
la disparition des effets quantique lié à l’omniprésence du déphasage a été entre-
prise principalement à l’aide de modèles plus où moins phénoménologiques [50,51].
De l’autre coté l’influence d’un temps d’Ehrenfest fini a été maintenant largement
étudiée [42, 43] et à clairement confirmé la brisure de l’universalité quantique.

Cepandant, exception faite du travail de Aleiner et Larking [40], l’étude de la
compétition entre le temps d’Ehrenfest et le temps de déphasage n’a pas été très
développé. Une telle recherche est fondamentale car chacune de ces échelles de
temps détermine une manière particulière d’atteindre le domaine classique.

Le chapitre 6 de cette thèse se concentre sur l’analyse semiclassique du dé-
phasage sur le transport quantique au travers de cavité chaotique avec un temps
d’Ehrenfest fini. Ceci nous a permi d’aborder la transition du domaine purement
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quantique (secteur en haut à gauche de la Figure 9) au domaine non universel
classique (secteur en bas à droitede la Figure 9). Nous avons étudié le déphasage
d’un système balistique ouvert dans la limite où la taille du système est large
comparée à la longueur d’onde de Fermi [45]. A l’aide de théorie basée sur les tra-
jectoires semiclassique [41–43], nous avons premièrement calculé les corrections
de localisation faible pour un point quantique capacitivement couplé à un point
quantique externe et fermé. Dans ce but, nous avons étendu le formalisme stan-
dard développé par Büttiker [50]. Deuxièmement, en s’inspirant du travail effectué
par Whitney [52], nous avons inclus l’effet des barrières tunnel dans la théorie
semiclassique de modèle dit de "dephasing voltage probe". (Pour une définition
du modèle, voir [50,51]). Nous avons trouvé, en plu de la suppression algébrique
universelle reliée au rapport τD/τφ, un facteur de suppression exponentiel de la
localisation faible.

gwl =
gwl

0

1 + τD/τφ
exp[−τ̃ /τφ], (12)

Nous avons fait apparaître que l’échelle de temps typique impliquée τ̃dans
cette suppression dépend du système. Dans le cas du modèle de "dephasing
voltage probe". il coïncide avec le temps d’Ehrenfest τ̃ ∝ τE, ce résultat est à
comparer avec celui obtenu pour le modèle du point quantique externe, dans ce
cas l’échelle de temps dépend de la longueur de corrélation macroscopique du
potentiel de couplageτ̃ ∝ λ−1 ln[L/ξ].

Nous notons qu’un comportement similaire a été récemment obtenu pour les
fluctuations universelles de conductance par Altland, Brouwer and Tian [44].
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CHAPTER 1

Introduction and Summary

Despite decades of investigations, no experiment, nor theoretical calculation has
ever invalidated quantum mechanics. Yet, the world surrounding us is made out
of quantum mechanical building blocks, which inevitably had people wondering
what is the mechanism behind this quantum-classical crossover.

This interpretational quest is as old as quantum theory itself. The source of
the problem is the quantum principle of superposition, which, in effect, exponen-
tially expands the set of available states to all of the conceivable superpositions.
The first explanation of how a single outcome emerges from this multitude of po-
tentialities was proposed by Bohr with the orthodox Copenhagen interpretation
of quantum mechanics. According to the latter, there exists a boundary that
preserves a strict distinction between the classical macroscopic world and the mi-
croscopic quantum realm. The nature of the boundary between the quantum and
the classical was ipso facto only a purely philosophical problem. Moreover the
precise location of this boundary is ill defined. Indeed, at first glance we could
be tempted to place macroscopic objects on the classical side. This classification,
however is immediately invalidated by macroscopic quantum effects. For instance
quantum states associated with the currents of superconducting Josephson junc-
tions involve macroscopic numbers of electrons, but still they can tunnel between
the minima of the effective potential [2]. Despite the argumentation of Bohr
in favor of a mobile boundary, we must admit that this explanation is clearly
insufficient.

The correspondence principle states that in certain classical limits, (large
quantum numbers), quantum theory should reproduce the predictions of classi-
cal theory with vanishing errors. These general arguments can be enriched by
invoking the Ehrenfest theorem, according to which a sufficiently narrow quan-
tum wave packet moves along a classical trajectory. However at sufficiently long
time the quantum evolution of a system that is chaotic in the classical limit will
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1 Introduction and Summary

not be chaotic. This is due to the discreteness of the quantum spectra. Thus the
quantum-classical correspondence is only valid at short times [3–6].

In the 1970’s and 1980’s the question has been revisited with the work of Zeh
and Zurek on decoherence [7–9]. The main idea is the realization that macroscopic
systems are never isolated from their environments. The evolution of a particular
system is thus given by a reduced density matrix obtained after tracing over the
environment degrees of freedom. Time evolution of the reduced density matrix
is no longer unitary, consequently off diagonal terms vanish and thus with them
quantum coherence, as exemplified by the Aharonov-Bohm effect.

In the course of this thesis, my research has been devoted to this quantum to
classical transition, with a particular interest in the behavior of systems in which
the classical limit is non integrable. This particular class of systems defines a field
usually denoted as "Quantum Chaos". This thesis treats the interconnection
between three fundamental aspects of this field. I started by considering the
dynamical properties of chaotic quantum Hamiltonians in the context of quantum
reversibility. These investigations led me to consider the notions of entanglement
and decoherence for such systems. Finally I have started to work on the issue of
dephasing in transport through quantum chaotic systems in the deep semiclassical
limit.

The purpose of this chapter is firstly to introduce the fundamental concepts
around which this thesis orbits. In section 1.1, we briefly summarize today’s
knowledge in the field of quantum chaos, and discuss the quantum-to-classical
crossover induced by decoherence. Since some of the investigations presented in
this thesis pertain to the sub-field of condensed matter physics called "mesoscopic
physics", we close section 1.1 by a short presentation of the mesoscopic regime.
Secondly, in section 1.2 we summarize the main results obtained in this thesis.

1.1 Quantum chaos and decoherence

1.1.1 From classical chaos to quantum chaos

The notion of classical chaos emerged near the end of the 19th century in the
study of astronomical problems. The field takes its root in the pioneering works
of Poincaré [10], that uncovers the possible unstable behavior of the solar sys-
tem. Following Poincaré, chaos was mostly investigated by mathematicians, from
Birkhoff to Kolmogorov. Only the advent of computers, which facilitated the
study of the inherent complexity of such systems, led to a democratization of the
subject. From the first numerical investigation by Lorentz [11], chaos has since
been found to play a role in physics as well as in other disciplines, and to apply to
numerous phenomena from plasma confinement [12] to disease epidemiology [13].

What exactly is chaos ? There exist various references on the subject going
from a mathematical treatise [14] to a more physical description [15]. In order
to get a panorama of the aspects that are of interest to mathematicians and
physicists alike we refer to [16], and for more details to [17] and references therein.
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1.1 Quantum chaos and decoherence

Roughly speaking classical chaos is defined as an exponential sensitivity with
respect to initial conditions, see Fig. 1.1. This property can be quantified as

|δx(t)| ' exp[λt] |δx(0)|, (1.1)

where |δx(0)| is the initial separation between two points in phase space and λ,
the mean rate of separation of trajectories of the system, is called the Lyapunov
exponent.

Figure 1.1: Definition of Lyapunov characteristic exponents; δx(t) is a tangent vector.
(a) Two nearby initial conditions that separate as time evolves. (b) Tangent space of
the Lyapunov exponents λ1, λ2 for a two-dimensional flow.

More precisely we need to compute the quantity

Λ(δx(0), δx(t)) = lim
t→∞

|δx(0)|→0

(
1

t

)
ln
|δx(t)|
|δx(0)|

. (1.2)

Assuming the existence of a 2d dimensional basis {ei} of δx(t), Λ takes one of the
possibly non distinct values λi = Λ(δx(0), ei). (Cf for example Fig. 1.1.) The λi
can be ordered by size and are independent of the choice of the initial conditions
δx(0) [18, 19]. The largest one λ = max(λ1 · · ·λi · · ·λ2d) is commonly called the
Lyapunov exponent.

The opposite extreme to chaos is the integrable regular system, where two
points initially close do not diverge exponentially fast. The difference between
chaotic and regular relies thus on the rate of divergence. An even more rigorous
definition of chaos is provided by the ergodic hierarchy (See [15] for a review).
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1 Introduction and Summary

The latter differentiates between several classes of systems which are :

Ergodic systems : A system is ergodic when its time average and its spa-
tial average can be equated, mathematically this means that the following
condition is satisfied

lim
T→∞

1

T

∫ T

0

dt f (x(t)) =

∫
M

dµ f(x) (1.3)

for any observable f(x) in the d-dimensional phase space M, with the
invariant measure µ.

Mixing systems : A traditional example of a mixing system considers a shaker
containing 20% of orange juice and 80% of vodka. After the liquid has been
shaken sufficiently often, every part of it will contain the same initial ratio
of orange juice and vodka.

In mathematical terms, if we let A and B be two measurable subsets of
phase spaceM and assume that the measure µ [{y ∈ B|y = x(t) andx(0) ∈ A}]
converges to µ (B), the mixing property is defined by the following condition

lim
T→∞

µ [A ∩ x (B(−T ))] = µ [A]µ [B] , (1.4)

where we let x [B(−t)] = {y = x(−t)|x(0) ∈ B}.
We note that mixing presupposes ergodicity.

K-systems : K-systems have a positive KS (Kolmogorov, Krylov, Sinai) en-
tropy [20,21]. This particular entropy is a measure of the degree of chaotic-
ity of the whole system. Intrinsically this is a global property. Follow-
ing [15,16] we will define the KS entropy. At first if we let P and P ′ be two
partitions we define the partition P ∨ P ′ as

P ∨ P ′ = {A ∩B|A ∈ P , B ∈ P ′}.

Now if one is given a partition P(0) = {Ai(0)} of the phase space M, at
time t = 0, and if we evolve each element backward in time, after a unit time
we get a new partition P(−t) = {Ai(−t)}. The elements of P(−t) ∨ P(0)
are typically smaller than any of the Ai(−t). We want to find under which
condition the measure of a typical element of P(−t + 1) ∨ P(−t) decrease
exponentially as t → ∞. This information is contained in the entropy of
the dynamical system. The entropy of a dynamical system with respect to
the partition P(0) and the measure µ is defined by

Hµ (f,P(0)) = − lim
t→∞

1

t

t∑
i=1

µ
[
∨t−1
j=0P(−j)

]
ln
[
µ
[
∨t−1
j=0P(−j)

]]
. (1.5)

The KS entropy is defined as

hµ (f) = sup
P(0)

Hµ (f,P(0)) . (1.6)
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1.1 Quantum chaos and decoherence

The KS entropy is positive if and only if there is an exponential decrease
of the average of the elements of ∨t−1

j=0P(−j). To have positive KS entropy,
a system must be mixing.

Let us note that for closed systems, the KS entropy (going backward in
time) is naturally related to the Lyapunov exponent ( going forward in
time) by Pesin theorem [22] :

hµ (f) =

∫
M

[∑
λi>0

Λ(x, ei)

]
dµ. (1.7)

C-systems : C-systems are determined by the structure of their tangent space.
The latter decomposes into three parts,

• one component space along the trajectory which has a vanishing Lya-
punov exponent,

• one component in which the trajectories diverge exponentially with
a exponent locally bounded from below for all times and all initial
conditions.

• one space in which the trajectories converge exponentially with a ex-
ponent bounded from above for all times and all initial conditions.

Let us note that C-systems have positive KS entropy.

B-systems : Also called Bernoulli systems, in this case at least one observable
is discrete and therefore is more easily defined for maps than flows. This
class of systems is the strongest in the ergodic hierarchy. Without additional
information on where the phase point is or came from, the outcome of the
mapping in B-systems, is essentially random, irrespective of the history of
the dynamics.

This hierarchy is summarized in Fig. 1.2. Chaos sets in at the level of K-
systems, and also includes B and C-systems. All these properties are global and
imply that mixed systems (systems that present regular islands) do not fall into
this classification.

7



1 Introduction and Summary

Figure 1.2: Systems exhibiting random behavior and their relationships : The ergodic
hierarchy.

The quantum description of systems which are chaotic in their classical limit
is the subject of Quantum Chaos [17, 23–28].

Attempts to employ classical concepts in quantum mechanics, are as old as
quantum theory itself. The Bohr-Sommerfeld quantization rule, a precursor of
the modern quantum theory, enters clearly in this category. Integrable systems
are characterized by an invariant manifold related to constants of motion, the
2d−dimensional phase space is then completely stratified into d−dimensional sets
with the topology of a torus. This means that a phase point is determined by a
vector θ consisting of d angles and a d−dimensional action vector I. According
to that a more refined quantization procedure is known as the Einstein-Brillouin-
Keller (EBK) or torus quantization.

In =
1

2π

∮
γ

pdq =
(
nγ +

µγ
4

)
~, (1.8)

where p and q are the canonically conjugate monentum and spacial coordinate. In
is the characteristic actions of the n-torus, µγ the corresponding Maslov indices
and nγ is the good quantum number. The contour integral is computed over
closed trajectories γ on the n-torus.

According to the laws of classical Hamiltonian dynamics, chaotic systems have
more degrees of freedom than the constants of motion. In the simplest case the
only constant of motion is the energy. The destruction of constants of motion
implies the destruction of tori and as a consequence the path of integration in
Eq. (1.8) is ill defined. This fact was already noticed by Einstein, in the early
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1.1 Quantum chaos and decoherence

1917’s, when he recognized the non applicability of the EBK method for non
integrable system, in the context of the Helium atom [29].

At a dynamical level also, the classical definition of chaos cannot be applied
to quantum mechanics, since the Schrödinger equation is linear, the time evolu-
tion operator is unitary and the scalar product between two states is constant.
The field of Quantum Chaos deals with the apparent paradox that despite the
presence of the correspondence principle, chaos seems to be absent from quantum
mechanics. It addresses fundamental questions, related to the dependance of the
quantum properties on the underlying classical dynamics of a physical system.

There are two main approaches to the quantum theory of chaotic systems :
The approach through semiclassical quantum mechanics pioneered by
Gutzwiller [25] and the approach based on the theory of randommatrix (RMT) [30]
firstly applied by Bohigas, Giannoni, and Schmit [31], see also Refs [32,33]. The
latter is a statistical approach to quantum chaos. The Bohigas-Giannoni-Schmit
conjecture (BGS conjecture) states, on the basis of strong numerical evidence,
that statistical properties of quantum systems whose limit is chaotic are well de-
scribed by RMT. RMT was developed by Wigner and Dyson in the contex of
nuclear physics [34,35], for a review on RMT we refer to [36]. Complex systems,
in RMT, are represented by ensemble of Hamiltonians with statistically indepen-
dent matrix elements only constrained by symmetry. These ensembles can be
shown to have maximum statistical entropy. There exist three different symme-
try classes characterized by the number β = {1, 2, 4} of independent components
of the Hamiltonian matrix. Systems which present time reversal symmetry and
spin rotational symmetry fall in the Gaussian Orthogonal Ensemble (GOE) with
β = 1. Breaking of the time reversal symmetry lead to the Gaussian Unitary
Ensemble (GUE) with β = 2. Finally if we break the spin rotational symmetry
but not time reversal symmetry we deal with the Gaussian Symplectic Ensemble
(GSE) with β = 4.

The study of the properties of these ensembles provides us with various quan-
tum signatures of chaos. We refer to [23] for more details and consider here only
the example of the level spacing distribution P (S). The spectrum of an Hamilto-
nian can be partially characterized by P (S), where S is the re-normalized spacing
between two consecutive energy levels. For integrable systems it has been shown
that levels are uncorrelated thus the level spacing is given by the Poisson distri-
bution [37],

P (S) ∝ exp[−S], (1.9)

this is clearly different for chaotic systems that present level repulsion character-
ized by the Wigner-Dyson distribution,

P (S) ∝ Sβ exp[−αS2], (1.10)

where α is a numerical factor of order one. Such a signature of chaos has been
widely verified in many numerical studies.

In the semiclassical approach, one makes a more direct connection to the
classical dynamics. Research in this direction was initiated by Gutzwiller with his

9



1 Introduction and Summary

derivation of the trace formula [40,41]. Semiclassical trace formulae are sums over
Fourier-like components associated with classical paths and establish a connection
between quantum object such as the spectral density and pure classical terms
such as the action along the orbits and stability amplitudes. Since the action
enters as a phase, interference effect are introduced. Gutzwiller’s derivation of the
quantum density of states, is based on a semiclassical evaluation of the Feynman
path integral in terms of a saddle point (stationary phase) approximation. For a
review on semiclassical methods we refer to [38,39]. We will here only illustrate
the method by a presentation of the semiclassical treatment of the density of
state. The latter is related to the trace of the energy dependent Green function
G(r, r′;E),

d(E) = − 1

π
=m

[∫
drG(r, rE)

]
. (1.11)

The semiclassical energy dependent Green function is of the form,

Gsc(r, r
′;E) =

1

i~(2πi~)(d−1)/2

∑
γ

Dγ(r, r
′) exp

[
i

~
Sγ(r, r

′)− iµγ
π

2

]
, (1.12)

where the sum is performed over all classical trajectories γ connecting the two
fixed points r, r′ at energy E, and

Sγ(r, r
′) =

∫
γ

pdq (1.13)

is the accumulated action along the path γ. The classical amplitude Dγ describes
the local density in position space and energy of trajectories near γ and can be
written as

Dγ =

∣∣∣∣∣∣∣
∂2Sγ
∂r∂r′

∂2Sγ
∂r∂E

∂2Sγ
∂E∂r′

∂2Sγ
∂E2

∣∣∣∣∣∣∣
1/2

. (1.14)

Finally µγ is the Maslov index that counts the number of conjugate points.
This semiclassical treatment leads to a natural representation of the density

of state as
d(E) = d(E) + dosc(E). (1.15)

This decomposition into a smooth part d(E) and an oscillating part dosc(E)
has a rigorous meaning only in the semiclassical regime (E → ∞). The smooth
part corresponds to the Weyl or Thomas-Fermi part of the density of state. Oscil-
latory terms arise from contributions to G(r, r;E) of paths of finite length closed
in position space. The standard way to obtain dosc(E) is an evaluation of the
integral Eq. (1.12) by stationary phase approximation. This selects the periodic
orbits, trajectories closed in configuration space and in phase space. For chaotic
systems periodic orbits are isolated and unstable, nevertheless they are dense in
the phase space so calculation can be performed. This yields the Gutzwiller trace
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1.1 Quantum chaos and decoherence

formula,

dosc(E) '
∑
p.o

∞∑
j=1

Ap.o(E, j) cos
[
j
(
Spo − µp.o

π

2

)]
, (1.16)

where the double sum is taken over contributions from all classical primitive pe-
riodic orbits and j denotes their multiple traversal, and the amplitude Ap.o(E, j)
depends on the energy, the time period Tp.o and the stability of the orbits.

Connection between RMT and the semiclassical approach has been recently
investigated by Müller et al. [42,43]. The validity of the BGS conjecture has now
even been established semiclassically [44].

In this thesis we will use independently RMT and semiclassical methods.

1.1.2 From the quantum to the classical world :
Decoherence

In 1932 Erwin Schrödinger proposed a Gedanken experiment in which he super-
imposed a cat in the two states "alive" and "dead" [45]. This highly strange
superposition is allowed by the fundamental superposition principle of quantum
mechanics. However, such a state is never encountered in our everyday life. The
most important reason for this "disappearance" is Decoherence, an effect due
to the interaction with the environment. As an illustration we may consider
an Aharonov-Bohm interference experiment on a ring, as presented by Stern,
Aharonov and Imry [46]. This experiments starts by considering a quantum par-
ticle, whose coordinate is x moving around both arms of an Aharonov-Bohm ring
threaded by a magnetic flux with an environment (whose coordinate is q ) that
only interacts with the particle on the right arm. (See Fig. 1.3) The initial wave
function that corresponds to the particle having just entered the ring region but
not yet interacting with the environment is given by,

Ψ(0) = [ψL(x; 0) + ψR(x; 0)]⊗ ϕ0(q), (1.17)

where ψL,R(x; 0) is the initial wave packet of the particle on the Left/Right arm,
and ϕ0(q) is the initial state of the environment assumed to be localized in the
right arm.
The interference is examined at time t after each initial wave packet ψL,R(x; 0)
traversed half of the ring. The wave function is then

Ψ(t) = [ψL(x; t)⊗ ϕL(q) + ψR(x; t)⊗ ϕR(q)] , (1.18)

where ϕL,R(q) is the state the environment was in when the particle passed trough
the Left/Right arm. Since the environment is not observed, its coordinate is
integrated upon and the interference term is

2<e

[
ψ∗L(x; t)ψR(x; t)

∫
dq ϕ∗L(q)ϕR(q)

]
. (1.19)
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1 Introduction and Summary

The latter must be compared to the interference term 2<e [ψ∗L(x; t)ψR(x; t)] ob-
tained in the absence of the environment. The effect of the environment can be
thus interpreted as a loss of coherence effect. In the language of the reduced
density matrix,

η(t) =
∑

i,j∈{L,R}

|ψi〉〈ψj|
∫

dq ϕ∗i (q)ϕj(q), (1.20)

this corresponds to a destruction of the off diagonal terms ηLR(t), ηRL(t) due
to the decoherence. Indeed the integral

∫
dq ϕ∗i (q)ϕj(q), vanishes in the limit of

orthogonal environment states and thus interference is lost.

Figure 1.3: Intuitive schema of the decoherence process. A wavepacket which represent
the system is split coherently between two arms, one of which interact with an environ-
ment. The two partial wavepacket recombine on the other side, decoherence due to the
system-environment interaction affect the interference between the two arms.

Historically, the study of decoherence was initiated in the 1970’s and 1980’s
with the work of Zeh [47] and Zurek [48] on the emergence of classicality in the
quantum framework [7–9]. They pointed out that the problem of the classical
limit of quantum mechanics is based on the incorrect assumption of a closed
macroscopic system ruled by the Schrödinger equation. This is not justified in
our present world, indeed macroscopic objects are interacting with their natu-
ral environment and thus can never be considered as isolated. What exactly is
decoherence ? It is the process, due to the coupling of a system to an environ-
ment, that induce the loss of quantum mechanical interferences . Consequently
the relevant theoretical framework for the study of decoherence is the theory of
open quantum systems [54]. The interaction of an open quantum system with its
surrounding environment creates quantum correlations i.e entanglement between
the state of the system and the state of environment. There exist numerous
tractable models of environment, the most popular one is made of a collection of
harmonic oscillators [49–52], or equivalently a quantum field [53].

The description of open quantum systems is based on the concept of the den-
sity matrix, and standard treatment of decoherence consist in deriving a quan-
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1.1 Quantum chaos and decoherence

tum master equation after tracing out the environment degrees of freedom. In
the particular case of a particle interacting with a scalar field φ (i.e a collec-
tion of harmonic oscillators), the master equation can be exactly derived, in the
limit of high temperature. The density matrix of the particle η(x, x′) in position
representation evolves like [9],

dη

dt
= − i

~
[H, η]︸ ︷︷ ︸

Von Neumann
Equation

−γ(x− x′)
(
∂

∂x
− ∂

∂x′

)
η︸ ︷︷ ︸

Relaxation

− γ

λ2
T

(x− x′)2
η︸ ︷︷ ︸

Decoherence

. (1.21)

The first term of the Eq. (1.21) corresponds to the Von Neumann equation and
delivers the reversible classical evolution of the expectation value of any observ-
able. The second term causes dissipation, the relaxation rate γ is proportional
to the viscosity due to the interaction with the scalar field. That interaction
induces a loss of energy and a decrease of the average momentum. The last term
is of diffusive nature and induces fluctuation. The latter term has no effect on
the diagonal (classical) elements but induces a strong decay of the coherent off
diagonal terms. In the semiclassical limit ~ 7→ 0 this term dominates the second
one and it follows that,

η (x, x′, t) = η (x, x′, 0) e
−γt

“
x−x′
λT

”2

(1.22)

with λT = ~/
√

2mkBT the thermal De Broglie wavelength. It follows that quan-
tum coherence between two points separated by a length x−x′ will disappear on
a time scale

τφ = γ−1

(
λT

x− x′

)2

. (1.23)

It is important to realize that this decoherence time scale is actually extremely
short for a macroscopic objet. As an example the order of magnitude is approx-
imately 10−23 seconds for a relaxation time γ−1 of the order of the age of the
universe and a system of size 1 cm at 300 K. This result must be taken with care
because such extrapolations on such simplistic systems are not justified, never-
theless it clearly indicates the fragility of coherent superpositions for macroscopic
objects. On the contrary, in the limit of more microscopic objects at low tem-
perature, the decoherence time can be much larger than many other time scales,
this will be illustrated in the next section on mesoscopic systems.

Decoherence is a very effective process to restore the principle of correspon-
dence, and thus extremely relevant in the particular context of quantum chaos.
Indeed for chaotic systems we have a competition between two effects. The
Lyapunov exponential spreading and the unavoidable folding of a typical wave
packet, will induce quantum interference, that are dynamically destroyed by the
localization effect of the decoherence. Part III of this thesis is devoted to this
quantum-classical transition.

Since 1990, the investigation of decoherence raised a lot of new interest. This
is due to the advent of quantum information theory, where decoherence must
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be, at first glance, fought in order to preserve the superposition of states (key
ingredient of a quantum computer), but is also essential for the final read out,
which is actually a measurement.

1.1.3 Chaos and mesoscopic physics

The mesoscopic regime is reached in small condensed matter systems at suffi-
ciently low temperatures for the electrons to propagate coherently across the
sample [55–59]. In this regime electronic transport presents various interesting
features due to the interference between the electronic wave function. They de-
pend on fundamental lenght scales that we will list now :

• The shortest length is the Fermi wave length λF. It varies from a few
Angstrom in metals to one hundred Angstrom in semiconductors.

• Disorder in the systems is characterized by the elastic mean free path l.
l is the typical distance between two successive collisions with impurities

• The phase coherence length LΦ is the characteristic length for the interfer-
ences of the electronic wave function. LΦ increases with decreasing temper-
ature.

These latter length scales must be compared to the typical size of the sample L
involved in the measurement. In the particular case of the mesoscopic regime
where L � LΦ, one can distinguish the ballistic regime L � l regime and the
diffusive l � L one (See Fig. 1.4). In most cases the phase breaking length Lφ
is related to inelastic events like electron-electron interaction, electron-phonon
interaction or coupling to an external environment. However it is important to
understand that coherence loss is not controlled by a single parameter, indeed
Lφ will depend on the temperature, the applied voltage, the external circuit or
other more subtle parameters.

Figure 1.4: Characteristic length scales in a mesoscopic system at low temperature.
The limit L � LΦ implies that a quantum mechanical treatment must be used. The
limit λF � L justifies a semiclassical treatment. Ballistic systems are defined by L� l
in contrast to diffusive (disordered) ones for which l� L.
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1.1 Quantum chaos and decoherence

What happens in the mesoscopic regime ? In macroscopic theory, electronic
transport is described by Ohm’s law. The electrical conductivity σ is defined
by j = σE describing the linear relation between the electric current density j
and the applied electric field E. In the quasiclassical description of diffusion, the
electron is assumed to lose phase coherence after each collision with an impurity
( LΦ ≈ l), the conductivity can thus be introduced as a local intensive quantity.
However the quantity that is measured directly is the conductance G defined as
the ratio between the current and the applied voltage. In mesoscopic systems
LΦ ≥ l and the local description of the conductivity breaks down. Some novel
transport properties of mesoscopic conductors may be roughly listed as follows :

Sample specificity : Mesoscopic conductors of the same material fabricated
with the same process will have different measured transport coefficient.
This is due to different microscopic conditions, like different impurity po-
tential configurations [60, 61].

Non locality : For sufficiently large phase coherence lengths, the region of
the sample outside the current path will strongly influence the measured
quantities [62].

Violation of macroscopic symmetries : Most macroscopic symmetry prop-
erties do not follow immediately from microscopic ones but also depend on
further conditions, as for example the symmetry of the averaged scatter-
ing potential. Consequently a number of these symmetry properties are
violated in mesoscopic conductors [62–64].

Dependence on the measurement Set-Up : In mesoscopic physics, it is not
only what is measured which matters, but how it is measured. The reason
for that is, as we learn in basic quantum mechanic, that the measurement
apparatus has an influence on the system. The probe-configuration depen-
dence of the dephasing rate in certain mesoscopic interferometers [65] is
clearly an illustration of the Set-Up sensitivity.

These facts taken together demonstrate that the concept of conductivity as an
intensive quantity clearly breaks down at the mesoscopic scale. It is thus mean-
ingful to discuss only measurable quantities like the conductance.

The conductance of a metallic sample betweenr0 and r1 is related to the
transmission probability distribution P (r0, r1) for an electron to reach the point
r1 when it initially started at r0. In quantum mechanics probabilities are obtained
from complex amplitudes An = |An|eiφn where n is a possible realization of a path.
The classical value corresponds to the approximation of incoherent scattering,
Pcl(r0, r1) =

∑
nAnA

∗
n, the quantum corrections are generated by the interference

term,
Pquant(r0, r1) = Pcl(r0, r1) +

∑
n6=m

AnA
∗
m (1.24)

Generally the contribution of the interference term disappears after averaging
over disorder or small energy interval, except for the interference between An
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and its time reversed path A−n which both have have identical phase φn = φ−n
in the absence of a magnetic field. This has as a consequence for example an
enhancement of the average return probability. 〈Pquant(r0, r0)〉 = 2 〈Pcl(r0, r0)〉,
which gives a negative correction to the classical conductance. This is one of
the most studied quantum effects in mesoscopic systems and is called the weak
localization correction [75, 76]. This effect is illustrated in Fig. 1.5b. where a
measurement of the magnetoresistance has been performed for two cavities with
different shapes. An enhancement of the resistance at zero magnetic field is clearly
identified. Indeed in the presence of a magnetic field, each time reversed pair of
trajectories (n,−n) acquires one extra phase. The coherence is thus destroyed
and the weak localization disappears.

Figure 1.5: Some experimental data that illustrate the most investigated mesoscopic
quantum effects. (a) Magnetoresistance of a ring measured at low temperature (0.01K)
together with the Fourier power spectrum in arbitrary units containing peaks at h/e and
h/2e; adapted from R. A. Webb et al. [71]; (b) Magnetoresistance for stadium cavities
(Chaotic) and circular cavities (Regular) ; adapted from Chang et al. [72]; (c) Variance
of shape-distortion magnetoconductance fluctuations in unit of (e2/h)2; adapted from
Chan et al. [68].

Another quantum effect, strongly investigated is the Aharanov-Bohm oscil-
lations [73, 74] of the conductance in multiply connected geometries like a ring
pierced by a magnetic flux. In this case the phase difference between the two
arms is mostly due to the presence of a vector potential. The extra phase will be
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proportional to the ratio between the external magnetic flux and the quantum
flux Φ0 = h/e. Consequently the conductance will oscillate in function of the
magnetic flux with a period Φ0 and higher harmonics. These Aharanov-Bohm
oscillations are illustrated in Fig. 1.5a.

The last effect we would like to mention is the universal conductance fluctu-
ations [60,77]; the reproducible fluctuations in the conductance versus magnetic
field or Fermi energy with a variance of the order e2/h, independent of the aver-
age conductance. A typical measurement of conductance variance as a function
of the magnetic field is presented in Fig. 1.5c.

As previously mentioned there exist two distinct mesoscopic regimes : The
diffusive l � L regime and the ballistic l ≥ L regime. Mesoscopic physics was
initially focused on the diffusive one. In the latter the randomness is due to the
presence of disorder; the classical motion of electrons is a random walk between
the impurities. From a theoretical point of view, these systems have been investi-
gated by various techniques like the diagrammatic technic based on the impurity
Green functions or supersymmetry [78,79]. Due to the technological advances, a

Figure 1.6: Some ballistic quantum dots. (a) adapted from Keller et al. [67]; (b)
adapted from Chan et al. [68]; (c) adapted from Marcus et al. [69]; (d) adapted from
Marcus et al. [70].

new generation of mesoscopic systems has been generated. Clean electronic de-
vices with an elastic mean free path l larger than the typical size of the system L
but still larger than the Fermi wavelength were built (for a review see [66]). The
electronic motion is thus ballistic and solely determined by the boundary condi-
tions of the sample. Consequently the choice of the imposed external potential
confinement leads to various shapes of cavities/quantum dots from integrable to
chaotic ones (See example in Fig. 1.6). This gives us a clear connection with
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quantum chaos. As illustrated in Fig. 1.5b the underlying classical dynamics
affects the transport properties. The weak localization peak line shape shows
a Lorentzian behavior for chaotic cavities, in contrast to the linearly decreasing
shape of regular one.This particular behavior is explained in [86].

As in closed systems, ballistic chaotic quantum open systems can be treated
by RMT [80] or a semiclassical approach [81].

