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I. Introduction 
A. RELATIVISTIC QUANTUM MECHANICS 

Theoretical physics in the first half of the twentieth century is dominated by 
two major developments: the discovery of the theory of relativity and the 
discovery of quantum mechanics. Both have led to profound modifications of 
basic concepts. Relativity in its special form proclaimed the invariance of 
physical laws with respect to Lorentz transformations and led to the inevitable 
consequence of the relativity of spatial and temporal relationships. Quantum 
mechanics, on the other hand, recognizes as basic the complementarity of 
certain measurable quantities for microsystems (uncertainty relations) and 
the concomitant indeterminism of physical measurements. 

131 
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From the mathemetical point of view the central object in the special theory 
of relativity is a group, the Lorentz group, or more generally, the Poincare 
group. For quantum mechanics the most important mathematical object'is the 
Hilbert space and its linear operators. It is therefore not surprising that the 
most important mathematical problem in relativistic quantum mechanics is 
the representation theory of the Poincare group in infinite-dimensional Hilbert 
space. 

The representation theory of groups was first developed, at about the turn 
of the century, as a branch of algebra for the finite groups. The extension to 
compact Lie groups was a relatively easy generalization. However, these 
theories are too restrictive for the representation theory required by relativistic 
quantum mechanics. Two generalizations are needed in this case. First, not 
the vector representations but only representations up to a factor of modulus 
one are important in quantum mechanics. Such representations are called 
projective representations because they are encountered in projective geo-
metry. Second, the Poincare group is a noncompact group, and the faithful 
unitary representations of such groups are necessarily of infinite dimensions. 

Until 1940 the unitary representation theory of noncompact groups in 
infinite-dimensional spaces was practically nonexistent. The first important 
results were obtained by Wigner· (1) in 1939, and later by Bargmann (2). 
Wigner was able to adapt a method of Frobenius to the Poincare group, and 
in this way he obtained a classification of all physically interesting irreducible 
representations of this group. Many question s of a mathematical nature 
remained unanswered by this work. A more complete and more general theory 
was given much later by Mackey, who generalized Frobenius's theorem to the 
case of noncompact groups of a certain class (3 , 4). 

The study of projective representations led to the theory of the classes of 
equivalent factors developed especially by Bargmann (5). Thus the local and 
global theories of factors, together with the Mackey-Frobenius theory of the 
irreducible vector representations, constitute the main building blocks of the 
quantum-mechanical representation theory of the Poincare group. They will 
be used in this article for a classification of elementary particles in quaternionic 
quantum mechanics. 

B. GENERAL QUANTUM MECHANICS 

Quantum mechanics as it was discovered in connection with the problems 
in atomic physics has the peculiar feature that it is a theory that uses as its 
main tool a complex Hilbert space. The appearance of complex numbers in a 
basic physical theo ry can be of a rather trivial nature, such as, for instance, 
the representation in the complex plane of a periodic motion. In such a case 
the use of complex numbers is a matter of convenience, and it can be just as 
well avoided if we are willing to pay the price of more cumbersome formulas . 
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In quantum mechanics, however, the appearance of complex numbers seems 
to have a more fundamental significance, which has never been understood 
very well. 

The question concerning the role of complex numbers was expressed early 
by Ehrenfest (6) and an answer was attempted by Pauli (7), for at least a special 
case. The question can be placed in a broader context if we examine more 
carefully just what properties of the complex Hilbert space are actually used 
in quantum mechanics. One way to do this is to reformulate quantum mechanics 
on an axiomatic basis as an algebraic structure, as was done by Birkoff and 
von Neumann (8) in 1936. In this formulation there is no need to introduce 
Hilbert space at all. The primary object is instead a lattice of the elementary 
propositions (yes-no experiment) pertaining to a given physical system. In 
conventional quantum mechanics this lattice is realized as the lattice of all the 
subspaces of a complex Hilbert space. In the abstract formulation of the 
proposition system the nature of the Hilbert space in a possible realization is 
left open. There is no obvious physical property that would force us to choose 
the complex numbers for the field of coefficients. 

There is, however, one property of the field that one can motivate to some 
extent with physical considerations: the field should contain the reals as a 
subfield so that the representation of continuous quantities, such as the 
position of a particle, does not cause any difficulties. With this restriction the 
number of possible realizations of the abstract lattices is greatly reduced 
because, according to a celebrated theorem (9), there exist only three fields 
that contain the real numbers as a subfield, namely, the real numbers them-
selves, the complex numbers, and the quaternions. Thus it suffices to examine 
in detail quantum mechanics in real and in quaternionic Hilbert spaces. 

Quantum mechanics in a real Hilbert space was studied by Stueckelberg in 
a number of papers (/0, 1 /).The result of these investigations is that the theory 
is in contradiction with the uncertainty relations unless we postulate the 
existence of a nontrivial operator f that commutes with all the observables. 
This operator f must in addition be antisymmetrical (f"t = - f) and must 
satisfy f 2 = - /. The latter property says that f is the square root of the 
negative identity operator. This implies that the theory is identical with 
conventional quantum mechanics in complex Hilbert spaces. 

The situation is a little different for quaternion quantum mechanics. In fact , 
experience with real Hilbert spaces has shown that the question of the field is 
certainly connected with the question of superselection rules. The choice of 
.the "wrong" field (for instance, the reals) can be compensated by restricting 
the number of operators that are admitted as observables. Such restrictions 
are called superse/ection rules. Tt was therefore natural to believe that the 
occurrence of superselection rules in nature might somehow find a natural 
explanation by a suitable choice of the number field. For this reason the study 
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of quaternion quantum mechanics was undertaken by Finkelstein et al. in a 
number of publications(/ 2, I 3). r n spite of some interesting formal possibilities 
these attempts yielded no essentially new results that could be connected with 
the empirical facts of elementary particle physics, and the deeper significance 
of the complex numbers in quantum mechanics remains obscure. 

In order to progress further it seemed natural to return to the lattice-
theoretical approach of Birkhoff and von Neumann and to try to recover the 
number field from the structure properties of the lattice itself. It was especially 
emphasized by Finkelstein et al. that the abstract algebraic properties of the 
lattice are essentially nothing other than the formalization of the fundamental 
empirically given properties of the physical systems. On the other hand, from 
the experience we have had with the coordinate representations of projective 
geometries we expect that the nature of the field is essentially (that is, up to 
automorphisms) determined by this lattice structure. 

This program of research was undertaken by Piron (14), who succeeded in 
formulating, in the precise mathematical language of lattice theory, a set of 
general quantum-mechanical axioms that embodied the basic empirical facts 
of quantum systems. He went beyond the work of Birkhoff and von Neumann 
by showing that for certain systems the axiom of modularity favored by these 
authors is in contradiction with the facts, and by supplying the correct axiom 
of 11·eak modularity. He then stated and proved a representation theorem for 
the lattices encountered in Nature. For systems of finite dimensions this 
theorem is the well-known representation theorem of projective geometries; 
for infinite-dimensional systems it is a generalization of this theorem. 

With Piron's result it became possible to affirm the representation of the 
lattice of a physical proposition system as subspaces in a Hilbert space with 
coefficients from a field. But still nothing was known about the physical 
properties that reflect the nature of the field. 

C. INTERVENTION OF GROUP THEORY 

A new aspect was introduced with the study of the symmetry groups of 
proposition systems. It is known from examples that these symmetry groups 
have quite different structures for the different lattices. Since physical sym-
metries are often more easily recognized in Nature than, for instance, other 
detailed mechanical properties of the systems, this seemed a promising line of 
research to pursue. 

The symmetries of a proposition system have two aspects. There is (as we 
shall show in detail in Section III, A, 3) a symmetry group of the proposition 
system that we shall call M. It consists of all automorphisms of the lattice. 
There is, in addition, the symmetry group G, which arises from the space-time 
frame of physical events. For relativistic quantum mechanics this group G 
is the Poincare group. The study of elementary systems and their properties 
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leads to the question of the isomorphisms (or homomorphisms) between C 
and the subgroups of M. In other words, we have here a representation 
problem of the Poincare group. 

The representation of groups as automorphisms of a lattice structure is a 
natural generalization of the representation of groups by unitary transforma-
tion of vectors in a complex Hilbert space. An intermediate stage in this 
generalization consists of the projective representations, which can be reduced 
to the vector representations via the theory of factors. There is virtually 
nothing known about representations of groups as automorphisms of lattices. 

A special aspect oft he problem could be revealed by studying the projective 
representatiuns of the Poincare group in quaternionic Hilbert space. This is 
essentially the same problem that Wigner had solv~d in 1939 for complex 
space, transferred and adapted to the situation in quaternionic space. The 
work of Mackey (3) and Bargmann (5) that intervened simplified the task 
considerably and made it possible to solve this problem with complete mathe-
matical rigor. This was dome by Emch (/5) in a thesis published in 1963. The 
result, which will be reported here, shows that the physical content of quater-
nionic Hilbert space is identical with that of complex space when it is combined 
with the principle of relativity. This result revealed, a little better than most 
previous attempts, why complex Hilbert space plays such an exceptional role 
in quantum mechanics. It is a good example of the efficacy of group-theoretical 
considerations in answering profound questions of fundamental physical 
theory. 

11. The Lattice Structure of General Quantum Mechanics 

A. THE PROPOSITION SYSTEM 

l. The Elementary Propositions (Yes-No Experiments) 
All the information concerning the properties of a physical system is obtained 

by measurements. The results of such measurements depend on two things: 
the nature of the physical system and the state of that system. Although this 
distinction cannot always be carried through consistently in all cases, it is quite 
useful for most situations. Roughly speaking, the nature of the system is 
incorporated in all those measurable properties that are independent of the 
history of the system. We shall call then intrinsic properties. For instance, if 
the system consists of an elementary particle, the mass, charge, spin, and 
magnetic moment are some of the intrinsic properties. On the other hand, the 
position, eriergy, and orientation of the spin are some of the properties that 
depend on the state of the system. 

The nature of the system can be characterized completely by specifying all 
the intrinsic properties of the system. Jn order to do this in the simplest and 
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most systematic way, it is convenient to introduce a special class of experiments 
the yes-no experiments. These are experiments with equipment that can only 
respond with one of two alternatives. A typical example of such equipment is 
the cou111er, which is either triggered or remains silent. Every measurement of 
a measurable quantity can be broken up into a suitable set of yes- no experi-
ments by the simple device of measuring only whether the quantity in question 
belongs to a given subset or not. For instance, the measurement of the position 
of a particle is accomplished if we know whether the values of its position 
coordinates belong to any given subset of the possible values of these co-
ordinates. 

We shall refer to the two alternatives of a yes-no experiment as (elementary) 
propositions for the system, which we denote in the following by 2. The 
determination of the nature and the state of a system is accomplished if we 
know the truth or fal sehood of all propositions for the system. · 

2. The Partial Ordering of Propositions 
One of the most important intrinsic properties of a physical system is 

expressed in a partial ordering of its proposition system. Certain pairs of 
proposition s are not independent of each other. For instance, let proposition 
a locate a particle in a volume element V" and proposition b locate the particle 
in volume element Vb. If V" c: V1,, then the two propositions clearly depend 
on each other because whenever a is true, b must be true too. Furthermore 
whenever b is false, a must be false too. We express this by the relation a<:;:::; b 
and recognize easily that it is a partial ordering of the proposition system that 
satisfies the following fundamental properties: 

(a) a c: a v a E £'; 

(b) a c: b and bc:a =a= b; 

(c) {/ c: b and b s;;; c => a s;;; c. (I) 

Property (b) may be considered as the definition of the equality of two 
propositions. 

The fact that the ordering is only partial is very important. It gives rise to 
the existence of non trivial symmetry groups for proposition systems. 

3. Intersection, Union, and Orthocomp/ement of Proposition 
In a partially ordered system it is natural to define the operations of inter-

section and union of its elements. If the system is a system of propositions, 
then we can give these operations a physical interpretation that enables us to 
verify in individual cases a system of axioms concerning them. 
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For these ax ioms the following have been found consistent with the em-
pirically verifiable propositi on systems. 

Let I be an index set containing at least two elements and a; (i E I) any 
subset of 2', a; E 2'. Then there exists a proposition, denoted by n, a;, with 
the property 

':;f i E / <=> x ~na; 
I 

(':;f X E :£'). (IT) 

It is called the greatest lo11·er bound, or intersection, of the elements a;. In the 
particular ·case that the index set I conta ins exactly two elements, we denote 
the intersection of two elements a and b by an b. 

