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Abstract

Networked systems play a major role in the modern world, enabling connectivity
between computers, mobile phones and lately even sensor devices of very small
size. These low-power, often ad-hoc, networks exhibit particular characteristics
and are bound to specific challenges, which have been the object of study of fields
such as ubiquitous computing, Wireless Sensor Networks (WSN) and the Internet
of Things (IoT). This thesis is focused on such low-power networked systems in
the context of smart spaces and crowd environments. The goal is to define efficient
protocols and architectures given the subtleties of these settings, addressing issues
such as decentralization of tasks, handling of heterogeneous resources and dealing
with crowd unreliability. The challenges addressed are met throughout the whole
lifecycle of a system’s creation, from architecture design and definition of
requirements, to implementation and finally experimental evaluation. The thesis
starts by examining the purely networking aspects, investigating the field of
mobile ad-hoc networks and proposing a novel routing algorithm which
disseminates path using a loop-erased random walk. Then, the focus is shifted to
smart spaces and WSN, with the implementation of two fully-fledged IoT
networked systems, the first providing location-based automation to mobile users
and the second modelling and augmenting a WSN testbed’s resources. Both
systems are deployed and tested at the Syndesi WSN testbed of the TCS-Sensor
lab, at the University of Geneva. In the third part of the thesis the focus is
directed on crowdsourced systems, starting with a study defining the formal
characteristics, architecture and requirements of IoT-related crowdsourced systems.
Subsequently, elements from the novel field of edge computing are put into play, in
an attempt to implement edge computing as a crowdsourced system. Finally, the
findings and insights gained throughout the previous parts are put together in a
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crowdsourced framework enabling collaborative computing in local neighborhoods,
by forming smartphone ad-hoc networks and providing a task sharing mechanism.
The framework is evaluated in a prototype application developed for Android OS,
compatible with more than 99% of Android devices presently owned by users,
achieving very good results thus marking a successful proof-of-concept.

Keywords: Decentralized Networked Systems, System Architecture, Ad-hoc
Networks, Routing Protocols, Internet of Things, Crowdsourced Systems
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Résumé

Les systèmes en réseau jouent un rôle majeur dans le monde moderne, permettant
la connectivité entre les ordinateurs, les téléphones mobiles et récemment même les
capteurs de très petite taille. Ces nouveaux réseaux à basse consommation, souvent
formés de façon ad hoc, présentent des caractéristiques particulières et sont liés
à des défis spécifiques, qui ont fait l’objet d’étude dans des domaines tels que le
ubiquitous computing, les réseaux de capteurs sans fil (Wireless Sensor Networks -
WSN) et l’internet des objets (Internet of Things - IoT). Cette thèse se concentre
sur de tels systèmes en réseau à basse consommation, dans le contexte des smart
spaces et des environnements de foule. L’objectif est de définir des protocoles et
des architectures efficaces compte tenu des subtilités de ces environnements, en
abordant des questions telles que la décentralisation des tâches, la manipulation
de ressources hétérogènes et la gestion du manque de fiabilité de la foule. Les
défis abordés sont relevés tout au long du cycle de vie de la création d’un système,
depuis la conception de l’architecture et la définition des exigences, jusqu’à la mise
en œuvre et enfin l’évaluation expérimentale. La thèse commence par examiner
les aspects purement réseau, en étudiant le domaine des réseaux mobiles ad-hoc
et en proposant un nouvel algorithme de routage qui dissémine des chemins en
utilisant un random walk qui élimine les boucles. Ensuite, l’accent est mis sur les
smart spaces et les WSN, avec la mise en œuvre de deux systèmes IoT complètes,
le premier réalisant l’automatisation des appareils de bureau en fonction de la
localisation des occupants et le deuxième modélisant et augmentant les ressources
d’un WSN testbed. Les deux systèmes sont déployés et testés sur le WSN testbed
Syndesi du laboratoire TCS-Sensor, à l’Université de Genève. Dans la troisième
partie de la thèse, l’accent est mis sur les systèmes crowdsourcés, en commençant
par une étude définissant les caractéristiques formelles, l’architecture et les exigences
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des systèmes crowdsourcés liés à l’IoT. Ensuite, des éléments du nouveau domaine
de l’edge computing sont mis en jeu, dans une tentative d’implémenter l’edge
computing comme un système crowdsourcé. Finalement, les conclusions et les
idées acquises tout au long des parties précédentes sont rassemblées dans une
implementation d’un système de collaborative computing pour les occupants d’une
région locale, en formant des réseaux ad-hoc de smartphones et en fournissant
un mécanisme de partage des tâches. Le système est évalué dans un prototype
d’application développé pour Android, compatible avec plus de 99 % des appareils
Android actuellement détenus par les utilisateurs, avec de très bons résultats, ce
qui constitue une preuve de concept réussie.

Keywords: Systèmes Décentralisés, Architecture des Systèmes, Réseaux Ad Hoc,
Protocoles de Routage, Internet des Objets, Systèmes Crowdsourcés.
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1 Introduction

1.1 Overview

In the history of human civilisation, human societies have always strived for efficient
ways of achieving connectivity between their members. From hydraulic semaphores
used in ancient Greece, to smoke signals and drums in Africa and the Americas,
telecommunications have played a major role in the evolution of societies. The
use of electric signals in telecommunications, starting in the 18th century with
the telegraph, brought a never-seen before revolution to the field, which gradually
led to the creation of the telephone, radio, and eventually computer networks.
Wired or wireless, computer networks are abundant in the modern world, enabling
extreme levels of connectivity. Indicatively, the largest network in the world, the
internet, to this day interconnects almost 60% of the world’s population and more
than 90% in the developed world [9].

More than simply providing a mean of communication, in the last decades networks
have evolved into systems aiming to improve quality of life in various ways. With
the inclusion of nodes equipped with sensing capabilities, a network can monitor
its environment and act upon eventual changes, while also gather data that can
serve some purpose after post-processing. Provided a gateway to the internet, the
collaboration and integration between multiple such systems becomes possible,
independent of their physical distance, allowing for larger scale coordination. This
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Chapter 1. Introduction

paradigm, referred to as the Internet of Things (IoT), has been evolving fast during
the past two decades as novel technologies in embedded systems and low power
networks are sprouting, enabling more and more objects to be included in the IoT
ecosystem.

With regard to such next-generation networks, a key domain that has also seen
rapid development in recent years is the one of personal electronic devices. Over
the years, traditional cell phones have been enhanced in hardware and software,
gradually evolving into smartphones, with cellular networks following along and
starting to accommodate internet-providing features. In addition, affordable Single
Board Computers (SBCs) for personal use, highly equipped with sensing and
networking tools, have begun to enter the market. All of the above has led to an
augmented IoT paradigm, which includes mobile users, and has a more decentralised
nature. Furthermore, the appearance of a large, diverse set of connected users
in this augmented paradigm, has promoted the practice of crowdsourcing, be it
on tasks that require human intelligence or in mere gathering of crowd devices’
computing resources.

The goal of this thesis is to define new methods, methodologies, efficient protocols
and architectures, for such state of the art networked systems, in the context of
smart spaces and crowd environments. The problems addressed are met throughout
the whole lifecycle of a system’s creation, from architecture design and definition
of requirements, to implementation and finally experimental evaluation. The thesis
starts by focusing at networking aspects such as routing protocols, before moving
towards investigating fully-fledged networked systems that are implemented in
a Wireless Sensor Network (WSN) testbed, located at the University of Geneva.
Finally, the focus is directed to crowdsourced systems, with contributions in terms
of the formal definition of their characteristics, architecture and requirements in the
context of IoT, as well as the design and development of prototype applications.
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1.2 Contributing Publications

The content of this thesis is based on the work appearing also in five articles
published on scientific venues, as well as a work contributing to an International
Telecommunications Union (ITU) published standard. The chapters of the thesis
are not carbon copies of the published works, as their content has been updated,
adjusted and expanded with respect to present findings. Following are the details
of the above-mentioned publications:

1. A Distributed Algorithm Using Path Dissemination for Publish-Subscribe
Communication Patterns, Stéphane Kündig, Pierre Leone, José D. P. Rolim,
Proceedings of the 14th ACM International Symposium on Mobility
Management and Wireless Access, MobiWac 2016, Malta, November 2016.

2. Indoor Location for Smart Environments with Wireless Sensor and Actuator
Networks, Zhongliang Zhao, Stéphane Kündig, Jose Luis Carrera, Blaise
Carron, Torsten Braun, José D. P. Rolim, 42nd IEEE Conference on Local
Computer Networks, LCN 2017, Singapore, October 2017.

3. Modelled Testbeds: Visualizing and Augmenting Physical Testbeds with Virtual
Resources, Stéphane Kündig, Constantinos Marios Angelopoulos, José D. P.
Rolim, Proceedings of the International Conference on Information Technology
& Systems (ICITS 2018), Ecuador, January 2018

4. Y.4205: Requirements and Reference Model of IoT-related Crowdsourced
Systems, Study Group 20: “Internet of things (IoT) and smart cities and
communities", Question 5/20: "Research and emerging technologies,
terminology and definitions”, February 2019

5. Crowdcloud: a Crowdsourced System for Cloud Infrastructure, Mahmood
Hosseini, Constantinos Marios Angelopoulos, Wei Koong Chai, Stéphane
Kündig, Cluster Computing 22, Springer, January 2019
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6. Crowdsourced Edge: A Novel Networking Paradigm for the Collaborative
Community, Stéphane Kündig, Constantinos Marios Angelopoulos, Sanmukh
R. Kuppannagari, José D. P. Rolim, Viktor K. Prasanna, 16th International
Conference on Distributed Computing in Sensor Systems (DCOSS), June
2020.

1.3 Thesis Structure

The thesis is divided in three parts: Part I delves into the networking aspects
of wireless ad hoc networks, examining the challenges in finding efficient routing
protocols in that context. In this light, a novel algorithm is proposed attempting
to tackle some of these challenges, by using path dissemination via a custom
loop-erased random walk. Part II addresses the field of WSN-enabled smart
spaces, presenting two fully-fledged networked systems enabling i) location-based
automation and ii) resource visualisation and augmentation. Both systems are
implemented at a prototype level and experimentally evaluated in a WSN testbed
located in the TCS-Sensor lab, at the University of Geneva. In Part III, a series of
works in the domain of crowdsourced systems is presented. First, a formal definition
of IoT-related crowdsourced systems is provided, together with their requirements
and canonical architecture. Subsequently, the convergence of crowdsourced systems
with the novel field of edge computing is investigated, leading to the definition of a
crowdsourced edge computing paradigm, followed by an extensive concretisation use-
case. In the final chapter, a framework connecting user smartphones and enabling
collaborative computing is implemented, enabled via a novel data collection protocol
that we define, which is evaluated in a prototype mobile application developed for
Android OS. Finally, Part IV concludes the thesis and discusses the next steps.
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2 A Distributed Algorithm for

Rendez-vouz Routing Using Path

Dissemination

2.1 Introduction

Wireless networks can be classified into two distinct types: infrastructured and
infrastructureless [10]. Infrastructured wireless networks ensure connectivity via
some designated central nodes called Access Points (APs), which perform the
message routing and are typically more enhanced in hardware capabilities (hence
some infrastructure already in place is required). On the contrary, infrastructureless
wireless networks, also referred to as wireless ad hoc networks, do not rely on any
predefined infrastructure, rather they utilise each node’s individual resources for
performing all necessary network functions. It is evident that ensuring connectivity
and achieving robust message routing is particularly harder in infrastructureless
networks. The design of efficient routing protocols in such settings is particularly
difficult, with factors such as constraints in node resources and energy supplies, as
well as frequent changes in network topology, imposing significant challenges [11].

Looking at routing protocols in wired networks, two general approaches are
dominant: link-state [12] and distance-vector [13] routing. In link-state routing,
every node periodically calculates the link-state costs of its neighbouring nodes
and broadcasts it to the network using a flooding mechanism. Using these
messages, every node constructs a graph of the network connectivity which is used
to calculate optimal routing paths. In distance-vector routing, nodes build routing
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tables with distance information, from which optimal paths are chosen based on
hop distance. Again, a periodic exchange of messages between nodes is necessary
to accurately map and maintain the network routes. The above protocol families,
although widely used and highly developed, do not perform well in wireless
networks, especially of large scale [14]. This is is because regular route updates in
large networks can consume significant part of the bandwidth which is limited,
while also the energy toll on wireless nodes can impose too frequent power
recharging. In fact, in some cases finding and maintaining routes to every node in
the network can be thought as a resource overkill, as each node will communicate
only with a subset of the network. A more efficient approach consists in building a
hierarchical routing scheme, where the scalability issue is tackled using the
divide-and-conquer principle. Another category of protocols designed to cope with
the above problems is reactive or on-demand protocols, in which routes are
calculated only when they are required by a source, as opposed to the proactive
protocols where all routes are calculated on startup. Hybrid protocols also exist in
that context, combining basic properties from both categories.

In this work, we consider a large set of wireless nodes with only knowledge of the
local neighborhood and no routing or overlay layer yet in place. We focus on finding
an efficient way to build the overlay layer together with the routing layer, being
inspired from publish/subscribe systems. In pub/sub systems, a publisher node
disseminates a message advertising some information/service (publication) while
subscriber nodes disseminate corresponding requests (subscription). When there is
a publication/subscription match in the network a permanent link is established.
In our method we use this communication pattern to build routing paths and
interconnect the whole network. The key difference is that we don’t make use of
broker nodes, i.e. specialized central nodes that have increased network knowledge
and help message routing, which is almost always the case in pub/sub systems. In
the next section, we underline the design criteria underpinning our solution and we
discuss related work that tackle the same problem, before presenting our algorithm
in detail together with experimental results.
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2.2 Design principles

We assume a network of wireless nodes of very large scale, where each node
has limited computing and storage capacity as well as energy supplies. The key
ingredient of an efficient solution lies in finding a robust dissemination algorithm
to disseminate information in the network. We emphasize that:

• The simplicity of the algorithm is important in order to limit energy
consumption due to computation and message exchange.

• At every stage only local network knowledge is assumed, hence routing
decisions are based solely on neighboring node states.

Our approach consists in following a publish/subscribe communication pattern to
build routing paths. Each of the publisher and subscriber nodes disseminate the
information using a distributed algorithm which is based on the Laplacian random
walk [15] and is detailed later. Once there is a pub/sub match, following a path
intersection, a route is established. The criteria that should be met and that will
be used to evaluate the efficiency of the algorithm are the following:

• Two paths should intersect with a high probability.

• The time to intersection is important as it can give an estimate of when
the path dissemination should stop. It should not depend too much on the
originating nodes.

• The dissemination paths must balance the node congestion. That is because
the number of paths that can pass through a single node is limited due to
memory constraints.

Finally, to complete the list of the principles that regulate the design our system
we should mention that large scale wireless systems are likely to be composed of
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very heterogeneous nodes that work asynchronously. Moreover, the communication
paradigm should be robust and tolerate disruption or variable delays. In the next
section we go over similar approaches that exist in the literature that try to tackle
the above problems.

2.3 Related Work

There exists robust dissemination algorithms such as rumor routing [16], directed
diffusion [17], gradient-based routing [18] or Pastry [19] that are often used in
similar context. Based on these algorithms, higher-level middleware frameworks
have been built such as Scribe [20], Mires [21] or MQTT [22] which have been
popularized in applications in the Internet of Things (IoT). Nevertheless, all of the
above approaches to some extent make use of broker nodes, which is something
we want to avoid in our case. In fact, we want to avoid the construction and
management of a subnetwork of nodes, for instance as a tree as in [23], based on
the principle that in order to maximize the lifetime of a network of limited energy
resources, load balancing is paramount [24,25]. Moreover, such systems are built
on the top of the routing algorithm layer and in our case, we do not assume this
layer’s existence.

Data-oriented network architectures such as information-centric networking (ICN)
[26] or content-centric networking [27] follow a similar approach but most of the
times energy-related matters are ignored, as fixed, resourceful nodes are often
assumed. Adaptations of ICN for wireless sensor networks (WSN) attempt to
tackle the energy issue, as for instance the work in data-centric routing [28] which
tries to deal with it using optimal data aggregation.

The semi-probabilistic approach in [29] is in the same spirit with our work. In that
work, a wireless broadcast is used as the communication primitive. The approach is
called semi-probabilistic because subscriptions are flooded in the network and the
flood is controlled by the subscription horizon that limits the number of message
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repetitions. The dissemination of publication is probabilistic, in the sense that it
is a broadcast but only a fraction of the nodes relay the message. The properties
that are common to our approach are that: i) all the nodes are potentially broker
nodes and ii) the process may fail.

We mention as well the work in [30] where the authors focus on the problem of
building paths that intersect. The scheme is called Double Rulings and is based on
the same heuristic that two lines on the plane intersect, i.e. propagates publications
and subscription along two lines in the plane and match the two at the node where
the lines intersect. Their approach is much more geometrically-dependent than
ours. In particular, the method presented in this study can be applied on any
graph topology and requires only the (local) abstract description of the graph.

2.4 Algorithm Description

For the the demonstration of the algorithm we employ a publish/subscribe system.
The high-level idea is that publisher and subscriber nodes emit messages which
traverse the network, while piggy-backing their route, and once there is a match
the merged path from both sides is confirmed as an established route.

In order to detail the algorithm we define the following notation:

• The message m with the fields:

– Type, which takes the values pub, sub or confirm

– Info, where the nature of the advertised/requested information is stored

– Piggypath, where the traversed route of the message is stored in sequence

• The routing table RT with the fields:

– Info, where the m.info is stored

– From, with the address of the message originator

– Confirmed, which is yes/no depending if the path is confirmed
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Info From Confirmed Type
Pizza 10.0.1.1 NO pub

Parking 10.0.1.2 NO sub
Hotel 10.0.1.3 YES -

. . . .

. . . .

. . . .

Table 2.1: An example routing table of a node that has received one publication
and one subscription message, and contains a confirmed path (route).

– Type, where the type of the entry is stored (pub/sub or left empty if
path is confirmed)

and the methods:

– RT.add, which adds a new line in the table

– RT.check, that accepts an argument of type Info and an argument of
type Type, and returns true/false if a line with a matching information
and type exists or not in the RT.

– RT.available(), which returns true/false depending on if there is available
space in the RT.

In the following figures, we depict the algorithm pseudocode as well as a flowchart
detailing the node’s behaviour upon the reception of messages of type sub and pub.

1: Upon reception of m of type sub
2: if (RT.check(m.info,sub)) then . check if info on RT
3: Compute next node and forward message
4: else if (RT.check(m.info,pub)) then . check if pub/sub match
5: Matching occurs. Confirm both paths.
6: else if (RT.available()) then . if RT is full the process aborts
7: RT.add(m.info,m.sender,sub) . the state is not confirmed in RT
8: Compute next node and forward.
9: end if

Figure 2.1: Algorithm pseudocode upon reception of a message m of type sub.
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Figure 2.2: Flowchart showing the sequence of actions upon a reception of a
message of type pub.

In fact, as we can see, the behavior is symmetrical at the reception of a publication
or subscription message. If there is a match the two paths are confirmed into an
active route, and if not the message is forwarded in the network, after its content
has been stored locally in a routing table. The choice of the next node to forward
the message is where the algorithm difficulty lies; the created paths should have
high probability to intersect and the load must be sufficiently balanced for the
solution to be viable. In the following section, we detail the heuristic used which is
based on a Laplacian random walk [15].
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2.5 Computation of the Next Node in the Path

When a node u forwards a message in the network the following process is applied
to decide the next recipient. We assume that node u possess local knowledge
of its d-th neighborhood, i.e. all the nodes at hop distance less or equal than d.
We denote Nd(u) to be the dth neighborhood of u. Similarly, u knows the d last
nodes that belong to the path traversed so far, a set that we denote as P (u). As a
message traverses the network, P (u) is piggybacked on its memory, with the set
being updated each time at a new node arrival, while the older node in the set
is removed. For each node in its neighborhood v ∈ Nd(u), node u computes the
(harmonic) function h(v) given by:

h(v) =

 1 if v ∈ P (u)
⋃
{u},

1
deg(v)

∑
w∈P (u),w∼v h(w) else.

(2.1)

where v ∼ w refers to the neighboring nodes of v and deg(v) to the number of
neighbors of v. The harmonic function h(v) calculates the average of values h(w),
w ∼ v, with the border conditions h = 1 at nodes belonging to the path (last
d steps or u) and h = 0 at nodes that do not belong to Nd(u). The value h(v)

expresses the probability that a random walk that started at v will hit the path
before going outside of Nd(u). Therefore, the next node to forward is selected such
as:

next node (u) = argmin
{
h(v) | v ∼ u

}
. (2.2)

The intuition behind the selection of the next node stems from the following
reasoning. There are two problems to solve: first, we want to disseminate the
information as efficiently as possible (dissemination problem), and second, we
want to reach a node which has been visited by another path (pub/sub match),
(discovery problem).
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13

(a) (b)

Figure 2.3: Example of path dissemination from P to S using a simple random
walk. (a) Initial path and (b) path after erasing the loops (black). The loop-erased
path can be produced choosing at every stepm the min of the harmonic function h
with the border conditions h = 1 at P and h = 0 at S.