Starting from the scattering theory of transport [64,90] RMT provides a sta-
tistical description and allows us to calculate the transport quantities (average
conductance, shot noise ) and their universal quantum corrections (weak localiza-
tion, UCF). The hypothesis behind RMT is a well developed wave chaos. In the
disorder regime, the diffractive scattering serves this requirement well. For the
ballistic case the process is more subtle and essentially provided by the underlying
classical chaos. Applicability of RMT is limited to a particular regime. Indeed
the classical ergodicity must be established on a time scale much shorter than
the life time of an electron in the system. Moreover the number of non ergodic
trajectories (direct or few bouncing trajectories) must be reduced. This requires
that the inverse Lyapunov exponent λ−1 and the typical time between bounces
τB must be smaller than the dwell time τD of the cavities τB, λ

−1 � τD. The last
requirement to reach the RMT universality is that all times scale involved are
smaller than the Heisenberg time τH = ~/∆, where ∆ is the mean level spacing.
In particular if we fulfilled the condition τD � τH, we can neglect the details of
the opening contacts. Before considering the semiclassical methods, we want to
emphasize the notion of ensemble averaging, involved in the RMT procedure. For
diffusive systems, the averaging is related to different realizations of the disorder,
in contrast to ballistic systems in which small variations of the shape will be used.

Semiclassical approaches are proven to be helpful for understanding chaotic
mesoscopic systems and provide generally a simple physical picture of numerous
phenomena. A first quasiclassical approach to transport in disordered systems
has been proposed by Chakravarty and Schmid [82], who studied interference be-
tween diffusive electron paths in random δ−potentials. More sophisticated meth-
ods based on the semiclassical evaluation of the Kubo conductivity have been
developed by Argaman [83,84]. The semiclassical approach of the scattering the-
ory of transport [64], has been pioneered by Baranger, Jalabert and Stone [85,86].
In this latter work the main step consists in replacing the Green function involved
in the scattering matrix by its semiclassical expression and then evaluating the
obtained integrals in the stationary phase approximation. Recently this approach
has been completed by Brouwer and Rahav [88], and Jacquod and Whitney [87]
on the basis of the work developed by Richter and Sieber [89].

Due to its importance in the semiclassical approach used in this thesis, we
present now the basic concept of the scattering approach. The scattering matrix
represents the solution of the Schrödinger equation for a sample that is con-
nected to semi-infinite leads. The connection between the conductance and a
scattering problem goes back to Landauer [90]. This idea has been developed by
Büttiker [64]. For a review with more applications we refer to [91,92].
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1.1 Quantum chaos and decoherence

Figure 1.7: Example of a two terminal geometry scattering problem. Outgoing and
incoming operators are related by the scattering matrix ŝ of Eq. (1.26).

The main idea of the scattering theory of transport is to relate the conductance
with the quantum probability of transmission of carriers. In order to illustrate
this, we consider a conductor connected toM leads (See Fig.1.7 for an illustration
of the two leads geometry (Left and Right) ).

Far from the sample, due to the translational invariance in the leads, the
transversal and the longitudinal electronic motions are separable. This permits
us to quantize the transverse motion and define the notion of quantum channels.
We then introduce two sets of second quantized operators aα and bα see Fig.1.7.
Here a†α is a vector of the operators a†α;n, (n ∈ {1, · · · , Nα}) which create a carrier
in the incoming channel n in lead α. Similarly bα is a vector of the operators
bα;n, (n ∈ {1, · · · , Nα}) which annihilate a carrier in the outgoing channel n in
lead α. Outgoing and incoming operators are related by the scattering matrix
relation,

bα;n =
∑
β

Nβ∑
m=1

sαβ;nmaβ;m, (1.25)

For a two lead geometry, the scattering matrix reduces to,

ŝ =

(
sLL sRL

sLR sRR

)
(1.26)

The average current 〈Iα〉 (in unit of e/h) at a cross-section on the lead α is
given by,

〈Iα(t)〉 =

〈
Nα∑
n=1

∫
dEdE ′ exp

[
it

~
(E − E ′)

] [
a†α;n(E)aα;n(E ′)− b†α;n(E)bα;n(E ′)

]〉
(1.27)

Flux conservation requires that the scattering matrix is unitary, ŝŝ† = I.
Using Eq. (1.25), the quantum statistical average〈

a†α;n(E)aβ;m(E ′)
〉

= δαβδnmδ(E − E ′)fα(E), (1.28)

with fα(E) the Fermi distribution in the lead α, we obtain, from Eq. (1.27), the
average current,

〈Iα(t)〉 =
∑
β

eVβ

∫
dE

(
−∂fβ
∂E

)(
Nαδαβ − Tr

[
s†αβsαβ

])
. (1.29)
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1 Introduction and Summary

The conductance for a small applied voltage gαβ = dIα
dVβ

, is thus given in unit
of e2/h by,

gαβ =

∫
dE

(
−∂fβ
∂E

)(
Nαδαβ − Tr

[
s†αβsαβ

])
(1.30)

Now we limit ourselves to a two lead geometry in a steady state (i.e, at zero
frequency). In the zero temperature limit we get the Landauer-Buttiker formula

g = Tr
[
s†RLsRL

]
(1.31)

where each element of the scattering matrix is evaluated at the Fermi energy.
The above formulae are constrained to a purely coherent picture. How-

ever there exist some more or less phenomenological extension of the scattering
formalism, to investigate the disappearance of quantum effects on the conduc-
tance [93–98]. Voltage [93] and dephasing probe [94] models are certainly the
most popular ones.

In these latter, an additional fictitious lead is connected to the system via a
point contact of transparency ρ. A voltage is applied to this lead to ensure that
no current flows through it on average. Voltage and dephasing probes are used
to introduce respectively inelastic and elastic incoherent scattering, into a fully
quantum coherent system. The origin of the success, of this approach is clearly
the possibility to use the formalism developed in the purely coherent limit.

Part IV of this thesis is devoted to an extension of this standard scattering
formalism that allows one to include the dephasing due to external sources.
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1.2 Summary of obtained results

1.2 Summary of obtained results

The purpose of this brief summary is to emphasize some particular result, that I
obtained during my PhD thesis. This outline is only a short introductory guide,
for more details see the corresponding chapters.

1.2.1 Reversibility in quantum mechanics

In classical chaotic systems, irreversibility results from dynamical phase-space
mixing together with the coarse-graining associated with the finite experimental
resolution. In quantum mechanics, this mechanism is strongly inhibited by a
less efficient mixing and a coarse-graining limited by the Heisenberg uncertainty
principle.

In fact, it was shown by Shepelyansky [99], that we can even obtain an almost
perfectly reversible quantum dynamics when the corresponding classical one is
irreversible. (See Fig. 1.8). The classical irreversibility is due to rounding-off
errors inherent to numerical computation. However it was quite rapidly realized
that the microscopic conditions that govern the quantum dynamics can not be
resolved with an arbitrary precision. Consequently the exact time reversal oper-
ation of the Hamiltonian can not be achieved. It is thus of fundamental interest
to investigate the sensitivity of the quantum dynamics to a perturbation of the
Hamiltonian.

Figure 1.8: Time dependence of the standard map energy, after a time reversion.
The straight line shows clearly the classical irreversible diffusion, in contrast with the
completely reversible quantum evolution; adapted from Shepelyansky [99].

This approach goes back to the seminal work of Peres [100]. The central
quantity of this approach is the so called Loschmidt echo (or the Fidelity),

ML(t) = |〈ψ0| exp[iHt] exp[−iH0t]|ψ0〉|2 (1.32)

with which a narrow wave packet |ψ0〉 can be reconstructed by inverting the
dynamics after a given time with a perturbed Hamiltonian H = H0 + Σ (we set
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1 Introduction and Summary

~ ≡ 1). The Fidelity quantifies the sensitivity of the time inversion operation
due to the uncertainty in the Hamiltonian and in this sense, it is a measure of
quantum irreversibility.

The notion of Fidelity appears quite naturally in the context of Decoher-
ence [8] of systems with few degrees of freedom coupled to an environment with
many more degrees of freedom. Roughly speaking the presence of a Hamilto-
nian perturbation Σ in the backward propagation, expresses the effect of the
coupling with the environment. This idea initially developed by Jalabert and
Pastawski [101] raised a lot of theoretical interest [102–112], for a review see [113].
The source of this interest was the prediction in [101] of a regime of perturbation
where the behavior of the fidelity is essentially governed by the Lyapunov expo-
nent of the systemML(t) ' exp[−λt]. The range of validity of this regime was
clarified in Ref. [102]. The authors show that the decay of the Fidelity with time is
either Gaussian or exponential. The Gaussian regime prevails when the strength
of the perturbation is weak enough. As the perturbation is further increased,
the decay of the fidelity becomes exponential. For not too strong perturbation,
the decay is given by the perturbation induced Fermi golden rule rate, until the
latter exceeds the system’s Lyapunov exponent,

ML(t) = exp [−min (Γ, λ)] . (1.33)

Most of the following investigations considered only the average properties of
the Fidelity 〈ML〉, where the average is performed either over different initial
states, or different elements of an ensemble of unperturbed Hamiltonians and/or
perturbation. However the fluctuations of a physical quantity often contain more
information than its average. Consequently we investigated the time-dependent
variance of the Fidelity σ2 [ML(t)] [114], by following the semiclassical approach
developed in Ref. [101]. We showed that the variance has a much richer behavior
than its average. We have shown that the variance first increases algebraically
up to a critical time tc, after which it decays. To leading semiclassical order, this
decay is given by the sum of a classical term related to the classical Lyapunov
exponent λ, a quantum term related to the Fermi Golden rule Γ and a mixed
term, as

σ2 [ML(t)] ' α2(t)e−2λt +
2

N
e−Γt ΘτE(t) + 2α(t)e−(λ+Γ)t (1.34)

The comparison with the behavior of the average fidelity allowed the extraction
of the classical Lyapunov exponent in a larger parameter range. Indeed the
Lyapunov exponent can be accessed, like in the average fidelity, if we increase
the perturbation to reach the regime Γ ≥ λ. However in contrast to the average
value, it is still possible to extract the Lyapunov exponent in the regime Γ ≤ λ.
Indeed for times shorter than the Ehrenfest time τE = λ−1 ln [N−1] the behavior
of the variance is ruled by the mixed terms (third term of Eq. (1.34))

Our results are corroborated by numerical simulations, as presented in Fig. 1.9.
In Fig. 1.9a we present the variance σ2 [ML] of the Fidelity as a function of time,
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1.2 Summary of obtained results

in the regime of weak perturbation Γ� λ. This numerical simulation clearly il-
lustrates the initial increase of the variance followed by the predicted exponential
FGR decay indicated by the second term of Eq. (1.34). We emphasize that there
is no adjustable free parameter, and this carries a strong numerical evidence of
the validity of the prefactor N−1. Fig. 1.9b clearly illustrate transition from the
quantum regime to the classical Lyapunov saturation λ� Γ.

This work will be discussed in more detail in chapter 2 and has been published
in Ref. [114].

Figure 1.9: (a) Variance σ2 [ML] of the Fidelity versus time for weak perturbation
leading to the FGR regime (Γ� λ).Thin solid lines correspond to theoretical prediction.
(b) Variance σ2 [ML] of the Fidelity versus time in the Lyapunov regime (λ� Γ). The
solid line indicates the Lyapunov decay. (For more details see chapter 2)

The connection between irreversibility and decoherence was not only a the-
oretical game but was also quite fertile at the experimental level. Indeed echo
experiments abound in nuclear magnetic resonance (Spin echo) [115–117], optics
(Photon echo) [118], cold atomic systems (Motional wave packet echo) [119], mi-
crowave cavites (Echo Spectroscopy) [120] and condensed matter systems (Charge
echo) [121]. Fundamentally all these experiments are based on the same princi-
ple, that the sign of the Hamiltonian can be changed by means of an effective
change of coordinate axes [117].

The theoretical approach based on the Loschmidt echo was unable to provide
a satisfactory explanation of some particular experimental results, such as for
example the gaussian, perturbation independent decay, found in NMR [122], see
Fig. 1.10. The measurements reported here were performed in a single crystal
of ferrocene. In such system, the perturbation Σ can be tuned. In Fig. 1.10 we
present the attenuation of the polarization echo as a function of the refocusing
time. The remarkable result that can be observed in figure Fig. 1.10 is that atten-
uation saturates with a decreasing perturbation Σ. This behavior is not predicted
by the Loschmidt echo theory, indeed in the latter a perturbation independent
decay is predicted for strong enough perturbation. We provided a first step to
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1 Introduction and Summary

Figure 1.10: Attenuation of the polarization echo as a function of the refocusing time
in a ferrocene system, for different values of perturbation. The solid line represents a
gaussian fitting that shows the perturbation independent decay; adapted from Pastawski
et al. [122].

solve this puzzling result in Ref [123]. In real echo experiments, only imperfect
time-reversal operations are performed on a subset of the total number of degrees
of freedom. To capture the physics of these experiments, we developed the notion
of the partial Fidelity,

MB(t) =
〈
ψsys

∣∣Trenv

[
e−iHbte−iHf tρ0e

iHf teiHbt
] ∣∣ψsys

〉
, (1.35)

where only a part of the system’s degrees of freedom can be time-reversed. (For-
ward Hf = Hsys + Henv + Uf and backward Hb = −(Hsys + Σsys) + H ′env + Ub

Hamiltonians differs only by a partial time-inversion over the system). We named
it the Boltzmann echo MB(t). Chapter 3 is devoted to this new object and our
results are published in Ref. [123]. We presented a semiclassical calculation and
showed that even when the time-reversal operation is performed more and more
accurately, the decay rate of the Boltzmann echo saturates at a value given by
the decoherence rate due to the coupling with the surrounding environment. As
the experimentally controllable perturbation is reduced, the Boltzmann echo is
given by

MB(t) ' exp[−(Γf + Γb)t] (1.36)

where Γf,v is the Fermi Golden rule spreading due to the forward/ backward cou-
pling with the environment. We confirmed our analytical results by numerical
simulations (See Fig.1.11). The main panel in Fig. 1.11 demonstrates clearly the
exponential decay of the Boltzmann echo and its strong dependence on the cou-
pling. Additionally, the inset illustrates that when the perturbation is sufficiently
weak a perturbation independent decay solely ruled by the coupling is reached.

Finally at weak interaction, we show that the Boltzmann echo reaches a gaus-
sian regime independent of the perturbation

MB(t) ' exp[−(U2
f + U2

b) t2/2]. (1.37)

24



1.2 Summary of obtained results

Figure 1.11: Main plot: Boltzmann echo versus time at fixed perturbation but for
different value of the environment coupling strenght. The full lines correspond from
right to left to a increase of the coupling strength. The dashed lines give the predicted
exponential decay. Inset : MB for a fixed coupling strength, and different small per-
turbations. The dashed line indicates the theoretical prediction which is independent
of the perturbation. (For more details see chapter 3)

This might well be the explanation for the experimentally observed NMR-independent
decay of polarization echoes [122].

Leaving temporarily aside the notion of Decoherence, we were attracted by
the study of quantities closer to the experimental interest. Our investigation
was most notably motivated by neutron scattering [124–126], which we tried to
understand better. To that end, we introduced a new echo which we dubbed
"Displacement echo" [127].

MD (t) =
∣∣ 〈α| e−iPx̂eiĤteiPx̂e−iĤt |α〉 ∣∣2. (1.38)

The latter is related to the ensemble average of the correlation function Yjj (P, t)
in incoherent neutron scattering and Mössbauer emission/absorption. Physically
MD measures the decay of the fidelity with which a wave packet is reconstructed
by a perfect time-reversal operation performed after a phase space displacement
P. In the semiclassical limit, we showed that the decay rate is generically given
by the Lyapunov exponent of the classical dynamics. For small displacements,
we additionally showed that, following a short-time Lyapunov decay, the decay
freezes well above the ergodic value because of quantum effects. The average
displacement echo is given by,

〈MD(t)〉 ∝
[
α e−λt +

g(|P|L)

(|P|L)2

]
, (1.39)
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where g(|P|L) is an oscillatory function, which depends on the system’s spatial
dimension.

Our analytical results are corroborated by numerical simulations. Fig. 1.12a
presents the displacement echo as a function of time and clearly confirms the
existence of Lyapunov decay. Fig. 1.12b delivers the saturation value of the echo,
and shows the quantum freeze at a displacement-dependent value as predicted
by the last term of Eq. (1.39).

Figure 1.12: (a) Displacement echo versus time. The dashed lines correspond to the
theoretical Lyapunov decay prediction. (b) Saturation value of the displacement echo.
The red dashed line indicates the theoretical prediction. (For more details see chapter 4)

These aspects will be discussed in more detail in chapter 4 and are published
in [127]. Our results are currently being tested experimentally on trapped cold
atoms systems in the laboratory of Mara Prentiss at Harvard university [128].

1.2.2 Entanglement and decoherence

Although the echo approach quantifies the sensitivity of quantum trajectories to
the change of an external/control parameter, an echo is not intrinsically a direct
measure of decoherence. Decoherence is mainly due to the interaction with an
environment and no time reversion is involved. The fundamental question we
must address is thus the notion of interaction between two quantum systems.
Investigate interaction between quantum systems is not a trivial task. If we
quote Schrödinger [129],

When two systems (. . . ) enter into temporary interaction (. . . ),
and when after a time of mutual influence the systems separate again,
then they can no longer be described in the same way as before, viz.
by endowing each of them with a representative of its own.

This defines the notion of quantum correlations between systems, commonly
named Entanglement.
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1.2 Summary of obtained results

Figure 1.13: Two numerical investigations on the entanglement generation in chaotic
systems. (a) presents the linear entanglement rate of a coupled kicked top as a function
of the chaoticity parameter; adapted from Miller and . Sarkar [131] ; (b) presents the
entanglement rate of production of a coupled kicked top as a function of the chaoticity
parameter; from Tanaka et al. [132]. The linear dependence found on the left seems to
contradict the independence obtained on the right. This apparent contradiction is well
explained by the existence of two regimes of entanglement [133,134].

In the context of decoherence, the investigations of quantum correlations be-
tween system and environment are thus of fundamental interest. We then turned
to study entanglement properties of two interacting particles. These properties
are quantified by the reduced density matrix, obtained by tracing out the degrees
of freedom of one of the particles. If we enumerate the particles, and let η(t) be
the density matrix of the full system, the reduced density matrix related to the
first particle, labeled 0 is given by,

η0(t) = Tr1 [η(t)] . (1.40)

If this reduced density matrix represents a mixed state, particles are entangled.
A good measure of the degree of mixture is usually given by the Von Neumann
entropy

S (η0) = −Tr0 [η0 ln (η0)] . (1.41)

However, at a technical level, it is more convenient to calculate the trace of the
squared reduced density matrix [9],

P(t) = Tr0

[
η2

0(t)
]
. (1.42)

This quantity is referred to as the Purity P(t). The purity and the associated
linear entropy Slin (η0) = 1−P(t) are analytically tractable quantities that relate
to the Loschmidt echo [130]. Moreover, as we consider global pure states, the
linear entropy and the Von Neumann entropy behaved in the same way.
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In the particular context of chaos, the question on the origin of entanglement
production in a dynamical system was a hot topic. The first attempt to deter-
mine the rate of entanglement was numerical. Detailed numerical investigation
performed by Miller and Sarkar [131] (see Fig.1.13) showed that entanglement
is favored by chaos and even given by the classical Lyapunov exponent of the
system. However this result was challenged by Tanaka et al. [132] whose numeric
showed no increase at all (see Fig.1.13). Fig.1.13a presents the linear entan-
glement rate versus the average Lyapunov exponent performed by Miller and
Sarkar based on two coupled quantum kick tops. The linear dependence of the
entanglement rate with the Lyapunov exponent is clearly presented. Fig.1.13b
presents similar numerics performed by Tanaka et al. on the same system. Here
for strong enough chaos, the entanglement rate saturates at a value independent
of the chaotic parameter. However it is crucial to realize that although the two
models are the same, the numerical investigations have been performed in two
different regimes; weak chaos (small but positive Lyapunov exponent) regime for
Miller and Sarkar and strong (large Lyapunov exponent) chaos for Tanaka.

Based on our semiclassical expertise [133], we solved this apparent contra-
diction and investigated the quantum-classical correspondence in such bipartite
systems [134]. This will be treated in chapter 5. We showed how a classically
vanishing interaction generates entanglement between two initially non entan-
gled particles, without affecting their classical dynamics [134]. We showed that
for chaotic dynamics, the rate of entanglement is shown to saturate at the Lya-
punov exponent of the classical dynamics as the interaction strength increases.
The decay of the purity is given by,

P(t) = e−2Γ01t + α0(t)e−λ0t + α1(t)e−λ1t. (1.43)

If we focus on entanglement of identical particles λ0 = λ1 or if we consider that
the particle 1 plays the role of an environement λ1 � 1, Eq.( 1.43) distinguishes
2 regimes for the exponential decay of the purity :

1. The Golden rule exponential decay, P(t) ∝ e−2Γ01t, if Γ01 ≤ λ0. It corre-
sponds to a purely quantum regime generated by the coupling between the
two particles

2. The System’s Lyapunov exponential decay, P(t) ∝ e−λ0t, if λ0 ≤ Γ01. It
corresponds to a purely classical regime generated by the system’s classical
dynamics

We numerically confirmed the existence of theses two regimes. In Fig. 1.14 we
present the purity obtained for a system of two coupled kicked rotators. Fig. 1.14a
present the regime of strong coupling in which the Lyapunov regime is reached.
This numeric corresponds to the one obtains by Miller and Sarkar. Fig. 1.14b
considers the regime of a weak coupling regime as compared to the chaos, and
confirms clearly the existence of the quantum regime. This quantum regime
corresponds to the one investigated by Tanaka.
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Figure 1.14: (a) Main plot: Purity of the reduced density matrix in the Lyapunov
regime of strong coupling, the time axis has been rescaled with the system’ s Lyapunov
exponent. Inset : Purity of the reduced density matrix versus time, when we increase
the coupling strength. (b) Purity of the reduced density matrix in the FGR regime
(Γ01 ≤ λ0 ) the time axis has been rescaled with the Fermi golden rule spreading. ( For
more details see chapter 5)

Finally in the Lyapunov saturation regime, the one-particle Wigner function
follows classical dynamics better and better as one goes deeper and deeper into the
semiclassical limit. This demonstrates that quantum-classical correspondence at
the microscopic level requires neither high temperatures, nor coupling to a large
number of external degrees of freedom. Fig. 1.15 present the time-evolution of
a classical distribution (top left), and three quantum phase-space evolution of
the one-particle Wigner function : (i) (top right) for a free system; (ii) and (iii)
(bottom left and right) for a coupled system in the Lyapunov regime. From the
bottom left panel to the bottom right panel, one goes deeper into the semiclassical
limit. If we avoid the 4 ghost replications due to the numerical procedure (see
chapter 5), this figure illustrates that correspondence with the classical panel
becomes better as we move deeper into the semiclassical limit.

We are currently working on a generalization of this bipartite model to the
case of multipartite entanglement based on the generalized concurrence developed
by F. Mintert et al. [135].
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Figure 1.15: Phase-space plots for a classical distribution (top left), uncoupled (top
right) and coupled (bottom left and right) quantum Wigner distributions, with an
increase of the semiclassical limit from left to right.

1.2.3 Quantum transport and dephasing

We applied the knowledge, gained from the conceptual investigations of decoher-
ence, to the problem of quantum transport in mesoscopic systems. In this field
various well established phenomena like the weak localization correction [75,76] or
the Universal Conductance Fluctuations (UCF) [60, 77] represent most spectac-
ular manifestations of quantum coherence. The effect of dephasing on transport
through such systems is still difficult to access experimentally, nevertheless meso-
scopic transport has the advantage of permitting some experimental investigation.

From a theoretical point of view, semiclassical methods have been quickly
involved [87–89] and have shown a clear predictive power. Indeed when the
ballistic motion of the electron is chaotic, the transport properties are universal
and well captured by RMT. However following the seminal work of Aleiner and
Larking [136] a new semiclassical time scale the Ehrenfest time τE affects the
coherent propagation of transport. The Ehrenfest time corresponds to the time
during it takes for an initally well localized wavepacket (width ∝ λF) spreads to
a macroscopical length scale (L); τE ∝ λ−1 ln [L/λF].

Once τE becomes a relevant parameter, universality is broken and RMT ceases
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to describe correctly the transport properties. (See Fig. 1.16).

Figure 1.16: The abscissa corresponds to the chaotic axe to reach the classicality. For
an Ehrenfest time τE greater that the dwell time of the cavity, non universal correc-
tions to RMT must be considered. The verticla axis corresponds to the quantum to
classical transition due to the dephasing. There are four distinct regimes. The purely
universal quantum regime (top left quarter) well characterized by RMT and semiclassi-
cal method, the non universal quantum regime (top right quarter) well described by the
semiclassical approach and quasiclassical one [136], the universal decoherence regime
(bottom left quarter) obtained by the RMT/ semiclassical treatment of some more or
les phenomenological mode. Finally the non universal classical domains ( bottom right
quarter) constitute the central framework of the Part V of the thesis.

It is important to realize that whereas the dephasing time τφ is the long time
cut-off for quantum interference. The Ehrenfest time τE is the time scale that
controls the appearance of such interferences. On one side the disappearance
of quantum effects on conductance due to the unavoidable dephasing has been
studied, mostly with the help of phenomenological models [93,94]. On the other
side the influence of a finite τE has now been widely analyzed theoretically [87,88],
and clearly confirms, the breakdown of the universal quantum result.

However, except for the work of Aleiner and Larkin [136], the investigations
on the competition between the Ehrenfest time and the dephasing time was not
much developed. This question is of fundamental interest and has been recently
reviewed [137,138]. Indeed each time scale indicates a way to reach the classical
domain. The dephasing time leads to the quantum to classical transition that can
be described at a universal level (See Fig. 1.16.). The Ehrenfest time τE indicates
a non universal way to reach classicality.

Chapter 6 of this thesis is devoted to a semiclassical analysis of dephasing
on quantum transport through chaotic systems at finite Ehrenfest time. This
leads us to consider the transition from a universal quantum regime (top left
quarter of Fig. 1.16) to a non universal classical domains ( bottom right quarter
of Fig. 1.16) and leads us to address the notion of universality of the dephas-
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ing. We investigated dephasing in open ballistic chaotic systems in the limit of
a large system size to Fermi wavelength ratio [137]. Using the trajectory-based
semiclassical theory [87–89], we firstly calculate the weak localization correction
to the conductance for a quantum dot capacitively coupled to an external closed
quantum dot. To this end, we performed an extension of the standard scattering
formalism developed by Büttiker [93]. Secondly, following the method of Whit-
ney [139], we included the tunneling in the trajectory-based semiclassical theory
of a dephasing voltage probe (For the model definition, see [93,94]).

We found, in addition to the universal algebraic suppression with the ration
of dwell time τD through the cavity and the dephasing time τφ, an exponential
suppression of the weak localization factor,

gwl =
gwl

0

1 + τD/τφ
exp[−τ̃ /τφ]. (1.44)

We pointed out that the typical time scale τ̃ involved in this suppression is sys-
tem dependent. In the dephasing probe model, it coincides with the Ehrenfest
time τ̃ ∝ τE, in contrast, when dephasing occurs due to the coupling to an ex-
ternal dot, this time scale depends on the macroscopic correlation length of the
coupling potential, τ̃ ∝ λ−1 ln[L/ξ]. We noted that a similar behavior has been
found recently for the universal conductance fluctuations by Altland, Brouwer
and Tian [138].
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CHAPTER 2

Mesoscopic fluctuations of the
Loschmidt echo

2.1 Introduction

Fluctuations of a physical quantity often contain more information than its aver-
age. For example, quantum signatures of classical chaos are absent in the average
density of states, but strongly affect spectral fluctuations [1]. In the search for
such signatures, a powerful approach has been to investigate the sensitivity to
an external perturbation that is exhibited by the quantum dynamics [2]. Going
back to Ref. [3], the central quantity in this approach is the Loschmidt Echo [4],
i.e. the fidelity

ML(t) = |〈ψ0| exp[iHt] exp[−iH0t]|ψ0〉|2 (2.1)
with which an initial quantum state ψ0 is reconstructed after the dynamics is
time-reversed using a perturbed Hamiltonian, H = H0 +εV (we set ~ ≡ 1). Most
investigations ofML(t) (which we will briefly summarize below, see [5] for a re-
view) considered the properties of the average fidelityML(t), either over different
ψ0, or different elements of an ensemble of unperturbed Hamiltonians H0 (having
for instance the same classical Lyapunov exponent λ) and/or perturbation V .
Curiously enough, the variance σ2(ML) of the fidelity has been largely neglected
so far. The purpose of this chapter is to fill this gap. We will see that the variance
σ2(ML) has a much richer behavior than ML(t), allowing for the extraction of
λ in a larger parameter range, and exhibiting a nonmonotonous behavior with a
non-self-averaging maximal value σ(tc)/ML(tc) ' 1.

We first summarize what is known about the average fidelityML(t) in quan-
tum chaotic systems. One usually distinguishes between three regimes of per-
turbation strength, which are characterized by three different energy scales [6]:
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2 Mesoscopic fluctuations of the Loschmidt echo

the energy bandwidth B of H0, the golden rule spreading Γ = 2πε2|〈a|V |b〉|2/∆
of an eigenstate |a〉 of H0 over the eigenbasis {|α〉} of H, and the level spacing
∆ = BN−1 (N−1 = νd/Ω is the effective Planck’s constant, given by the ratio of
the wavelength volume to the system’s volume).
These three regimes are ;

(i) the weak perturbation regime Γ < ∆, with a typical Gaussian decay

ML(t) ' exp(−Σ2t2),

Σ2 ≡ ε2(〈ψ0|V 2|ψ0〉 − 〈ψ0|V |ψ0〉2), Σ2 ' Γ∆N [3, 7] (corrections to this
Gaussian decay have been discussed in Ref. [8]),

(ii) the semiclassical golden rule regime ∆ < Γ < B, where the decay is expo-
nential with a rate set by the smallest of Γ and λ [4, 6, 9],

ML(t) ' exp[−min(Γ, λ)t],

(iii) the strong perturbation regime Γ > B with another Gaussian decay [6]

ML(t) ' exp(−B2t2).

This classification is based on the scheme of Ref. [6] which relates the behavior
ofML(t) to the local spectral density of eigenstates of H0 over the eigenbasis of
H [6,10]. Accordingly, regime (ii) corresponds to the range of validity of Fermi’s
golden rule, where the local spectral density has a Lorentzian shape [6, 10, 11].
Quantum disordered systems with diffractive impurities, on the other hand, have
been predicted to exhibit golden rule decay ∝ exp[−Γt] and Lyapunov decay
∝ exp[−λt] in different time intervals for a single set of parameters [13]. It is
also worth mentioning that regular systems exhibit a very different behavior,
where in the semiclassical regime (ii), ML(t) decays as a power-law [14] (see
also Ref. [15]). Finally, while in chaotic systems the averaging procedure has
been found to be ergodic, i.e. considering different states ψ0 is equivalent to
considering different realizations of H0 or V , the Lyapunov decay exists only for
specific choices where ψ0 has a well defined classical meaning, like a coherent or
a position state [4, 12,16,17].

Investigations beyond this qualitative picture have focused on crossover re-
gions between the regimes (i) and (ii) [8] and deviations from the behavior (ii)
' exp[−min(Γ, λ)t] due to action correlations in weakly chaotic systems [18].
Ref. [19] provides the only analytical investigation of fluctuations of ML(t) to
date. It shows that, for classically large perturbations, Γ � B, ML(t) is dom-
inated by very few exceptional events, so that a typical ψ0’s fidelity is better
described by exp[ln(ML)], and thatML(t) does not fluctuate after the Ehrenfest
time τE = λ−1| ln[N−1]|. We will see that these conclusions do not apply to the
regime (ii) of present interest. While some numerical data for the distribution
of ML(t) in the weak perturbation regime (i) were presented in Ref. [20], we
focus here on chaotic systems and investigate the behavior of σ2(ML) in the
semiclassical regime (ii).
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2.2 Semiclassical regime

2.2 Semiclassical regime

We first follow a semiclassical approach along the lines of Ref. [4]. We consider an
initial Gaussian wavepacket ψ0(x) = (πν2)−d/4 exp[ip0 · (x− r0)− |x− r0|2/2ν2],
and approximate its time-evolution by

〈r| exp(−iH0t)|ψ0〉 =

∫
dx
∑
s

KH0
s (r,x; t)ψ0(x), (2.2a)

KH0
s (r,x; t) =

C
1/2
s

(2πi)d/2
exp[iSH0

s (r,x; t)]. (2.2b)

The semiclassical propagator is expressed as a sum over classical trajectories
(labelled s) connecting r and x in the time t. For each s, the partial propagator
contains the action integral SHs (r,x; t) along s (where we included a Maslov
index), and the determinant Cs of the stability matrix [21]. We recall that this
approach allows to calculate the time evolution of smooth, localized wavepackets
up to algebraically long times ∝ O(Na)� τE (with a > 0) [22].