In a simila r way we define the least upper bound, or union, of an arbitrary 
subset of 2? by U 1 a; with the property 

(':;f X E ft'). (III) 

If the subset {a;} is identica l with 2', we obtain two special elements of the 
set 2' 

<P =na, 
2' 

I=Ua. 
:t' 

(I) 

The element</> represents the absurd propos ition, which is always fal se, while 
I is the trivial proposition , which is always true. 

The next axiom (l V) asserts the existence of a unique orthocomplemenl: For 
every a E 2? there exists another a' E 2? such that 

(a')' = a, 

a' n a=</>, 

(IV) 

From the axioms stated so far follows immediately that for every subset 
{a;} (i E J) of 2' we have 

In particular, by taking for {a;} the set 2? itself, we obtain 

<fi ' =I, 
/' = </>. 

(2) 

(3) 
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For every x E 2' we verify also 

x' U x =I. (4) 

If two elements a and b satisfy the symmetrical relation a c b', we call them 
disioint and we denote it by a .L b. 

The four axioms (I), (II) , (III), and (IV) define an orthocomplemented and 
complete /att ice. 

4. The States of a Physical System 
The properties that define the lattice structure of 2' contain the formaliza-

tion of the intrinsic properties of a physical system. We shall now turn our 
attention to those properties that refer to the state of the system. 

A state is the result of a set of physical manipulations that constitute the 
preparation of the system. The state can be determined by measuring the 
truth or falsehood of all the propositions of the system. In contradistinction 
to classical systems, however, not every proposition is necessarily true or 
false. The result of measurements on ensembles of identically prepared 
systems will yield the result that a given proposition may be true with a certain 
probability only. We are thus led to the following axiom. 

A state is a function from 2' onto the interval [O, I} that satisfies 

(i) p(rp) = 0, p(J) = I. 

(ii) For every sequence a; of pairwise disjoint elements we have 

P(U a;) = ~p(a; ) . 
' I I 

(iii) p(a) =I = p(b) => p(a n b) =I. 

If p 1 and p 2 are two different states, then A1p 1 + A2p 2 = p with A1 + A2 = I, 
A; > 0 is also a state. Such a state p which can be constructed from two 
different states is called a mixture. A state that is not a mixture is said to be 
pure. 

The states are thus a convex set of functionals over 2'. The pure states are 
the boundary of this convex set. 

The functional ap(a) = p(a) - p 2(a) measures the dispersion of a state. If 
ap(a) = 0 'if E 2', we call the state dispersion free. A mixture always has disper-
sion, but a pure state is not necessarily dispersion free. For certain simple 
quantum-mechanical systems, such as a spin or an elementary particle, we 
can even show that there does not exist any dispersion-free state. 
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B. DISTRIBUTIVITY, MODULARITY, AND ATOMICITY 

I. Distributivity 
The lattice of propositions exists for any physical system, be it classical or 

quanta!. The distinction between these two kinds of systems requires an 
additional structure property that is compatible with axioms (1)-(IV); a 
classical system has a proposition system that satisfies the axiom of 
distributivity as well as axioms (l)-(IV). 

A lattice is distributive if for every tri pie a, b, c E 2', the relations 

hold. 

an (b u c) =(an b) u (an c), 

(/ u (b n c) =(a u b) n (au c) 
(0) 

Such a lattice is called a Boolean lattice (or a Boolean algebra). If a lattice 
is not Boolean, it may at least contain Boolean sublattices. A sublattice 
2! 0 c 2 is a subset of 2! that satisfies all the axioms (I)-(IV). If 2! ; c 2! is a 
famile ofsublattices, then the set intersection 2'o = ni 2; is also a sublattice. 

Let y c 2 be an arbitrary subset of 2!. We may then consider the class of 
all sublattices 2'; that contain y. The intersection 2! 0 = n; 2'; will then also 
contain y, and it is the smallest sublattice of 2! with this property. We call it 
the sublattice generated by y and denote it by !l!(y) = 2! 0 . 

Of particular interest ·in the following are the subsets y for which .!f'(y) is a 
Boolean sublattice of 2'. We say then that the set y is classical, or y consists 
of pairwise compatible elements. If the set y consists of exactly two elements 
y = {a,b} , then these elements are compatible if and only if 2'( {a, b}) is Boolea n. 

We have thus arrived at the important notion of compatibility, for which 
we introduce the special notation a<- > b, which indicates that it is a sym-
metrical relation. It is clear fro m the preceding that in a classica l system every 
pair of propositions is compatible. The converse is also true (14). The notion 
of compatibility defined here was first introduced in a slightly different way 
by Jordan (/6) and it is discussed extensively in the mathematical literature 
(17, 18) . 

2. Modularity and Weak Modularity 
It was clearly recognized by Birkhoffand von Neumann (8) that the distribu-

tion Jaw is violated in Nature and that it has to be rep laced by a weaker law. 
For this weakened · structure property these authors proposed the so-called 
modular /a11'. 

It is an elementary exercise to show that in any lattice we have 

x u (y n z) ~ (x u y) nz 
for x s:; z. 
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If the lattice is such that for all x ~ z the equality sign holds in this relation, 
then it is said to be modular. The modular law is thus expressed by 

x ~ z => x u (y n z) = (x u y) n z. (M) 

It is clear that a Boolean lattice is always modular, but the converse is not 
true. Simple examples are found, for instance, in the work of Piron (14). 

As was pointed out by Birkhoff (19), the modular lattices have many 
properties that make them quite attractive for the description of propositions 
in general quantum mechanics. It was established by Piron, however, that 
the notion oflocalizability, which is implied by that of an elementary particle, 
is incompatible with modularity (14, Proposition on p. 452). Piron also 
supplied the weaker axiom that is needed to describe the actually known 
physical systems. It is called the weak modularity axiom and can be stated in 
many equivalent forms. We choose the following, which lends itself most 
easily to a physical interpretation: 

a~ b =>a~> b. (P) 

It is not difficult to verify that (M) implies (P) for a complete orthocomple-
mented lattice. The converse is not true. The most important example is the 
lattice of closed linear subspaces in an infinite-dimensional Hilbert space. 
This lattice satisfies (P) but is not modular (14). 

Concluding this subsection, we state a theorem that is a rich source of 
alternative formulations of compatibility: 

In a weakly modular lattice the following relations are equivalent [cf. (14, 
Theorem VII)]. 

(1) a +-t b. 
(2) a +-t b'. 
(3) (a n b') u b :2 a. 
(4) (au b') n b ~a. 
(5) Any three of the four elements a, b, a' , b' satisfy a distributive law 

x n (y u z) = (x n y) u (x n z). 
(6) (an b) U (an b') U (a' n b) U (a' n b') = I. 
(7) (au b) n (au b') n (a' u b) n (a' u b') = ip. 

3. Atomicity 
The axion of atomicity consists of two parts. The first part expresses the 

existence of minimal propositions PE 2 (called points) with the property 

xcP=> x= cf>. (A.I) 



PROJECTIVE REPRESENTATION OF THE POINCARE GROUP 141 

The second part affirms the existence of minimal propositions over any 
other proposition. 

For any point PE !l' 

acxcauP""'°x=a or x=a UP. (A.2) 

We say then the proposition a UP covers a. 
The postulate of atomicity has the character of a technical axiom that is 

perhaps not indispensable for the description of actual physical systems, but 
that is mathematically useful. Recent experience, however, suggests that it 
may be possible to dispense with the axiom altogether (20). Work is now in 
progress to study the possibility in relation to weakly modular lattices. 

For the rest of this chapter we shall designate as a proposition system a lattice 
that satisfies axioms (1)-(IV); (P); and (A.l) and (A.2). 

C. SUPERPOSITION °PRINCIPLE AND SUPERSELECTION RULES 

l. Reducible and Irreducible Lattices 
Consider two proposition systems !l' 1 and !l' 2. We can construct a third 

one, the elements of which are the pairs of elements (xi, x 2) x 1 E !l' i. x 2 E !l' 2 
(the Cartesian product !l' 1 x !l' 2). The partial ordering is defined by the rule 

and X2 C Y2· (5) 

If we define further 

(6) 

(7) 

we obtain a new lattice, which we call the direct union of !l' 1 and !l' 2. 

Any lattice that can thus be written as a direct union of two or more other 
lattices is called reducible. If this is not the case, it is called irreducible or 
coherent. 

Every Boolean lattice is reducible except the trivial lattice consisting of only 
two elements </> and I. The occurrence of nontrivial irreducible lattices is thus 
an essential property of quantum systems. 

Whenever a lattice is reducible, there exist nontrivial elements that are 
compatible with every other· element in the lattice. The set of all such elements 
is called the center <&' of the lattice. 

2. The Superposition Principle 
An irreducible lattice !l' satisfies the superposition principle, which can be 

expressed as follows : 
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For every pair of distinct P, Q E 2' there exists a third point RE 2 such 
that 

PUQ=PUR = RUQ. (8) 

Every propos1t1on system can be decomposed in an essentially unique 
manner (except for the o rder of the irreducible parts) into a direct union of 
irreducible lattices (14) . This theorem allows the reduction of the study of 
general proposition systems to that of irreducible ones. For an irreducible 
lattice the center is trivial (that is , it consist of only two elements </> and /). 
For any Boolean lattices it is identical with the entire lattice. 

The lattices that actually occur in Nature are in general reducible. When 
this is the case, the superposition principle has only restricted validity. We say 
then that the system allows superselection rules, a notion introduced by 
P. Destouches-Fevrier (21), and later again by Wick et al. (22) 

Ill. The Group of Automorphisms in a Proposition System 

A. MORPHISMS 

I. Definition of Morphisms 
Let 21o 2' 2 be two proposition systems and m a bijective mapping with 

domain 2' 1 and range !£ 2 with the properties 

(i) x ~ y = m(x) ~ m(y) 
(ii) m(x') = m(x)' 

for every x, y E 2'1. 

(9) 

Such a mapping is called a morphism of 2 1 onto 2 2 . Every morphism 
admits an inverse 111- 1 with domain 2'2 and range 2' 1 defined by 

111- 1(m(x)) = x . (10) 

The inverse of a morphism is also a morphism. 

2. Various Invariance Properties 
The following properties are simple consequences of this definition. For the 

detailed proofs we refer to the work of Emch and Piron (23). If /11 is a morphism 
from 2' 1 to 2'2 and {x;} any subset of 2'1o then 

m ( ~ X;) = l( m(x;) . ( 11) 
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Similarly, we have 

m ( 0 X;) = 0 m(x;). (12) 

From this follows immediately 

(13) 

and 

(14) 

If P 1 E2' 1 is a point, then m(P 1) = P2 E 2'2 is also a point. 
Furthermore, if x and y are contained in the same coherent component of 

2' 1, then m(x) and m(y) are also contained in the same coherent component 
of 2' 2 [cf. Emch and Piron (23, Lemma 4)]. 

3. Automorphisms 
If 2' 1 =2'2 = 2', then a morphism with domain and range 2' is called an 

automorphism. It is a permutation of the lattice that leaves the lattice structure 
invariant. An automorphism will also be called a symmetry of the lattice 2'. 

The set of all the automorphisms are a group, the symmetry group of the 
lattice. We shall denote it by M. The composition law of this group is defined 
by setting for the product of two automorphisms m 1 and m 2 

( 15) 

The identity element e of the group is represented by the trivial automorphism, 
which leaves every element of the lattice invariant: e(x) = x; and the inverse 
automorphism nc 1 is the group inverse. 

Every automorphism induces a transformation p ->- p'" of the states of a 
system through the formula 

p"'(x) = p(m- 1 (x)) ':;/ XE.!£'. (16) 

It can easily be verified that if p is a state, then p"', defined by Eq . ( 16), is a state 
too. If p is a pure state, then p"' is pure too. 

8. THE SYMMETRY GROUP OF A PROPOSITION SYSTEM 

I. Topology in a Group of Automorphisms 
The group of automorphisms of a proposition system reflects many of the 

structure properties of the lattice. The study of these properties can therefore 
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be reduced to some extent to the study of the group of its automorphisms. In 
this section we define the topology in the group of automorphisms so as to 
make this group a topological group. 

A topology in an abstract space Mis given by specifying a certain class of 
subsets, designated as the open sets of that space. In order to define them it is 
sufficient to give a complete system of neighborhoods of the set M. They form 
a basis in the sense that every open set can be represented as the union of such 
neighborhoods. 