The solution to the first problem consists in building paths without loops, thus
without revisiting a specific node more than once. Taking a produced path from
a simple random walk (which is also good for balancing the load), we can get
its loop-erased version using the Laplacian random walk with border conditions
1 at the start and 0 at the end (fig. ??). In our case, as we don’t possess full
knowledge of the network we adapt the Laplacian random walk to a local version,
with the border conditions at the radius of the known Nd neighborhood. It turns
out that this heuristic optimizes the discovery problem as well; in fact, to increase
the probabilities of discovery a node u must choose a next node v which is likely
to have been traversed by another path. Node u knows that another path cannot
have gone through u or P (u), since in that case intersection would have occurred.
This can be expressed with a probability that a random walk starting from v has
hit u or P (u), using a harmonic function h(v) like the one in Equation (2.1). If
this probability is large then it is unlikely that v was traversed by another path.
Therefore, it is more efficient to pick the node with the smaller probability h(v) as
the next step of the path, which is what is proposed from our heuristic.
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2.6 Experimental Results

To evaluate the efficiency of the algorithm a set of simulations was performed. The
parameters of the simulations are denoted as follows:

– Network size N , taking values in the range of [1500, 5000]

– Network connectivity radius r, which creates the network links based on unit
disc graph connectivity. r was kept at a constant value of r = 0.04 which
means that larger size networks were proportionally denser, i.e. from 7.5 up
to 25 neighbors per node in average.

– Depth d of local network knowledge, expressed in number of hops. d was
given small values {1, 2, 3}.

– Algorithm upper steps boundary UStb which was set to 500.

– Node congestion boundary Cb, limiting the maximum number of paths that
can pass through a single node. Cb reflects to the size of the node’s routing
table RT that, when full, the node refuses further connection.

In each simulation aN -size connected network was created with its nodes distributed
randomly and uniformly in a fixed 1×1 area, following a unit disk graph connectivity
of disk radius r. The path building algorithm was then applied to a random
permutation of node pairs, i.e. each node played the subscriber and publisher role
exactly once, which led to the building of a maximum of N paths with source-
destination pair drawn randomly with uniform probability. The above process is
commonly used to evaluate routing algorithms [31].

The building of the publisher and subscriber paths happened in a synchronous
manner, such as for each algorithm iteration one step was added alternately to each
path. Asynchronicity, as discussed in [32], is an important parameter but we chose
not to evaluate it at this stage of our work in order to better focus on the other
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parameters. The upper steps boundary of UStb = 500, after which attempt for
intersection was abandoned, limits respectively the created path length, denoted
as a l, to a total of l = 1000.

Based on the simulation results, the algorithm was evaluated on the following
criteria:

1. Probability of intersection. If two paths start at nodes u, v (randomly
and uniformly selected) and evolve synchronously what is the probability
that they intersect before a step boundary Stb(≤ UStb).

2. Time to intersection. We assume that one step is added to a path in
one unit of time, so time to intersection is the total of algorithm iterations
performed until intersection occurs.

3. Network congestion. The percentage of nodes of the network that are
congested with respect to Cb, after the end of an algorithm run.

4. Path length. Path length l refers to the length of the path that links the
publisher and the subscriber upon intersection. It is the sum of the publisher’s
and the subscriber’s path until the intersection point and after erasing the
possible loops.

2.6.1 Probability of Intersection

We estimate the probability of intersection based on the percentage of successful
publisher-subscriber path intersections in a complete network permutation, with
u, v selected randomly and uniformly. In the graphs that follow, we plot the results
of this success rate percentage with Stb in the range of [25, 500], while alternating
the other algorithm parameters.

Initially, we explore the impact of depth d on the probability of intersection. Figure
2.4 shows the effect of d in the discrete value range 1, 2, 3 for constant values of
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Figure 2.4: Probability of intersection as a function of steps boundary for different
values of depth d.

N = 2500 and Cb = 200. We observe a significant improvement in the transition
from d = 1 to d = 2, but only a marginal one from d = 2 to d = 3. Simulations with
even larger values of d indicated that a further increase has a negligible marginal
impact on the success rate, compared to the increase in complexity it comes with.
Therefore, from now on we proceed by presenting simulation results with depth
d = 3, having arrived to the conclusion that this setting provides the best value
over effort ratio.

In terms of network size, Figure 2.5 demonstrates the algorithm’s success rate as
the network size grows larger, all other things held constant. Interestingly, adding
more nodes facilitates the intersection of paths to some extent, as can be seen
on the graph for N in [1500 − 3000]. Nevertheless, we notice that the shape of
the curve remains unchanged with respect to varying network sizes, allowing for
a network size independent convergence threshold to be spotted, i.e. when Stb is
close to 150-200 steps. This is an important result of this study, as 1) it shows that
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Figure 2.5: Probability of intersection as a function of steps boundary for network
sizes N in [1500, 5000].

the algorithm is scalable and 2) there is a good indication of a stopping parameter,
to the benefit of speed and efficiency in computational power.

Concerning routing table limitations, we began all simulations with a tight memory
allocation policy and gradually started to relax limitations. The range selected
for Cb was {20, 300} with a 20 steps interval and results regarding probability of
intersection are presented in Figure 2.6. We notice on this graph that congestion
bounding greatly influences the algorithm’s efficiency in the range of {20, 160}
pushing the curve upwards, while after that point the effect on the curve shape is
minimal. This is an expected result, if we consider the loss of network connectivity
that can be produced by nodes becoming too quickly unavailable, sometimes
resulting to big chunks of the network being isolated. Based on this graph, from
now on we choose Cb = 200 for the evaluation of other attributes, as below this
boundary we do not have a significant amount of paths that are successfully
constructed.
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Figure 2.6: Probability of intersection as a function of steps boundary for different
values of congestion boundary Cb.

It is important to notice that the Stb point where success rate converges remains
unchanged during this experiment; this is an encouraging result towards determining
the algorithm’s configuration parameters in a possible application scenario. So
far there is clear indication that a stopping point around Stb ∈ {150, 200} will
give optimal results independently of the network size N and the other algorithm
settings.

2.6.2 Time to Intersection

The time to intersection between the publisher’s and the subscriber’s path is
measured as the number of iterations of the algorithm until intersection occurs,
which is equivalent to the total steps of the two paths, since once step is added
at every iteration. In Figure 2.7, we present a statistical evaluation of time to
intersection scores, for a random pair permutation of networks of varying sizes.
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Figure 2.7: Boxplot of time to intersection results on a random network pair
permutation for different network sizes N . Mean value data points are also
depicted (green)

We notice that as the network grows larger there is almost no effect on median
and average values and also that the interquartile range remains relatively narrow.
This is a strong result suggesting the algorithm’s scalability and, in addition, the
converged median value (around 110 steps in this setting) is a second indication
for an optimal stopping condition.

As mentioned in the algorithm design principles (sec. 2.2), it is important that
the time to intersection does not depend too much on the originator nodes. For
that reason, we examine all of the N/2 pairs in a single network permutation, to
observe the relation between the distance of each pair and the resulting time to
intersection. We present the results in Figure 2.8 in the form of a boxplot of time
to intersection grouped by the values of publisher and subscriber hop distance. The
best fit line that connects the median values reveals a small marginal impact of
hop distance on time to intersection, which is another encouraging result regarding
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Figure 2.8: Boxplot of time to intersection results grouped by pub-sub nodes’ hop
distance. Results include a pair permutation of a N = 5000 nodes network with
algorithm parameters d = 3 and Cb = 200

scalability as it implies that nodes being twice as far do not require double the
time to be connected.

We have to stress though at this point that in the abovementioned graph, not all
points are equally statistically significant, because of the fact that the distribution
of hop distance values in a network permutation is not uniform. In fact, we
demonstrate in a histogram plot (Figure 2.9) the shape of this distribution, where
one can see that beyond the value of 25 there are not enough hop distance
occurrences. Nevertheless, results outside the hop distance range 10-25 were
similar for the multiple simulations with different settings that were performed,
suggesting a stable behavior as well in this range.
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Figure 2.9: Histogram of hop distance values on the same pair permutation used
for Figure 2.8

2.6.3 Network congestion

The upper congestion boundary Cb after which a node becomes unavailable,
represents the constraints imposed by the limited size of RT.

For a network of size N with congestion boundary Cb we consider:

• The total available steps for all paths, or network memory:

Mtotal = N · Cb (2.3)

• The amount of memory needed to establish the N paths built by the algorithm
is the sum of the paths’ length :

Mused =
N∑
n=1

ln (2.4)
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• The percentage of network congestion :

Pc =
Mused

Mtotal

(2.5)

In Figure 2.10 we evaluate Pc for a network size of N = 3500 and a varying
congestion boundary in Cb ∈ [20, 300]. We observe a low percentage of overall
saturation for small values of Cb that is counter-intuitive, given the fact that a small
bound normally causes more saturation, but this can be explained by the fact that
for low values of Cb few paths are constructed (see Figure 2.6). Hence, in the rage
of [20− 100] increasing Cb increases the number of paths and the overall congestion.
After this threshold value of approximately Cb = 100, the relationship switches
such as more relaxation causes less saturation which is the expected behaviour. We
note here as well that even at its peak at Cb = 100 the percentage of the network
that gets saturated does not surpass 20%.
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Figure 2.10: Percentage of network saturation for different values of Cb
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Figure 2.11: Average node congestion (blue) for networks of varying sizes and a
growing Cb (red)

Another important aspect concerning congestion evaluation is the average node
congestion C̄ in the overall network after the construction of the paths. This metric
gives a clear pointer on the algorithm effectiveness in terms of load balancing,
which is one of the main algorithm design principles defined in sec. 2.2. For this
evaluation, we calculated C̄ for network sizes of N ∈ [1500, 5000] with a step of
100 and different congestion boundary values Cb ∈ [20, 300] each time. We present
the results in Figure 2.11.

We can make two important observations on that figure: first, the Cb imposed is
affecting the average node congestion only until a threshold value around Cb = 160;
second, the network size doesn’t seem to influence average congestion too much. The
first conclusion can be easily visualized with the help of the red line indicating the
value of Cb. The latter can be observed by noticing the dense distribution of the blue
data points which represent the 36 different network sizes (N ∈ [1500 : 100 : 5000]),
which implies that as more nodes come into play they are equally participating in
the path dissemination. This is a very positive result regarding the algorithm’s
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capacity to provide paths in a balanced way, hence not overloading a specific area
like e.g. the center of the network.

2.6.3.1 Border effect

Network topology constraints can affect the algorithm’s outcome, as nodes that
are positioned on the edges of the network have generally reduced connectivity,
which in some cases can lead to complete disconnection, and generally gives the
algorithm less margin of choice for the next step of the path. In order to evaluate
the impact of this border effect we employed a "sphere-ized" version of the network,
where on the 2-d plane a border continuity is assumed when creating the r-disk
connectivity area. This way, nodes that are positioned e.g. on the left edge can
connect with the ones on the right and so on. We applied the algorithm twice for
each network, once for regular and once for "sphere-ized" connectivity, and we
compare the results.
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(green) superimposed with its regular version (red) for different values of Cb.
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(Figure 2.12 depicts the Pc scores of "sphere-ized" networks in superimposition
with ones of regular connectivity. We notice that the change on the curve shape is
minimal, which indicates that the algorithm is to some level "immune" to network
topology constraints and the effects they may have.

2.6.4 Path length

Path length l refers to the length of the confirmed loop-erased path between
publisher and subscriber nodes. It is important as a criteria, as paths that are
too long compared to the network diameter surcharge unnecessarily the network.
Since for every unit of time (one iteration of the algorithm) one step is added to
one of the node’s path, there is a linear relationship between path length and time
to intersection. The difference is that when intersection occurs and the path is
confirmed, the loops that eventually occurred during path dissemination are erased.
Therefore, a way to evaluate the efficiency of the algorithm heuristic in avoiding
loops is by observing the difference of average time to intersection and average
path length.

We first investigate the relation between path length and network size by evaluating
l in a simulation setting of a fixed Cb = 200 and a growing N = [1500, 5000].
We present the results in Figure 2.13, where one can notice a stable path length
outcome throughout the experiment, at around l = 90 steps. This value does not
diverge too much from the average time to intersection values ( 110) seen in Figure
2.7, which means that the applied heuristic to avoid loops is working sufficiently
well. The experiment was repeated this time for a fixed N = 3500 and Cb in the
range [120, 300], to evaluate the effects of congestion bounding on path length,
with the results showing a similar stable pattern (Figure 2.14). This outcome
demonstrates the independence of path length with respect to network size as well
as congestion boundary, a result which is inline with the algorithm’s behaviour
so far. Overall, the algorithm has demonstrated a stable performance when the
network scales up in size, and furthermore its behaviour has been observed to
remain unaffected by memory constraints beyond a relatively small threshold value.
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2.7 Conclusion

In this work we developed an algorithm for efficiently disseminating paths in a
network where only local neighborhood knowledge is assumed. We applied the
algorithm in a publish/subscribe system on top of an unstructured network, i.e.
where no overlay or routing layer is yet in place, without relying on centralized
broker nodes. The heuristic used to optimize path dissemination, and thus
publication/subscription matching, is based on a local adaption of the Laplacian
random walk. A set of extensive simulations was performed to experimentally
evaluate the algorithm performance. The results show that given a reasonable
computational complexity the algorithm proves to be relatively stable, with
respect to changes in the network parameters. Moreover, we observe threshold
values for the algorithm parameters, which as well do no depend much on the
varying simulation settings.From a broader perspective, these values are chosen
locally (node memory, number of steps) and prove to be independent of a global
property of the communication network (f.i. network size). This observation is
important since for a distributed implementation, which is what is envisioned, the
global knowledge is not available.

We summarize here the key results from the experimental evaluation:

• The performance of the algorithm is sufficiently good at a depth of local
knowledge equal to d = 3 (Figure 2.4). Further increase has marginal gains.

• Increasing the network density improves the probability of success up to a
point (Figures 2.5 and 2.6).

• The time to intersection is independent of the distance of the originators and
has a stable performance as network size changes (Figures 2.7 and 2.8).

• The available node memory for storing the routing table RT, which is
expressed by Cb, is an important parameter for the algorithm performance.
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There is a threshold effect in 2.10 which is not dependent by changes on
network size 2.11 (Figures 2.10).

• The created paths are sufficiently balanced in the network (Figure 2.11).

In summary, we are tempted to claim that the algorithm scales well with the
number of nodes composing the network. This claim is correct with the assumption
that as nodes are added in the network, the diameter remains constant. In the case
where we add nodes in the communication network while increasing the diameter,
it is certain to expect an increase of the average path length, and because path
length and node congestion are proportional (in the range of good performance
of the algorithm) we expect again a threshold effect for Cb, i.e. there will be a
value for Cb such that the algorithm works well (here it is 200), and this value
will increase with the network diameter. Finally, the effect of asynchronicity was
not investigated in this work, which is certain to have an effect on the algorithm
performance as well.
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Summary

In this part of the thesis, we focus on IoT architectures and smart spaces. We
delimit the challenges faced in creating robust IoT systems, which are typically
linked with issues revolving around efficient energy and resource management. The
demand for smart, cooperative systems, further increases the level of complexity in
the above challenges, thus making the need of appropriately designed architectures
even more crucial. Our work in this section is effectuated in the context of a WSN
testbed, located in the TCS-Sensor lab at the University of Geneva. First, we
present our work in building a location-based automation mechanism enabling smart
office applications. We fully deploy the designed system and test it experimentally
in various scenaria. Subsequently, we present a inter-testbed architecture, enabling
the aggregation of IoT resources from various sources, as well as a 3D-modeling and
visualization tool for testbed infrastructure. Finally, a method for augmenting the
modeled testbeds with virtual resources is introduced, with their value assignment
based on extrapolation of live as well as past data.
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3 Location-based Automation for WSN-

enabled Smart Spaces

3.1 Introduction

The smart spaces paradigm aims at building advanced service infrastructures that
are in line with the ubiquitous computing vision: a set of smart objects that
share information, interact and cooperate in order to provide a variety of digital
services [33, 34]. IoT inherently plays a major part when it comes to smart spaces,
as any automation function requires the capturing of its environment and its various
parameters, something that is enabled via designated sensors [35,36]. Smart homes
or smart offices target to provide more convenient, comfortable, and energy efficient
environments for the building occupants via installed detection and control devices,
such as air conditioning and heating, ventilation, lighting, hardware, and security
systems. Home automation systems have become increasingly sophisticated in
recent years, with infrastructure and methods to exchange all types of appliance
information and services [37].

Be it an office or a home, smart building components are typically interconnected
via some IoT infrastructure, such as a Wireless Sensor Network (WSN), or provided
device actuation, a Wireless Sensor and Actuator Network (WSAN) [38]. WSNs
are essentially the interface between the IoT and the physical world, with their
specific characteristics and challenges being the object of extensive research [39–42].
A typical WSN is composed of a set of low-power devices, small in size but

37



Chapter 3. Location-based Automation for WSN-enabled Smart
Spaces

still possessing an embedded CPU and a networking module, along with certain
environmental sensors. In most cases there exists a central axis of communication,
consisting of one or more nodes that are more powerful and/or closer to an energy
source, so that they can reliably relay data to other system components. These
nodes, often referred to as “gateways” can connect with the internet and eventually
expose IoT resources or services to third parties [43].

Automation heavily relies in efficient data collection and processing mechanisms
via a system such as a WSN, but to achieve real intelligent automation both
software intelligence and hardware automation are needed. However, most of the
existing products on the home/office automation market do not exhibit sufficient
intelligence. A key element in achieving "true" intelligence is to be able to correctly
identify the human factor in the environment. This can be abstracted at a first level
to identifying things such as human presence, activity, activity status, intentions
etc. To that end, location is a strong indicator towards the identification of human
activity such as a person sitting, walking or running; therefore, efficient localization
mechanisms are essential in smart spaces. Nevertheless, accurate indoor localization
is a difficult task, so as to this day there is no established indoor positioning system
achieving sufficient accuracy and which is applicable to most indoor scenarios [44].

In this work, we present an indoor location-aware smart office framework, built
by integrating a WiFi-based indoor localization system with an existing WSAN
testbed controlling office appliances. The system is able to track the occupants
indoor location and automate accordingly the actuation of the office building
appliances. The main contributions can be summarized as follows:

• We implement and deploy a WiFi fingerprinting indoor positioning system
within a WSN testbed, using a smartphone application.

• We implement the automation features by enabling the indoor location-aware
automation process.
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• We conduct an extensive set of experiments to validate the system in complex
indoor environments with long tracking paths. Results show that the indoor
location-driven smart appliance automation is working well in real-time
fashion.

In the following section we go over the background supporting this work, as well as
discuss related work.

3.2 Background and Related Work

3.2.1 WSN and Smart Spaces

Smart spaces are becoming increasingly popular in fields such as health care [45–47],
safety [48,49], education [50,51] and more. For the development of an infrastructure
platform to control the electrical appliances in such environments, wireless sensor
and actuator networks are the dominant technology [52–56]. WSN, rather than
WiFi-based networks, are the usual choice for remote control and monitoring
applications, mainly because of their low cost and reduced power consumption
[57–60]. Nevertheless, the deployment of such systems is not always easy, as the
heterogeneous nature of devices in smart environments demands for dedicated
means in order to achieve the necessary interoperability. Moreover, the need for
devices to be small in size imposes tight resource and energy constraints, which
have to be carefully considered during the system architecture design [1]. Finally,
seamless connectivity with mobile resources plays a vital role in smart environments,
which is something that is not a default requirement in traditional WSNs and may
not be easy to achieve.

Another issue that complicates the task for system designers is an overall lack of
standardization in IoT enablers, regarding hardware as well as in firmware. In
terms of communications standards in WSN, there are three dominant solutions:
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Figure 3.1: A typical smart space [1].

ZigBee [61], Bluetooth [62] and 6LoWPAN [63]. ZigBee is a low-power specification
protocol which possesses short communication range (up to 10 meters) and limited
data transfer rate (up to 250 kbps), although its lightweight design keeps its power
consumption very low. Bluetooth was designed for data exchange between mobile
devices over short distances. It can scan for devices in up to 100 meters range and
transfer data with a rate up to 3 Mbps, keeping the power consumption still at
low levels. Finally, 6LoWPAN is an adaptation of the IP protocol for low-power
devices, allowing for IPv6 packet to be sent and received over sensor networks. Its
communication range goes up to 90 meters and its power consumption is medium.

In recent years, a shift to IPv6-based architectures can be observed in WSAN
[64–67], as they simplify integration of sensor nodes into the globally prevalent
IP-based networks, thus facilitating cross-platform communication. The emergence
of embedded operating systems, tailored for low-power devices, such as the popular
TinyOS [68] and Contiki [69], have significantly facilitated management at the
application layer in modern WSNs. Moreover, the Constrained Application Protocol
(CoAP) [70], a CRUD-based protocol for WSN, has enabled the implementation of
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RESTful architectures following HTTP and the web service paradigm [71]. The
Syndesi testbed [72], at which our work is deployed, combines WSANs with different
communication technologies such as Near Field Communication (NFC), Bluetooth
and 6LoWPAN, along with an electrical interface to control office appliances,
in order to create personalized smart environments. Syndesi architecture and
components are detailed in a following section.

3.2.2 Indoor localization

Determining people’s location is an essential requirement for building smart office
or smart home applications of true intelligence. Based on satellite signals, The
Global Positioning System (GPS) can provide accurate positioning for outdoor
environments, although it fails to deliver respective results in indoor settings due
to poor line of sight. Various techniques have been developed to overcome this
issue, the most widely used employing fingerprinting and ranging methods which
estimate the location of an object by measuring its distance from some local
anchor points (beacons) [73,74]. The methods for extracting this distance vary, the
principal ones being the time of flight (ToF) [75], time of arrival (ToA) [76] and
received signal strength indicator (RSSI) [77]. ToA and ToF based methods use
packet transmission to estimate the time lags between wireless devices, achieving
high precision, but with a steep price on hardware costs and implementation
difficulties [78]. On the other hand, RSSI-based techniques highly depend on the
environment and surrounding structure, which overall limits significantly their
accuracy. Nevertheless, given the trade-off between accuracy and applicability at
system design, RSSI being a very cost-effective method is currently the most widely
used technique for indoor positioning systems.

