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Abstract. Modulated Fourier expansions are developed as a tool for gaining in-
sight into the long-time behavior of Hamiltonian systems with highly oscillatory
solutions. Particle systems of Fermi–Pasta–Ulam type with light and heavy masses
are considered as an example. It is shown that the harmonic energy of the highly
oscillatory part is nearly conserved over times that are exponentially long in the high
frequency. Unlike previous approaches to such problems, the technique used here
does not employ nonlinear coordinate transforms and can therefore be extended to
the analysis of numerical discretizations.

1. Introduction

We study the system of differential equations

ẍ +�2x = g(x) with � =
(

0 0

0 ωI

)
, (1.1)
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where ω � 1 and the nonlinearity is g(x) = −∇U (x), so that the problem is
Hamiltonian with

H(x, ẋ) = 1

2
(‖ẋ‖2 + ‖�x‖2)+U (x). (1.2)

An important property of such systems is the near-conservation over long times of
the oscillatory energy

I (x, ẋ) = 1

2
(‖ẋ2‖2 + ω2 ‖x2‖2). (1.3)

Here, the vectors x = (x1, x2) and ẋ = (ẋ1, ẋ2) are partitioned according to the
partitioning of the matrix � in (1.1). A possible way of studying problems of the
type (1.1) is via averaging techniques and Lindstedt series, see, e.g., Neishtadt
[10], Murdock [9], and Pronin and Treschev [11]. This very problem (1.1) was
thoroughly studied in Benettin, Galgani, and Giorgilli [3], Fassò [5], and Bambusi
and Giorgilli [1], using coordinate transformations of Hamiltonian perturbation
theory. In the present paper we give a variant of their result, obtained with a
completely different proof. It is based on writing the solution of (1.1) as a modulated
Fourier expansion

x(t) = y(t)+
∑
k �=0

eikωt zk(t), (1.4)

where y(t) and zk(t) are smoothly varying functions (i.e., their derivatives are
bounded independently of ω).

Such a representation of the solution has first been proposed by Miranker and
van Veldhuizen [8],1 who derived a scheme for constructing the “envelopes” zk(t).
They suggested computing numerically these envelopes and used them to approx-
imate the solution x(t). In [6] and [7, Chap. XIII] this technique of modulated
Fourier expansions has been further developed and used in the analysis of the
long-time behavior of numerical integrators when the time step is not small com-
pared to ω−1. Standard backward error analysis (see, e.g., [7, Chap. IX]) requires
�t · ω to be small and therefore cannot be applied. In this situation, modulated
Fourier expansions provide much insight into the long-time behavior of numerical
integrators. In the present paper, they are used to obtain rigorous long-time results
for the exact solution of the differential equation.

The following result states the near-conservation of the oscillatory energy over
time intervals that are exponentially long in ω. Here we assume that the initial
values satisfy

1

2
(‖ẋ(0)‖2 + ‖�x(0)‖2) ≤ E, (1.5)

where E is independent of ω. (We do not require E to be small.)

1 We thank an anonymous referee for pointing out this reference.
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Theorem 1.1. Assume that g(x) = −∇U (x) is analytic and bounded by M
in the complex neighborbood D = {x ∈ Cn: ‖x − ξ‖ ≤ R for some ξ with
H(ξ, 0) ≤ H(x(0), ẋ(0))}of the set of energetically admissible positions. Further-
more, let the initial values x(0), ẋ(0) satisfy (1.5). Then there exist positive con-
stants γ,C, Ĉ, ω0 depending on E , M , and R (but not onω) such that, forω ≥ ω0,

‖I (x(t), ẋ(t))− I (x(0), ẋ(0))‖ ≤ Cω−1 for 0 ≤ t ≤ Ĉe
γω
.

The proof of this theorem will be given in the final section of this paper. We
first discuss the modulated Fourier expansion in Section 2, and we show that the
coefficient functions of (1.4) are given by asymptotic differential and algebraic
equations. The effect of truncating the asymptotic series is studied in Section 3.
Whereas these two sections treat the general problem (1.1), the final Section 4
assumes that g(x) = −∇U (x). It is shown that the coefficient functions of the
modulated Fourier expansion are then exponentially close to the solution of a
Hamiltonian system in an infinite-dimensional space, which has two invariants:
one is close to the Hamiltonian (1.2) and the other is close to the oscillatory
energy (1.3).