In the case of groups it suffices to designate only the neighborhoods of the 
identity element e E M. Neighborhoods at other points m 0 =/= e are then 
obtained by left or right translations of the neighborhoods at the identity. 
Thus if U is such a neighborhood, then the sets 

m 0 U = {m'lm' = m 0 m, m EU} 

Um 0 = {m'lm' = m 0m, m E U} 

are neighborhoods of the point m0 • 

For the definition of the neighborhoods ate EM we look for a motivation 
in the physical interpretation of the lattice. The measurable quantities are the 
states, and proximity of two transformations of the lattice is therefore ex-
pressed most naturally in terms of the transformation of the states. Thus we 
define an E neighborhood N.(e) of e as the set of automorphisms m such that 

IP"'(x) - p(x)I < E 'if x E 2' and all states p. ( 17) 

It is easy to verify that this system of E neighborhoods satisfies the five 
conditions of Theorem 10 of Pontrjagin (9, Section 17). Thus they define a 
topology in the group such that the group operations are continuous functions 
of its arguments. From now on we shall consider the group of automorphisms 
equipped with this topology so that it may be considered a topological group. 

We may now consider various properties that depend on that topology. 
The following will be used frequently: 

(a) Closure: A subset of Mis closed if its complement in Mis open. 
(a) Limit point: A point m 0 is a limit point of a subset A c M if every neigh-

borhood of m0 has at least one point i=m0 in common with A . A subset A c M 
is closed if and only if it contains all its limit points. 

(c) Connectedness: The space Mis connected ifthere does not exist a subset 
A of M that is both open and closed. If such a set exists, then its complement 
A ' = M - A is also open and closed. It follows then that A is the union of 
two open sets and also the union of two closed sets. 

(d) Discreteness: The space Mis discrete if every subset of Mis both open 
and closed. 
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(e) Compactness: The space M is compact if from every countable family 
of open sets in M we can select a finite subfamily that also covers M. In that 
case every infinite subset of M contains at least one limit point in M. If this is 
not the case, then the space is called noncompact. 

If a space is not connected it may contain connected components. A closed 
subset M 0 of Mis a connected component if it cannot be represented as the 
union of two nonintersecting closed sets. 

The largest connected subset M 0 c M that contains the element e EM is 
called the connected component of the unit element. It is easy to see that M 0 
is an invariant subgroup of M. 

2. The Connected Component and Superselection Rules 

We shall here first examine the effect of the automorphisms in the connected 
component of a proposition system with superselection rules. We consider 
only the case of discrete superselection rules for which the lattice 2 is a direct 
union of a finite or countably infinite set of lattices 2;. 

We denote by I;= {cp" cp 2,. .• ,/;, cp;+i. .. . } the element that has the zero 
element at every position except at the ith position, where it has the unit 
element I; of the lattice 2;. The lattice 2; is then isomorphic with the segment 
[cp,I;] that is the set of elements x such that cp ~ x ~I;. So we may identify 2; 
with this segment. The elements I; are all disjoint elements of the center of 2. 

Let us now consider a state p 1 such that p 1 (!;) = I. Because the I; are disjoint, 
we have for any state p(J1) + p(J;) = p(J1 U I;). It follows that p 1(J;) = 0 for 
i =I= 1. Let us next choose a sufficiently small E > 0 and consider m E N.(e) so 
that 

Since m- 1 is an automorphism, m- 1(!1) =I;. But we have already shown that 
p 1(J;) = 0 for i =I= I. Hence m- 1(/;) = 11 (if E < 1, for instance) or m(J1) = ! 1 for 
all m E N.(e). 

We have thus established that for all m E N.(e) = U we must have m(/1) =Ji. 
It is now easy to extend this invariance of 11 to the entire connected com-
ponent M 0 c M by using a theorem of Pontrjagin (9, Theorem 15) according 
to which every element in M can be written as a finite product of elements 
from U. With this we have proved the following 

Theorem I. If a lattice 2 is a direct union of coherent lattices 2,., then 
every morphism from the connected component that contains the unit element 
leaves every sublattice !.e; invariant. 
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3. Representations of Symmetry Groups 
The group of automorphisms Mis in general much too large a group for 

rhe description of physical ymmetries. The physical symmetry groups satisfy 
additional properties that are related to the physical content of the theory. 

We shall say that the topological group G is a symmelry group of the system 
if there exists a homomorphism U of G into M. Such a homomorphism will 
be called a projective representation of the group G. 

We remark l1ere that by a projective representation we mean always a 
homomorphism as far as the group structure is concerned, and a homo-
morphism with respect to the topologies of G and M. A projective representa-
tion is thu always the continuous image of G in M. 

We can now easily establish 

Theorem 2. If the lattice It' is a direct union of lattices fe1 and if it admits 
a connected symmetry group G, then every UJC EM that is an image of x E G 
in the representation M leaves every component 2'1 invariant. 

The proof follows from the remark that connectedne s is invariant under a 
homeomorphism hence all Ux E M0. We shall say the projective representa-
tion U in 2' (denoted by (2', V)) of the group G i irreducible if 

or a= I, (18) 

and we call uch a pair(!&', U) an elementary system with respect to the sym-
metry group G. We see immediately that every elementary system with respect 
to a symmetry group G is necessarily coherent. Indeed if it were not it would 
have a non trivial center and we have just een that the elements of the center 
are all invariant under M 0 . Since Ux E M 0 for all x E G, the conclusion follows 
that fe i coherent. 

The foregoing remark contain the germ of a theory of elementary particles 
based on the phenomenology of physical systems. The idea is this : The 
phenomenology of a phy ical system i essentially contained in the lattice 
structure of the proposition system !e. This structure in turn determines the 
group M of its automorphism , including aH its subgroups. The irreducible 
representations of the group Gin Mare the possible elementary systems that 
are compatible with thi lattice structure. 

Unfortunately the representation theory of groups in lattices is a branch 
of mathematics that is not yet developed. Therefore the foregoing sketch of a 
program cannot yet be carried out. It i possible to pursue another road , 
however. Instead of working with abstract lattices, we can seek a representation 
of proposition systems and then study the automorphisms of such representa-
tions. 

It is known that the closed linear subspaces (henceforth just called sub-
spaces) of a Hilbert space have a lattice structure that satisfies all the axioms 
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of a proposition system. These subspaces do furnish us, therefore, with a 
representation of a proposition system. This is, however, not the only repre-
sentation possible. The task of finding all the representations of irreducible 
proposition systems was accomplished by Piron (14) and in the following 
subsection we shall give a brief outline of his and some related results. 

C. IRREDU CIBLE PROPOSITION SYSTEMS AS SUBSPACES OF A HILBERT SPACE 

I. Proposition Systems and Projective Geometries 
There is a remarkable similarity between the propos1t1on system of a 

quantum-mechanical system and the lattices that arise in the set of axioms of 
projective geometries. It is thus not surprising that representation theorems 
for proposition systems are modeled after those for projective geometries. In 
fact, the essence of the general representation theory of proposition systems 
is an embedding theorem that says that every proposition system can be 
embedded in a canonical way into a projective geometry. This theorem, then, 
establishes the link to the representation theory of the projective geometries 
and in this manner the representations of proposition systems can all be found. 

The essential difference between projective geometries and proposition 
systems is that the former satisfy the modular law, whereas the latter, as we 
have seen, do not necessarily do so. If they do, they are, according to a theorem 
of Piron (14, Theorem V), direct unions of projective geometries of finite 
dimensions, where the dimension of a lattice is defined as the maximum of a 
chain c/>c C··· c ac b c ... c Jin the lattice. 

In the case of infinite dimensions modularity is incompatible with the other 
axioms of a proposition system. This fact has been known for a long time, and 
for this reason von Neumann has expressed the conjecture that the continuous 
geometries discovered by him might give the mathematical frame of a general-
ized quantum mechanics. The continuous geometries do not contain any 
minimal elements ("point-less" geometries, as von Neumann called them) and 
thus they do not satisfy axiom (A. I). 

Since there are proposition systems in Nature that are not modular (14, 
Proposition on p. 452), the strong constraint of modularity can be replaced 
by weak modularity and in that case it is possible to retain all the axioms of a 
proposition system, even for infinite systems, without contradiction. Projec-
tive geometries are modular, as we have seen. If they are infinite, the other 
axioms of a proposition system cannot hold for such projective geometries. 
The axiom that is violated for infinite projective geometries is axiom (IV), 
which affirms the existence of an orthocomplement. Infinite projective geo-
metries are never orthocomplemented. 

A standard example of an infinite projective geometry is the not necessarily 
closed linear manifolds of a Hilbert space. If union and intersection are defined 
as linear space and intersection, then the linear manifolds of such a space are 
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modular (18, Theorem 9, p. 370; 24). The complement is still defined. If a is 
not a closed linear manifold, we have a c (a')'. This violates axiom (IV). 

For Boolean lattices representation theorems have been known for a long 
time : Every Boolean lattice may be realized as the lattice of subsets of some 
set (25, 26). 

2. The Representation Theorem for Proposition Systems 
In subsection C, I we quoted the theorem that says that every reducible 

proposition system is the unique direct union of irreducible ones (14). The 
geaeral representation problem of the lattices of proposition systems can thus 
be reduced to that of irreducible lattices. The following theorem is true for 
reducible or irreducible lattices (14, Theorem XVIII, p. 462). 

Theorem 3 (Piron). If!£ is any lattice of propositions, then there exists 
always a projective geometry G,, and a canonical mapping ex of!£ into G,, 
that satisfies the following properties. 

(I) The restriction of ex to the points of!£ is a one-to-one mapping onto 
the points of G,,. 

(2) a<;;;; b =- ex(a) ~ ex(b). 

(3) ex ( {) a;)=() ex( a,.). 

(4) ex(a U P) = ex(a) U ex(P) V points P E !£. 
It follows from these properties that if!£ is irreducible, then the canonically 
defined projective geometry G,, is irreducible, too. 

This theorem establishes the bridge between the abstract proposition 
systems and the projective geometries. For the latter there exist well-known 
representation theorems that will yield similar theorems for the proposition 
systems. In order to formulate the fundamental representation theorem we 
need the following three concepts. 

(a) A chain in !£ is a sequence of elements </>, . . . ,a, b, ... ,I that satisfies 
</> c · · · c a c b c ... c /, where the inclusions are all proper. The number of 
elements in the chain is called its length. 

(b) An antiautomorphism of a field tr is an involution ex-> ex* (ex Em 
with the property 

(ex+ {3)* =ex*+ f3* 
( exf3)* = f3* ex* 

(ex*)*= ex V rY., f3 E ty. 
(19) 

An example of an antiautomorphism in the field of complex numbers is the 
complex conjugation. There are many others. But we can show that complex 
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conjugation is the only one that is also continuous in the natural topology of 
these numbers. For the quaternions, on the other hand, every automorphism 
is continuous [cf. remark after Eq. (31)]. 

(c) A sesquilinear form over a vector space !lJ with coefficients from a field 
is a mapping! of m x m into ~ such that 

f (x + exy, z) = f (x, z) + f(y, z) ex* 

f (x,y + exz) = f (x,y) + exf(y, z) (20) 

\:/ X,J' E !lJ and \:/ ex E ~· 

Such a form is called Hermitian if f(x,y) = f*(y,x), and it is definite if 
f (x,x) = 0 =;. x = 0. An example of such a form is ~he scalar product in a 
Hilbert space. The representation theorem of proposition systems can now 
be stated in the following form. 

Theorem 4. Every irreducible proposition system that contains a chain 
of length at least equal to four can be realized by a linear vector space !8 over 
a field ~' an antiautomorphism of~' and a definite Hermitian sesquilinear 
form in !8. Every proposition a E 2' is represented by a subspace of vectors 
X E !lJ that satisfy f (X,J';) = 0 for some J'; E !!J. If a E !£'is represented by the 
subspace Mc !lJ than a' is represented by the subspace M 1- = N consisting 
of all x E !lJ that satisfyj (x,y) = 0, 'Vy EM. 

For the proof of this theorem we refer to Piron (14, Theorem XXI. [The 
proof of Theorem XXII in Piron (14) is incomplete. A corrected proof has 
been given by Amemiya and Araki (29). 

We remark here that for irreducible proposition systems the field is essen-
tially uniquely determined by the structure of the lattice. This is no longer the 
case for reducible lattices. This fact is at the origin of the connection between 
the field~ and the superselection rules mentioned in Section I, B. 

If irreducibility is dropped, other representations are possible. We mention 
here particularly the representation of proposition systems by algebraic 
Hilbert spaces where the coefficients are no longer a field but only a matrix 
algebra. Such representations give an elegant and compact formulation of 
lattices with certain types of superselection rules (27, 28). 