Another factor which influences the accuracy of an indoor positioning system
(IPS) is the choice of transmission technology. Wi-Fi, Bluetooth, Radio Frequency
Identification (RFID), Ultra-wideband (UWB) and magnetic field distortion are
the dominant technologies used, with Wi-Fi and Bluetooth being the most frequent
choice [79]. Studies [Zhao et al., 2014] comparing Wi-Fi and Bluetooth based

41



Chapter 3. Location-based Automation for WSN-enabled Smart
Spaces

positioning indicate Bluetooth as a better candidate due to its lower transmission
power, higher scan rate and more frequent channel hopping [78,80]. That being
said, WiFi has the advantage that necessary infrastructure may be already in place
as WiFi APs are provisioned in most buildings top provide wireless internet access.

Beyond signal processing, another approach for enhancing indoor positioning
systems is through inertial measurement units (IMUs) [79]. The sensors utilized
as IMUs are typically among accelerometers, gyroscopes, magnetometers and
barometers. The most common approach that employs IMU sensors for navigation is
pedestrian dead reckoning (PDR) [81], in which the accelerometer is used to estimate
the displacement of a moving object, while the gyroscope and magnetometer
compute the direction headed. IMU-assisted positioning is often combined with
RSSI fingerprinting using a filtering mechanism, so as to eliminate each others
drawbacks (f.i. PDR requires the initial position of the object) [82–84]. The
most popular filtration methods used for this merge are the kalman filter and the
particle filter, as well as their variants [85,86]. In the following section we detail
the algorithm used for localization in this work, which is based on WiFi RSSI
fingerprinting.

3.3 Indoor Location for Smart Environments

This section details the design of the proposed location-aware smart environment
framework. Initially, we present the overall system architecture and then we go over
each of its components while discussing the integration challenges. Our framework
comprises of a core WSN testbed, Syndesi, upgraded with a localization engine
enabling smart automation via a smartphone application. We refer to the upgraded
WSN with location-based automation as Smart Syndesi.
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3.3.1 Overall Architecture

Smart Syndesi, as shown in Figure 3.2, is a system comprised of heterogeneous
hardware devices managed in a unified way with intelligent software engines. It
has three main components, namely the Syndesi wireless sensor and actuator
network testbed, an indoor localization and navigation engine, and a human-centric
actuation automation module.

Figure 3.2: Smart Syndesi system architecture.

The Syndesi testbed is responsible for creating and managing personalized smart
environments using WSANs. It exposes its resources in an abstracted fashion via
a designated gateway, while providing control of electronic appliances that are
relayed to the WSAN using an electrical interface. The indoor localization and
navigation engine is built in an Android application and can estimate the location
of the users in real-time fashion. Finally the human-centric actuation automation
module resides in a server which is linked with the mobile application and Syndesi
via the WSAN gateway, enabling the activation of correlated actuators based on
the estimated user locations. In the following, we describe the functions of each
module in detail.
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3.3.2 Syndesi Testbed

The Syndesi testbed is a system and a platform comprised of heterogenous devices,
sensors and resources focusing on the Internet of Things. Through multiple entry
points, a large number of heterogeneous devices are able to interconnect with the
testbed and provide their resources. It integrates sensor networks, electrical
appliances, actuators and gateways via various communication protocols and
technologies such as Near-Field Communication (NFC), Bluetooth, ZigBee,
802.15.4, 6LoWPAN etc. The scope of Syndesi is not only to monitor
environmental parameters but also to serve as system-as-a-service to its users. Its
architecture is designed with scalability and interoperability in mind, which allows
even mobile resources and data to be aggregated in it.To that end, the Syndesi
testbed follows a RESTful architectural approach providing interoperability
between its resources, devices, services and the internet. Benefiting from Syndesi’s
REST-enabled services, external requesting systems are able to access and
manipulate textual representations of its resources that are exposed to the Web,
using a uniform set of stateless operations. Finally, via a designate mobile
application, a mobile crowd sourcing component is provided, via which
smartphone users can contribute with data collected from their smartphone
sensors directly into the server’s database.

Syndesi 2.0 
Framework
Architecture

Gateway
Rest – CoAP Proxy

WEB

BackBone-WSN

CoAP – IPv6 – 6LoWPAN

USERS with
Bluetooth,
Smartphones,
NFC tags

Electrical Interface

WSN for User 
Identification

ZigBee

Electrical DevicesDC AC

Mobile Crowd Sensing

Figure 3.3: Syndesi testbed architecture
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The overall architecture of Syndesi is shown in Figure 3.3. The core WSAN is
comprised by 28 TelosB [36] and Zolertia Z1 [?] sensor motes which are connected
with the existing electrical and electronic office devices, such as lights, fans, electric
curtains etc., via solid state relays. The resource management functionalities are
implemented on a Linux server which resides behind the WSN gateway. That
way, it can serve as a connection point for all the system components, such as
the WSAN, the mobile crowdsensing smartphone application, the web etc. Every
service or resource is provided as a web service, in the form of a RESTful API
deployed also in the gateway server, and linked to the web through a proxy service.
Moreover, an SQL database is hosted on the same server where sensor data can be
pushed via corresponding APIs. As REST architecture implies, the API calls have
the simple form of a URI utilizing GET or POST methods. Syndesi components
are deployed in 4 office rooms in the University of Geneva premises where 7 people
currently work. In figure 3.4 we present a 3D-model of one of the offices. The
red marks indicate the electrical devices that are connected to Syndesi and thus
capable of being triggered via the designated APIs. Most of devices such as the
fans, lights and coffee machines support switching on/off while the electric curtain
motor is actuated up/down. Some sensor motes (green marks) are placed on the
wall for purely monitoring purposes. Using those motes, an automated polling
scheme is set-up since September 2016 which collects environmental data, such
as temperature and illuminance, and stores it on the server database following a
predefined temporal pattern.

Figure 3.4: 3D representation of office environment. Green marks are sensors and
red marks are actuators.
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3.3.3 Indoor Localization Engine

To track people in indoor environments, we have designed an indoor positioning
system to support real-time indoor localization and navigation. Our approach [87] is
able to provide high accuracy by fusing smartphone on-board IMU sensor readings,
WiFi RSSI from local APs, together with floor plan information using a particle
filter. The tracking algorithm is designed to run exclusively on a smartphone,
which would prevent additional hardware requirements that would with increase the
complexity in an application scenario. Figure 3.5 depicts the system architecture
of the indoor positioning system, which contains four components as follows:

Inertial Measurement Unit

In order to estimate the user displacement, we use two sensors, the accelerometer,
and the geomagnetic field sensor. The displacement of the user at time t is defined
by the motion vector Mvt = [θt, `t], where θt is heading orientation and `t is
stride length at time t. Time t is the instant that the user executes a new step.
Therefore, step recognition and heading orientation methods are implemented in
this component. The step recognition method is developed by parsing acceleration
readings, whereas the heading orientation is determined by a digital compass
derived from the geomagnetic field and accelerometer sensors. Despite the fact
that stride length can vary along the trajectory, we assume that ` is a constant
value to simplify the task at hand.

Floor Plan Component

Information about the area of interest is used to further improve the tracking
accuracy. This component defines the physical constraints imposed by the
environment of the area of interest. Therefore, zones in the floor plan where for
instance it is not possible for a user to walk, e.g. walls, furniture etc, are marked
as such and the algorithm then utilizes this information.
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Figure 3.5: Indoor positioning system combing i) WiFi RSSI ii) IMU sensor readings
and iii) floor map constraints using a particle filter.

Radio Information Component

Radio information needs to be converted to range values. In order to achieve high
ranging accuracy we adopt the Non-Linear Regression (NLR) model presented
in [88]. The NLR model is defined as follows:

dj,t = αj ∗ eRSSj,t∗βj . (3.1)

dj,t is the distance between the target object and the jth AP at the instant t. Both
αj and βj are environmental variables defined for the jth AP. RSSIj,t is the signal
power measured from the jth AP at time t.

Data Fusion Component

We use a particle filter to fuse IMU, WiFi, and floor plan information in order to
achieve real-time tracking in indoor environments. In our approach, an additional
re-sampling method is incorporated in order to further mitigate the errors caused
by off-the-shelf WiFi sensors embedded on commodity smartphones. Therefore,
the state vector at time t is defined as follows:

Xt = [xt, yt, θt, `t], (3.2)
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(xt, yt) are the Cartesian coordinates of the target object, θt is the heading
orientation and `t is the stride length at time t.
The prediction function can be written as:

Xt = F ·Xt−1 + η, (3.3)

where

F =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , η =


` ∗ cos(θ) 0

0 ` ∗ sin(θ)

θ 0

0 `



θ = θ
′
+ ε

′

` = `
′
+ ε

′′

Heading orientation and stride length are assumed to interfere by zero-mean
Gaussian random noises. Therefore, ε′ and ε

′′ are the errors introduced in the
calculation process.

The above positioning system has been tested in [87] and was able to run exclusively
on a smartphone, as was designed. That being said, it may be not necessary to
implement the full tracking algorithm for every application; some applications
might need sub-meter level accuracy, while for others meter level accuracy could
suffice. In the next section we examine the requirements of integration in the
context of Syndesi testbed and propose some necessary adaptations.
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Integration with Syndesi Testbed

Before the integration of a localization mechanism, the Syndesi testbed included a
mobile crowdsensing application for users to collect sensing data using their
smartphones. For every new user, this application asked for an office room
corresponding to their working location, to be used as a location stamp on their
sensed data. The motivation in this work was to integrate the localization module
described in the previous section into the existing mobile crowdsensing application.
That way, crowdsensed data could automatically be location-stamped, and
moreover an automation module could be built based on the location as well as
the sensed data.

Given the increased resource demands of the full tracking mechanism, and taking
also into account the fact that a sensing unit and an automation unit will also
consume smartphone resources, we decided to adapt the localization algorithm to a
more lightweight version, with an inevitable trade-off in accuracy. Nevertheless, we
regard a room level localization accuracy to be sufficient for smart office automation
scenaria and therefore propose an approach that is able to provide that with high
confidence as efficiently as possible. In this regard, we choose to keep only the
radio signal component of the IPS detailed before (see Fig. 3.5), in a simple WiFi
fingerprint room recognition approach based on the WiFi RSSI transmitted by
nearby WiFi access points. The key idea is to combine the signal strength from
multiple access points in order to build WiFi fingerprints for supervised learning.

The proposed approach consists of two phases: the off-line training phase and the
on-line localization phase. The training phase is intended to build the fingerprint
database, which consists of vectors of WiFi RSSI collected from the nearby WiFi
access points. During the training phase, each survey room is characterized by a
set of vectors of WiFi RSSI readings. During the on-line localization phase, the
predicted room likelihood is calculated based on the previously collected information
and the current WiFi RSSI vector. Thus, room recognition can be handled by
searching for the closest match of the test data in feature space. We implement
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two simple, yet proven to be efficient, classification algorithms for this purpose:
the K-Nearest Neighbor (KNN) [89] and the Support Vector Machine (SVM) [90]
classifiers. KNN and SVM are some of the simplest classification algorithms
available for supervised learning. Every time a localization task is launched in
the mobile application, both classifiers are employed and in case of a classification
mismatch, the process is repeated with a newly collected WiFi RSSI vector.

3.3.4 Mobile Application

The mobile application has been developed in Android Studio and IntelliJ IDEA
using the Android SDK with API level 21. It supports devices from API level
15 and above, which at the time of writing encompasses over 99.1% of Android
smartphone users [91]. Figure 3.6 depicts the high level application architecture,
which is comprised of three discrete units, a sensing unit, a localization unit and a
control unit. The sensing unit is responsible for querying the smartphone sensors
for values, and corresponds to the previous version of the app which was focused
on mobile crowdsensing. The localization unit is responsible for estimating the
smartphone location with the mechanism detailed in the previous section. Finally,
the control unit coordinates the various actuation/automation tasks as well as the
resource and power management. The application is constructed around the Model-
View-Controller (MVC) pattern [92] in which users, sensor data and nodes are
models, views are handled by Android activities and controllers are using services
to run in the background. The application follows the Separation of Concerns (SoC)
design principles [93] which facilitate the development as well as the maintenance.
All data that is transmitted to the server are first converted to the JSON format
which is widely used and favors interoperability.

3.3.4.1 Sensing unit

Once a user grants the necessary permission to access the device hardware, the
application discovers the available sensors in the device and establishes a monitoring
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Figure 3.6: Integrated Android application architecture.

scheme. The polling rate can be manually set in the settings, the default value
being one measurement per minute. After each new sensing event, the raw data is
converted to JSON after being stamped with the user’s id as well as the location
which is provided by the localization unit. Then, a network controller communicates
with the RESTful service provided by the Syndesi server and transmits the data to
the server via an HTTP call. This controller can be easily provisioned to create
subclasses in order to connect to other types of servers, making the app easily
adaptable to different environments. The HTTP requests are made using Volley, an
HTTP library made for Android that permits more efficient and faster networking
by using caching, multiple concurrent connections and an automatic scheduling for
network requests. All tasks performed by the sensing unit are run as services that
can run also in the background, therefore allowing for continuous data collection
even during the smartphone’s idle periods.

3.3.4.2 Localization unit

The localization unit is where the localization tasks are implemented. As mentioned
in section 3.3.3 the full tracking mechanism was evaluated as too power-consuming
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to be used in this mobile app, so we adopted a lightweight version of the same
algorithm to achieve accurate room-level localization. The lightweight version
uses only the radio information component to derive the user room, in a temporal
interval defined by the user. When a localization task is launched, the app scans
for surrounding WiFi signals and forms a new WiFi RSSI vector which is then
fed on the SVM and KNN classifiers. The classifiers are trained every time the
app is initially launched, providing that way the possibility of training on different
data without the need of re-installation of the whole application. Similarly to
the sensing unit, all localization tasks are run as services that can be run on the
background. The classifiers used for the localization come an Android adaptation
of OpenCV [94], an open source computer vision and machine learning library.

3.3.4.3 Control unit

The control unit provides a control interface for the user to manually trigger the
testbed appliances. This is enabled via a periodic polling to the gateway for the list
of sensor/actuator nodes registered in the WSAN. The nodes are parsed from the
JSON response and displayed on the application screen, where the user can toggle a
actuator node by clicking on its icon. The click triggers the network controller which
sends a mediate (HTTP GET) request to the server with appropriate parameters
and the corresponding appliance is actuated. Besides the manual triggering of the
actuators, the control unit includes an automated environment control module
which uses the tracked indoor location to activate smart management within the
Syndesi framework. If a user enables that option on the settings, when a change of
location is detected it triggers a process that switches on the appropriate appliances,
such as lights that are in the same room as the device, switching off the ones in
the previous room if no one else is currently located inside. The user can also set
in the environment control configuration desired values for ambient temperature
and illuminance, which when compared to the live measured values will actuate an
office fan, turn off some lights or pull up/down a curtain in corresponding cases.
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Figure 3.7 shows a screenshot of the application home screen, where the latest sensor
values are displayed as well as the current location and the server status. Figure
3.8 displays the app settings page, where the different settings of the application
can be configured, such as the polling rates and the various permissions.

Figure 3.7: App home page. Figure 3.8: Application settings.
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3.3.5 Integration challenges

Machine learning on resource constrained devices

The first challenge when integrating the indoor localization algorithm in the mobile
application was the inclusion of the different classification algorithms such as
K-Nearest Neighbors (KNN) and Support Vector Machines (SVM). Presently, there
does not exist separate pure machine learning libraries developed for Android, so
we decided to utilize the OpenCV library, even though it was initially designed
for image processing tasks. This library is open source and has already been
implemented for Android, the downside being that it has to be installed separately,
something our app prompts the user to do if it is not already installed. A different
approach would be to move the localization computations on the server side,
something that would greatly increase the freedom in algorithm choice, as resource
considerations would not be an issue anymore. In that case though, the seamless
connectivity between phone and server needs to be ensured as the additional delay
from the round trip (send input RSSI/ get localization result) could compromise
the real-time feature of the application.

Battery consumption

The initial version of the app was configured to collect data every 3 minutes and in
a full working day (8 hours) we measured an average of 3% battery consumption.
Although, as new features continued to be added, e.g. faster polling rates,
computationally expensive localization tasks, node management etc., it became
significantly more power demanding. To deal with this issue, we introduced a new
power management feature, where the polling rates as well as the localization
WiFi sampling intervals are bound to the smartphone’s current state and battery
level. The user can still choose a desired polling rate in the settings but when the
phone battery reaches levels below 50%, the polling rate is reduced by half, and
furthermore if the battery life goes below 20% the sensing and localization
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functions are both disabled. The power efficiency can be further improved by
batching data that are not critical to automation before sending them to the server,
as well as by activating the localization only when a user displacement is detected.

3.4 System Deployment and Evaluation

In this section, we explain in detail how the system is deployed, in an indoor office
area at the University of Geneva, as well as the methodology used for its evaluation.

3.4.1 System Deployment

The system was deployed at the TCS-Sensor Lab in the Computer Science
department of University of Geneva with an office area of nearly 260 m2. In Figure
3.9 a floor map of the offices is depicted, together with the system actors as well as
the evaluation paths. In order to cover the area of the 4 office rooms and the
in-between corridor with WiFi signals that are sufficient to feed the localization
algorithm, 5 WiFi access points were strategically deployed. Each office possesses
multiple sensors (e.g., humidity sensor, illuminance sensor, etc) as well as
actuators paired with electrical appliances (e.g., desk fans, desk lights, and
electrical curtains). Each actuator is linked to a sensor mote via a solid state relay,
which in addition to the sensor mote it is connected to the 220V power supply and
the electrical appliance. When a location-based actuation is identified by the
system (in the app), the actuator mode outputs a 3V voltage to the relay. The
current generated by this voltage enables the relay’s underlying circuit and the
correlated appliance is switched on. In a similar manner, devices are switched off,
or actuated up or down (electric curtain). During the experimental evaluation, a
person walked through all office areas following designated paths, holding a
smartphone with the Smart Syndesi app installed and enabled.
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Figure 3.9: Experiment scenario.

3.4.2 Evaluation

The experimental evaluation of the deployed system can be viewed as to include
two aspects: a functional one, and a non-functional one. The functional evaluation
consists of validating the prototype functionalities, while the non-functional refers
to the evaluation of the indoor localization accuracy.

The app interface of "Node Manager" (Figure 3.11) displays the actuators that are
in the current room and their status. Moreover, as shown in Figure 3.10, the
"environment control" feature allows the user to set their preferences regarding
their office’s environmental conditions. Based on those values and while
monitoring current readings, the app triggers the appropriate appliances and
displaying any action taken in its interface (bottom of environment control tab Fig.
3.10). Therefore, for the functional evaluation, every time a person holding the
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Figure 3.10: Automation settings. Figure 3.11: Nodes Manager.

smartphone changes room we measure if the actuators of the corresponding office
are correctly triggered based on the preferences.

For both the evaluation of the accuracy of the room recognition, as well as the
automated environment control, an experiment scenario was defined. The
experiment consists of a person holding the smartphone and walking through the
office areas following a predefined path, shown as green dashed line in Figure 3.9.
During the designated walk, the person holds the smartphone and enters office
rooms one by one, going over a set of predefined "check points" on the ground
(shown as number 1-6 in Figure 3.9). At each check point, the "relocate" function
is manually triggered manually on the app to launch a new localization attempt.
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Model Specifications
Samsung Note 3 Android 5.0; Quad-core 2.3 GHz Krait 400;

Wi-Fi 802.11 a/b/g/n/ac; 3GB RAM
Sony Xperia Z5 Android 7.0; Quad-core 2.0 GHz;

Wi-Fi 802.11 a/b/g/n/ac; 3GB RAM
LG Nexus 5X Android 7.1.2; Hexa-core 1.8 GHz Cortex-A53;

Wi-Fi 802.11 a/b/g/n/ac; 2GB RAM

Table 3.1: Smartphone model specifications

We note at this point that for the regular version of the Smart Syndesi app, an
automatic triggering at every detected user displacement is provisioned, but at
this point we chose to focus on the accuracy of the localization, as well as the
correct appliance automation. At the time of the experiment, the mobile app was
configured to have the environment control function enabled, therefore the
expected outcome was the enabling/disabling of the corresponding electrical
appliances as the location changes. As measured WiFi received signal strength can
depend on the smartphone hardware components, we used 3 smartphone models
from different manufacturers to see if there will be a divergence on the results.
Their detailed characteristics are shown in Table ??.

The experiments were run 20 times for each phone and for every checkpoint we
gathered metrics on the correctness of room recognition and appliance actuation.
We present the results in Figure 3.12. The first observation is that the overall
accuracy of the room recognition was far greater than 90%, which validates the
efficiency of the deployed localization system. In particular, we notice that check
points 1,3,5,7 and 8 which are all located inside the 4 offices achieved perfect score.
This is an important result since when it comes to localization misses, a corridor
miss is far less critical since it is basically a transitive state. Regarding the actuation
of office appliances, measuring only when the office room was correctly detected,
the system demonstrated robustness and reliability as there were zero failures in
the sequence of steps taken by phone-server-WSAN to enable the automation, as
can be seen in Figure 3.12.
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Figure 3.12: Evaluation results.

3.5 Conclusion

In this work, we designed, deployed and experimentally evaluated an indoor
location-aware smart environment system. The system consists of a wireless sensor
and actuator network for electrical appliance management, interconnected via
a gateway with a smartphone application equipped with an indoor localization
module. The mobile app enables the collection of environmental data utilizing the
smartphone built-in sensors, which are sent back after being location-stamped to
the server via the gateway. Moreover, thanks to the accurate indoor localization
module, the system is able to identify people’s indoor locations in real-time and
enable automation of office appliances. We implemented the system prototype,
and deployed it in an indoor environment of 4 office rooms in the TCS-Sensor lab
of at the University of Geneva. In order to validate the system functionalities and
performance we performed a set of experiments using different smartphones models.
Evaluation results show that the estimated indoor locations are of high accuracy,
and the automation of office appliances is robust and can function in real-time.