The fidelity then reads,

ML(t) =

∣∣∣∣∣
∫
dr1

2∏
i=1

∫
dxi ψ0(x1)ψ∗0(x2)

∑
s1,l1

KH0
s1

(x1, r1; t) [KH
l1

(x2, r1; t)]∗

∣∣∣∣∣
2

(2.3)

We want to calculateM2
L(t). Squaring Eq. (2.3), we see thatM2

L(t) is given by
eight sums over classical paths and twelve spatial integrations. Noting that ψ0 is
a narrow Gaussian wavepacket, we first linearize all eight action integrals around
r0,

Ss(x, r; t) ' Ss(r0, r; t)− (x− r0) · ps. (2.4)

We can then perform the Gaussian integrations over the eight initial positions
xi, and so forth. In this wayM2

L(t) is expressed as a sum over eight trajectories
connecting r0 to four independent final points rj over which one integrates,

M2
L(t) =

∫ 4∏
j=1

drj

4∑
si,li;i=1

ei(Φ
H0−ΦH)

(∏
i

(CsiCli)
1/2

(
ν2

π

)d/2
e−

ν2

2
(δp2

si
+δp2

li
)

)
, (2.5)

where we introduced δps = ps − p0.
The expression of Eq.( 2.5) is schematically described in Fig. 2.1. Classical

trajectories are represented by a full line if they correspond to H0 and a dashed
line for H, with an arrow indicating the direction of propagation. In the semiclas-
sical limit Ss � 1 (we recall that actions are expressed in units of ~), Eq. (2.5)
is dominated by terms which satisfy a stationary phase condition, i.e. where the
variation of the difference of the two action phases

ΦH0 = SH0
s1

(r0, r1; t)− SH0
s2

(r0, r2; t)− SH0
s3

(r0, r3; t) + SH0
s4

(r0, r4; t),(2.6a)
ΦH = SHl1 (r0, r1; t)− SHl2 (r0, r2; t)− SHl3 (r0, r3; t) + SHl4 (r0, r4; t), (2.6b)
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2 Mesoscopic fluctuations of the Loschmidt echo

Figure 2.1: Diagrammatic representation of the squared fidelityM2
L(t).

has to be minimized. These stationary phase terms are easily identified from the
diagrammatic representation as those where two classical trajectories s and l of
opposite direction of propagation are contracted, i.e. s = l, up to a quantum
resolution given by the wavelength ν. Setting s = l for two trajectories gener-
ated by two different Hamiltonians H = H0 + εV , is justified by the structural
stability of hyperbolic systems for not too large ε [24]. This is represented in
Fig. 2.2 by bringing two lines together in parallel. Contracting either two dashed
or two full lines allows for an almost exact cancellation of the actions, hence an
almost perturbation-independent contribution, up to a contribution arising from
the finite resolution ν with which the two paths overlap. However when a full
line is contracted with a dashed line, the resulting contribution still depends on
the action δSs = −ε

∫
s
dt V (q(t), t) accumulated by the perturbation along the

classical path s, spatially parametrized as q(t). Since we are interested in the
variance σ2(ML) = M2

L −ML
2 (this is indicated by brackets in Fig. 2.2) we

must subtract the terms contained in ML
2 corresponding to independent con-

tractions in each of the two subsets (s1, l1, s2, l2) and (s3, l3, s4, l4). Consequently,
all contributions to σ2(ML) require pairing of spatial coordinates, |ri − rj| ≤ ν,
for at least one pair of indices i, j = 1, 2, 3, 4. With these considerations, the
four dominant contributions to σ2(ML) are depicted on the right-hand side of
Fig. 2.2, and will be computed in the following subsections.

2.2.1 Classical contribution : Lyapunov regime

The first contribution, depicted on the right-hand side of Fig. 2.2, corresponds
to s1 = l1 ' s3 = l3 and s2 = l2 ' s4 = l4, which requires r1 ' r3, r2 ' r4. This
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2.2 Semiclassical regime

Figure 2.2: Diagrammatic representation of the averaged fidelity variance σ2(ML) and
the three time-dependent contributions that dominate semiclassically, together with the
contribution giving the long-time saturation of σ2(ML). Semiclassical subdominants
contributions are denoted by δσ2. (For a quick tutorial on diagrams see Appendix 2.6.)

gives a contribution

σ2
1 =

(
ν2

π

)2d
〈∫

dr1dr3

∑
C2
s1

exp[−2ν2δp2
s1

+ iδΦs1 ]δν(|r1 − r3|)

〉2

, (2.7)

where

δΦs1 = ε

∫ t

0

dt′∇V [q(t′)][qs1(t′)− qs3(t′)] (2.8)

arises from the linearization of V on s = s1, l1 ' l = s3, l3 [4, 12], and qs1(t′)
lies on s1 with q(0) = r0 and q(t) = r1. In Eq. (2.7) the integrations are re-
stricted by |r1 − r3| ≤ ν because of the finite resolution with which two paths
can be equated, this is also enforced by the presence of δΦs as we will see mo-
mentarily. For long enough times, t� t∗, the phases δΦs fluctuate randomly and
exhibit no correlation between different trajectories. This time t∗ is defined by
|ε
∫ t∗

0
dt V (qs(t), t)| = 1 for a typical trajectory s. One thus applies the Central

Limit Theorem (CLT)

〈exp [iδΦs]〉 = exp
[
−〈δΦ2

s〉/2
]
' exp

[
−ε2

∫
dt〈∇V (0) · ∇V (t)〉|r1 − r3|2/2λ

]
.

After performing a change of integration variable
∫
dr
∑

sCs =
∫
dp and using

the asymptotic expression Cs ' (m/t)d exp[−λt] [21], one gets

σ2
1 = α2(t)e−2λt, (2.9)

with α(t) = α0t
−d Θτλ(t), and Θτλ(t) the Heaviside step function centered in τλ,

see appendix 2.7 for more details.
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2 Mesoscopic fluctuations of the Loschmidt echo

2.2.2 Mixed contribution

The second dominant term is obtained from s1 = l1 ' s3 = l3, s2 = l2 and s4 = l4,
with r1 ' r3, or equivalently s1 = l1, s3 = l3 and s2 = l2 ' s4 = l4 with r2 ' r4.
Therefore this term comes with a multiplicity of two, and one obtains

σ2
2 = 2

(
ν2

π

)2d
〈∫

dr1dr3

∑
C2
s1

exp[−2ν2δp2
s1

+ iδΦs1 ]δν(|r1 − r3|)

〉

×
〈∫

dr2

∑
Cs2 exp[−ν2δp2

s2
+ iδSs2 ]

〉2

, (2.10)

again with the restriction |r1 − r3| ≤ ν. To calculate the first bracket on the
right-hand side of Eq. (2.10), we first average the complex exponential, assuming
again that enough time has elapsed so that actions are randomized. The CLT
gives 〈exp[iδSs2 ]〉 = exp(−1

2
〈δS2

s2
〉) with

〈δS2
s2
〉 = ε2

∫ t

0

dt̃

∫ t

0

dt̃′〈V [q(t′)]V [q(t′)]〉. (2.11)

Here q(t′) lies on s2 with q(0) = r0 and q(t) = r2. In hyperbolic systems,
correlators typically decay exponentially fast,

〈V [q(t′)]V [q(t′)]〉 ∝ exp[−η|t− t′|], (2.12)

with an upper bound on η set by the smallest positive Lyapunov exponent [25].
One thus obtains 〈δS2

s2
〉 = Γt. Usually Γ ∝ ε2 is identified with the golden rule

spreading of eigenstates of H over those of H0 [6, 8]. It is dominated by the
short-time behavior of 〈V [q(t′)]V [q(0)]〉. We stress however that for long enough
times, 〈δS2

s2
〉 ∝ t still holds to leading order even with a power-law decay of the

correlator 〈V [q(t′)]V [q(t′)]〉 ∝ |t − t′|−η, provided η is sufficiently large, η ≥ 1.
We note that similar expressions as Eq. (2.11) relating the decay ofML to time
integrations over the perturbation correlator have been derived in Refs. [7, 20]
using a different approach than the semiclassical method of Ref. [4] used here.
Further using the sum rule

(ν2/π)d
(∫

dr
∑

Cs exp[−ν2δp2
s]

)2

= 1, (2.13)

one finally obtains
σ2

2 = 2α(t)e−λte−Γt. (2.14)
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2.2 Semiclassical regime

2.2.3 Quantum contribution : FGR regime

The third and last dominant time-dependent term arises from either s1 = s3,
l1 = l3, s2 = l2, s4 = l4 and r1 ' r3, or s1 = l1, s2 = s4, l2 = l4, s3 = l3 and
r2 ' r4. It thus also has a multiplicity of two and reads

σ2
3 = 2

(
ν2

π

)2d 〈∫
dr1dr2dr3dr4

∑
Cs1Cl1Cs2Cs4δν(|r1 − r3|)

× exp[−ν2(δp2
s1

+ δp2
l1

+ δp2
s2

+ δp2
s4

)] exp[i(δSs2 − δSs4)]
〉
. (2.15)

The integrations, again, have to be performed with |r1− r3| ≤ ν. We incorporate
this restriction in the calculation by making the ergodicity assumption, setting〈∫

dr1dr2dr3dr4 . . . δν(|r1 − r3|)
〉

=
1

N

〈∫
dr1dr2dr3dr4 . . .

〉
ΘτE(t), (2.16)

which is valid for times larger than the Ehrenfest time [26]; for shorter times,
t < τE, the third diagram on the right-hand side of Fig. 2.2 goes into the second
one. One then averages the phases using the CLT to get

σ2
3 =

2

N
e−ΓtΘτE(t). (2.17)

2.2.4 Long-time saturation

Subdominant terms δσ2 are obtained by higher-order contractions (e.g. setting
r2 ' r4 in the second and third graphs on the right hand-side of Fig. 2.2). They
either decay faster, or are of higher order in N−1, or both. We only discuss here
the term which gives the long-time saturation at the ergodic value σ2(ML) '
N−2, the others will be detailed in the appendix 2.8. For t > τE, there is a
phase-free (and hence time-independent) contribution with four different paths,
resulting from the contraction s1 = s3, l1 = l3, s2 = s4, l2 = l4, and r1 ' r3,
r2 ' r4. Its contribution is sketched as the fourth diagram on the right-hand side
of Fig. 2.2. It gives

σ2
4 =

(
ν2

π

)2d 〈∫
dr1dr3

∑
Cs1Cl1 exp[−ν2(δp2

s1
+ δp2

l1
)]δν(|r1 − r3|)

〉2

.

From the sum rule of Eq. (2.13), and again invoking the long-time ergodicity of
the semiclassical dynamics, Eq. (2.16), one obtains the long-time saturation of
σ2(M),

σ2
4 =

1

N2
ΘτE(t). (2.18)

Note that for t < τE, this contribution does not exist by itself and is included in
σ2

1, Eq. (2.9).
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2 Mesoscopic fluctuations of the Loschmidt echo

2.2.5 Semiclassical results

According to our semiclassical approach, the fidelity has a variance given to
leading order by the sum of the four terms of Eqs. (2.9, 2.14, 2.17) and (2.18).

σ2
sc(t) = α2(t)e−2λt + 2α(t)e−(λ+Γ)t +

2

N
e−Γt ΘτE(t) +

1

N2
ΘτE(t). (2.19)

Eq. (2.19) is the central result of this chapter. We see that for short enough times,
i.e. before ergodicity and the saturation of ML(t) ' N−1 and σ2(ML) ' N−2

is reached, the first term on the right-hand side of Eq. (2.19) will dominate as
long as λ < Γ. For λ > Γ on the other hand, σ2(ML) exhibits a behavior
∝ exp[−(λ + Γ)t] for t < τE, turning into ∝ N−1 exp[−Γt] for t > τE. Thus,
contrary to ML, σ2(ML) allows to extract the Lyapunov exponent from the
second term on the right-hand side of Eq. (2.19) even when λ > Γ. Also one
sees that, unlike the strong perturbation regime Γ � B [19], ML(t) continues
to fluctuate above the residual variance ' N−2 up to a time ' Γ−1| lnN−1| in
the semiclassical regime B > Γ > ∆. For Γ � λ, Γ−1| lnN−1| � τE andML(t)
fluctuates beyond τE.

We conclude this section by mentioning that applying the Random Matrix
Theory (RMT) approach [27] to longer times reproduces Eq. (2.19) with λ →
∞. This reflects the fact that RMT is strictly recovered for τE = 0 only. The
derivation of these result is oultined in appendix 2.9

2.3 Short time behavior

The previous semiclassical approach breaks down at short times for which not
enough phase is accumulated to motivate a stationary phase approximation. This
time is very short, of the order of the inverse energy of the particle, i.e. O(N−a),
where a ≥ 0 depends on the system dimension and the energy-momentum rela-
tion. (For E ∝ p2 and in two dimensions, one has a = 1.)

To get the short-time behavior of σ2(ML), we instead Taylor expand the time-
evolution exponentials exp[±iH(0)t] = 1± iH(0)t−H2

(0)t
2/2+ ...+O(H5

(0)t
5). The

resulting expression for σ2(ML) contains matrix elements such as 〈ψ0|Ha
(0)|ψ0〉,

a = 1, 2, 3, 4, which one then calculates using a RMT approach [27] for the
chaotic quantized Hamiltonian H(0) [6, 9, 20]. Keeping non-vanishing terms of
lowest order in t, one has a quartic onset

σ2(ML) ' (Σ4 − Σ2
2
)t4

for t� Σ−1, with Σa ≡ [ε2(〈ψ0|V 2|ψ0〉 − 〈ψ0|V |ψ0〉2)]a/2. Random matrix theory
gives (Σ4−Σ2

2
) ∝ (ΓB)2, with a system-dependent prefactor of order one. From

this and Eq. (2.19) one concludes that σ2(ML) has a nonmonotonous behavior,
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2.4 Numerical simulations

i.e. it first rises at short times, until it decays after a time tc which one can
evaluate by solving σ2

sc(tc) = (ΓB)2t4c . In the regime B > Γ > λ one gets

tc =
( α0

ΓB

) 1
2

+d
[

1− λ
( α0

ΓB

) 1
2

+d 1

2 + d
+O

(
λ2
{ α0

ΓB

} 1
2+d

)]
, (2.20)

and thus

σ2(tc) ' (ΓB)2
( α0

ΓB

) 4
2+d

[
1− 4λ

2 + d

( α0

ΓB

) 1
2+d

+O
(
λ2
{ α0

ΓB

} 2
2+d

)]
. (2.21)

We explicitely took the t-dependence α(t) = α0t
−d into account. We estimate

that α0 ∝ (Γλ)−d/2 (See appendix 2.7) to get σ2(tc) ∝ (B/λ)2d/2+d � 1. Because
0 ≤ML(t) ≤ 1, this value is however bounded byML

2
(tc).

Since in the other regime Γ� λ, one has

tc =

(√
2N−1

ΓB

) 1
2
[

1− (2N−1)
1
4

4

(
Γ

B

) 1
2

+O

(
N−

3
4

{
Γ

B

} 3
4

)]
, (2.22)

and thus

σ2(tc) ' 2N−1

[
1− (2N−1)1/4

√
Γ

B

]
(2.23)

we predict that σ2(tc) grows during the crossover from Γ � λ to Γ > λ, until it
saturates at a non-self-averaging value, σ(tc)/ML(tc) ' 1, independently on N−1

and B, with possibly a weak dependence on Γ and λ.

2.4 Numerical simulations

To illustrate our results, we present some numerical data. We based our simula-
tions on the kicked rotator model with Hamiltonian [28]

H0 =
p̂2

2
+K0 cos x̂

∑
n

δ(t− n). (2.24)

We concentrate on the regime K > 7, for which the dynamics is fully chaotic
with a Lyapunov exponent λ = ln[K/2]. We quantize this Hamiltonian on a
torus, which requires considering discrete values pl = 2πl/N and xl = 2πl/N ,
l = 1, ...N , hence N−1 is the effective Planck‘s constant. The fidelity Eq. (2.1) is
computed for discrete times t = n, as

M(n) = |〈ψ0| (U∗δK)n (U0)n |ψ0〉|2 (2.25)
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2 Mesoscopic fluctuations of the Loschmidt echo

using the unitary Floquet operators U0 = exp[−i p̂2/2N−1] exp[−iK0 cos x̂/N−1]
and UδK having a perturbed Hamiltonian H with K = K0 + δK. The quantiza-
tion procedure results in a matrix form of the Floquet operators, whose matrix
elements in x−representation are given by

(U0)l,l′ =
1√
N

exp

[
i
π(l − l′)2

N

]
exp

[
−i

NK0

2π
cos

2πl′

N

]
.

The local spectral density of eigenstates of UδK over those of U0 has a Lorentzian
shape with a width Γ ∝ (δKN)2 (there is a weak dependence of Γ in K0) in the
range B = 2π & Γ > ∆ = 2π/N). This is illustrated in the inset to Fig. 2.6.

Numerically, the time-evolution of ψ0 in the fidelity, Eq. (2.25), is calculated
by recursive calls to a fast-Fourier transform routine. Thanks to this algorithm,
the matrix-vector multiplication U0,δKψ0 requires O(N lnN) operations instead
of O(N2), and thus allows to deal with very large system sizes. Our data to be
presented below correspond to system sizes of up to N ≤ 262144 = 218 which
allowed us to collect enough statistics for the calculation of σ2(ML).

We now present our numerical results. Fig. 2.3 shows the distribution P (ML)
of ML(t) in the regime Γ < λ for different times. It is seen that even though
P (ML) is not normally distributed, it is still well characterized by its variance.
A calculation of σ2(ML) is thus meaningful.

Figure 2.3: Distribution P (ML) of the fidelity computed for 104 different ψ0 for N =
32768, δK = 5.75 · 10−5 (i.e. Γ ' 0.09), at times t = 25, 50, 75 and 100 kicks.
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2.4 Numerical simulations

We next focus on σ2 in the golden rule regime with Γ� λ. Data are shown in
Fig. 2.4. One sees that σ2(ML) first rises up to a time tc, after which it decays.
The maximal value σ2(tc) in that regime increases with increasing perturbation,
i.e. increasing Γ. Beyond tc, the decay of σ2 is very well captured by Eq. (2.17),
once enough time has elapsed. This is due to the increase of σ2(tc) above the self-
averaging value ∝ N−1 as Γ increases. Once the influence of the peak disappears,
the decay of σ2(ML) is very well captured by σ2

3 given in Eq. (2.17), without any
adjustable free parameter. Finally, at large times, σ2(ML) saturates at the value
given in Eq. (2.18).

0 100 200 300
t

10
-9

10
-7

10
-5

10
-3

σ2 (t
)

Figure 2.4: Variance σ2(ML) of the fidelity versus. t for weak Γ � λ, N = 16384
and 105 · δK = 5.9, 8.9 and 14.7 (thick solid lines), N = 4096 and δK = 2.4 · 10−4

(dashed line) and N = 65536 and δK = 1.48 · 10−5 (dotted-dashed line). All data
have K0 = 9.95. The thin solid lines indicate the decays = 2N−1 exp[−Γt], with
Γ = 0.024(δK · N)2 (there is no adjustable free parameter). The variance has been
calculated from 103 different initial states ψ0.

As δK increases, so does Γ and σ2(ML) decays faster and faster to its sat-
uration value until Γ & λ. Once Γ starts to exceed λ, the decay saturates at
exp(−2λt). This is shown in Fig. 2.5, which corroborates the Lyapunov decay
of σ2(ML) predicted by Eqs. (2.9). Note that in Fig. 2.5, the decay exponent
differs from the Lyapunov exponent λ = ln[K/2] due to the fact that the fi-
delity averages 〈Cs〉 ∝ 〈exp[−λt]〉 6= exp[−〈λ〉t] over finite-time fluctuations of
the Lyapunov exponent [19]. At long times, σ2(ML) saturates at the ergodic
value σ2(ML, t → ∞) = N−2, as predicted. Finally, it is seen in both Figs. 2.4
and 2.5 that tc decreases as the perturbation is cranked up. Moreover, there is no
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2 Mesoscopic fluctuations of the Loschmidt echo

N -dependence of σ2(tc) at fixed Γ. These two facts are at least in qualitative, if
not quantitative, agreement with Eq. (2.20). The behavior of σ2(tc) as a function

0 5 10 15 20
t
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-11
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-8

10
-5

10
-2

σ2 (t
) 

 

Figure 2.5: Variance σ2(ML) of the fidelity versus t in the lyapunav regime with
Γ & λ for N = 65536, K0 = 9.95 and δK ∈ [3.9 · 10−5, 1.1 · 10−3] (open symbols), and
N = 262144, K0 = 9.95, δK = 5.9 ·10−5 (full triangles). The solid line is ∝ exp[−2λ1t],
with an exponent λ1 = 1.1, smaller than the Lyapunov exponent λ = 1.6, because
the fidelity averages 〈exp[−λt]〉 (see text). The two dashed lines give the long time
saturation N−2. In all cases, the variance has been calculated from 103 different initial
states ψ0.

of Γ is finally shown in Fig. 2.6. First we show in the inset the behavior of the
local spectral density

ρ(ε) =
∑
α

|〈a|α〉|2δ(ε− εα + εa), (2.26)

of eigenstates {|a〉} (with quasienergy eigenvalues εa) of U0 over the eigenstates
{|α〉} (with quasienergy eigenvalues εα) of UδK (Latin (Greek) letter is reserved
for the unperturbed (pertutrbed) dynamics). As mentioned above, ρ(ε) has a
Lorentzian shape with a width given by Γ ' 0.024(δK · N)2. Having extracted
the N− and δK−dependence of Γ, we next plot in the main part of Fig. 2.6 the
maximum σ2(tc) of the fidelity variance as a function of the rescaled width Γ/B
of ρ(ε). As anticipated, σ2(tc) first increases with Γ until it saturates at a value
& 0.1, independently on N−1, Γ or λ, once Γ ' B. These data confirm Eq. (2.21)
and the accompanying reasoning. Note that once Γ exceeds the bandwidth B,
ρ(ε) is no longer Lorentzian, and the decay of both ML(t) and σ2(ML) is no
longer exponential [6].
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Figure 2.6: Maximal variance σ2(tc) as a function of Γ/B, for K0 = 10.45, N = 4096,
16384, 65536 and 262144 (empty symbols) and K0 = 50.45, N = 16384 (full circles).
The variance has been calculated from 103 different initial states ψ0. Inset: local spectral
density of states ρ(ε) of eigenstates of an unperturbed kicked rotator with K0 = 12.56
over the eigenstates of a perturbed kicked rotator with K = K0 + δK, δK = 5 · 10−3.
System sizes are N = 250 (diamonds), N = 500 (circles) and N = 1000 (squares). The
solid lines are Lorentzian with widths Γ ' 0.0125, 0.05 and 0.0124 in agreement with
the formula Γ = 0.024 (δK ·N)2.

2.5 Conclusions

In conclusion we have applied both a semiclassical and a RMT approach to calcu-
late the time-dependent variance σ2(ML) of the fidelityML(t) of Eq. (2.1). We
found that σ2(ML) exhibits a nonmonotonous behavior with time, first rises al-
gebraically up to a critical time tc, before decaying exponentially at larger times.
To leading order in the effective Planck’s constant N−1, this decay is given by
the sum of a classical term ' exp[−2λt], a quantum term ' 2N−1 exp[−Γt] and a
mixed term ' 2 exp[−(Γ+λ)t]. Compared to the behavior of the average fidelity,
this allows for the extraction of the classical Lyapunov exponent λ in a larger
parameter range. Finally the maximum value of σ2(ML) is characterized by a
non-self-averaging behavior when the perturbation becomes sizable against the
system’s Lyapunov exponent.
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2 Mesoscopic fluctuations of the Loschmidt echo

2.6 Appendix A: Tutorial on diagrams

The schematic description used in this chapter has the advantage of facilitating
the reading and the determination of the semiclassical contribution involved in
the variance. All dominant and subdominant contributions obtained are built
with the help of the six fundamentals diagrams listed in Fig. 2.7.

Figure 2.7: The fundamental semiclassical diagrams .

The rule to construct more sophisticated diagrams is very simple, we can
form any combination of theses fundamental diagrams, the only requirement is
to preserve the symmetry between forward and backward propagation path and
fix the total number of path to eight for the variance. We note here that the
semiclassical averaged Loschmidt echo can be obtained in the same way if we
fix the total number of paths to four, like in Fig. 2.8. The analytical evaluation
of the composite diagrams is straightforward, it is given by the product of the
analytical value of the fundamental diagram components involved.
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2.7 Appendix B : Lyapunov prefactor α

Figure 2.8: Diagrammatic representation of the averaged 〈ML〉 fidelity, and the two
time-dependent contributions (Lyapunov term α(t)e−λtand Fermi Golden rule term
e−Γt), together with the contribution giving the long-time saturation of 〈ML〉.

2.7 Appendix B : Lyapunov prefactor α

The exact formal expression of the Lyapunov prefactor α(t) depends on the force
correlator like,

α(t) =

(
λν2m2

t2ε2
∫ t

0
dτ 〈∇V (0)∇V (τ)〉

) d
2

. (2.27)

Setting the Lyapunov time equal to a few times the time of flight through
a correlation length of the perturbation potential, as is the case for billiards
or maps, we can express the force correlator as a function of the perturbation
correlator, this yields,

ε2
∫
dτ 〈∇V [q(0)]∇V [q(τ)]〉 ∝ Γ

(VFλ−1)2 .

Consequently the prefactor α(t), after the use of the Heisenberg uncertainty
relation νpF = 2πN−1, becomes,

α(t) ∝
(
λΓ

t2

) d
2

= α0t
−d, (2.28)

We note that the presence of the divergence at short time is essential. It is
related to the assymptotic form of the Cs that delivers the correct short time
behavior of the quantum propagator limt7→0K(r0, r,t) = δ(r0 − r). Although the
divergence of the prefactor is not a real problem in the semiclassical regime, we
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2 Mesoscopic fluctuations of the Loschmidt echo

Figure 2.9: Diagrammatic representation of the subdominants contribution of the av-
eraged fidelity variance σ2(ML). (For a quick tutorial on diagrams see Appendix B.)

will determine a cutoff time. Since the Lyapunov contribution results of a station-
ary approximation, this approximation is valid only if we accumulated enough
phase, typically the inequality 〈δΦ2

s1
〉 ≥ 1 must be fulfilled. If we substitute

δ2r(t) = exp[2λt]ν2 in the residual action δΦ2
s1
, we can define the minimum time

after which we can get the Lyapunov regime as,

τλ =
1

λ
ln

[
λ

νG

]
. (2.29)

where G =
∫ t

0
dτ 〈∇V (0)∇V (τ)〉 is the average value of the force correlator.

2.8 Appendix C : Subdominant semiclassical con-
tributions

For the sake of completeness we present here the five main subdominant semiclas-
sical contributions to the averaged fidelity variance. These terms are obtained by
additional path contractions and/ or require a supplementary ergodic assump-
tion. As more restriction must be fulfilled this terms can be firstly neglected in
almost investigation. These contributions denoted δσ2 in the Fig. 2.2 are depicted
on the right-hand side of Fig. 2.9.

2.8.1 Full contraction contribution.

The first diagram on Fig. 2.9 corresponds to a full contraction of all paths, s1 =
l1 ' s2 = l2 ' s3 = l3 ' s4 = l4 which requires r1 ' r2 ' r3 ' r4.This gives a
contribution,

δσ2
1 =

(
ν2

π

)2d
〈∫

dr1dr2dr3dr4

∑
C4
s1

4∏
j=2

δν(r1 − rj) exp[−4ν2δp2
s1

+ iδΛs1 ]

〉
,

(2.30)
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where

δΛs =

∫ t

0

dt′ε∇V [q(t′)] {[qs(t′)− ql(t
′)] + [qs(t

′)− ql′(t
′)]− [qs(t

′)− ql′′(t
′)]}

(2.31)
is the extra phase arissing from the linearization of the perturbation V on s =
s1, l1 ' l = s2, l2 ' l′ = s3, l3 ' l′′ = s4, l4, and qs1(t′) lies on s1 with qs1(0) = r0

and qs1(t) = r1. In Eq. (2.30) the integrations are restricted by |r1 − r2,3,4| ≤ ν.
Then we apply the CLT, and note that cross terms can be neglected

〈exp[iδΛs1 ]〉 = exp−
1
2〈δ2Λs1〉 ' exp

[
− ε

2

2λ

∫
dτ 〈∇V (0)∇V (τ)〉

(
4∑
j=2

|r1 − rj|2
)]

.

After performing a change of integration variable
∫
dr
∑

sCs =
∫
dp and replac-

ing the remaining Cs by their asymptotic expression one gets,

δσ2
1 = c1(t)e−3λt, (2.32)

with c1(t) = 2
d
2α3(t).

2.8.2 Triple contractions contributions

Now we consider a triple contraction of pairs of paths. Theses kind of terms are
depicted by the second diagram on Fig. 2.9. The contraction s1 = l1 ' s2 = l2 '
s3 = l3 and s4 = l4 which requires r1 ' r2 ' r3 is one of these triple contractions.
Since we have a freedom in choosing the non contracted pair of path, this diagram
comes with a multiplicity of four. This gives a contribution,

δσ2
2 = 4

(
ν2

π

)2d
〈∫

dr1dr2dr3

∑
C3
s1

3∏
j=2

δν(r1 − rj) exp[−3ν2δp2
s1

+ iδΞs1 ]

〉

×
〈∫

dr4

∑
Cs4 exp[−ν2δp2

s4
+ iδSs4 ]

〉
, (2.33)

where δΞs1 is the extra phase given by the linearization of the perturbation V on
s = s1, l1 ' l = s2, l2 ' l′ = s3, l3,

δΞs =

∫ t

0

dt′ εV [qs(t
′)] + ε∇V [qs(t

′)] {[qs(t′)− ql(t
′)] + [qs(t

′)− ql′(t
′)]} ,

(2.34)
qs1(t′) lies again on s1 with qs1(0) = r0 and qs1(t) = r1. In Eq. (2.30) the
integration are restricted by |r1 − r2,3| ≤ ν. Then we apply the CLT and note
that cross terms can again be neglected,〈
eiδΞs1

〉
= e−

1
2〈δΞ2

s1〉 ' exp

[
−
〈
δS2

s1

〉
2
− ε2

2λ

∫
dτ 〈∇V (0)∇V (τ)〉

(
3∑
j=2

|r1 − rj|2
)

−ε
2

λ

∫
dτ 〈V (0)∇V (τ)〉 ·

(
3∑
j=2

(r1 − rj)

)]
.
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After the change of variable and the replacement of Cs by their asymptotic
expressions, one finally obtains

δσ2
2 = 4c2(t) e−(2λ+Γ)t, (2.35)

with c2(t) = c2α
2(t),

c2 =

(
4

3

) d
2

exp

[
d
ε2

λ

(∫
dτ | 〈V (0)∇V (τ)〉 |

)2∫
dτ 〈∇V (0)∇V (τ)〉

]
,

which reduces to, c2 =
(

4
3

) d
2 exp

[
d
2

Γ
λ

]
under the same assumption as in ap-

pendix 2.7.

2.8.3 Subdominant classical contribution

The third diagram depicted on Fig. 2.9 is related to the quantum contribution σ3.
Only one additional contraction is added. However this last one kills the quantum
part of the diagrams and replaces it by a Lyapunov contribution. This term is
obtained form s1 = s3, l1 = l3, s2 = l2 ' s4 = l4 or equivalently s1 = l1 ' s3 = l3,
l2 = l4 and s2 = s4, both set of contractions require r1 ' r3 and r2 ' r4. This
gives the contributions,

δσ2
3 = 2

(
ν2

π

)2d〈∫
dr1dr3

∑
Cs1Cl1 exp[−ν2(δp2

s1
+ δp2

l1
)]δν(|r1 − r3|)

〉
×
〈∫

dr2dr4

∑
C2
s4

exp[−ν2δp2
s4

+ iδΦs4 ]δν(|r2 − r4|)
〉
, (2.36)

We recognize that Eq. (2.36) is the product of the long time saturation con-
tribution and the Lyapunov contribution of the averaged Loschmidt echo thus,

δσ2
3 =

2α(t)

N
e−λt ΘτE(t) (2.37)

Since only one λ is present in the exponent, this term seems to be dominant
compared to σ2

1 = α2(t) exp[−2λt]. However this interpretation is incorrect, in-
deed δσ2

3 supersedes σ2
1 only after the Ehrenfest time (this is enforced by the

presence of the Heaviside function) and after the Ehrenfest time δσ2
3 reduced to

the saturation value and thus has no influence on the variance.