Let us mention that the dominating fluctuation terms in the oscillatory energy
can be given explicitly. Writing theO(ω−1) terms in I of (4.4) below we find that

J (x, ẋ) = 1

2
(‖ẋ2‖2 + ω2‖x2‖2)− xT

2 g2(x1, 0) (1.6)

satisfies

‖J (x(t), ẋ(t))− J (x(0), ẋ(0))‖ ≤ Cω−2

on exponentially long time intervals. Since x2 = O(ω−1), this implies that the
fluctuations in I (x, ẋ) are of size O(ω−2) when g2(x1, 0) = O(ω−1).

The techniques of this paper can also be applied to the slightly more general
situation where the potential U (x) contains expressions of the form ϕ1(x1, x2)+
ωϕ2(x1/ω, x2), such that the differential equation becomes

ẍ1 = g1(x1, x2),

ẍ2 + ω2x2 = ωg2(x1, x2),

with g(x) depending smoothly on ω−1. In this case, the quantity

K (x, ẋ) = 1

2
(‖ẋ2‖2 + ω2‖x2‖2)− ωxT

2 g2(x1, 0)+ 1

2
‖g2(x1, 0)‖2 (1.7)

satisfies

‖K (x(t), ẋ(t))− K (x(0), ẋ(0))‖ ≤ Cω−1

on exponentially long time intervals. Notice that the additional terms in (1.7) are,
in general, of size O(1), so that the oscillatory energy exhibits fluctuations that
can be large independent of the size of ω.
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Example. Inspired by an example of
Bambusi and Giorgilli [1] we consider a
closed chain of an even number of parti-
cles with alternate light and heavy masses.
They interact through springs which are
harmonic up to small perturbations, and
neighboring heavy particles also interact
through arbitrary anharmonic springs (see
the illustration on the right). More pre-
cisely, we consider the Hamiltonian system
with

H(ξ, ξ̇ ) =
2N∑
i=1

ξ̇ 2
i

2mi
+ 1

2

2N∑
i=1

(ξi − ξi−1)
2 +

N∑
j=1

ϕj (ξ2 j − ξ2 j−2)

+
2N∑
i=1

ψi (
√

m (ξi − ξi−1)),

where m2 j−1 = m � 1 and m2 j = 1 for j = 1, . . . , N , and ξ0 = ξ2N . Applying
the symplectic change of coordinates ξi �→ √mi ξi , ξ̇i �→ ξ̇i/

√
mi , and using the

notation ω = 1/
√

m, the Hamiltonian becomes

H(ξ, ξ̇ ) = 1

2

2N∑
i=1

ξ̇ 2
i +

1

2

N∑
j=1

((ξ2 j − ωξ2 j−1)
2 + (ωξ2 j−1 − ξ2 j−2)

2)

+
N∑

j=1

ϕj (ξ2 j − ξ2 j−2)

+
N∑

j=1

(
ψ2 j

(
ξ2 j

ω
− ξ2 j−1

)
+ ψ2 j−1

(
ξ2 j−1 − ξ2 j−2

ω

))
.

We then consider an orthogonal linear transformation ξ ∗ = Qξ that takes the
harmonic part of the Hamiltonian to diagonal form. It is given by

ξ ∗2 j−1 = ξ2 j−1 − 1

2ω
(ξ2 j + ξ2 j−2)+O(ω−2),

ξ ∗2 j = ξ2 j + 1

2ω
(ξ2 j+1 + ξ2 j−1)+O(ω−2).

Omitting the stars, the Hamiltonian becomes (in the new variables)

H(ξ, ξ̇ ) = 1

2

2N∑
i=1

ξ̇ 2
i + ω2

N∑
j=1

ξ 2
2 j−1 +
1(ξ)+
2(ξ1, ξ2/ω, ξ3, ξ4/ω, . . .),

which is of the form treated above.
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Fig. 1. Solution components, where the nonzero initial positions are ξ2(0) = 0.5, ξ3(0) =
(2ω)−1, ξ5(0) = ω−1, ξ6(0) = 0.3 and the nonzero initial velocities are ξ̇1(0) = −ξ̇3(0) =
ω−1, ξ̇2(0) = 0.8, ξ̇4(0) = −1, ξ̇6(0) = 0.2.