59





4 Modelling of WSN Testbeds and

Augmentation with Virtual Resources

4.1 Introduction

In applied research fields such as networking and computing, testbeds and other
experimental facilities are essential for investigating novel methodologies. Prototype
architectures and protocols need to be deployed and evaluated in a controlled
environment which is easily re-configurable, and where selected parameters can be
monitored in an effortless way. Furthermore, the support for agile architectures
should be coupled with additional tools for gathering or processing meta-data
in the context of an experiment (e.g. calculating different evaluation metrics or
analyzing execution logs after an experiment run). Simulation tools offer a powerful
alternative to experimental evaluation, but in fields of applied research such as IoT
some physical experiments are necessary to support a hypothesis in addition to
simulations.

In the field of WSN and IoT, significant efforts have been put forward in establishing
such facilities, with notable examples being Fed4Fire [95] and IoT-Lab [96]. However,
no matter the volume of invested resources, the infrastructure and services provided
by testbeds will always come with some drawbacks. For instance, by nature, all
testbed facilities are designed with a specific area of interest in mind, be it IoT
applications, Machine-to-Machine (M2M) communication protocols or else. This
leads to a certain "overfitting" in the architecture and the provisioned tools, which
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therefore imposes some limitations to the range of supported experiments. Another
constraint is that the number of available resources at at a given time depends on
the current user demand, as in most cases testbed infrastructure cannot support
simultaneous experiments without jeopardizing the outcome value. Expanding
the experimental facility is a possible solution to the above problem but, whether
that refers to an increase of its size or the number of simultaneous experiments it
supports, or its availability, scaling up always entails considerable expenses and a
large amount of effort.

With the aforementioned problems in mind, we propose in this work a different
approach than the one of traditional testbed facilities in the field of IoT; we introduce
a hybrid testbed type, comprising of a physical component and a virtual one. The
physical component contains regular IoT resources (f.i. IPv6-enabled sensor motes
forming a WSN) that are physically deployed in the facility premises, and following
traditional testbed architecture, are controlled by a back-end system that monitors
and orchestrates their operation. The second component, which is where the novelty
of our proposal lies, consists of virtual resources that are operating based on a
representation of the physical one. This happens through simulation mechanisms
capturing the facility’s physical space (e.g. line of sight, light distribution) as well
as the physical resources’ functionalities (e.g. networking operations). In order
for the virtual component to qualitatively as well as quantitatively augment the
physical one, the calculating of sensor value at virtual resources needs to be accurate.
To that end, we utilize a combination of spatial extrapolation techniques with
associative analysis on past data, which is evaluated using K-fold cross validation.
Indicatevely, results such as Mean Absolute Percentage Error (MAPE) at levels
below 7% - are encouraging and show that high accuracy can be achieved.

In order to fuse the two components in an intuitive way, we employ a 3D
representation model of the physical testbed, equipped with an interactive
Graphical User Interface (GUI). The purpose of the GUI is twofold; first, using the
GUI, a researcher can get a better "feel" of the testbed’s physical space, including
parameters such as topology of rooms and volume of objects, which can help them
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capture things that may be less obvious in a traditional map. Second and most
importantly, thanks to the provided interactive mechanism, users are able to
spawn virtual resources within the digital model with a click of a button, after
which a virtual resource is created to the corresponding location. In the modelled
testbed, the virtual resources are bound to the same physical limitations as the
physical ones (e.g. a virtual sensor cannot be spawned midair), the end goal being
a seamless integration of virtual and physical to the point of being perceived as a
single unity.

We build the first prototype modelled testbed based on the Syndesi testbed of the
TCS-Sensor lab at the University of Geneva, presented in detail in 3.3.2 of the
previous chapter. Using Syndesi WSN resources, a dataset consisting of 300’000
measurements was built to be used in the value assignment phase of the virtual
resources. In the following sections, we first discuss related work before presenting
the mechanisms underlying the modelled testbed framework in detail.

4.2 Related Work

Several testbeds of varying size, hardware, topology and degrees of flexibility have
been deployed around the world to facilitate experimental research. Most of the
existing testbeds (IoT-Lab [96], WISEBED [97], NetEye [98], SmartSantander [99],
FlockLab [100] and more) provide web interfaces for job scheduling, in order
to specify the resources needed and coordinate node behaviour as well as data
collection. IoT-Lab provides a selection of resources either by Id, or by specific
property (location, radio chip, mobility, etc). FlockLab, and IoT-Lab use XML
or JSON files to store node configuration and the specifications of an experiment,
while other testbeds such as WISEBED, provide their own generic XML-based
language, customized so as to improved efficiency.

As previously mentioned, the scope of each testbed can vary, with some facilities
focusing on large-scale provision, others on mobility while others target specific
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environment types and more [101]. For instance, the SWiMNet testbed [102]
provides a specialized framework for parallel simulation of wireless and mobile
Personal Communication Service (PCS) networks, allowing for a sophisticated
modelling of network deployment, traffic and node mobility. In a purely
software-defined approach, authors examine the provision of a web-based
simulated testbed, focusing on issues such as the interactivity between remote
scheduling control systems with a local simulation core. [103]. In another example,
Mint-m’s experimentation facility MOVIE (Mint-m cOntrol and Visualisation
InterfacE) [104] invests in providing the user with a designated interface for
interactive control over the testbed as well as a real-time visualization of the
testbed activities.

It is apparent that a single testbed cannot fit all user demands, in the various
research topics. An approach looking alleviate the limitations of each testbed
consists in the federation of individual facilities into unified meta-testbeds. This
way, researchers can be granted access to multiple, eventually heterogeneous,
testbeds, which allows them to undertake broader and more diversified studies.
Notable federation initiatives include among others OneLab [105], IoT Lab [96]
and Fed4fire [95]. The OneLab project is one of the first attempts for a flexible
federation of testbeds, with their resources being exposed openly to the web.
GENI is more focused on networking aspects, services, and security, providing
corresponding tools. The Fed4FIRE is a large-scale ongoing project funded by EU
which integrates a diverse set of IoT testbeds around Europe (20 at the time of
writing), enabling experiments combining their resources.

All of the efforts mentioned above, as well as others in the literature, are aimed at
either federating multiple physical testbeds or at providing simulated frameworks
as testbeds. This work, on the other hand, focuses on the integration of physical
and simulated component into a unified framework, with careful consideration on
how to employ virtual resources in a meaningful way.
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4.3 Testbed Visualization

Traditionally, sensor testbeds are visually represented with the help of 2D floor
plans, where sensor positions are marked on top of a map (an example of a floor
map representation in the Syndesi testbed in Figure 4.4). Along the same line,
visualization tools employed in network emulator software utilize two-dimensional
models to depict the network. We argue that 3D coordinates are necessary when
storing sensor locations in testbed representations, since various algorithms may
require spatial information (such as euclidean distance) and therefore will perform
poorly unless the sensors are co-planar (which is rarely the case in real-world
installations). Moreover, provision of the 3D shapes of objects in the testbed
space can aid experiments where for instance line of sight is of essence, or when
some obstacle-sensitive sensed value distribution in the space is calculated (e.g.
illuminance). Finally, by navigating in the 3D model before the running of an

Figure 4.1: A traditional testbed representation on 2D floor plan [2]
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experiment, a researcher can capture the intrinsic characteristics of the testbed
environment and therefore design the experiment more appropriately.

In order to recreate in 3D the entire infrastructure, including building parts and
interior objects, in conjunction with sensor spatial information, we employ an
intuitive model developed with the help of the Unity engine. In this model, every
component of the surrounding environment, whether a wall, floor, ceiling or a piece
of furniture, is stored using six variables: a tuple of spatial coordinates (x,y,z) and a
corresponding scaling tuple, expressing the scaling degree on each of the x,y,z axis.
Using the above values, we are able to fully reconstruct the testbed environment
in 3D, which composes the background tile where testbed sensors/actuators can
then be added. For adding resources in this modelled environment, no scaling
factor is required but only spatial coordinates together together a single value
representing the resource type. For sensors resources, a close-to-live measurement
value is also displayed next to their icon in the 3D model, which is fed via the
tested management platform APIs. In Fig. 4.3 we see a screenshot of the modelled
Syndesi testbed, focused on an illuminance sensor that is placed on a wall next to
a window.

The only difference when it comes to physical and virtual sensors in the modelled
testbed is the way they are assigned their measurement values in the model. Since
virtual sensors do not correspond to a physical entity and therefore cannot get
live values from testbed APIs, their measurement values are assigned through a
mechanism combining extrapolation of the live physical sensor values and and
association analysis based on past data. In the following section we present
this mechanism in detail. From an external perspective, since we use the same
mechanism for storing information of virtual as well as physical sensors, both
components are identical as their existence is blended and their use in algorithms
is interchangeable.
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Figure 4.2: Screenshot of the 3D interface modelling the Syndesi testbed. In this
instance an illuminance sensor displays its last measured value.

4.4 Augmentation with Virtual Resources

The 3D-visualization interface allows researchers, not only to navigate in the
testbed environment, but also to create on the fly virtual sensors to be added in
the modelled testbed, in a user-friendly way. In particular, virtual sensors can be
spawned with one click when holding down a designated button and pointing to a
desired location. Since the aim is to emulate physical sensor functionalities, virtual
sensors can be generated only at places physical ones could exist, e.g. on a desk or
on the wall, but not for instance mid-air. Upon their formation, virtual sensors
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can be edited via facilitating features provided by our interface such as drag and
drop, sensor type configuration upon right click, sensor deletion and more. Once a
modelled testbed is augmented with virtual resources, it can be saved as a separate
entity on back-end infrastructure; the saved instance can then be used as a target
testbed for an experiment or re-loaded again for further inspection and/or editing.
Thanks to this architecture, a single parent physical testbed can be used as a
template for the generation of an unlimited number of user-personalized modelled
testbeds, which can help researchers meet specific research goals.

In order to ensure a qualitative augmentation of the testbed resources, as much
as a quantitative one, the estimated values of virtual sensor measurements must
be realistic. To achieve that, we first utilized a simple extrapolation method to
calculate those values based on the physical sensors last measurements, but the
results were poor. This can be explained due to a non-linear distribution that a
sensed parameter can exhibit over the 3D space. Illuminance for instance, depends
highly on the space topology, with respect to the position of the light sources such
as the sun going through a window, or a lamp that is turned on during office hours.
Moreover, a fixed obstacle such as an office separator introduces points of extreme
discontinuity of the distribution over space. In order to capture such intrinsic
constraints of a given space, we focus on two office spaces belonging to Syndesi
testbed, where we collect and analyze an extensive dataset of sensor measurements
over a period of approximately 4 months.

In the following sections we detail the process of forming the dataset, before
presenting the methodology for assigning measurement values to virtual sensors.
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Figure 4.3: Screenshot of 3D interface of the modelled Syndesi testbed. In this
instance the user is about to insert a virtual sensor.

4.4.1 Dataset collection

The purpose of forming this dataset was to extract assessments, based on scientific
data, regarding environmental parameters and their distribution in indoor space
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and time. To that end, a designated sensing unit integrated in the Syndesi testbed
infrastructure was deployed, composed of 12 sensors divided in two offices of the
TCS-lab at the University of Geneva. The rationale of positioning the sensors in
space was to be as homogeneously as possible, but some compromise was made in
order to ensure securely fixed positions over the period of collection. Under this
light, the sensors were positioned along the office walls at a height of 2.4 meters so
as interference from daily office routines would be minimal.In the figure below the
TCS-lab floor map along with the sensor locations is depicted:

Figure 4.4: A sensing unit of the Syndesi testbed with the purpose of collecting a
dataset. Sensors are indicated with their office letter (A,B) followed by their id
(s1-6)
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The exact positions of the sensors, corresponding to the coordinate system defined
in Fig. 4.4 are as follows:

As1 = (2.4, 11.55, 0) Bs1 = (2.4, 4.05, 3.9)
As2 = (2.4, 13.55, 0) Bs2 = (2.4, 2.05, 3.9)
As3 = (2.4, 17.6, 1.45) Bs3 = (2.4, 0, 1.45)
As4 = (2.4, 13.55, 3.9) Bs4 = (2.4, 2.05, 0)
As5 = (2.4, 11.55, 3.9) Bs5 = (2.4, 4.05, 0)
As6 = (2.4, 9.05, 1.45) Bs6 = (2.4, 6.1, 1.45)

Two different types of sensor motes were used in this deployment, the XM1000 from
AdvanticSys and the Zolertia Z1 (Figure 4.5). The environmental metrics chosen for
the dataset collection are temperature, humidity and illuminance. While the
XM1000 is equipped with built-in sensors for all of the above, the Z1 only posseses
a built-in sensor for temperature. Nevertheless, a humidity and a temperature
sensor can be added via its designated expansion ports (phidgets). According to the
manufacturer, external sensors added via the phidget ports necessitate calibration
of the readings with appropriate normalization functions, which was effectuated,
and the end result was also validated by comparing with the values recorded by
the XM1000.

a. b.

Figure 4.5: Sensors used in the sensing unit for the dataset collection: a)AdvanticSys
XM1000 [3] and b)Zolertia Z1 [4].
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In order to periodically gather the sensor measurements into a database in an
automated way, we used a customized back-end script utilizing the Syndesi APIs.
Thanks to Syndesi’s RESTful architecture each node’s resources are exposed as
a service allowing for instance sensor measurements to be pulled using a simple
URI POST action. The frequency of polling was decided to be 20 minutes,
considering the trade-off between time series data granularity and their volume.
The data collection started on 15/09/2016 and ended on 31/12/2016, with the final
dataset containing of a total of 295.536 measurements, from which 94.140 were for
illuminance, 103.062 for temperature and 98.328 for humidity.

4.4.2 Virtual sensor value assignment

To estimate the values of the virtual sensors spawned by users in the modelled
testbeds, an incremental approach was followed. First, looking at the problem in a
no-memory fashion we calculate their values at a given time t using information
only from that time, i.e. the values of all the physical sensors of the testbed at
time t.

We denote a physical sensor as:

si(xi, yi, zi), si ∈ S = {s1, s2, ..., sn} (4.1)

where xi, yi, zi are the spatial coordinates and S is the set of n physical sensors
that belong to the testbed. Similarly, a virtual sensor is defined as:

vi(xi, yi, zi), vi ∈ V = {v1, v2, ..., vm} (4.2)

where V is the set of m virtual sensors created so far in the modelled testbed.

Sensor measurements for temperature, humidity and illuminance are denoted
respectively as si(tmp), si(hum) and si(ill), and likewise for virtual sensors. When
a new virtual sensor vk is spawned, for instance in office A and of type si(ill), we
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calculate its measurement value using a weighted average of the physical sensor set
a that is located in the same office, such as:

vk(ill) =
w1

˙s1(ill) + w2
˙s2(ill) + ...+ wn ˙sa(ill)∑n
i=1wi

(4.3)

where the weights w examined in the above equation were the inverse and the
inverse square of the euclidean distance of vk with each si ∈ S.

This initial approach performed well for temperature and humidity but did quite
poorly when it comes to illuminance, indicatively the average Mean Absolute
Percentage Error (MAPE) levels were above 20%. This is an expected result, as
this approach equally weighs all physical sensors based on the distance, assuming
a perfectly homogeneous space distribution of the sensed variable, which in the
case of illuminance is rarely the case. Therefore, in order to improve the overall
accuracy we decided to make use of the past collected data, with the goal of
identifying relational patterns between groups of physical sensors and mapping
the space accordingly. In that way, newly spawned virtual sensors, depending on
their location, would only be associated with a specific subset of the physical ones,
which would lead to better results in their value assignment. In order to extract
the correlating physical sensor subsets a brute force approach was followed, using
the equation 4.3 and the collected dataset.

The exact methodology is depicted in the following pseudocode:

1: for i = 1, . . . , k do
2: S ′ = S − si
3: for each time t in dataset do
4: for each S ′′ ∈ P (S ′) do . generate powerset and check for all subsets
5: E(t, i, S ′′) = vi(S

′′)− si . calculate error of vi produced by eq. 4.2
6: end for
7: end for
8: i, S ′′ → argmin{Ē(i, S ′′)} . keep the subset with the least average error
9: end for

Figure 4.6: Pseudocode describing the process of sensor subset association.
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Using the above method, we extract clusters of sensors that are more correlated
to each other, with which we can segment the space in higher correlated areas.
That way, when a new virtual sensor is spawned, depending on its location and the
proximity to the physical sensors, it will get its values based on the corresponding
subset. Figure 4.7 shows the segmentation of office A, after the association analysis
on the past data for the case of illuminance. Since all physical sensors are fixed
on the same height (2.4m) the segmentation is two-dimensional, otherwise a 3D
represantation would have been necessary.

Figure 4.7: Office A map segmented in clustered regions of illuminance after
association analysis. On the right, we see a newly spawned virtual sensor (Vs1)
getting assigned to the cluster (As5,As6).

We note here that the above methodology does not scale well, considering that for
a total of a sensors there are 2a− 1 possible subsets. For this study case of 2 offices
of 6 sensors the brute force approach is computationally affordable, nevertheless
for larger scale infrastructures different, more computationally efficient, methods
are envisioned.

4.4.3 Evaluation of Accuracy

In order to evaluate the accuracy of the methods described above, a 10-fold cross-
validation was applied on the full dataset. Fig. 4.8 depicts the overall procedure,
comprising of a training and a testing phase. First, for each sensor type, the total
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Figure 4.8: Evaluation procedure.

measurements for this type is divided in 10 folds, as equally as possible. Then,
during the training phase, one fold is removed and the procedure to extract the
correlated subsets (described by the pseudocode in fig. 4.6 is applied to the rest of
the folds. In the testing phase, the values of the remaining fold are first computed
using the equation 4.2 and the sensor subsets derived in the training phase, and
the results are compared with the actual values. This process was repeated until
all folds were selected respectively for testing.

The evaluation metrics assessed were the Root Mean Square Error and the Mean
Absolute Percentage Error (MAPE). The overall results from the 10-fold cross-
validation can be seen in Table 4.1. First, we observe that the difference between
inverse distance and inverse distance squared as choice of weights is minimal, with
the latter being slightly better. Another observation is that very strong results are
acquired with this method when it comes to temperature and humidity, with Mean
Absolute Percentage Error (MAPE) values around 1.5%. This is an important
assessment, as such low values of MAPE ensure the credibility and scientific
correctness of experiments conducted in our modelled testbed. Illuminance, which
is a tougher value to predict, produced nevertheless promising scores, with MAPE
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Table 4.1: Average Root Mean Square Error and Mean Absolute Percentage Error
scores after a 10-fold cross validation.

Weighted average over inverse distance

Sensor: Illuminance(lux) Temperature(oC) Humidity(%)

Room
Average
RMSE

Average
MAPE

Average
RMSE

Average
MAPE

Average
RMSE

Average
MAPE

Office A
9.22 ±
0.55

3.02 ±
0.12%

0.33 ±
0.01

1.07 ±
0.02%

0.60 ±
0.02

1.50 ±
0.01%

Office B
44.4 ±
3.21

6.58 ±
0.20%

0.60 ±
0.01

1.91 ±
0.03%

1.17 ±
0.10

2.61 ±
0.05%

Weighted average over inverse distance squared

Sensor: Illuminance(lux) Temperature(oC) Humidity(%)

Room
Average
RMSE

Average
MAPE

Average
RMSE

Average
MAPE

Average
RMSE

Average
MAPE

Office A
9.39 ±
0.60

3.20 ±
0.14%

0.30 ±
0.01

0.98 ±
0.01%

0.58 ±
0.01

1.42 ±
0.01%

Office B
43.69 ±
3.41

6.57 ±
0.19%

0.61 ±
0.02

1.88 ±
0.04%

1.18 ±
0.10

2.62 ±
0.06%

levels not exceeding 7% , which is still a positive result regarding the quality of the
virtual sensors. Finally, the considerable difference in illuminance scores between
the two individual rooms (3% MAPE for office A and 7% for office B) can be
explained by variations of sunlight exposure due to orientation, which can result in
temporal discontinuities that are significantly harder to predict.
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4.5 Conclusion

In this work, we introduced the concept of modelled testbeds, which is based on
combining physical testbeds with simulation frameworks. Syndesi, a physical WSN
testbed at the University of Geneva, was modelled using an interactive GUI that
allows users to add virtual resources. The biggest challenge of adding virtual sensors
on a physical testbed is to find an adequate mechanism to assigns measurement
values as realistically as possible. This is crucial in order to maintain the scientific
credibility of experiments conducted in modelled testbeds. To that end, simple
extrapolation strategies were initially examined based on the values of the testbed’s
physical component. This initial approach may perform well for sensor types that
have even distribution in space, such as temperature or humidity, but do not have
respective results on more unstable variables such as illuminance.