2.8.4 Subdominant quantum contributions

The two last diagrams correspond to a purely subdominant quantum contribu-
tion. Theses contributions are obtained equivalently by the RMT calculus (see
appendix 2.9).
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The former corresponds to a cross contraction of one unperturbed (perturbed)
path of the set (s1, l1, s2, l2) with one perturbed (unperturbed) path of the set
(s3, l3, s4, l4). These correspond to the contraction s1 = l4, l1 = s4, s2 = l2 and
s3 = l3 with r1 ' r4 or s1 = l1, s2 = l3, l2 = s3 and s4 = l4 with r2 ' r3. We get,

δσ2
4 = 2

(
ν2

π

)2d〈∫
dr2

∑
Cs2 exp[−ν2δp2

s2
+ iδSs2 ]

〉2

(2.38)

×
〈∫

dr1dr4

∑
C2
s1

exp
[
−ν2δp2

s1
+ i (δSs1 + δSs4)

]
δν(|r1 − r4|)

〉
,

We recognized the first integral as the FGR contribution and the second in-
tegral has to be performed with the restriction |r1 − r4| ≤ ν, with the use of the
ergodic assumption〈∫

dr1dr4 · · · δν(|r1 − r4|)
〉

=
1

N

〈∫
dr1dr4 · · ·

〉
.

We finally get,

δσ2
4 =

2

N
e−2Γt ΘτE(t) (2.39)

The last diagram corresponds to the full cross contraction between perturbed
and unperturbed paths taken in the sets (s1, l1, s2, l2) (s3, l3, s4, l4). We have
only one possibility namely s1 = l4, l1 = s4, s2 = l3 and l2 = s3, we have thus

δσ2
5 =

(
ν2

π

)2d〈∫
dr1dr4

∑
C2
s1

exp[−ν2δp2
s1

+ i (δSs1 + δSs4)]δν(|r1 − r4|)
〉2

,(2.40)

which leads to,

δσ2
5 =

1

N2
e−2Γt ΘτE(t) (2.41)

2.8.5 Summary of subdominant contributions

The semiclassical subdominant contributions are given by the sum of five terms
of the Eqs. (2.32, 2.35, 2.37, 2.39) and (2.41)

δσ2 = c1(t)e−3λt + 4c2e
−(Γ+2λ)t +

2α(t)

N
e−λt +

2

N
e−2Γt ΘτE(t) +

1

N2
e−2Γt ΘτE(t) (2.42)

2.9 Appendix D : Random matrix derivation

Here we present the random matrix derivation of the fluctuation of the Loschmidt
echo. At first we denote the set of eigenstates of the unperturbed hamiltonian
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H0 by {|a〉} (with the quasienergy eigenvalues εa) and the eigenstates of the per-
turbed hamiltonian H by {|α〉} (with quasienergy eigenvalues εα). Latin (Greek)
letters are thus reserved for the unperturbed (perturbed) dynamics. We note
that under the sole assumption that the two hamiltonians are classically chaotic,
RMT assume that both sets of eigenstates are rotationally invariant [27]

In the traditional RMT treatement [7, 29], the derivation is based on a ex-
pansion of the initial state |ψ0〉 over either the eigenbasis of the unperturbed
hamiltonian or over the eigenbasis of the perturbed hamiltonian. Here we use an
mixed basis, this will permit us to clearly illustrate the equivalence between the
random matrix and the semiclassical derivations.

We thus let ,
|ψ0〉〈ψ0| =

∑
α,a

ηαa |a〉〈α| (2.43)

Since we will perform an ensemble average, we recall that RMT implies that
the averages are independent of the initial state ψ0. Consequently we note the
averaging rules verified by the complex number ηαiai according to a broken time
symmetry (GUE ensemble).

ηα1a1 = N−1 δα1a1 (2.44a)
ηα1a1η

∗
α2a2

= N−2 (δα1a1 δα2a2 + δα1α2 δa1a2) (2.44b)

ηα1a1η
∗
α2a2

ηα3a3η
∗
α4a4

= N−4

( ∑
i 6=j 6=k 6=l

δM1i
δM2j

δM3k
δM4l

)
, (2.44c)

where δ is the Kronecker delta and for the last line,

M =


α1

a2

α3

a4

 · ( a1 α2 a3 α4

)
=


α1a1 α1α2 α1a3 α1α4

a1a2 α2a2 a2a3 α4a2

α3a1 α2α3 α3a3 α3α4

a1a4 α2a4 a3a4 α4a4


is the 4× 4 matrix of all permitted indices contractions.

Now we note that the averaged squared fidelity is given by,

M2
L(t) =

∑
{α}, {β}, {a}, {b}

ηα1a1η
∗
α2a2

exp

[
−i

4∑
j=1

(−1)j∆βjbj

]
(2.45)

×
2∏
i=1

〈α2i−1|β2i−1〉〈β2i−1|b2i−1〉〈b2i−1|α2i−1〉 〈α2i|β2i〉〈β2i|b2i〉〈b2i|α2i〉,

where we let ∆βjbj = Eβj − Ebj . According to Eq. (2.44c), we can perform 24
contractions, as we are interested in the variance σ2(ML) we must subtract the
four terms contained inML

2 corresponding to independent contractions in each

62



2.9 Appendix D : Random matrix derivation

of the two subsets (α1, a1, α2, a2) and (α3, a3, α4, a4). We thus end with 20
contractions, that split into 6 kinds of contributions. Consequently the variance
can be rewritten as,

σ2
RMT(t) =

∑
{α}, {β}, {a}, {b}

exp

[
−i

4∑
j=1

(−1)j∆βjbj

]
(2.46)

×
(

2 δα1α4 δa1a4 δα2a2 δα3a3 + δα1α4 δα2α3 δa1a4 δa2a3

+ 8 δα1a3 δα2α3 δa1a2 δα4a4 + 6 δα1a3 δα2a4δa1a2δα3α4

+ 2 δα1a1 δα2a4 δα3a3 δα4a2 + δα1a3 δα2a4 δα3a1 δα4a2

)

×
2∏
i=1

〈α2i−1|β2i−1〉〈β2i−1|b2i−1〉〈b2i−1|α2i−1〉 〈α2i|β2i〉〈β2i|b2i〉〈b2i|α2i〉,

Using that at large perturbation strength, |〈α|a〉|2 becomes Lorentzian,

|〈α|a〉|2 =
Γ/2π

(Eα − Ea)2 + Γ2/4
, (2.47)

with a width Γ ' |〈α0|Σ|β〉|2/∆ given by the golden rule. This leads to

σ2
RMT =

2

N
e−Γt +

1

N2
+

8

N2
e−Γt +

6

N3
+

2

N
e−2Γt +

1

N2
e−2Γt (2.48)

This establishes a one to one correspondence between the semiclassical treat-
ment and the RMT one in the limit of a zero Ehrenfest time. Indeed we identified
the first term of Eq. (2.48) as the quantum contribution, the second as the satu-
ration. All The other terms correspond to the main subdominant contributions.
The two last terms correspond exactly to the set of the subdominant quantum
contributions. Finally the third term corresponds to the triple contraction contri-
bution, the fourth gives the fully contracted contributions at their ergodic values,
where we replaced exp [−λt] by N−1.

We emphasize that this perfect mapping is enforced by the exact correspon-
dence between the RMT contraction and the semi-classical path contraction.
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CHAPTER 3

Echoes in interacting systems :
The Boltzmann echo

3.1 From Loschmidt echo to Boltzmann echo

One of the central problems faced by the founders of statistical physics in the last
decades of the nineteenth century was to reconcile the time-asymmetric evolu-
tion of macroscopic systems with time-symmetric microscopic dynamics [1]. They
came up with a probabilistic solution to this irreversibility paradox. Macroscopic
states, they argued, are superpositions of an enormous amount of microscopic
states, the majority of them evolving in accordance with the second law of ther-
modynamics. The likelihood that a macroscopic state violates the second law of
thermodynamics is thus minute, typically exponentially small in the number of
atoms it contains. Irreversibility at the macroscopic level follows “by assuming
a very improbable (i.e. with a very low entropy) initial state of the entire uni-
verse” [2, 3]. This mechanism works equally well in either quantum or classical
systems.

Simple mechanisms of irreversibility already exist at the microscopic level in
chaotic (in particular mixing) classical systems with few degrees of freedom. As
a matter of fact, mixing ensures that, after a sufficiently long evolution time,
two initially well separated phase-space distributions will evenly fill phase-space
cells of any given size. Since phase-space points can never be located with infi-
nite precision, irreversibility sets in after mixing has occurred on a scale smaller
than the phase-space resolution scale. This mechanism cannot be carried over
to quantum systems, however, mostly because the Schrödinger time-evolution is
unitary, in either real- or momentum-space. Microscopic quantum systems are
generically stable under time-reversal, even when their classical counterpart is
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3 Echoes in interacting systems : The Boltzmann echo

irreversible [4]. Peres instead suggested to investigate quantum irreversibility at
the microscopic level through the fidelity

ML(t) = |〈ψ0 |exp[iHt] exp[−iH0t]|ψ0〉|2 , (3.1)

with which a quantum state ψ0 can be reconstructed by inverting the dynamics
after a time t with a perturbed Hamiltonian H = H0 + Σ [5]. Because of its
connection with the gedanken time-reversal experiment proposed by Loschmidt
in his argument against Boltzman’s H-theorem [1],ML(t) has been dubbed the
Loschmidt Echo by Jalabert and Pastawski [6].

Echo experiments abound in nuclear magnetic resonance [7, 8], optics [9],
atomic [10], and condensed matter physics [11]. Fundamentally, they are all based
on the same principle of a sequence of electromagnetic pulses whose purpose it
is to reverse the sign of the Hamiltonian, H0 → −H0, by means of effective
changes of coordinate axes [7]. Imperfections in the pulse sequence result instead
in H0 → −H0−Σ, and one therefore expects the Loschmidt Echo to capture the
physics of the experiments. This line of reasoning however neglects the fact that
the time-reversal operation affects at best only part of the system, for instance
because the system is composed of so many degrees of freedom, that the time
arrow can be inverted only for a fraction of them. This is generically the case, as
any system is coupled to an external, uncontrolled environment. To capture the
physics of echo experiments one thus has to take into account that,

(i) the system decomposes into two interacting subsystems 1 and 2;

(ii) the initial state of the controlled subsystem 1 is prepared, i.e. well defined,
and its final state is measured and compared to the initial one;

(iii) both the initial and final states of the uncontrolled subsystem 2 are un-
known;

(iv) the Hamiltonian of system 1 is time-reversed with some tunable accuracy,
however both the Hamiltonian of system 2 and the interaction between the
two subsystems are uncontrolled.

We therefore propose to investigate the physics of echo experiments by means of
the following partial fidelity (we set ~ ≡ 1)

MB(t) =
〈〈
ψ1

∣∣Tr2

[
e−iHbte−iHf tη0e

iHf teiHbt
] ∣∣ψ1

〉〉
, (3.2)

where the forward and backward (partially time-reversed) Hamiltonians read

Hf = H1 ⊗ I2 + I1 ⊗H2 + Uf , (3.3a)
Hb = −[H1 + Σ1]⊗ I2 + I1 ⊗ [H2 + Σ2] + Ub. (3.3b)

The experiment starts with an initial density matrix η0 = |ψ1〉〈ψ1| ⊗ ηenv, which
is propagated forward in time with Hf . After a time t, we invert the dynamics
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of system 1. The imperfection in that time-reversal operation is modelled by Σ1,
while Σ2 allows for system 2 to be affected by this operation (we will see below
that tracing over the degrees of freedom of system 2 makesMB(t) independent
of either H2 or Σ2). We leave open the possibility that the interaction between
the two systems is affected by the time-reversal operation, i.e. Uf may or may
not be equal to Ub. Because one has no control over system 2, the corresponding
degrees of freedom are traced out. For the same reason, the outmost brackets in
Eq. (3.2) indicate an average over ηenv. We name MB(t) the Boltzmann Echo
to stress its connection to Boltzmann’s counterargument to Loschmidt that time
cannot be inverted for all components of a system with many degrees of freedom.

3.2 Semiclassical approach

We now present our calculation, and define the regime of validity. We let ΓΣ1 and
Γf,b the classical correlators for Σ1 and Uf,b respectively (see below). Together
with the one- and two-particle level spacings δ1,2 and bandwidths B1,2, they define
the range of validity of the semiclassical approach as δ1 < ΓΣ1 < B1, δ2 < Γf,b <
B2 [12, 13]. Equivalently, they can be regarded as the golden rule width of the
Lorentzian broadening of the levels of H1 induced by Σ1 and Uf,b respectively [12].

As a starting point, we take chaotic one-particle Hamiltonians H1,2, and a
smooth interaction potential U which depends only on the distance between
the particles. We assume that it is characterized by a typical classical length
scale, which in particular is larger than the de Broglie wavelength ν of parti-
cle 1. For pedagogical reasons, we take narrow Gaussian wavepackets for the
initial state of both particles, ψi(q) = 〈q|ψi〉 = (πν2)−di/4 exp[ipi · (q − ri) −
|q − ri|2/2ν2]. We note however that within our semiclassical approach, more
general states can be taken for the environment, such as random pure states
ηenv =

∑
αβ aαa

∗
β|φα〉〈φβ|, random mixtures ηenv =

∑
α |aα|2|φα〉〈φα| or thermal

mixtures ηenv =
∑

n exp [−βEn] |n〉〈n|. Arbitrary initial states for both subsys-
tems can be considered within the RMT approach.

From Eqs. (3.2) and (3.3) we can rewriteMB(t) as

MB(t) =

∫
dz2

∣∣∣∣∣
∫ 2∏

i=1

dxi

3∏
j=1

dqjψ1(q1)ψ2(q2)ψ†1(q3)

×
〈
q3, z2

∣∣e−iHbt
∣∣x1,x2

〉 〈
x1,x2

∣∣e−iHf t
∣∣q1,q2

〉 ∣∣∣∣∣
2

. (3.4)

We next introduce the semiclassical propagators (a = f, b labels forward or back-
ward evolution; ε(f) = −ε(b) = 1),

〈
x1,x2

∣∣e−iHat
∣∣q1,q2

〉
=
∑
s1, s2

C1/2
s1,s2

e
i
n
ε(a)S

(a)
s1

(q1,x1;t)+S
(a)
s2

(q2,x2;t)+S(a)
s1,s2

(q1,x1;q2,x2;t)
o
, (3.5)
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Figure 3.1: Schematic description of the Boltzmann echo MB(t). Each system is char-
acterized by a disk. Classical trajectories are represented by a full line if they correspond
to an unperturbed propagation H1,2 and a dashed line for an perturbed propagation
H1,2 + Σ1,2, with an arrow indicating the direction of propagation.

which are expressed as sums over pairs of classical trajectories, labeled si (li)
for particle i connecting qi to xi in the time t with dynamics determined by
Hi or Hi + Σi. Under our assumption of a classically weak coupling, classical
trajectories are only determined by the one-particle Hamiltonians. Each pair
of paths gives a contribution containing one-particle action integrals denoted
by Ssi (where we included the Maslov indices) and two-particle action integrals
S(f,b)
s1,s2 =

∫ t
0

dτUf,b[qs1(τ),qs2(τ)] accumulated along s1 and s2 and the determinant
Cs1,s2 = Cs1Cs2 of the stability matrix corresponding to the two-particle dynamics
in the (d1 + d2)−dimensional space [15].

Our choice of initial Gaussian wave packets allows us to linearize the one-
particle action integrals in qj − ri. We furthermore set S(a)

s1,s2(q1,x1; q2,x2; t) '
S(a)
s1,s2(r1,x1; r2,x2; t), keeping in mind that r1 and r2, taken as arguments of the

two-particle action integrals, have an uncertainty O(ν). We then perform six
Gaussian integrations to get

MB(t) = (4πν2)
2d1+d2

2

∫ 2∏
i,j=1

dxidyjdz2

×
∑
paths

As1As2A†s3A
†
s4
A†l1Al3C

1
2
l2
C

1
2
†

l4
ei{Φ1+Φ2+Φ12}, (3.6)

where we wrote Asi = C
1
2
si exp[−ν2

2
(psi−pi)

2]. Paths with odd (even) indices cor-
respond to system 1 (2). A schematic representation of the semiclassical Boltz-
mann echo is given in Fig. 3.1.

The semiclassical expression forMB(t) is obtained by enforcing a stationary
phase condition on Eq. (3.6), i.e. keeping only terms which minimize the variation
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of the three action phases

Φ1 = S(f)
s1

(r1,x1; t)− S(b)
l1

(r1,x1; t)− S(f)
s3

(r1,y1, t) + S
(b)
l3

(r1,y1; t), (3.7a)

Φ2 = S(f)
s2

(r2,x2; t) + S
(b)
l2

(x2, z2; t)− S(f)
s4

(r2,y2; t)− S(b)
l4

(y2, z2; t), (3.7b)

Φ12 = S(f)
s1,s2

+ S(b)
l1,l2
− S(f)

s3,s4
− S(b)

l3,l4
. (3.7c)

The semiclassically relevant terms are identified by path contractions. The first
stationary phase approximation over Φ1 corresponds to contracting unperturbed
paths with perturbed ones, s1 ' l1 and s3 ' l3. This pairing is allowed by
our assumption of a classically weak Σ1 [16]. The phase Φ1 is then given by
the difference of action integrals of the perturbation Σ1 on paths s1 and s3,
Φ1 = δSs1(r1,x1; t)− δSs3(r1,y1, t), with δSsi =

∫ t
0

dτΣ1[qsi(τ)]. Here, qsi(τ) lies
on si with qsi(0) = r1 and qs1(t) = x1, qs3(t) = y1. A similar procedure for Φ2

requires s2 ' s4 and l2 ' l4, and thus x2 ' y2. These contractions lead to an
exact cancellation Φ2 = 0, and one gets

MB(t) = (4πν2)
2d1+d2

2

∫ 2∏
i,j=1

dxidyjdz2 δν(x2 − y2)

×
∑
|As1|2|As2|2|As3|2|Cl2|e

i[δSs1−δSs3+Φ12.]. (3.8)

Here, δν(x2−y2) restricts the spatial integrations to |x2−y2| ≤ ν because of the
finite resolution with which two paths can be equated.

The semiclassical Boltzmann Echo (3.8) is dominated by two contributions.
The first contribution is non diagonal in that all paths are uncorrelated. Applying
the central limit theorem one has

〈exp [i {δSs1 − δSs3 + Φ12}]〉 = exp
[
−
〈
δS2

s1

〉
−
〈
(S(f)

s1,s2
)2
〉
−
〈
(S(b)

s1,s2
)2
〉]
,

where

〈δS2
s1
〉 =

∫ t

0

dτdτ ′〈Σ1[qs1(τ)]Σ1[qs1(τ ′)]〉

and 〈
(S(f,b)

s1,s2
)2
〉

=

∫ t

0

dτ dτ ′〈Uf,b[qs1(τ),qs2(τ)]Uf,b[qs1(τ ′),qs2(τ ′)]〉.

In chaotic systems, correlators typically decay exponentially fast, thus
〈
δS2

s1

〉
'

ΓΣ1t and
〈
(S(f,b)

s1,s2)2
〉
' Γf,bt. Finally using the two sum rules

(4πν2)
di
2

∫
dxi

∑
si

|Asi |2 = 1, (3.9a)∫
dxi

∫
dyiδν(yi − xi)

∑
li

|Cli | = 1, (3.9b)
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one obtains the nondiagonal contribution

M(nd)
B (t) = exp [− (ΓΣ1 + Γf + Γb ) t] . (3.10)

The second contribution is diagonal, with s1 ' s3 and x1 ' y1. From
Eq. (3.8) it reads

M(d)
B (t) = (4πν2)

2d1+d2
2

∫ 2∏
i=1

dxidyidz2 δν(xi − yi)

×
∑
|As1|4|As2|2|Cl2|e

i
h
∆Ss1+∆S(f)

s1,s2
+∆S(b)

s1,l2

i
, (3.11)

where

∆Ss1 =

∫ t

0

dτ∇1Σ1[qs1(τ)] · [qs3(τ)− qs1(τ)],

and

∆S(f,b)
s1,s2

=

∫ t

0

dτ∇1Uf,b[qs1(τ),qs2(τ)] · [qs3(τ)− qs1(τ)].

We perform a change of coordinates
∫
dx1

∑
|Cs1| =

∫
dp1, and use both the

asymptotics |Cs1| ∝ exp [−λ1t] valid for chaotic systems [15] and the sum rules
of Eqs. (3.9) to get

M(d)
B (t) = α1 exp [−λ1t] . (3.12)

Here, α1 is only algebraically time-dependent with α1(t = 0) = O(1) [17]. To-
gether, diagonal (3.12) and nondiagonal (3.10) contributions sum up to our main
result, Eq. (3.13). We finally note that the long-time saturation at the inverse
Hilbert space size of system 1, MB(∞) = N−1

1 , is obtained from Eq. (3.6) with
the contractions s1 ' s3, s2 ' s4, l1 ' l3 and l2 ' l4.

3.3 Results

According to our semiclassical approach, the averaged Boltzmann echo is given
to leading order by the sum of the two terms of Eq. (3.10) and Eq. (3.12).

MB(t) ' exp [− (ΓΣ1 + Γf + Γb) t] + α1 exp [−λ1t] . (3.13)

The second term on the right-hand side of Eq. (3.13) exists exclusively for a clas-
sically meaningful initial state ψ1 such as a Gaussian wavepacket or a position
state, but the first term is much more generic. It emerges from both a semiclas-
sical or a RMT treatment and does not depend on the initial preparation ψ1 of
system 1. Analyzing Eq. (3.13), we first note thatMB(t) depends neither on H2

nor on Σ2. This is so because one traces over the uncontrolled degrees of freedom.
We stress that this holds even for classically strong Σ2. Most importantly, besides
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strong similarities with the Loschmidt Echo, such as competing golden rule and
Lyapunov decays [6,12], the Boltzmann Echo can exhibit a Σ1-independent decay
given by the decoherence rates Γf,b in the limit ΓΣ1 � Γf,b.

Extending our analysis to the regime ΓΣ1 � δ1, Γf,b � δ2 by means of quan-
tum perturbation theory, we find a gaussian decay ofMB(t),

MB(t) = exp
[
−
(

Σ2
1/4 + U2

f /2 + U2
b/2
)
t2
]
, (3.14)

in terms of the typical squared matrix elements of Σ1 and Uf,b. Also, at short
times a parabolic decay ofMB(t) prevails for any coupling strength. Also in that
regime we have a competition between a Σ1-dependent decay and a U -dependent
decay. It is thus possible to reach either a Gaussian or an exponential, Σ1-
independent decay, depending on the balance between the accuracy Σ1 with which
the time-reversal operation is performed and the coupling between controlled and
uncontrolled degrees of freedom. This might explain the experimentally observed
saturation of the polarization echo as Σ1 is reduced [14], though a more precise
analysis of these experiments in the light of the results presented here is necessary.
Finally for the sake of completeness we note that at short times a parabolic decay
ofMB(t) prevails for any coupling strength. Moreover, if system 1 is integrable,
the decay ofMB(t) is power-law in time [18].

3.4 Numerical simulations

We numerically illustrate our findings. We consider two coupled kicked rotators
with Hamiltonian

Hi = p2
i /2 +Ki cos(xi)

∑
n

δ(t− nT ), (3.15a)

U = ε sin(x1 − x2 − 0.33)
∑
n

δ(t− nT ). (3.15b)

We concentrate on the regimeKi > 7, for which the dynamics is fully chaotic with
Lyapunov exponent λi ≈ ln[Ki/2]. The time-reversed one-particle Hamiltonians
are obtained through Ki → Ki + σi. We here restrict ourselves to the case
U = Uf = Ub. Both rotators are quantized on the torus with discrete momenta
pn = 2πn/N , n = 1, 2, ...N . The one- and two-particle bandwidths and level
spacings are given by B1 = 2π, δ1 = 2π/N and B2 = 4π, δ2 = 4π/N2. For more
details on the numerical procedure, we refer the reader to Ref. [19].

We first checked thatMB(t) is independent ofK2 (as long as system 2 remains
chaotic) and σ2, and therefore set K2 = K1, σ2 = 0 from now on. The main panel
in Fig. 3.2 shows that for B1 > ΓΣ1 > δ1, B2 > ΓU > δ2, Eq. (3.13) is satisfied.
Additionally, the inset of Fig. 3.2 illustrates that when ΓΣ1 � 2ΓU , the decay de-
pends mostly on U , and one effectively obtains a perturbation (Σ1) independent
decay. All our numerical results thus confirm the validity of Eq. (3.13).
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Figure 3.2: Main plot: Boltzmann echo for N = 1024, K1 = K2 = 10.09, and σ1 =
0.0018 (ΓΣ1 ' 0.09). Data have been calculated from 50 different initial states. The full
lines correspond to ε = 0, 0.0018 and 0.0037 (from right to left) and the dashed lines
give the predicted exponential decay given by the first term on the right-hand side of
Eq. (3.13), with ΓU = 1.2 104ε2,ΓΣ1 = 2.6 104σ2

1 (dashed lines have been slightly shifted
for clarity). The dotted line gives the saturation N−1. Inset : MB for ε = 0.0037,
and σ1 = 0.0003 (circles; ΓΣ1 ' 2. 10−3), σ1 = 0.0006 (squares; ΓΣ1 ' 9. 103), and
0.0009 (diamonds; ΓΣ1 ' 0.02). The dashed line indicates the theoretical prediction
MB(t) = exp[−0.3t].

3.5 Conclusions

In this chapter, we presented a semiclassical calculation of the Boltzmann echo
for two classically chaotic subsystems and compared our results with those ob-
tained from a Random Matrix Theory (RMT) treatment of the problem. Our
main result is that, in the regime of classically weak but quantum mechanically
strong imperfection Σ1 and coupling Uf,b,MB(t) is the sum of two exponentials
Cf. Eq. (3.13). Other regimes of decay exist. For quantum mechanically weak
ΓΣ1 � δ1 and Γf,b � δ2, one has a Gaussian decay Eq. (3.14).

The equivalence between Boltzmann and Loschmidt echoes is broken by Γf,b,
the decoherence rate of system 1 induced by the coupling to system 2 (or by U2

f,b at
weak interaction). Skillfull experimentalists can thus investigate decoherence in
echo experiments with weak time-reversal imperfection Σ1 for which ΓΣ1 � Γf,b,
and thus

MB(t) ' exp[−(Γf + Γb)t]

or at weak interaction,

MB(t) ' exp[−(U2
f + U2

b) t2/2],

as Σ1 is reduced. This might well be the explanation for the experimentally
observed Σ1-independent decay of polarization echoes [14].
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3.5 Conclusions

In conclusion we proposed to analyze echo experiments in the light of the
Boltzmann echo of Eq. (3.2). Our semiclassical and RMT analysis showed that the
decay ofMB(t) saturates at a finite value even when the time-reversal operation is
performed with infinite accuracy. Further work should attempt to quantitatively
connect these results with echo experiments [8–11, 14]. This object has been
recently used by W.H. Zurek et al. [20] in order to investigate the decoherence
from a many-body independent spin environment. Their conclusions corroborate
ours.
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CHAPTER 4

The Displacement echo

4.1 Introduction

The fidelity with which a wavefunction is reconstructed after an imperfect time-
reversal operation was originally introduced as a measure of reversibility in quan-
tum mechanics [1]. Dubbed the Loschmidt Echo, it has received much attention
in recent years in the context of decoherence and the quantum classical corre-
spondence [2–7]. For a generic perturbation of the Hamiltonian, four different
decay regimes were found: the Gaussian perturbative regime, the Fermi Golden
Rule (FGR) regime, the Lyapunov regime, and the regime of classically large per-
turbations. Of special interest is the Lyapunov regime where the purely quantum
mechanical fidelity decays with the Lyapunov exponent of the classical dynam-
ics. It suggests the existence of a universal regime of environment-independent
decoherence rate [2, 8, 9].

In this chapter we analyze the decay of the Loschmidt echo under a new, non-
generic perturbation, namely an instantaneous phase space displacement. Our
investigation is partly inspired by spectroscopies such as neutron scattering, Möss-
bauer γ-ray, and certain electronic transitions in molecules and solids [10–12].
In these spectroscopies phase space displacement (momentum boost or position
shift) takes place with little or no change in the potential. Under this non-
generic perturbation, we find that the decay rate of the average fidelity is always
set by the Lyapunov exponent. Moreover, for small displacements, the initial
Lyapunov decay is followed at larger times by a quantum freeze of the fidelity
at a displacement-dependent saturation value. Both semiclassics and random
matrix theory predict that the freeze persists up to infinitely large times.
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4 The Displacement echo

4.2 Differential cross section and displacement
echo

As our starting point, we recall that , following Lovesey [13], the differential cross
section for incoherent neutron scattering and Mössbauer emission/absorption is
(from now on we set ~ ≡ 1)

d2σ

dΩdE
= N Pout

Pin

σi
4π
Si(P, ω), (4.1)

where Ω is the solid scattering angle, N is the number of scatterers, σi is the
total incoherent cross section, Pin and Pout are the initial and final magnitudes of
the neutron, P is the momentum transfer and Si(P, ω) is the response function
for the considered scattering.

The response function is expressed in terms of the Fourier transform of a
correlation function,

Si(P, ω) =
1

2πN

∫
dt e−iωt

∑
j

Yjj (P, t) , (4.2)

where the correlation function Yjj (P, t) may be expressed as [13,14]

Yjj (P, t) =
〈
e−iP·̂rjeiĤteiP·̂rje−iĤt

〉
. (4.3)

Here, the brackets represent an ensemble average, r̂j are the position operators of
the nuclei and Ĥ is the typical Hamiltonian of the target system. The ensemble
average of the correlation function can be written [10]:

Yjj (P, t) ≈ 1

Q

∫ (
d2Nα

πN

)
Φ (α) 〈α| e−iP·̂rjeiĤteiP·̂rje−iĤt |α〉 , (4.4)

where |α〉 are coherent states with N degrees of freedom, Q = Tr
[
e−βĤ

]
, and

Φ (α) is a thermal weight, which tends to e−βHcl(α) at high temperatures. The no-
tation eiĤPt = e−iP·̂rjeiĤteiP·̂rj suggests that we identify the kernel of the integral
I (t) = 〈α| e−iP·̂rjeiĤteiP·̂rje−iĤt |α〉 with the kernel of a Loschmidt echo problem,
we thus introduce the momentum displacement echo

MD (t) = |I(t)|2 =
∣∣ 〈α| eiĤPte−iĤt |α〉

∣∣2. (4.5)

The physical process described by I(t) is the following. The state |α〉 is
propagated under the hamiltonian Ĥ for a time t. At this time, we applied the
backward Hamiltonian ĤP. This corresponds to a first increase of the momentum
of the jth particle, due to the boost, followed by a backward propagation under
the hamiltonian Ĥ for a time t and finally a decrease of the momentum of the
jth particle. I(t) involves the overlap between this final state and the initial one.
Fig. 4.1 shows a phase-space picture of these processes.
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Figure 4.1: Phase-space illustration of the physical process involved in the displacement
echo. Momentum is the vertical coordinate, position the horizontal one. Dashed lines
correspond of the process related to ĤP. The coherent state is represented by the cloud
marked "|α〉". The overlap is represented by the shaded area.

4.3 Structural stability

As an introduction to our semiclassical calculation of the displacement echo
MD(t), we first discuss the validity of the diagonal approximation used in Ref. [2]
for the semiclassical approach to the Loschmidt echo and point out why this
approximation is even better for the displacement echo. The diagonal approxi-
mation for the Loschmidt echo equates each classical trajectory γ generated by
an unperturbed Hamiltonian H with a classical trajectory γV generated by a
perturbed Hamiltonian HV = H + V . This procedure is not justified a priori
in chaotic systems where one expects that an infinitesimally small perturbation
generates trajectories diverging exponentially fast away from their unperturbed
counterpart. It was however pointed out by Cerruti and Tomsovic [4], and later by
Vaniček and Heller [6], that structural stability theorems [15, 16] justify this ap-
proximation. Roughly speaking one can show that, given a uniformly hyperbolic
Hamiltonian system H, and a generic perturbation V , each classical trajectory γ′V
generated by the (still hyperbolic) perturbed Hamiltonian H+V is almost always
arbitrarily close to one unperturbed trajectory γ. In general the two trajecto-
ries do not share common endpoints, however these endpoints are close enough
that they are not resolved quantum-mechanically. This is illustrated in the left
panel of Fig. 1. The semiclassical expression for the kernel of the Loschmidt echo
involves a double sum over both the perturbed and the unperturbed classical
trajectories, so that both γ′V and γ are included. After a stationary phase con-
dition, this double sum is reduced to a single sum where γ′V and γ are equated.
In other words, a semiclassical particle follows γ in the forward direction, and γ′V
in the backward direction because this is the best way to minimize the action.
The action difference is simply given by the integral of the perturbation along the
backward trajectory, and it is in general time-dependent. In the case of a uniform
phase-space displacement, the diagonal approximation becomes even better. This
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Figure 4.2: Illustrative view of structural stability. Left panel: generic perturbation. γ
and γ′ are two orbits of the unperturbed Hamiltonian, γV is the orbit of the perturbed
Hamiltonian with the same initial condition as γ, while γ′V is the orbit of the perturbed
Hamiltonian with the same initial condition as γ′. The endpoints of γ and γ′V are
separated by less than a quantum-mechanical resolution scale (shaded area). Right
panel: phase space displacement. Labels are the same as in the left panel, with P
replacing V as subscript for perturbed trajectories. Note that γ′P and γ lie on top of
each other.

is so because any classical trajectory of the unperturbed Hamiltonian is also a
trajectory of the perturbed Hamiltonian, up to displacements at the trajectory’s
ends. This is illustrated in the right panel of Fig. 4.2. The fact that the action
difference is here time-independent has the important consequence that the FGR
decay is replaced by a time-independent saturation term. The Lyapunov decay
term is left almost unaffected, as it depends on the classical measure of nearby
trajectories with perturbed initial conditions and does not depend on quantum
action phases. We also note that for displacement echoes there is no Gaussian
perturbative decay, since phase space displacements do not change the spectrum
of the system aside from some possible but irrelevant global shift.

