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l. Introduction
A. RELATIVISTIC QUANTUM MECHANICS

Theoretical physics in the first half of the twentieth century is dominated by
two major developments: the discovery of the theory of relativity and the
discovery of quantum mechanics. Both have led to profound modifications of
basic concepts. Relativity in its special form proclaimed the invariance of
physical laws with respect to Lorentz transformations and led to the inevitable
consequence of the relativity of spatial and temporal relationships. Quantum
mechanics, on the other hand, recognizes as basic the complementarity of
certain measurable quantities for microsystems (uncertainty relations) and
the concomitant indeterminism of physical measurements.
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132 J. M. JAUCH

From the mathemetical point of view the central object in the special theory
of relativity is a group, the Lorentz group, or more generally, the Poincaré
group. For quantum mechanics the most important mathematical object is the
Hilbert space and its linear operators. It is therefore not surprising that the
most important mathematical problem in relativistic quantum mechanics is
the representation theory of the Poincaré group in infinite-dimensional Hilbert
space.

The representation theory of groups was first developed, at about the turn
of the century, as a branch of algebra for the finite groups. The extension to
compact Lie groups was a relatively easy generalization. However, these
theories are too restrictive for the representation theory required by relativistic
quantum mechanics. Two generalizations are needed in this case. First, not
the vector representations but only representations up to a factor of modulus
one are important in quantum mechanics. Such representations are called
projective representations because they are encountered in projective geo-
metry. Second, the Poincaré group is a noncompact group, and the faithful
unitary representations of such groups are necessarily of infinite dimensions.

Until 1940 the unitary representation theory of noncompact groups in
infinite-dimensional spaces was practically nonexistent. The first important
results were obtained by Wigner (/) in 1939, and later by Bargmann (2).
Wigner was able to adapt a method of Frobenius to the Poincaré group, and
in this way he obtained a classification of all physically interesting irreducible
representations of this group. Many questions of a mathematical nature
remained unanswered by this work. A more complete and more general theory
was given much later by Mackey, who generalized Frobenius’s theorem to the
case of noncompact groups of a certain class (3, 4).

The study of projective representations led to the theory of the classes of
equivalent factors developed especially by Bargmann (5). Thus the local and
global theories of factors, together with the Mackey-Frobenius theory of the
irreducible vector representations, constitute the main building blocks of the
quantum-mechanical representation theory of the Poincaré group. They will
be used in this article for a classification of elementary particles in quaternionic
quantum mechanics.

B. GENERAL QUANTUM MECHANICS

Quantum mechanics as it was discovered in connection with the problems
in atomic physics has the peculiar feature that it is a theory that uses as its
main tool a complex Hilbert space. The appearance of complex numbers in a
basic physical theory can be of a rather trivial nature, such as, for instance,
the representation in the complex plane of a periodic motion. In such a case
the use of complex numbers is a matter of convenience, and it can be just as
well avoided if we are willing to pay the price of more cumbersome formulas.
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In quantum mechanics, however, the appearance of complex numbers seems
to have a more fundamental significance, which has never been understood
very well.

The question concerning the role of complex numbers was expressed early
by Ehrenfest (6) and an answer was attempted by Pauli (7), for at least a special
case. The question can be placed in a broader context if we examine more
carefully just what properties of the complex Hilbert space are actually used
inquantum mechanics. One way to do thisis to reformulate quantum mechanics
on an axiomatic basis as an algebraic structure, as was done by Birkoff and
von Neumann (8) in 1936. In this formulation there is no need to introduce
Hilbert space at all. The primary object is instead a lattice of the elementary
propositions (yes-no experiment) pertaining to a given physical system. In
conventional quantum mechanics this lattice is realized as the lattice of all the
subspaces of a complex Hilbert space. In the abstract formulation of the
proposition system the nature of the Hilbert space in a possible realization is
left open. There is no obvious physical property that would force us to choose
the complex numbers for the field of coefficients.

There is, however, one property of the field that one can motivate to some
extent with physical considerations: the field should contain the reals as a
subfield so that the representation of continuous quantities, such as the
position of a particle, does not cause any difficulties. With this restriction the
number of possible realizations of the abstract lattices is greatly reduced
because, according to a celebrated theorem (9), there exist only three fields
that contain the real numbers as a subfield, namely, the real numbers them-
selves, the complex numbers, and the quaternions. Thus it suffices to examine
in detail quantum mechanics in real and in quaternionic Hilbert spaces.

Quantum mechanics in a real Hilbert space was studied by Stueckelberg in
anumber of papers (/0, /1). The result of these investigations is that the theory
is in contradiction with the uncertainty relations unless we postulate the
existence of a nontrivial operator ,# that commutes with all the observables.
This operator # must in addition be antisymmetrical (_#' =~ _¢) and must
satisfy _#% = —1. The latter property says that # is the square root of the
negative identity operator. This implies that the theory is identical with
conventional quantum mechanics in complex Hilbert spaces.

The situation is a little different for quaternion quantum mechanics. In fact,
experience with real Hilbert spaces has shown that the question of the field is
certainly connected with the question of superselection rules. The choice of
the “wrong” field (for instance, the reals) can be compensated by restricting
the number of operators that are admitted as observables. Such restrictions
are called superselection rules. 1t was therefore natural to believe that the
occurrence of superselection rules in nature might somehow find a natural
explanation by a suitable choice of the number field. For this reason the study
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of quaternion quantum mechanics was undertaken by Finkelstein ef ¢/. in a
number of publications (/2, 13). In spite of some interesting formal possibilities
these attempts yielded no essentially new results that could be connected with
the empirical facts of elementary particle physics, and the deeper significance
of the complex numbers in quantum mechanics remains obscure.

In order to progress further it seemed natural to return to the lattice-
theoretical approach of Birkhoff and von Neumann and to try to recover the
number field from the structure properties of the lattice itself. It was especially
emphasized by Finkelstein et al. that the abstract algebraic properties of the
lattice are essentially nothing other than the formalization of the fundamental
empirically given properties of the physical systems. On the other hand, from
the experience we have had with the coordinate representations of projective
geometries we expect that the nature of the field is essentially (that is, up to
automorphisms) determined by this lattice structure.

This program of research was undertaken by Piron (/4), who succeeded in
formulating, in the precise mathematical language of lattice theory, a set of
general quantum-mechanical axioms that embodied the basic empirical facts
of quantum systems. He went beyond the work of Birkhoff and von Neumann
by showing that for certain systems the axiom of modularity favored by these
authors is in contradiction with the facts, and by supplying the correct axiom
of weak modularity. He then stated and proved a representation theorem for
the lattices encountered in Nature. For systems of finite dimensions this
theorem is the well-known representation theorem of projective geometries;
for infinite-dimensional systems it is a generalization of this theorem.

With Piron’s result it became possible to affirm the representation of the
lattice of a physical proposition system as subspaces in a Hilbert space with
coefficients from a field. But still nothing was known about the physical
properties that reflect the nature of the field.

C. INTERVENTION OF GROUP THEORY

A new aspect was introduced with the study of the symmetry groups of
proposition systems. It is known from examples that these symmetry groups
have quite different structures for the different lattices. Since physical sym-
metries are often more easily recognized in Nature than, for instance, other
detailed mechanical properties of the systems, this seemed a promising line of
research to pursue.

The symmetries of a proposition system have two aspects. There is (as we
shall show in detail in Section III, A, 3) a symmetry group of the proposition
system that we shall call M. It consists of all automorphisms of the lattice.
There is, in addition, the symmetry group G, which arises from the space-time
frame of physical events. For relativistic quantum mechanics this group G
is the Poincaré group. The study of elementary systems and their properties
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leads to the question of the isomorphisms (or homomorphisms) between G
and the subgroups of M. In other words, we have here a representation
problem of the Poincaré group.

The representation of groups as automorphisms of a lattice structure is a
natural generalization of the representation of groups by unitary transforma-
tion of vectors in a complex Hilbert space. An intermediate stage in this
generalization consists of the projective representations, which can be reduced
to the vector representations via the theory of factors. There is virtually
nothing known about representations of groups as automorphisms of lattices.

A special aspect of the problem could be revealed by studying the projective
representations of the Poincaré group in quaternionic Hilbert space. This is
essentially the same problem that Wigner had solved in 1939 for complex
space, transferred and adapted to the situation in quaternionic space. The
work of Mackey (3) and Bargmann (5) that intervened simplified the task
considerably and made it possible to solve this problem with complete mathe-
matical rigor. This was dome by Emch (/5) in a thesis published in 1963. The
result, which will be reported here, shows that the physical content of quater-
nionic Hilbert space is identical with that of complex space when it is combined
with the principle of relativity. This result revealed, a little better than most
previous attempts, why complex Hilbert space plays such an exceptional role
in quantum mechanics. It is a good example of the efficacy of group-theoretical
considerations in answering profound questions of fundamental physical
theory.

Il. The Lattice Structure of General Quantum Mechanics

A. THE PROPOSITION SYSTEM

1. The Elementary Propositions ( Yes—No Experiments)

Alltheinformation concerningthe properties of a physical system is obtained
by measurements. The results of such measurements depend on two things:
the nature of the physical system and the state of that system. Although this
distinction cannot always be carried through consistently in all cases, it is quite
useful for most situations. Roughly speaking, the nature of the system is
incorporated in all those measurable properties that are independent of the
history of the system. We shall call then intrinsic properties. For instance, if
the system consists of an elementary particle, the mass, charge, spin, and
magnetic moment are some of the intrinsic properties. On the other hand, the
position, energy, and orientation of the spin are some of the properties that
depend on the state of the system.

The nature of the system can be characterized completely by specifying all
the intrinsic properties of the system. In order to do this in the simplest and
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most systematic way, it is convenient to introduce a special class of experiments
the yes—no experiments. These are experiments with equipment that can only
respond with one of two alternatives. A typical example of such equipment is
the counter, which is either triggered or remains silent. Every measurement of
a measurable quantity can be broken up into a suitable set of yes-no experi-
ments by the simple device of measuring only whether the quantity in question
belongs to a given subset or not. For instance, the measurement of the position
of a particle is accomplished if we know whether the values of its position
coordinates belong to any given subset of the possible values of these co-
ordinates.

We shall refer to the two alternatives of a yes—no experiment as (elementary)
propositions for the system, which we denote in the following by .#. The
determination of the nature and the state of a system is accomplished if we
know the truth or falsehood of all propositions for the system. ’

2. The Partial Ordering of Propositions

One of the most important intrinsic properties of a physical system is
expressed in a partial ordering of its proposition system. Certain pairs of
propositions are not independent of each other. For instance, let proposition
alocate a particle in a volume element V,, and proposition b locate the particle
in volume element V,. If V,C V,, then the two propositions clearly depend
on each other because whenever « is true, b must be true too. Furthermore
whenever b is false, @ must be false too. We express this by the relation a c b
and recognize easily that it is a partial ordering of the proposition system that
satisfies the following fundamental properties:

(a) aca V ae;
(b) ach and bca<=a=b;

(¢) ach and bce=acec. (I

Property (b) may be considered as the definition of the equality of two
propositions.

The fact that the ordering is only partial is very important. It gives rise to
the existence of nontrivial symmetry groups for proposition systems.

3. Intersection, Union, and Orthocomplement of Proposition

In a partially ordered system it is natural to define the operations of inter-
section and union of its elements. If the system is a system of propositions,
then we can give these operations a physical interpretation that enables us to
verify in individual cases a system of axioms concerning them.
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For these axioms the following have been found consistent with the em-
pirically verifiable proposition systems.

Let 7 be an index set containing at least two elements and «; (i € ) any
subset of &, a; € #. Then there exists a proposition, denoted by (), a;, with
the property

XCa; V iel = xc{)a Vv xe?). (IT)
I

It is called the greatest lower bound, or intersection, of the elements a;. In the
particular‘case that the index set / contains exactly two elements, we denote
the intersection of two elements ¢ and & by a N b.

In a similar way we define the least upper bound, or union, of an arbitrary
subset of & by U, a; with the property

a,cx V iel < Jagcx vV xe2). (11T)
/

If the subset {a,} is identical with &, we obtain two special elements of the
set &

b= a, I=]a. (1)
2 7

The element ¢ represents the absurd proposition, which is always false, while
I is the trivial proposition, which is always true.