In order to improve the accuracy of the value assigning methods, a dataset of
almost 300k measurement was collected, with which relational patterns between
physical sensors were identified in a rigorous way. Using that patterns, an improved
extrapolation method was employed to assign virtual values based only on a subset of
physical sensors, depending on location. To evaluate the accuracy of the methods,
a 10-fold cross validation was performed to on the complete dataset. Results
regarding sensors measuring ambient temperature, illuminance and humidity, show
that extrapolation using a weighted average over inverse distance squared, on the
appropriate subset of physical sensors provides optimal accuracy. The average
RMSE and MAPE scores using this enhanced extrapolation were sufficiently low to
suggest that experimental research using modelled testbeds can be a fruitful field.
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Summary

The final part of this thesis concerns crowdsourcing and crowdsourced systems.
Crowdsourcing can be defined as the practice of collecting and aggregating necessary
information, services or other types of resources provided by the general public.
The systems described in part II, all employed to a certain degree crowdsourcing
practices, be it in a sub-system or for a specific functionality. For instance, the
mobile application attached to the WSN testbed presented in chapter 3 included a
mobile crowdsensing unit, which gathered data from office occupants to the testbed
server collected via their smartphone built-in sensors. Similarly, the aggregation
mechanisms unifying resources from different testbeds as well as integrating virtual
ones described in chapter 4, follow the same principles applied in crowdsourced data
aggregation. Consolidating on the above, we proceed to delve deeper to the domain
of crowdsourced systems, focusing at the domain of networks and in particular
IoT. First, we proceed to identify the formal characteristics, architecture and
requirements of crowdsourced systems, exemplifying them in a use case concerning
crowdsourced cloud computing. Then, we present a work proposing a novel
framework blending crowdsourcing and edge computing, implementing the latter
as a community-driven crowdsourced system. Finally, using the insights gained
throughout the rest of the thesis, we build a networking and computing framework
for crowd collaboration using smartphones in local proximity.
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5 Definitions, Architecture and

Requirements of IoT-related

Crowdsourced Systems

5.1 Introduction

The practice of interacting with the crowd for reaching a common goal in cases
such as problem solving, process optimization, product innovation etc. is becoming
increasingly popular in the modern world. Crowdsourcing is employed across
many different industries and areas, such as design, IT, health and science, finance,
marketing and many more. The term crowdsourcing is used quite loosely in the
literature, nevertheless a converging definition is that it is the process of obtaining
services, ideas, or other content by soliciting contributions from a large group
of people, rather than from traditional employees or other suppliers. In one of
the prevalent interpretations, crowdsourcing refers to the distribution of tasks
that require some human intelligence, also mentioned as Human-Intelligence-Tasks
(HIT), to the crowd. Thanks to the emergence of online crowdsourcing platforms,
such as Amazon Mechanical Turk 1 or CrowdFlower 2, which provide the means for
reaching the crowd and are application-agnostic, this practice has seen significant
growth in the recent years.

The benefits from the practice of crowdsourcing are many and of diverse nature.
First, there can be significant savings in budget compared to the approach of

1https://www.mturk.com/
2https://visit.crowdflower.com/People-Powered-Data-Enrichment_T
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strictly involving professionals for a desired goal. Moreover, there is a qualitative
aspect brought in by engaging the crowd; this is intuitively witnessed for instance
in the popular game “Who Wants to Be a Millionaire?” where players are given
the option to ask the crowd to answer a question for them and, while any random
vote does not mean much, taken together the collective verdict tends to be very
accurate. This added value, although, is bound to certain requirements that the
crowd must fulfill; James Surowiecki in his book "Wisdom of Crowds" identifies
four distinct criteria that must be met for a crowd to be "wise", namely diversity,
independence, decentralization and aggregation [106].

In the field of IoT, the proliferation of portable smart devices that are equipped
with built-in sensors, such as smartphones and smart watches, has enabled a
particular crowdsourcing paradigm, referred to as mobile crowdsensing. In mobile
crowdsensing, sensed environmental data from large areas are gathered via the
crowd’s devices, complementing data collected from traditional fixed IoT sensors.
Moreover, the emergence of affordable Single-Board-Computers (SBCs) for personal
use, such as Arduino and Raspberry Pi, provides another mean for crowdsourcing
IoT data. In order to facilitate such systems, specialized crowdsourcing platforms
have been implemented for mobile crowdsensing (e.g. gMission [107]), providing
supporting mechanisms and/or tailored environments for application development.
A distinction needs to be made from such crowdsourcing platforms and crowdsourced
systems. Crowdsourced systems, contrary to the enabling platforms, are systems
whose constituent infrastructure is pooled or augmented via crowdsourcing methods.
Therefore, crowdsourced systems may or may not include the use of a crowdsourcing
platform in their architecture; we can picture them as a higher level entity in a
corresponding ontology.

Besides mobile crowdsensing systems (MCS), another field of prevalence of
crowdsourced systems is collaborative computing, also referred to as volunteer
computing [108]. Volunteer computing enables individual users to share their
computer’s idle processing power, forming that way an inexpensive
high-performance parallel computing cluster. In the field of emergency
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management, crowdsourced systems enbaling the formation of ad-hoc networks
using crowd devices in order to substitute damaged infrastructure have been
proposed [109]. It is certain that several technical challenges are imposed when
utilizing crowdsourced resources; for instance, the contributed resources are
typically characterized by a high degree of heterogeneity due to the opportunistic
manner that these are provided by the crowd. For the same reason, crowdsourced
resources also demonstrate a significant variance in their availability and reliability
rendering the robust design and provisioning of a desired service a challenging
task. The challenges in crowdsourced systems include as well the design of
adequate incentive mechanisms for the crowd, in order to ensure sufficient
participation. There has been significant research focusing on this issue, where
different types of incentives are identified: intrinsic motivators, such as having fun
or taking on a challenge, as well as extrinsic motivators such as financial reward,
fame or social pressure.

In this work, we examine IoT-related crowdsourced systems in a formal manner;
we define their functional architecture, identifying its underlying components,
and we outline the corresponding requirements. Before presenting the study
results regarding the "canonical" crowdsourced system, we provide some necessary
background and discuss the state of the art in the following section.

5.2 Background

5.2.1 The Practice of Crowdsourcing

The first references of crowdsourcing practices point back to the 18th century, where
the head of states in Britain and France disseminated open calls to the public, in
order to gather solutions to problems that individual experts could not adequately
solve [110]. In these early examples, the crowd’s added value was leveraged in a
form of a competition where only the best solution is picked, hence no aggregation

85



Chapter 5. Definitions, Architecture and Requirements of IoT-related
Crowdsourced Systems

of individual contributions took place. In another early crowdsourcing example,
in 1906, a researcher at a country fair gathered 787 guesses concerning the weight
of an ox and, astonishingly enough, the average value of the crowd’s guesses was
one pound short of the actual weight [111]. In this case, we notice that it was
the combination of all individual guesses, which were of no worth if singled out,
that derived the value of the crowdsourced solution. This brings us to the problem
of classifying the different forms of crowdsourcing, which does not have an easy
solution, since crowdsourcing covers a relatively diverse set of practices. One of
the reason it is difficult to provide a cover-all categorization (seen also by the
diverging results in the literature) lies on the choice of classification criteria, that
can greatly vary (e.g. types of tasks, nature of incentives etc). Nevertheless, a
relative convergence can be found in a slightly broad categorization which identifies
four distinct forms of crowdsourcing: 1) crowd labour 2) crowd creation 3) crowd
voting and 4) crowd funding.

Crowd labour refers mostly to microtasking, which is a form of crowdsourcing in
which work is decomposed into a set of small, self-contained tasks, each typically
able to be completed in a matter of minutes. The approach has been used to
address a number of different problems, ranging from labeling images to handwriting
transcription. In the case of crowd creation, the task at hand is of a more creative
nature, be it a design approach or a challenging scientific problem, and the crowd
is asked to contribute with ideas or attempts towards a solution. Among popular
examples of crowd creation is Threadless 3, where consumers propose new T-Shirt
design ideas, or iStockPhoto 4 in which amateur photographers contribute high
quality stock photography images, while open source software development also
falls into this category. Crowd voting uses the collective wisdom of the community
to evaluate content such as articles, music media and more. It is one of the
most popular forms of crowdsourcing, having the highest levels of engagement.
Finally, crowd funding enable the funding of a project by raising small amounts of
money from a large number of people, typically via an open call on a platform on
the Internet, circumventing that way the traditional corporate establishment and

3https://www.threadless.com/
4https://www.istockphoto.com/
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offering financing to individuals or groups that might otherwise be denied credit or
opportunity. Kickstarter5 and Indiegogo 6 are prominent examples of crowdfunding
platforms, with many more also being widely used.

In all forms of crowdsourcing, it is paramount that some incentive is provided to the
crowd in order to ensure its participation in a consistent way. Incentives correspond
to the added value perceived by crowd participants for supplying their contribution
to the system. They can be categorized in two broad types, namely intrinsic
and extrinsic incentives. Intrinsic incentives reward participants via things such
contentment, for instance when contributing to a greater cause for the common good,
or self achievement, skill development and likewise. Extrinsic incentives consist
in offering more direct and tangible rewards, such as monetary returns or offered
services. Various mechanisms have been proposed to fullfil the incentivisation
process; Katmada et al provide a simple yet accurate categorization [5], detailed in
the following figure.

5https://www.kickstarter.com/
6https://www.indiegogo.com/

Figure 5.1: Categories of incentive mechanisms for crowdsourcing [5]
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5.2.2 The Wisdom of the Crowd

In most forms of crowdsourcing, the effectiveness of the collective solution highly
depends on the characteristics of the crowd. For instance, in a highly homogenous
crowd, cognitive biases can undermine the predictive power of crowdsourcing.
Despite the self-evident requirement of magnitude (since a few individuals do not
constitute a crowd) there are other key crowd attributes that can predict the
quality of the crowdsourced solutions, a subject of study which traditionally falls
within the social sciences. Scott Page, in his book "The Difference: How the Power
of Diversity Creates Better Groups, Firm, Schools, and Societies" [112] argues
that the effectiveness of crowds depends on diversity, not in terms of what we
appear from the outside but what we are really like from within, i.e. our individual
abilities and tools. Progress and innovation, according to Page, may depend less
on high IQ lone thinkers than on a diverse group of people working together and
capitalizing on their individuality.

Along the same line, James Surowiecki, in his book "Wisdom of Crowds", points
out that "collective decisions are most likely to be good ones when they’re made by
people with diverse opinions reaching independent conclusions, relying primarily
on their private information" [106]. Based on this reasoning, Surowiecki proceeds
to identify in his book the four elements that characterize a "wise" crowd:

1. Diversity. A diverse crowd is composed by individuals possessing a varying
background and characteristics, via which they provide their own
contribution/opinion, even if it is an eccentric one.

2. Independence. Each crowd member should operate independently and its
opinion should not be influenced by anyone else.

3. Decentralization. Decentralization refers to individuals being able to
specialize and draw on their local knowledge, rather than on an omniscient
or farseeing planner.
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4. Aggregation. The crowd’s individual contribution should be aggregated via
appropriate mechanisms into one collective decision.

The above delimitation provides a groundwork for determining the crowd
requirements that govern crowdsourced systems also in the field of IoT. In a
following section, we utilize Surowiecki’s work to reach conclusions relevant in the
context of IoT network.

5.2.3 Crowdsourcing in IoT

Since the last two decades, crowdsourcing has been applied in the field of IoT
in a variety of fields and applications. For instance, in WSN testbeds, as seen
in the previous chapter, mobile resources from crowd devices can be integrated
in order to augment the testbed’s data collection capacity among others. This
paradigm, where sensing data is gathered via the crowd, is referred to as mobile
crowdsensing and has seen a rapid growth in recent years. In a recent mobile
crowdsensing example, FLOAT [113] provides the citizens of Beijing with kites that
have specialized sensors kits attached on them, in order to gather environmental
data regarding air quality. In the case of FLOAT the design of the customized kite
happened as well in a crowdsourced way, in the form of crowd creation. Another
crowdsensing project was initiated in Fukushima, Japan, following the nuclear
plant meltdown in 2011. There, by using open source and open data approaches,
the Safecast project enabled citizens to create their own DIY radiation monitoring
sensor kits. That way, the population was given the ability to monitor, gather, and
openly exchange information about environmental radiation and other pollutants,
which was then collected and visualized in radiation maps.

Apart from collecting sensing data, crowdsourcing is also employed to enable
collaborative computing. SETI@home was a 20 year-long project analyzing radio
signals to look for signs of extraterrestrial intelligence [114]. In order to speed
the heavy signal processing necessary it opportunistically employed volunteer
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computers processing power, during their idle periods. In a current example,
DreamLab crowdsources computational resources from smartphones while they’re
charging in order to speed up calculations of a machine learning algorithms [115].
In a COVID-19 related DreamLab use case at the Imperial College of London
(ICL), it is indicated that, with a nightly runtime of six hours, the performance of
100,000 smartphones would reach the annual output of all ICL computers in just
three months [116].

5.3 IoT-related Crowdsourced Systems

A crowdsourced system is a system that employs crowdsourcing in order to augment
its constituent infrastructure, offered services or collected information. In the field
of IoT, crowdsourced systems have emerged thanks to technological enablers which
help the gathering of crowdsourced infrastructure, such as advances in ubiquitous
computing and mobile networking. In particular, the wide adoption of smartphones
from the general public, as well as the appearance of affordable SBCs, provided
a fertile ground for the rise of IoT-related crowdsourced systems. From now on
when we refer to crowdsourced systems we address them in the context of IoT, i.e.
IoT-related crowdsourced systems.

5.3.1 Architecture

While crowdsourced systems may be built with the intent of accomplishing a specific
task (such as FLOAT and Safecast), in the general case crowdsourced systems
should be application agnostic. In figure 5.2 we present the high level architecture
of a canonical crowdsourced system. Since this architecture corresponds to the
general case and is not application specific, it does not delve into technological or
implementation details but rather focuses on the fundamental constituent entities
and their relationship.
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Figure 5.2: High-level architecture of IoT-related crowdsourced systems.

We identify three distinct layers which compose crowdsourced systems: the
crowdsourcer, the crowdsourcing platform and the crowd. The crowdsourcer is
where the crowdsourced task originates and is also responsible for providing
sufficient incentives. In order to reach the crowd, the task goes through a
compound entity, the crowdsourcing platform, consisting of separate modules for
resources and data management, as well as a task handler and a resources gateway
acting as input/output units. We note here that the ensemble of actions
performed in this layer is often enclosed and provided by an external entity (f.i. a

91



Chapter 5. Definitions, Architecture and Requirements of IoT-related
Crowdsourced Systems

crowdsourcing platform such as Amazon Mechanical Turk or Kickstarter), but
that does not mean that it has to necessarily be implemented that way. As long as
the required middleware modules are present to link the crowdsourcer and the
crowd, a crowdsourced system can be set up. Once the task has reached the crowd,
there is the corresponding trajectory of the crowdsourced data and services from
the crowd back to the crowdsourcer, again via the crowdsourcing platform. In the
following we detail each of the architectural elements:

• The crowdsourcer. The crowdsourcer defines the task to be crowdsourced,
prescribing its specifications as well as the corresponding incentive
mechanisms. The task specifications may include requirements regarding the
crowd resources to be employed, such as resource type or geographic
location, depending on the application. The incentive mechanism to engage
crowd participation is also defined by the crowdsourcer, which can be of
extrinsic nature (e.g. a monetary or service reward) or intrinsic (e.g. feeling
of contentment for contributing to a noble cause).

• The task handler. The task handler acts as the interface of the
crowdsourcing platform to the crowdsourcer. It enables him/her to discover,
manage and inspect the crowdsourced resources in a uniform manner via its
corresponding functions. It is there where the task specifications and
incentive mechanisms are input by the crowdsourcer and then relayed to the
resource and data management modules in a proper way for the task to be
compiled and executed. Moreover, once results from the crowd have been
retrieved it is responsible for returning them to the crowdsourcer in a
meaningful format, f.i. results in a semantic context instead of raw values.
In general, the task handler can be seen as an abstraction layer that hides
the underlying complexity of the crowdsourced system to the crowdsourcer,
while facilitating task composition and execution.

• Resources management. The resources management module is where all
the information and meta-data regarding the system resources is maintained
and managed. It operates as a resource directory, supporting all of the services
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required for resource discovery, registration and access, exposing them all
in a user-friendly way. In addition, it maintains all the meta-information
which characterize each resource, f.i its type, method of access, availability,
trustworthiness and more. Generally, the resource manager should store
all information in a standardized format with the aim of (i) mitigating
heterogeneity issues and (ii) facilitating the use of this information by other
system elements.

• Data Management. Data Management is the module where all acquired
data, as well as pertinent meta-data, are kept and curated. For example, if
temperature measurements are collected as part of a crowdsensing job, the
term "data" would refer to the actual temperature readings, while "meta-
data" relates to the information regarding e.g. the time and location where
the readings were taken. Similarly to resources management, data and meta-
data should be maintained in a standardized format in order to address
heterogeneity and interoperability issues. In this regard, technologies used in
big data and cloud storage are envisioned in the data management module, to
address the case of a crowdsourced system that generates big volumes of data.
Finally, depending on the specific application of the crowdsourced system, the
services for storing, processing and curating data may be highly sophisticated,
with pattern recognition and other data mining mechanisms being often used
to extract semantically meaningful information from initial data (e.g. to
predict a weather alert from a set of environmental measurements).

• Resources Gateway. The resources gateway module interconnects the
individual crowdsourced resources with the crowdsourcing platform. This
link happens such as the underlying heterogeneity and diversity of the
crowdsourced resources are hidden from the upper levels of the architecture.
This mitigation is usually achieved with mechanisms implemented in
commonly understood interfaces, such as mobile applications for
smartphones or software add-ons for SBCs. It is common for a crowdsourced
system to provide multiple options to the crowd, all being a part of the
resources gateway, in order to facilitate and stimulate participation.
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• The Crowd. The crowd is the foundation of a crowdsourced system and an
indispensable part of its functional architecture. The term can refer either to
the crowdsourced resources, i.e. the devices that contribute to the system
or directly to the crowdsourcees ,i.e. the owners of those devices. It is
worth noting that there is no 1-to-1 relationship between crowdsourcees and
crowdsourced resources, as one person may possess more than one device. In
the context of a crowdsourced task, the crowd provides sensed data and/or
services and in return receives some reward, which may come at various forms
(extrinsic or intrinsic incentives).

5.3.2 Requirements

As a starting point in the inspection of functional requirements of crowdsourced
systems, we revisit the prerequisites of the "wise" crowd presented in section 5.2.2.
The 4 requirements identified by Surowiecki are addressed to a crowd of people,
rather than crowdsourced resources; that being said, some parallel can be drawn in
the context of IoT-related crowdsourced systems. In such an effort, we translate
these 4 requirements as follows:

• Diversity: A canonical crowdsourced system needs to be able to incorporate
diverse crowdsourced infrastructure. This refers to to possessing adequate
integration mechanisms to be able to crowdsource highly heterogeneous
devices, without relying on specialized hardware that is application specific.

• Independence: All crowd devices should operate in an autonomous way,
independent of other system components. There should be no dependencies
or the presence of a hierarchical structure among the crowdsourced resources.

• Decentralization: There should be no central mechanism dictating the
operation of crowdsourced devices. Nonetheless, orchestrating mechanisms
which are centralized may exist in order to supervise task execution and
manage the crowd resources as a whole.
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• Aggregation: Aggregation mechanisms should exist which accurately
consolidate individual contributions towards achieving some specific goal.
Such a mechanism may be executed centrally in a crowdsourcing platform,
or it could also be intrinsic to the crowdsourced system, for instance in the
form of a distributed protocol.

The above requirements outline accurately important aspects that a crowd of
devices, in an IoT-related crowdsourced system, should fulfill. Going a step further,
in the following we identify the functional requirements of the whole crowdsourced
system, which some overlap with the above conclusions drawn from the prerequisites
of a "wise" crowd.

1. Openness It is required that an IoT-related crowdsourced system maintains
its openness, as the driving force behind crowdsourced systems in general is
the solicitation of contributions made by a large, open and diverse crowd. The
requirement of openness applies to several aspects of crowdsourced systems,
the critical one being a) access to the system, b) design principles and c) data
models. In the following we detail these principal sub-categories regarding
the openness requirement:

(a) Openness in terms of crowd accessibility. A crowdsourced system must
have an architecture built to incorporate publicly accessible interfaces,
which allow crowd individuals to participate in large numbers. Websites
or smartphone apps, for example, may be provided by the
infrastructure to facilitate crowd engagement. While some access limits
may be imposed to the crowd depending on the application context
(e.g. targeted demographic criteria, inhabitants of a specific area or
registered clients of a specific service), they should not limit
participation to a very narrow or extremely specific group of
individuals, and should be inherent to the task at hand.

(b) Openness in terms of hardware and software design. It is required that
a crowdsourced system is created following design principles, in terms of
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hardware as well as software, that facilitate crowd participation. This
is achieved by the use of modular architectures, which allow for future
system additions, as well as the utilization of standardized technologies
that are widespread in the general population. It is recommended that
different development platforms are supported in scenarios where the
crowd contributes to the system by developing a piece of hardware
(e.g. a sensing device). When crowdsourcees contribute to the system
by developing or deploying software, it is advised that the software’s
hardware requirements are as generic as possible.

(c) Openness in terms of Data. A open and standardized data model is
necessary in the data management module of a crowdsourced system.
This is because, depending on the application, crowdsourced systems
may collect data from a wide range of devices with varying calibrations,
as it is the case for instance in system monitoring ambient
environmental conditions. Similarly, if devices in a crowdsourced
system are required to exchange data (e.g., to perform some local data
processing), a standardized format is needed to ensure interoperability.

2. Affordability and availability of system components. Affordability
and availability imply that a crowdsourced system should not rely on
specialized equipment. On the contrary, it is required that the necessary
system components (hardware or software) are both inexpensive and readily
available to the general population. That is because ordinary people should
be able to participate using either off-the-shelf equipment, such as
smartphones, or piecing together some off-the-shelf components, as it is the
case with SBC development platforms.

3. Anonymity of Crowdsourcees. A crowdsourced system should employ
mechanisms that can protect the identity of the individual crowdsourcees.
This refers to the system providing adequate assurances that an individual
cannot be identified, via its contributions to the system. This is important
as it helps in the mitigation of any concerns of trust and privacy that could
hinder participation in the general public. In addition, a crowdsourced system
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should not be dependent on the identities of specific individuals by definition,
as it is the collective result (which "belongs" to the crowd as a whole) that
is of value, and hence by design. While anonymity should be guaranteed,
in specific applications a task may nevertheless include filter methods for
identifying sub-groups of crowdsourcees based on specific characteristics (e.g.
demographics).