Numerical Experiment. For a concrete example we put N = 3, ω = 50, we let
ϕj (s) = χ( 6

√
2 − s/ω) with χ(s) = s−12 − s−6 be the Lennard–Jones potential,

we take ψ2 j (s) = s2/2+ s4/4 for j = 1, . . . , N − 1, and ψi (s) = 0 otherwise.
Figure 1 shows the components ξ2, ξ4, ξ6, and 10ξ5 on the interval 0 ≤ t ≤ 10.

The factor 10 multiplying ξ5 is included to show more clearly the oscillations of
size O(ω−1) in the numerical solution.

In Fig. 2 we plot the energies Ij (ξ
∗, ξ̇ ∗) = 1

2 (ξ̇
∗
2 j−1)

2+ω2(ξ ∗2 j−1)
2 together with

the oscillatory energy I = I1 + I2 + I3 (cf. (1.3)) along the numerical solution on
the interval 0 ≤ t ≤ 1200. For this example, the expression g2(x1, 0) is of size
ω−1, so that the oscillatory energy is conserved up to terms of size ω−2 (see (1.6)).
Therefore, the oscillations cannot be observed in Fig. 2.

500 10000

1
I

I2

I1

I3

Fig. 2. Oscillatory energy for the solution with initial values as in Fig. 1.

2. The Modulated Fourier Expansion

We write the system (1.1) in the equivalent form

ẍ1 = g1(x1, x2),

ẍ2 + ω2x2 = g2(x1, x2), (2.1)
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where ω � 1 represents the dominant frequency of the system. In this section
we do not assume that g(x) is the gradient of a potential. Our aim is to present
a technique that allows us to separate the smooth and the oscillating parts of the
solution of (2.1) and to write it in the form(

x1(t)

x2(t)

)
=

(
y1(t)

y2(t)

)
+

∑
k �=0

eikωt

(
zk

1(t)

zk
2(t)

)
, (2.2)

where yi (t) and zk
i (t) are smoothly varying functions (i.e., their derivatives are

bounded independently of ω). The functions yi (t) are real valued and zk
i (t) are

complex valued. Since the solution xi (t) is real valued, we have to require that
z−k

i = zk
i . We also use the notations z2 := z1

2 and z0
2 := y2.

Inserting (2.2) into (1.1), expanding the nonlinearity into a Taylor series around
(y1(t), 0), and comparing the coefficients of eikωt yields differential equations for
the coefficient functions yi (t) and zk

i (t). With the exception of y1(t) they are of
singular perturbation type. We have to find smooth solutions of these equations.
As explained in [6], the functions y1 and z2 are seen to be given by differential
equations of the form

ÿ1 =
∑
l≥0

ω−l F1l(y1, ẏ1, z2), ż2 =
∑
l≥1

ω−l F2l(y1, ẏ1, z2), (2.3)

and the remaining functions by algebraic relations

zk
i =

∑
l≥0

ω−l Gk
il(y1, ẏ1, z2). (2.4)

Observe that y2 = z0
2, so that we also have an algebraic relation for y2. Furthermore,

for i = 2 and k = 1, we have the trivial identity z1
2 = z2 which implies

G1
20(y1, ẏ1, z2) = z2, G1

2l(y1, ẏ1, z2) = 0 for l ≥ 1. (2.5)

Remember that z−k
i is the complex conjugate of zk

i , so that also G−k
il is the complex

conjugate of Gk
il.

The series (2.3) and (2.4) are asymptotic expansions and do not converge in
general. Later, we shall truncate them suitably in order to get rigorous statements.