The next axiom (1V) asserts the existence of a unique orthocomplement : For
every a € % there exists another ¢ € & such that

(@) = a,
aNa=d¢,
acb<bca. 1v)

From the axioms stated so far follows immediately that for every subset
{a;} (i e I) of & we have

Ja;= (O a;-)’. ()

1

In particular, by taking for {a;} the set & itself, we obtain

=1
r-¢. ()
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For every x € & we verify also
xUx=1 4

If two elements @ and b satisfy the symmetrical relation a < b’, we call them
disjoint and we denote it by ¢ | b.

The four axioms (I), (IT), (I11), and (1V) define an orthocomplemented and
complete lattice.

4. The States of a Physical System

The properties that define the lattice structure of % contain the formaliza-
tion of the intrinsic properties of a physical system. We shall now turn our
attention to those properties that refer to the state of the system.

A state is the result of a set of physical manipulations that constitute the
preparation of the system. The state can be determined by measuring the
truth or falsehood of all the propositions of the system. In contradistinction
to classical systems, however, not every proposition is necessarily true or
false. The result of measurements on ensembles of identically prepared
systems will yield the result that a given proposition may be true with a certain
probability only. We are thus led to the following axiom.

A state is a function from % onto the interval [0, 1] that satisfies

) p(#)=0, pH=1

(ii) For every sequence a; of pairwise disjoint elements we have
p(Ua) =L@
\ 4 i

(i) pla)=1=p(b) = planN b)=1.

If p, and p, are two different states, then A p; + Ayp, = p with A + A, = 1,
A;> 0 is also a state. Such a state p which can be constructed from two
different states is called a mixture. A state that is not a mixture is said to be
pure.

The states are thus a convex set of functionals over .%. The pure states are
the boundary of this convex set.

The functional o,(a) = p(a) — p*(a) measures the dispersion of a state. If
o,(a) =0V e.Z, we call the state dispersion free. A mixture always has disper-
sion, but a pure state is not necessarily dispersion free. For certain simple
quantum-mechanical systems, such as a spin or an elementary particle, we
can even show that there does not exist any dispersion-free state.
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B. DISTRIBUTIVITY, MODULARITY, AND ATOMICITY
1. Distributivity

The lattice of propositions exists for any physical system, be it classical or
quantal. The distinction between these two kinds of systems requires an
additional structure property that is compatible with axioms (I)-(IV); a
classical system has a proposition system that satisfies the axiom of
distributivity as well as axioms (I)-(IV).

A lattice is distributive if for every triple a, b, ¢ € &, the relations

anN®GUe)y=@nb)U(anNec),
aUbNe)y=@Ub)N(alrc)

(D)

hold.

Such a lattice is called a Boolean lattice (or a Boolean algebra). If a lattice
is not Boolean, it may at least contain Boolean sublattices. A sublattice
Lo ¥ is asubset of & that satisfies all the axioms (D)=(IV). If ¥, =« L isa
famile of sublattices, then the set intersection £, =(");.%; is also a sublattice.

Let y < .% be an arbitrary subset of .%. We may then consider the class of
all sublattices .#; that contain . The intersection £y =("); &, will then also
contain y, and it is the smallest sublattice of . with this property. We call it
the sublattice generated by y and denote it by £ (y) = %,

Of particular interest-in the following are the subsets v for which Z(y) is a
Boolean sublattice of .. We say then that the set vy is classical, or v consists
of pairwise compatible elements. If the set y consists of exactly two elements
y = {a, b}, then these elements are compatible if and only if #({a, b}) is Boolean.

We have thus arrived at the important notion of compatibility, for which
we introduce the special notation @ <> b, which indicates that it is a sym-
metrical relation. It is clear from the preceding that in a classical system every
pair of propositions is compatible. The converse is also true (/4). The notion
of compatibility defined here was first introduced in a slightly different way
by Jordan (/6) and it is discussed extensively in the mathematical literature
(17, 18).

2. Modularity and Weak Modularity

It was clearly recognized by Birkhoff and von Neumann (8) that the distribu-
tion law is violated in Nature and that it has to be replaced by a weaker law.
For this weakened structure property these authors proposed the so-called
modular law.

It is an elementary exercise to show that in any lattice we have

xU(pNzcxUy Nz

for x C z.
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If the lattice is such that for all x c z the equality sign holds in this relation,
then it is said to be modular. The modular law is thus expressed by

xcz=xU@pNz)=xUy Nz (M)

It is clear that a Boolean lattice is always modular, but the converse is not
true. Simple examples are found, for instance, in the work of Piron (/4).

As was pointed out by Birkhoff (79), the modular lattices have many
properties that make them quite attractive for the description of propositions
in general quantum mechanics. It was established by Piron, however, that
the notion of localizability, which is implied by that of an elementary particle,
is incompatible with modularity (/4, Proposition on p. 452). Piron also
supplied the weaker axiom that is needed to describe the actually known
physical systems. It is called the weak modularity axiom and can be stated in
many equivalent forms. We choose the following, which lends itself most
easily to a physical interpretation:

acbhb=aeb. P

It is not difficult to verify that (M) implies (P) for a complete orthocomple-
mented lattice. The converse is not true. The most important example is the
lattice of closed linear subspaces in an infinite-dimensional Hilbert space.
This lattice satisfies (P) but is not modular (/4).

Concluding this subsection, we state a theorem that is a rich source of
alternative formulations of compatibility:

In a weakly modular lattice the following relations are equivalent [cf. (/4,
Theorem VII)].

(1) aeb.

2) a—b'.

B)@ndyUboa.

4 (@Ub)YNbca.

(5) Any three of the four elements a, b, a’, b’ satisfy a distributive law
xN{yUz)=xNyU(xNz).

6) @Nb)U@nNd)U@nbU@nd)=1

M @Ub)N@uUb)N@Ub)N(@Ub)=d.

3. Atomicity

The axion of atomicity consists of two parts. The first part expresses the
existence of minimal propositions P € . (called points) with the property

XSP=>x=¢. (A.1)
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The second part affirms the existence of minimal propositions over any
other proposition.
For any point P € &

acxcayUP=x=a or x=aUP, (A.2)

We say then the proposition a U P covers a.

The postulate of atomicity has the character of a technical axiom that is
perhaps not indispensable for the description of actual physical systems, but
that is mathematically useful. Recent experience, however, suggests that it
may be possible to dispense with the axiom altogether (20). Work is now in
progress to study the possibility in relation to weakly modular lattices.

For the rest of this chapter we shall designate as a proposition system a lattice
that satisfies axioms (I)-(IV); (P); and (A.1) and (A.2).

C. SUPERPOSITION PRINCIPLE AND SUPERSELECTION RULES

1. Reducible and Irreducible Lattices

Consider two proposition systems ¥ and .%,. We can construct a third
one, the elements of which are the pairs of elements (x1,x,) x; € ¥4, x, € £,
(the Cartesian product £ x .%,). The partial ordering is defined by the rule

(x1,X2) € (¥1,¥2) < X1 € 3 and X2 & V. Q)

If we define further
(-xlv x2), = (xlla le), (6)

(e, x2) N (Y1, p2) = (1 Ny, x, Nyy), ete, @)

we obtain a new lattice, which we call the direct union of ¥ and & .

Any lattice that can thus be written as a direct union of two or more other
lattices is called reducible. If this is not the case, it is called irreducible or
coherent.

Every Boolean lattice is reducible except the trivial lattice consisting of only
two elements ¢ and I. The occurrence of nontrivial irreducible lattices is thus
an essential property of quantum systems.

Whenever a lattice is reducible, there exist nontrivial elements that are
compatible with every other element in the lattice. The set of all such elements
is called the center € of the lattice.

2. The Superposition Principle

An irreducible lattice .& satisfies the superposition principle, which can be
expressed as follows:
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For every pair of distinct P, Q € % there exists a third point R € .% such
that

PUQ=PUR=RU Q. ®)

Every proposition system can be decomposed in an essentially unique
manner (except for the order of the irreducible parts) into a direct union of
irreducible lattices (/4). This theorem allows the reduction of the study of
general proposition systems to that of irreducible ones. For an irreducible
lattice the center is trivial (that is, it consist of only two elements ¢ and 7).
For any Boolean lattices it is identical with the entire lattice.

The lattices that actually occur in Nature are in general reducible. When
this is the case, the superposition principle has only restricted validity. We say
then that the system allows superselection rules, a notion introduced by
P. Destouches-Février (2/), and later again by Wick et al. (22)

11l. The Group of Automorphisms in a Proposition System

A. MORPHISMS

1. Definition of Morphisms
Let %, &5 be two proposition systems and m a bijective mapping with
domain . and range %, with the properties

(i) xcy = m(x)cm(y)
(i) m(x") = m(x) C)
for every x, y € Z.
Such a mapping is called a morphism of ¥, onto .¥,. Every morphism
admits an inverse m~ ! with domain %, and range .¢; defined by

m (m(x)) = x. (10)
The inverse of a morphism is also a morphism.

2. Various Invariance Properties

The following properties are simple consequences of this definition. For the
detailed proofs we refer to the work of Emch and Piron (23). If m is a morphism
from %, to &, and {x;} any subset of ¥, then

{;

m(%} x,-) = m(x;). (1)
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Similarly, we have

m (ﬂ x,-) =) m(x;). (12)
From this follows immediately
m(ly) = I, m(¢1) = 2, (13)
and
Xy > Xg <= m(xp) > m(xy). (14)

If P, € & is a point, then m(P|) = P, € &, is also a point.

Furthermore, if x and y are contained in the same coherent component of
# 1, then m(x) and m(y) are also contained in the same coherent component
of .&#, [cf. Emch and Piron (23, Lemma 4)].

3. Automorphisms

If ¥, =%,=.%, then a morphism with domain and range .& is called an
automorphism. Tt is a permutation of the lattice that leaves the lattice structure
invariant. An automorphism will also be called a symmetry of the lattice &.

The set of all the automorphisms are a group, the symmetry group of the
lattice. We shall denote it by M. The composition law of this group is defined
by setting for the product of two automorphisms m and m,

my my(x) = m (my(x)). (15)

The identity element e of the group is represented by the trivial automorphism,
which leaves every element of the lattice invariant: e(x) = x; and the inverse
automorphism m ! is the group inverse.

Every automorphism induces a transformation p — p
system through the formula

m

of the states of a

P =porix) YV xeZ. (16)

[t can casily be verified that if p is a state, then p”, defined by Eq. (16), is a state
too. If p is a pure state, then p"' is pure too.

B. THE SYMMETRY GROUP OF A PROPOSITION SYSTEM

I. Topology in a Group of Automorphisms

The group of automorphisms of a proposition system reflects many of the
structure properties of the lattice. The study of these properties can therefore
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be reduced to some extent to the study of the group of its automorphisms. In
this section we define the topology in the group of automorphisms so as to
make this group a topological group.

A topology in an abstract space M is given by specifying a certain class of
subsets, designated as the open sets of that space. In order to define them it is
sufficient to give a complete system of neighborhoods of the set M. They form
a basis in the sense that every open set can be represented as the union of such
neighborhoods.

In the case of groups it suffices to designate only the neighborhoods of the
identity element e € M. Neighborhoods at other points mg# e are then
obtained by left or right translations of the neighborhoods at the identity.
Thus if U is such a neighborhood, then the sets

moU = {m'|m' = moym,m € U}

Umy={m'|m' =mgm,m e U}

are neighborhoods of the point m,.

For the definition of the neighborhoods at e € M we look for a motivation
in the physical interpretation of the lattice. The measurable quantities are the
states, and proximity of two transformations of the lattice is therefore ex-
pressed most naturally in terms of the transformation of the states. Thus we
define an € neighborhood N (e) of e as the set of automorphisms » such that

|p"(x) - p(x)] <e ¥V xe.% and all states p. (17

It is easy to verify that this system of e neighborhoods satisfies the five
conditions of Theorem 10 of Pontrjagin (9, Section 17). Thus they define a
topology in the group such that the group operations are continuous functions
of its arguments. From now on we shall consider the group of automorphisms
equipped with this topology so that it may be considered a topological group.

We may now consider various properties that depend on that topology.
The following will be used frequently:

(a) Closure: A subset of M is closed if its complement in M is open.

(a) Limit point: A point my is a limit point of a subset A = M if every neigh-
borhood of m has at least one point #n1y in common with 4. A subset A = M
is closed if and only if it contains all its limit points.

