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Abstract

Malignant melanomas are characterized by increased karyotypic complexity, extended aneuploidy
and heteroploidy. We report a melanoma metastasis to the peritoneal cavity with an exceptionally
stable, abnormal pseudodiploid karyotype as verified by G-Banding, subtelomeric, centromeric and
quantitative Fluorescence in Situ Hybridization (FISH). Interestingly this tumor had no detectable
telomerase activity as indicated by the Telomere Repeat Amplification Protocol. Telomeric Flow-
FISH and quantitative telomeric FISH on mitotic preparations showed that malignant cells had
relatively short telomeres. Microsatellite instability was ruled out by the allelic pattern of two major
mononucleotide repeats. Our data suggest that a combination of melanoma specific genomic
imbalances were sufficient and enough for this fatal tumor progression, that was not accompanied
by genomic instability, telomerase activity, or the engagement of the alternative recombinatorial

telomere lengthening pathway.

Introduction

Cutaneous malignant melanomas are highly aggressive
tumors with unpredictable biological behavior [1]. Metas-
tases in brain, bones and viscera with subsequent ascites
development, are frequent [1]. The progression of a trans-
formed melanocyte to malignant melanoma is accompa-
nied by gradual acquisition of multiple genetic alterations
that lead to losses of onco-suppressor genes and increased
tumor hypermutability [2]. Malignant melanomas display

both types of known genomic instability in neoplasia;
chromosomal instability (CIN) and microsatellite insta-
bility (MIN) [2,3]. MIN has been observed in 30% of cuta-
neous malignant melanomas [4]. However, the great
majority of malignant melanomas examined by various
cytogenetic methods, exhibit increased karyotypic com-
plexity, extended aneuploidy and heteroploidy [5-7].
Recurrent chromosomal imbalances in skin melanomas
include losses of chromosomes 1p, 6q and 9p [2,8].
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Tumor progression and aggressive behavior have been
associated with imbalances of chromosomes 7, 10 and 17
[2,7].

Most human tumors including melanomas maintain suf-
ficient telomere length for continuous growth by express-
ing telomerase [9,10], the remainder are thought to utilize
a variety of telomere recombination mechanisms termed
alternative lengthening of telomeres (ALT) [11]. Observa-
tions on transformed and tumor cell lines that lack telom-
erase, linked ALT phenotype to highly increased structural
chromosomal instability and extreme telomeric length
deviation ranging from very long to extremely short tel-
omeres [11]. We report a MIN, CIN, and TRAP negative
(Telomere Repeat Amplification Protocol), highly aggres-
sive melanoma metastasis to the peritoneal cavity, with
unusually stable abnormal pseudodiploid karyotype, and
relatively short but not dysfunctional telomeres.

Methods

Immunochemistry-Cytopathology

Cell material from the peritoneal aspirations was sub-
jected to routine diagnostic cytopathology protocols
including Giemsa, Papanicolaou, Hematoxylin-Eosin
(BDH-Chemicals) stains and immunocytochemistry
using the melanocyte specific antibody S-100 (Dako).
Immunocytochemical staining against S-100 was per-
formed using Horse Radish Peroxidase (HRP) (Dako).
Cell smears were re-hydrated, treated with 3% hydrogen
peroxide for 15 minutes and rinsed with Tris Buffered
Saline with 0.05% Tween 20 (Dako). After cooling for 20
min, sections were incubated with the primary antibody
(rabbit antihuman monoclonal S-100 antibody, 1:400
dilution, Dako) for 1 hour at room temperature and then
incubated for 45 min with an anti-mouse HRP labelled
polymer (EnVision+System-HRP, Dako). Finally slides
were treated with a diaminobenzidine (DAB) chromoge-
nic substrate (Dako) for 10 min, counterstained with
hematoxylin, dehydrated and coverslipped.