2.1. Recurrence Relations for the Coefficient Functions

For a computation of the functions Fil and Gk
il in (2.3) and (2.4) it is convenient to

introduce the Lie operator Ll . It can be applied to smooth functions G(y1, ẏ1, z2)

and is defined for l ≥ 0 by

Ll G = D2G · F1l + D3G · F2l +
{

D1G · ẏ1 if l = 0,

0 if l ≥ 1,
(2.6)
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where Dj denotes the partial derivative with respect to the j th argument of G(y1, ẏ1,

z2). This definition is motivated by the fact that, whenever y1(t) and z2(t) are a
solution of the differential equation (2.3), then we have

d

dt
G(y1(t), ẏ1(t), z2(t)) =

∑
l≥0

ω−lLl G(y1(t), ẏ1(t), z2(t)). (2.7)

Lemma 2.1. The function (x1(t), x2(t)) of (2.2), with yi (t) and zk
i (t) given by

(2.3) and (2.4), represents a formal solution of (2.1) if the coefficient functions Fil

and Gk
il satisfy the following recurrence relations (for l ≥ 0):

F1l = S1(0, l),

Gk
1l =

1

k2

( ∑
m+n+ j=l−2

LmLnGk
1 j + 2ik

∑
m+ j=l−1

Lm Gk
1 j − S1(k, l − 2)

)
,

F2l = 1

2i

(
S2(1, l − 1)−

∑
m+ j=l−1

Lm F2 j

)
,

Gk
2l =

1

1− k2

(
S2(k, l − 2)−

∑
m+n+ j=l−2

LmLnGk
2 j − 2ik

∑
m+ j=l−1

Lm Gk
2 j

)
.

The sums are over m ≥ 0, n ≥ 0, j ≥ 0, and we have used the abbreviation

Si (k, l) =
∑

m,n≥0

1

m! n!

∑
α,β

s(α)+s(β)=k

∑
e, f

s(e)+s( f )=l

Dm
1 Dn

2 gi (y1, 0)(Gα
1e,Gβ

2 f ).

Here, α = (α1, . . . , αm), β = (β1, . . . , βn), e = (e1, . . . , em), f = ( f1, . . . , fn)

are multi-indices with αi �= 0, βi arbitrary, ei ≥ 0, fi ≥ 0, and (Gα
1e,Gβ

2 f ) =
(Gα1

1,e1
, . . . ,Gαm

1,em
,Gβ1

2, f1
, . . . ,Gβn

2, fn
). We use the abbreviation s(α) =∑m

i=1 αi and
similarly for the other multi-indices.

Proof. Inserting the relation (2.2) into the first equation of the system (2.1), and
expanding the nonlinearity into a Taylor series around (y1, 0), we obtain

ÿ1 +
∑
k �=0

eikωt (z̈k
1 + 2ikωżk

1 − k2ω2zk
1)

=
∑

m,n≥0

1

m! n!

∑
α,β

eiωt (s(α)+s(β))Dm
1 Dn

2 g1(y1, 0)(zα1 , zβ2 ),

where (zα1 , zβ2 ) = (zα1
1 , . . . , zαm

1 , zβ1
2 , . . . , zβn

2 ), and the last sum is over all multi-
indices α, β with αi �= 0. We now insert our ansatz (2.3) for ÿ1 and (2.4) for zk

i ,
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we use the Lie derivative for expressing the derivatives of zk
1, and thus obtain

∑
l≥0

ω−l F1l +
∑
k �=0

eikωt

( ∑
m,n, j≥0

ω−m−n− jLmLnGk
1 j

+ 2ik
∑

m, j≥0

ω−m− j+1Lm Gk
1 j − k2

∑
j≥0

ω− j+2Gk
1 j

)

=
∑

m,n≥0

1

m! n!

∑
α,β

eiωt (s(α)+s(β))Dm
1 Dn

2 g1(y1, 0)

(∑
e≥0

ω−s(e)Gα
1e,

∑
f≥0

ω−s( f )Gβ

2 f

)
.

We just have to compare the coefficients of eikωt and ω−l (resp., ω−l+2) to obtain
the recurrence relations for the functions F1l and Gk

1l . This implies

Gk
10 = 0, Gk

11 = 0 for all k �= 0, (2.8)

so that the series expansions (2.4) for all zk
1 start with the ω−2-term.

Looking at the second equation of the system (2.1), we obtain

ÿ2 + ω2 y2 +
∑
k �=0

eikωt (z̈k
2 + 2ikωżk

2 + (1− k2)ω2zk
2)

=
∑

m,n≥0

1

m! n!

∑
α,β

eiωt (s(α)+s(β))Dm
1 Dn

2 g2(y1, 0)(zα1 , zβ2 ).