(¢) Connectedness: The space M is connected if there does not exist a subset
A of M that is both open and closed. If such a set exists, then its complement
A= M — A is also open and closed. It follows then that A4 is the union of
two open sets and also the union of two closed sets.

(d) Discreteness: The space M is discrete if every subset of M is both open
and closed.
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(e) Compaciness: The space M is compact if from every countable family
of open sets in M we can select a finite subfamily that also covers M. In that
case every infinite subset of M contains at least one limit point in M. If this is
not the case, then the space is called noncompact.

If a space 1s not connected it may contain connected components. A closed
subset My of M is a connected component if it cannot be represented as the
union of two nonintersecting closed sets.

The largest connected subset My < M that contains the element e € M is
called the connected component of the unit element. It is easy to see that M,
is an invariant subgroup of M.

2. The Connected Component and Superselection Rules

We shall here first examine the effect of the automorphisms in the connected
component of a proposition system with superselection rules. We consider
only the case of discrete superselection rules for which the lattice % is a direct
union of a finite or countably infinite set of lattices .%Z;.

We denote by I;={é,és,...,Jidir1,...} the element that has the zero
element at every position except at the ith position, where it has the unit
element /; of the lattice .#;. The lattice ., is then isomorphic with the segment
[#,1;] that is the set of elements x such that ¢ C x c /;. So we may identify &,
with this segment. The ¢lements 7; are all disjoint elements of the center of .Z.

Let us now consider a state p; such that p,(/;) = 1. Because the /;are disjoint,
we have for any state p(/)) + p(I;) = p(I; U I;). It follows that p,(J;) =0 for
i # 1. Let us next choose a sufficiently small € > 0 and consider m € N (e) so
that

[pi(m~ (1)) — pi(Iy)| L e

Since mi~!is an automorphism, m~!(/;) = I;. But we have already shown that
pi(l) =0fori# 1. Hence m™'(I;) = I, (if € < 1, for instance) or m(l;) = I, for
all m € N(e).

We have thus established that for all m € N (e) = U we must have m(I;) = I;.
It is now easy to extend this invariance of /; to the entire connected com-
ponent My < M by using a theorem of Pontrjagin (9, Theorem 15) according
to which every clement in M can be written as a finite product of elements
from U. With this we have proved the following

Theorem I. If a lattice & is a direct union of coherent lattices .%#;, then
every morphism from the connected component that contains the unit element
leaves every sublattice %, invariant.
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3. Representations of Symmetry Groups

The group of automorphisms A is in general much too large a group for
the description of physical symmetries. The physical symmetry groups satisfy
additional properties that are related to the physical content of the theory.

We shall say that the topological group G is a symmetry group of the system
if there exists a homomorphism U of G into M. Such a homomorphism will
be called a projective representation of the group G.

We remark here that by a projective representation we mean always a
homomorphism as far as the group structure is concerned, and a homo-
morphism with respect to the topologies of G and M. A projective representa-
tion is thus always the continuous image of G in M.

We can now easily establish

Theorem 2. If the lattice .% is a direct union of lattices .%; and if it admits
a connected symmetry group G, then every U, € M that is an image of x e G
in the representation M leaves every component .%; invariant.

The proof follows from the remark that connectedness is invariant under a
homeomorphism, hence all U, € M,. We shall say the projective representa-
tion U in & (denoted by (&, U)) of the group G is irreducible if

Uia=a V xeG=a=¢ or a=I, (18)

and we call such a pair (&, U) an elementary system with respect to the sym-
metry group G. We see immediately that every elementary system with respect
to a symmetry group G is necessarily coherent. Indeed if it were not, it would
have a nontrivial center and we have just seen that the elements of the center
are all invariant under M. Since U, € M for all x € G, the conclusion follows
that & is coherent.

The foregoing remarks contain the germ of a theory of elementary particles
based on the phenomenology of physical systems. The idea is this: The
phenomenology of a physical system is essentially contained in the lattice
structure of the proposition system .. This structure in turn determines the
group M of its automorphisms, including all its subgroups. The irreducible
representations of the group G in M are the possible elementary systems that
are compatible with this lattice structure.

Unfortunately the representation theory of groups in lattices is a branch
of mathematics that is not yet developed. Therefore the foregoing sketch of a
program cannot yet be carried out. It is possible to pursue another road,
however. Instead of working with abstract lattices, we can seek a representation
of proposition systems and then study the automorphisms of such representa-
tions.

It is known that the closed linear subspaces (henceforth just called sub-
spaces) of a Hilbert space have a lattice structure that satisfies all the axioms
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of a proposition system. These subspaces do furnish us, therefore, with a
representation of a proposition system. This is, however, not the only repre-
sentation possible. The task of finding all the representations of irreducible
proposition systems was accomplished by Piron (/4) and in the following
subsection we shall give a brief outline of his and some related results.

C. IRREDUCIBLE PROPOSITION SYSTEMS AS SUBSPACES OF A HILBERT SPACE
1. Proposition Systems and Projective Geometries

There is a remarkable similarity between the proposition system of a
quantum-mechanical system and the lattices that arise in the set of axioms of
projective geometries. It is thus not surprising that representation theorems
for proposition systems are modeled after those for projective geometries. In
fact, the essence of the general representation theory of proposition systems
is an embedding theorem that says that every proposition system can be
embedded in a canonical way into a projective geometry. This theorem, then,
establishes the link to the representation theory of the projective geometries
and in this manner the representations of proposition systems can all be found.

The essential difference between projective geometries and proposition
systems is that the former satisfy the modular law, whereas the latter, as we
have seen, do not necessarily do so. If they do, they are, according to a theorem
of Piron (/4, Theorem V), direct unions of projective geometries of finite
dimensions, where the dimension of a lattice is defined as the maximum of a
chaindc ¢.--cac bc... < Iin the lattice.

In the case of infinite dimensions modularity is incompatible with the other
axioms of a proposition system. This fact has been known for a long time, and
for this reason von Neumann has expressed the conjecture that the continuous
geometries discovered by him might give the mathematical frame of a general-
ized quantum mechanics. The continuous geometries do not contain any
minimal elements (‘“‘point-less’ geometries, as von Neumann called them) and
thus they do not satisfy axiom (A.1).

Since there are proposition systems in Nature that are not modular (4,
Proposition on p. 452), the strong constraint of modularity can be replaced
by weak modularity and in that case it is possible to retain all the axioms of a
proposition system, even for infinite systems, without contradiction. Projec-
tive geometries are modular, as we have seen. If they are infinite, the other
axioms of a proposition system cannot hold for such projective geometries.
The axiom that is violated for infinite projective geometries is axiom (IV),
which affirms the existence of an orthocomplement. Infinite projective geo-
metries are never orthocomplemented.

A standard example of an infinite projective geometry is the not necessarily
closed linear manifolds of a Hilbert space. If union and intersection are defined
as linear space and intersection, then the linear manifolds of such a space are
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modular (/8, Theorem 9, p. 370; 24). The complement is still defined. If a is
not a closed linear manifold, we have a < (a’)’. This violates axiom (IV).

For Boolean lattices representation theorems have been known for a long
time: Every Boolean lattice may be realized as the lattice of subsets of some
set (25, 26).

2. The Representation Theorem for Proposition Systems

In subsection C, 1 we quoted the theorem that says that every reducible
proposition system is the unique direct union of irreducible ones (7/4). The
general representation problem of the lattices of proposition systems can thus
be reduced to that of irreducible lattices. The following theorem is true for
reducible or irreducible lattices (/4, Theorem XVIII, p. 462).

Theorem 3 (Piron). If % is any lattice of propositions, then there exists
always a projective geometry G, and a canonical mapping « of % into G,
that satisfies the following properties.

(1) The restriction of « to the points of £ is a one-to-one mapping onto
the points of G,,.
(2) ac b <= ala) C «(b).

3) o (m a,~) =N ().

(4) a(@aU P)=oa(a)U o(P) V points P € L.
It follows from these properties that if .# is irreducible, then the canonically
defined projective geometry G, is irreducible, too.

This theorem establishes the bridge between the abstract proposition
systems and the projective geometries. For the latter there exist well-known
representation theorems that will yield similar theorems for the proposition
systems. In order to formulate the fundamental representation theorem we
need the following three concepts.

(a) A chain in & is a sequence of elements ¢,...,a,b,...,1 that satisfies
$pc---cachc...c I, where the inclusions are all proper. The number of
elements in the chain is called its length.

(b) An antiautomorphism of a field § is an involution « — a* (x € §)
with the property

(ot B = + B
(B)* = B " (19)
=0 V o,Bey.

An example of an antiautomorphism in the field of complex numbers is the
complex conjugation. There are many others. But we can show that complex
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conjugation is the only one that is also continuous in the natural topology of
these numbers. For the quaternions, on the other hand, every automorphism
is continuous [cf. remark after Eq. (31)].

(c) A sesquilinear form over a vector space B with coefficients from a field
is a mapping f of B x B into § such that

f(x+ocy,z)=f(x,z)+f(y,z)oc*
foy+az)=f06p) +of (3,2) (20)
V x,ye®B and V «c§.

Such a form is called Hermitian if f(x,y)=7*(y,x), and it is definite if
S (x,x) =0 = x=0. An example of such a form is the scalar product in a
Hilbert space. The representation theorem of proposition systems can now
be stated in the following form.

Theorem 4. Every irreducible proposition system that contains a chain
of length at least equal to four can be realized by a linear vector space B over
a field §, an antiautomorphism of §, and a definite Hermitian sesquilinear
form in B. Every proposition a € % is represented by a subspace of vectors
x € B that satisfy f(x,y;) =0 for some y; € B. If a € ¥ is represented by the
subspace M < B than «' is represented by the subspace M1 = N consisting
of all x € B that satisfy f(x,y) =0,V y € M.

For the proof of this theorem we refer to Piron (/4, Theorem XXI. [The
proof of Theorem XXII in Piron (/4) is incomplete. A corrected proof has
been given by Amemiya and Araki (29).

We remark here that for irreducible proposition systems the field is essen-
tially uniquely determined by the structure of the lattice. This is no longer the
case for reducible lattices. This fact is at the origin of the connection between
the field § and the superselection rules mentioned in Section I, B.

If irreducibility is dropped, other representations are possible. We mention
here particularly the representation of proposition systems by algebraic
Hilbert spaces where the coefficients are no longer a field but only a matrix
algebra. Such representations give an elegant and compact formulation of
lattices with certain types of superselection rules (27, 28).

D. PROJECTIVE REPRESENTATIONS OF SYMMETRY GROUPS
l. The Semilinear Transformations

Let B be a vector space over a field § and let « € §. An autonmorphism
o — o of the field § is a permutation of the elements of § that satisfies

(aﬁ)s = aSBS’

(ot B =+ B .
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A nonsingular semilinear transformation of 8 is a one-to-one mapping S of
B onto itself that has the properties

S+ v) = Su+ Sv YV uveB,
S(au) = o Su, (22)
Su=0=u=0.

If w=73};u;is a finite linear combination of vectors u; € B, then it follows
from (22) that Su = 3} Su;. Thus the lattice structure of the linear manifolds
of B is left invariant under a semilinear transformation. According to the
so-called first fundamental theorem of projective geometry (24), the converse
is true, too. That is, we have

Theorem 5. Every automorphism of the lattice of linear manifolds of a
vector space B over a field is induced by a nonsingular semilinear transforma-
tion S of the vectors in 8.

2. Automorphisms of Subspaces

Let us now consider the vector space 8 associated with an irreducible
proposition system .. This space is endowed with the positive definite Her-
mitian form f'(x, y) of Theorem 4. We shall from now on write ' (x, y) = (x, )
and f(x,x) = ||x[|>. The vector space B then becomes a Hilbert space 93
over the field §§. The subspaces, images of the propositions in %, are the closed
linear manifolds in the norm topology of this space.

If S is a nonsingular bounded semilinear transformation, then there exists
an inverse S~} that is also such a transformation. Furthermore, is S; and S,
are two such transformations, the S;.S; is one, too. They are thus a group
that is closely related to the group of automorphisms of the subspaces in §g.

The precise nature of this relation is obtained if we consider the subgroup
M, < M, which leaves all the subspaces of $)g invariant. A transformation
T e My is then of the form Tx =Ax V x € §5 for some fixed A e §. It is
easily verified that M, is an invariant subgroup of M and that the factor
group M /M is isomorphic to the group M of automorphisms.