0. PROJECTIVE REPRESENTATIONS OF SYMMETRY GROUPS 

I. The Semilinear Transformations 
Let m be a vector space over a field ~ and let ex E ~· An automorphism 

ex --+ ex5 of the field ~ is a permutation of the elements of~ that satisfies 

( ex(3)' = ex 5 (35, 

(ex+ (3)' = ex 5 + (35. (21) 
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A nonsingular semilinear transformation of ID is a one-to-one mapping S of 
m onto itself that has the properties 

S(u + v) =Su+ Su 

S(ow) =ex.' Su, 

Su= 0 => u = 0. 

'\/ u,v EID, 

(22) 

If U = ~; U; is a finite linear combination of vectors U; EID, then it follows 
from (22) that Su = ~ Su; . Thus the lattice structure of the linear manifolds 
of ID is left invariant under a semilinear transformation. According to the 
so-called first fundamental theorem of projective geometry (24), the converse 
is true, too. That is, we have 

Theorem 5. Every automorphism of the lattice of linear manifolds of a 
vector space m over a field is induced by a nonsingular semi linear transforma-
tions of the vectors in m. 
2. Automorphisms of Subspaces 

Let us now consider the vector space ID associated with an irreducible 
proposition system 2?. This space is endowed with the positive definite Her-
mitian formf(x,y) of Theorem 4. We shall from now on writef(x,y) = (x,y) 
and f (x, x) = llx 11 2. The vector space ID then becomes a Hilbert space ~3 
over the field ff. The subspaces, images of the propositions in 2?, are the closed 
linear manifolds in the norm topology of this space. 

If S is a nonsingular bounded semilinear transformation, then there exists 
an inverse s- 1 that is also such a transformation. Furthermore, is S 1 and S2 
are two such transformations, the S 1 S2 is one, too. They are thus a group 
that is closely related to the group of automorphisms of the subspaces in ~<Y· 

The precise nature of this relation is obtained if we consider the subgroup 
M 0 c M 1, which leaves all the subspaces of ~3 invariant. A transformation 
TE M 0 is then of the form Tx = ,\x '\/ x E ~3 for some fixed ,\ E ff. It is 
easily verified that M 0 is an invariant subgroup of M 1 and that the factor 
group M 1/M0 is isomorphic to the group M of automorphisms. 

Among the semilinear transformations there are the semiunitary trans-
formations. Such a transformation satisfies, in addition to (22), the relation 

llUxll= llxll '\/ X E ~(Y· (23) 

Consider now any semilinear transformation SE M 1 and define for any pair 
of elements x, y E ~IY the Hermitian form g(x,y) = (Sx, Sy)s-'. Because S is 
also an automorphism of the subspaces of ~3 this form defines the same 
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orthocomplementation in ~IY as the scalar product. According to a theorem 
of Baer (30) there exists then a number y E tJ such that 

g(x,y) = (x,y)y '<j X,y E ~(Y· (24) 

Since g is Hermitian, y is real and is in fact equal to y = g(x,x)/llxll2 • If we 
define now U = y-112 S, we find that U is semi unitary and is in the same 
equivalence class as S modulo M 0 . 

Thus we have shown: In every equivalence class modulo M 0 of semilinear 
transformations there exist semiunitary transformations. Two such trans-
formations in the same class differ at most by a factor of modulus 1. 

We shall now change the notation and designate henceforth as Uthe entire 
class of equivalent semi unitary transformations and as u = U an element from 
this class. 

We can then represent any automorphism m EM by one of these classes 
U,,, and if Eis a projection of ~3, m(E) its image under the automorphism m, 
then we have the explicit formula 

m(E) = u,,, Eu-;;, 1 (25) 

where u111 E U111 is any element from the class U,,,. 

3. Wigner's Theorem 
Consider now a transformation in ~C£ that maps unit rays into unit rays 

and conserves the magnitude of the scalar product for the unit vectors in the 
rays. Such a transformation preserves the order relation of subspaces and 
transforms orthogonal rays into orthogonal ones. It thus satisfies the two 
conditions of Eq. (9) for an automorphism. According to the preceding sections 
it is thus generated by a semi unitary transformation u. Since complex conjuga-
tion is the only continuous automorphism of the complex numbers , u is either 
unitary or antiunitary. Thus we have proved 

Theorem 6 (Wigner). Every mapping of unit rays of a complex Hilbert 
space ~C£ that preserves the magnitude of the scalar product between such 
rays can be induced by a unitary or anti unitary vector transformation of ~C£· 
We see from the proof we have given for this theorem that the hypotheses of 
Wigner's theorem are stronger than needed for the affirmation of the theorem. 
The only assumption we have used is that orthogonal rays are transformed 
into orthogonal ones. This generalization of the theorem was first given by 
Uhlhorn (31). 

There exist many so-called elementary proofs of this theorem, beginning 
with the original (incomplete) proof of Wigner (32) . Not all of these proofs 
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were without error, as can be seen from the critical discussion by Uhlhorn 
(3 !) ; to corn plete the list given there, the elementary proofs that have appeared 
since (33- 35) should be added. A more general theorem was proved by Emch 
and Piron (23). 

4. Unitary Projective Representations of Symmetry Groups 
Let G be a symmetry group of an irreducible physical system. There exists 

thus an isomorphism of G to a subgroup of M . Let x E G and U,,. EM be the 
corresponding automorphism of the lattice 2 of subspaces. We say that we 
have a unitary projective representation of G if in every class U_,. of semi unitary 
transformations there exists a unitary transfo rmation. 

Let U_,. be such a representation and let ux E Ux be a unitary transformation. 
It follows then that 

ux Uy= w(x,y) u.,·y 

where \w(x,y)\ =I, w(x,y) E (j. 
(26) 

The function w(x,y) is called a.factor of the unitary projective representation 
of the symmetry group G. 

The theory of unitary projective representations can thus be divided into 
two parts. The first part is the theory of factors , which reduces the problem to 
rhe second part , the theory of unitary vector representations. 

The theory of factors is quite different for the three different fields. For 
connected groups it can itself be subdivided into Lhe theory of local factors and 
global theory. For complex Hilbert spaces and Lie groups the local Lheory 
a nd global theory of factors was developed by Bargmann (36). For quater-
nionic Hilbert spaces the theory o f factors was giVfm by Emch (/5). It i 
intere ting that the re ull for this ea e i much si mpler than that for the complex 
case. We shall discuss it in Section IB, 8, I and 2. 

IV. Projective Representation of the Poincare Group in 
Quaternionic Hilbert Space 

A. QuATERNIONJC HILBERT SPACE 

l . Quaternions 

The quaternion are an a lgebraic field endowed with a norm and a topology. 
A such tJ1ey are a nonrrivial but natural extension of the real numbers and 
the complex numbers. The central po ition occupied by Lhe last two fields in 
a ll branches of mathematics and physics makes it desirable to under tand the 
possible role of quaternions in fundamental physical theory, especially in 
quantum mechanics. This is all the more true since it can be shown that the 
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complex numbers and the quaternions are the only possible algebraic fields 
endowed with a topology such that the algebraic operations are continuous 
in that topology and that they contain the real numbers as a subfield (9). 

The quaternions contain three imaginary units, denoted by e1, ez, and e3, 

which are assumed to satisfy the fundamental relations 

e;e.i = e" = -e.ie;, 

d= - 1, 
(27) 

where i , j , k are a cyclic permutation of I, 2, 3. 
A general quaternion q is then defined as a linear form 

with real coefficients ar. We write sometimes e0 =I and set q = I:r =O are,. 
The sum and product of quaternions are defined by assuming the associative 

and distributive law with respect to both of these operations. Thus 

and 

with 

q + q' =I: (a,.+ a;) e,. if q = I; a,.e,, q' = I: a;e,. ,. 

b 1 = a0 a; + a0 a; + a2 a;- a3 a~ 

b2 = a0 a~ + b0 a~ + a3 a; - a 1 a~ 

b3 = a0 a~ + a0 a~ + a 1 a~ - a2 a; . 

We verify immediately that this product is not commutative: qq' # q' q. 

(28) 

(29) 

The norm of quaternions is lql = [a6 + af +a~+ a~J' '2 . It satisfies 
lq + q'I ~ ICJ I + lq'I and lqq'I = lql lq'I and it defines a topology by setting for 
the E neighborhood of the element q0 the quaternions q with lq - q0I <E. 

With such a set of neighborhoods as a fundamental set, we have defined a 
topology for which the two operations of addition and multiplication are 
continuous operations (q). 

The conjugation is defined by qc. = a0 - a1 e1 - a2 e2 - a3 e3• It follows that 
the norm is defined also by lql 2 = qq0 = q0 q. Every quaternion q # 0 has an 
inverse given explicitly by 

(30) 
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The field of the quaternions thus defines two topological groups. The 
additive group is isomorphic to the group of vector addition in a four-
dimensional real space. l t is thu Abelian. 

The multiplicative group is isomorphic to the covering group of U(2, (£) 
the complex unitary group in two dimensions. It is thus not Abelian. 

The quaternion w of magnitude I are the invariant subgroup SU(2 (£)of 
the multiplicative group. We denote the e quaternions by Q. 

The center of the multiplicative group are the real quaternions 9t c 0 . 
The center of Q consi ts of the two element ± 1. lt is thus the cyclic group of 
order 2. 

For every w E Q we can define an automorphism of the quaternions 0 by 
sett ing 

q -> qw = wqw - I. (31) 

We prove in algebra that conversely every automorphism of the quaternions 
is of this form. The automorphisms are thus themselves a group that is 
isomorphic to the factor group o +(3) = SU(2, 0)/Z 2. 

It is sometimes convenient to represent quaternions as pairs of complex 
numbers by setting 

(32) 

where 

(33) 

We then identify e3 with the imaginary unit i of the complex numbers. The 
multiplication law is then expressible by 

q' = (z;, z~), 

(34) 

We shall call this representation of the quaternions by pairs of complex 
numbers the symplectic decomposition. 

The symplectic decomposition furnishes us with a representation of the 
quaternion by 2 x 2 matrice in a complex space as follows . For any fixed 
quaternion a E .Q with symplectic decomposition a= (c.: 1, c.:2) we set 

q--+ q' = aq. (35) 
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We then interpret the quaternions q and q' as two component vectors with 
complex coefficients. Equation (35) is then equivalent with the linear trans-
formation 

q' = Aq, 

where 

(36) 

We shall refer to this as the symplectic representation of the quaternions. For 
the particular case that a= e, (r = 1, 2, 3) we obtain in the symplectic repre-
sentation 

e, = -ia, (r = 1,2, 3) (37) 

where a, are the three Pauli spin matrices. We should remark here that the 
symplectic decomposition can be made in a coordinate-free manner as 
follows: Let i be any fixed pure imaginary quaternion of magnitude 1 so that 
io. = -i, i 2 = - !. We write, for every quaternion q = q+ + q_, where 
q± = -1z(q =F iqi), and define q+ = z 1 and q_ = iz2. The pair z 1 and z2 can be 
considered as complex numbers with i as the imaginary unit. The corre-
spondence q <-> (z1>z2) is unique in both directions and satisfies the rules (32). 
This is the symplectic decomposition with respect to i. 

The symplectic decomposition will be very useful in the following because 
it can be extended to quaternionic Hilbert spaces, and it permits a certain 
reduction of quaternionic Hilbert spaces to pairs of complex spaces. 

2. Elementary Properties of Quaternionic Hilbert Space 

A quaternionic Hilbert space i) 0 is a linear vector space over the field of 
the quaternions. This means that in addition to the usual rule of vector 
addition there is also a left multiplication with scalars that associates with 
every q E Q and every f E ilo an element qf E iln· 

This scalar multiplication shall satisfy the usual rules of distributivity and 
associativity, such as 

qi(qif) = (q1q2)J, 

q(f + g) = qf + qg, 

(q1 + qz)f = qif + gzf, 

for q, E Q and V f, g E ~o.· 

(38) 
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Furthermore, we define a quaternion-valued scalar product (f,g) E Q by 
the axioms 

(i) (qf,g) = (f,g)q*. 

(ii) (f + g,h) = (f,h) + (g,h). 

(iii) (f,g) = (g,J)*. (39) 

(iv) 11/ 112 = (f,f) > O; 

11 / 11 2 = 0 -=> f = 0. 

Just as in the case of ordinary (complex) Hilbert space, we demonstrate then 
the inequalities of Cauchy and Minkowski: 

(i) [(J,g)[ ~ 11/11 llgll, 
(ii) 11/ + gll ~ 11/ 11 + llgll-

(40) 

With the scalar product, strong and weak convergence can be defined in the 
usual manner. 