4. Aggregation Mechanisms. A crowdsourced system must incorporate
adequate aggregation mechanism for processing the crowdsourced data.
Aggregation methods should treat data independently of the identities of the
crowdsourcees, however, they may take into account factors like reputation,
trustworthiness, and so forth. Aggregation mechanisms in IoT-related
crowdsourced systems belong in two types: a) centralized aggregation
mechanisms, in which the data is processed after it has been collected in a
data repository, or b) in-network aggregation mechanisms, in which the data
is processed locally by the nodes of the crowdsourced system before being
sent to the system’s data repository. Hybrid solutions, which combine the
two categories, may also be implemented.

5. Abstraction Mechanisms. A crowdsourced system should have abstraction
mechanisms in place for each component of its architecture. These mechanisms
serve the purpose of facilitating the integration between all components, by
masking their underlying heterogeneity. They also help to clearly distinguish
the system participant roles, as in for example, the crowdsourcer, which
interacts with the crowd as a whole via designated APIs, rather than directly
with individual crowdsourcees. The use of abstraction mechanisms in system
development implies that the overall system has a modular design. This
contributes towards more efficient system designs overall, which complement
as well other requirements (such as the anonymity of the crowd).

6. Incentive Mechanisms. An incentive mechanism should be employed by
the crowdsourcer in order to successfully engage the crowd in a consistent
and meaningful way. The reasons for convincing the crowd to participate
in a crowdsourced system stem from a wide spectrum of motives, such as
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monetary reward, altruism, social motivations etc. It is the crowdsourcer’s
responsibility to pick an appropriate incentive mechanism, given the specific
application and the targeted crowd.

5.3.3 Crowdcloud: A study case

Following the requirements and architecture outlined and detailed in the previous
section, we present here a demonstrative study case of an IoT-related crowdsourced
system: CrowdCloud. The CrowdCloud consists of a system providing crowdsourced
cloud infrastructure, by the crowd and for the crowd. Therefore, in this case the
crowdsourcer and the crowdsourcee are interchangeable, both belonging to the
crowd, as we can see also in the CrowdCloud architecture depicted in figure 5.3.

Figure 5.3: CrowdCloud system architecture

Looking at the CrowdCloud platform in figure 5.2, with the canonical architecture of
an IoT-related crowdsourced system as a reference (fig. 5.2), the crowd management
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module refers to the resource management functionalities, such as registering crowd
users and keeping track of their status. Similarly, the cloud management module
encircles the actions corresponding to the data management component, such as
storing user cloud data or manage cloud computations. Finally, the CrowdCloud
platform management module abstracts the task handler and resources gateway
functionalities, providing the interface for crowd users having either the role of a
crowdsourcer or a crowdsourcee.

The idea underpinning the driving force for a crowd-driven cloud revolves around
a free market model, where every individual can supply its resources for a price, or
equivalently demand for resources from the others, following the regulations that
dictate a free market. This encompass the necessary incentivization mechanism,
with crowd participants being rewarded with some monetary or service-based
reward (extrinsic incentive) for sharing their device resources. The CrowdCloud
resources may correspond to the infrastructure level, such as CPU power and
storage space, the platform level, e.g. specialized libraries and web servers, or
also to the software level such as on-demand software systems. At this stage,
we consider the provision of resources at the infrastructure level; to that end,
appropriate mechanisms allowing for resource abstraction, task partitioning and
parallel execution are necessary to leverage the crowd resources. For the prototype
use-case, we choose to use Apache Spark [117] which is a cluster computing software
encapsulating all of the above functionalities, providing a distributed application
execution environment that is compatible also with resource-constrained devices.
This is important in order to address the openness requirement in crowdsourced
systems, allowing as many crowd members as possible to participate in the system.

Spark utilizes the MapReduce programming model to partition tasks and is
considered pioneer in using in-memory data abstractions that help reach very high
levels of speed and scalability [118]. The architecture of a Spark cluster is depicted
in figure 5.4. Spark applications operate as separate groups of processes,
coordinated by the SparkContext object on the driver program, in a master/slave
arrangement. SparkContext can communicate with a variety of cluster managers
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Figure 5.4: Spark cluster architecture

that distribute resources among several applications. The cluster manager
connects to the nodes in the cluster and obtains their executors, which are
processes that execute computations and store data for applications.

The cloud management module of the CrowdCloud architecture is implemented by
the native Spark standalone cluster manager which we use in this prototype. Other
open source cluster managers (Mesos, Yarn) are also compatible for use with Spark,
but the standalone option is the simplest and most lightweight solution. That way,
in order for crowd users to expose their resources in the system, they only need to
install the spark-worker image on their device and register with the CrowdCloud
platform. Upon successful registration, the cloud manager can then retrieve part
of the device’s computational cores in accordance with the plan and policy in place.
The cluster manager will be responsible for communicating the necessary metadata
concerning crowd users, such as the number of available cores, memory etc., to
the crowd management module where all the free market functionalities will be
contained.

In order to test the validity of the above framework, we deployed it in a local cluster
of Raspberry Pi devices (Fig. 5.5). The Raspberry Pi 3 Model B version used in
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Figure 5.5: A Spark cluster of 13 Raspberry Pis. Master node (bottom right) and
worker nodes connected via an ethernet switch.

this cluster is an SBC equipped with a quad-core processor at 1.2GHz and 1GB of
RAM, and with a retail price below $40 USD it represents the lower end of crowd
devices suitable for the CrowdCloud. The initial testing of the Spark computing
framework on the Raspberry Pi cluster showed that crowdsourced computing with
resource-constrained devices is feasible.

5.4 Conclusion

In this chapter we formalized the newly emerged architectural paradigm of
crowdsourced systems, in the field of IoT. Crowdsourced systems are systems
whose infrastructure is heavily relying on resources pooled from the general public,
via crowdsourcing methodologies. Drawing a parallel from the requirements of a
"wise" crowd in traditional crowdsourcing, we identify the requirements that must
be met for a crowdsourced system to be functional in the field of IoT. Moreover,
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we delimit the high level components that form the "canonical" IoT-related
crowdsourced system, namely the crowd, the crowdsourcer and the crowdsourcing
platform. The crowdsourcer defines the task and the corresponding incentives,
which is disseminated to the crowd via the crowdsourcing platform, through which
the task results return back to the crowdsourcer. The crowdsourcing platform is a
compound entity enclosing data and resource management modules, as well as a
task handler and a resource gateway. It is common for crowdsourced systems to
use an external crowdsourcing platform which is provided in a
Platform-as-a-Service fashion; that being said, all of the functionalities can also be
implemented inherently in the system. Finally, we exemplify the formal definitions
with a use case implementing a crowdsourced system for provisioning of cloud
infrastructure. We utilize the cluster computing framework Apache Spark, and
deploy it in a cluster of 13 Raspberry Pis.
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6 Crowdsourced Edge: A Novel

Networking Paradigm for the

Collaborative Community

6.1 Introduction

According to latest projections, it is estimated that a staggering 50 billion devices
will be connected to the internet by 2030 [119]. These levels of growth will inevitably
lead to an escalation of resource congestion in centralised computing paradigms,
such as cloud computing, which, no matter the scaling up of their infrastructure,
will be burdened with additional network latency and subsequent drops in Quality
of Service (QoS). Moreover, next generation networks requirements include support
for high density and low latency, calling for novel communication technologies
(such as the use of millimeter-wave frequencies) as well as for innovative network
architectures.

The above circumstances have fostered the sprouting of the edge computing
paradigm, where computational resources are strategically positioned at the
network edge in order to perform locally computationally demanding tasks,
instead of outsourcing them to the cloud. This helps alleviate latency inferred
from the physical distance to the cloud centers; indicatively, in a proof-of-concept
study measuring latency, the response time of the execution of a highly
sophisticated face recognition algorithm was reduced from 900 to 169 ms by
moving computation from the cloud to the edge [120]. Besides minimizing
distance-induced latency, a second pillar motivating edge computing is
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context-awareness; mobile applications become "smarter" when they can perceive
their environment and act inline with its variations, a process that is facilitated by
moving computational resources closer to the data source. Applications in the field
of wearable cognitive assistance or those implicating virtual or augmented reality
are typical examples in that context, as they require constant tracking of the
environment to enable accurate decision making in real time.

Consequently, in recent years, stimulated both by industry and academia, there
have been significant efforts and in-depth studies to concretise the edge computing
paradigm. The first instance can be traced to Cisco and the introduction of Fog
Computing [121], in which a virtualised platform for networking and computing
services is positioned within the cloud-to-things continuum. Similarly, first defined
from Satya et al [122], Cloudlet Computing proposes a network of small data-
centers-in-a-box (cloudlets) to act as an intermediate layer between user and cloud.
Along the same line but from a different perspective, Multi-Access Edge Computing
(MEC) driven from the 5G latency requirements [123] envisions the enhancement
of the Radio Access Network (RAN) with edge infrastructure positioned at the
base stations [124].

All of the above paradigms converge in the establishment of a powerful, static or
semi-static, network of resource-rich edge nodes which however, may prove not
suitable for more flexible and responsive systems. In the context of IoT for instance,
Gartner identifies the shift to more unstructured, dynamic architectures as one of
the crucial IoT future challenges [125]. Another concern regarding the dominating
edge computing paradigms is that, despite the implementation differences, in
each case the edge network is managed centrally and is either consumed for
internal purposes, or provided to third parties for Over the Top (OTT) service
provisioning. Under this light, we propose here a radically different paradigm for
edge computing: the Crowdsourced Edge. The Crowdsourced Edge or Crowdsourced
Edge Computing (CEC) paradigm consists in involving individual crowd peers,
within a zone of local proximity, in a collaborative edge computing environment. A
CEC network is formed in an ad-hoc way and follows a dynamic mesh architecture,
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in which all peers are equal and share network resources in a democratised fashion.
Decentralized mechanisms for partitioning and aggregation dictate resource and
data management, following the principles of crowdsourced systems [126]. Driven
from the individual and societal needs [127,128], CEC capitalises on the emerging
fields of Do-It-Yourself (DIY) networking, community wireless networking and
crowdsourced systems, which are already shaping an urban-technological future
outside the commercial internet paradigm.

We begin this chapter by first providing some necessary background on edge
computing in the following section. Then, we present the architecture of CEC, as
well the main research challenges imposed, highlighting also the key benefits of
the proposed solution. In order to concretise the CEC paradigm, we then detail a
specific use case regarding a video-enhanced missing object search, before finally,
concluding this work.

6.2 Background and Related Work

6.2.1 Edge Computing

Edge computing is a computing paradigm in which substantial computational and
storage resources are positioned at the internet’s edge, in close proximity to user
devices. So far, there have been three dominant instantiations of the high-level
paradigm of edge computing: Fog Computing, Multi-Access Edge Computing
and Cloudlet Computing. Each one of them possesses unique characteristics and
challenges, as detailed in numerous thorough studies [129–132]. In order to position
our work in relation with the established groundwork, we provide here a short
overview of the above-mentioned edge computing concretisations.
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6.2.1.1 Fog Computing

Fog Computing is a term used in some cases interchangeably with edge computing,
nevertheless “fog" implies an intermediate layer between edge and cloud. It was
first coined by Cisco in the development of a highly virtualised platform providing
computing, storage, and networking services between end-devices and traditional
cloud computing data centers [133]. Fog architecture enables the creation of a
hierarchical infrastructure, where tasks and processes are coordinated between
several layers from the edge to the cloud in a bottom-up fashion (Fig. ??). The
entities belonging to the fog layer correspond to routers, access-points or other
specialized devices which are typically located not further apart from end user-
devices than some tens of meters. To tackle the heterogeneity that comes with the
various devices, the fog network proposes the use of emerging techniques such as
Network Function Virtualization (NFV) and Software-Defined Networking (SDN)
to create a flexible network environment.

Cloud

Fog

End-user devices

Figure 6.1: Fog computing layer architecture
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A joint effort form academia and industry towards standardisation in fog computing
started in 2015 with the OpenFog Consortium, with founding members from high
tech industries such as Cisco and Intel, as well as academic institutions across
the world including Princeton University. In 2017, the OpenFog Consortium
issued a Reference Architecture, specifying high-level requirements from design to
implementation, which was later declared an IEEE standard for fog computing [134].

6.2.1.2 Multi-Access Edge Computing

With the focus on mobile clients within the Radio Access Network (RAN), MEC
proposes an edge computing implementation with edge servers at the RAN base
stations [135] (Fig. 6.2). The first approach of implementing MEC can be traced
in 2013 when Nokia and IBM introduced a platform allowing the execution of
services within mobile base stations [136]. A more significant introduction came
one year later though, when MEC was officially assigned an Industry Specification
Group (ISG) as one of the key emerging technologies towards 5G, by the European
Telecommunications Standards Institute (ETSI) [124]. At that time the "M"
in MEC referred to "Mobile" edge computing, a term which was changed two
years later to "Multi-Access" in order to broaden MEC’s applicability to networks
incorporating WiFi and other fixed access technologies. According to the ETSI white
paper, MEC is characterized by five key features, namely on-premises, proximity,
low latency, location awareness and network context information. Similarly to fog
computing, MEC is closely coupled with the emerging technologies of SDN, NFC as
well as network slicing, and there is substantial effort focused on the development
of MEC specifications based on industry consensus. Indicatively, right now there
are 68 members and 35 participants in the ETSI consortium for MEC, ranging from
mobile operators, manufacturers, service providers as well as universities, which
have the common goal of ensuring an open and interoperable MEC environment.
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Figure 6.2: Multi-Access Edge Computing architecture [6]

6.2.1.3 Cloudlet Computing

Cloudlet Computing emerged as an evolution of Mobile Cloud Computing (MCC)
which early in 2009 addressed issues of mobile delegation and task offloading but
strictly with the cloud [137]. Cloudlets, firstly introduced by Satyanarayanan et
al [138], are small resource-rich data centres that can be positioned strategically
in close proximity to end-users, imitating the cloud and allowing for intense
computations close to the data source (Fig. 6.3. More recently, Victor Bahl et
al [139] introduced the -cloudlet equivalent- micro datacentre as an extension of
today’s hyperscale cloud datacentres, following the same architecture. The popular
open source framework OpenStack for cloud computing has been customized to
support cloudlet deployment, in the implementation OpenStack++ [140]. As it is
imposed in all edge computing implementation, customized Virtual Machine (VM)
hand-off mechanisms for cloudlets have been developed for dealing with mobile
users, similarly to the way MEC handles RAN mobile subscribers.
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Figure 6.3: Cloudlet Computing architecture [7]

In the following section, we present the architecture and characteristics of a crowd-
based edge computing, the Crowdsourced Edge. The Crowdsourced Edge is designed
in line with the principles and guidelines of crowdsourced systems (detailed in
the previous chapter) and, to this day, constitutes the first attempt to implement
the edge computing paradigm as a crowdsourced system. Mobile Crowdsensing
Systems (MCS) have been previously linked with edge computing and in particular
with MEC [141,142], but mainly as an additional architectural module providing
either extra network coverage or human intelligence in task execution. We advocate
that CEC possesses unique characteristics that differentiate it from the existing
implementations and position it as a novel edge computing paradigm that drives
the need for locally managed, context-aware applications, from a citizen/community
perspective.
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6.3 The Crowdsourced Edge

6.3.1 Architecture

The Crowdsourced Edge connects crowd peers belonging to a local proximity
neighbourhood, in an edge-service provider network. The edge network is formed
in an ad-hoc manner, either via traditional networking infrastructure already in
place (LTE, internet) or by alternative local networking techniques like the ones
developed in the emerging fields of DIY networking and offline networking [143]. A
CEC network is formed by crowd peers connected in a dynamic mesh architecture,
where each node depending on user preferences and the application context can
take one or more of the following roles:

1. Task handler. Task partitioning and queuing is managed by the task
handler. Nodes implementing the task handler are bound to have higher
requirements in matters such as allocated memory or computational capacity,
but also in performance robustness and overall reliability, given their key role
in application workflow.

2. Worker. The worker nodes consume the tasks coming from the distributed
task queue managed by the task handler. An abstraction mechanism is
required to discover and expose worker resources in a homogeneous manner.

3. Message broker. Message brokers implement network routing
functionalities including packet forwarding and maintaining a list of active
routes, depending on the communication protocol.

We state here that the above distinction does not imply a delimitation in the
physical sense, but it designates an abstraction model capturing the different
system entities; the three categories reflect the high-level functionalities of the
collaborative computing framework proposed in CEC. In fact, in order to adapt to
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Worker
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Task execution

Message Broker

Packet forwarding

Task Handler

Service discovery

Task orchestration
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Figure 6.4: CEC node functionalities.

the dynamicity characterizing crowd environments, the library sets implementing
the different roles should be packaged together in a single firmware equipping the
CEC Hybrid Node (fig. 6.4), thus enabling for flexible and responsive management.
As such, depending on application context, a CEC node can assume one or multiple
of the above-mentioned system roles. This fully distributed architecture inherently
addresses the functional requirements of “independence” and “decentralisation”
outlined in IoT-related crowdsourced systems (see 5.3.2), since the system roles
are not tied to specific nodes and can be migrated if needed. The requirements of
“diversity" and “aggregation” reflect implementation challenges regarding general-
purpose computing and resource management, which are discussed in detail in the
next section.

Equipped with the libraries forming the CEC node, a crowd user can join the
CEC network, and participate in applications using the pooled storage, computing,
sensing or other resources in the network (Fig. 6.5). It is certain that, from the
initial formation of the network to the successful exposure of crowd resources and
distribution of edge services, a variety of challenges are raised, some identified
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Figure 6.5: Crowdsourced edge high-level system architecture

as key challenges in "traditional" edge computing, such as node programmability
and interoperability, and other that are specific to the CEC paradigm such as
incentivization mechanisms and adaptation to a resource-constraint environment.
Following, we identify the main challenges for computing at the Crowdsourced
Edge, discussing available solutions and enabling technologies.

6.3.2 Research Challenges

Rapid formation of ad-hoc networks

Networking in a highly diverse, often underpopulated, environment is a very
challenging task. In the easier scenario, a CEC network can be formed using
existing networking infrastructure already in place, such as a building’s WiFi
APs or cellular network deployed by service providers. That being said, there
are a lot of advantages from achieving an on the fly, ad-hoc, manner of forming
the network such as added privacy from dis-intermediation and support for more
application scenaria. Depending on the specific application, certain characteristics
of the network may vary, e.g. the network lifetime for a concert event could range
to some hours or the desired network coverage for indoor and outdoor settings
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may be substantially different. Elements from the emerging fields of DIY and
offline networking, which leverage next generation mobile devices and SBCs to
form ad-hoc networks quickly and efficiently, can aid the CEC network formation
phase.

Flexible Routing

CEC networks, in principle, should support high dynamicity to respond to crowd
participants being mobile and in general exhibiting unstable behaviour. Routing
patterns that follow the publish-subscribe communication paradigm can fit well
this setting, as nodes can request or advertise services in an asynchronous way.
Lightweight implementations of the messaging protocols MQTT and AMPQ exist
and can be used for implementing such a routing mechanism. In the lack of
static nodes to act as message brokers, rendezvous routing algorithms which create
direct paths between publisher and subscribers can be used, such as the one
described in chapter 2, or else hybrid approaches like the one used in the Broccoli
stack for distributed computing where all network nodes include message broker
functionalities [144]. Alternatively, distributed routing techniques used in peer-
to-peer (P2P) networking, such as distributed hash tables [145], are also good
candidates for implementing a routing mechanism suitable for CEC networks.

General-Purpose Computing

Despite the advancement of general-purpose computing infrastructure, partitioning
computing tasks to be executed in highly heterogeneous devices, both in terms of
hardware as well as operating system, remains a daunting task. The use of Virtual
Machine (VM) provisioning helps overcome this heterogeneity but VMs can prove
too resource-demanding for user devices in the lower tiers. An alternative to VM
provisioning is container technology, the most popular instance being Docker [146],
which can provide fast deployment, small footprint and according to recent studies
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good performance in constrained environments [147], making it a potentially viable
solution for CEC.

Data Consistency

The nodes in the CEC network may need to share information with other nodes. In a
loosely coupled distributed system such as the one targeted by the CEC framework,
ensuring data consistency while simultaneously maximising performance by allowing
the nodes to operate independently is a challenge. Several consistency models
have been developed in the distributed systems community which offer trade-offs
between stronger consistency (correctness of data) versus performance [148]. On
the one extreme we have strong consistency models which behave as if a single
centralised node handles all the operations. This model requires synchronisation
and significantly slows down the computation [148]. The other extreme is the weak
consistency which does not provide any guarantees [149]. Other consistency models
include Causal Consistency [149], eventual consistency [149] which lie somewhere
in between the extremes.

Resource Management

Resource management in heterogeneous environments call for an abstraction layer to
handle the diverse node resources, in order to enable higher level functionalities such
as service discovery and queuing. An approach following the REST architectural
principles should be followed in CEC APIs implementing those functionalities, in
order to promote interoperability. Several fully-fledged framework for distributed
computing have been developed (Hadoop, Spark, GridGain and more) which
include a resource management platform, but very few of them are a good fit for
a resource-constrained environment; Apache Edgent [150] and DC4CD [151] are
two recent projects targeting resource-constrained devices but both are still in an
incubating stage.
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Data Privacy and Security

Data privacy and security in digital networks is a major concern in modern society,
given a series of major data-breach cases of very large scale [152, 153]. The
Crowdsourced Edge has to also address such concerns since edge services may
also handle sensitive user data or require delicate hardware access depending on
the application. Privacy-by-design [154] techniques such as decoupling of user
profiles with sets of data in application development can solve this issue. Moreover,
access control services such as authentication, authorisation and accountability
can provide secure links between edge nodes. Given the distributed nature of
CEC, something to also consider is the use of distributed ledger techniques, such
as the blockchain, which can help enhance security with mechanisms like content
validation and decentralised transaction.