4.4 Semiclassical approach

For a quantitative approach to the problem, we semiclassically evaluate MD(t)
for the case of an initial Gaussian wavepacket,

〈r | α (r0,p0)〉 =
(
πν2
)− d

4 exp[ip0 · (r− r0)− (r− r0)2 /2ν2].

Following Ref. [17], we semiclassically propagate |α〉 with the help of the van
Vleck propagator, linearly expanding around r0:

〈r′| e−iĤt |α〉sc '
(
− iν√

π

) d
2 ∑

γ

C
1
2
γ exp

[
iSγ − i

π

2
µγ −

ν2

2
(pγ − p0)

]
.(4.6)

Here, the sum runs over all possible classical trajectories γ connecting r0 and r′ in
the time t, pγ = −∂Sγ/∂r|r=r0

is the initial momentum on γ, Sγ is the classical ac-
tion accumulated on γ, µγ is the Maslov index and Cγ =

∣∣−∂2Sj (r, r′; t) /∂ri∂r
′
γ

∣∣
r=r0

.
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The kernel I(t) ofMD(t) involves a double sum over classical trajectories, γ and
γ′, and can be interpreted as the overlap between a wavepacket that is boosted
and subsequently propagated with a wavepacket that is first propagated and sub-
sequently boosted [10]. Enforcing a stationary phase condition kills all but the
contributions with the smallest actions. They correspond to γ = γ′ and one has

I (t) =

(
ν2

π

) d
2
∫

dr′
∑
γ

eiP·(r
′+r0) Cγ exp−ν

2

2

[
(pγ − p0)2 + (pγ − p0 −P)2] .(4.7)

Taking the squared amplitude |I(t)|2 one obtains the semiclassical expression for
the displacement echo

MD(t) =

(
ν2

π

)d ∫
dr dr′

∑
γ,γ′

eiP·(r−r′) Cγ Cγ′ (4.8)

× exp−ν
2

2

[
(pγ − p0)2 + (pγ − p0 −P)2

]
× exp−ν

2

2

[
(pγ′ − p0)2 + (pγ′ − p0 −P)2] .

We calculate 〈MD(t)〉, the ensemble-averaged displacement echo over a set of
initial Gaussian wavepackets with varying center of mass r0. There are two qual-
itatively different contributions to 〈MD(t)〉. The first contribution 〈MD(t)〉c
comes from pairs γ ≈ γ′ of correlated trajectories that remain within a distance
. ν of each other for the whole duration t of the experiment, while the sec-
ond contribution 〈MD(t)〉u arises from pairs of uncorrelated trajectories (γ, γ′).
For the first contribution, we write exp[iP(r − r′)] ≈ 1, which is true in the
semiclassical limit where ν → 0, and set γ = γ′. One then has

〈MD(t)〉c =

(
ν2

π

)d ∫
drdr′ δν(r− r′)

〈∑
γ

C2
γ e
−ν2[(pγ−p0)2+(pγ−p0−P)2]

〉
, (4.9)

where δν(r − r′) restricts the integrals to |r − r′| ≤ ν. The calculation of (4.9)
is straightforward. The integral over r′ gives a factor νd. One then replaces one
Cγ by its asymptotic value, Cγ ∝ exp[−λt], and uses the second Cγ to perform a
change of integration variable

∫
dr
∑

γ Cγ =
∫

dp. After a Gaussian integration,
one finally gets the correlated contribution to 〈MD(t)〉 as

〈MD(t)〉c = α e−
(Pν)2

2 e−λt. (4.10)

Here, α is a weakly time-dependent number of order one [2].
For the uncorrelated part, an ergodicity assumption is justified at sufficiently
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large times, under which one gets

〈MD(t)〉u = f(P) 〈M̃D(t)〉u, (4.11a)

f(P) =
1

Ω2

∫
drdr′eiP·(r−r′), (4.11b)

〈M̃D(t)〉u =

(
ν2

π

)d(∫
dx
∑
γ

Cγe
− ν

2

2

[
(pγ−p0)2+(pγ−p0−P)2

])2

,(4.11c)

with the system’s volume Ω ∝ Ld. It is straightforwardly seen that

〈M̃D(t)〉u = exp[−(Pν)2/2],

and
f(P) =

g(|P|L)

(|P|L)2
,

in term of an oscillatory function g(|P|L) = 4 sin2(|P|L/2) for d = 1 and
g(|P|L) = 4J2

1 (|P|L) for d = 2. For d = 3, g is given by Bessel and Struve
functions. The uncorrelated contribution to the displacement echo reads

〈MD(t)〉u = e−
Pν)2

2
g(|P|L)

(|P|L)2
, (4.12)

which, together with Eq. (4.10) gives the average displacement echo as

〈MD(t)〉 = e−
(Pν)2

2

[
α e−λt +

g(|P|L)

(|P|L)2

]
. (4.13)

In addition, as is the case for Loschmidt echoes, 〈MD(t)〉 ≥ N−1 where N is the
size of the Hilbert space.

Eq. (4.13) is the main result of this chapter. It states thatMD(t) is the sum
of a time-dependent decaying term of classical origin and a time-independent
term of quantum origin. The latter can also be obtained within random matrix
theory. The prefactor exp[−(Pν)2/2]→ 1 in the semiclassical limit and is thus of
little importance. We see that generically,MD(t) follows a classical exponential
decay, possibly interrupted by a quantum freeze as long as the displacement is
not too large, g(|P|L)

/
(|P|L)2 > N−1 [18]. We note that in the semiclassical

limit,MD(t→ 0)→ 1, because of the saturation of α(t→ 0)→ 1 and the disap-
pearance of uncorrelated contributions at short times. Most importantly, there
is no displacement-dependent decay, i.e. no counterpart to the FGR decay nor
the perturbative Gaussian decay forMD(t), because phase-space displacements
leave the spectrum unchanged, up to a possible homogeneous shift. The situ-
ation bears similarities with spectral and wavefunction variations in perturbed
billiards. When the perturbation is an homogeneous spatial displacement, the
spectrum is left unchanged [19].
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What does the “freeze” correspond to physically? It is the elastic compo-
nent in any of the mentioned spectroscopies: Mössbauer, neutron, and molecular
electronic, and was first identified by van Hove in connection with neutron scat-
tering [14]. There is a finite probability, above the 1/N statistical limit, of not
changing quantum state in spite of being “hit”; this is the source for example of
the recoilless peak in Mössbauer spectroscopy.

4.5 Numerical simulations

We now check our predictions numerically . We specialize to the kicked rotator
model with Hamiltonian

H0 =
p̂2

2
+K cos x̂

∑
n

δ(t− n). (4.14)

We focus on the regime K > 7, for which the dynamics is fully chaotic with
Lyapunov exponent λ = ln[K/2]. We quantize this Hamiltonian on a torus, which
requires to consider discrete values pl = 2πl/N and xl = 2πl/N , l = 1, ...N . In
these units, one has L = N . The displacement echo of Eq. (4.5) is computed for
discrete times t = n, as

MD(n) =
∣∣〈ψ0|e−iP x̂

(
U †
)n
eiP x̂ (U)n |ψ0〉

∣∣2, (4.15)

with P = |P|. Here, we used the unitary Floquet time-evolution operator U
whose matrix elements in x−representation are given by

Ul,l′ =
1√
N

exp

[
i
π(l − l′)2

N

]
exp

[
− i

NK

2π
cos

2πl′

N

]
.

The time-evolution of ψ0 in Eq. (4.15), is calculated by recursive calls to a fast-
Fourier transform routine.

Fig. 4.5 shows the behavior of the echo for displacements in the range P �
2π/N for which 〈MD(t)〉u � N−1 and thus plays no role. It is seen that the
decay rate of the displacement echo strongly depends on the kicking strength K,
but is largely independent of the displacement P . We quantitatively found that
in that regime,MD(t) ≈ exp[−λ0t], in terms of the reduced Lyapunov exponent
λ0 [20]. The inset shows moreover, that lowering the displacement to the regime
P = m2π/N with m ≤ 5 does not affect the decay rate ofMD(t), i.e. there is no
FGR decay for the displacement echo.

We focus in Fig. 4.5 on smaller displacements P ≤ 2π/N . The behavior of
〈MD(t)〉 clearly satisfies Eq. (4.13), with a quantum freeze at a displacement-
dependent value following a decay with a slope given by the Lyapunov exponent.
We show in the main panel the P -dependence of the value at whichMD(t) freezes.
The data unambiguously confirm the algebraically damped oscillations predicted
in Eq. (4.13).
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4 The Displacement echo

Figure 4.3: Main plot : Displacement echo MD(t) for the kicked rotator model with
N = 262144, and displacements P = m × 2π/N , m = 10, 20, 30. Averages have been
performed over a set of 10000 different initial coherent states. The full lines correspond
to kicking strengths K = 10.09, 50.09 and 200.09 (from right to left) and the dashed
lines (slightly shifted for clarity) give the predicted exponential decay given by the
reduced Lyapunov exponent λ0 = 1.1, 2.5, 3.7. The dotted line gives the saturation
at N−1. Inset : Displacement echo for N = 8192, K = 10.09, and displacements
P = 2π/N, 4π/N, . . . 10π/N . Data are obtained from 1000 different initial coherent
states. The dashed line gives the predicted exponential decay given by the reduced
lyapunov exponent λ0 = 1.1. The dotted line gives the minimal saturation value at
N−1.
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Figure 4.4: Main plot: Saturation value MD(∞) of the displacement echo as a
function of the rescaled displacement NP/2π for the kicked rotator model with
N = 256, 1024, 4096, 16384 (full lines, from top to bottom). Data are ob-
tained from 1000 different initial coherent states. The dotted lines give the sat-
uration at N−1. The red dashed line gives the theoretical prediction MD(∞) =
Max(4 exp[−(νP )2/2] sin2(PL/2)

/
(PL)2, N−1) for N = 16384. Inset: Quantum freeze

of the displacement echo for kicking strength K = 10.09, N = 4096, and P ∈ [0, 2π/N ].
The dashed line gives the decay with the reduced Lyapunov exponent λ0 = 1.1 (see
text).

4.6 Conclusions.

In summary, we have presented a semiclassical calculation of phase-space dis-
placement echoes. We showed that they are generically given by the sum of
a classical decay and a quantum freeze term (4.13). Because phase-space dis-
placements do not generate time-dependent action differences, and because they
vanish in first order perturbation theory, there is no other time-dependent decay,
in contrast to Loschmidt echoes [1–4,6].

To conclude, we note that neutron scattering correlation functions are given
by the average 〈I(t)〉 of the kernel ofMD(t). Starting back from Eq. (4.7), one
gets

|Yjj (P, t) | ' exp[−(Pν)2/4]
g1/2(|P|L)

|P|L
, (4.16)

i.e. |Yjj| is given by the quantum freeze term only.
This is so, since the correlations between pairs of trajectories that are neces-

sary for the existence of the Lyapunov term appear only once I(t) is squared. The
Lyapunov decay is in this sense similar to diffuson and cooperon correlators in
disordered electronic systems, which appear in averages over products of Green’s
functions, but cannot be traced back to the impurity-averaged Greens function.
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CHAPTER 5

Toward a semiclassical approach
to decoherence

5.1 Introduction

In the decades since its inception, no observed phenomenon, or experimental re-
sult ever contradicted quantum theory. Yet, the world surrounding us, despite
being made out of quantum mechanical building blocks, behaves classically most
of the time. This suggests that, one way or another, classical physics emerges from
quantum mechanics. Today’s common understanding of this quantum-classical
correspondence is based on the realization that no finite-sized system is ever fully
isolated. It is then hoped that a large regime of parameters exists where the
coupling of the system to external degrees of freedom destroys quantum interfer-
ences without modifying the system’s classical dynamics. Indeed, such a coupling
usually induces loss of coherence on a time scale much shorter than it relaxes the
system [1,2].

The standard approach to decoherence starts from a master equation valid
in the regime of weak system-environment coupling [1, 2]. The master equa-
tion determines the time-evolution of the system’s Wigner function W (p,q) =
(2π~)−d

∫
dx exp[ipx]η(q + x/2,q− x/2) (η is the system’s density matrix) as

∂tW =
{
H,W

}
+
∑
n≥1

(i~)2n

22n(2n+ 1)!
∂2n+1
q V ∂2n+1

p W

+2γ∂p(pW ) +D∂2
ppW. (5.1)

The first term on the right-hand side of Eq. (5.1) is the classical Poisson bracket.
The second term, written here for a spatially dependent potential V (q) only,
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already exists in closed systems and generates quantum corrections to the dy-
namical evolution of W . This term starts to become comparable to the Poisson
bracket at the Ehrenfest time τE = λ−1 lnN , where λ is the Lyapunov exponent
of the classical dynamics, and N the size of the system’s Hilbert space. The
two terms on the second line of Eq. 5.1 are induced by the coupling to the en-
vironment. In the limit of weak coupling, γ → 0, but finite diffusion constant,
D ∝ γT = Cst, the friction term vanishes, leaving the classical dynamics un-
affected. This requires to consider the high temperature limit. Simultaneously,
for large enough D, the momentum diffusion term induces enough noise so as to
kill the quantum corrections before they become important. The time-evolution
of W is then governed by the classical Poisson bracket, that is to say, classical
dynamics emerges out of quantum mechanics. Refs. [3,4] illustrated this scenario
numerically.

Our motivation in the present chapter is multiple. First, it is unclear how
generic this scenario is, since it is based on a master equation derived under re-
strictive assumptions, for instance on the environment, the dimensionality of the
system or the strength of the coupling between system and environment [1, 2].
Moreover, it formally requires to consider infinite temperatures. Last but not
least, and with the specific exception of the kicked harmonic oscillator investi-
gated in Ref. [4], there is not much analytical understanding of the decoherence
process in generic dynamical systems, i.e. except for the regular case, master
equations are usually integrated numerically. Second, for coupled systems, claims
have been made of an entropy production governed by the system’s Lyapunov
exponent λ [2, 5], based on appealing but incomplete analytical arguments, and
without strong numerical evidence [6]. A Lyapunov decay of the fidelity has
recently been analytically predicted [7] and numerically observed [8], however,
decoherence and fidelity are two different things, especially in the generic situa-
tion where the system and environment Hamiltonians do not commute with the
coupling Hamiltonian [9, 11].

We revisit these issues and consider at first the simple situation of two in-
teracting quantized dynamical systems. Entanglement generation between two
identical particles has already been considered in Refs. [11–15]. All results to
date are consistent with the scenario proposed in Ref. [11], according to which
bipartite entanglement, results from two contributions:

(i) a quantum-mechanical one, which depends on the coupling strength between
the two systems,

(ii) a dynamical one, which, in chaotic systems, is determined by the total
system’s spectrum of Lyapunov exponents.

The entanglement generation rate is given by the weakest of the coupling strength
and the Lyapunov exponent. This picture holds in the regime of classically weak
but quantum-mechanically strong coupling (this will be made quantitative be-
low). For regular systems, entanglement generation is slower than for chaotic
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ones, typically power-law in time [11,15].
The purpose of this chapter is fourfold. First, we address the problem of deco-

herence and bipartite entanglement from a microscopic point of view, i.e. without
relying on effective differential equations. This allows for a clear identification
of the regime of validity of our theory. Second, we provide strong numerical evi-
dences for the existence of a regime of Lyapunov rate of entanglement generation
in bipartite systems (the numerical evidences presented in Ref. [13] were chal-
lenged in Ref. [14]). Third, we discuss our results from the point of view of the
quantum-classical correspondence, and present numerical phase-space dynamics
results showing that this correspondence is fully achieved in the regime of Lya-
punov entanglement generation. This is, we believe, the first clear microscopic
demonstration of the quantum-classical correspondence. Fourth we extended our
bipartite model of the decoherence to a multipartite case. The latter extension
reveals an interesting problem, yet unsolved.

5.2 Bipartite model

In order to capture the physics of decoherence, on the basis of our understanding
of the entanglement generation, we consider firstly a bipartite toy model. The
total universe is decomposed into a system, a particle labeled 0, in interaction
with an environment, a particle labeled 1. We consider thus the Hamiltonian,

H = H0 ⊗ I1 + I0 ⊗H1 + U01. (5.2)

in which the one-particle Hamiltonian H0,1 dynamics is chaotic and I0,1 is the
identity over the Hilbbert space of the corresponding particle. Here we only
specify that the interaction potential U01 is smooth, varying over a distance much
larger than the particles’ de Broglie wavelength ν, and that it depends only on
the distance between the particles.

We start with an initial separable density matrix η(0) = |ψ0〉 〈ψ0| ⊗ ηenv.
The initial state of the system is a single narrow Gaussian wave packet centred

on r0, ψ0(q) = (πν2)−d0/4 exp[ip0 · (q− r0)−|q− r0|2/2ν2]. If we were only inter-
ested by the entanglement properties of our bipartite system, we would consider a
similar initial state for particle 1. True environments, however, differ from single
particles in that they have much shorter time scales and a much bigger Hilbert
space, and they cannot be initially prepared in a pure Gaussian wavepacket.
Consequently for the environment, we consider, a random mixed state ηenv =∑

α,β aαa
∗
β |Φα〉 〈Φβ|, with Φα(q) = (πν2)−d1/4 exp[ipα · (q− rα)− |q− rα|2/2ν2].

This choice is used for pedagogical reasons but we are not limited by this as-
sumption, more general states as the thermal states ηenv =

∑
n exp[−βEn] |n〉 〈n|

can be used.
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5.2.1 Reduced density matrix

Setting ~ = 1 the two-particle density matrix evolves according to
η(t) = exp[−iHt] η(0) exp[iHt]. The elements
η0(x0,y0; t) =

∫
dx1 〈x0,x1| η(t) |y0,x1〉 of the reduced density matrix read,

η0(x0,y0; t) = (πν2)−
d
2

∫
dx1

3∏
i=0

∫
dqi ψ0(q0)ψ†0(q2) 〈q1|ηenv|q3〉

×
〈
x0,x1

∣∣e−iHt∣∣q0,q1

〉 〈
q2,q3

∣∣eiHt∣∣y0,x1

〉
, (5.3)

where we let d = d0 + d1.
We next introduce the two-particle semiclassical propagator〈

x0,x1

∣∣e−iHt∣∣q0,q1

〉
= (−i)

d
2

∑
s0,s1

C1/2
s0,s1

ei{Ss0 (q0,x0;t)+Ss1 (q1,x1;t)+Ss0,s1 (q0,x0;q1,x1;t)}, (5.4)

which is expressed as sums over pairs of classical trajectories, labeled si for par-
ticle i connecting qi to xi in the time t with dynamics determined by Hi. Under
our assumption of a classically weak coupling, classical trajectories are only deter-
mined by the one-particle Hamiltonians. Each pair of paths gives a contribution
containing one-particle action integrals denoted by Ssi (where we included the
Maslov indices) and two-particle action integrals Ss0,s1 =

∫ t
0

dτ U01[qs0(τ),qs1(τ)]
accumulated along s0 and s1 and the real, positive determinant Cs0,s1 = Cs0Cs1
of the stability matrix corresponding to the two-particle dynamics in the (d0 +
d1)−dimensional space [19]. We note that if U01 factorize as U01 = V0⊗I1+I0⊗V1,
Ss0,s1(q0,x0; q1,x1; t) = SV0

s0
(q0,x0; t)+SV1

s1
(q1,x1; t), the two-particle action thus

vanishes and no entanglement or decoherence is generated, as it should be.
Our choice of an initial Gaussian wave packet for the systems allows us to lin-

earize the one-particle system action integrals in q0,2−r0. Since the environment
is itself a superposition of Gaussian wave packets Φα(q), a linearization of the one-
particle environmental action integrals in q1,3 − ra,b can also be performed. We
furthermore set Ss0,s1(q0,x0; q1,x1; t) ' Ss0,sα(r0,x0; rα,x1; t), keeping in mind
that r0 and rα, taken as arguments of the two-particle action integrals, have an
uncertainty O(ν).

We then perform four Gaussian integrations in qi to get

η0(x0,y0; t) = (4πν2)
d0
2

∑
s0,l0

Fs0,l0(t)As0A
†
l0

exp[iϕ0], (5.5)

with

Fs0,l0(t) = (4πν2)
d1
2

∫
dx1

∑
α,β

aαa
∗
β

∑
sα,lβ

AsαA
†
lβ

exp[i(ϕ1 + ϕ01)], (5.6)

where we wrote Asi = C
1
2
si exp

[
−ν2

2
(psi − pi)

2
]
and note that environment’s

paths are labeled with greek letters, the indice 0 being reserved for the system.
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The functional Fs0,l0(t) in Eq. (5.6) is the semiclassical Feynman-Vernon in-
fluence functional [16]. Similar semiclassical expression of the Feynman-Vernon
influence functional have been previously obtained by Möhring and Smilansky [17]
for the special case when the system’s motion is constrained to be classical.

The semiclassical expression of η0(x0,y0; t) is obtained by enforcing a sta-
tionary phase condition on Eq. (5.5) and Eq. (5.6), i.e keeping only terms which
minimize the variation of the following three action phases,

ϕ0 = Ss0(r0,x0; t)− Sl0(r0,y0; t) (5.7a)
ϕ1 = Ssα(rα,x1; t)− Slβ(rβ,x1; t) (5.7b)
ϕ01 = Ss0,sα(r0, rα; x0,x1; t)− Sl0,lβ(r0, rβ; y0,x1; t) (5.7c)

Semiclassically, a stationary phase approximation corresponds to a path con-
traction. The first stationary phase approximation over ϕ1 yield sα = lβ which
requires rα = rβ and thus α = β. Consequently Fs0,l0 reduces to,

Fs0,l0(t) = (4πν2)
d1
2

∑
α, sα

|aα|2
∫

dx1 |Asα|
2 ei(Ss0,sα−Sl0,sα ) (5.8)

Now if we use the sum rule [7],

(4πν2)
di
2

∫
dxi

∑
s

|As|2 = 1, (5.9)

and note that on average
∑

α 〈|aα|2〉 = 1, it is straightforward to see that

Tr0[η0(t)] = 1, (5.10)

and

η0(x0,y0; t) = [η0(y0,x0; t)]∗, (5.11)

as required. Enforcing a further stationary phase condition on phase ϕ0 amounts
to performing an average over different initial conditions,
〈· · · 〉 ≡ (Ω0Ω1)−1

∫
dr0dr1 · · · . This results in s0 = l0, which requires x0 ' y0,

and thus

〈η0(x0,y0; t)〉 =
δx0,y0

Ω0

, (5.12)

with Ω0 the spacial volume of the system. Consequently only diagonal elements
of the reduced density matrix have a non vanishing average and the ergodicity is
due to the average over the initial conditions.

Alltogether, these results demonstrate that the semiclassical method used
preserves the main properties of the reduced density matrix, such as the unitarity
and the hermicity.
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5.2.2 Purity

Although only diagonal elements of the reduced density matrix have a non van-
ishing average, η0 has, for each initial condition, a non vanishing off-diagonal
matrix element, with a zero-centered distribution whose variance is given by
〈η0(x0,y0; t)η0(y0,x0; t)〉. This variance was derived in [11] in order to obtain the
semiclassical purity P(t) = Tr0 [η2

0]. The treatment presented in [11] is however
not totally correct, as some contributions were missed due to an improper av-
eraging procedure. Here we directly calculate the semiclassical purity, which is
a good measure of entanglement in the case of a unitary two-particle evolution.
It varies between 0 (maximally entangled states) and 1 (product states). The
calculation proceeds along the lines of Ref. [11]. With the help of the bipartite
semiclassical propagator Eq. (5.4), the semiclassical purity reads

P(t) = (4πν2)−d
∫ ∏

i={0,1}

dxidyi
∑
s0,k0
l0,m0

As0A
†
l0
Ak0A†m0

×
∑
α,β,

γ,δ

∑
sα,kγ

lβ ,mδ

aαa
∗
βaγa

∗
δ AsαA

†
lβ
AkγA†mδe

i{Φ0+Φ1+Φ01} (5.13)

with the phases,

Φ0 = Ss0(r0,x0; t)− Sl0(r0,y0; t) + Sk0(r0,y0; t)− Sm0(r0,x0; t) (5.14a)
Φ1 = Ssα(rα,x1; t)− Slβ(rβ,x1; t) + Skγ (rγ,y1; t)− Smδ(rδ,y1; t) (5.14b)

Φ01 = Ss0,sα − Sl0,lβ + Sk0,kγ − Sm0,mδ (5.14c)

The expression of Eq. (5.13) is depicted in Fig. 5.1. Classical trajectories are
represented by a full line, with an arrow indicating the direction of propagation.
Each particle is delimited by a disk.

Figure 5.1: Diagrammatic representation of the purity.

In the semiclassical limit Eq. (5.13) is again dominated by terms which satisfy
a stationary phase condition, i.e. where the variation of the action phase differ-
ences Φ0, Φ1, Φ01 has to be minimized. These stationary phase terms can be
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easily identified from the diagrammatic representation as those where two clas-
sical trajectories s and l of opposite direction of propagation are contracted, i.e.
s = l, up to a quantum resolution given by the wavelength ν.

As we consider the weak coupling regime, where the one-particle actions vary
faster than their two-particle counterparts. We thus perform a stationary phase
approximation on the one-particle actions. Firstly stationary phase approxima-
tion over Φ0 corresponds to setting s0 = m0 and k0 = l0, which leads to an
exact cancellation of Φ0 = 0. A similar procedure for Φ1 corresponds to setting
sα = lβ and kγ = mδ, which requires rα = rβ and rγ = rδ. It follows that only
diagonal contributions are preserved, and Φ1 = 0. The semiclassical purity P(t)
can be expressed over only four sets of classical trajectories s0, k0, sα, kγ and the
two-particle phase Φ01 reduces to,

δΦ01 = Ss0,sα − Sk0,sα + Sk0,kδ − Ss0,kδ (5.15)

and the semiclassical purity is given by,

Psc(t) =

〈
(4πν2)d

∫ ∏
i={0,1}

dxidyi
∑
s0,k0

|As0|
2 |Ak0|

2

×
∑
α,γ

∑
sα,kγ

|aα|2|aγ|2 |Asα|
2
∣∣Akγ ∣∣2 exp[iδΦ01]

〉
(5.16)

The analysis of Eq. (5.16) delivers three time-dependent contributions that
dominate semiclassically; the quantum contribution, the classical contribution
from the system and from the environment. The long-time saturation is also ob-
tained and decomposed into a system contribution and environment contribution.

Quantum contribution

The quantum contribution corresponds to the non-diagonal terms, in which all
paths are uncorrelated. For long enough times τ ≥ τ∗, the phases δΦ01 fluctuate
randomly and exhibit no correlation between different trajectories. This time τ∗
is defined by ∣∣∣∣∫ τ∗

0

dτ U01[qs(τ),ql(τ)]

∣∣∣∣ = 1 (5.17)

for a typical trajectories s, l. Eq. (5.17) corresponds to a sufficient accumulation
of phase Ss,l. One then applies a separation of the phase and amplitude average
in Eq. (5.16) and uses the Central Limit Theorem (CLT) to find

〈
eiδΦ01

〉
=

e−2〈S2
s0,sα〉, where

〈
S2
s0,sα

〉
=

∫ t

0

dτdτ ′ 〈U01 [qs0(τ),qsα(τ)]U01 [qs0(τ ′),qsα(τ ′)]〉 , (5.18)
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is the interaction correlator. In hyperbolic systems, correlators typically decay
exponentially ∝ eη|τ−τ

′| with an upper bound on η set by the smallest positive
Lyapunov exponent [18], thus

〈
S2
s0,sα

〉
' Γ01t. An RMT calculation can identify

this decay with the golden rule spreading of eigenstates of the total two-particle
Hamiltonian H over those of the non-interacting one H0 +H1. Finally using the
two sum rules 〈

(4πν2)
di
2

∫
dxi

∑
s0

|As0|2
〉

= 1, (5.19a)〈
(4πν2)

di
2

∫
dxi

∑
α

∑
sα

|aα|2|Asα|2
〉

= 1, (5.19b)

one obtains the nondiagonal quantum contribution to the semiclassical purity,

Psc1(t) = exp [−2Γ01t] . (5.20)

Classical contribution from the system

The system’s diagonal contribution corresponds to s0 ' k0 which requires x0 '
y0. From Eq. (5.16) it reads

Psc2(t) =

〈
(4πν2)d

∫ ∏
i={0,1}

dxidyi δν (|x0 − y0|)
∑
s0

|As0 |
4

×
∑
α,γ

∑
sα,kγ

|aα|2|aγ|2 |Asα|
2
∣∣Akγ ∣∣2 ei[∆0Ss0,sα−∆0Ss0,kγ ]

〉
(5.21)

where

∆0Ss0,sα =

∫ t

0

dτ ∇0U01[qs0(τ),qsα(τ)] · [qk0(τ)− qs0(τ)] (5.22)

arises from the linearization of U01 on k0 ' s0 [7, 10], and qs0(τ) lies on s0

with qs0(0) = r0 and qs0(t) = x0. In Eq. (5.21) the integrations are restricted
by |y0 − x0| ≤ ν because of the finite resolution with which two paths can be
equated.

Due to the non correlation of the environment’paths we obtain,
〈∆0Ss0,sα∆0Ss0,kγ〉 = 0. One may thus apply a separation of the phase and
amplitude averages and use the CLT, this yields〈

ei(∆0Ss0,sα−∆0Ss0,kγ )
〉

= e−〈[∆0Ss0,sα ]2〉.

〈∆0S2
s0,sα
〉 can be expressed with the force correlator,

〈∆2
0Ss0,sα〉 =

∫
dτdτ ′

d0∑
i,j=1

〈δqi(τ)δqj(τ
′)〉
〈
∂U01[qs0(τ),qsα(τ)]

∂qs0, i(τ)

∂U01[qs0(τ ′),qsα(τ ′)]

∂qs0, j(τ
′)

〉
,
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5.2 Bipartite model

with δq(τ) = qk0(τ) − qs0(τ). We assume from now on a fast decay of the
correlation,〈

∂U01[qs0(τ),qsα(τ)]

∂qs0, i(τ)

∂U01[qs0(τ ′),qsα(τ ′)]

∂qs0, j(τ
′)

〉
∝ γ0

2
δij δ(τ − τ ′), (5.23)

This particular shape for the correlator is taken here in order to simplify the
discussion, however a more realistic exponential or power law time dependence
can be considered with no qualitative changes in the following derivation. Since
the distance between two initially close points increases exponentially with time
for chaotic dynamics we have |δq(τ)| = exp[λ0(τ − t)]|y0 − x0| between the
intermediate points of the trajectories [7]. The extra phase can now be evaluated
and gives for the long time limit γ0

λ1
|y0 − x0|2. Performing now a change of

coordinates
∫
dx0

∑
Cs0 =

∫
dp0 in Eq. (5.21), and using the asymptotic limit

Cs0 ∝ e−λ0t [6,19] valid for chaotic systems with Lyapunov exponent λ0, one gets
after performing all the integrations, and using the two sum rules of Eqs. (5.19),

Psc2(t) = α0(t) exp[−λ0t], (5.24)

This term is classical and decays with the system‘s Lyapunov exponents λ0. It
does not exist at short times t < τλ0 , τλ0 = λ−1

0 ln[λ0/ν
2γ0] and has a prefactor

α0(t) = α0 t
−dΘτλ0

(t) with α0 = O(1).

Classical contribution from the environment

The last time-dependent contribution corresponds to a full contraction of the
environmental paths, i.e sα ' kδ which requires x1 ' y1 and rα = rδ. It reads

Psc3(t) =

〈
(4πν2)d

∫ ∏
i={0,1}

dxidyi δν (|x1 − y1|)
∑
s0,k0

|As0|
2 |Ak0|

2

×
∑
α

∑
sα

|aα|4 |Asα|
4 ei[∆1Ss0,sα−∆1Sk0,sα ]

〉
(5.25)

We note that on average 〈|aα|4〉 ' 1
V 2

1
, where V1 is number of Gaussians

considered in the initial state ηenv. This number corresponds to the environment
Hilbert space size for a complete continuous set of Gaussians. Following the same
procedure used for the previous contribution we end up with,

Psc3(t) =
α1(t)

V1

exp[−λ1t] (5.26)

The interpretation of Eq. (5.26) is straightforward, this is the classical contri-
bution to the purity of the environment. Contrary to Psc2(t), we have a prefactor
V −1

1 . This is due to the indetermination of the environment‘s initial state. This
contribution drops out for a a sufficiently large environment. Moreover this can-
celation is enforced by taking λ1 � λ0, which is reasonable for an environment
in which time scales must be shorter than the system’s time scales.
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5 Toward a semiclassical approach to decoherence

Long time saturation contributions

The saturation of the purity is given by two terms. The first one is the system‘s
saturation contribution and it corresponds to setting s0 = l0 and k0 = m0 in
Eq. (5.14a) which requires x0 ' y0 and leads to an exact cancellation of all
phases Φ0, Φ1, Φ01. It reads,

Psat1(t) =

〈
(4πν2)d

∫ ∏
i={0,1}

dxidyi δν (|x0 − y0|)
∑
s0,k0

|As0|
2 |Ak0|

2

×
∑
α,γ

∑
sα,kγ

|aα|2|aγ|2 |Asα|
2
∣∣Akγ ∣∣2

〉
(5.27)

The integrations, again, have to be performed with |x0−r0| ≤ ν. We incorporate
this restriction into the calculation by making the ergodicity assumption, setting〈∫ ∏

i={0,1}

dxidyi . . . δν (|x0 − y0|)

〉
=

1

N0

〈∫ ∏
i={0,1}

dxidyi . . .