3. Linear and Semilinear Operators 
We define a semilinear operator t as a function tf, with a linear manifold 

as domain and values in .f> 0 , that satisfies the conditions 

t(f + g) = if+ tg, 

t(qf) = q'(tf) . . 
(41) 

Here .q' designates an automorphism of the quaternions independent off 
It follows that the range of a semilinear operator is also a linear manifold. 
We shall consider only non ingular transformations such that tf = 0 => f = 0. 
The inverse t - 1 then exi ts and it is also semilinear. The operator t is linear if 
q' =q '<:/ q E Q. 

The Hermitian conjugate rt oft is defined by the relation 

(f, tg) = (t1"j, g)1. 

We can verify that rt is semilinear if t is, and if the automorphism associated 
with t is q -+ q', then the automorphism associated with rt is q -+ ((q0 Y)0 

where (q5
)

1 = q. 
A semi unitary operator u is semilinear and in addition satisfies llu/ 11 2 = II f 11 2 

'<:/ f E .f>0 . It is called unitary if it is also linear. 
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A simple example of a semilinear operator is a multiplication with a fixed 
quaternion a E Q. Indeed, let 

tf=af a EO. 

It follows thatt(qf)=a(qf)=(aq)f=aqa-1af=qatf. Thus we see that left 
multiplication with a fixed quaternion a induces a semilinear transformation 
that leaves every ray invariant. 

4. Ray Transformations 
Every semilinear transformation induces a ray transformation or, more 

generally, an automorphism of subspaces. A ray is defined as the set of vectors 
of the form qf with variable q E Q and fixed f E ~n· The image ray is given 
by the set of vectors ptf for all p E Q. 

We denote by Fa ray that contains the vector f and by TF the mapping of 
the ray induced by a semilinear transformation t. We shall say that two semi-
linear transformations are equivalent if they induce the same ray transforma-
tion. This is clearly an equivalence relation. We can therefore identify the 
class [t] of all equivalent transformations t with the ray transformation T. 

We now have the following important property: 

Theorem 7. Every equivalence class T of semilinear transformations in a 
Hilbert space ~n contains at least one linear transformation t0 • 

Proof. Let q--+ q' be the automorphism induced in Q by the semi linear 
transformation t. Since every such automorphism is inner, there exists an 
w E Q (quaternions of norm 1) such that 

(42) 

Define t0 = w- 1 t. It is equivalent to t and we find t0(qf) = w-1 t(qf) = 
w- 1 wqw- 1 tf = qt0f Thus t0 is linear. This proves Theorem 7. 

If t~ is another linear transformation in the same class than t01 t~ is a linear 
transformation that leaves every ray invariant. Such a transformation is of 
the form 

f ->- /l.f with ,\ E 9l and ,\=f. 0. 

In the particular case that t is also unitary we must have ,\2 = 1 or ,\ = ±1. 
If we combine this result with the result of subsection D, 2, we obtain the 
following 

Corollary. Every equivalence class T of semilinear transformations of a 
quaternionic Hilbert space contains exactly two unitary transformations. 
They differ only by a sign. 
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B. PROJECTIVE REPRESENTATIONS OF SYMMETRY GROUPS IN QUATERNIONIC 
HILBERT SPACE 

1. Local Lifting of Factors 
We consider now a topological group G and a projective representation 

that associates with every x E G a ray transformation Ux. According to the 
preceding subsection, every such tran formation can be represented by two 
unitary operators u,. E U_, that differ only by a ign. Jfwe choose in an arbitrary 
manner in each class U_, one of the two representatives u_, tben we obtain a 
projective representation of the symmetry group G by unitary operators that 
satisfies 

Ux Uy= w(x,y) u_,y (43) 

where w(x,y) = ±1. From the foregoing it is clear that every ray representation 
of a topological group in a quaternionic Hilbert space can be brought into 
this form. If we choose u, =I, then the factors w(x,y) also satisfy 

w(e,y) = w(x, e) = I (44) 

for all x, y in G. 
It is natural to ask at this point whether it is possible to choose in a suitable 

neighborhood of the identity e E G the representatives ux in such a way that 
the factors w(x,y) = I. This is indeed the case. The relevant theorem is due to 
Bargmann (36), and it state that for every representation of a topological 
group in a complex Hilbert pace there exists a suitable neighborhood N(e) 
of the identity so that w(x,y) is a continuous function of its two arguments. 
This theorem is also valid in quaternionic Hilbert spaces. The proof for this 
case was given by Emch (15). 

The application of this result to the representation x-+ Ux leads to 

Theorem 8 (Emch). Every ray representation x -+ Ux of a topological 
group G in a quaternionic Hilbert space can be induced by a strongly con-
tinuous unitary representation x -+ ux E Ux in a suitable neighborhood of the 
identity. 

It is worth pointing out here that this theorem is false for complex Hilbert 
spaces. The deeper reason for this fundamental difference of the two spaces 
has been analyzed by Emch (15) and is due to the fact that SU(2, (!::) = Q of 
the quaternions of magnitude 1 is sernisimple, whereas the corresponding 
group of phase transformations in a complex space i not (it is in fact Abelian). 

Theorem 8 leads to a considerable simplification of the theory of projective 
representations of groups. It suffices to study the locally unitary vector 
representations. 
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2. Global Lifting of Factors 
We must next examine the question whether it is possible to extend the 

vector representation x-+ ux to the entire group G. For simply connected 
groups the answer is easy. We have in fact 

Theorem 9. Every ray representation x-+ Ux of a simply connected 
topological group in a quaternionic Hilbert space can be induced by a unitary 
vector representation x -+ ux-

Proof. According to Theorem 8 there exists a neighborhood N(e) of the 
identity and a local lifting of the factors such that uxuy = uxy '<:/ x , y E N(e). 
According to Theorem 15 of Pontrjagin (9) every element x E G admits a 
representation x = IT7~ 1 X;, X; E N(e) and n < oo. Since the correspondence 
x -+ ux is a vector representation for all x E N(e), this theorem permits us to 
conclude that it re.mains true for all x E G. This proves Theorem 9. [For the 
details of this part of the proof we refer to Bargmann (36).] 

The case of multiply connected groups can be reduced to the case of simply 
connected groups via the theory of the universal covering group. In the applica-
tion that constitutes the main topic of this article we need only the result for 
doubly connected groups, which we shall state with 

Theorem 10. Every ray representation of a doubly connected topological 
group Gin a quaternionic Hilbert space can be induced by a unitary vector 
representation x-+ ux of its simply connected covering group G. There are 
two and only two distinct cases possible. Either x-+ ux is also a vector repre-
sentation of G or it is a double-valued vector representation that satisfies only 

The proof of this theorem is exactly the same as in the case of complex spaces. 
We can therefore omit it here (15). 

3. Schur's Lemma and Its Corollary 
The lemma of Schur plays a fundamental role in the representation theory 

of groups. For the quaternionic case we shall need its generalization, which 
can be stated as follows. 

Lemma (Schur). Let 4'~l (r = 1, 2) be two quaternionic Hilbert spaces, G 
a topological group, and u~l irreducible unitary representations of G in 4'~l. 
Furthermore, let t be a bounded colinear mapping of 4'gl into 4'gl such that 

'<:/ XEG; 

then t either admits an inverse or it is zero. 
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The proof of this lemma requires only small adaptations to be valid for the 
case of quaternionic spaces as well, and we shall omit it here [for details cf. 
Emch (/5)]. 

Although Schur's lemma is identical in the quaternionic and complex cases, 
the situation is quite different for its corollary. We state it in the form of 

Theorem II. Let u., be an irreducible representation of the group Gin a 
quaterniooic Hilbert space i>a and f a bounded linear operator in i>o such 
that lux = u_,.r 'r;;f x E G · then r is of the form t = rl + sjf where r, s are real, 
I is the identity in ~o and f is a unitary and anti-Hermitian operator in i>o· 

If we compare this theorem with the corollary of Schur's lemma in i)0 , 

we note that the essential difference is the appearance of a linear operator f 
that is unitary and anti-Hermitian. Such a )f satisfies ft= -f and 
;rt = /t J =-)fz = /. 

In a complex space such an operator is always of the form /= ± if where 
i = (-1) 1'2 and it is seen that in this case the corollary reduces to the corollary 
for complex spaces. 

Before giving a formal proof of the theorem, let us verify it for the case of 
a one-dimen ional space. The vectors in thi space are the quaternions q. 
Linear operators are multiplication from the right with another quaternion. 
The unitary operators are multiplication from the right with a quaternion 
of magnitude I . Thus we may write uq = qw, q E 0 w E Q. 

A linear operator r that commutes with u mu t have the form 

tq=qa a E .Q and wa = aw. 

Let us write forw=w 0 + w ·e. We define ew= jwj- 1 w ·eso that w =w0 + jwj ew. 
We find then easily that a must have the form a= r +sew with r and s real. 
Thus t is of the form 

rq = rq + sqew 

and we have verified the theorem for this case if we show that /q = qew is 
unitary and anti-Hermitian. This is indeed the case, since eL = -ew and 
e~ = -1, so that /tq = -qew and / 2 = -/. 

Let us now prove Theorem 11. Assume first that t is Hermitian, so that 
1t = t. In that case not only t but also every function oft commutes with u. 
In particular, the spectral projections associated with t do the same. Since u 
is irreducible, all these spectral projections are either 0 or I. From this follows 
that t is a multiplum of/: I = r ·I with r real. This proves the theorem for 
Hermitian /. 

Let us now examine the case of anti-Hermitian t: rt= -t. It follows then 
that ttr is a positive operator, since (f, rt tf) = 0 => (tf, tf) = 0 or tf = 0. By 
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Schur's lemma this is only possible ifj = 0. Hence tt t is positive and Hermitian. 
According to a well-known theorem (37) there exists then a unique positive 
square root (It t) 1' 2 = ltJ that is Hermitian, possesses an inverse, and commutes 
with t. We define then 

so that 
ft=-·/ and / 2 = -I. 

We verify then that t also commutes with u, so according to the preceding 
paragraph it is of the form s ·I. Thus we have proved that t = s · / with 
/ 2 =-I, ft = - / if tt = -t. 

The general case, where t is neither Hermitian nor anti-Hermitian, is now 
easily reduced to the preceding two special cases. We write t = t1 + t2, where 
t1 = ·Ht + tt) , t2 = -!(t - 1t), so that tf = ti. t! = -t2. Moreover, both t1 and 
t2 commute separably with u. Thus t 1 =r·I, t2 =s·/, and t=r·l+s·/. 
This proves the theorem. 

It should have become obvious by now that the operator / is related to 
the symplectic decomposition of the complex numbers. Indeed the / plays 
the role of an imaginary unit in the quaternionic Hilbert space. This will be 
discussed in detail in the following subsection. 

4. The Symp/ectic Decomposition of .Vo 
We recall that the symplectic decomposition for quaternions (cf. Section 

IV, A, 1) was obtained by distinguishing one of the quaternionic units and 
decomposing the quaternions into two distinct classes, those that commute 
with this unit and those that anticommute. This process can be extended to 
Hilbert spaces. 

Let / be a linear operator in -ilo such that 

(45) 

We observe first that every vector f E -iln is an eigenvector of / and every 
pure imaginary quaternion of magnitude I is an eigenvalue. 

To see this let/ E .Vo be an arbitrary vector and define g = /f We decom-
pose/with respect to the ray F= {/},which is a one-dimensional subspace 
of -ilo: 

/f=g = qf+h, where (h,f) = 0. (46) 

It follows from this and the properties ( 45) that 

(f, /h) = (f, / (/! - qf)) = -(f,f) - q(f, (qf + h)) = -(! + q2)(f,f). (47) 



162 J.M. JAUCH 

On the other hand 

(f, /h) = -(/f, h) = -(h,h) = -(1 - jqj 2)(f,f). (48) 

From this we obtain 

q2 = -jqj2 and jq\2 ~ 1. (49) 

Using / 2 =-I, we obtain further 

so that 
(h, h) = (/h, /h) = (1 - jqj 2)2 (f,f). (50) 

Comparing Eq. (50) with Eq. (48) we find 

q2 = -1, h = O. (51) 

Thus we have proved: every vector f E .£)0 is an eigenvector of / and the 
eigenvalue is a pure imaginary quaternion of magnitude I. 