Among the semilinear transformations there are the semiunitary trans-
formations. Such a transformation satisfies, in addition to (22), the relation

U =IIxl  V xe9s (23)
Consider now any semilinear transformation S € M and define for any pair

of elements x, y € $ the Hermitian form g(x,y) = (Sx, S5, Because S is
also an automorphism of the subspaces of $5 this form defines the same
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orthocomplementation in $g as the scalar product. According to a theorem
of Baer (30) there exists then a number y € § such that

g(X,y):(,\‘,Y)’)/ V xvyebﬁ' (24)

Since g is Hermitian, v is real and is in fact equal to y = g(x,x)/||x||>. If we
define now U="'2S, we find that U is semiunitary and is in the same
equivalence class as .S modulo M.

Thus we have shown: In every equivalence class modulo M of semilinear
transformations there exist semiunitary transformations. Two such trans-
formations in the same class differ at most by a factor of modulus 1.

We shall now change the notation and designate henceforth as U the entire
class of equivalent semiunitary transformations and as # = U an element from
this class.

We can then represent any automorphism m € M by one of these classes
U,,and if Eis a projection of $, m(E) its image under the automorphism s,
then we have the explicit formula

m(E) = u,, Euj;) (25)

where u,, € U,, is any element from the class U,,,.

3. Wigner's Theorem

Consider now a transformation in $¢ that maps unit rays into unit rays
and conserves the magnitude of the scalar product for the unit vectors in the
rays. Such a transformation preserves the order relation of subspaces and
transforms orthogonal rays into orthogonal ones. It thus satisfies the two
conditions of Eq. (9) for an automorphism. According to the preceding sections
it is thus generated by a semiunitary transformation u. Since complex conjuga-
tion is the only continuous automorphism of the complex numbers, u is either
unitary or antiunitary. Thus we have proved

Theorem 6 (Wigner). Every mapping of unit rays of a complex Hilbert
space $¢ that preserves the magnitude of the scalar product between such
rays can be induced by a unitary or antiunitary vector transformation of $g.
We see from the proof we have given for this theorem that the hypotheses of
Wigner’s theorem are stronger than needed for the affirmation of the theorem.
The only assumption we have used is that orthogonal rays are transformed
into orthogonal ones. This generalization of the theorem was first given by
Uhlhorn (31).

There exist many so-called elementary proofs of this theorem, beginning
with the original (incomplete) proof of Wigner (32). Not all of these proofs
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were without error, as can be seen from the critical discussion by Uhlhorn
(371); to complete the list given there, the elementary proofs that have appeared
since (33-35) should be added. A more general theorem was proved by Emch
and Piron (23).

4. Unitary Projective Representations of Symmeltry Groups

Let G be a symmetry group of an irreducible physical system. There exists
thus an isomorphism of G to a subgroup of M. Let x € G and U, € M be the
corresponding automorphism of the lattice .# of subspaces. We say that we
have a unitary projective representation of G if in every class U, of semiunitary
transformations there exists a unitary transformation.

Let U, be such a representation and let . € U, be a unitary transformation.
It follows then that

Uty = w(X, )y,
(26)
where |w(x, y)| =1, w(x,y) € §-

The function w(x, p) is called a factor of the unitary projective representation
of the symmetry group G.

The theory of unitary projective representations can thus be divided into
two parts. The first part is the theory of factors, which reduces the problem to
the second part, the theory of unitary vector representations.

The theory of factors is quite different for the three different fields. For
connected groups it can itself be subdivided into the theory of local factors and
global theory. For complex Hilbert spaces and Lie groups the local theory
and global theory of factors was developed by Bargmann (36). For quater-
nionic Hilbert spaces the theory of factors was given by Emch (/5). It is
interesting that the result for this case is much simpler than that for the complex
case. We shall discuss it in Section IB, B, 1 and 2.

IV. Projective Representation of the Poincaré Group in
Quaternionic Hilbert Space

A. QUATERNIONIC HILBERT SPACE

1. Quaternions

The quaternions are an algebraic field endowed with a norm and a topology.
As such they are a nontrivial but natural extension of the real numbers and
the complex numbers. The central position occupied by the last two fields in
all branches of mathematics and physics makes it desirable to understand the
possible role of quaternions in fundamental physical theory, especially in
quantum mechanics. This is all the more true since it can be shown that the
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complex numbers and the quaternions are the only possible algebraic fields
endowed with a topology such that the algebraic operations are continuous
in that topology and that they contain the real numbers as a subfield (9).

The quaternions contain three imaginary units, denoted by ey, e,, and e;,
which are assumed to satisfy the fundamental relations

€ie;= e =—¢;e;,

-
y (27)
e,'= —l,

where i, j, k are a cyclic permutation of 1, 2, 3.
A general quaternion g is then defined as a linear form

g=dap+a e +ae,+ase;

with real coefficients «,. We write sometimes ¢y =l and set g = >, _o a,e,.
The sum and product of quaternions are defined by assuming the associative
and distributive law with respect to both of these operations. Thus

q+ f]I = Z ([I,. o ﬂ;) €, if q= E a.e,, C]l = E all‘ €, (28)

and
qq9' =2 b,e,

with
bo=agay—a,a, — a,a, — asas
/ ' ' '
bl =dyd, '|“a0f’l +aza3ga3a2

; ; : , (29)
bzzﬂoaz + b0a2+a3a| —da,dy

’ ’
by=aya;+ agas + a,a, — a, aj.

We verify immediately that this product is nof commutative: gq’ # ¢’'q.

The norm of quaternions is |g| =[ad+a?+ad+a3]"? 1t satisfies
lg+4¢'| <lgl+1q'| and |gq'| = |g| |¢’| and it defines a topology by setting for
the e neighborhood of the element g, the quaternions ¢ with |g—g,| < e.
With such a set of neighborhoods as a fundamental set, we have defined a
topology for which the two operations of addition and multiplication are
continuous operations (g).

The conjugation is defined by ¢% = ay — a;e; — a,e, — ayes. It follows that
the norm is defined also by |q|? = g¢® = ¢®¢. Every quaternion g # 0 has an
inverse given explicitly by

g " =(lg])"'q% (30)
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The field of the quaternions thus defines two topological groups. The
additive group is isomorphic to the group of vector addition in a four-
dimensional real space. It is thus Abelian.

The multiplicative group is isomorphic to the covering group of U(2, €)
the complex unitary group in two dimensions. It is thus not Abelian. '

The quaternions w of magnitude | are the invariant subgroup SU(2, €) of
the multiplicative group. We denote these quaternions by £.

The center of the multiplicative group are the real quaternions R < Q.
The center of £2 consists of the two elements 1. It is thus the cyclic group of
order 2.

For every w € £2 we can define an automorphism of the quaternions 2 by
setting

g —q¥ = wqw™ L. (31)

We prove in algebra that conversely every automorphism of the quaternions
is of this form. The automorphisms are thus themselves a group that is
isomorphic to the factor group O7(3) = SU(2, Q)/Z,.

It is sometimes convenient to represent quaternions as pairs of complex
numbers by setting

q=12zi+ ez, =(21,2,) (32)
where

zZy=dy+ ases, (3)
3

222612'1'0163.

We then identify e; with the imaginary unit / of the complex numbers. The
multiplication law is then expressible by

q= (217 22)’ ql = (Zlfa 22’)5

99’ = (2121 — 23 23,2, 21 + 2} 7). (34)

We shall call this representation of the quaternions by pairs of complex
numbers the symplectic decomposition.

The symplectic decomposition furnishes us with a representation of the
quaternions by 2 x 2 matrices in a complex space as follows. For any fixed
quaternion a € Q with symplectic decomposition @ = («y, o;) we set

q9—~q =aq. (35)
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We then interpret the quaternions g and ¢’ as two component vectors with
complex coefficients. Equation (35) is then equivalent with the linear trans-
formation

q, = A(],
where
a- (2 5. (36)
o &

We shall refer to this as the symplectic representation of the quaternions. For
the particular case that a=e, (r =1, 2, 3) we obtain in the symplectic repre-
sentation

e,=—io, (r=1,2,3) 37

where o, are the three Pauli spin matrices. We should remark here that the
symplectic decomposition can be made in a coordinate-free manner as
follows: Let / be any fixed pure imaginary quaternion of magnitude 1 so that
i®=—i, i*=—1. We write, for every quaternion ¢=g¢, +q_, where
g+ =3(qg F iqi), and define g, =z, and ¢_ = iz,. The pair z; and z, can be
considered as complex numbers with / as the imaginary unit. The corre-
spondence g < (z},2,) is unique in both directions and satisfies the rules (32).
This is the symplectic decomposition with respect to i.

The symplectic decomposition will be very useful in the following because
it can be extended to quaternionic Hilbert spaces, and it permits a certain
reduction of quaternionic Hilbert spaces to pairs of complex spaces.

2. Elementary Properties of Quaternionic Hilbert Space

A quaternionic Hilbert space $q is a linear vector space over the field of
the quaternions. This means that in addition to the usual rule of vector
addition there is also a left multiplication with scalars that associates with

every ¢ € Q and every f € Hg an element gf € Hq.
This scalar multiplication shall satisfy the usual rules of distributivity and

associativity, such as

q91(q2 /) = (q192) £,
q(f+8)=4qf+4s, (38)
Ghra)f=af+ef

forg,e Qand V £, g € Hq.
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Furthermore, we define a quaternion-valued scalar product ( f,g) € Q by
the axioms

O (f,e)=(f9q*
() (f+gmh)=(f)+(gh).

(i) (f,8)=(gN)* (39
V) [fIP=(f£1)>0;
IfIP=0=f=0.

Just as in the case of ordinary (complex) Hilbert space, we demonstrate then
the inequalities of Cauchy and Minkowski:

@ (Sl 21 el,

o (40)
(i) Nf+gl=1s1+1gl
With the scalar product, strong and weak convergence can be defined in the
usual manner.

3. Linear and Semilinear Operators

We define a semilinear operator ¢ as a function 7f, with a linear manifold
as domain and values in $gq, that satisfies the conditions

Hft+g)=1tf+1g

1gf) = g'(tf).” G}
Here 4" designates an automorphism of the quaternions independent of f.
It follows that the range of a semilinear operator is also a linear manifold.
We shall consider only nonsingular transformations such that /=0 = f/=0.
The inverse ¢~! then exists and it is also semilinear. The operator ¢ is /inear if
g'=qVqgel.

The Hermitian conjugate ' of ¢ is defined by the relation

(fi1e) =18

We can verify that ¢! is semilinear if ¢ is, and if the automorphism associated
with 7 is ¢ —¢', then the automorphism associated with ¢! is ¢ — ((¢®)*)®
where (g°) =g.

A semiunitary operator u is semilinear and in addition satisfies |juf'||* = || f]|?
V f € Hg. It is called unitary if it is also linear.
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A simple example of a semilinear operator is a multiplication with a fixed
quaternion a € Q. Indeed, let

tf=af ael.

It follows that t(gf) = a(qf) = (aq) f = aqa~'af = ¢°1f. Thus we see that left
multiplication with a fixed quaternion a induces a semilinear transformation
that leaves every ray invariant.

4. Ray Transformations

Every semilinear transformation induces a ray transformation or, more
generally, an automorphism of subspaces. A ray is defined as the set of vectors
of the form g/ with variable ¢ € Q and fixed /'€ $5. The image ray is given
by the set of vectors ptf for all p € Q.

We denote by F a ray that contains the vector fand by TF the mapping of
the ray induced by a semilinear transformation r. We shall say that two semi-
linear transformations are equivalent if they induce the same ray transforma-
tion. This is clearly an equivalence relation. We can therefore identify the
class [f] of all equivalent transformations ¢ with the ray transformation 7.

We now have the following important property:

Theorem 7. Every equivalence class T of semilinear transformations in a
Hilbert space $q contains at least one linear transformation ¢,.

Proof. Let g —¢' be the automorphism induced in Q by the semilinear
transformation ¢. Since every such automorphism is inner, there exists an
w € £ (quaternions of norm 1) such that

q'= wgw™ L. (42)

Define #y=w™!t. Tt is equivalent to ¢ and we find 7o(qf) = w ' t(gf) =
w twgw 1tf =gt f. Thus ¢, is linear. This proves Theorem 7.