〉
Θ
τ

(0)
E

(t), (5.28)

which is valid for times larger than the Ehrenfest time τ (0)
E = λ−1

0 ln[N0] [20,21],
with N0 the system‘s Hilbert space size. For shorter times, t < τ

(0)
E , Psat1(t) is

included in Psc2(t).
The use of the sum rule Eq. (5.19) gives

Psat1(t) =
1

N0

Θ
τ

(0)
E

(t). (5.29)

Similarly the environmental saturation contribution corresponds to sα = mδ

and kγ = lβ which requires x1 ' y1 and rα = rδ, rβ = rγ and gives also a total
cancelation of phases, thus

Psat2(t) =
1

N1

Θ
τ

(1)
E

(t). (5.30)

Note that for t < τ
(1)
E , this contribution does not exist by itself and is included

in the Psc3(t)

Semiclassical results

According to our semiclassical derivation the purity is given to leading order by
the sum of five terms of Eq. (5.20), (5.24), (5.26), (5.29) and (5.30),

Psc(t) = e−2Γ01t + α0(t)e−λ0t +
α1(t)

V1

e−λ1t +
1∑
i=0

Θ
τ

(i)
E

(t)

Ni

, (5.31)

102



5.2 Bipartite model

The regime of validity of our semiclassical approach is given by δ2 ≤ Γ01 ≤ B2,
where B2 and δ2 are the two-particle bandwidth and level spacing respectively [8].
In this range, U01 are quantum-mechanically strong as individual levels are broad-
ened beyond their average spacing, but classically weak, as B2 is unaffected by
U01 [7, 8].

We consider now the limit V1, N1 7→ ∞ and λ1 � λ0 of a large environment.
Since Eq. (5.31) is a sum of exponentials, only the exponential with the minimal
exponent survives. Eq. (5.31) distinguishes 2 regimes for the decay of the purity
and the saturation :

1. The Golden rule exponential decay, P(t) ∝ e−2Γ01t, if d2 ≤ Γ01 ≤ λ0. It
corresponds to a purely quantum regime generated by the coupling with
the environment

2. The System’s Lyapunov exponential decay, P(t) ∝ e−λ0t, if λ0 ≤ Γ01. It
corresponds to a purely classical regime generated by the system’s classical
dynamics

3. The asymptotic saturation P(t) = N−1
0

5.2.3 Numerical simulation

We numerically check our results. We consider the Hamiltonian of Eq. (5.2) for
two coupled kicked rotators

Hi = p2
i /2 +Ki cos(xi)

∑
n

δ(t− nT ), (5.32a)

U01 = ε sin(x1 − x2 − 0.33)
∑
n

δ(t− nT ). (5.32b)

The interaction potential U01 is long-ranged with a strength ε and acts at the
same time as the kicks. Upon increasing Ki the classical dynamics of the ith
particle varies from fully integrable (Ki = 0) to fully chaotic [Ki ≥ 7, with
Lyapunov exponent λi ≈ ln(Ki/2)]. For 1 < Ki < 7 the dynamics is mixed, i.e.
stable and unstable motion coexist. We will vary Ki ∈ [3, 12] to get a maximal
variation of λi, while making sure that both ψ1 and ψ2 lie in the chaotic sea. We
follow the usual quantization procedure on the torus xi, pi ∈ [−π, π[. The purity
is computed for discrete time t = n as,

P(n) = Tr0

[
Tr2

1

[(
F
)n
η(0)

(
F ∗
)n]] (5.33)
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5 Toward a semiclassical approach to decoherence

The Floquet operator F is an M ×M , (M = N0N1, ~eff = 2π/
√
N0N1) unitary

symmetric matrix. In angular momentum representation it has elements

F
k′0k
′
1

k0k1
= e

−i π
N0

(k2
0+k′20 )−i π

N1
(k2

1+k′21 )
(UQU †)

k′0k
′
1

k0k1
, (5.34a)

U
k′0k
′
1

k0k1
= N

−1/2
0 e

i 2π
N0

k0k′0N
−1/2
1 e

i 2π
N1

k1k′1 , (5.34b)

Q
k′0k
′
1

k0k1
= δk0k′0

e
−i

N0
2π
K0 cos

“
2π
N0

k′0

”
δk1k′1

e
−i

N1
2π
K1 cos

“
2π
N1

k′1

”

+ e
−i ε

~eff
sin(~eff(k′1−k′0)−0.33). (5.34c)

Numerically the time evolved density matrix is computed by recursive calls to
a fast Fourier transform routine [23]. Thanks to this algorithm only O(M lnM)
operations are required, which allowed us to reach system sizes up to N0,1 = 2048,
more than one order of magnitude larger than any previously investigated case.

We first restrict ourselves to the chaotic case, where we consider the least
reasonable model for the environment, roughly speaking two identical particles
with a similar initial state. This is sufficient to confirm our main result Eq. (5.31).
Setting N0 = N1 = M , ~eff = 2π/M the bandwidth and level spacing are given
by B2 = 4π and δ2 = 4π/M2.

Figure 5.2: Main plot: Purity of the reduced density matrix for N0 = N1 = 512,
K0 = K1 ∈ [4, 12], and ~−1

eff ε = 4 giving 2Γ01 = 13.6 � λ0 = λ1. Data have been
calculated from 20 different initial states. The time axis has been shifted by the onset
time τλ0 (see text) and rescaled with λ0 ∈ [0.5, 1.35]. The full line indicates ∝ exp[−λ0t],
and the dashed line gives the asymptotic saturation P(∞) = 2N−1

0 . Inset: Purity for
K0 = K1 = 5.09 for ~−1

eff ε = 0.2 (circles), 0.4 (squares), 0.8 (diamonds), 1.6, 2, 3 and 4
(triangles).
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5.2 Bipartite model

The behavior of P(t) is shown in Fig. 5.2. As ε increases, the rate of decoher-
ence also increases, up to some value εc, after which it saturates. We have found
that (i) prior to saturation, P(t) decays exponentially with a rate ≈ 0.85ε2~−2

eff ,
provided Γ01 = 0.43ε2~−2

eff > δ2 is satisfied, and that (ii) εc behaves consistently
with Eq.(5.31). Second, Fig. 5.2 shows that, for fixed ε > εc, the rescaling of the
time axis t → λ0t allows to bring together six curves with λ0 = λ1 ∈ [0.5, 1.35],
varying by almost a factor three. This confirms the existence of the Lyapunov
regime of purity decay.

Figure 5.3: Main plot: Purity of the reduced density matrix for N0 = N1 = 512 in the
the golden rule regime Γ01 & λi as a function of Γ01 ≈ 0.85ε2~−2

eff , for K0 = K1 = 50.09,
with ~−1

eff ε = 0.06 (circles), 0.3 (squares), 0.6 (diamonds) and 0.9 (triangles). Data
have been calculated from 20 different initial states. The time axis has been shifted
by the onset time τ∗ and rescaled with 2Γ01 ∈ [5. 10−2, 8. 10−1]. The full line indicate
the decays∝ exp[2Γ01t] with Γ01 ' 0.43 ε2~−2

eff . The dashed line gives the saturation
P(∞) = 2N−1

0 . Inset: local spectral density of states ρLDOS(ε) of eigenstates of an
uncoupled double kicked rotator with K0 = K1 = 50.09 over the eigenstates of an
coupled double kicked rotator with the same kicks strength. System size is N = 64, with
~−1

eff ε = 0.1 (circles), 0.2 (squares), 0.3 (diamonds). The solid lines are Lorentzian with
widths Γ01 ≈ 0.07, 0.016 and 0.042 in agreement with the formula Γ01 = 0.43 ε2~−2

eff .

Third we focus on the study of P(t) in the Fermi golden rule regime in Fig. 5.3.
We show in the inset the behavior of the local spectral density

ρLDOS(ε) =
∑
α

|〈0α, 1α|a〉|2δ(ε− Ea + ε(0)
α + ε(1)

α ), (5.35)

of eigenstates {|0α, 1α〉} of
∑

iHi (with quasienergy eigenvalues
∑

i ε
(i)
α ) over the

eigenstates {|a〉} of H (with quasienergy eigenvalues Ea). The local spectral
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5 Toward a semiclassical approach to decoherence

density ρLDOS(ε) has a Lorentzian shape with a width given by Γ01 ≈ 0.43ε2~−2
eff .

Having extracted the ε dependence of Γ01, we next plot the purity P(t) in the
main part of Fig. 5.3. The rescaling of the time axis t → 2Γ01t with 2Γ01 ∈
[5. 10−2, 8. 10−1] allows us to bring together four curves, varying by more than a
factor ten. This confirms the existence of the Fermi Golden Rule regime of purity
decay.

Figure 5.4: Main plot: Purity of the reduced density matrix for N0 = N1 = 512 in the
the golden rule regime Γ � λ0 as a function of t, for K0 = 5.09, N = 1024 ~−1

eff ε = 2
with K1 = 5.09, (circles), 10.09 (squares), 20.09 (diamonds), 50.09 (triangles). Data
have been calculated from 20 different initial states. The full line indicates the decay
∝ exp[−λ0t]. The dashed line gives the saturation P(∞) = 2N−1

0 . Inset : Purity
P(t) in the regime Γ � λ0 as a function of t, for K0 = 10.09, K1 = 50.09, N0 = 64
~−1

eff ε = 4 with N1 = 128 (circles), 512 (squares), 2048 (diamonds) 8192 (triangles).
Data have been calculated from 20 different initial states. The full line indicates the
decay ∝ exp[−λ0t]. The dashed lines give the saturation P(∞) = N−1

0 +N−1
1 .

Finally Fig. 5.4 is devoted to the confirmation of the environment’s Lyapunov
independence of the Purity. The main plot shows the behavior of the purity
in the limit λ0 � λ1. With no rescaling and λ0 ' 0.97, λ1 ∈ [0.97, 3.2] we
show that four curves varying by almost a factor three have the same decay
given by the system’s Lyapunov exponent. In the inset we considere the limit
N0 � N1, for N1 ∈ [64, 8192], all curve behave in accordance to our main result
Eq. (5.31). Moreover we have a confirmation of the asymptotic value of the
saturation P(∞) = N−1

0 + N−1
1 obtained for a finite size of the environment.

Also confirmed, in Fig. 5.2, Fig. 5.3 for the particular regime N0 = N1, is that
P(t→∞) = 2N−1

0 .
These numerical data thus confirm our analytical results.
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5.2 Bipartite model

5.2.4 Quantum-classical correspondance

The purity measures the weight of off-diagonal elements of η0(t), and hence the
importance of coherent effects. In the regime 2Γ01 � λ0, P(t) reaches its minimal
value at the Ehrenfest time τ (0)

E = λ−1
0 lnN0, and thus, quantum effects that

traditionally dominate the dynamics after the Ehrenfest time are killed before
they have a chance to appear. In that regime, one thus expects the quantum-
classical correspondence to become perfect in the semiclassical limit N0,1 →∞.

Figure 5.5: Phase-space plots for a classical distribution (top left), uncoupled (top
right) and coupled (bottom left and right, ~−1

efffε = 4) quantum Wigner distributions,
after five iterations of the coupled kicked rotator map with K1 = 3.09 (fully chaotic
regime, see text). The initial distributions are Gaussian centered in the chaotic sea at
(x, p) = (1, 2). In the bottom panels, the system is coupled to a second kicked rotator
with K2 = 100. One has 2Γ = 13.6 > λ2 � λ1, and hence P(t) ' exp[−λ1t]. The left
panel has N1 = N2 = 512 and the right panel has N1 = N2 = 2048.

This fact is numerically illustrated with the help of Wigner function’s dynam-
ics in phase space. Fig. 5.5 compares the time-evolution of a classical distribution
(top left), with that of the Wigner function

W0(p,q; t) = (2π~)−d/2
∫

dx exp[ipx]η0(q + x/2,q− x/2; t), (5.36)
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5 Toward a semiclassical approach to decoherence

which are both quantum-mechanically evolved from a localized wavepacket with
the same initial location and extension. Three quantum phase-space plots are
shown: (i) (top right) for a free system, ε = 0; (ii) and (iii) (bottom left and
right) for a coupled system ~−1ε = 4, in the regime P(t) ' exp[−λ0t]. The
bottom left panel has a system size N1 = N2 = 512 while the bottom right
panel has N1 = N2 = 2048. All plots show phase-space distributions after 5
kicks. Quantizing the system on a torus results in the emergence of four-fold
ghost images in the Wigner function, which have no physical content. They are
artifacts of the phase-space boundary conditions, resulting from two reflections
of the physical part of the distribution against the x = 0 and p = 0 axis [22].
Disregarding these four-fold ghost images, two things are clear from Fig. 5.5.
First, a coupling is necessary and sufficient to achieve phase-space quantum-
classical correspondence. Second, the correspondence becomes better as we move
deeper in the semiclassical regime, This numerically confirms that in the regime
of Lyapunov entanglement, there is complete quantum-classical correspondence
in the semiclassical limit.

5.3 Multipartite model

5.3.1 Rescaling of the bipartite model

The knowledge gained from the investigations of decoherence in the bipartite
study, can be applied to a more complex model; a system under the influence of N
other dynamical interacting systems. Fundamentally we still consider a bipartite
system, but add some complexity in the internal structure of the environment.
Consequently in order to make a comparison with the initial model we need to
introduce a rescaling of the strength of multipartite interaction. Since in the
quantum regime both the influence functional and the purity are related to the
Fermi Golden rule spreading, the physical picture requires a rescaling of the
interaction by a factor 1√

N
that is related to the number of direct links between

the system and the environment.
We thus consider the following many-body Hamiltonian,

H(N) =
N∑
i=0

Hi

N⊗
j 6=i

Ij +
N∑
i=0

∑
j>i

1√
N
Uij (5.37)

The one-particle hamiltonian Hi describes a chaotic dynamics. We stress that
we use only bipartite interaction but the complete set of all possible interactions.
Each interaction potential Uij is smooth, varying over a distance much larger
than the particle’s de Broglie wavelength ν, and depends only on the distance
between the particles i and j.

We consider an initial fully separable density matrix η(N)(0) =
⊗N

i=0 |ψi〉〈ψi|.
In order to simplify the investigations, the initial state of each particle i is a
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narrow Gaussian wave packet centered on (ri, pi), i.e ψi(q) = (πν2)−di/4 exp[ipi ·
(q− ri)− |q− ri|2/2ν2].

5.3.2 Influence functional

The generalization of the two-particle semiclassical propagator Eq. (5.4) to the
N + 1 case is straightforward. The semiclassical multipartite propagator is ex-
pressed as sum over N + 1 classical trajectories and can be written as,〈

x0, · · · ,xN
∣∣e−iHt∣∣ z0, · · · , zN

〉
= (−i)

d
2

∑
s0···sN

C1/2
s0···sN e

i{Ss0 (z0,x0;t)+
PN
i=1 Ssi (zi,xi;t)+

PN
i=0

P
j>i Ssi,sj (zi,xi;zj ,xj ;t)},(5.38)

where we let d =
∑N

i=0 di. As in the bipartite case we included the Maslov
indices in the one-particle action integrals Ssi , the two-particle action integrals
are Ssi,sj =

∫ t
0
dt1

1√
N
Ukk′

(
qsi(t1),qsj(t1)

)
and Cs0···sN is now the real positive

determinant of the (N + 1) particle dynamics in the d-dimensional space [19].
We repeat the assumption as used in the bipartite study, that interaction do

not change classical paths. Elements of the multipartite semiclassical reduced

density matrix η(N)
0 = Tr1

[
· · ·
[
TrN

[
η(N)

]]
· · ·

]
read as,

η
(N)
0 (x0,y0; t) =

∑
s0, l0

(4πν2)
d0
2 As0A

†
l0
Fs0, l0(t) exp[iϕ0], (5.39)

with,

Fs0,l0(t) = (4πν2)−
d−d0

2

∫ N∏
i=1

dxi
∑
s1···sN
l1···lN

As1···sNA
†
l1···lN exp

[
i
(
ϕ

(N)
i + ϕ

(N)
ij

)]
,(5.40)

and the phases

ϕ0 = Ss0(r0,x0; t)− Sl0(r0,y0; t), (5.41a)

ϕ
(N)
i =

N∑
i=1

(Ssi(ri,xi; t)− Sli(ri,xi; t)) , (5.41b)

ϕ
(N)
ij =

N∑
i=1

(Ss0,si − Sl0,li) +
N∑
i=1

∑
j>i

(
Ssi,sj − Sli,lj

)
. (5.41c)

In Eq. (5.40) we let As1···sN = As1 · · · AsN .
The functional Fs0,l0(t) in Eq. (5.40) is the semiclassical Feynman-Vernon

influence functional [16]. As usual the semiclassical expression is obtained by a
action phase minimization procedure. A stationary phase approximation on ϕ(N)

i
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corresponds to setting si = li for all the environmental particles, this cancels
the phase ϕ(N)

i = 0, and the sum over the bipartite action phases reduces to
ϕ

(N)
ij =

∑N
i=1 Ss0,si − Sl0,si . Eq. (5.40) becomes,

Fs0,l0(t) = (4πν2)−
d−d0

2

N∏
i=1

dxi
∑
s1···sN

(
N∏
i=1

|Asi |2ei(Ss0,si−Sl0,si )
)
. (5.42)

Since each pair of paths (si, li) is only related to the particle i and only bipartite
interactions are involved in the calculation, there is no correlation between Ss0,si
and Ss0,sj if we consider different particles i 6= j. Thus,〈

N∏
i=1

ei(Ss0,si−Sl0,si )

〉
=

N∏
i=1

〈
ei(Ss0,si−Sl0,si )

〉
.

Moreover decoherence affect off-diagonal elements of the reduced density matrix,
i.e |y0−x0| � ν and s0 6= l0. Due to the absence of correlation between Ss0,si and
Sl0,si , the separation of the phase and amplitude averages together with the CLT
gives after performing all the integrations and using the sum rules Eq. (5.19),

Fs0,l0(t) = exp

[
−

N∑
i=1

1

N
Γ0it

]
. (5.43)

Where

Γ0i = 2

∫ t

0

dτ 〈U0i [qs0(0),qsi(0)]U0i [qs0(τ),qsi(τ)]〉 (5.44)

is the bipartite interaction correlator.
The analysis of Eq. (5.43) shows that the influence functional depends only

on the coupling between the system and the environment. Consequently, en-
vironments with interacting particles and non-interacting particles lead to the
same result. This result can be compared to the well established Caldeira-Legett
approach [27, 28] where the environment is assumed to consist of non interact-
ing oscillator. Here we show from a direct calculation that the non-interacting
behavior is justified, and considering more complex interaction would not yields
more information. We note that we have performed the maximal number of con-
tractions and we do not have any system Lyapunov contribution. We will see
that a system Lyapunov contribution exist for the purity.

The diagonal term of the reduced density matrix s0 = l0 cancels the influence
phase and Fs0,s0( t) = 1 as its should be. However a linearization around s0 can
be performed, if we consider terms close to the diagonal ν � |y0−x0| � ξ, where
ξ is a typical length scale, which can be the range of the multipartite interaction
potential or the scale over which it fluctuate. After the application of the CLT
and the use of Eq. (5.23), we get for the long time limit,

Fs0,l0(t) = exp

[
1

2

γ0

λ0

|y0 − x0|2
]

(5.45)
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where 〈∆0S
2
s,l〉 ∝ γ0 and λ0 is the system Lyapunov exponent. Close to the

diagonal, elements have a gaussian decay in y0 − x0 and the decoherence is
enhanced.

5.3.3 Multipartite purity

Before starting any derivation concerning the multipartite purity it is important
to notice that we are still in the framework of a bipartite system.i.e. a system
in interaction with a complex environment. This bipartite splitting is in fact
essential. Indeed the concept of purity is related to the entanglement theory and
the purity is a well defined measure of entanglement only for global bipartite pure
states. We warn that investigating multipartite entanglement is a very difficult
task. More subtle objects like the generalized I-concurence [24] must be invoked.
We refer the interested reader to the report on multiparticle entanglement by
Mintert and coworkers [25].

From the previous development we can express the multlipartite purity as,

P(N)(t) = (4πν2)d
∫ N∏

i=0

dxidyi
∑

s0,l0,k0,m0

As0A†s0Ak0A†m0
eiΦ0

×
∑
s1···sN
l1···lN

∑
k1···kN
m1···mN

As1···sNA†s1···sNAk1···sNA†m1···mN e
i
“

Φ
(N)
i +Φ

(N)
ij

”
, (5.46)

with the phases

Φ0 = Ss0(r0,x0; t)− Sl0(r0,y0; t) + Sk0(r0,y0; t)− Sm0(r0,x0; t), (5.47a)

Φ
(N)
i =

N∑
i=1

Ssi(ri,xi; t)− Sli(ri,yi; t) + Ski(ri,yi; t)− Smi(ri,xi; t),(5.47b)

Φ
(N)
ij =

N∑
i=1

(Ss0,si − Sl0,li + Sk0,ki − Sm0,mi)

+
N∑
i=1

∑
j>i

(
Ssi,sj − Sli,lj + Ski,kj − Smi,mj

)
. (5.47c)

Eq. 5.46 is depicted in Fig. (5.6), with the same rules as defined in the bipartite
case.

We will limit the study to only the dominant semiclassical time dependent
contributions. These ones are obtained by N + 1 successive stationary phase
approximations. A stationary phase approximation over Φ0 will cancel the phase
by setting s0 = m0 and k0 = l0. Similarly stationary phase approximations over
Φ

(N)
i correspond to setting si = li and ki = mi for each particle i. Thus the

multipartite purity can be expressed over a set of 2 (N + 1) classical trajectories,
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5 Toward a semiclassical approach to decoherence

Figure 5.6: Diagrammatic representation of the multipartite purity.

{s0, k0 ; s1, k1; · · · ; sN , kN}. The phase Φ
(N)
ij reduces to

δΦ
(N)
ij = Φ

(N)
0i =

N∑
i=1

Ss0,si − Sk0,si + Sk0,ki − Ss0,ki (5.48)

and the multipartite parity is given by

P(N)
sc (t) =

〈
(4πν2)−d

∫ N∏
i=0

dxidyi
∑
s0···sN
k0···kN

|As0|2|Ak0 |2|As1···sN |2|Ak1···sN |2eiΦ
(N)
0i

〉
(5.49)

From the Eq. (5.49) we can derive all the dominant time dependent contribu-
tions. We have learned from the bipartite derivation, that these terms are related
to the presence or absence of correlations between different semiclassical paths of
the same particle. From the diagrammatic this corresponds to contracting two
paths together. As we have N + 1 particles and each particle possesses 2 sets
of paths, we can have (N + 1)! diagrams depending on which combination of
particles we choose for the contraction. We will present only the four dominant
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5.3 Multipartite model

contributions, which are the non diagonal contribution , the system diagonal con-
tribution , the Fully Diagonal Environmental contribution , and the first mixed
contributions.

Non diagonal contribution

The non diagonal contribution corresponds to a complete absence of correlations
between all paths. The application of the CLT and the sum rules Eq. (5.19) leads
to

P(N)
sc1

(t) = exp

[
−2

N∑
i=1

1

N
Γ0it

]
(5.50)

with Γ0i given by Eq. (5.44). This is the Fermi Golden rule regime. The semi-
classical multipartite purity cannot distinguish between an interacting and a
non-interacting environment. The interacting isotropic case Γij = Γ, or the
non-interacting isotropic case Γij = Γδi0, delivers the same result P(N)(t) =
exp [−2Γt], which is independent of N .

System diagonal contribution

The System diagonal contribution corresponds to a contraction of path s0 '
k0, which requires x0 ' y0. Since all paths of the environment particles are
uncorrelated, the linearization of k0 over s0 and the application of the CLT give
for the phase,〈

eiΦ
(N)
0i

〉
=
〈
ei(∆0Ss0,si−∆0Ss0,ki )

〉N
= e−N〈∆2

0Ss0,si〉 (5.51)

Assuming the same fast decay for the force correlator as in Eq. (5.23) deliv-
ers 〈∆2Ss0,si〉 ∝

γ0

N
. One finally obtains, with the same reasoning used for the

derivation of Psc2(t),

P(N)
sc2

(t) = α0(t) exp[−λ0t] (5.52)

This is term is the System‘s Lyapunov contribution.

Fully Diagonal Environmental contribution

The Fully Diagonal Environmental contribution, corresponds to the contraction
of paths si ' ki for the complete set of environmental particles. From the dia-
grammatics it is easy to see that each contraction will give a contribution of the
form of Eq. (5.52), namely

〈
eiΦ

(N)
0i

〉
=

N∏
i=1

〈
ei(∆iSs0,si−∆iSk0,si

)
〉

=
N∏
i=1

e−〈∆2
iSs0,si〉 (5.53)
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and 〈∆2
iSs0,si〉 ∝

γi
N
, this will gives a factor N

d−d0
2 after the gaussian integration

and we obtain,

P(N)
sc3

(t) = N
d−d0

2

(
N∏
i=1

αi(t)

)
exp

[
−

N∑
i

λit

]
. (5.54)

For sufficiently strong λi or enough environment particles this term vanishes.

Mixed contributions

From the diagrammatics we can easily find that if we consider only a restricted
number of contractions, we can obtain mixed terms i.e terms with some Lyapunov
contributions and some Fermi Golden rule contributions.

A general formula for an arbitrary number of contractions can be derived,
but for a suitable set of parameters these contributions can be neglected. That
is why we present only the case, where one and only one environmental particle
labelled k is contracted. For this situation, the phase Φ

(N)
0i becomes,〈

eiΦ
(N)
0i

〉
=

〈
ei(Ss0,sk−Ss0,kk+Sk0,kk

−Sko,sk )
〉 〈
ei
PN
i=1, 6=k Ss0,si−Ss0,ki+Sk0,ki

−Sko,si
〉

= e−〈∆2
kSs0,sk〉e−

PN
i=1, 6=k〈S2

s0,si〉 (5.55)

thus we obtain, directly,

P(N)
sc4

(t) = N
dk
2 αk(t)e

−λkte−2
PN
i=1,6=k

1
N

Γ0it. (5.56)

Semiclassical results

Our semiclassical derivation of the multipartite purity, shows that to the leading
order the decay is given by the sum of tree terms, Eqs. (5.50), (5.52), (5.54),
thus for chaotic systems we get,

Psc(t) = e−2
PN
i=1

1
N

Γ0it + a0(t)e−λ0t +N
d−d0

2

(
N∏
i=1

ai(t)

)
e−

PN
i λit (5.57)

We finally note that in the limit ofN 7→ ∞ the long time saturation P(N)
sc (∞) =

N−1
0 is obtained from Eq. (5.46) with the contraction s0 = l0 and k0 = m0.

5.3.4 RMT approach versus semiclassical description

This part is devoted to a random matrix calculation of the multipartite purity
P(N)(t). First we denote the set of eigenstates of the free hamiltonians Hj by
{|jα〉} (with the energy eigenvalues ε(j)α ) and the eigenstates of the interacting
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hamiltonian H by {|a〉} (with quasienergy eigenvalues Ea). In order to simplify
the notation we define the eigenstates |jα〉 =

⊗N
j=1 |jα〉 and |Xj〉 =

⊗N
j=1 |xj〉.

We let NE =
∏N

j=1Ni be the total size of the environmental Hilbert space and
we let ΩE =

∏N
j=1 Ωi be its spacial volume.

With these notations the multipartite purity is given by

P(N)
RMT(t) =

∫ N∏
i=0

dxidyi
∑

indices

〈
0δ, jδ

∣∣η(0)
∣∣0β, jβ〉〈0δ′ , jδ′∣∣η(0)

∣∣0β′ , jβ′〉
×
〈
0β, jβ

∣∣e−iHt
∣∣0α, jα〉〈0γ, jγ∣∣eiHt∣∣0δ, jδ〉〈0β′ , jβ′∣∣e−iHt

∣∣0α′ , jα′〉〈0γ′ , jγ′∣∣eiHt∣∣0δ′ , jδ′〉
×
〈
0α, jα

∣∣x0,Xj

〉〈
x0,Yj

∣∣0γ, jγ〉〈0α′ , jα′∣∣y0,Yj

〉〈
y0,Xj

∣∣0γ′ , jγ′〉 (5.58)

RMT states that both sets of eigenstates are rotationally invariant [26]. This
implies that the averages are independent of the initial states and yields,

〈
0δ, jδ

∣∣η(0)
∣∣0β, jβ〉〈0δ′ , jδ′∣∣η(0)

∣∣0β′ , jβ′〉 =
1

N2
0N

2
E

N∏
j=1

(
δ0β0δδ0β′0δ′

δjβjδδjβ′jδ′

+δ0β0δ′
δ0β′0δ

δjβjδ′δjβ′jδ
+δ0β0δ′

δ0β′0δ
δjβjδδjβ′jδ′

+δ0β0δδ0β′0δ′
δjβjδ′δjβ′jδ

)
(5.59)

and 〈
0α, jα

∣∣x0,Xj

〉〈
x0,Yj

∣∣0γ, jγ〉〈0α′ , jα′∣∣y0,Yj

〉〈
y0,Xj

∣∣0γ′ , jγ′〉
=

1

Ω2
0Ω2

E

δ0α0γδ0α′0γ′

N∏
j=1

δjαjγ′δjα′jγ (5.60)

If we introduce the eigenbasis of H in the propagator terms, it follows that
the purity reduces to,

P(N)
RMT(t) =

1

N 0
+

1

NE

(5.61)

+
1

N2
0N

2
E

( ∑
indices

〈
0β, jβ

∣∣a〉〈a∣∣0α, jα〉〈0α, jα′∣∣b〉〈b∣∣0β, jβ′〉
〈
0β′ , jβ′

∣∣c〉〈c∣∣0α′ , jα′〉〈0α′ , jα∣∣d〉〈d∣∣0β′ , jβ〉e−it(Ea−Eb+Ec−Ed)

)

+
1

N2
0N

2
E

( ∑
indices

〈
0β, jβ

∣∣a〉〈a∣∣0α, jα〉〈0α, jα′∣∣b〉〈b∣∣0β′ , jβ〉
〈
0β′ , jβ′

∣∣c〉〈c∣∣0α′ , jα′〉〈0α′ , jα∣∣d〉〈d∣∣0β, jβ′〉e−it(Ea−Eb+Ec−Ed)

)
.
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Now we note that the Local Density Of State of an isolated system of inter-
acting particles can be approximated [29] in the weak coupling limit by,

∣∣〈0α, jα∣∣a〉∣∣2ρ−1(Ea) =
1

2π

Γ̃(
Ea −

∑N
j=0 ε

(j)
α

)2

+ 1
4
Γ̃2

, (5.62)

where ρ(Ea) denotes the density of state of the many-body problem and Γ̃ is the
many-body Fermi Golden rule spreading, which reads

Γ̃ = 2π
∣∣〈0α, jα∣∣U∣∣0ϕ, jϕ∣∣2∆−1, (5.63)

where ∆−1 is the typical mean interval between the final basis state |0ϕ, jϕ〉 which
can be connected with the particular basis state |0α, jα〉 by the interaction U . We
note that the latter can be related to the bipartite Fermi Golden rule spreading,
Γij = 2π

∣∣〈iα, jα∣∣Uij∣∣iϕ, jϕ〉∣∣2∆−1 as

Γ̃ =
N∑
j=0

N∑
l≥j

Γjl
1

N
. (5.64)

We perform the transformation from the eigenbasis summation to the energy
representation

∑
a →

∫
dEaρ

−1(Ea) in Eq. (5.61). This yields, after computing
the Fourrier transform of the local density of state, to

P(N)
RMT(t) =

1

N 0
+

1

NE

+ e−t
PN
i=0

P
j≥i Γij

1
N +

e−t
PN
i=0

P
j≥i Γij

1
N

N0NE

. (5.65)

This result confirms the long time saturation of the multipartite purity. In the
particular case of the bipartite configuration, semiclassical and RMT derivations
are in agreement with each other. Otherwise in all other situations the RMT
and the semiclassical approach lead to different results. As an illustration we
consider an interacting isotropic environment Γij = Γ , ∀ (i, j). RMT predicts
a decay ∝ exp[−2NΓt] in contrast to the semiclassical one ∝ exp[−2Γt]. Why
do the two methods differ ? This question is still open, however it seems that
our semiclassical approach is too naive. Our semiclassical approach neglects the
change of the classical trajectories due to the interaction, this approximation
is quite well justified in the bipartite case by the structural stability and the
shadowing theorem. However an extension to more particles is at the very least
not completely obvious.