We insert the ansatz (2.3) for ż2 and (2.4) for zk
i and, in the same way as above,

we get the recurrence relations for the functions F2l and Gk
2l . They imply

Gk
20 = 0, Gk

21 = 0 for k �= ±1, (2.9)

so that also the expansions (2.4) for zk
2 (k �= ±1) start with the ω−2-term.

2.2. Estimates for the Functions Fij and Gk
ij

Our next aim is to get upper bounds for the coefficient functions Fij and Gk
ij of

(2.3) and (2.4). Since they depend on the derivatives of gi (x1, x2), it is natural to
require g(x) to be analytic and bounded (by M) in a suitable complex domain, say
in {(x1, x2); ‖x1 − y10‖ ≤ 4R, ‖x2‖ ≤ 3R}. Cauchy’s estimates then imply

‖Dm
1 Dn

2 gi (y1, 0)‖ ≤ m! n! M (3R)−m−n for ‖y1 − y10‖ ≤ R (2.10)

and for all n,m ≥ 0. This is our main assumption of this section. To obtain the
desired estimates for the coefficient functions we combine and adapt the techniques
of [2] and [7, Sect. IX.5].
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We fix a value Y0 = (y10, ẏ10, 0), and we consider the complex ball

Bρ(Y0) = {(y1, ẏ1, z2); ‖y1−y10‖ ≤ ρR, ‖ẏ1− ẏ10‖ ≤ ρM, ‖z2‖ ≤ ρR}. (2.11)

For a function G(y1, ẏ1, z2) defined on Bρ(Y0) we let

‖G‖ρ = max{‖G(y1, ẏ1, z2)‖; (y1, ẏ1, z2) ∈ Bρ(Y0)}. (2.12)

Since the coefficient functions are defined via expressions of the form Ll G, the
following lemma will be useful:

Lemma 2.2. Let G be analytic and bounded on Bρ(Y0), and let F1l and F2l be
bounded on Bσ (Y0) with 0 ≤ σ < ρ. Then we have

‖L0G‖σ ≤ 1

ρ − σ · ‖G‖ρ ·max(‖F10‖σ /M, ‖ẏ1‖σ /R),

‖Ll G‖σ ≤ 1

ρ − σ · ‖G‖ρ ·max(‖F1l‖σ /M, ‖F2l‖σ /R) for l ≥ 1.

Proof. Considerα(ζ ) = G(y1, ẏ1+ζ F1l(y1, ẏ1, z2), z2+ζ F2l(y1, ẏ1, z2)), where
(y1, ẏ1, z2) ∈ Bσ (Y0). This function is analytic for |ζ | ≤ ε with ε := (ρ −
σ)/max(‖F1l‖σ /M, ‖F2l‖σ /R). Since α′(0) = (Ll G)(y1, ẏ1, z2), Cauchy’s esti-
mate yields

‖(Ll G)(y1, ẏ1, z2)‖ = ‖α′(0)‖ ≤ 1

ε
sup
|ζ |≤ε
‖α(ζ )‖ ≤ 1

ε
‖G‖ρ ,

which proves the statement for l ≥ 1. For l = 0 we have to consider the
function α(ζ ) = G(y1 + ζ ẏ1, ẏ1 + ζ F10(y1, ẏ1, z2), z2), because F20 = 0 by
Lemma 2.1.

The use of Lemma 2.2 implies that we cannot work with only one norm ‖ · ‖ρ
for finding estimates of the coefficient functions. We therefore fix a positive integer
L , we put δ = 1/(2L), and we consider the norms corresponding to balls with
shrinking radius ρ = 1− lδ (0 ≤ l ≤ L).