Consider now any f E .£)0. and assume / f = if where i is .pure imaginary 
and i 2 = -1. Let w E Q and evaluate 

/wf = w/ f = wif= wiw-I wf 

Thus we see : If f is an eigenvector of/ with eigenvalue i, then wf is an 
eigenvector of .f with eigenvalue· wiw- 1• If w runs through Q , we obtain 
with wiw- 1 every imaginary quaternion of norm I. Thus we have proved 

Theorem 12. Every vector /i11 a ray Fis an eigenvector of the operator/. 
The eigenvalues are pure imaginary quaternions of magnitude I. As f runs 
through the ray the eigenvalues run through all such quaternions. 

Let u now select an arbitrary but fixed pure imaginary quaternion i of 
magnitude I. In every ray F we select the ensemble of vectors f such that 
/f =if The totality of such vectors from all rays defines a subset of .£) 0 that 
we denote by .£)~>; thus 

.£)~ > = {f E .£)0\/f = if}. 

We verify without effort that.£)~ > is a complex Hilbert space when the complex 
numbers et are defined by z = x + iy (x, y real). Thus for instance if we have 
f, ge.£)~>, then /(f+ g)=)ff+.fg=if+ig; i(/+g). If z e et, then 
/(zf) = z.ff = zif = i(zf). Furthermore, if/, g E .£)~l, then i(f,g) = (-if,g) = 
(-/ f,g) = (f, .f g) = (f, ig) = (f, g) i. Hence (f,g) E et. 
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Finally, if f,, E ~~J is a sequence such that II f,, - f, 11 11 ---+ 0 for n, m ---+ ro, 
then there exists a limit f E ~o. such that f,, ---+ f For this element f we find 
IL!f- /f,,ll = llf-.f,, 11; so that //is also the limit of /f=if,,. This means 
/I= if and f E ~~l. With this we have verified that ~~l is indeed a complex 
Hilbert space. 

We remark also that the space ~~) is total in ~ci: in the sense that every 
f E ~ci: can be written as linear combinations of vectors!+ E ~~l with coeffi-
cients from Q. Indeed, let f E ~o.· We define f± = !(/=F i/)f and then choose 
an arbitrary imaginary quaternion j that anticommutes with i. By setting 
f~ = -jf_ we find 

and 

cfl+ = if+, 
/!~=if~, 

f=f~ +jf~. 

(52) 

Thus every vector f E ~o. admits a decomposition into pairs of vectors f+, 
f~ E ~~J such that f is a linear combination of such a pair with coefficients 
from .Q. This is the symplectic decomposition of the quaternionic Hilbert 
space. 

We summarize the results of this subsection with 

Theorem 13. Every unitary anti-Hermitian operator/ in a quaternionic 
Hilbert space defines for each imaginary quaternion i of magnitude 1 a family 
~~) of vectors/ all of which satisfy / f = 1f. They are a complex Hilbert space 
that is total in ~u· 

5. Restriction and Extension of Representations 
As before, let / deno.te a unitary anti-Hermitian operator in ~0, ~~)the 

complex Hilbert space associated with an imaginary quaternion, and t a 
bounded linear operator that commutes with/. Iff E ~~l, then/ tf = t/f = 
t(ij) =·itf. Thus tf E ~~l. We may therefore define the restriction t<il of the 
operator as the operator with domain ~~l. For all f E ~~) it is defined by 
tCilj = If. 

Conversely, if t(i) is any bounded linear operator in ~~l, we define its 
extension t to ~o. by the conditions 

(i) t is linear 

(ii) tf = t(i)f (53) 

Let us show that this extension is always possible and that is is unique. This 
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can be seen directly from the symplectic decomposition (52). Thus we define 
tfby 

(54) 

Let 1' be any other extension. Because it is linear we have for any f 

(55) 

This proves that the extension is unique. 
Let us now consider the Hermitian conjugate of I. It is defined by the 

relation (f, tg) = (t1f,g) rt f, g E i)0. Since f commutes with t we have also 
for tUl (f, 1<il g) = (tUltf,g) rt f, g E i)~·l. If in the first of these two relations we 
restrict f, g to i)~l, we evidently obtain (tWlj,g) = (f, rUl g), from which we 
conclude that rt'0 = t<ilt. 

The following assertions are immediate consequences of this. 
(a) If I is Hermitian, then 1Ul is Hermitian , too. 
(b) If t is a projection, then rU> is a projection, too. 
(c) If t = u is unitary, then u<il is unitary, too. 
(d) If t 1 t2 commute, then t\il t&il commute. 
(e) If t is an irreducible system all commuting with f, then 1<il is an 

irreducible system, too. 
(f) If /11 is a sequence of 111 all of which commute with f and tending 

weakly, strongly, or uniformly to a limit t, then t commutes with f 
too, and t!,il tends weakly, strongly, or uniformly to rU>. 

We retain the part that is relevant for the group representations in 

Theorem 14. If x ~ ux is a unitary representation of the topological group 
G in a quaternionic Hilbert space i)0 that commutes with a unitary and 
anti-Hermitian linear operator /, then for each pure imaginary quaternion 
the restriction u~l is defined and 

(a) the u~l are a unitary representation of G in i)ifl ; 
(b) if ux is irreducible in i)0, then u~l is irreducible in i)~l. 

This theorem gives us complete information as to the properties of the 
restriction of a representation that commutes with a unitary anti-Hermitian 
operator. It is natural to ask the question about the converse problem: If we 
extend a representation from i)~l with the unique process described at the 
beginning of this subsection, what happens to a representation? The answer 
is contained in 

Theorem 15. If x ~ u~i) is a representation of a topological group G in a 
complex Hilbert space i)ifl and it is of class +I or 0 in the sense of Frobenius 
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and Schur, then xx is an irreducible representation of G in .£)0 . On the other 
hand, if u~l is of class -1, then ux is reducible. 

The classification of Frobenius and Schur that is needed here is defined in 
the following way. 

Let .£>.1• be a complex Hilbert pace, and Ka conjugation of .£>(!., that i 
a n a nti unitary involutive mapping of ~<!. onto itself. If x - > u.v is an irreducibl1~ 

repre entation of a group G we can define a conjugate representation 
a ... = Ku,, K. Then Frobeniu and Schur have ob erved that exactly three cases 
may occur. 

(a) a is equivalent to u. There ex i ts then a unitary operator C such that 
u_,. = c- 1 ux C. If CKCK = I then the representation is of class +I. 

(b) a is equivalent to u and CKCK = I. The repres~ntation is then of class 
-1. 

(c) a is not equivaJent to u. It is then aid to be of class 0. 
The proof of Theorem 15 i given by Finkel tei n et al. (/ 2) and Emch (J 5). 

[The second part (concerning the clas - 1) is however proved only for 
compact group by Finkel tein et al. (12) .] 

6. Representation of Abelian Groups 

It is well known that the only irreducible vector representations of an 
Abelian group in a complex Hilbert space are one-dimensional. Let us now 
establish this same theorem for the quaternionic vector representation. 
Assumex -> u .• to be such a representation. It foll ows, then from the corollary 
of Schur s lemma that u_. = t(x) I + s(x) f (x) where the Jf(x) are unitary 
and anti-Hermitian opera tor tha t all commute with o ne another. The 
operators jf(x)__f(y) a rc thus Hermi tian and they all commute with each 
other and with all the ux- Thus all the Jf(x) are multiples of one another. We 
can thus write ux = r(x) I + s(x) Jf. According to Section TV, A, 4, every vector 
is an eigenvector of Jf. Thus ux leaves every ray invariant, and since the ux 
are irreducible, the representation x -+ ux is one-dimensional. 

Let us now examine the properties of these irreducible representations of G. 
Every vector.fin a one-dimensional quaternionic Hilbert space may be repre-
sented by a quaternion q E .Q. The operator I is then multiplication with I 
and the linear operator f is multiplication from the right with an arbitrary 
pure imaginary quaternion i, so that 

u_,. q = q(r(x) + s(x) i). (56) 

The unitarity of ux implies r(x)2 + s(x)2 = I. We may thus write 

(57) 
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s(x) 
tg8(x) = r(x) (0 ~ 8(x) < 27T). 

The representation property uxuy = uxy leads then to the relation 

B(x) + 8(y) = B(xy) (58) 

The correspondence ux--+ B(x) is thus a continuous homomorphism of the 
group G onto the additive group of real numbers modulo 27T, called the circle 
group. The image B(x) of such a homomorphism is called a character of the 
group G. 

The characters of an Abelian group G are themselves a group, the character 
group X, and there exists a natural procedure to define a topology in X such 
that this group becomes a topological group. The group operations in X are 
defined by setting for any two characters 81 (x) and Bz(x) 

(59) 

Just as in the complex case so we can here, too, characterize the inequivalent 
irreducible representations of the Abelian group G by their characters. In order 
to see this, let us assume that u~) and u<;) are two equivalent irreducible repre-
sentations. There exists then a unitary (hence linear) operator u such that 
u~'l = uu<;)u-1• Recalling that unitary operators in a one-dimensional quater-
nionic Hilbert space are multiplication from the right with a quaternion 
w E Q, we see that 

Thus 

(60) 

which implies 

-1. . 
W l2W=l1 and (61) 

The second part of Eq. (61) says that the two characters are equal. Con-
versely, if the two characters are equal, then we can always choose an w E Q 
such that for any two pure imaginary quaternions i 1 and i2 we have ;1 = w- 1 i2 w. 
This w interpreted as a right multiplication in Q furnishes us with the unitary 
operator u that establishes the equivalence between the two representations. 

This result enables us to reduce the problem of finding all irreducible 
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representations of an Abelian group G to that of finding all the characters 
of G. 

The group that interests us in the following is the group of translations in 
the four-dimensional Minkowski space. For this case all the characters are 
known. They are of the form 

B(x)=p·x (mod27T) (62) 

where p is a fixed four-component vector in Minkowski space, x is the four-
vector of the translation x, and p · x is the scalar product in the Minkowski 
metric of these two four-vectors. 

Let us now proceed to the discussion of reducible representations. In the 
complex case the structure oft he reducible representations of a locally compact 
Abelian group can be characterized by a projection-valued measure on the 
group of characters B. This is the theorem of Stone-Neumark-Ambrose-
Godement [in the following referred to as the SNAG theorem; (38-41)], 
which may be stated as follows. 

Every unitary representation of a locally compact connected A be Ii an 
topological group G defines a unique projection valued measure dE on the 
character group X such that 

u_,. = J eiO(x) d E. 
x 

(63) 

This result can be described as a kind of generalization of the spectral resolu-
tion of unitary operators. 

This theorem can be transferred to the quaternionic case. The only problem 
is to construct the analog of the imaginary unit i that appears in the expression 
(63). It is clear that this analog must be replaced by a unitary anti-Hermitian 
operator f that commutes with all u . .- The construction of such an operator 
is always possible (15, Lemma 4.2, p. 766). 

In order to establish the SNAG theorem for the quaternionic representa-
tions; we proceed ·as follows. We are given a representation x ~>- u_,. in ~n­
We choose a unitary anti-Hermitian f that commutes with all u_,- and select 
an arbitrary pure imaginary quaternion i. According to Theorem 13 this 
defines a complex Hilbert space ~~l that is invariant under all ux. The restric-
tion of ux to ~~) is denoted by u~l. It satisfies the hypotheses of the SNAG 
theorem. Hence there exists a unique projection-valued measure d£Ul on the 
character group X so that for this u\i) we have a formula 

u~l = J etO(x) d£Ul. 

x 
(64) 
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The unique extension procedure described in subsection 5 defines projections 
dE in ilo. and an operator f such that 

Thus we have established 

Ux = { ef8(x) dE. 
J x 

(65) 

Theorem 16. Let x--'>- ux be a representation of a locally compact con-
nected Abelian group Gin a quaternionic Hilbert space i)0 . Then there exists 
a unitary anti-Hermitian operator f and a projection-valued measure dE 
on the character group X of G such that ux can be represented by formula (65). 

We remark here that the uniqueness of the measure cannot be affirmed as 
in the complex case because the operator f need not be unique. There is a 
trivial ambiguity for f because, on the subspace M ={ flu f x = f V x E G} 
that reduces ux, f is completely arbitrary. This situation already exists in the 
complex case, but in neither case has it any consequences for the definition of 
the spectral measure. 

In the quaternionic case there is a further ambiguity for f, even for the 
part of cf that belongs to the space M _j_ . 

For the case of the Poincare group it is relatively easy to formulate physically 
motivated conditions on the representation that imply uniqueness of the 
operator f in that case. This will be done in the subsection C, 2. 