Short term cultures/Cytogenetic analysis

Malignant cells from two peritoneal aspirations were col-
lected by centrifugation (10 min/1500 rpm/25°C). They
were subsequently cultured in eight 25 c¢m? T-flasks at
37°C and 5% CO,, in Dulbecco's Minimum Essential
Medium supplemented with 10% fetal bovine serum,
0.08 mg/ml amphotericin, 25 units/ml penicillin, and 25
pg/ml of streptomycin (Invitrogen). When high mitotic
index was reached, cells were exposed to colcemid (0.1
pg/ml) (Invitrogen) for 30 min, in 37°C, and harvested
using trypsine (Invitrogen), after 0.075 KCL hypotonic
treatment and Methanol/Acetic acid (BDH-Chemicals)
fixation. For the construction of the representative karyo-
type, we combined G-Banding after Trypsine and Giemsa
(GTG-Banding), inverted 4',6-diamidino-2-phenylindole
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(DAPI)-banding, subtelomeric FISH (TeloVysion-Vysis)
and telomeric FISH (Dako), in a total of 400 metaphases
from 8 short term monolayer cell cultures. For dual-color
interphase or metaphase FISH we used satellite probes
specific for chromosomes 7 and 17 (Cytocell). In brief,
our general FISH protocol was based on pepsin pre-treat-
ment, formamide or NaOH target denaturation, over-
night hybridization and high stringency post hybridiza-
tion washes. Telomere-specific Peptide Nucleic acid Ana-
log (PNA) hybridizations were performed using a Cy3-
(Indocarbocyanine)-  conjugated (CCCTAA); probe
(Dako), according to manufacturer's instructions. All
FISH preparations were mounted and counterstained with
VectaShield antifade medium (Vector), containing 0.1 pg/
ml DAPI (Sigma). GTG-Banding was performed after tryp-
sine denaturation (Invitrogen) and Giemsa (BDH-Chem-
icals) staining. Digital images were captured in a
Perceptive Systems Imaging, a Metasystems or an Applied
Imaging molecular cytogenetics workstations equipped
with fluorescent Zeiss, or Nikon microscopes. Quantifica-
tion of telomeric PNA fluorescence was performed in 500
chromatids on DAPI counterstained metaphase prepara-
tions in a single hybridization experiment using the Isis
software (Metasystems).

Microsatellite instability assay

Two mononucleotide markers, BAT-25 and BAT-26 were
tested for microsatellite instability by radioactive PCR
after Polyacrylamide Gel Electrophoresis (PCR-PAGE)

assay, using the following primers: BAT25.1 (5'-
TCGCCTCCAAGAATGTAAGT-3'), BAT25.2 (5'-TCT-
GCATTITAACTATGGCTC-3'),  BAT26.1 (5'-TGAC-
TACTTTTGACITCAGCC-3") and BAT26.2 (5'-

AACCATTCAACATTTTTAACCC-3').  Experiment was
monitored by controls for human microsatellite stability
(normal genomic and MIN DNA from a patient with
human Hereditary Non-Polyposis Colon Cancer -
HNPCC-).

TRAP assay

Telomerase activity of cell lysates was analyzed by the tel-
omeric repeat amplification protocol (TRAP) assay with a
TRAPeze Telomerase Detection kit (Intergen) according to
manufacturer's instructions. Approximately 10° cells were
harvested and lysed in 400 pl of 1x CHAPS (3-[(3-Chola-
midopropyl)dimethylammonio|propanesulfonic acid, 3-
[(3-Cholamidopropyl)-dimethylammonio]-1-pro-
panesulfonate) lysis buffer [Tris-HCl 10 mM, pH 7.5; 1
mM EGTA (ethylene glycol tetraacetic acid), 1 mM MgCl,,
0.5% CHAPS 10% glycerol, DEPC (Diethylpyrocar-
bonate) treated water on ice for 30 min. Cell debris were
spun down for 20 minutes at 12,000 r.p.m at 4°C. Each
reaction was carried out by using 2 ul of supernatant, 1 pl
of each primer, 0.5 pl of Tag-Polymerase (TAKARA), 10 ul
of solution-Q (Qiagen), 5 pul of 10x buffer, 2 ul of ANTPs,

Page 2 of 7

(page number not for citation purposes)