Lemma 2.3. Let Y0 = (y10, ẏ10, 0) be given, and assume that (2.10) holds. The
functions Fij and Gk

ij of Lemma 2.1 satisfy

‖F10‖1 ≤ a0 M, ‖ẏ1‖1 ≤ a0 R,

‖F1l‖1−lδ ≤ al M, ‖F2l‖1−lδ ≤ al R, 1 ≤ l ≤ L ,

‖G−1
20 ‖1 + ‖G1

20‖1 ≤ b0 R,

max

(∑
k �=0

k2‖Gk
1l‖1−lδ,

∑
k∈Z
|1− k2| ‖Gk

2l‖1−lδ

)
≤ bl R, 1 ≤ l ≤ L ,
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where a0 = max(9, (‖ẏ10‖1 + M)/R), b0 = 2, and the generating functions
a(ζ ) =∑

l≥1 alζ
l and b(ζ ) =∑

l≥1 blζ
l are implicitly given by

a(ζ ) = −9+ 9

(
1+ Mζ

2R

)
(1− b(ζ ))−2 + ζ

2δ
(a0 + a(ζ ))a(ζ ),

b(ζ ) = 9Mζ 2

R
(1− b(ζ ))−2 + 2ζ

δ
(a0 + a(ζ ))(b0 + b(ζ )) (2.13)

+ ζ
2

δ2
(a0 + a(ζ ))2(b0 + b(ζ )).

Proof. (a) In this proof we shall use the shorthand notation

‖G‖l := ‖G‖1−lδ = max{‖G(y1, ẏ1, z2)‖; (y1, ẏ1, z2) ∈ B1−lδ(Y0)}. (2.14)

Observe that ‖G‖l is a decreasing function of l.
To obtain the desired statement, we begin with some estimates and then we

prove the result of this lemma by induction on l.
(b) Because of (2.8), (2.9), and (2.5), the above estimates for Gk

il also imply∑
k �=0

‖Gk
1l‖l ≤ bl R,

∑
k∈Z
‖Gk

2l‖l ≤ bl R for l ≥ 0. (2.15)

Using these relations and the analyticity assumption (2.10), we are able to majorize
the Si (k, l) as follows:

∑
k∈Z
‖Si (k, l)‖l ≤

∑
m,n≥0

m! n!

m! n!

∑
α,β

αi �=0

∑
s(e)+s( f )
=l

M(3R)−m−n‖Gα1
1e1
‖l · · · ‖Gβ1

2 f1
‖l · · ·

≤ M
∑

m,n≥0

∑
s(e)+s( f )=l

3−m−nbe1 · · · bem bf1 · · · bfn

≤ M
∑
j≥0

( j + 1)
∑

d1+···+dj=l

3− j bd1 · · · bdj = Mcl ,

where cl (l ≥ 0) are the coefficients of the generating function

∑
l≥0

clζ
l = c(ζ ) = 1

(1− [b0 + b(ζ )]/3)2
= 9

(1− b(ζ ))2
.

We have used ‖Gα1
1e1
‖l ≤ ‖Gα1

1e1
‖e1 and ‖Gβ1

2 f1
‖l ≤ ‖Gβ1

2 f1
‖ f1 , which are a conse-

quence of e1 ≤ l and f1 ≤ l.
(c) For m + n + j = l − 2 a twofold application of Lemma 2.2 yields

‖LmLnGk
ij‖l ≤

1

δ2
‖Gk

ij‖j am an and
∑
k �=0

‖LmLnGk
1 j‖l ≤

R

δ2
bj am an.
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This implies ∑
k �=0

∑
m+n+ j=l−2

‖LmLnGk
1 j‖l ≤

R

δ2
dl−2,

where the generating function of the dl is

d(ζ ) =
∑
l≥0

dlζ
l = (b0 + b(ζ ))(a0 + a(ζ ))2.

The same estimate is obtained for
∑

k∈Z
∑

m+n+ j=l−2 ‖LmLnGk
2 j‖l .

(d) In order to estimate |k| ‖Lm Gk
i j‖l for m+ j = l−1, we observe that, similar

to (2.15), also∑
k∈Z
|k| ‖Gk

1l‖l ≤ bl R,
∑
k∈Z
|k| ‖Gk

2l‖l ≤ bl R for l ≥ 0 (2.16)

holds. As in part (c) we thus obtain∑
k∈Z
|k|

∑
m+ j=l−1

‖Lm Gk
i j‖l ≤

R

δ
ql−1,

where the generating function for the ql is

q(ζ ) =
∑
l≥0

qlζ
l = (b0 + b(ζ ))(a0 + a(ζ )).

(e) After these preparations the statement can be proved by induction on l. The
bounds a0 and b0 are defined just to satisfy the estimates for l = 0. The form of the
generating functions for al and bl are a consequence of the recurrence relations of
Lemma 2.1 and of parts (b), (c), and (d) of this proof.