C. REPRESENTATION THEORY OF THE POJNCARE GROUP 

1. The Poincare Group 

The Poincare group G is defined as the group of real linear transformations 
in four variables that leave the metric of Minkowski space invariant . We shall 
choose for this metric the tensor g00 =+1, g;; = -1 for i = 1, 2, 3 and g"" = 0 
for fL # v. 

The translations Tare an Abelian invariant subgroup. The homogeneous 
transformations constitute another subgroup L, called the Lorentz group. 
This subgroup consists of four disconnected components that contain, 
respectively, the identity e, space inversion a, time reversal ff, and combined 
inversion {} = a.'T. The connected component of the Poincare group will be 
denoted by G, and that of the Lorentz group by Le. 

The composition law can be expressed in terms of the translation vector 
a ET and an arbitrary Lorentz transformation by 

(a, A) (a', A')= (a", A") (67) 
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where 
a" =a+ Aa', 

A"=AA'. 
(68) 

The subgroup T consists of the elements of the form (a,J) while L is repre-
sented by the elements of the form (0, A). The connected component Le is 
doubly connected. Its simply connected covering group is the group S(2,G:). 

2. Physical Heuristics 
It is now time to consider some of the physical aspects of the representation 

problem of the Poincare group. If we compare the representation theory of 
groups in complex and quaternionic Hilbert spaces, then we observe that up 
to a certain point the two theories run more or less parallel without, however, 
being exactly identical. The point where the two theories begin to differ in a 
deeper way is met when we introduce the unitary anti-Hermitian operator f. 
In a complex Hilbert space such an operator is always the direct sum of ±i 
times the identity operator. · 

In a quaternionic space such an operator has a much richer structure 
because there exist an infinity of different square roots of -1. Consequently 
we expect that the representation of groups in a quaternionic space will depart 
from the complex case in an essential way if we admit for the operators f the 
most general possibilities. 

Instead of studying the most general possibilities for the operator f, we 
want to examine the problem from a physical point of view and see whether 
we can find in the physical interpretation a motive for restricting the possi-
bilities for the operator f. The operator f is met when the Abelian sub-
groups of the Poincare group are studied. Such groups are, for instance, the 
one-parameter subgroups. If s ->-us is the representation of such a one-
parameter subgroup, then we can always define in a unique manner [cf. 
Finkelstein et al. (13)] an anti-Hermitian operator A by setting 

A = s- lim(l/s)(u,,- !). 
s->0 

This limit always exists on a dense linear manifold of vectors that is the domain 
for this operator A. 

In complex quantum mechanics the self-adjoint operator P = -iA is always 
an observable. Thus the reconstruction of an observable from the generator 
of an infinitesimal one-parameter symmetry transformation is a unique 
process in complex quantum mechanics. In quaternion quantum mechanics 
any operator f can be used for defining a self-adjoint operator P by setting, 
for instance, P(f) = -f A. However, only A is determined uniquely by the 
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group, but A is not an observable, because it is not self-adjoint. The P(cf) is 
self-adjoint, but is is not unique. Since only self-ad joint operators can represent 
observables, we cannot associate observables in this manner with the infini-
tesimal generators of symmetry transformations without restricting the 
operator cf in some way. 

The simplest way to restrict the operator cf is to require that it commute 
with all the transformations of the Poincare group. Let us examine whether 
this condition can by physically motivated. 

The infinitesimal generators A of the translation group behave under 
Lorentz transformations like a four-vector. We can make a good case that the 
self-adjoint momentum operators P = -cf A associated with these operators 
should have the same property. This means physically that the measured 
values of these operators transform like a four-vector under Lorentz trans-
formations. This is only possible if the operator cf commutes with all the ux 
of the given representation. 

A further restriction is obtained by requiring the energy operator P0 to 
have a positive definite spectrum. It is interesting to note that in quaternion 
quantum mechanics this can always be accomplished by a suitable choice 
of cf (13). 

We formulate therefore the following two postulates : 

Postulate I. The observables P associated with the translations in Min-
kowski space (momentum operators) transform under Lorentz transforma-
tions like a four-vector. 

Fostu/ate 2. The energy P0 has a positive definite spectrum. 
It is seen that these postulates are quite reasonable from the point of view 

of physics. We want to point out, however, that there are possible repre-
sentations of the Poincare group that do not satisfy these requirements. In 
view of recent developments in fundamental particle physics there might even 
be some interest in these representations, for instance, for a relativistic theory 
of the recently discussed hypothetical units called quarks. That the infinitesimal 
generators for the translations do not give rise to unique observables is not 
such a compelling objection to quarks , which do not seem to be observable in 
the usual sense of the word. In fact, they reveal their presence (if present they 
are) only through a structure of partial symmetries for strongly interacting 
particles. 

In the rest of this chapter we shall not dwell , however, on these speculative 
aspects of the unknown quaternionic representations of the Poincare group. 
We now proceed to the classification of the irreducible representations that 
satisfy Postulates 1 and 2; we shall call these the physical representations. 
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3. The Physical Representations of the Connected Component 
We denote by Ge the connected component of the Poincare group and we 

shall determine all the physical ray representations of this group in a q uater-
nionic Hilbert space. The theory of the preceding section (notably Section 
IV, B, 5 and 6) :permits us to reduce this problem to the complex case, where 
it is already solved. The steps in this reduction can be outlined as follows. 

(a) We assume that we have an irreducible ray representation x - >- Ux of 
the connected Poincare group Ge into the ray transformations of the quater-
nionic Hilbert space ~o· Theorem 8 tells us that this representation can be 
induced by a unitary vector representation x -r ux by a suitable choice of the 
factors. Because the group Ge is doubly connected, x ->- ux is a unitary repre-
sentation of the simply connected covering group Ge. The representation of 
Ge is thus either unitary (if the kernel of the homomorphism G, -r Ge is 
represented by the unit operators), or unitary but double valued (if it is 
represented by ±I; Theorem 10). 

(b) According to Theorem 16 there exists a unitary anti-Hermitian operator 
f and a projection-valued measure on the characters of the translation group 
Tc Ge such that 

Ux = I e10<x) dE 
x 

(69) 

where x ET, ()(x) is the character, and the integral is extended over the entire 
character group X. Every character ()(x) has the form (62) where x is the 
translation vector and p is an arbitrary fixed vector in Minkowski space. 

(c) According to Postulate 1 the operator f commutes with all operators 
ux with x E Ge. According to Theorems 18 and 14 we can, for each arbitrary 
but fixed pure imaginary quaternion i, define a complex Hilbert space ~~l 
and a restriction u~l of the representation ux,.to this space. According to 
Section IV, B, 5, this restriction is an irreducible single- or double-valued 
unitary vector representation of Ge in the complex space~~>. 

(d) Conversely, if x -r u~i) is an irreducible (possibly double-valued) 
representation of Ge and ifit is not oftype-1 then it can, according to Theorem 
15, be extended in a unique way to a unitary representation in ~0. 

The problem of finding all the physically meaningful representations of the 
Poincare group in a quaternionic space ~o is thus reduced to that of finding 
these representations in the complex space. This problem is solved and all 
these representations are known. 

We shall summarize the method and results for the complex case in the 
following subsections. 

4. Induced Representations (Discrete Case) 
Herein we review briefly the theory of induced representations in a complex 
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Hilbert space for the case of finite group . Although finite groups are not our 
primary concern, they serve as a useful example for lhe di cu sion of the 
purely a/gebr(lic aspects of the theory. The application of these results to the 
infinite Poincare group is then possible by upplementing this algebraic part 
by some measure-theoretical and topological considerations. 

The notion of induced representations is a generalization of that of the 
regular representations. Characteristic for both is that the group plays a 
double role: First, it is the group to be represented and second it is also a 
Hilbert space. For finite groups this space is finite-dimensional; in fact, its 
dimension is equal to the order of the group. 

This space is defined as the et of all functions/(x) from the group G to the 
complex numbers et. If we define the norm of such functions by 

11/112 = L: lf(x)i2, (70) 
X E G 

we evidently obtain a Hilbert space $)(R). 
The regular representation is then obtained by defining for any s E G the 

unitary operator Rs: 

(RJ) (x) = f (xs) . (71) 

If s1 and s2 are two elements from G, we have evidently 

Therefore we may set 
(72) 

The correspondences - R s is a unitary repre entation of the abstract group 
in the Hilbert space $J(R). This is the regular representation of the group G. 

We sJ1all now generalize this notion in successive steps until we arrive at 
the induced representation in sufficient generality for use in connection with 
the Poincare group. 

Let H c G be a subgroup of G. We can then decompose G into its right 
cosets by the formula 

G = H + Hx 1 + Hx2 + · · · X1 r/: H, x 2 r/: H, x 2 r/: Hx, etc. (73) 

We denote the set of right cosets of G by G H . Two elements x and y in the 
same coset are said to be equivalent modulo H, and we write 

x =y(H). (74) 
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We consider now functions! (x) defined on right cosets CH· Tf the number 
of right cosets G H isj, then these functions define a j -dimensional vector space, 
which can be made into a Hilbert space by defining the norm 

11! 11 2
= ~ lf(x)i2 (75) 

.\' EGu 

where the summation is (as indicated) extended only over the cosets. Since 
f (x) is assumed to be constant in a coset, it suffices to select from each coset 
one x and carry out the sum (75). 

The induced representation is now obtained by setting for alls E G 

( UJ)(x) = f (xs). (76) 

We remark here that thi s definition is meaningful; that is, the right-hand side 
is again a function on the cosets because as x runs through one coset the image 
xs runs through another. 

We again easily verify that this is indeed a representation in aj-dimensional 
space and that it is unitary. 

For the special case where H consists only of the unit element, we obtain 
the regular representation. Thus Us is seen to be a generalization of the regular 
representation . For the other extreme case where H = G, we obtain the trivial 
unit representation for which every s E G is represented by 1. 

In the next step we consider functions! (x) that are not necessarily constant 
in the cosets. Let, for instance, x(s) be a one-dimensional representation of 
G so that 

and define 

X(Si) X(S2) = X(S1 Sz) 

lx(s)i = I 

f (~x) = x(flf(x ) 

(77) 

(78) 

Such functions still define a )-dimensional vector space since the values of 
f (x) are determined in each coset by its value for one particular element in the 
coset. With the norm defined again by 

11!11 2 = ~ lf(x)i2 (79) 
x EGu 

we obtain a Hilbert space. 
An induced representation is now obtained by again setting 

(UJ)(x) =f(xs). (80) 
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The next and final generalization is obtained by starting with any unitary 
representation h -+ L,, of H in a representation space !)0 of dimension n0. 
We then define functions/ (x) on G with values in !)0. That is, for each x E G 
we associate a vector f (x) e f)0. This vector-valued function is assumed to 
satisfy 

f(hx) =L1,f(x) ';/ h EH, x E G. (81) 

With the norm definea by 

II/ 11 2 = L: 11.f (x)W' 
xeG11 

(82) 

we obtain a (j · n0)-dimensional vector space and an induced unitary repre-
sentation 

(Usf)(x) =f(xs) ';/ s E G. (83) 

This is the induced representation denoted by UL. 

5. Induced Representations (Continuous Case) 
In this subsection we describe the generalization of this method for con-

structing representations of G to the case of topological groups. In the follow-
ing we shall apply this only to Lie groups but many of the definitions and 
theorems are applicable for locally compact topological groups. 

Let us then assume that G is such a group, and H c G is a subgroup. The 
first difference from the finite case already becomes evident: In the finite case 
we could admit any subgroup· in the case of topological groups however, 
we must add the conditjoa that His closed in G (il = H). We shall see that 
for the applications we have in mind this is always the case. 

We can now define, in complete analogy to the discrete case, the right cosets, 
but we cannot expect them co form a finite or even a discrete set. Thus instead 
of a formula such as (73), which would not be correct for the continuous case, 
we define the space G Hof the right cosets simply as the equivalence classes of 
the elements x E G modulo the subgroup H. Two elements x1> x 2 e G are 
aid to be equivalent modulo H if there exists an element y e H such that 

x 1 = yx2. We shall denote by ~ the class of equivalent elements Hx that 
contains theelementx E G. The correspondence g = 1T(x) is called the canonical 
mapping of G onto the equivaJence classes or right cosets G 11 • 

The cosets G H inherit a natural topology from the topological space G: 
A subset L1 c G H is open if and ooly if 7T- 1(Ll) is open in the topology of G. 
Here 7T- 1(Ll) denotes the set 

7T-l(LJ) = {xlx E G, 1T(X) E Ll}. (84) 

With this topology the mapping 7T(X) from G to G His continuous. 
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We also need a measure on the cosets, since we need to replace the sum of 
the discrete case by an integral. The ideal type of measure would be invariant 
under right translations, but such a measure is not always possible. Fortunately 
the weaker requirement of "quasi-invariance" will be sufficient to construct 
the induced representation. 