Molecular Cytogenetics 2008, 1:20

in DEPC treated water in final volume of 50 pl. The prim-
ers used for the TRAP-assay PCR, were TS-5'-AATCCGTC-
GAGCAGAGTT-3' and Cxa-5'-GTGTAACCCTAACCCTAA
CCC-3'. The PCR program consisted first of an incubation
at 30°C for 30 min and then in a thermocycler, 94°C for
2 min; 94°C for 30 s, 50°C for 25 s, 72°C for 30 s (33x);
72°C for 1 min. PCR products were electrophoresed in a
10% 19:1 acrylamide gel (Sigma)/0.5x TBE (Tris/Borate/
EDTA) buffer using the mini protean II gel system (Bio-
rad). Gels were stained with 2 pl of SYBR Green (Sigma)
for 15 min at room temperature in 50 ml of TBE 0.5x
buffer, and then exposed to UV light and visualized by a
Kodak image acquisition station.

Flow FISH

To measure cellular telomere length, short term cultured
cells were hybridized in situ with a fluorescent telomere-
specific peptide nucleic acid probe, according to manufac-
turer's protocol. Briefly, cells were washed in PBS, and re-
suspended to 105 cells/100 pl of a hybridization mixture
(Dako) containing 70% formamide and a telomere-spe-
cific FITC (Fluorescein isothiocyanate)-conjugated PNA
probe. Control samples were re-suspended in hybridiza-
tion solution without probe to obtain background fluo-
rescence values. After hybridization, cells were spun down
and washed twice with 4 ml PBS (Phosphate Buffered
Saline) at 40°C for 10 min and finally re-suspended in
PBS containing 0.1% Bovine Serum Albumin, 10 pg/ml
RNase A (Roche) and 0.1 pg/ml propidium iodide (Calbi-
ochem-Novabiochem). Cells were analyzed on a FACScan
flow cytometer (Becton Dickinson) or stored at 4°C
before analysis.

http://www.molecularcytogenetics.org/content/1/1/20

Results

Patient history and ascitic fluid samples

Peritoneal fluid samples were obtained by two subse-
quent paracenteses (within a 12-day interval) of a 38-year-
old woman, presented at the Department of Gynecology,
Laikon Hospital, with ascites and solid structures at her
ovaries as revealed by CT-scan. Two years ago the patient
had a less than 1.5 cm large, cutaneous nevus excised from
the anterior surface of her left hip. The primary tumor was
characterized as a nodular melanoma, Clark's level 3,
Breslow's depth 2.0 mm. One out of 14 inguinal nodes,
excised in a subsequent operation, was found to be
invaded. She received 6 cycles of chemotherapy (cis-pla-
tin-dacarbazine) and remained disease-free for 15
months. The cytologic examination of the ascitic aspira-
tion confirmed the presence of malignant cells positive for
the melanocyte specific antibody S-100 (Figure. 1). The
patient refused to be operated, gave her written consent
for further research on the specimens obtained, and
expired 40 days after presentation.

Cytogenetic analysis

G-Banding analysis (according to ISCN 1995) [12] from 8
short-term cell cultures of two peritoneal aspirations
taken in an interval of 12 days, showed a
46,XX,del(6)(q232qter),del(9)(p10pter),der(10)t(7;10)(
q31.3qter::p13)del(10)(p14?pter),der(11)t(5;11)(q22.3
qter;q23)del(11)(q24?qter),i(17q) pseudodiploid karyo-
type, in 94-96% of 200 mitoses examined (Figure. 2A).
Endoreduplication was observed in 4-6% of the malig-
nant cells leading to a 92,XXXX,idemx2 karyotype. Subte-
lomeric FISH specific for all human telomeres except for
chromosomes 16, 19, 20 and the short arms of acrocentric
chromosomes, was used to assist in the description of

T i

Figure |

The cytologic examination of the ascitic fluid showed malignant cells with high mitotic index (Giemsa * 400)
(A). Immunocytochemistry against the melanocyte specific antibody S-100 confirmed the presence of malignant melanocytes

(Hematoxylin and DAB x 400).
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A GTG-Banding and sub-telomere specific FISH composite representative karyotype of the reported
melanoma. Subtelomeric FISH verified structural integrity of most chromosomes, canonical orientation of both transloca-
tions, the deletions 6q, 10p, and | lq, as well as the isochromosome i(17q). The depicted partial dual or triple color subtelom-
eric FISH karyotypes derive from 23 independent pseudodiploid metaphases; each black box represents a single mitotic
nucleus (Red = Spectrum Orange, Green = FITC, Purple = Spectrum Aqua x1000) (A). Dual color interphase FISH for centro-
meres 7 (yellow), and 17 (green), shows remarkable numerical stability in 200 nuclei (error-bars represent the standard error

of the mean) (B).