If 14 is another linear transformation in the same class than #5'7, is a linear
transformation that leaves every ray invariant. Such a transformation is of
the form

S—=Af with Ae® and A#0.

In the particular case that ¢ is also unitary we must have A>=1 or A = +1.
If we combine this result with the result of subsection D, 2, we obtain the
following

Corollary. Every equivalence class 7" of semilinear transformations of a
quaternionic Hilbert space contains exactly two unitary transformations.
They differ only by a sign.
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B. PROJECTIVE REPRESENTATIONS OF SYMMETRY GROUPS IN QUATERNIONIC
HILBERT SPACE

1. Local Lifting of Factors

We consider now a topological group G and a projective representation
that associates with every x € G a ray transformation U,. According to the
preceding subsection, every such transformation can be represented by two
unitary operators u, € U, that differ only by a sign. If we choose in an arbitrary
manner in each class U, one of the two representatives u, then we obtain a
projective representation of the symmetry group G by unitary operators that
satisfies

U Uy = w(X,Y) U, (43)

where w(x,y) = +1. From the foregoing it is clear that every ray representation
of a topological group in a quaternionic Hilbert space can be brought into
this form. If we choose u, = 1, then the factors w(x,y) also satisfy

w(e,y) =w(x,e)=1 (44)

for all x, yin G.

It is natural to ask at this point whether it is possible to choose in a suitable
neighborhood of the identity e € G the representatives u, in such a way that
the factors w(x,y) = 1. This is indeed the case. The relevant theorem is due to
Bargmann (36), and it states that for every representation of a topological
group in a complex Hilbert space there exists a suitable neighborhood N(e)
of the identity so that w(x,y) is a continuous function of its two arguments.
This theorem is also valid in quaternionic Hilbert spaces. The proof for this
case was given by Emch (75).

The application of this result to the representation x — U, leads to

Theorem 8 (Emch). Every ray representation x — U, of a topological
group G in a quaternionic Hilbert space can be induced by a strongly con-
tinuous unitary representation x — u, € U, in a suitable neighborhood of the
identity.

It is worth pointing out here that this theorem is false for complex Hilbert
spaces. The deeper reason for this fundamental difference of the two spaces
has been analyzed by Emch (/5) and is due to the fact that SU(2, €) = 2 of
the quaternions of magnitude 1 is semisimple, whereas the corresponding
group of phase transformations in a complex space is not (it is in fact Abelian).

Theorem 8 leads to a considerable simplification of the theory of projective
representations of groups. It suffices to study the locally unitary vector
representations.
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2. Global Lifting of Factors

We must next examine the question whether it is possible to extend the
vector representation x — u, to the entire group G. For simply connected
groups the answer is easy. We have in fact

Theorem 9. Every ray representation x — U, of a simply connected
topological group in a quaternionic Hilbert space can be induced by a unitary
vector representation x — u,.

Proof. According to Theorem 8 there exists a neighborhood N(e) of the
identity and a local lifting of the factors such that w,u, =u,, V x, y € N(e).
According to Theorem 15 of Pontrjagin (9) every element x € G admits a
representation x = [ [#=; x;, x; € N(e) and n < w. Since the correspondence
x — u, is a vector representation for all x € N(e), this theorem permits us to
conclude that it remains true for all x € G. This proves Theorem 9. [For the
details of this part of the proof we refer to Bargmann (36).]

The case of multiply connected groups can be reduced to the case of simply
connected groups via the theory of the universal covering group. In the applica-
tion that constitutes the main topic of this article we need only the result for
doubly connected groups, which we shall state with

Theorem 10. Every ray representation of a doubly connected topological
group G in a quaternionic Hilbert space can be induced by a unitary vector
representation x — u, of its simply connected covering group G. There are
two and only two distinct cases possible. Either x — u, is also a vector repre-
sentation of G or it is a double-valued vector representation that satisfies only

U Uy, = FUy,,.
The proof of this theorem is exactly the same as in the case of complex spaces.

We can therefore omit it here (15).

3. Schur’s Lemma and Its Corollary

The lemma of Schur plays a fundamental role in the representation theory
of groups. For the quaternionic case we shall need its generalization, which
can be stated as follows.

Lemma (Schur). Let $¥ (r = 1, 2) be two quaternionic Hilbert spaces, G
a topological group, and u¢ irreducible unitary representations of G in HY.
Furthermore, let 7 be a bounded colinear mapping of $ into H such that

P =u@Pr V xegG;

then t either admits an inverse or it is zero.
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The proof of this lemma requires only small adaptations to be valid for the
case of quaternionic spaces as well, and we shall omit it here [for details cf.
Emch (75)].

Although Schur’s lemma is identical in the quaternionic and complex cases,
the situation is quite different for its corollary. We state it in the form of

Theorem Il. Let u, be an irreducible representation of the group G in a
quaternionic Hilbert space $g and t a bounded linear operator in $g such
that tu, =u.t V x € G; then 1 is of the form t = rI + s _# where r, s are real,
Iis the identity in $ g and _# is a unitary and anti-Hermitian operator in $g,.

If we compare this theorem with the corollary of Schur’s lemma in $g,
we note that the essential difference is the appearance of a linear operator #
that is unitary and anti-Hermitian. Such a _# satisfies #'=—_¢ and
LS Ty 2]

In a complex space such an operator is always of the form _# = il where
i = (—1)"? and it is seen that in this case the corollary reduces to the corollary
for complex spaces.

Before giving a formal proof of the theorem, let us verify it for the case of
a one-dimensional space. The vectors in this space are the quaternions q.
Linear operators are multiplication from the right with another quaternion.
The unitary operators are multiplication from the right with a quaternion
of magnitude 1. Thus we may write ug =qw, ¢ € Q, w € 2.

A linear operator 7 that commutes with # must have the form

1q=qa aeQ and wa=aw.

Let us write for w =wq +w - e. We define e, = |w| ! w-eso that w =wy+ |w| e,
We find then easily that ¢ must have the form a = r + se,, with r and s real.
Thus ¢ is of the form

g =rq + sqe,,

and we have verified the theorem for this case if we show that #Zg =ge, is
unitary and anti-Hermitian. This is indeed the case, since e}, =-—e, and
e, = —1, so that #'g =—qe, and #*=—I.

Let us now prove Theorem 11. Assume first that ¢ is Hermitian, so that
t" = t. In that case not only 7 but also every function of t commutes with u.
In particular, the spectral projections associated with ¢ do the same. Since u
is irreducible, all these spectral projections are either 0 or 7. From this follows
that ¢ is a multiplum of I:¢t=r-I with r real. This proves the theorem for
Hermitian .

Let us now examine the case of anti-Hermitian 7:17 = —¢. It follows then
thatt'z is a positive operator, since (£,t7tf) =0 = (¢f,1f) =0 or tf=0. By
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Schur’s lemma this is only possible if f = 0. Hence 't is positive and Hermitian.
According to a well-known theorem (37) there exists then a unique positive
square root (171)"? = |¢| that is Hermitian, possesses an inverse, and commutes
with 7. We define then

F =l =it

so that

FI'=—¢ and F2=-I

We verify then that ¢ also commutes with u, so according to the preceding
paragraph it is of the form s-7. Thus we have proved that t=s-_¢ with
2=—] Fft=—Fiftt=—t.

The general case, where ¢ is neither Hermitian nor anti-Hermitian, is now
easily reduced to the preceding two special cases. We write ¢ =y + t,, where
t, =3+ 1Y, t,=3(—1), so that 1] =1, 1} =—t,. Moreover, both t; and
t, commute separably with w. Thus ¢, =r-1, t,=s5-_¢, and t=r-I+ 5 7.
This proves the theorem.

It should have become obvious by now that the operator # is related to
the symplectic decomposition of the complex numbers. Indeed the _# plays
the role of an imaginary unit in the quaternionic Hilbert space. This will be
discussed in detail in the following subsection.

4. The Symplectic Decomposition of Hg

We recall that the symplectic decomposition for quaternions (cf. Section
IV, A, 1) was obtained by distinguishing one of the quaternionic units and
decomposing the quaternions into two distinct classes, those that commute
with this unit and those that anticommute. This process can be extended to

Hilbert spaces.
Let # be a linear operator in $g such that

I = F =L F=p (45)

We observe first that every vector f € $g 1s an eigenvector of _# and every
pure imaginary quaternion of magnitude 1 is an eigenvalue.

To see this let f € Hg be an arbitrary vector and define g = _#f. We decom-
pose f with respect to the ray F'= { f}, which is a one-dimensional subspace
of Hg:

Ff=g=qf+h, where (A, 1) =0. (46)

It follows from this and the properties (45) that

S I =L IIf—af N =—LS)—alfs @f + ) ==+ )L 1) @4T)
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On the other hand
(fs Ih) =—(Ff, h) = —(h,h) = —(1 = |q])( £, /). (48)

From this we obtain

g*=—|q|> and [g|>=1. (49)
Using _#? = —I, we obtain further

0=_22f+f=0+PAf+ Fh=010- |g>) f+ Fh,
so that

(hh) = (Fh, Fhy=(1—a|»* (£, /) (50)
Comparing Eq. (50) with Eq. (48) we find
lg>?=1, ¢*=-1, h=0. (51)

Thus we have proved: every vector f € $g is an eigenvector of # and the
eigenvalue is a pure imaginary quaternion of magnitude 1.

Consider now any f € ¢ and assume _Zf = if where i is pure imaginary
and i2=—1. Let w € 2 and evaluate

Fof = w ff= oif = wiw™! wf.

Thus we see: If f is an eigenvector of _# with eigenvalue 7, then wf is an
eigenvector of _# with eigenvalue wiw !. If w runs through £, we obtain
with wiw™! every imaginary quaternion of norm 1. Thus we have proved

Theorem I2. Every vector fin a ray Fis an eigenvector of the operator 7.
The eigenvalues are pure imaginary quaternions of magnitude 1. As f runs
through the ray, the eigenvalues run through all such quaternions.

Let us now select an arbitrary but fixed pure imaginary quaternion i of
magnitude 1. In every ray F we select the ensemble of vectors f such that
JAf=if The totality of such vectors from all rays defines a subset of $g that
we denote by $H§; thus

9 ={f Dol If=1f}.

We verify without effort that $§ is a complex Hilbert space when the complex
numbers € are defined by z = x + iy (x, y real). Thus for instance if we have
i ee9Y, then J(f+g) =J0f+ Fg=if+ig; i(f+g). If ze@, then
F(zf) =z ff = zif = i(zf ). Furthermore, if £, g € &, then i(f,g) = (—if,g) =
—21.8)=(f, 78 = (f.ig) = (/,8)i. Hence (f,g) € €.
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Finally, if f, € ¢ is a sequence such that || f;, — f,,i = 0 for n, m — o,
then there exists a limit f' € g such that f, — f. For this element f/ we find
I\ Jf— Jhl =l f— £, so that Zfis also the limit of Zf= if,. This means
Jf=ifand fe HE. With this we have verified that $§ is indeed a complex
Hilbert space.

We remark also that the space $§’ is total in $)¢ in the sense that every
/€ $¢ can be written as linear combinations of vectors f, € H§ with coeffi-
cients from Q. Indeed, let f € $Hg. We define fi = +(IFi #) f and then choose
an arbitrary imaginary quaternion j that anticommutes with i. By setting
f+=—jf_we find

ff+ = ff+=
L= (52)
and
f=rfi+ifi

Thus every vector f€ $ admits a decomposition into pairs of vectors f,,
£ €9 such that [ is a linear combination of such a pair with coefficients
from Q. This is the symplectic decomposition of the quaternionic Hilbert
space.

We summarize the results of this subsection with

Theorem [3. Every unitary anti-Hermitian operator _# in a quaternionic
Hilbert space defines for each imaginary quaternion / of magnitude 1 a family
$§’ of vectors fall of which satisfy Zf = if. They are a complex Hilbert space
that is total in $q.

5. Restriction and Extension of Representations

As before, let # denate a unitary anti-Hermitian operator in g, H§’ the
complex Hilbert space associated with an imaginary quaternion, and ¢ a
bounded linear operator that commutes with #. If f € $§, then Ftf =1t ff =
1(if ) =itf. Thus 1f e H. We may therefore define the restriction t;, of the
operator as the operator with domain $§’. For all fe H§ it is defined by
[(i)f: tf.