The only way to obtains N2 interactions, in the semiclassical approach, is if a
particle 1 modifies the trajectory of a particle 2 in interaction with a third one 3.
Indeed during the interaction we have an accumulation of phase Φ23 , this latter
will be affected by the particle 1. Future work will be devoted to the inclusion of
this classical path modification effect.
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5.4 Conclusion

In this chapter we investigated the effect of decoherence in interacting dynamical
systems. At first for a bipartite model; to leading order in ~eff , our semiclassical
calculation gives the time-evolution of the purity as

P(t) ' exp[−min(λ0, λ1, 2Γ01)t] +N−1
0 +N−1

1 . (5.66)

Eq. (5.66) reconciles the numerical results of Refs. [13] and [14]. Its regime
of validity, δ2 ≤ Γ01 ≤ B2, is parametrically large in the semiclassical limit
Ni →∞. We note that the same approach can also be applied to regular systems,
in which case the exponentially decaying Lyapunov terms are replaced by power-
law decaying terms [11,15]. We stress one important advantage of our approach,
namely that P(t) can be directly calculated, without the step of numerically
integrating a differential equation for η0(t). Secondly, based on a Wigner function
dynamics simulation we clearly illustrate the quantum-classical correspondence
in the Lyapunov regime.

Finally the investigations on a multiparticle model reveal, that the RMT
treatment and the semiclassical treatment lead to different results in this case.
More investigations are necessary to understand this discrepancy.
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CHAPTER 6

Decoherence in quantum
chaotic transport :

a semiclassical approach

6.1 Introduction

6.1.1 Dephasing and quantum transport

In mesoscopic systems, quantum coherence depends on the physical properties
investigated, and in this sense is not characterized by a unique parameter. For ex-
ample the conductance through such systems is affected by quantum interference
effect up to a length scale that depends on the temperature and the applied volt-
age. Quantum coherent effects in mesoscopic transport are numerous, weak local-
ization, universal conductance fluctuations and Aharonov-Bohm effects [1–3] are
certainly the most important ones. Due to their typical intermediate size, meso-
scopic systems are the ideal framework to investigate the quantum-to-classical
transition from a microscopic coherent world, where quantum interference effects
prevail, to a macroscopic classical world [4]. Indeed, the disappearance of quan-
tum coherence due to dephasing processes has raised lot of theoretical [5, 7–14]
and experimental [15–19] interest. At sufficiently low temperature, it is now well
established, that the dominant processes of dephasing are electronic interactions.
For a disordered quantum dot, the electronic interactions can be well modeled
by a classical noise potential [5, 6], which yields an algebraic suppression of the
weak-localization contribution to conductance through

gwl =
gwl

0

1 + τD/τφ
, (6.1)
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6 Decoherence in quantum chaotic transport : a semiclassical approach

where gwl
0 is the contribution (in units of 2e2/h) in the absence of dephasing.

The dephasing time τφ is given by the noise power, and the dwell time τD =
τ0L/(WL + WR) for a system of size L with time of flight τ0 connected to two
external, L (left) and R (right) leads of widthsWL,WR. The robustness of Eq. 6.1
is quite remarkable, indeed it is insensitive to most noise-spectrum details, and
holds for various sources of noise such as electron-electron and electron-phonon
interactions, or external microwave fields.

There exist other, mostly phenomenological models, to investigate the disap-
pearance of quantum effect on conductance in ballistic systems [8–13]. Voltage [8]
and dephasing probe [9] models are certainly the most popular ones. In these
two models, a third lead of width W3 is connected to the system via a point
contact of transparency ρ. A voltage is applied to the third lead to ensure that
no current flows through it. Voltage and dephasing probes are used to introduce
respectively inelastic and elastic incoherent scattering, into a fully quantum co-
herent system. This is clearly, the origin of the success, of this approach. Indeed
one can directly use the formalism, developed in the purely coherent limit. Nev-
ertheless, the mechanisms used here differ from the real microscopic processes
involved such as electron-electron and electron-phonon interactions, or external
microwave fields. These two models tend only to mimic such process. This it is
obvious for the conceptual dephasing probe, but it’s important to note that the
phenomenological character still holds for the the voltage probe even if it is a real
physical component widely used in mesoscopic experiments [20–23].

It has been shown that the equivalence between these two models, is exact
only in the one channel limit [24]. However, if we limit the investigation to the
current at low frequency and zeros temperature, result will not differ. A random
matrix theory (RMT) treatment of the dephasing lead model leads to Eq. (6.1)
with τφ = τ0L/(ρW3) [28,29], where ρ is the transmission probability of its tunnel-
barrier. Thus it is commonly assumed that dephasing is system-independent for
noise with a broad enough spectrum.

6.1.2 Dephasing in ballistic transport

Our purpose in this chapter is to revisit dephasing in open chaotic ballistic sys-
tems. According to the Bohigas Giannoni Schmit surmise [25], the Hamiltonian
matrix of a closed chaotic system exhibits the universality of random matrix the-
ory. Opening up the system, transport properties derive from the corresponding
scattering matrix, which is determined by both the Hamiltonian of the closed
system and its coupling to external leads [26]. It has been shown that for not
too strong coupling, and when the Hamiltonian matrix is an element of one of
the Gaussian ensembles of random hermition matrices, the corresponding scat-
tering matrix is an element of one of the circular ensembles of unitary random
matrices [27]. Accordingly transport properties of such ballistic systems are well
described by the random matrix theory of transport [28–31].
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However, one problem with the random matrix approach is its deficiency
to deliver information about the crossover to the classical limit. That is why
semiclassical methods have been involved in this field [32–46]. In the context of
quantum ballistic transport, it is important to realize that whereas the dephasing
time τφ is the long time cut-off for quantum interference, there is, as firstly noticed
by Aleiner and Larkin [47], a new time scale that controls the appearance of such
interference. This is the so called Ehrenfest time τE. This time scale corresponds
to the time during which a well localized wavepacket spreads to a macroscopical
length scale. Typically in open chaotic systems, two classical lengths are relevant,
the system size L and the lead width W . We can thus define an Ehrenfest time
associated to each one [48,49], the closed cavity Ehrenfest time τ cl

E = λ−1 ln[L/λF]
and the open cavity Ehrenfest time τ op

E = λ−1 ln[W 2/λFL], where λ is the classical
Lyapunov exponent of the cavity.

In the semiclassical limit of large ratio L/λF of the system size to Fermi
wavelength, influence of a finite Eherenfest time has been now widely analyti-
cally analyzed, in various contexts, like weak localization correction [34–38], shot
noise [39, 40], universal conductance fluctuation [41] or even quantum pump-
ing [42].

Except for the analytical work of Ref. [47] and a numerical investigation [53],
the investigation on the competition between the Ehrenfest time and the de-
phasing time was not so developed until recently [50, 51]. This is surprising,
because such a study conduct to address the fundamental question of the system
dependence of dephasing in the deep semiclassical limit. This question will be
the focus of this chapter. These investigations are experimentally relvant. More
precisely, Yevtushenko and collaborators investigated weak localization in a two-
dimensional collection of randomly placed anti-dots. They observed an exponen-
tial suppression of weak localization with increasing temperature T . They inter-
preted this observation as arising from the competition between τE and τφ [52].
From a theoretical point of view, it was shown in [47] that classical noise lead
to an exponential suppression of weak localization, ∝ exp[−τ cl

E /τφ]
/

(1 + τD/τφ).
This was numerically confirmed by simulations of the dephasing lead model [53].

Here we analytically investigate two different models of dephasing, and show
that the suppression of weak localization corrections to the conductance is strongly
model-dependent. First, we consider an external environment modeled by a ca-
pacitively coupled, single-electron closed quantum dot. We restrict ourselves to
the regime of pure dephasing, where the environment does not alter the classical
dynamics of the system. Secondly, following the work of Whitney [54] we provide
a semiclassical treatment of transport in the dephasing lead model. We show
that in both cases, the weak localization correction to conductance is given by

gwl =
gwl

0

1 + τD/τφ
exp[−τ̃ /τφ], (6.2)

with a system-dependent time scale τ̃ . For the dephasing lead model, τ̃ = τ cl
E +

(1 − ρ)τ op
E in terms of the transparency ρ of the contacts to the leads, and the

125



6 Decoherence in quantum chaotic transport : a semiclassical approach

open system Ehrenfest time. Up to logarithmic corrections, this agrees with the
prediction of Ref. [47] and sheds analytical light on the numerics of Ref. [53].
For the two-cavity model, however, τ̃ = λ−1 ln[(L/ξ)2] depends on the correlation
length ξ of the coupling potential between the two dots, and we thus conclude
that dephasing in the semiclassical limit is strongly system dependent.

6.1.3 Outline of this chapter

The outline of this chapter goes as the follows. Section 6.2 is devoted to the
treatment of the system-environment model. In particular, we present the new
scattering formalism perviously used in [51]. The latter permits us to incorporate
the coupling to external degrees of freedom. We then applied this formalism to
determine, from a semiclassical point view, the Drude conductance and the weak
localization correction to the transport. In particular we present a semiclassi-
cal calculation of the coherent-backscattering that shows the current conserving
behavior of the method.

In Section 6.3 we present the first trajectory based derivation of the dephasing
model, firstly in it is simpler formulation for a fully transparent barrier and then
for the opaque case. We also comment on the multiprobe dephasing model.

Finally in section 6.4, we present for the system-environment model, a nu-
merical simulation of the magnetoconductance.

Summary and conclusions are presented in Section 6.5. Technical details are
presented in appendix.

6.2 Transport theory for a system-environement

The well known scattering approach is characterized by its ability to provide a
clear and simple physical understanding of various transport phenomena, how-
ever in this standard approach all dissipative processes occur in the leads. Thus
apart from this lead connection, the system is isolated and this formalism cannot
directly describe the effects due to the coupling with an external environment.
This coupling can induce decoherence and dissipation. In this chapter we will
avoid the latter and focus on a pure dephasing picture. In the conceptual theory
of decoherence, the starting point is the total density matrix ηtot that include
both system and environmental degrees of freedom [4]. The observed properties
of the system alone are given by the reduced density matrix ηsys, obtained from
ηtot by tracing over the environmental degrees of freedom. This procedure is
probability conserving, Tr [ηsys] = 1, but it renders the time-evolution of ηsys non-
unitary. The decoherence time is inferred from the decay rate of the off-diagonal
matrix elements, which can be measured by a basis independent quantity, the
purity [55]; 0 ≤ Tr

[
η2

sys

]
≤ 1. We generalize this standard approach to the

transport problem.
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6.2 Transport theory for a system-environement

6.2.1 The scattering formalism in the presence of an envi-
ronment
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Figure 6.1: Schematic of the environment model. The system is an open quantum dot
that is coupled to an environment in the shape of a second, closed quantum dot.

In order to include the coupling to an environment in the scattering approach,
we consider two coupled interacting chaotic cavities as sketched in Fig. 6.1. One
of them, the system "sys", is an open, two-dimensional quantum dot, ideally
connected to two external leads. The second one is a closed quantum dot and
plays the role of the environment "env". The two dots are capacitively coupled,
and in particular, they do not exchange particles. We require that the size of the
opening of the system’s contacts to the leads is much smaller than the perime-
ter of the system cavity but is still semiclassically large, so that the number of
transport channels satisfies 1 � NL,R � L/λF . This ensures that the chaotic
dynamics inside the dot has enough time to develop, λτD � 1. Electrons in
the leads do not interact with the second dot and as we are concerned only by
pure dephasing, the second order electron-electron interactions mediated by the
coupling are neglected. We emphasize that few-electron double-dot systems such
as the one considered here have recently been the focus of intense experimental
efforts [56].

The total system is describes by the Hamiltonian (we set ~ = 1 ),

H = Hsys +Henv + U . (6.3)

Inside each cavity the chaotic dynamics is generated by the corresponding one-
particle HamiltonianHsys, env. We only specify that the capacitive coupling poten-
tial U is a smooth function of the distance between the particles. It is character-
ized by its magnitude U and its correlation length ξ such that its typical gradient
is U/ξ. From an experimental point of view, most systems are constructed in
semiconductor heterostructures, where dots and transport channels are defined
by means of external gates. The presences of theses gates will determine the
screening length and the strength of the interaction between electrons in differ-
ent dots. Consequently these parameters can be tuned, for example by imposing
variation on the electrostatic potential on the gates or by considering different
samples. This illustrates thus the experimental relevance of our parameter U ,
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6 Decoherence in quantum chaotic transport : a semiclassical approach

which can be define as the typical change in the interaction as both particle move
under their respective single particle Hamiltonian. Similarly our parameter ξ can
be defines as the typical length scale over which this change occurs.

We just recall here that in the standard scattering approach, i.e without en-
vironment, the transport properties of the system derive from its scattering ma-
trix [8]

Ŝ =

(
sLL sRL

sLR sRR

)
, (6.4)

which we write in terms of NL ×NR transmission (t = sLR) and reflection (sα,α,
α ∈ {L, R}) matrices. From Ŝ, the system’s conductance is given by

g = Tr(t†t). (6.5)

The environment coupling can be included in the standard scattering approach.
We need only to define an extended scattering matrix S that includes the external
non-current carrying degrees of freedom in a time-resolved manner.

To construct S we use the evolution operator Utot = exp[iH] that propagates
the total system. We let Msys and Menv be respectively the size of the Hilbert
space of the system and environment cavity. Firstly we couple the system cavity
to the left (L) and right (R) leads by introducing a (NL + NR) × (MsysMenv)
projection matrix Ptot = P (L)⊗Ienv+P (R)⊗Ienv. Expressed in the basis of channel
modes, the projection matrices, which act only on the system, read P

(L,R)
nm = 1

if m = n ∈ {m(L,R)
i } and P

(L,R)
nm = 0 otherwise. The sets {m(L,R)

i } are the
NL,R components of Utot ideally connected to the modes of the L or R lead
respectively. Now following the techniques developed in the particular case of a
chaotic map [57], the scattering matrix S can be express in terms of the time
resolved scattering matrix S(τ) as

S =
∞∑
τ=0

S(τ), (6.6a)

S(τ) = Ptot[Utot(Itot − P†totPtot)]
τUtotP†tot.

Each τ th term in the above Taylor expansion corresponds to the time-evolution of
a particle, coupled to the environment, colliding exactly τ times at the boundary
of the system cavity before exiting. We note that the use of a discrete description
of time is clearly justified in the particular case of a map. In the limit of a large
dwell time over time of flight ratio, the discrete summation can be easily replaced
by a continuous time integration

∑∞
τ=0 7→

∫∞
0

dt.
Under the assumption of non interacting lead, when a particle enters into

the system, the total system state ηtot is in a product state. The initial density
matrix can be written as ηtot = η

(n)
sys ⊗ ηenv, with η

(n)
sys = |n〉〈n| (n ∈ {1, · · · , NL})

and ηenv a random matrix as the environment is large and chaotic. We note that
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6.2 Transport theory for a system-environement

our approach is not restricted to that particular choice of ηenv. We define the
conductance matrix as the trace over the environment degrees of freedom,

g(r)
mn =

〈
m
∣∣TrE

[
S
[
η(n)

sys ⊗ ηenv

]
S†
]∣∣m〉 (6.7)

A more formal derivation of this conductance matrix is presented in the ap-
pendix 6.6. The conductance g is given by,

g =

NR∑
m=0

NL∑
n=0

g(r)
mn (6.8)

We emphasize that our approach is a current conserving procedure, indeed the
particle flux conservation of this construction is similar to the probability conser-
vation in the standard decoherence approach. However the environment-coupling
generate decoherence and the suppression of the coherent contribution to trans-
port. We caution the reader that this conductance will depends on the initial
choice of the environment (see Eq. (6.7)), thus fluctuation of the decoherence
time can be expected. Alternatively we can focus on the average conductance
over various cavity environment ηenv, this is the choice follow here.

Eqs. (6.7,6.8) are the extension of the Laudauer-Buttikker formula in the
presence of an external environment. They will constitute the backbone of our
trajectory-based semiclassical theory of dephasing. We will now derive the clas-
sical Drude conductance and successively the quantum correction to the trans-
mission and the reflection.

6.2.2 Drude conductance

The semiclassical derivation of the one particle scattering matrix has become
standard [59–63]. Once we introduce the environment we deal with a bipartite
problem, here we use the two-particle semiclassical propagator developed in the
entanglement and decoherence framework [69, 70]. The extended scattering ma-
trix element can be written as,

Smn(q0,q) = (2π)−1

∫ ∞
0

dt

∫
L

dy0

∫
R

dy 〈m|y〉 〈y0|n〉

×
∑
γ,Γ

(Cγ CΓ)
1
2 exp[i {Sγ + SΓ + Sγ,Γ}]. (6.9)

At this point, S depends on the coordinates of the environment and is given
by a sum over pairs of classical trajectories, labeled γ for the system and Γ
for the environment. In the regime of pure dephasing, the classical path γ (Γ)
connecting y0 (q0) to y (q) in the time t is solely determined by Hsys (Henv).
Each pair of paths gives a contribution weighted by the square root of the inverse
determinant CγCΓ of the stability matrix [64–66], and oscillating with one-particle
(Sγ and SΓ, where Maslov indices are included inside) and two-particle (Sγ,Γ =∫ t

0
dτU [yγ(τ),qΓ(τ)]) action integrals accumulated along γ and Γ.
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6 Decoherence in quantum chaotic transport : a semiclassical approach

We insert Eq. 6.9 in Eq. (6.7), perform the sum over channel indices with
the semiclassical approximation [67],

∑NL

n 〈y0|n〉〈n|y′0〉 ≈ δ(y′0 − y0) and use the
random matrix result [68] 〈q0|ηenv|q′0〉 ≈ Ω−1

envδ(q
′
0−q0) (Ωenv is the environment

volume).
The conductance then reads,

g =
(
4π2 Ωenv

)−1
∫ ∞

0

dtdt′
∫

ΩE

dq0dq

∫
L

dy0

∫
R

dy

×
∑

γ,Γ;γ′,Γ′

(Cγ CΓ Cγ′ CΓ′)
1
2 ei(Φsys+Φenv+ΦU ), (6.10)

This is a quadruple sum over classical paths of the system (γ and γ′, going from
y0 to y) and the environment (Γ and Γ′, going from q0 to q) with action phases,

Φsys = Sγ (y0,y; t)− Sγ′ (y0,y; t′) , (6.11a)
Φenv = SΓ (q0,q; t)− SΓ′ (q0,q; t′) , (6.11b)

ΦU = Sγ,Γ(y0,y; q0,q; t)− Sγ′,Γ′(y0,y; q0,q; t′). (6.11c)

We are interested in quantities averaged over variations in the energy or the
cavity shapes. For most set of paths the phase of a given contribution will os-
cillate wildly with these variations, so the contribution averages to zero. In the
semiclassical limit Eq. (6.10) is thus dominated by terms which satisfy a Sta-
tionary Phase Condition (SPA), i.e. where the variation Φsys, Φenv and ΦU has
to be minimized. The most obvious contributions that survive averaging are
the diagonal ones. These contributions give the Drude conductance. Indeed the
stationary phase approximation over Φsys delivers γ = γ′ and the one over Φenv

delivers Γ = Γ′. These two SPA require t = t′ and lead to an exact cancellation
of all the phases Φsys = Φenv = ΦU = 0. The Drude conductance is given by,

gD =

∫ ∞
0

dt (2πΩenv)−1

∫
Ωenv

dq0dq
∑

Γ

CΓ

× (2π)−1

∫
L

dy0

∫
R

dy
∑
γ

Cγ (6.12)

Now the calculation proceeds along the lines of Ref. [37], and here we only
sketch it. The main idea is to relate semiclassical amplitudes with classical prob-
abilities. This is done by the introduction of two sum rules, that express the
ergodic properties of open cavities Eq. (6.13a) and of closed ones Eq. (6.13b).

∑
γ

Cγ [· · · ]γ =

∫ π
2

−π
2

dθ0dθ Psys(Y0; Y; t) [· · · ]γ (6.13a)

∑
Γ

CΓ [· · · ]Γ =

∫ π

−π
dφ0dφ P̃env(Q0; Q; t) [· · · ]Γ (6.13b)
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6.2 Transport theory for a system-environement

We define Psys(Y0; Y; t) = pF cos θ0 × P̃sys(Y0; Y; t), where pF cos θ0 is the initial
system momentum along the injection lead. P̃sys(Y0; Y; t) and P̃env(Q0; Q; t) are
the classical probability densities. Note that the phase points Y0 = (y0, θ0) and
Y = (y, θ) are in the leads, contrary to Q0 = (q0, φ0) and Q = (q, φ) which are
inside the closed environment cavity.

As long as no restriction is imposed on the trajectories inside the system
cavity, the average of Psys over an ensemble system or over energy gives a smooth
function. We obtain,〈

P̃sys(Y0; Y; t)
〉

=
cos θ

2 (WL +WR) τD

e
− t
τD (6.14a)

and on the basis of ergodic assumption on the average of P̃env we finally get,〈
P̃env(Q0; Q; t′)

〉
=

1

2πΩenv

(6.14b)

Using Eq. (6.14a, 6.14b), performing all the integration starting with time then
the environmental and system variables and usingNL,R = WL,R/(πλF), we recover
the classical Drude conductance,

gD =
NLNR

NL +NR

(6.15)

6.2.3 Weak localization for transmission

Suppression of the weak localization correction due to finite Ehrenfest time was
first derived by Aleiner and Larkin [47]. However the trajectory based approach
was initiated by the work of Richter and Sieber [32, 33]. They point out the
existence of system’s trajectories paired almost everywhere except in the vicinity
of an encounter (see Fig. 6.2). One of the trajectories, say γ, intersects itself,
while the other one, say γ′ = γwl, avoids the crossing. Thus, they travel along the
loop they form in opposite direction. For shorter time two trajectories leaving
an encounter remain close enough to each other that the probability of forming
a loops cancel, thus a minimal duration of the loop TL must be introduced [33].
If we let ε be the small crossing angle of the encounter, the hyperbolic dynamics
gives [71],

TL(ε) ≈ λ−1 ln[ε−2]. (6.16)

From these investigations, Richter and Sieber [33] obtained the quantum universal
result, predicted by random matrix theory. The first attempt to introduce the
finite Ehrenfest time in this framework was done by Adagideli [34]. However
a subtle mechanism was missed, as firstly noticed by Rahav and Brouwer [36]
the presence of correlated and uncorrelated escape, plays a crucial role. As in a
transmission process only uncorrelated contributions are involved, the existence
of theses correlations introduces a minimal time,

TW ≈ λ−1 ln[ε−2(W/L)2], (6.17)
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6 Decoherence in quantum chaotic transport : a semiclassical approach

before which the encounter is allowed to appear [37].
The presence of an environment, will not change this physical picture, never-

theless when the paths are more than the correlation length ξ apart, they feel the
same environment and no dephasing can occur. We can thus define of new cut off
time Tξ as twice the time between the encounter and the start of the dephasing,

Tξ ≈ λ−1 ln[ε−2(ξ/L)2]. (6.18)

We recall that a typical weak localization path is divided iton one loop and
two legs. This typical division can be interpreted in the language of the disorder
formalism, as a cooperon contribution and two diffuson contributions. We note
that the dephasing occurs mostly in the loop part (see Fig. 6.2), however if
ξ < εL, dephasing starts before the paths reach the encounter, Tξ < 0. This
means that dephasing affects also the diffuson part of the transport. This point
will be discussed in more detail in paragraph 6.2.5.
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Figure 6.2: A semiclassical contribution to weak localization for the system-
environment model. The paths are paired everywhere except at the encounter. There
one crosses itself at angle ε, while the other does not (going the opposite way around
the loop). Here we show ξ > εL, so the dephasing (dotted path segment) starts in the
loop (Tξ > 0).

In the absence of dephasing each weak localization contribution accumulates
a phase difference δΦsys [33, 36–38]. The determination of this phase is straight-
forward [72] and yields δΦsyst = EFε

2/λ. In the presence of a coupling with an
environment, each weak localization pair of paths accumulates an additional ac-
tion phase difference δΦU . The derivation then proceeds as for U = 0 [37]. We
note that the system’s probability Psys introduced above can be written as,

Psys(Y0,Y; t) = pF cos θ0

∫
C

dR2dR1P̃sys(R2,Y; t− t2)

× P̃sys(R1,R2; t2 − t1)P̃sys(Y0,R1; t1) , (6.19)

where P̃sys(R1,R2; t) is the probability density to go from a point inside the
system R1 = (r1, φ1) to R2 = (r2, φ2) in time t. We then restrict the probabilities
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6.2 Transport theory for a system-environement

inside the integral to trajectories which cross themselves at phase-space positions
R1,2 with the first (second) visit to the crossing occurring at time t1 (t2). We can
write [37] dR2 = v2

F sin εdt1dt2dε and set R2 = (r1, φ1 ± ε). One can now apply
a separation of the phase and amplitude average in Eq. (6.10) and computes
the residual coupling phase δΦU . As only a part of the system’s trajectories,
the separation of which is larger than ξ are involved, the coupling phase action
integral must be limited to times τ ∈ [t1 + Tξ/2, t2 − Tξ/2].

δΦU =

∫ t2−Tξ/2

t1+Tξ/2

dτ
[
U
(
rγ(τ),qΓ(τ)

)
− U

(
rγ′(τ),qΓ(τ)

)]
, (6.20)

We notice that the square average of the residual phase δΦU can be expressed
in terms of the interaction correlator,

〈
δΦ2
U
〉

= 2

∫ t2−Tξ/2

t1+Tξ/2

dτdτ ′
〈
U
(
rγ(τ),qΓ(τ)

)
U
(
rγ(τ

′),qΓ(τ ′)
)〉

− 2

∫ t2−Tξ/2

t1+Tξ/2

dττdτ ′
〈
U
(
rγ(τ),qΓ(τ)

)
U
(
rγ′(τ

′),qΓ(τ ′)
)〉

(6.21)

We assume now a fast decaying interaction correlator,〈
U
(
rγ(τ),qΓ(τ)

)
U
(
rγ′(τ

′),qΓ(τ ′)
)〉

=
〈
U2
(
rγ(τ),qΓ(τ)

)〉
f

(
|rγ(τ)− rγ′(τ)|

ξ

)
g (λenv|τ − τ |) , (6.22)

where f(x), g(x) are fast decaying functions of x. These decaying correlation
functions define ξ. The spatial correlation function decays even when U

(
r,q) is

an oscillating function, because the averaging over many initial conditions of the
environment is like averaging over q. The exact nature of the decay, i.e. the
form of f(x), will depend on system details which are of little interest here. We
note that we assumed that the temporal correlation function, decays on the same
time scale as 〈q(t)q(0)〉 and thus the time scale is of order λ−1

env, where λenv is the
environment Lyapunov exponent. Assuming that the environment is sufficiently
chaotic that we can approximate the temporal correlations by white noise, we
let g(x) ' δ(x). This approximation is justified in the limit λenv � τ−1

D , τ−1
E . If

we use the fact that |rγ(τ)− rγ′(τ)| exponentially vanishes in the legs (for times
τ < t1 + Tξ/2 and τ > t2 − Tξ/2) we get,〈

U
(
rγ(τ),qΓ(τ)

)
U
(
rγ′(τ

′),qΓ(τ ′)
)〉

∼
{ 〈

U2
(
rγ(τ),qΓ(τ))

〉
λ−1

envδ(τ
′ − τ) in legs

δγγ′
〈
U2
(
rγ(τ),qΓ(τ))

〉
λ−1

envδ(τ
′ − τ) in loop (6.23)

Finally using the Central limit Theorem, the average phase due to U reads〈
eiδΦU

〉
= e−

1
2
〈δΦ2
U 〉 = exp [−(t2 − t1 − Tξ)/τφ] , (6.24)
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6 Decoherence in quantum chaotic transport : a semiclassical approach

where

τ−1
φ ∝ λ−1

env

〈
U2
(
r,q)

〉
(6.25)

As both residual phases are in average independent of any spacial variables,
the integration over environment variables can be computed independently and
gives one. The weak localization correction can be expressed as,

gwl =

∫
L

dY0

∫
dεRe

[
eiδΦsys

]〈
F (Y0, ε)

〉
, (6.26a)

with,

F (Y0, ε) =
2v2

F sin ε

π

∫ ∞
TL+TW

dt

∫ t−TW
2

TL+
TW

2

dt2

∫ t2−TL

TW
2

dt1

×
∫

R

dY

∫
C

dR1e
− 1

2
〈δΦ2
U 〉P̃S(R2,Y; t− t2)

× P̃S(R1,R2; t2 − t1)PS(Y0,R1; t1), (6.26b)

We note that in absence of coupling δΦU = 0, we recover the weak localization
correction (Cf. Eq. (35) of Ref. [37]) of an isolated system as it should be.
Assuming a uniform phase space probability for the system we gets

〈P̃sys(Y0,R1, ; t1)〉 =
1

2πΩsys

exp[−t1/τD]

and the loop formation probability density is

〈P̃sys(R1,R2; t2 − t1)〉 =
1

2πΩsys

exp[−{t2 − t1 − TW/2}/τD],

with Ωsys the real space area of the system cavity. Finally the conditional prob-
ability density for the final leg is

〈P̃sys(R2,Y; t− t2)〉 =
1

2(WL +WR)τD

cos θ exp[−{t− t2 − TW/2}/τD].

Inserting Eq. (6.24) in Eq. (6.26b), and performing all the integrations we get

〈F (Y0, ε)〉 ∝ exp[−TL/τD]
exp [−τξ/τφ]

1 + τD/τφ
, (6.27)

where τξ = λ−1 ln[(L/ξ)2]. In fact this result is similar to the one obtain without
dephasing, except that during the time (t2 − t1 − Tξ), the dwell time is effec-
tively renormalized by the dephasing, so the (t2− t1)-integral generates the extra
prefactor exp [−τξ/τφ] /(1 + τD/τφ)

Thus the weak localization correction is given by,

gwl =
gwl

0

1 + τD/τφ
exp[−τξ/τφ], (6.28)

where gwl
0 is the finite-τ cl

E correction in the absence of dephasing [33, 34, 37, 38],
and hence

gwl
0 = − exp[−τ cl

E /τD] NLNR/(NL +NR)2. (6.29)
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6.2 Transport theory for a system-environement

6.2.4 Weak localization for reflection and coherent backscat-
tering

The purpose of this section is to show explicitly that our semiclassical method
preserves the probability i.e. conserves the current. Quantum corrections to
reflection are given by two leading-order off-diagonal corrections, the first one
reduces the probability of reflection to arbitrary momentum (Weak localization
for reflection) and the second one is the coherent-backscattering which enhances
the probability of reflection to the time reversed injection state. The distinc-
tion between these two contributions is related to the correlation between the
escaped system pair of path. Coherent-backscattering have a correlated escape
(see Fig. 6.3 ) contrary to the former.

The derivation of the weak localization for reflection rwl in the presence of a
coupling is straightforward and derived in the same manner as the gwl, replacing
the factor NR/(NR +NL) by NL/(NR +NL). We finally get,

rwl =
rwl

0

1 + τD/τφ
exp[−τξ/τφ], (6.30)

where rwl
0 = − exp[−τ cl

E /τD] N2
L/(NL +NR)2 is the finite-τ cl

E correction in absence
of dephasing [37].
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Figure 6.3: A semiclassical contribution to coherent backscattering for the system-
environment model. It involves paths which return close but anti-parallel to themselves
at lead L. The cross-hatched region is when the two solid paths are paired (within W
of each other). Here we show ξ > εL, so the dephasing (dotted path segment) starts in
the loop (Tξ > 0). In the basis parallel and perpendicular to γ at injection the initial
position and momentum of path γ at exit are r0⊥ = (y0− y) cos θ0, r0‖ = (y0− y) sin θ0

and p0⊥ = pF(θ − θ0).

A typical contribution of coherent-backscattering with dephasing is shown in
Fig. 6.3. As the environment is again treated in the diagonal approximation
the effect of the latter will be similar as before. The specificity of coherent-
backscattering contribution is due to the correlation between system injection
and exit positions and momenta, this induces an action difference δΦsys = δScbs
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6 Decoherence in quantum chaotic transport : a semiclassical approach

not given by the Richter-Sieber expression. From a fundamental point of view
coherent-backscattering corresponds to term snot included in Eq. 6.30, i.e. tra-
jectory where legs escape within TW/2. However is technically more conve-
nient [37] to calculate the residual phase in terms of the injection variables
r0⊥ = (y0 − y) cos θ0 and p0⊥ = pF(θ − θ0) (see Fig. 6.3). This delivers a system
action difference of δScbs = −p̃0⊥r0⊥ with p̃0 = (p0⊥ +mλr0⊥).