marker chromosomes identified by G-Banding (Figure.
2A), and to verify deletions spanning up to the end of
rearranged chromosomes. To examine if this remarkable
karyotypic stability was not confined only to dividing
mitotic cells, we performed dual color interphase FISH
with probes specific for centromeres 7 and 17, in 200
interphase nuclei obtained from 2 short-term cell cultures
from both aspirations. Centromeres 7 and 17 showed
notable numerical stability in these populations. The rates
of whole genome endoreduplication were similar to those
of the karyotyped mitotic cells (Figure. 2B).

Examination of factors related to chromosome stability

In an attempt to attribute the karyotypic stability of this
metastatic melanoma to measurable parameters related to
chromosome stability in the context of neoplastic contin-

uous growth, we examined microsatellite instability
(MIN) and telomerase activity. Microsatellite unstable
tumors show a significantly lower rate of chromosomal
instability as compared to the MIN negative [3]. To rule
out underlying microsatellite genomic instability in this
metastatic melanoma, we tested by PCR-PAGE the robust
mononucleotide repeat markers BAT-25 and BAT-26.
Both loci have been shown to be sensitive markers of MIN
[13]. Compared to positive and negative controls, this
metastatic melanoma displayed no micro-satellite insta-
bility (Figure. 3A). Ectopic expression of telomerase in
normal fibroblasts has been connected to karyotypic sta-
bility [14]. We conducted a TRAP assay to test telomerase
activity in cultured cells from 2 sub-cultures from both
peritoneal aspirations. In both samples this assay was neg-
ative (Figure. 3B). To examine if these melanoma cells fol-
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Microsatellite instability in neoplasia (MIN) was excluded in this tumor since the microsatellite markers BAT-25 and BAT-26,
showed no instability as compared to MIN positive and negative controls (A). The TRAP assay was negative for telomerase
activity in cell culture material obtained from both peritoneal aspirations as compared to two well known telomerase positive
human cancer cell lines (MCF-7 and Hela) (B). Telomere length in this melanoma is relatively low as compared to the ALT U2-
OS cell line, leukemic JURKAT cells and human embryonic fibroblasts (error bars represent standard error of the mean
between 3 independent experiments) (C). Telomeric PNA FISH indicated uniform terminal capping with TTAGGG repeats on
virtually all chromosomes in both pseudodiploid and endoreduplicated clones and low deviation of telomeric length in 500
chromatids as compared to the ALT U2-OS cell line (inverted DAPIx1000) (error bars represent standard deviation)(D).

lowed the ALT-pathway of telomere maintenance [11] we
compared the relative telomeric length of our specimen
by Quantitative-PNA-Flow-FISH [15] with the pseudodip-
loid human acute T cell leukemia JURKAT cell line, nor-
mal human fibroblasts and an ALT-positive cell line [16].
Cell material for this test was obtained from a short-term
subculture that was previously karyotyped and found to
be composed exclusively from chromosomally abnormal
mitotic cells. This comparison revealed that the
melanoma cells had relatively short telomeres (Figure.
3C). PNA-telomeric FISH on 500 chromatids from 10 ran-
domly picked metaphase spreads showed that most of the
46 chromosomes of this metastatic melanoma were uni-
formly capped with telomeric repeats (Figure. 3D) and no

signs of structural chromosome instability attributed to
telomere dysfunction such as end-to-end fusions and
dicentric chromosomes were evident.