Conversely, if f;, is any bounded linear operator in $§’, we define its
extension f to g by the conditions

() tislinear
(i) f=1Pf VvV fe$H¥. (53)

Let us show that this extension is always possible and that is is unique. This
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can be seen directly from the symplectic decomposition (52). Thus we define
if by

of = 1Of, + O f. (54)
Let ¢ be any other extension. Because it is linear we have for any f

1 f=10f, 4 jOf] = if. (55)

This proves that the extension is unique.

Let us now consider the Hermitian conjugate of 7. It is defined by the
relation (f,1g) = (¢"'f,2) V £, g € . Since # commutes with ¢ we have also
for (9 (£,1Dg) =1, 2) V £, g€ HP. If in the first of these two relations we
restrict £, g to H§, we evidently obtain ('Vf,g) = ( f,1g), from which we
conclude that 7 = (1,

The following assertions are immediate consequences of this.

(a) If ¢ is Hermitian, then 1 is Hermitian, too.

(b) If # is a projection, then 1) is a projection, too.

(¢) If t = uis unitary, then ") is unitary, too.

(d) If £, 1, commute, then £ 40 commute.

(e) If ¢ is an irreducible system all commuting with _#, then ) is an
irreducible system, too.

(f) If 1, is a sequence of 1, all of which commute with _# and tending
weakly, strongly, or uniformly to a limit 7, then  commutes with _#
too, and 7{” tends weakly, strongly, or uniformly to (.

We retain the part that is relevant for the group representations in

Theorem I4. 1If x — u,is a unitary representation of the topological group
G in a quaternionic Hilbert space $g that commutes with a unitary and
anti-Hermitian linear operator _#, then for each pure imaginary quaternion
the restriction #{ is defined and

(a) the u{” are a unitary representation of G in $§’;
(b) if u, is irreducible in $g, then z{? is irreducible in HE.

This theorem gives us complete information as to the properties of the
restriction of a representation that commutes with a unitary anti-Hermitian
operator. It is natural to ask the question about the converse problem: If we
extend a representation from $§’ with the unique process described at the
beginning of this subsection, what happens to a representation ? The answer
is contained in

Theorem 15. If x — 1 is a representation of a topological group G in a
complex Hilbert space H§ and it is of class +1 or 0 in the sense of Frobenius
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and Schur, then x is an irreducible representation of G in $g. On the other
hand, if «{” is of class —I, then u* is reducible.

The classification of Frobenius and Schur that is needed here is defined in
the following way.

Let $, be a complex Hilbert space, and K a conjugation of $y, that is,
an antiunitary involutive mapping of $¢ onto itself. If x — u,is an irreducibl.
representation of a group G, we can define a conjugate representation
it, = Ku,K. Then Frobenius and Schur have observed that exactly three cases
may occur,

(a) @ is equivalent to w. There exists then a unitary operator C such that
u,=C 'u,C. If CKCK = I, then the representation is of class +1.

(b) iiis equivalent to w and CKCK = I. The representation is then of class
—1.

(¢) @is not equivalent to . It is then said to be of class 0.

The proof of Theorem 15 is given by Finkelstein et al. (/12) and Emch (/5).
[The second part (concerning the class —1) is, however, proved only for
compact groups by Finkelstein et al. (12).]

6. Representation of Abelian Groups

It is well known that the only irreducible vector representations of an
Abelian group in a complex Hilbert space are one-dimensional. Let us now
establish this same theorem for the quaternionic vector representation.
Assume x — u, to be such a representation. It follows, then, from the corollary
of Schur’s lemma, that w, = r(x)7+ s(x) #(x) where the #(x) are unitary
and anti-Hermitian operators that all commute with one another. The
operators #(x) 7 () are thus Hermitian and they all commute with each
other and with all the u,. Thus all the #(x) are multiples of one another. We
can thus write u, = r(x)I + s(x) #. According to Section IV, A, 4, every vector
is an eigenvector of #. Thus u, leaves every ray invariant, and since the u,
are irreducible, the representation x — u, is one-dimensional.

Let us now examine the properties of these irreducible representations of G.
Every vector fin a one-dimensional quaternionic Hilbert space may be repre-
sented by a quaternion ¢ € Q. The operator I is then multiplication with [
and the linear operator _# is multiplication from the right with an arbitrary
pure imaginary quaternion /, so that

u g = g(r(x) + s(x) 7). (56)
The unitarity of u, implies r(x)? + s(x)?> = 1. We may thus write

U,q = ge'’® (57)
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with
1g0(x) = % (0 < 6(x) < 2m).

The representation property u,u, = u,, leads then to the relation
0(x) + 6(y) = O(xy) (mod 27). (58)

The correspondence u, —> 0(x) is thus a continuous homomorphism of the
group G onto the additive group of real numbers modulo 27, called the circle
group. The image 6(x) of such a homomorphism is called a character of the
group G.

The characters of an Abelian group G are themselves a group, the character
group X, and there exists a natural procedure to define a topology in X such
that this group becomes a topological group. The group operations in X are
defined by setting for any two characters 6,(x) and 8,(x)

(01 8,) (x) = 0,(x) + 05(x) (mod 277). (59)

Just as in the complex case so we can here, too, characterize the inequivalent
irreducible representations of the Abelian group G by their characters. In order
to see this, let us assume that #{” and 4@ are two equivalent irreducible repre-
sentations. There exists then a unitary (hence linear) operator u such that
U = uuPu~1. Recalling that unitary operators in a one-dimensional quater-
nionic Hilbert space are multiplication from the right with a quaternion
w € 2, we see that

uP g =qgexp (i 01(x)) = uuPu=1q = gl exp (i, 0,(x)) w.

Thus
w™exp (i 0,(x)) w = exp (iy 61(x)), (60)

which implies
wlhw=1 and 01(x) = 0,(x) (mod 27). 61)

The second part of Eq. (61) says that the two characters are equal. Con-
versely, if the two characters are equal, then we can always choose an w € 2
such that for any two pure imaginary quaternions /; and i, we have i; = w™ i, w.
This w interpreted as a right multiplication in Q furnishes us with the unitary
operator u that establishes the equivalence between the two representations.

This result enables us to reduce the problem of finding all irreducible
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representations of an Abelian group G to that of finding all the characters
of G.

The group that interests us in the following is the group of translations in
the four-dimensional Minkowski space. For this case all the characters are
known. They are of the form

O(x)=p-x (mod 27) (62)

where p is a fixed four-component vector in Minkowski space, x is the four-
vector of the translation x, and p-x is the scalar product in the Minkowski
metric of these two four-vectors.

Let us now proceed to the discussion of reducible representations. In the
complex case the structure of the reducible representations of a locally compact
Abelian group can be characterized by a projection-valued measure on the
group of characters 6. This is the theorem of Stone-Neumark-Ambrose-
Godement [in the following referred to as the SNAG theorem; (38-41)],
which may be stated as follows.

Every unitary representation of a locally compact connected Abelian
topological group G defines a unique projection valued measure dE on the
character group X such that

", = J 0 dE, (63)

X

This result can be described as a kind of generalization of the spectral resolu-
tion of unitary operators.

This theorem can be transferred to the quaternionic case. The only problem
is to construct the analog of the imaginary unit / that appears in the expression
(63). It is clear that this analog must be replaced by a unitary anti-Hermitian
operator _# that commutes with all #,. The construction of such an operator
is always possible (75, Lemma 4.2, p. 766).

In order to establish the SNAG theorem for the quaternionic representa-
tions, we proceed as follows. We are given a representation x — u, in $g.
We choose a unitary anti-Hermitian _# that commutes with all u, and select
an arbitrary pure imaginary quaternion /. According to Theorem 13 this
defines a complex Hilbert space $§’ that is invariant under all u,. The restric-
tion of u, to $§’ is denoted by u{’. It satisfies the hypotheses of the SNAG
theorem. Hence there exists a unique projection-valued measure 4dE on the
character group X so that for this u{? we have a formula

WP = [ e qE®, (64)
X



168 J. M. JAUCH

The unique extension procedure described in subsection 5 defines projections
dE in $g and an operator _# such that

u = | eSO gE, (65)
" g

Thus we have established

Theorem 16. Let x — u, be a representation of a locally compact con-
nected Abelian group G in a quaternionic Hilbert space $q. Then there exists
a unitary anti-Hermitian operator _# and a projection-valued measure dE
on the character group X of G such that u, can be represented by formula (65).

We remark here that the uniqueness of the measure cannot be affirmed as
in the complex case because the operator # need not be unique. There is a
trivial ambiguity for _# because, on the subspace M = {f |uf,=f V x € G}
that reduces u,, # is completely arbitrary. This situation already exists in the
complex case, but in neither case has it any consequences for the definition of
the spectral measure.

In the quaternionic case there is a further ambiguity for ¢, even for the
part of _# that belongs to the space M.

For the case of the Poincaré group it is relatively easy to formulate physically
motivated conditions on the representation that imply uniqueness of the
operator ¢ in that case. This will be done in the subsection C, 2.

C. REPRESENTATION THEORY OF THE POINCARE GROUP

1. The Poincaré Group

The Poincaré group G is defined as the group of real linear transformations
in four variables that leave the metric of Minkowski space invariant. We shall
choose for this metric the tensor goo = +1, gz =—1fori=1,2,3 and g, =0
for u # v.

The translations 7 are an Abelian invariant subgroup. The homogeneous
transformations constitute another subgroup L, called the Lorentz group.
This subgroup consists of four disconnected components that contain,
respectively, the identity e, space inversion o, time reversal 7, and combined
inversion & = 0.7 . The connected component of the Poincaré group will be
denoted by G, and that of the Lorentz group by L..

The composition law can be expressed in terms of the translation vector
a € T and an arbitrary Lorentz transformation by

(a, (@', Ay =(a", A") (67)
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where
a’'=a+ Ad,
(68)
A" = A"
The subgroup T consists of the elements of the form (a,7) while L is repre-
sented by the elements of the form (0, ). The connected component L, is
doubly connected. Its simply connected covering group is the group S(2,¢).

2. Physical Heuristics

It is now time to consider some of the physical aspects of the representation
problem of the Poincaré group. If we compare the representation theory of
groups in complex and quaternionic Hilbert spaces, then we observe that up
to a certain point the two theories run more or less parallel without, however,
being exactly identical. The point where the two theories begin to differ in a
deeper way is met when we introduce the unitary anti-Hermitian operator _Z.
In a complex Hilbert space such an operator is always the direct sum of +i
times the identity operator.

In a quaternionic space such an operator has a much richer structure
because there exist an infinity of different square roots of —1. Consequently
we expect that the representation of groups in a quaternionic space will depart
from the complex case in an essential way if we admit for the operators _# the
most general possibilities.

Instead of studying the most general possibilities for the operator #, we
want to examine the problem from a physical point of view and see whether
we can find in the physical interpretation a motive for restricting the possi-
bilities for the operator . The operator _# is met when the Abelian sub-
groups of the Poincaré group are studied. Such groups are, for instance, the
one-parameter subgroups. If s — u, is the representation of such a one-
parameter subgroup, then we can always define in a unique manner [cf.
Finkelstein ef al. (13)] an anti-Hermitian operator 4 by setting

A =s—1lim(1/s)(u;— I).

s—0

This limit always exists on a dense linear manifold of vectors that is the domain
for this operator A.

In complex quantum mechanics the self-adjoint operator P = —i4 is always
an observable. Thus the reconstruction of an observable from the generator
of an infinitesimal one-parameter symmetry transformation is a unique
process in complex quantum mechanics. In quaternion quantum mechanics
any operator ¢ can be used for defining a self-adjoint operator P by setting,
for instance, P(#) = —# A. However, only A is determined uniquely by the
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group, but 4 is not an observable, because it is not self-adjoint. The P(_#) is
self-adjoint, butisis not unique. Since only self-adjoint operators can represent
observables, we cannot associate observables in this manner with the infini-
tesimal generators of symmetry transformations without restricting the
operator _# in some way.

The simplest way to restrict the operator Z is to require that it commute
with all the transformations of the Poincaré group. Let us examine whether
this condition can by physically motivated.

The infinitesimal generators A of the translation group behave under
Lorentz transformations like a four-vector. We can make a good case that the
self-adjoint momentum operators P = —_# A associated with these operators
should have the same property. This means physically that the measured
values of these operators transform like a four-vector under Lorentz trans-
formations. This is only possible if the operator ¢ commutes with all the u,
of the given representation.