A measure µ, on G His said to be quasi-invariant if the translated measure 
µ([LI'] x) = /J..,(Ll) has the same null sets as the measure µ(LI). We can prove 
that such a measure always exists (43) on the groups that interest us. The 
translated measure f-lx is then absolutely continuous with respect to the original 
one and we can define the Radon-Nikodym derivative (44) 

(85) 

The function px(t) is positive and essentially bounded and satisfies in addition 
the identity 

(86) 

We now consider the set of all functions from the topological measure 
space GH, the vectorsf(t) of a fixed Hilbert space .i) 0, and a unitary repre-
sentation L of H , which satisfy the following conditions: 

(a) (f (x),g) is a Borel function in x for all g E .i)0. 

(b) For all x E G and all h EH we have 

f (hx) = L1,f(x). (87) 

(c) J II! (x)ll2 dµ(g) < co . 
Gu 

The integration in this last expression makes sense because II! (x)ll 2 is, on 
account of the unitarity of the representation L, only a function of the cosets. 

We can define more generally a scalar product 

(f,g) = J (f(x),g(x))dµ,(t) (88) 
Gu 

so that the set of functions/= {f (x)} becomes a Hilbert space. We now define 
the induced representation U.!:' in this Hilbert space by setting. 

(U,[( f) (y) = f(yx) [px(Y)] 112• (89) 

It can be verified without difficulty that this is a unitary representation in the 
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(generally) infinite-dimensional Hilbert space ~- In the special case where 
the subgroup His the identity element thi construction still works. For the 
measure we can choose the right-invariant Haar measure and the repre-
sentation that we obtain is again called the regular representation. 

The usefulness of the induced representation is that with it we can construct 
the repre entation of groups from those of certain ubgroup . In order to u e 
this method effectively it is necessary to know something more about the 
properties of the induced representations when H and Lare given. Tt would 
be particularly useful to know when the representation ut. is irreducible. A 
great deal of research ha been devoted to this problem with only partial 
results (42). 

The Poincare group belongs to a certain cla of group for which there 
exists a comp.lete and satisfactory theory of the induced representation. The 
groups of this class are the so-called semidirect products, which we sha ll discuss 
in the following subsection. 

6. Semidirect Products 

We consider now a special class of groups, the semidirect products. Let 
G1 c G be an invariant Abelian subgroup of G and G2 another subgroup of 
G such that G l n G2 = e and such that every element z E G can be written as a 
product 

z=xy with x E G" y E G2 . 

Because G1 n G2 = e, this product representation is unique. 
The semidirect product can also be written as pairs of elements (x,y) = z 

with the composition law 

(90) 

The transformations x -r y[x] = yxy- 1 constitute an automorphism of G1. 

The semidirect product can thus also be considered as composed of the pairs 
of which one element is an element from G 1 and the other is an automorphism 
ofG1. 

Examples of semidirect products are many and important. They may occur 
in discrete or continuous groups. We shall here mention three. 

Example I. Probably the imple t example of a semidirect product, which 
may serve ro illustrate many of the concepts and theorem , is the group S3, 

the permutation group of three objects. It is of order 6. The Abelian invariant 
subgroup G1 consi ts of the two cyclic permutations plus the identity and it 
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is of order 3. The group G2 of automorphisms of G1 consists of exactly two 
elements, the identity and the interchange of the two cyclic permutations. 
Thus the semidirect product G 1;\ G2 consists of six elements. Examination of 
the group table shows that it is isomorphic to the permutation group of three 
elements. 

Example 2. The group of Euclidean motions in the plane consists of 
translations and rotations around a fixed point in the plane. The translations 
are an Abelian subgroup G1 and the rotations G2 induce an automorphi sm 
in G 1. Thus this group, too, is a semi direct product, since every Euclidean 
motion may be represented as a rotation followed by a translation. 

Example 3. The connected component of the Poincare group G2 contains 
as an invariant Abelian subgroup G1 the translations in Minkowski space. 
The Lorentz transformations induce an automorphism in G1 and every 
element of G can be represented as a product of an element from G 1 with an 
element from G2• The composition law (68) is already in the form that shows 
that G2 is indeed a semidirect product. 

Jn the following we shall be concerned primarily with the last example. 
Consequently we shall adopt from now notation conforming to that introduced 
earlier (in Section IV, C, !), according to which the invariant Abelian sub-
group G 1 will be the translation group T. An element a E T is represented by 
the four-vector a. The group G2 is to be identified with the group L of the 
Lorentz transformation A. 

It is also convenient to use the following notation for the characters and 
the character group of T. Each character will be represented by a function on 
the group T of modulus one (instead of the exponents mod 2TT, as we did in 
Section IV, B, 6) . A general such function will be denoted by d and its depen-
dence on a will be written (a, d). For the translation group T these characters 
are represented by four-vectors a and the foregoing functions take the form 
(cf. Section IV, B, 6) 

(a,d) = exp(ia·d). (91) 

This notation is convenient since it emphasizes the complete symmetry 
between the group T and its character group t that permits us to identify the 
characters of the characters with the elements of T by writing a= a. 

The automorphisms of the group T induced by Lorentz transformations A 
may be written a~ A[a] = Aa. They induce a dual automorphism in the 
character group a~ [d]A defined by 

(a, [d] A) = (A[a], d). (92) 
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We shall now introduce two concepts that are convenient at thi s point. 
Two characters 6 1 and 6 2 that can be transformed into each other by a Lorentz 
transformation are sa id to be equivalent , and we define the orbit of characters 
by the 

Definition. An orbit 0 in the character group is a class of equivalent 
characters. 

We can also introduce the family of all Lorentz transformations that leave 
a given character 6 invariant. This family is a group attached to the character6. 
It is called the little group. 

Definition. The little group G,; of the character 6 is the set of all trans-
formations A EL that leave 6 invariant: In a formula 

Ge; = {AIA E L, [6] A = a}. (93) 

For the Lorentz group the orbits consist of the family of four-vectors ii 
that satisfy a relation ii · 6 = m 2 = const. 

The little group is naturally a subgroup of the Lorentz group L. By com-
bining it with the translation group Twe can make it into a subgroup Hof the 
Poincare group. Thus to every character a we associate a subgroup H = T /\ G,;. 
This group His thus the semidirect product of T with the little group G,;. 
Every irreducible representation L of a group H has the form L = aM where 
a is a character and M is an irreducible representation of the little group G,; . 

We have now all the concepts needed for the formulation of the funda-
mental theorem of Mackey and Frobenius 

Theorem 17 (Mackey-Frobenius) . Let L = aM be an irreducible repre-
sentation of the subgroup H = T /\ G,; where ii is an arbitrary character for T; 
then the induced representation UL of G is irreducible. Moreover, every 
irreducible representation ofC can be obtained in this form and two irreducible 
representations L = iiM and L ' = ii' M ' of G are equivalent if and only if ii 
and ii' are in the same orbit and Mis unitarily equivalent to M '. 

The proof of this theorem is given by Mackey (3 , 4); it is rather long and 
cannot be reproduced here. Its usefulness for us is that it permits a further 
reduction of the representation problem of the Poincare group. In fact the 
representations of this group can now be completely classified by following 
these six steps ( 45): 

(a) Determine all the characters of T. 
(b) 
(c) 
(d) 

Find the orbits 0 in the charactergroup T. 
Select a character a in each orbit. 
Determine the little group G6 • 
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(e) Determine all irreducible representations M of the little group G0 

and construct with them the irreducible representations L = aM 
of the subgroup H = T/\Ca. 

(f) Construct the induced representations UL. 
The most difficult part in this program is usually step (e), as will be seen by 
examining it for the case of the Poincare group. For the latter (or rather, its 
covering group) we have the following situation: 

(a) The characters a are all of the form 

<a,a) = exp(ia·a). 

(b) Each orbit is determined by the value of the invariant product m2 =a ·a. 
Here Postulate l wi II restrict the values to m2 ;:;:: 0, and a0 ~ 0. The orbits are 
thus hyperboloids in the forward light-cone of the Minkowski space. 

(c) For m 2 # 0 we can select the special character a= (1,0,0,0) on the unit 
hyperboloid. For m2 = 0 there are two possibilities: (i) The character 
a= (1,0,0,1); and (ii) the singular case a= (0,0,0,0). 

(d) The little group associated with the character a= ( l, 0, 0, 0) is the 
group SU(2,C£), that for a=(l,0,0,1) is isomorph to the group £ 2 of 
Euclidean motions of a plane, that for a = (0,0,0,0) is the covering group of 
the Lorentz group, that is, SL(2, (£). 

(e) The irreducible representations of SU(2, (£)are the well-known finite-
dimensional representations of dimension 2s + 1 with s = -t, 1, ~, . . . , etc. The 
irreducible representations of £ 2 are of two kinds; only one kind seems to be 
of physica l interest , and it corresponds to a finite and di screte value of the 
spin. The case (c), (ii) does not represent a particle since the momentum and 
energy are identically zero in this case. 

(f) For each of the irreducible representations listed under (e) we construct 
the induced representation according to formula (89). In all of these cases the 
measure can be so constructed that p_Jy) = I . With this step the problem is 
solved . 

V. Conclusion 

We recapitulate the essential steps that led us to the physical representations 
of the Poincare group in a quaternionic Hilbert space. 

We started with the systems of elementary propositions and we have given 
some reasons why such a system is always an orthocomplemented, complete, 
weakly modular, and atomic lattice. Such lattices are thus the basic structures 
of any physical theory that is concerned with measurable physical quantities. 
The distributive lattices are characteristic for classical mechanics . In such a 
lattice every proposition is compatible with every other. At the other extreme 
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we have quantum mechanics, where we find that propositions may form 
coherent components. 

Every coherent componenl can be represented as the lattice of subspaces 
in a Hilbert space with coefficients from afield. If this.field contains the reals 
as a su bfield (as it must if we have continuo·us measurable quantities) then 
there are only three possibilities, since maLhematics tells us thal t11ere are 
only three sl1cn fields possible: the real the complex number, and the 
quaternions. 

A lattice has a natural symmetry group, the group of automorphisms. 
Translated into the language of Hilbert spaces these automorphisms become 
the ray transformations. A symmetry group of a physical system appears thu 
as a homomorphism of this group into the group of ray tran formations. This 
is called a ray- or projective-representation of the symmetry group. Rela-
tivistic invariance is thus introduced by considering the projective representa-
tions of the Poincare group. 

There is a connection between the projective representations and the vector 
representations that may be rather involved in the complex case. In quater-
nionic Hilbert spaces ~o tllis connection i extremely simple, since we can 
show that every projective representation of every group can be induced by a 
unitary representation. This happens to be also true in the complex case for 
the Poincare group. But only in the quaternionjc space is it true for every 
group. 

The next step is the construction of the unitary representation of the Poincare 
group in quaternionic space ~ti· Here we postulated for physical reasons that 
the momentum operators must behave under Lorentz transformation like a 
four-vector. Thi implies tlle existence of a unitary and anti-Hermitian linear 
operator / that must commute with all the unitary operator of the repre-
sentation. The exi tence of the operator f permits, for every pure imaginary 
quaternion i, the extraction from ~o. of a complex Hilbert space ~U). 

The study of these Hilbert spaces shows that there exist simple relation 
between the unitary representations in i>U> and in bo· The e relations were 
described under the heading of co111ractio11s and expansions of representations. 

The final result is that the physical representations in i)o. can always be 
obtained as expansions of complex representations. 

There remains thus the construction of all the complex representations of 
the Poincare group. This can be accomplished with the help of the theorem of 
Mackey-Frobenius for semidirect products. The Poincare group is such a 
group and the theorem is directly applicable, giving very quickly all the results 
obtained by Wigner in 1939. 

The theorem of Mackey-Frobenius can also be used for the construction of 
the non physical representations, since the validity of the theorem is indepen-
dent of the nature of the field. For quaternions, however, the irreducible 
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representations for the subgroup H =TI\ G6 [step (e)] can in general no longer 
be constructed in the same way, since the one-dimensional characters need 
not commute with the representations of the little group Ga. Thus we know 
nothing about the possible representations that do not satisfy the physically 
motivated Postulates 1 and 2. Since the latter give essentially the same result 
as in the complex case, we may look for unexpected possibilities only in the 
as yet unexplored "unphysical" representations. 
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