Discussion

Metastatic transition in most human tumors is accompa-
nied by a series of complex recurrent and stochastic chro-
mosomal anomalies. These changes reflect the
evolutionary pressure held by the cancer cells to bypass
natural barriers and re-establish continuous growth into
unrelated histopathologic environments [17,18]. In this
report, the karyotype of the primary tumor is not availa-
ble, therefore the relative simplicity of genomic imbal-
ances encountered in metastasis, permits only a
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hypothetical reconstruction of the chromosomal evolu-
tion of the disease. It has been proposed that melanomas
develop through a mode of karyotypic evolution, com-
mon to both low and high complexity karyotypes [2]. To
become malignant, an apparently normal melanocyte of
this patient underwent multiple karyotypic alterations
involving breakpoints in at least 7 different chromosomes
as well as chromosomal losses and non-disjunctions.
Although we cannot define the temporal order of the
recorded rearrangements, we postulate that the
hemizygous deletions 6q23qter and 9p- might be early
events in the chromosomal evolution of this melanoma.
Translocations and deletions involving the g-arm of
human chromosome 6 have been found in more than
80% of melanomas [5]. According to Hoglund et al
(2005) [19], deletions of the distal 6q should be consid-
ered early chromosomal lesions in melanomas. Moreover,
the short arm of chromosome 9 is the site of several cell
cycle regulators that have been linked with familial dis-
ease, or associated to melanoma progression and aggres-
sive behavior [2]. The gains of genomic material and the
additional deletions involving 10p, 11q and 17p, were by-
products of unbalanced chromatid separation of balanced
translocations and the isochromosome formation. These
more complex alterations might represent later events in
the process of the karyotypic evolution of the disease.
Chromosomes 10 and 11 are frequently lost in metastatic
melanomas whereas chromosome 7 is frequently gained
[2,5,7,20,21].

Rearrangements affecting the short arm of chromosome
17, where the p53 gene is located, have been implicated in
the pathogenesis of malignant melanoma [2]. It is inter-
esting that although p53 deficiency has been related to
increased rates of numerical chromosome instability or
polyploidy [22], in this melanoma hemizygosity of p53
was not associated with continuous genomic instability.
MIN tumors display extremely low rates of CIN [3]. We
ruled-out the possibility that this melanoma belonged to
this type of tumors. We also ruled-out CIN in our speci-
mens, since this metastatic pseudodiploid tumor was
highly cytogenetically stable by all means examined.
These results are compatible with those of Abdel-Rahman
et al. 2001 and Fabarius et al. 2003, who observed that
chromosomes of near-diploid cells are structurally much
more stable than those of highly aneuploid counterparts
[23,24]. Perhaps, the rare, melanoma described here, is
unusually stable, because it is near-diploid, in contrast to
the majority of highly aneuploid genomically unstable
melanomas.

The majority of human malignant melanomas and
melanoma cell lines studied with the TRAP assay were
found to express telomerase activity [10,25]. Furthermore,
telomerase activity has been connected to aggressiveness

http://www.molecularcytogenetics.org/content/1/1/20

of melanomas [26]. In continuous neoplastic growth,
insufficiently protected telomeres tend to undergo end-to-
end fusions and to produce numerous complex chromo-
some rearrangements such as dicentric chromosomes and
inverted duplications [27-29]. No evidence of such
lesions was found in our specimens. The transient stage of
structural chromosomal instability in this case, equally
involved subtelomeric, centromeric and genomic regions,
and gave rise to translocations with canonical orientation.
Surprisingly, this metastatic tumor was negative for telom-
erase activity. Moreover, no signs of recombinatorial tel-
omere elongation were present [11] since flow FISH
showed relatively short telomeres and PNA FISH dis-
played a uniform terminal capping of virtually all chro-
mosomes of this melanoma with TTAGGG repeats.

The remarkable stability, and telomeric integrity of the
metastatic tumor presented here, can be attributed either
to transient telomerase activation, or the action of an
unknown but efficient telomere restoration mechanism.
However, we can not exclude the possibility that adequate
telomeric length for clonal expansion and metastasis was
already acquired by the cancer progenitor melanocyte.
This assumption might correlate with the relatively young
age of the patient. A thorough examination of a series of
human osteosarcomas revealed a category of tumors that
do not express telomerase activity and do not display any
ALT-pathway characteristics [30]. Interestingly these
tumors showed low rates of CIN [30]. A similar sub-cate-
gory might be also encountered in melanomas. The excep-
tional case reported here, suggests that metastatic
progression in this melanoma, was not accompanied by
genomic instability, telomerase activity, or the engage-
ment of the classical alternative recombinatorial telomere
lengthening (ALT) pathway.
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