A further restriction is obtained by requiring the energy operator P, to
have a positive definite spectrum. It is interesting to note that in quaternion
quantum mechanics this can always be accomplished by a suitable choice
of # (13):

We formulate therefore the following two postulates:

Postulate I. The observables P associated with the translations in Min-
kowski space (momentum operators) transform under Lorentz transforma-
tions like a four-vector.

Fostulate 2. The energy P, has a positive definite spectrum.

It is seen that these postulates are quite reasonable from the point of view
of physics. We want to point out, however, that there are possible repre-
sentations of the Poincaré group that do not satisfy these requirements. In
view of recent developments in fundamental particle physics there might even
be some interest in these representations, for instance, for a relativistic theory
of the recently discussed hypothetical units called quarks. That the infinitesimal
generators for the translations do not give rise to unique observables is not
such a compelling objection to quarks, which do not seem to be observable in
the usual sense of the word. In fact, they reveal their presence (if present they
are) only through a structure of partial symmetries for strongly interacting
particles.

In the rest of this chapter we shall not dwell, however, on these speculative
aspects of the unknown quaternionic representations of the Poincaré group.
We now proceed to the classification of the irreducible representations that
satisfy Postulates 1 and 2; we shall call these the physical representations.
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3. The Physical Representations of the Connected Component

We denote by G, the connected component of the Poincaré group and we
shall determine all the physical ray representations of this group in a quater-
nionic Hilbert space. The theory of the preceding section (notably Section
IV, B, 5 and 6) permits us to reduce this problem to the complex case, where
it is already solved. The steps in this reduction can be outlined as follows.

(a) We assume that we have an irreducible ray representation x — U, of
the connected Poincaré group G, into the ray transformations of the quater-
nionic Hilbert space $g. Theorem 8§ tells us that this representation can be
induced by a unitary vector representation x — u, by a suitable choice of the
factors. Because the group G, is doubly connected, x — u, is a unitary repre-
sentation of the simply connected covering group G, The representation of
G, is thus either unitary (if the kernel of the homomorphism G, — G, is
represented by the unit operators), or unitary but double valued (if it is
represented by +7; Theorem 10).

(b) Accordingto Theorem 16 there exists a unitary anti-Hermitian operator
J and a projection-valued measure on the characters of the translation group
T < G, such that

Uy, = j e dE (69)
P

where x € T, 0(x) is the character, and the integral is extended over the entire
character group X. Every character 0(x) has the form (62) where x is the
translation vector and p is an arbitrary fixed vector in Minkowski space.

(c) According to Postulate 1 the operator ¢ commutes with all operators
u, with x € G,. According to Theorems 18 and 14 we can, for each arbitrary
but fixed pure imaginary quaternion 7, define a complex Hilbert space $§’
and a restriction u{ of the representation u o this space. According to
Section 1V, B, 5, this restriction is an irreducible single- or double-valued
unitary vector representation of G, in the complex space ${.

(d) Conversely, if x ->u{? is an irreducible (possibly double-valued)
representation of G, and if it is not of type —1 then it can, according to Theorem
15, be extended in a unique way to a unitary representation in $g.

The problem of finding all the physically meaningful representations of the
Poincaré group in a quaternionic space $g is thus reduced to that of finding
these representations in the complex space. This problem is solved and all
these representations are known.

We shall summarize the method and results for the complex case in the
following subsections.

4. Induced Representations (Discrete Case)
Herein we review briefly the theory of induced representations in a complex
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Hilbert space for the case of finite groups. Although finite groups are not our
primary concern, they serve as a useful example for the discussion of the
purely algebraic aspects of the theory. The application of these results to the
infinite Poincaré group is then possible by supplementing this algebraic part
by some measure-theoretical and ropological considerations.

The notion of induced representations is a generalization of that of the
regular representations. Characteristic for both is that the group plays a
double role: First, it is the group to be represented and second it is also a
Hilbert space. For finite groups this space is finite-dimensional; in fact, its
dimension is equal to the order of the group.

This space is defined as the set of all functions /' (x) from the group G to the
complex numbers . If we define the norm of such functions by

£ 12 = 2 FACHIES (70)

we evidently obtain a Hilbert space $(R).
The regular representation is then obtained by defining for any s € G the
unitary operator R;:

(R, f) (x) =1 (x). (7D

If 5, and s, are two elements from G, we have evidently
(Ry,(Ry, /) (x) = (R, /) (x51) =1 (51 52).

Therefore we may set
Rsn R.Yz = RJ‘lS‘." (72)

The correspondence s — R, is a unitary representation of the abstract group
in the Hilbert space $(R). This is the regular representation of the group G.
We shall now generalize this notion in successive steps until we arrive at
the induced representation in sufficient generality for use in connection with
the Poincaré group.
Let H < G be a subgroup of G. We can then decompose G into its right
cosets by the formula

G=H+ Hx + Hx,+ " x, ¢ H, x, ¢ H, x, ¢ Hx, etc. (73)

We denote the set of right cosets of G by G. Two elements x and y in the
same coset are said to be equivalent modulo H, and we write

x = y(H). (74)
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We consider now functions f (x) defined on right cosets G 4. If the number
of right cosets G 1s j, then these functions define a j-dimensional vector space,
which can be made into a Hilbert space by defining the norm

IfIP= % [f®I? (75)

NEeG

where the summation is (as indicated) extended only over the cosets. Since
f(x) is assumed to be constant in a coset, it suffices to select from each coset
one x and carry out the sum (75).

The induced representation is now obtained by setting for all s € G

(Us ) (x) =1 (x9). (76)

We remark here that this definition is meaningful; that is, the right-hand side
is again a function on the cosets because as x runs through one coset the image
xs runs through another.

We again easily verify that this is indeed a representation in a j~-dimensional
space and that it is unitary.

For the special case where H consists only of the unit element, we obtain
the regular representation. Thus U, is seen to be a generalization of the regular
representation. For the other extreme case where H = G, we obtain the trivial
unit representation for which every s € G is represented by 1.

In the next step we consider functions f(x) that are not necessarily constant
in the cosets. Let, for instance, y(s) be a one-dimensional representation of

G so that
x(s1) x(s2) = x(s1.52)
@] =1 7)

and define
fE)=x&f(x) V £eH,xeG. (78)

Such functions still define a j-dimensional vector space since the values of
/(x) are determined in each coset by its value for one particular element in the
coset. With the norm defined again by

IfIP= X /&) (79)

xeGy

we obtain a Hilbert space.
An induced representation is now obtained by again setting

(U f) (x) =S (xs). (80)
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The next and final generalization is obtained by starting with any unitary
representation s — L, of H in a representation space $, of dimension ny.
We then define functions /' (x) on G with values in $,. That is, for each x € G
we associate a vector f(x) € $,. This vector-valued function is assumed to
satisfy

fhx) =L, f(x) V heH xegG. (81)

With the norm definea by
IfIP= 3 I/ ()l (82)

xeCGu

we obtain a (j-ng)-dimensional vector space and an induced unitary repre-
sentation

(U, fYx)=f(xs) V sed. (83)

This is the induced representation denoted by U*.

5. Induced Representations (Continuous Case)

In this subsection we describe the generalization of this method for con-
structing representations of G to the case of topological groups. In the follow-
ing we shall apply this only to Lie groups, but many of the definitions and
theorems are applicable for locally compact topological groups.

Let us then assume that G is such a group, and H < G is a subgroup. The
first difference from the finite case already becomes evident: In the finite case
we could admit any subgroup; in the case of topological groups, however,
we must add the condition that H is closed in G (H = H). We shall see that
for the applications we have in mind this is always the case.

We can now define, in complete analogy to the discrete case, the right cosets,
but we cannot expect them to form a finite or even a discrete set. Thus instead
of a formula such as (73), which would not be correct for the continuous case,
we define the space G of the right cosets simply as the equivalence classes of
the elements x € G modulo the subgroup H. Two elements x, x, € G are
said to be equivalent modulo H if there exists an element y € H such that
x| = yx,. We shall denote by & the class of equivalent elements Hx that
contains the element x € G. The correspondence & = #(x) is called the canonical
mapping of G onto the equivalence classes or right cosets G .

The cosets G inherit a natural topology from the topological space G:
A subset 4 < G is open if and only if #—'(4) is open in the topology of G.
Here 7w~ 1(4) denotes the set

7 1(d) = {x|x € G, n(x) € 4}. (84)

With this topology the mapping 7(x) from G to G is continuous.
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We also need a measure on the cosets, since we need to replace the sum of
the discrete case by an integral. The ideal type of measure would be invariant
under right translations, but such a measure is not always possible. Fortunately
the weaker requirement of “quasi-invariance” will be sufficient to construct
the induced representation.

A measure p on Gy is said to be quasi-invariant if the translated measure
w([4]1x) = pn(4) has the same null sets as the measure u(4). We can prove
that such a measure always exists (43) on the groups that interest us. The
translated measure p is then absolutely continuous with respect to the original
one and we can define the Radon-Nikodym derivative (44)

dpig
i () =pu8). (85)

The function p,(£) is positive and essentially bounded and satisfies in addition
the identity

We now consider the set of all functions from the topological measure
space Gy, the vectors f (&) of a fixed Hilbert space $,, and a unitary repre-
sentation L of H, which satisfy the following conditions:

(@) (f(x),g)isa Borel function in x for all g € §,.
(b) Forall x e Gand all # € H we have

%) =L f (). (87)
© [ 1P < .

Gn

The integration in this last expression makes sense because | f(x)/|? is, on
account of the unitarity of the representation L, only a function of the cosets.
We can define more generally a scalar product

()= [ (f(x),80)du® (88)
Gir

so that the set of functions /= {  (x)} becomes a Hilbert space. We now define
the induced representation U in this Hilbert space by setting.

U HO) =) [N (89)

It can be verified without difficulty that this is a unitary representation in the
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(generally) infinite-dimensional Hilbert space §. In the special case where
the subgroup H is the identity element this construction still works. For the
measure we can choose the right-invariant Haar measure and the repre-
sentation that we obtain is again called the regular representation.

The usefulness of the induced representation is that with it we can construct
the representation of groups from those of certain subgroups. In order to use
this method effectively it is necessary to know something more about the
properties of the induced representations when H and L are given. It would
be particularly useful to know when the representation U* is irreducible. A
great deal of research has been devoted to this problem with only partial
results (42).

The Poincaré group belongs to a certain class of groups for which there
exists a complete and satisfactory theory of the induced representation. The
groups of this class are the so-called semidirect products, which we shall discuss
in the following subsection.

6. Semidirect Products

We consider now a special class of groups, the semidirect products. Let
G, < G be an invariant Abelian subgroup of G and G, another subgroup of
G such that G; N G, = e and such that every element z € G can be written as a
product

z=xy with x e G, y e G,.

Because G; N G, = e, this product representation is unique.
The semidirect product can also be written as pairs of elements (x,y) =z
with the composition law

(x1,21) (x2,72) = (X1 p1 X297, Y1 72)- (90)

The transformations x — y[x]= yxy~! constitute an automorphism of Gj.
The semidirect product can thus also be considered as composed of the pairs
of which one element is an element from G and the other is an automorphism
of Gl'

Examples of semidirect products are many and important. They may occur
in discrete or continuous groups. We shall here mention three.

Example |.  Probably the simplest example of a semidirect product, which
may serve to illustrate many of the concepts and theorems, is the group Ss,
the permutation group of three objects. It is of order 6. The Abelian invariant
subgroup G, consists of the two cyclic permutations plus the identity and it
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is of order 3. The group G, of automorphisms of G consists of exactly two
elements, the identity and the interchange of the two cyclic permutations.
Thus the semidirect product G;A G, consists of six elements. Examination of
the group table shows that it is isomorphic to the permutation group of three
elements.

Example 2. The group of Euclidean motions in the plane consists of
translations and rotations around a fixed point in the plane. The translations
are an Abelian subgroup G| and the rotations G, induce an automorphism
in G;. Thus this group, too, is a semidirect product, since every Euclidean
motion may be represented as a rotation followed by a translation.

Example 3. The connected component of the Poincaré group G, contains
as an invariant Abelian subgroup G; the translations in Minkowski space.
The Lorentz transformations induce an automorphism in G; and every
element of G can be represented as a product of an element from G; with an
element from G,. The composition law (68) is already in the form that shows
that G, is indeed a semidirect product.