Crowd Incentives and QoS

One of the tougher challenges for a collaborative P2P framework like the one
proposed in CEC, is ensuring an acceptable QoS threshold. To achieve adequate
QoS in crowdsourced systems, a critical mass of active crowd participants must
be maintained; therefore individual peers must be a)incentivised to join the CEC
network and b)have their expectations met in terms of Quality of Experience (QoE)
in order to remain active and maintain a stable behaviour. Crowd incentivisation
is a topic thoroughly investigated in crowdsourced systems, where schemes that
reward participation and engagement are often proposed [155]. In CEC we envision
a direct reward for the peer coming from utilising the edge services (extrinsic
incentive) as well as a participation reward in the form of social acknowledgment of
contributing for the common well (intrinsic incentive). In order to secure a decent
level of QoE for crowd peers, fairness in terms of ensuring equal resource sharing
and load balancing is essential. Opportunistic approaches in distributed computing
often lead to a small number of nodes carrying the majority of the processing
burden, while a large number of nodes contributing little to the working of the
solution. This can not be the case for CEC as excessive single resource commitment
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may lead to issues like battery drainage and hardware stress which may encourage
peers to drop the network. Finally, fault-tolerant database schemes such as the
Hadoop Distribute File System (HDFS) or Resilient Distributed Datasets (RDDs)
will be needed to avoid loss of information due to sudden node dropout, which
would cause a plunge in QoE metrics.

6.3.3 Comparison with Existing Edge Computing

Paradigms

As seen in the previous section, the Crowdsourced Edge inherits the intrinsic
characteristics and challenges of edge computing, such as its decentralised nature
and the need for abstraction and virtualisation which comes with managing diverse
resources. Compared with the three established paradigms, detailed in section
6.2, CEC is consonant with the fundamental edge computing traits like e.g. the
decentralised network architecture or the support for mobile users, nevertheless it
differs fundamentally in aspects like the motivational force and the return value
distribution.

In table 6.1 we present a detailed comparison of CEC with MEC, fog computing and
cloudlet computing. We highlight a major difference that lies in the edge network
ownership, which for the case of CEC is shared among the owners of the nodes
forming the network, in a community-like manner, while for the other paradigms it
resides with some private entity. This is coupled with a shift in the driving force
from business-related, which is mostly the case in the established paradigms, to
individual or community wishes. Another important variation in CEC comes from
the dynamic nature of the proposed network architecture, which makes it highly
suitable for short-term application scenaria such as art exhibitions or sport events.
At the same time this brings additional degrees of complexity in implementation
issues not to mention QoS; moreover, in the same respect, the processing capacity
offered by the powerful edge-servers proposed in other paradigms are difficult to
achieve in CEC. That being said, one can envision a highly scalable system allowing

116



6.3. The Crowdsourced Edge

MEC Fog Cloudlet Crowdsourced Edge

Ownership Telco companies Private entities
Local communities,

individuals

Edge nodes
Servers in base

stations

Routers, access

points, gateways

Datacentre in

a box

End-user devices

(PCs, Smartphones, SBC)

Network

architecture
Static, decentralised Dynamic, distributed

Support for

mobility
Yes Yes

Processing

capacity
High Average High Limited

Cloud use No Yes No

Driving force 5G enabler Business, B2B Institution Community

Table 6.1: Comparison of Crowdsourced Edge Computing with the dominant edge
computing paradigms.

the cooperation of virtually limitless users and, taking into account the increasing
capabilities of mobile devices, high computational capacity may be feasible.

6.3.4 Key Benefits

The adoption of the spontaneous collaborative networks enabled by the
Crowdsourced Edge comes with diverse benefits for the individual and the
community. In addition, one could also foresee the sprout of novel market
opportunities within this emerging digital ecosystem. Here we list the key points
of expected benefits originating from the Crowdsourced Edge:

• Vendor-neutral edge services. The Crowdsourced Edge paradigm brings a truly
open and accessible to all edge computing solution. This is reflected in the
minimal hardware requirements allowing low-power constrained devices at
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affordable prices into play, while on the contrary we observe e.g. Cisco fog
computing hardware cost ranging around several hundreds of US dollars.
Likewise, cloudlets have been appearing in pay-per-use business models [156]
while MEC infrastructure is intrinsically part of the telecommunication
service-provisioning market. The Crowdsourced Edge, therefore, provides an
alternative to the above with its vendor-neutral approach, placing power to the
citizen and promoting self-sustainable digital communities.

• Privacy via dis-intermediation. As previously mentioned, data privacy is a major
concern for next-generation networks. From the communication perspective, the
risk of a breach occurring grows proportionally with the number of intermediaries
involved. In this respect, CEC networks, which follow the principles of DIY
networking and community or offline networks that are dis-intermediated from
centrally managed service-provisioning entities, provide a more secure, privacy-
preserving, environment for users to trust their data.

• Data ownership and market opportunities. Going a step further regarding user
data security in the Crowdsourced Edge, data transactions can be uniquely linked
to the users producing them with the help of blockchain technology. This digital
proof of data ownership supports users in matters related e.g. to intellectual
property, but it could also tinder a novel market ecosystem where users can trade
their data using blockchain transactions.

• Digital literacy. Along with other emerging DIY technologies, the Crowdsourced
Edge kindles a multifaceted engagement of the society with future technologies,
paving the way for proactive citizens in digital smart communities. CEC platforms
can help citizens to enhance their digital literacy by providing means of easy
access to next generation networks, via tools available to all.
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6.4 A CEC Use Case: Video Enhanced Object

Search

In order to demonstrate the functionality of the Crowdsourced Edge we present
here a prototype use case. The proposed application utilises the edge network to
crowdsource a video-enhanced object search in a wide local area (e.g. a university
campus), for the purpose of generating informative heat maps or identifying a
specific object (f.i. a lost object). Leveraging the user devices’ cameras and
computational resources, all data processing is performed locally at the network
edge, and only metadata, such as classifier parameters or object detection results,
are transferred through the network.

Before detailing the application workflow and architecture, we go over two main
design considerations in application development: i) the choice of classifier for
object detection given the specific context constraints (e.g. energy, computational
resources) and ii) the preservation of privacy when video recording and editing.
We evaluate the more suitable methods and algorithms with respect to the above
and subsequently we detail the overall application workflow with the help of two
example scenarios.

6.4.1 Lightweight Object Detection

Deep learning techniques have grown to become the standard approach in computer
vision tasks such as object detection, ever since AlexNet [157] won the ImageNet
Challenge using deep Convolutional Neural Networks (CNNs). Nevertheless, the
high accuracy achieved by CNNs usually comes with the price of high computational
cost, which constitutes an impasse when it comes to resource-constraint application
environment. Recent efforts attempt to optimise the number of operations in CNN
classifiers by replacing the classical convolution with custom versions, for instance
by using sequences of depthwise or spatial separable convolutions to achieve the
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same results. This has produced some significantly more efficient CNN architectures
(Inception [158], NasNet-Mobile [159], MobileNet [160], Squeezenet [161], ShuffleNet
[162] and more) both in terms of size and computational cost.

For the purposes of the CEC use case, the use of TensorFlow Lite [163] is envisioned,
which is a lightweight version of the popular software library TensorFlow, tailored
for mobile and embedded devices. TensorFlow Lite provides a rich set of machine
learning APIs including the latest versions of lightweight classifiers used in computer
vision, achieving impressive results in terms of computational efficiency on the
latest smartphones, as can be seen in Table 6.2. In addition, the TensorFlow Lite
binary is smaller than 300KB, with all supported operators linked, and less than
200KB when using only the operators needed for Inception and MobileNet [163].

Model Device CPU GPU

Mobilenet_1.0 Pixel 4 / iPhone XS 23.9 / 14.8 ms 6.45 / 3.4 ms

SqueezeNet Pixel 4 / iPhone XS 23.9 / 21.1 ms 11.1 / 15.5 ms

Inception_V2 Pixel 4 / iPhone XS 272.6 / 261.1 ms 87.2 / 45.7 ms

Inception_V4 Pixel 4 / iPhone XS 324.1 / 309 ms 97.6 / 54.4 ms

Table 6.2: Performance benchmarks of TensorFlow Lite classifier models on market
leading mobile devices [8].

6.4.2 Privacy Aspects

Since this application prompts users to record video, and then this video is subdue
to some processing, privacy aspects must be addressed to be in accordance with
respective regulations. The exact legislation regarding video recording differs from
one place to another and is often ambiguous, but in most cases the law dictates
that when residing in outdoor public spaces, in which one is legally present, a
person has the right to capture any image that is in plain view. When located
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on private property however, it is the property owner who sets the rules about
the taking of photographs or videos. Therefore, in order to ensure proper usage
of this application, all of the above will be conveyed to the users in the form of
a legally binding privacy policy upon application installation. The exact clauses
may vary depending on the country or state location. Regulations are typically
more sensitive regarding audio recording, which is why the app will restrain audio
capture when video recording. When it comes to video editing, the main privacy-
threatening concerns raised regard the case of face recognition, for the protection of
which a variety of techniques (such as video redaction and denaturing) have been
developed. In our case though, face recognition is not envisioned at the moment,
and in addition, the actual video files never leave the device in which they were
recorded, since all processing happens at the edge. This adds an extra layer of
privacy to the application, since it is harder for a potential attacker to retrieve
sensitive information solely from transmitted metadata.

6.4.3 Workflow and Architecture

The functionality of the proposed application is twofold: the first operation mode
allows the generation of heat maps, based on a specified area and generic object;
the second launches a search for a specific object (e.g. a lost object). In Table 6.3
we detail two example scenarios illustrating the different operation modes. In both
cases, the main mechanism remains the same, which is the crowdsourced object
detection in video files capturing the environment of each user. What changes in
the specific object search is that first the app performs an object-specific feature
extraction, based on user-provided pictures, with the aim of gathering identifying
characteristics of the object and translating them to quantifiable parameters in
the object detection alogrithm. Besides obvious identifying traits such as color
or shape, deeper-level latent features can also be extracted as the input dataset
grows. When requesting heat maps of generic objects on the other hand, the set of
pre-trained models included in TensorFlow Lite can be used directly and this step
can be avoided.
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Scenario A: Informative heat map generation

1. It is a crowded weekend day due to a sports event on the university campus.
A student is looking for a calm outdoor place to sit and read.

2. He/she opens the app and requests a heat map of the object "human" in the
campus area.

3. Crowd users in campus proximity receive a notification to scan their
environment with their camera. Object detection of "humans" is performed
in each edge device upon recording.

4. Results from the dispersed scan are returned on the student’s device and the
app generates the requested heat map, where the less crowded areas can be
easily spotted.

Scenario B: Search for missing object

1. A person realises their bike is missing. He/she feeds the app with past
pictures of it (or market ones if he/she doesn’t have any) and requests a
specific object search.

2. The app extracts specific object features for this bike to be used for object
detection, and pushes them to the edge network.

3. Upon reception of the object detection task, other users with camera-
equipped devices (smartphones or laptops) join the search by scanning their
surroundings.

4. When a possible match is found, a private thread opens between the two
users involved.

Table 6.3: Demonstrative scenarios.
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This mobile application is designed for Android OS, which is open source and
currently possesses more than 74% of the mobile operating system market share
worldwide [164]. The architecture (figure 3.6) denotes the two main utility blocks
which is the object detection module and the heat map generator, alongside the
CEC APIs and an interfacing control layer. The CEC APIs enable the device
to connect and interact with the CEC network, including functionalities such as
retrieving network routes, preparing outgoing messages, broadcasting, parsing
incoming messages etc. The object detection module encapsules the TensorFlow
Lite library and finally the heat map generator is implemented in a straightforward
way via the google maps heatmap utilities [165].

CNN-based

classifier      

Handle Peers

Handle Messages

Update local variables

…

Object Detection

Learn Specific

Object 

Application Control

Pre-trained

models     

Request Search

Camera     CEC APIs

CEC network

Request HeatmapUser environment

Heatmap generator

Figure 6.6: Application architecture.

6.5 Conclusion

In this chapter we presented the Crowdsourced Edge, a novel networking paradigm
connecting individuals belonging to a zone of local proximity. The crowdsourced
edge suggests the convergence of two emerging topics, those of edge computing
and crowdsourced systems. Edge computing emerged in response to the increasing
demand for low latency and context awareness in mobile computing. All edge
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computing paradigms though, incline to rigid deployments of substantial
infrastructure linked with centrally-managed entities. To that end, we
demonstrated how the Crowdsourced Edge employs more widely accessible mobile
devices, to provide a user-centered edge computing framework, uncoupled from
intermediaries. We detailed the paradigm architecture, in which CEC hybrid
nodes are connected in a dynamic mesh topology. In order to support more
flexible and dynamic systems, CEC nodes, depending on application context,
encompass one or more of three abstracted functional system layers: a)worker;
b)task handler; and c)message broker. This architecture differentiates the
Crowdsourced Edge from the existing edge computing paradigms, as can bee seen
in table 6.1, in terms of network ownership but also in the driving force.

Crowdsourced systems have found fertile ground in the field of IoT, enabled by
every-day mobile devices possessing increased capabilities and SBCs which are
becoming abundant. Formal requirements have been identified regarding such
systems; we demonstrated how, thanks to its decentralized, responsive architecture,
the Crowdsourced Edge meets these functional requirements. The CEC paradigm
is undoubtedly faced to a series of research challenges, ranging from networking
aspects to computing and resource management, which we detail in sec. 6.3.2.
Finally, in section 6.4 we presented an ongoing CEC use case which involves
crowd-users in a wide area, video-enhanced, object search.
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7 Ad Hoc Formation of Offline Networks

for Crowdsourcing using Non-Rooted

Smartphones

7.1 Introduction

The emerging field of Do-It-Yourself (DIY) networking already speaks to us about
hybrid urban spaces which, enabled by the evolution of networking technologies,
empower citizens towards collaboration and collective awareness in a way never
before possible [166]. The benefits from such a leap for the individual are many, such
as digital services of enhanced privacy via dis-intermediation and data ownership
preservation, but the challenges that come with it are also significant. In the
previous chapter, we defined the paradigm of the Crowdsourced Edge, which along
the the same line attempts to realize edge computing as a crowdsourced system,
and we detailed the main challenges of such an undertake.

In this chapter, we focus primarily on the networking aspects in the building of
a crowdsourced computing framework. The objective is to develop a method to
efficiently connect as many crowd peers as possible in local proximity, utilizing solely
the crowdsourced resources to maintain the network and manage the crowdsourced
data transactions. All functionalities should be fully distributed, as individual
peers may exhibit unstable behavior and this should not jeopardize the validity of
the solution. These design considerations have led us to consider the field of Mobile
Ad-hoc Networks (MANETs), which are designed not to rely on fixed infrastructure
and which deal with a network environment dictated by high node mobility.
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In particular, we focus on a special case of MANET, one which is comprised
solely of smartphones, sometimes referred to as a Smartphone Ad Hoc Network
(SPAN) [167]. This is because smartphone users worldwide today have surpassed
three billion, while forecasts of growth for the next few years are in the several
hundreds of millions [168]. This is important because it greatly favors crowd
engagement which is paramount for crowdsourced systems, as people already carry
on them, or in their close proximity, an increasingly powerful computing device
with significant networking capabilities that is the average modern smartphone.

A major design consideration for the formation of SPANs is the choice of wireless
networking medium; from the family of protocols based on Bluetooth and WiFi,
we choose to utilize WiFi Direct, for its high bandwidth as well as its high rate
of compatibility with off-the-shelf smartphones. Using WiFi Direct, Peer-to-peer
(P2P) networked groups can be formed similarly to traditional WiFi networks,
with one device acting as a dedicated Access Point. This topology, however, is
limiting for MANETs as it bounds the formed network to single-hop communication
patterns. To overcome the above issue, we introduce a custom heuristic employed
in the application layer, based on a method found in the literature.

Apart from the communication mechanism, another design consideration is the
routing protocol employed in the formed network. Inspired by reactive protocols
in MANETs, which build routes on-demand, as well as data collection protocols
used in IoT, we present a protocol adapted for the purposes of our crowdsourced
application framework. Our protocol follows the pattern of outgoing requests for
data/services and asynchronous collection of results, based on route piggybacking
and controlled flooding. Finally, we develop a mobile application for Android
OS, which utilizes WiFi Direct and employs the mechanisms discussed above to
provide a crowdsourcing P2P framework. The prototype application is tested with
4 market smartphones, arranged in two different topologies (star and chain) and a
crowdsourced sensing task.
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The rest of the chapter is structured as follows: first, we provide some background
on related work and enabling technologies in section II. Then, in section III, we
detail the methodology regarding the network formation using WiFi Direct, as
well as the proposed routing protocol. Then, in section IV, we perform a proof-
of-concept evaluation via a prototype use case using four different smartphones.
Finally, section V concludes this work.

7.2 Background

7.2.1 Wireless Networking with Smartphones

Aside from the centralized LTE network provided by telecommunication service
providers, there are two main wireless networking standards which can be used
for creating P2P connections between smartphones: Bluetooth and WiFi. In the
following we go over their main characteristics and compare them as a choice of
networking standard for our application.

Bluetooth

Bluetooth, developed in the late 1990s, is a wireless standard used for transmitting
data over short distances. Its recent evolution Bluetooth Low Energy (BLE)
achieves lower energy consumption and comes with a lower cost compared to its
predecessor, while maintaining a similar communication range. BLE has been
widely used in IoT applications, especially due to its low cost and small overhead.
Since it was designed for transferring lightweight data such as sensors readings, it
provides a limited bandwidth around 1 Mbps. In terms of communication range, it
is largely dependent on the obstacles so it may vary, but it is typically in the order
of some 10s of meters. Finally, concerning security, Bluetooth has been linked with
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serious security flaws in the past but most of them were solved with the newest
standards, nevertheless the latest security standards may not be implemented.

Regarding the communication pattern, Bluetooth was initially designed to enable
point-to-point connections, assuming a star network topology. The need for multi-
hop communications in IoT applications though, lead to Bluetooth Mesh, a recent
version based on BLE who allows many-to-many patterns using a flood network
principle [169]. Nonetheless, mesh topology support has increased the vulnerability
of BLE to security threats and there is still a lack of detailed studies related to
these new security issues [170]. Moreover, the Bluetooth Mesh standard is not
yet supported on smartphones on the market, which is where our application is
targeted at.

WiFi

WiFi is a technology enabling radio wireless local area networking based on the IEEE
802.11 standards. It is significantly faster than Bluetooth, attaining bandwidth
levels up to 10 Mbps, and has also a larger communication range reaching almost
100 meters in outdoor settings. These advantages come with a price though
as WiFi hardware is more expensive and its power consumption is considerably
higher compared to BLE. That being said, Bluetooth is also less secure than WiFi.
for which specialized security protocols (WEP, WPA) have been developed and
thoroughly tested.

There are two operation modes allowing for different networking topologies defined
in the WiFi protocol: a)infrastructure mode and b)ad-hoc mode. Infrastructure
WiFi employs some special nodes, called Access Points (AP), which support one-
to-many connections and in the general case act as a bridge with wired network
infrastructure and usually the internet. Other nodes of the network first connect
to the AP and every further connection (with other nodes, the web) is relayed
via it. On the contrary, ad-hoc mode allows for direct connections between WiFi
nodes without the need of AP intermediation. It is also referred to as Independent
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Basic Service Set (IBSS) or a peer-to-peer mode. When it comes to smartphones,
WiFi ad-hoc mode is still quite underdeveloped as it is not inherently supported
by the dominant smartphone operating systems. It can be used in selected devices
after rooting, which allows to make certain modifications in the system files,
kernel or drivers, but this process is difficult and far from being user-friendly.
Nevertheless, a project designed by the Homeland Security System Engineering and
Development Institute utilizes the WiFi ad-hoc mode to form SPANs in the context
of natural disasters or terrorist incidents where existing network infrastructure is
overloaded, destroyed, or compromised [171]. Even though the prototype network
implementation is successful in that project, it is doubtful that in a real world
scenario crowd participation would reach sufficient levels because of the limitations
mentioned above.

WiFi Direct is another WiFi variant similar to the WiFi ad-hoc mode, in the sense
that it allows device-to-device communication without the use of APs, but with
certain structural differences. In fact, in WiFi Direct devices negotiate with each
other to decide which node will act as an AP; this in essence simulates a WiFi
network with a "soft" AP, with all communication going through it. That way, a
Wi-Fi Direct device can concurrently maintain a connection to other Wi-Fi Direct
devices, as well as an infrastructure network, which is not possible with Wi-Fi
ad-hoc mode. The most important advantage of WiFi Direct, however, is that
it is far more widespread; the WiFi Alliance to this day has certified more than
550 products supporting it, and the Android OS provides open-source APIs for
developers to access WiFi Direct on non-rooted smart phones. Nevertheless, WiFi
Direct’s restrained topology of static device-to-device networks makes its use for
dynamic ad-hoc network difficult. The newest WiFi extension, called WiFi Aware,
is very promising on that front since it provisions the forming of P2P connections
without a centralized coordinator, in a fully ad-hoc manner. Since it is still in an
infantile stage though, and very few smartphones on the market support it, so it is
not a good fit for this work.
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Given the trade-off between the different networking standards, we choose for this
SPAN implementation to go with WiFi Direct. Bluetooth’s limited bandwidth and
shorter communication range are considered as major drawbacks for this application,
with the added value from low power consumption not quite compensating, given
also the increased power capacity of modern smartphones. Then, from the different
WiFi versions, WiFi Direct fits best our intentions, aligning with the design goal for
a highly compatible solution in order to favor participation. In order to overcome
WiFi Direct limitations, we introduce a custom modification, implemented in the
application layer, that enables multi-hop routing. The method is detailed in the
methodology section.

7.2.2 Routing in Mobile Ad Hoc Networks

Mobile Ad Hoc Networks (MANETs), evolved from the early Packet Radio Networks
(PRNets) [172] initially funded by the US Defense Advanced Research Project
Agency (DARPA) for military applications, form a specific category of wireless
networks. Designed to operate in unstable environments, which are dictated by
high node mobility, they are characterised by a continuous self-configuration and
self-organising of their resources, enabled by total decentralisation of networking
tasks. Not relying on a fixed infrastructure, MANETs have been often employed in
applications providing emergency responses in natural or man-made disasters, where
original networking infrastructure is compromised. Another range of applications
of MANETs lies in data gathering in unstable or inhospitable environments, where
traditional networks cannot be deployed.