Similarly to the previous investigations we can express three cut off times
T ′L, T ′W, T ′ξ that we estimate as T ′`(r0⊥, p0⊥) ' λ−1 ln[(λ`)2/|v0⊥ + λr0⊥|2], with
` = {L, W, ξ}.

The coherent-backscattering contribution can be read as

rcbs =

∫
L

dY0Re
[
eiδScbs

]〈
F cbs(Y0, r0⊥, p0⊥)

〉
, (6.31a)

with,

F cbs(Y0, r0⊥p0⊥) =

∫
L

dY

∫ ∞
T ′L

〈Psys(Y0,Y, t)〉

=
pF sin θ0

π

NL

NR +NL

exp[−(T ′L − T ′W/2)/τD]

×exp[−τξ/τφ]

1 + τD/τφ
, (6.31b)

noticing that pF sin θ0dY0 = dp0⊥dr0⊥, [61, 62]. Extending the momentum inte-
gral to infinity, and evaluating the r0⊥−integral over the range WLwith the help
of an Euler Γ-function we obtain,

rcbs =
rcbs

0

1 + τD/τφ
exp[−τξ/τφ], (6.32)

where rcbs
0 = exp[−τ cl

E /τD] NL/NL +NR is the finite-τ cl
E correction in the absence

of dephasing [37, 38]. Hence rcbs + rwl = −gwl and the unitarity is preserved.
As a final remark, a careful reader may have noticed that we only considered
cases where, either both systems are treated in the diagonal approximation, or
the system dot has a weak localization kind of contribution and the environ-
mental dot is treated in the diagonal approximation. Thus one could argue
that there exist also configurations where the system is treated in the diago-
nal approximation and the environment has a weak localization or coherent-
backscattering contribution. This is indeed the case, however these contributions
cancel. This cancellation is an effect due to the integration over all final po-
sitions of the environment. Indeed if we consider an isolated environment the
sum over environment weak localization and coherent-backscattering will be zero
due to unitarity. Next if we let the environment interact with the system the
diagonal approximation, then these contributions will decohere in the same way
and will again sum to zero. In addition we note that this contribution can be
explicitly calculated. Using the same technique developed previously we obtain
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6.3 Dephasing lead model

rcbs
env = −gwl

env =
(

Ωsys

Ωenv

)
NLNR

(NL+NR)2 exp[−τ cl, env
E /τD] exp[−τ env

ξ /τφ] (1 + τD
τφ

)−1, with

τ env
ξ = λ−1

env ln[(Lenv/ξ)
2] and τ cl, env

E the Ehrenfest time of the environment. Fi-
nally our approach is still probability- and thus current-conserving.

6.2.5 Discussion and limit of the environment-model

Technical details apart, the central result of this chapter is that in the semiclas-
sical limit, the behavior of coherent corrections to transport no longer depend
solely on the ratio of the dephasing time τΦ to the dwell time τD, but acquire a
new exponential dependence with a new time scale τξ. In contrast to Ref. [47],
thos additional exponential damping depends on ξ, but not on the Fermi wave-
length λF. Ref. [47] mentions that they do not expect their result to hold when
ξ is a classical scale. Care should be taken in extrapolating our results to the
limit ξ → 0, since this limit generates more and more diffraction effects and
with them the breakdown of our semiclassical approach. We also ignore the fact
that the noise will modify the classical paths. What exactly is the limit of our
method ? More precisely we must answer the question if our method is legitimate
for correlation lengths smaller than the encounter size [λFL]1/2.

To see significant dephasing we need τφ ∼ τD, thus we cannot take the inter-
action strength to zero. However we notice that a typical classical noise force on
a particle goes like the gradient of the interaction U/ξ. To see if this noisy force
significantly modifies the paths close to the encounter, we compare it with the
relative force of the chaotic system Hamiltonian on the chaotic particle at the
encounter. The ratio (noisy force)/(system force) is [(LλF )/(ξ2λτD)]−1/2. Thus
one can ignore the modifications of the classical paths due to the coupling to the
environment, as long as ξ � [λFL/λτD]1/2. Thus our method is applicable for ξ
smaller (as well as larger) than the encounter size, but not for ξ ∼ λF.

6.3 Dephasing lead model

In its simplest formulation the dephasing lead model consist of adding a fictitious
lead 3 to the cavity as illustrated in Fig. 6.4. Contrary to the two real leads L,R,
the potential voltage on lead 3 is tuned such that the net current through it is
zero. Thus every electron that leaves through lead 3 is replaced by one with an
unrelated phase, leading to a loss of phase information without loss of particles.

In this situation the conductance from L to R is given by [8]

g = TRL +
TR3 T3L

T3L + T3R

, (6.33)

where Tnm is the conductance from lead m to lead n in the absence of a voltage
on lead 3. We next note that we can separate the Drude and weak-localization

137



6 Decoherence in quantum chaotic transport : a semiclassical approach

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

φi
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

e

lead 3 (dephasing)

lead R

lead L

Figure 6.4: Schematic of the dephasing lead model. The system is an open quantum
dot that is coupled to an dephasing probe.

parts of Tmn, writing it as

Tnm = TD
nm + δTnm +O[N−1], (6.34)

where the Drude contribution, TD
nm, is O[N ] and the weak-localization contribu-

tion, δTnm, is O[N0] and N = NL+NR+N3 is the total number of channels of this
three lead geometry. If we now expand g for large N and collect all O[N ]-terms
(Drude contributions)and all O[N0]-terms (weak-localization contributions) we
get g = gD + gwl, with

gD = TD
RL +

TD
R3T

D
3L

TD
3L + TD

3R

(6.35a)

gwl = δTRL +
(TD

R3)2δT3L + (TD
3L)2δT3R

(TD
3R + TD

3L)2
(6.35b)

To get the second result we used TD
ij = TD

ji and δTij = δTji. These equations
form the basis of our semiclassical derivation of the effect of a dephasing leads.
We first consider the case of a dephasing lead coupled directly to the cavity (no
tunnel barrier). We then move on to consider a dephasing lead with a tunnel
barrier of transparency, ρ, and finally discuss multiple dephasing leads.

6.3.1 Dephasing lead without tunnel-barrier

If we consider a model with no tunnel-barriers on any lead (L,R,3), then the
derivation is straightforward. The Drude conductance and weak-localization cor-
rection (at finite Ehrenfest time but without dephasing) from lead n to lead m a
three-lead cavity is

TD
nm =

NnNm

N
, (6.36)

δTnm = −NnNm

N2
exp[−τ cl

E /τ̃D] (6.37)
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6.3 Dephasing lead model

where τ̃−1
D = (τ0L)−1(WL+WR+W3). We substitute these results into Eq. (6.35a)

and Eq. (6.35b), and then write the answer in terms of the dwell time in the two
leads (L and R) geometry, τD, and the dephasing rate, τ−1

φ , which we define as
the decay rate to lead 3. Thus

τ−1
D = (τ0L)−1(WL +WR), (6.38)
τ−1
φ = (τ0L)−1W3, (6.39)

hence τ̃−1
D = τ−1

D + τ−1
φ . From this we find that the Drude conductance and weak

localization correction are given by

gD = gD
0 (6.40)

gwl =
gwl

0

1 + τD/τφ
exp[−τ cl

E /τφ] (6.41)

where gD
0 and gwl

0 are the results for a two lead cavity in the absence of dephasing,
given in Eqs. (6.15,6.29). We note that that the exp[−τ cl

E /τD] is included in gwl
0 .

Consequently the weak localization correction with a dephasing lead has a similar
structure to that with a real environment. However here the time scale involved
in the additional exponential suppression contains no independent parameter
analoguous to ξ. We had initially expected that the width of the dephasing lead
would play a role similar to ξ. However this turns out not to be the case, instead
the Fermi wavelength appears in place of ξ, so the time scale in the additional
exponential suppression is the Ehrenfest time, τ cl

E .

6.3.2 Dephasing lead with tunnel-barrier

We now consider a model in which there is a tunnel-barrier on the dephasing
lead (lead 3). This model is attractive because one can avoid the local character
of the dephasing probe model by considering a wide third lead with an almost
opaque barrier [12]. This is also the model studied numerically in Ref. [53] in the
context of conductance fluctuations.

We follow the trajectory-based calculation of weak localization with tunnel-
barriers in Ref. [54]. There it was shown that introducing tunnel-barriers on the
leads (with transparency ρn for lead n) requires the following three changes to
the theory of weak-localization discussed in Ref. [37].

(i) The dwell time (single path survival time) becomes

τ−1
D1 = (τ0L)−1

∑
n

ρnWn, (6.42)

because a typical path may hit a lead but be reflected off the tunnel-barrier
(remaining in the cavity) numerous times before escaping.
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6 Decoherence in quantum chaotic transport : a semiclassical approach

(ii) The paired paths survival time for paths closer than the lead width is no
longer equal to the dwell time, instead it is given by

τ−1
D2 = (τ0L)−1

∑
n

ρn(2− ρn)Wn. (6.43)

This is because a second path following a path which has not escaped will
hit the same tunnel-barriers, and thus may escape even though the first
path did not. Compare this with a system without tunnel barriers, there
if a path has not escaped it is because it has not touched the leads, thus a
second path following the first has no probability to escape.

(iii) The coherent-backscattering peak contributes to transmission as well as
reflection. This positive contribution to transmission partially cancels the
usual (negative) weak localization contribution. This will be discussed in
detail below.

When we calculate the Drude conductance, only change (i) above is required,
giving us

TD
nm = ρnρm

NnNm

N
(6.44)

where N =
∑

k ρkNk.
When calculating the conventional weak-localization contribution we need

changes (i) and (ii) above. The contribution’s classical path stays close to itself
(withinW , marked by the dashed region of Fig. 6.2) for a time TW (ε)/2 on either
side of the encounter, thus we must use the paired-paths survival time, τD2, for
these parts of the path. Elsewhere the escape time is given by the single path
survival time (dwell time), τD1. With these new ingredients we find that the
conventional weak-localization contribution becomes [54]

δTwl
nm = −ρnρmτD1NnNm

τD2N 2
exp

[
−τ

op
E

τD2

− τ cl
E − τ

op
E

τD1

]
(6.45)

where τ op
E = λ−1 ln[(L/λF)(W/L)2] is the open cavity Ehrenfest time [48, 49].

The exponential is simply the probability that the path segments survive an time
τ op

E as a pair (τ op
E /2 either side of the crossing) and survive an additional time

(τ cl
E − τ

op
E ) unpaired (to complete a loop of length τ cl

E ).
However this is not the total weak-localization contribution to conductance,

because coherent-backscattering can also contribute to conductance (this is the
third change from a system without tunnel barriers). We call this the failed
coherent-backscattering, it involves a path which returns to close but anti-parallel
to itself at the moment it was injected from lead n, but then reflects off the tunnel-
barrier on lead n, remaining in the cavity until it eventually escapes through a
lead m. One can calculate the backscattering amplitude as in Ref. [37] (see
also Ref. [38]), but using the paired-path survival time, τD2, when the paths are
within W of each other (dashed area of Fig. 6.5 ) and the single path survival
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0

L
ea
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d m
encounter (see Fig.6.2 for details)
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Figure 6.5: An failed coherent-backscattering contribution to conductance, δT cbs
nm . It

involves paths which return close but anti-parallel to themselves at lead m, but reflect
off the tunnel-barrier, remaining in the cavity to finally escape via lead n. The cross-
hatched region is where the two solid paths are paired (within W of each other).

time,τD1, elsewhere. This result is then multiplied by the probability that the path
reflects off lead n and then escapes through lead m. This gives a contribution to
conductance of the form

δT cbs
nm = −ρm(1− ρm)ρnNmNn

N 2
exp

[
−τ

op
E

τD2

+
τ cl

E − τ
op
E

τD1

]
(6.46)

assuming n 6= m. There is a second coherent-backscattering contribution which is
the same with n ↔ m throughout. Summing these two coherent-backscattering
contributions and the conventional weak localization one in Eq. (6.45) one gets
for n 6= m,

δTnm = ρnρm
NnNm

N 2

(
ρn + ρm −

Ñ
N

)
× exp

[
−τ op

E /τD2 − (τ cl
E − τ

op
E )/τD1

]
, (6.47)

where Ñ =
∑

k ρ
2
kNk.

Now we assume that ρL = ρR = 1 so only the dephasing lead has a tunnel
barrier, then substituting the Drude and weak-localization contributions into
Eq. (6.35b) we find that,

gwl =
gwl

0

1 + τD1/τφ
exp

[
−(1− ρ)τ op

E /τφ − τ cl
E /τφ

]
. (6.48)

Note that the exponent is simply the probability that a path survives throughout
the paired-region (τ op

E /2 one either side of encounter) without escaping into lead
3, multiplied by the probability to survive the extra time (τ cl

E − τ op
E ) unpaired

without escaping into lead 3 (to close a loop of length τ cl
E ). The first probability

is exp[−(2− ρ)τ op
E /τφ] while the second is exp[−(τ cl

E − τ
op
E )/τφ].

We finally note that if we consider a nearly opaque barrier, the relevant time
scale involved in the exponent is τ cl

E +τ op
E ' 2τ cl

E . Thus by tuning the opacity of the
barrier, we can vary the exponential contribution to dephasing from exp[−τ cl

E /τφ]
to exp[−2τ cl

E /τφ], but we cannot remove the exponent. Thus we cannot mimic
dephasing due to a real environment with ξ ∼ L, since that has only powerlaw
dephasing.
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6 Decoherence in quantum chaotic transport : a semiclassical approach

6.3.3 Multiple dephasing leads

The n probe dephasing model consists of adding n fictitious leads to the cavity
(labelled {3, · · · , n + 2}) in addition to lead L, R. The voltage on each sup-
plementary lead is tuned so that the current it carries is zero. Without loss of
generality we define VR = 0, then we get the set of equations

IR = TRLVL + TT
RV (6.49a)

0 = I = −TsubV + TLVL (6.49b)

where the superscript-T indicates the transpose. The column-vectors I, V have
an ith element giving the current or voltage (respectively) for the dephasing lead
i ∈ {3, n+ 2}. The column-vectors TL and TR have an ith element given by TLi
and TRi, respectively. Finally the matrix Tsub] has an i, jth element given by

[Tsub]ij = Niδij − Tij (6.50)

=
[∑

k 6=jTkj

]
δij − Tij(1− δij) (6.51)

where again i, j ∈ {3, n + 2}. Substituting V from Eq. (6.49b) into Eq. (6.49a)
and using IR = gVL gives us the conductance from L to R as,

g = TLR + TT
LT−1

subTR (6.52)

Thus finding g requires the inversion of the matrix Tsub. This is cumbersome,
so instead here we present a simple argument to extract only the information we
are interested in (the nature of the exponential in the dephasing).

We argue that whatever the formula for conductance for n dephasing leads
is, we can expand it in powers of N and collect the O[N0]-terms to get a formula
for weak-localization of the form

gwl = δTLR +
n+2∑
j=3

AjδTLj +BjδTjR +
n+2∑
i,j=3

CijδTij (6.53)

where the sum is over all dephasing leads. To get the prefactors Aj, Bj, Cij we
would have to solve the full problem by inverting Tsub, however we can already
see that they will be combinations of Drude conductances and thus independent
of the Ehrenfest time. In contrast all the weak-localization contributions contain
an exponential of the same form, that form being

exp[−τ op
E /τD2 + (τ cl

E − τ
op
E )/τD1 ] (6.54)

Thus defining τ−1
φ as the rate of escape into any of the dephasing leads, so τ−1

φ =

(τ0L)−1
∑n

j=3 ρjWj, we see that gwl decays with an exponential

exp[−(1− ρ̃)τ op
E /τφ + τ cl

E /τφ] (6.55)

where we define ρ̃ such that ρ̃τ−1
φ = (τ0L)−1

∑
j ρ

2
jWj. Hence we have shown

that multiple dephasing leads cause an exponential suppression of the weak lo-
calization which is qualiatively similar to that caused by a single dephasing lead.
The exponent is proportional to the Ehrenfest time, and contains no independent
parameter analoguous to ξ.
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6.4 Numerical simulations

We finally check our semiclassical theory for weak localization for the system-
environment model. Like in most experiments, the numerics will be based on
the magnetoconductance. A weak magnetic field has little effect on the classical
dynamics but it generates a phase difference between two trajectories that go in
opposite ways around a weak localization closed loop. This phase difference is
ΩloopΦ where Ωloop is the directed area enclosed by the loop, and Φ is the flux
in units of the flux quantum. To incorporate this into the previous semiclassical
treatment we must introduce a factor of exp[iΩloopΦ] into Eq. (6.26b). A direct
transcription of the calculation presented in Ref. [37], gives for finite flux and large
coupling length a Lorentzian shape to the quantum corrections to the average
conductance

gwl(Φ) = gwl
0

exp[−τξ/τφ]

1 + τD/τφ + αΩ2
S (τD/τ0) Φ2

, (6.56)

α is a system cavity-dependent parameter of order unity, and we recall that τ0 is
the time of flight between two consecutive bounces at the system cavity’s wall.

We consider the Hamiltonian of Eq. (6.3) for two coupled kicked rotators
(with i ∈ {sys, env})

Hi =
(pi − p0)2

2
+Ki cos(xi − x0)

∑
n

δ(t− nτ0),

U = ε sin

(
xsys − xenv − 0.33

ξ

)∑
n

δ(t− nτ0). (6.57)

The interaction potential U is ξ-ranged with a strength ε and acts at the same
time as the kicks. Upon increasing Ki the classical dynamics of the corresponding
system varies from fully integrable (Ki = 0) to fully chaotic [Ki & 7, with Lya-
punov exponent λi ≈ ln(Ki/2)]. For 1 < Ki < 7 the dynamics is mixed, i.e. stable
and unstable motion coexist. We fix Ki = 34.08 to get a fully developed chaotic
sea. The parameters p0 and x0 are introduced to break the Hamiltonian’s two
symmetries [73]. Only when these two symmetries are broken does one witness
a crossover from the GOE to the GUE universality class [68], corresponding to
breaking the time reversal symmetry [73]. In oder to reach a nice Lorentzian re-
sponse of the magetocondutance we follow the procedure of Ref. [74], that consists
of varing x0 and keeping p0 constant. We follow the usual quantization procedure
on the torus xi, pi ∈ [−π, π]. The contacts of the system cavity are defined via
two absorbing phase-space strips [xL − δx, xL + δx] and [xR − δx, xR + δx], each
of them with a width 2δx = π/τD. We restrict ourselves to the symmetric situ-
ation with NR,L = N . The extended scattering matrix can be constructed from
a quantum representation of the Hamiltonian Eq. (6.57 provided by the unitary
(Msys Menv) × (Msys Menv) Floquet operator, which gives the time evolution for
one iteration of the double coupled standard map. The average is provided by a
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6 Decoherence in quantum chaotic transport : a semiclassical approach

variation of the lead position and the consideration of different sets of quasiener-
gies. We calculate the reduced magetoconductance from the scattering matrix,
which we numerically construct via an iterative procedure as in Refs. [53,75]. On
the basis of the result found by Bardarson and collaborators [74], the magnetic
field parameter x0 is express in unit of xc = 4π

√
N/(KsysM

3/2
sys ).

Fig. 6.6 show the magnetoconductance ∆g(x0) as function of the magnetic field

0 1 2
x

0
/x

c

0

0.05

0.1

0.15

0.2

0.25
∆g

(x
0) 

 

Figure 6.6: Magnetoconductance curves ∆g(x0) = g(x0) − g(0) for the open-close
double kicked rotator model (defined in the text) at fixed classical configuration K =
Ksys = Kenv = 34, 08 (λ ≈ 2.8), τD/τ0 = 8, and fixed Hilbert space sizes, Msys = 256,
Menv = 16 for ξ/L = 1 and different coupling strength. ~−1

eff ε = 0 (circles), ' 0.25
(squares), ' 0.5 (diamonds), ' 1 (upward triangles), ' 2 (downward triangles). Data
have been obtained after averaging over 6250 different samples (25 classically different
system cavities, each with 25 different quasienergies and 10 different initials conditions
for the environment). The red dashed line gives the best Lorentzian fit for the ~−1

eff ε '
0.25 curve ∆g(x0) = 0.19− 0.19/(1 + 2.5(x0/x)2)

parameter for different coupling strengths ε and a fixed correlation length ξ = L.
The data clearly confirms the Lorentzian shape and the reduction of the weak
localization correction. We can also affirm that we can see that there is no expo-
nential suppression. Indeed we numerically estimated from an independent study
based on a bipartite closed system τ−1

Φ ∝ 0.425ε2~−2
eff . Consquently, if there was

exponential suppression of the form exp[−τE/τΦ], then the diamonds (third curve
from top) would only go up to 0.02, instead of 0.125.

6.5 Conclusions

In this chapter we investigated the dephasing properties of open quantum chaotic
system in the deep semiclassical limit. Two models has been examined for which
we find that weak localization suppression are remarkably different. Firstly we
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showed using a new scattering formalism that our system-environment model
presents a supplementary exponential suppression controled by a macroscopic
time scale τ̃ = τξ, secondly we showed that the popular dephasing-lead model
has no independent parameter ξ. To our surprise it is the Fermi wavelength, not
the dephasing-lead’s width, which plays a role similar to ξ. This inequivalence
between the dephasing lead model and a real environment can be most clearly
seen in a situation where the interaction with a real environment has ξ ' L
at finite τ cl

E . Then the environment induces only powerlaw dephasing, which
is impossible to mimic with a dephasing lead. We emphasize that a similar
result has been obtained for universal fluctuation conductance by A. Altland
and collaborators [50]. Their conclusions show clearly a distinction between an
external source of dephasing which lead to result similar to our environment
model and an internal source of dephasing which delivers results closer to the
result in Ref. [47].

As a final conclusion we note that these investigations on the dephasing have
open a certain number of questions. The first one is the intriguing similarity be-
tween our result for the dephasing lead model and the one obtained in Ref. [47].
Further work will be devoted to fix the origins of this similarity, accordingly we
plan to investigate the link between the destruction of classical determinism by
the dephasing process and the appearance of the Ehrenfest time scale. Another
issue is related to the phenomenological nature of the dephasing lead model. In
principle more subtle arrangement scan be designed. The purpose would be to
introduce an additional independent parameter. This could be done, in princi-
ple, by considering the effect of two correlated tips on our open quantum dot.
However this leads us to derive semiclassically a full hierarchy of density of state
(injectivities, emissivities,... see [78]) that seems not trivial at all.

Finally, it would be nice to complement this theory with a calculation showing
that dephasing does not affect shot-noise and extended the investigation to the
universal conductance fluctucatuation.

6.6 Appendix A : Scattering approach to trans-
port in the presence of an environment

We here extend the scattering approach to transport to account for coupled en-
vironmental degrees of freedom. We follow the lines of the derivation of the
expression for noise presented in Ref. [77], focusing on the two-terminal configu-
ration.

In the presence of an environment, the current operator at time t on a cross-
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6 Decoherence in quantum chaotic transport : a semiclassical approach

section of lead α = L,R reads

Îα(q,q′, t)

=
e

h

∫
dEdE ′ei(E−E

′)t
∑
n

[
â†αn(E ′)âαn(E)Φ̂†(q′)Φ̂(q)− b̂†αn(E ′)b̂αn(E)Φ̂†(q′)Φ̂(q)

]
.

(6.58)

Here the coupling to external degrees of freedom has been introduced by means
of environmental field operators Φ̂(q), and accordingly, the current operator de-
pends on the environmental spatial coordinates q. The second quantized opera-
tors â(†) and b̂(†) create and destroy incoming and outgoing particles respectively,
and the index n labels the different channels in lead α. Because of the coupling to
the environment, the S-matrix linearly relating â−operators to b̂-operators now
depends on the coordinates of the environment,

b̂αn(E)Φ̂(q) =
∑
β;j

∫
dq′ Sαβ;nj(q,q

′) âβj(E) Φ̂(q′). (6.59)

Here, Sαβ;nj(q,q
′) gives the transmission amplitude from channel j in lead β

to channel n in lead α with the environment evolving from q′ to q during the
transmission. Using (6.59) we rewrite the current operator as

Îα(q,q′, t) =
e

h

∫
dE dE ′ei(E−E

′)t

×
∑
β,γ

∑
m,n

[
δmnδαβδαγ â

†
αn(E ′) âαn(E) Φ̂†(q′) Φ̂(q)

−
∫

dq1 dq′1
∑
k

(
Sαβ;mn(q′1,q

′)
)∗

Sαγ;nk(q,q1) â†βm(E ′) âγk(E) Φ̂†(q′1) Φ̂(q1)
]
.

(6.60)

The current is obtained by taking the expectation value of the current operator
over both system and environmental degrees of freedom. One uses

〈â†αm(E ′) âβn(E)〉 = δαβ δmn δ(E − E ′) fα(E) (6.61a)
〈Φ̂†(q)Φ̂(q′)〉 = F (q) δ(q− q′). (6.61b)

Here, fα is the Fermi function, and F gives the spatial distribution of the envi-
ronment. For the sake of simplicity, we will take F (q) ≡ 1. Together with the
unitarity of the scattering matrix, which we write as∫

dq1

∑
βk

(
Sαβ;nk(q1,q

′)
)∗

Sαβ;kn(q,q1) = δ(q− q′). (6.62)

Together with (6.60) and (6.61), this gives the current in the left lead as

〈〈IL〉〉 =
e

h

∑
n,k

∫
dq1dq

∫
dE
(
SLR;nk(q1,q)

)∗
SLR;kn(q,q1)

[
fL(E)− fR(E)

]
.

(6.63)
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From this formula we see that the current (and hence the conductance) is ob-
tained by tracing over the environmental degrees of freedom of the product of
two scattering matrices. Besides this prescription, Eq. (6.63) is similar to the
current in the standard scattering approach to transport.
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CHAPTER 7

Outlooks

In the course of these various investigations on quantum reversibility, entangle-
ment, decoherence and quantum transport, we have been confronted to some
interesting difficulties. Indeed we have pointed out that the semiclassical method
suffers from two weaknesses. The first one is the difficulty to introduce Dissi-
pation on an equal footing with Decoherence. The second one is related to the
difficult treatment of the problem of interaction between our dynamical systems.
Overcoming these two weaknesses will be essential if we want to tackle, from
a semiclassical point of view the behavior of dissipative interacting dynamical
systems.

We note that a careful treatment of dissipation and interaction, is by itself
of fundamental interest, but we emphasize that the knowledge, that could be
gained, will also be experimentally relevant. Indeed in a real experimental setup,
the outcomes are strongly affected by dissipation and/or interactions. Fairly we
can hope that the semiclassical treatment of such notions can deliver a more
intuitive physical pictures of these effects.

From a purely quantum point of view, the most versatile treatment of out-
of-equilibrium many body systems, is the so called Keldysh formalism [1]. There
exist a number of pedagogical presentations [2, 3], of these methods. We noted
that, although the Keldysh formulation of the many body theory is primarily use-
ful for systems that are not in thermal equilibrium, this approach is also useful for
equilibrium systems when traditional techniques (Matsubara technique) become
cumbersome. We emphasize also that classical counterparts of these techniques
are extremely powerful in the framework of classical stochastic systems (see for
example the Martin-Siggia-Rose technique [4] or the stochastic path integral ap-
proach [5]).

However it is important to built a truly semiclassical approach, especially if
we want to investigate the entanglement properties of such out-of-equilibrium

157



7 Outlooks

dynamical systems. This is clearly a difficult task that can not be solved quickly.
Nevertheless we can try to initiate the project. We first split the difficulty into two
simpler projects The first one will focus one the inclusion of dissipative effects in
our previous work and will be detailed in paragraph 7.1. In the second, presented
in paragraph 7.2, our efforts will be restricted to the treatment of the interaction.

7.1 Dissipation and semiclassical methods

The relation between chaos and quantum dissipation has attracted a lot of inter-
est for a long time. Most works use environments with many degrees of freedom,
as in the Caldeira-Leggett model [6]. However there are some important as-
pects in previous studies of quantum dissipation which are not easily described
by the traditional semiclassical methods. As an example, the Caldeira-Leggett
model admits a perturbative treatment at short times and small friction coeffi-
cients which describes both the classical and the quantum properties on the same
footing. This equal footing treatment is more difficult to implement semiclassi-
cally, indeed an environment which induces friction also changes simultaneously,
the classical trajectories and the quantum coherence features. The difficulty is
related to the introduction of a self consistent change of the classical trajectories.

Nevertheless, recently Bonanca and Aguiar [7] have studied the effect of dissi-
pation and decoherence on a harmonic oscillator induced by the coupling with a
chaotic environment. This investigation has been based on a semiclassical treat-
ment of the chaotic system and a Feynman-Vernon approach [8]. They showed
that in this particular case the dissipation and decoherence come directly from
a purely dynamical function. I plan to combine this treatment with our previ-
ous study of entanglement, giving us a better understanding of the semiclassical
treatment of dissipation.

Apart from the above mentioned technical aspect of the motivation we intend
to give to this project a more physical impact by focusing on entanglement exper-
iments. Indeed most experiments, due to unavoidable environment coupling, do
not allow one to prepare an ideal pure state and end up finally with a mixed state.
One possible entanglement measure of mixed states is based on the minimal av-
erage of the generalized concurrence [9] over all possible ensembles that describe
the particular mixed state. This calculation rather quickly becomes cumbersome,
nevertheless it was shown by Mintert and Buchleitner [10] that this generalized
concurrence admits a lower bound that can be related quite easily to the Purity.

Consequently our first project would be to study the dissipation and decoher-
ence of a dynamically entangled bipartite system prepared in a mixed state under
the influence of a chaotic environment. The key to solving this problem will be
to design a scheme that permits one to control the self consistent change of the
classical paths. The true advantage of this particular formulation of the problem,
is the initial separation between the dissipative effects due to the surrounding en-
vironment and the entanglement part intrinsic of the bipartite system. We could
address dissipation and entanglement in the same approach. We will firstly derive

158



7.2 Interaction and semiclassical methods

a master equation, in which the dissipative part will be included via a semiclassi-
cal dissipative superoperator, and simultaneously treat exactly the entanglement
process in the bipartite system.

The goal of this research would be to shed light on the entanglement de-
struction, that is of crucial importance in a currently not intensively investigated
regime of dynamical systems.

7.2 Interaction and semiclassical methods

Interaction effects become important as soon we consider reduced dimension or
nearly closed systems. In mesoscopic physics this happens when we consider
closed quantum dots, which are in fact weakly coupled to leads via tunneling
barriers. Indeed in almost-closed dots, conductance occurs by tunneling, the
charge on the dot is quantized, and electron-electron interactions play an impor-
tant role. At low temperatures transport is dominated by Coulomb blockade [11],
which leads to the conductance peaks observed experimentally. From a theoretical
point of view substantial work has been done in order to incorporate interaction.
Most of these works are based on random matrix considerations [12]. At the semi-
classical level statistical properties of ballistic quantum cavities have also been
investigated [13], and more recently an hybrid method based on a random wave
model and a semiclassical approach [14] has been proved to be very promising
and powerful.

Now although Coulomb blockade is reasonably well understood for an almost
isolated system, fundamental questions appear as soon we include the Coulomb
blockade system in an electrical circuit. Indeed the Coulomb blockade can be
lifted when the conductance of the contact is larger than the quantum conduc-
tance. This regime is usually referred to as weak Coulomb blockade. This problem
has been addressed previously in the literature [15–17]. At the moment the most
developed work by Brouwer et al. [18] is technically demanding (Bosonized de-
scription) and based on an expansion in the inverse number of channels.

In this second project we want to investigated this problem from a semiclas-
sical point of view. The system that we consider will be a quantum dot coupled
to two perfect point contacts. Electrons inside the contacts are non interacting.
The dot itself will be treated as a chaotic cavity, the goal will be to determine
semiclassically the current of such a system. We focus on the fact that this
problem is not trivial, indeed as it was shown in the particular case of the trace
formula [19], exact inclusion of interaction in the semiclassical formalism can be
quite sophisticated.

The method we plan to used is based a the scattering matrix approach. In-
deed, as already mentioned the scattering approach is one of the most powerful
formalisms in the theory of quantum transport. The interest of this choice is
double. Firstly in the most general case, outgoing and incoming field operators
are related by a two time scattering matrix [20]. Secondly it has been recently
shown that, in the particular case of periodically driven systems and for non
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interacting electrons, an energy representation of the scattering matrix and the
Keldysh Green‘s function formalism lead to the same conclusions [21]. Conse-
quently the first step would be to derive a semiclassical analogue of the two time
scattering matrix for the non interacting case, then include the interaction in a
perturbative way. We note that the reduction to a weakly interacting problem,
is a strong limitation. However this is the first step that we need to take if we
want to carry out a semiclassical Keldysh treatment and ultimately go beyond.

We emphasis that from a practical point of view, the understanding of weak
Coulomb blockad is crucial. Indeed almost all relevant engineering applications of
coulomb blockade will take place in the open regime. Consequently the physical
picture we could obtain from our semiclassical description would be extremely
valuable.
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