In the following we shall be concerned primarily with the last example.
Consequently we shall adopt from now notation conforming to that introduced
earlier (in Section 1V, C, 1), according to which the invariant Abelian sub-
group G, will be the translation group 7. An element a € T is represented by
the four-vector a. The group G, is to be identified with the group L of the
Lorentz transformation /1.

It is also convenient to use the following notation for the characters and
the character group of 7. Each character will be represented by a function on
the group 7 of modulus one (instead of the exponents mod 2=, as we did in
Section IV, B, 6). A general such function will be denoted by 4 and its depen-
dence on @ will be written {a,d>. For the translation group 7 these characters
are represented by four-vectors 4 and the foregoing functions take the form
(cf. Section IV, B, 6)

{a,dy =exp (ia-ad). 91)

This notation is convenient since it emphasizes the complete symmetry
between the group T and its character group 7 that permits us to identify the
characters of the characters with the elements of T by writing d = a.

The automorphisms of the group 7 induced by Lorentz transformations /1
may be written a — A[a] = Aa. They induce a dual automorphism in the
character group d — [d] A defined by

<a,[d] 4 = {A[a], d>. 92)
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We shall now introduce two concepts that are convenient at this point.
Two characters ¢, and 4, that can be transformed into each other by a Lorentz
transformation are said to be equivalent, and we define the orbit of characters
by the

Definition. An orbit O in the character group is a class of equivalent
characters.

We can also introduce the family of all Lorentz transformations that leave
a given character 4 invariant. This family is a group attached to the characterd.
It is called the little group.

Definition. The little group G; of the character 4 is the set of all trans-
formations / € L that leave 4 invariant: In a formula

G,={A|AeL,[d)A=a}. (93)

For the Lorentz group the orbits consist of the family of four-vectors 4
that satisfy a relation d-4 = m? = const.

The little group is naturally a subgroup of the Lorentz group L. By com-
bining it with the translation group 7" we can make it into a subgroup H of the
Poincaré group. Thus to every character 4 we associate a subgroup H = TAG,.
This group H is thus the semidirect product of 7 with the little group G,.
Every irreducible representation L of a group H has the form L = M where
d is a character and M is an irreducible representation of the little group G,.

We have now all the concepts needed for the formulation of the funda-
mental theorem of Mackey and Frobenius

Theorem 17 (Mackey-Frobenius). Let L =4M be an irreducible repre-
sentation of the subgroup H = T'A\G; where dis an arbitrary character for T
then the induced representation U of G is irreducible. Moreover, every
irreducible representation of G can be obtained in this form and two irreducible
representations L =dM and L' =4’ M’ of G are equivalent if and only if 4
and 4 are in the same orbit and M is unitarily equivalent to M.

The proof of this theorem is given by Mackey (3, 4); it is rather long and
cannot be reproduced here. Its usefulness for us is that it permits a further
reduction of the representation problem of the Poincaré group. In fact the
representations of this group can now be completely classified by following
these six steps (45):

(a) Determine all the characters of 7.

(b) Find the orbits O in the charactergroup 7.
(c) Select a character 4 in each orbit.

(d) Determine the little group Gj.
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(e) Determine all irreducible representations M of the little group G,
and construct with them the irreducible representations L =4M
of the subgroup H = TAG,.

(f) Construct the induced representations U~

The most difficult part in this program is usually step (e), as will be seen by
examining it for the case of the Poincaré group. For the latter (or rather, its
covering group) we have the following situation:

(a) The characters 4 are all of the form

{a,dy =exp(ia-a).

(b) Each orbit is determined by the value of the invariant product m? = 4-4.
Here Postulate 1 will restrict the values to m? = 0, and 4°= 0. The orbits are
thus hyperboloids in the forward light-cone of the Minkowski space.

(c) For m? # 0 we can select the special character 4 = (1,0,0,0) on the unit
hyperboloid. For m?=0 there are two possibilities: (i) The character
d=(1,0,0,1); and (ii) the singular case d = (0,0,0,0).

(d) The little group associated with the character 4= (1,0,0,0) is the
group SU(2,€), that for 4=(1,0,0,1) is isomorph to the group E, of
Euclidean motions of a plane, that for a = (0,0,0,0) is the covering group of
the Lorentz group, that is, SL(2, €).

(e) The irreducible representations of SU(2, €) are the well-known finite-
dimensional representations of dimension 2s + 1 with s=1%, 1, 5, ..., etc. The
irreducible representations of £, are of two kinds; only one kind seems to be
of physical interest, and it corresponds to a finite and discrete value of the
spin. The case (c), (ii) does not represent a particle since the momentum and
energy are identically zero in this case.

(f) For each of the irreducible representations listed under (e) we construct
the induced representation according to formula (89). In all of these cases the
measure can be so constructed that p(y) = 1. With this step the problem is
solved.

V. Conclusion

We recapitulate the essential steps that led us to the physical representations
of the Poincaré group in a quaternionic Hilbert space.

We started with the systems of elementary propositions and we have given
some reasons why such a system is always an orthocomplemented, complete,
weakly modular, and atomic lattice. Such lattices are thus the basic structures
of any physical theory that is concerned with measurable physical quantities.
The distributive lattices are characteristic for classical mechanics. In such a
lattice every proposition is compatible with every other. At the other extreme
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we have quantum mechanics, where we find that propositions may form
coherent components.

Every coherent component can be represented as the lattice of subspaces
in a Hilbert space with coefficients from a field. If this field contains the reals
as a subfield (as it must if we have continuous measurable quantities), then
there are only three possibilities, since mathematics tells us that there are
only three such fields possible: the reals, the complex numbers, and the
quaternions.

A lattice has a natural symmetry group, the group of automorphisms.
Translated into the language of Hilbert spaces these automorphisms become
the ray transformations. A symmetry group of a physical system appears thus
as a homomorphism of this group into the group of ray transformations. This
is called a ray—or projective—representation of the symmetry group. Rela-
tivistic invariance is thus introduced by considering the projective representa-
tions of the Poincaré group.

There is a connection between the projective representations and the vector
representations that may be rather involved in the complex case. In quater-
nionic Hilbert spaces $)g this connection is extremely simple, since we can
show that every projective representation of every group can be induced by a
unitary representation. This happens to be also true in the complex case for
the Poincaré group. But only in the quaternionic space is it true for every
group.

The next step is the construction of the unitary representation of the Poincaré
group in quaternionic space $)g. Here we postulated for physical reasons that
the momentum operators must behave under Lorentz transformations like a
four-vector. This implies the existence of a unitary and anti-Hermitian linear
operator _# that must commute with all the unitary operators of the repre-
sentation. The existence of the operator # permits, for every pure imaginary
quaternion i, the extraction from $g of a complex Hilbert space $§.

The study of these Hilbert spaces shows that there exist simple relations
between the unitary representations in ¢’ and in $g. These relations were
described under the heading of contractions and expansions of representations.

The final result is that the physical representations in £ can always be
obtained as expansions of complex representations.

There remains thus the construction of all the complex representations of
the Poincaré group. This can be accomplished with the help of the theorem of
Mackey-Frobenius for semidirect products. The Poincaré group is such a
group and the theorem is directly applicable, giving very quickly all the results
obtained by Wigner in 1939.

The theorem of Mackey-Frobenius can also be used for the construction of
the nonphysical representations, since the validity of the theorem is indepen-
dent of the nature of the field. For quaternions, however, the irreducible
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representations for the subgroup H = TA G, [step (e)] can in general no longer
be constructed in the same way, since the one-dimensional characters need

not commute with the representations of the little group G, Thus we know

nothing about the possible representations that do not satisfy the physically
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otivated Postulates 1 and 2. Since the latter give essentially the same result
in the complex case, we may look for unexpected possibilities only in the
yet unexplored ““unphysical’ representations.

REFERENCES

Wigner, Aun. of Math. 40, 149 (1939).

Bargmann, Amn. of Math. 48, 568 (1947).

W. Mackey, Ann. of Math. 55, 101 (1952); 58, 193 (1953).

W. Mackey, Amer. J. Math. 73, 576 (1951).

Bargmann, Ann. of Math. 59, 1 (1954).

Ehrenfest, Z. Physik 78, 555 (1932).

. Pauli, Z. Physik 80, 573 (1933).

. G. Birkhoff and J. von Neumann, Ann. of Math. 37, 823 (1936).

. L. Pontrjagin, ‘“Topological Groups,” especially Chapter V, Sect. 37. Princeton Univ.
Press, Princeton, New Jersey, 1939.

. E. C. G. Stueckelberg, Helv. Phys. Acta 33, 727 (1960).

. E. C. G. Stueckelberg and M. Guenin, Helv. Phys. Acta 34, 621 (1961).

D. Finkelstein, J. M. Jauch, and D. Speiser, J. Mathematical Phys. 4, 136 (1963).

D. Finkelstein, J. M. Jauch, S. Schiminovich, and D. Speiser, J. Mathematical Phys. 3,

207 (1962); 4, 788 (1963).

C. Piron, Helv. Pliys. Acta 37, 439 (1964).

G. Emch, Helv. Phys. Acta 36, 739, 770 (1963).

P. Jordan, Arch. Math. 2, 166 (1950).

S. Maeda, J. Sci. Hiroshima Univ. Ser. A 19, 211 (1955).

M. L. Dubreil-Jacotin, L. Lesieur, and R. Croisot, ‘‘Legons sur la théorie des treillis,”

Cabhiers Sci. XXI[. Gauthier-Villars, Paris, 1953.

G. Birkhoff, Lattices in applied mathematics. Proc. Symp. Pure Math., especially p. 155.

Am. Math. Soc., New York, 1961.

O. Frink, Trans. Amer. Math. Soc. 60, 452 (1946).

P. Destouches-Février, ““La Structure des Theories Physiques.”” Presses Univ. de France,

Paris, 1951.

G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88, 101 (1952).

G. Emch and C. Piron, J. Mathematical Phys. 4, 469 (1963).

E. Artin, “Geometric Algebra.” Wiley (Interscience), New York, 1957.

M. H. Stone, Trans. Amer. Math. Soc. 40, 37 (1936).

L. H. Loomis, Bull. Amer. Math. Soc. 53, 757 (1947).

L. P. Horwitz and L. C. Biedenharn, Helv. Phys. Acta 38, 385 (1965).

L. P. Horwitz, Helv. Phys. Acta 39, 144 (1966).

I. Amemiya and H. Araki, Publ. Research Inst. Math. Kyoto Univ. A2, 423 (1967).

R. Baer, “Linear Algebra and Projective Geometry,” Chapter IV. Academic Press,

New York, 1952.

. U. Uhlhorn, Ark. Fys. 23, 307 (1963).

. E. P. Wigner, “Group Theory,” p. 233 ff. Academic Press, New York, 1959.

. J.S. Lomont and P. Mendelson, Ann. of Math. 78, 548 (1963).

E.

Ve
G.
G.
V.
P.

w



18

34
35

36
37

38
39
40
41
42

43
44
45

2 J. M. JAUCH

. V. Bargmann, J. Mathematical Phys.5, 862 (1964).

. G. C. Wick, in “Preludes in Theorctical Physics” (A. de-Shalit, ed.). North-Holland
Publ., Amsterdam, [966.

. V. Bargmann, Ann. of Math. 59, 1 (1954).

. F. Riesz and B. Sz-Nagy, “‘Functional Analysis,” especially Sect. (104). Ungar, New
York, 1955. The proof can be transferred almost without change to quaternionic
Hilbert space.

. M. H. Stone, Ann. of Math. 33, 643 (1932).

. M. Neumark, /zv. Akad. Nauk. SSSR Ser. Fiz. 7, 237 (1943).

. W. Ambrose, Duke Math. J. 11, 589 (1944).

. R. Godement, C. R. Acad. Sci. Paris 218, 901 (1944)

. A survey with reference to literature of this subject is found in G. Mackey, Infinite
dimensional group representations. Collog. Lecture Am. Math. Soc., 1961.

. J. Dieudonné, Ann. Univ. Grénoble 23, 25 (1948).

. P. R. Halmos, “Measure Theory.”” Van Nostrand, Princeton, New Jersey, 1950.

. J. M. Jauch, Lecture notes. CERN Seminar, Geneva, 1959, 5425/TH.06, Pt. V.

3