Developing efficient routing protocols for MANETs is a challenging task and has
been an active area of research area during the past years, with various proactive
and reactive routing protocols being proposed [173]. A key issue to address is
the necessity for the routing protocol to be able to respond rapidly to topological
changes in the network. Prominent examples of reactive protocols used in MANETs
are the Dynamic Source Routing (DSR) and the Ad-hoc On-demand Distance
Vector (AODV) protocol, in which nodes discover routes on-demand in request-
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response cycles. When the regular maintenance of routing tables is afforded
proactive protocols can be employed, with the Optimized Link State Routing
Protocol (OLSR) and the Destination Sequenced Distance Vector Protocol (DSDV)
being the most frequently used. For the proposed SPAN implementation, we
examined mostly the reactive protocols, such as DSR, and also took inspiration
from data collection protocols used in IoT, to come up with a custom protocol
adjusted to fit the parameters of the problem. The exact mechanism is detailed in
the methodology section.

7.3 Methodology

In this section we detail the methodology followed regarding two principal design
considerations for this implementation, which are how to overcome the topological
limitations of WiFi Direct, and the definition of the routing protocol.

7.3.1 Multi-hop Networks with WiFi Direct

The essential functionality of WiFi Direct is to enable WiFi devices to connect
directly without first joining a central AP. WiFi Direct devices, also referred to as
P2P Devices, communicate by establishing P2P Groups, which are functionally
equivalent to the traditional WiFi infrastructure networks, with a "soft" AP being
elected upon network formation. The device assuming the role of the AP in the
P2P Group is referred to as the P2P Group Owner (GO), and the rest of devices
act as clients and are referred to as P2P Group Members (GM). The choice of GO
is dynamic and is negotiated at the time of initial network setup, based on intent
and capabilities of each device. Initially, two P2P devices discover each other via
advertising messages, similarly to the functionality of WiFi AP beacons. When a
connection request is made by either device, they negotiate their roles (GO and
GM) in order to establish a P2P Group. Once the P2P Group is established, other
devices can join the group as clients (GMs), like in a traditional WiFi infrastructure
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Figure 7.1: Formation of P2P groups with WiFi direct: (a) Stages during group
formation (b) A formed P2P group with a GO and 3 GM as well as a Legacy Client
(LC).

network. WiFi legacy clients (LC) can also connect with the P2P GO, as long as
they support the required security mechanisms. Figure 7.1 depicts the stages of
the P2P group formation.

The main limitation of the WiFi-Direct network structure comes from the fact that
one device can only be either a GO or a GM at a time. In other words, each device
can only belong to one group so if it wants to transmit a message to a device that
is in range but belongs to another group, it has to either join the same group as
the target device or it has to establish a new group with the target. This limits the
WiFi Direct network to a one-hop ad-hoc network, with the GO being the gateway
device. Theoretically, this could be overcome through multiple physical or virtual
MAC entities, but both the multiple MAC functionalities and the simultaneous
operation in multiple groups are out of scope of the standard. Figure 7.2 depicts
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two overlapping P2P groups, which are unable to transmit messages to one another,
even though some of their nodes are in range.

GO

GM

GM GM

LC

Group 2

GO

GM

GM GM

LC

Group 1

nodes in

conflict

Figure 7.2: Two formed P2P groups. Nodes in the intersection are unable to relay
messages in between groups due to WiFi Direct limitations.

Different ways have been proposed in the literature to surmount this issue, mostly
by trying to create a custom gateway with the nodes in the groups intersection. For
instance, Funai et al [174] propose the periodic switching of roles of the gateway
nodes so as to simultaneously serve both groups. In a similar approach, Duan et
al. [175] attempt to implement the gateway node by the GO from the first group
to connect as a legacy client in the second group using the “WLAN” interface.
However, both approaches introduce certain limitations on the flexibility and
adaptability that should dictate a MANET. From a different perspective, the
Mumble framework utilizes the WiFi Direct’s Service Broadcast and Discovery
(SBD) messages during the advertising phase, to transfer actual messages of content
in an ad-hoc manner [176]. This method though has severe drawbacks in terms of
bandwidth as SBD packets are strictly limited in size. In this work we follow an
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approach closer to the work of Liu et al. [177], where connections are established
solely when a data message is to be transmitted. In particular, all nodes are
kept in discovery mode, advertising their credentials in periodic beacons. Based
on these advertisements, each node can deduct some information that can be
helpful in message routing, which will discussed in detail later. Finally, when
a node wants to pass some information then it requests a connection with the
corresponding neighbor, and as soon as the data is transferred both nodes go back to
the advertising mode. That way, a message can be relayed hop by hop to a distant
network node, with the disadvantage of this method being more slow because of
the repeated group formation stages. Nevertheless, we deem this approach a very
good fit for our application, since we care about a fully distributed solution, not
relying in single nodes, and relay speed is not so important. Figure 7.3 shows a
step-by-step example of how this method operates in a message transaction at a
network of 4 nodes.

CA

B

C

D

GM

GO

GMA

GO

D

D

GMA

B

GO

(i) (ii)

(iii) (iv)

Figure 7.3: Example of a message relay from node A to node D using the proposed
method.
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7.3.2 Routing Protocol

We assume a network of n independent nodes, with the existence of an overlay
network enabling point-to-point communication. Nodes are highly mobile, and
may disappear and reappear at a later time. This reflects the behaviour of a crowd
frequenting some specific area, e.g. a workspace or their apartment building. At any
given time, every node possesses information only about its immediate neighbours
(1-hop network knowledge). In this network setting, we want to implement a
routing protocol enabling the following communication pattern: a single node
requests some data from all other nodes in the network, and the other nodes reply
with a data packet in an asynchronous manner.

Reactive routing fits best the problem description, as maintaining routing tables
(proactive routing) comes with a low value to effort ratio in this setting. This is due
to the high mobility of the nodes which make the added overhead from periodic
beaconing messages not very fruitful. Combining elements for the reactive protocol
DSR and the Directed Diffusion [17] protocol used in IoT, we propose for this work a
data collection protocol which we call RE-COLLECT. Using three distinct message
types, REQUEST, COLLECT and RESPONSE, the RE-COLLECT protocol
functions as such:

1. When a node is looking for some data, it broadcasts a message of type
REQUEST. At each message relay the traversed route is piggy-backed in the
message.

2. Upon reception of a REQUEST message, each node proceeds to forward it
to all its neighbours, unless they belong to the piggybacked route. Moreover,
in the payload of a REQUEST message the task specifications are enclosed
(implemented in the form of an executable in our prototype app), which
are stored in the device by the enclosing application and may be executed
instantly or at a later time. Once executed, the data is saved and await for
collection.
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3. The originator node initiates the data collection by broadcasting a message
of type COLLECT, which is flooded in the network just like a REQUEST.

4. The difference is that upon reception of a COLLECT message, each node
checks if the data is ready to be sent back. If yes, a RESPONSE message is
sent back following the piggy-backed route backwards.

5. When backtracking at the piggy-backed route, if a node is no longer available
the message is broadcasted to all neighbors instead.

6. The originator node can re-initiate a COLLECT dissemination at any time,
to try to collect more data that may be available at a later time.

Since this protocol is targeting non-rooted smartphones, all routing logic was
implemented in the application layer. In order to achieve the desired functionality
a packet object was defined, emulating the networking functionalities as well as
serving the application logic. As such, the defined packet was divided in the
following fields (depicted also in Figure 7.8) :

• ID. The packet ID is a unique identifier used to distinguish each packet
traversing the network

• Time to Live (TTL). The TTL field contains a preset value which is
diminished upon every relay, and once it reaches zero the packet is dropped.

TYPE ORIG DESTID SRCTTL

networking

layer

application

layer

PAYLOADPIGGY

PATH

Figure 7.4: Packet fields of the RE-COLLECT packet.
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• Source (SRC). The SRC field contains the node id which transmits the
packet every time.

• TYPE. The TYPE field contains a code indicating the message type, which
can be REQUEST, COLLECT or RESPONSE.

• Originator (ORIG). The ORIG field contains the node id of the node
which initially requested the data.

• Destination (DEST). The DEST field contains the node id of the
destination node in RESPONSE messages. It is left empty for messages of
type REQUEST and COLLECT.

• Piggy-backed route (PIGGY PATH). At the PIGGY PATH field, the
piggy-backed route is stored and updated every time.

• PAYLOAD At the PAYLOAD field, the task specifications are stored in
REQUEST messages, as the data that are being collected in RESPONSE
messages.

The above packet structure is exactly the one used in the Android application
developed to experimentally evaluate this work, detailed in the following section.
In fact, the 3 first fields correspond to some of the lower level networking aspects
which normally would be implemented in the networking layer, while the rest of
the fields correspond to the application logic and would normally be encapsulated
in the packet payload. Since this is the way the packet was implemented in the
Android application, we chose to present it here as such. That being said, the
fields displayed corresponding to the application layer could be all residing inside a
parent payload field.

From an algorithmic perspective, the protocol logic is encapsulated in the node
functionality parsing an incoming message. In the following figure, we provide a
simplified pseudocode for the above function.
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1: Upon MSG reception
2: #Check if message is expired or has been already received
3: if (MSG.ID in received_ids) or (MSG.TTL==0) then
4: ignore;
5: else
6: #Check message type and act accordingly
7: if (MSG.TYPE==REQUEST) then
8: #Submit encapsulated task and propagate message
9: submitTask(MSG.PAYLOAD.getTask());
10: MSG.PIGGY_PATH.append(SELF);
11: bcast(MSG);
12: else if MSG.TYPE==COLLECT) then;
13: #Propagate message and send back response if data is ready
14: bcast(MSG);
15: if DATA_READY then
16: RESP = new MSG(DEST=MSG.ORIG, TYPE= RESPONSE,
17: PIGGY_PATH=MSG.PIGGY_PATH, PAYLOAD=resp_data);
18: ucast(RESP, MSG.PIGGY_PATH[last]);
19: else
20: ignore;
21: end if
22: else if (MSG.TYPE==RESPONSE) then
23: #Check response destitation
24: if (MSG.DEST==SELF) then
25: dataArrived();
26: else
27: #If not for me forward using piggy_path
28: MSG.PIGGY_PATH.remove[last];
29: if (MSG.PIGGY_PATH[last] in neighbors) then
30: ucast(MSG, node);
31: else
32: bcast(MSG);
33: end if
34: end if
35: end if
36: end if

Figure 7.5: RE-COLLECT pseudocode upon message reception.
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7.4 Experimental Evaluation

Android Application

In order to test experimentally the proposed method overcoming WiFi Direct
limitations to build multi-hop networks (detailed in section 7.3.1), as well as
the RE-COLLECT protocol, we developed a mobile application for Android OS.
The app was developed in Android Studio and is compatible with smartphones
supporting the Android API version 16 and above. Once the WiFi is enabled on a
device, the peer discovery becomes active and the available peers (1-hop neighbors)
appear in the app main screen (Figure 7.6). Two buttons are placed in the bottom
of the screen which upon click trigger a REQUEST or a COLLECT message
respectively, following the formula of the RE-COLLECT protocol. To coordinate
the various message actions, a message queue class is employed that handles the
outgoing messages, pushing them appropriately depending on the network state.

Since for every message transmission a P2P connection needs to be established, a
delay interval is introduced between every message forwarding, in order to allow
the devices to successfully reset their status to the peer discovery state. The
exact delay value is an important factor which, as larger as it is selected, it favors
the robustness of the protocol as we will see in the experiment run. Finally, to
support the sharing of tasks, an abstract crowd task class was defined, containing
a serializable executable which is to be programmed depending on the application,
and that is inserted on the RE-COLLECT messages’ payload. As such, when a
REQUEST message containing a task is received, it is saved in a task registry and
is displayed on the app "task overview" pane, from which its execution can be
launched (Figure 7.7).
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Figure 7.6: App home screen. Figure 7.7: Task overview tab.

Experiment Setup

To evaluate the efficiency of the proposed methods, a simple sensing task was
created which polls a device’s built-in illuminance sensor to capture a sensor reading.
Four different Android phones were used for the experiment, their specifications
being detailed in Table 7.1. With the 4 smartphones, we evaluate two different
network topologies; chain and star topology. We set the device node names with
the letters A-B-C-D and we artificially create the two topologies in a lab setting
by programmatically removing the corresponding nodes from the available peers
during peer discovery. In the experiment scenario, a node initiates a request
encapsulating a sensing task, and the time until the last node has received the
request is measured. Similarly, when all nodes have executed the task, we initiate
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Model Specifications
Samsung Galaxy S7 Android 8.0; Octa-core 2.3 GHz Mongoose;

Wi-Fi 802.11 a/b/g/n/ac; 4GB RAM

Motorola G7 Power Android 10.0; Octa-core 1.8 GHz Kryo 250 Gold;
Wi-Fi 802.11 b/g/n; 3GB RAM

Motorola G5 Plus Android 8.1.0; Octa-core 2.0 GHz Cortex-A53;
Wi-Fi 802.11 a/b/g/n/; 3GB RAM

Motorola G4 Android 6.0; Octa-core 1.5 GHz Cortex-A53);
Wi-Fi 802.11 a/b/g/n; 3GB RAM

Table 7.1: Specifications of smartphones used in the experiment.

a collect message while measuring the time until all data has arrived. For both
topologies, we run the experiment 5 times for each of the nodes, which makes a
total of 20 full request-collect cycles for each topology.

Before presenting the results, we go over some specific challenges in fine-tuning
the various parameters that affect the experiment. First, since the WiFi Direct
API for Android is still relatively new, hardware and especially software variations
play a major role on how each device behaves. For instance, the older versions
of Android OS, demand a manual input from the user to consent the first time
they establish a P2P connection with an unknown device. Android 10, on the
other hand, requires an initial manual configuration of the WiFi advanced settings
in order for the device to start advertising its group. This is a hindrance for the
effectiveness of our application since the objective is for the whole functionality
to be passive and not depend on user action. Another major issue is the case of
connection request jams, i.e. when two nodes try to connect with a same third
one. The smartphones’ behaviour in that case is generally unstable, with different
phones having varying recovery times to the stable state, and at the extreme case
with a WiFi state reset being necessary. To that end, we have introduced a 2-second
delay in the advancing of the message queue, and a 60 second retry delay in the
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Figure 7.8: The 4 phones set in chain topology. The physical devices are mirrored
on a computer monitor using the Vysor visualization software.

case of a failed message sent. These values where chosen empirically, and further
research is necessary to conclude to optimal values, but the scope of this work is
focused rather on delivering a proof-of-concept implementation, while providing
some indicative results reflecting the order of time needed to achieve the desired
behavior (seconds, minutes, etc).

In Figure 7.9 we present a graph displaying the average times of completion of
REQUEST and COLLECT cycles for the two topologies, after 20 repetitions of
the experiment. The 20 repetitions refer to successful cycles, i.e without a manual
intervention, which for request cycles required ∼ 21 attempts (21 for chain and 20
for star) and ∼ 24 for collect (22 chain, 25 star). We notice from the graph that the
average time for the two topologies does not deviate much; this is an encouraging
result as it hints that the communication protocol does not depend too much on
the topology, although more experiments are required. Furthermore, we see that
collect cycles require almost 5 times more time than requests, which is expected as
they include a lot more message transactions. In particular, for chain topology a
request cycle comprises of 3 message transactions while a collect cycle of a total of
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Figure 7.9: Average time of REQUEST and COLLECT successful cycles for chain
and star topology.

7, and for star topology the corresponding values are 3 for request and 6 or 8 for
collect depending on the originator node. Interestingly, we see that star topology
slightly outperforms the chain topology in request completion average time, which
is somehow counter-intuitive; this could be explained though if we consider that a
central node manages better a sequence of messages to be relayed hence minimizing
the transmission errors. This is hinted from the range of measured times in both
cases, which was larger for chain topology ([17, 62] while for star [20, 51]). Finally,
in collect cycles the star topology is slightly slower, which is expected given the
higher probability of jams in connection requests. The range for collect cycles was
[92, 321] for chain topology and [88, 348] for star.

143



Chapter 7. Ad Hoc Formation of Offline Networks for Crowdsourcing
using Non-Rooted Smartphones

7.5 Conclusion

In this chapter we focused on the networking aspects of a crowdsourced framework
connecting smartphone users in local proximity. The objective was to enable peers
to disseminate requests for data/services in the crowdsourced network, and receive
back as many data responses. To enable this behavior a custom data collection
protocol was proposed, RE-COLLECT, which is based on the reactive protocol
for MANETs DSR and the Directed Diffusion protocol used in IoT. Regarding the
implementation, the goal was to provide a solution which can be easily adopted,
therefore without too many requirements from the user (expensive equipment,
advanced technical skills), in order to favor crowd participation which is paramount
in crowdsourced systems. To that end, after reviewing the available options, we
choose as the networking medium for this work the WiFi Direct standard, because
of its high compatibility in the spectrum of market smartphones, as well as its
open set of APIs in Android OS. The latter means that no rooting of smartphone
devices is required, something that would significantly hinder the ease of use of our
proposal. We deal with the main limitation of WiFi direct, the fact that it only
allows for 1-hop network formation, using a cascading device-to-device connection
as as workaround. In order to evaluate the above proposed solutions, an Android
Application was developed compatible with the vast majority of market devices.
Via the mobile app, we test the multi-hop communication workaround technique as
well as the RE-COLLECT protocol using 4 different smartphones and two different
network topologies. We obtain good results indicating topology invariance of the
proposed methods, as well as showcasing the functionality of our solution in a
proof-of-concept manner.
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8 Conclusion

Decentralized, flexible, architectures are increasingly needed in networked systems,
following the tendency to incorporate large magnitudes of nodes, as well as external
system components, often in an ad-hoc manner. In this thesis, we conducted
research towards efficient system design, architecture and underlying networking
mechanisms, in next-generation IoT networked systems.

Routing in Wireless Ad-Hoc Networks

In terms of routing in wireless ad-hoc networks, one of the biggest challenges faced
is designing routing protocols that are sufficiently lightweight, good at balancing
the load, and at the same time robust enough to fulfill the system communication
requirements. Among the works presented in this thesis, we defined two routing
algorithms (Chapter 2 and 7), which both tackle the above challenges. The
algorithm detailed in chapter 2, uses a heuristic that utilizes only local network
knowledge to efficiently forward publish/subscribe messages, with its experimental
results revealing optimal parameter values. In Chapter 8 we define a routing
protocol for data collection in similar network settings, which relies on controlled
flooding and route piggy-backing.

147



Chapter 8. Conclusion

WSN and Smart Spaces

System architecture plays an important role for designing efficient systems in the
context of WSN and smart spaces. Abstraction layers are needed to achieve the
necessary interoperability and allow external components to be easily integrated in
the system. In Chapter 3 and 4 we presented two cases of fully-fledged systems,
one enabling location-based automation for office occupants and one providing
a user-friendly tool for visualizing and augmenting a WSN testbed’s resources.
The location-based automation is enabled via a lightweight adaptation of a WiFi
RSSI localization algorithm for smartphones, integrated within a WSN testbed
controlling office appliances (Chapter 3). In Chapter 4, we presented an interactive
platform modelling in 3D a physical testbed space, as well as its resources, in an
on-line manner, while allowing the user to augment it with virtual resources. Both
systems are designed with a modular architecture, allowing for smaller sub-parts
to be gradually integrated, thus allowing for a more flexible development strategy.

Crowdsourced Systems

Crowdsourced systems are systems whose constituent infrastructure is pooled by the
general public via crowdsourcing methodologies. With the proliferation of highly
equipped mobile devices as well as personal SBCs, the approach of crowdsourced
systems in the field of IoT has become more attractive. In Chapter 5, we identified
the formal characteristics, architecture, components and requirements of IoT-related
crowdsourced systems, exemplifying them in a use-case regarding crowdsourced
cloud computing. Based on the same design principles, in chapter 6, we present a
framework implementing edge computing as a crowdsourced system. Finally, in
chapter 7, we build a collaborative P2P framework interconnecting smartphones in
local proximity, allowing for crowdsourcing of tasks from one peer to another. All
of the above implementations are inline with the crowdsourced system principles,
outlined in Chapter 5, while they also make use of the results and insights acquired
in the two previous thesis parts.
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Projects

Th research conducted in this thesis was supported by the following research
projects:

IoT Lab is a project funded by
the European Commission (7th
Framework Program for Research
and Technological Development -
FP7) which aims at researching
the potential of crowdsourcing to
extend IoT testbed infrastructure
for multidisciplinary experiments
with more end-user interactions.
http://www.iotlab.eu/

The SwissSenseSynergy is
a project funded by the Swiss
National Science Foundation
(SNSF) which aims to provide
a unifying framework for secure
localisation and privacy-preserving
location-based services.
http://www.swiss-sense-
synergy.ch/
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Code Repositories

Code from the various applications developed in this thesis can be found at the
TCS-Lab’s Github page (https://github.com/tcslab). In particular, one will find
specific repositories containing:

• Source code of the smartphone application allowing for location-based
automation, presented in chapter 3:
https://github.com/tcslab/Syndesi-3.0—Smartphone-App

• Source code of script and APIs created to automatically query sensor data
from Syndesi resources, for the creation of the dataset used in modelled
testbeds, presented in chapter 4: https://github.com/tcslab/SenGenEngine,
https://github.com/tcslab/SenGen-APIs

• Source code of the smartphone application described in chapter 7, which
interconnects phones in local proximity using WiFi Direct and provides a
task sharing mechanism for crowdsourcing:
https://github.com/tcslab/WiFi-P2P-Android-App
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