To get bounds on the expressions of Lemma 2.3, we have to majorize al and
bl . This can be done with the help of Cauchy’s inequalities, because the generat-
ing functions a(ζ ) and b(ζ ) are analytic in a neighborhood of the origin. Since
equations (2.13) depend on δ, R, and M , we have to be careful in determining the
radius of the disk of analyticity. In the following we assume M ≥ R. This can
be done without loss of generality, because we can always increase M without
violating (2.10) or, even better, we can rescale time in the differential equation and
thus multiply g(x) by a scalar factor.

Theorem 2.4. We fix Y0 = (y10, ẏ10, 0), and we assume that the nonlinearity
g(x) satisfies (2.10) with M ≥ R, and that ‖ẏ10‖ ≤ M . The coefficient functions
of Lemma 2.1 then satisfy, for l ≥ 1,

‖F1l‖1/2 ≤ µM

(
νlM

R

)l

, ‖F2l‖1/2 ≤ µR

(
νlM

R

)l

,

max

(∑
k �=0

k2‖Gk
1l‖1/2,

∑
k∈Z
|1− k2| ‖Gk

2l‖1/2

)
≤ µR

(
νl M

R

)l

,
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where µ and ν only depend on an upper bound of M/R but not on the other data
of the differential equation. The norm is that of (2.12).

Proof. We multiply the ζ in (2.13) either by 1/δ ≥ 1 or by M/R ≥ 1 so that
the relations only depend on ζM/δR, a(ζ ), and b(ζ ). This makes the coefficients
al and bl at worst larger, so that the estimates of Lemma 2.3 still hold. We then
introduce the new variables ζ̂ = ζM/δR, â(ζ̂ ) = a(ζ ), and b̂(ζ̂ ) = b(ζ ), so that
(2.13) becomes

â(ζ̂ ) = −9+ 9

(
1+ ζ̂

2

)
(1− b̂(ζ̂ ))−2 + ζ̂

2
(a0 + â(ζ̂ ))â(ζ̂ ),

b̂(ζ̂ ) = 9 ζ̂ 2(1− b̂(ζ̂ ))−2 + 2ζ̂ (a0 + â(ζ̂ ))(2+ b̂(ζ̂ )) (2.17)

+ ζ̂ 2(a0 + â(ζ̂ ))2(2+ b̂(ζ̂ )).

Observe that a0 ≤ max(9, 2M/R), which is a consequence of ‖ẏ10‖ ≤ M .
In equations (2.17) we obtain â = 0, b̂ = 0 for ζ̂ = 0, and the implicit function

theorem can be applied. This proves the existence of constants µ and ν, such that
â(ζ̂ ) and b̂(ζ̂ ) are analytic in the disk |ζ̂ | ≤ 2/ν and bounded by µ. Cauchy’s
inequalities thus prove that the lth coefficient of these generating functions is
bounded by µ(ν/2)l . This yields

al

(
δR

M

)l

≤ µ
(ν

2

)l
, bl

(
δR

M

)l

≤ µ
(ν

2

)l
.

Putting l = L in the estimates of Lemma 2.3, and inserting the just obtained upper
bounds for aL and bL , proves the theorem. We use the fact that 1− Lδ = 1/2.

3. Exponentially Small Error Estimates

In general, the series expansions in (2.3) and (2.4) diverge, even for arbitrarily
large ω. To obtain rigorous statements we have to truncate these series. We thus
consider

ÿ1 =
∑

0≤l≤N

ω−l F1l(y1, ẏ1, z2), ż2 =
∑

1≤l≤N

ω−l F2l(y1, ẏ1, z2), (3.1)

zk
i =

∑
2≤l≤N

ω−l Gk
il(y1, ẏ1, z2). (3.2)

The choice of the truncation index will be made on the basis of the estimates
of Theorem 2.4. The lth term in the expansions (2.3) and (2.4) is majorized by
Const(νlM/ωR)l , which is minimal for νlM/ωR = 1/e. We therefore choose the
integer truncation index N such that

N ≤ ωR

eνM
< N + 1. (3.3)
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Using the inequality

∑
2≤l≤N

l2

(
νlM

ωR

)l−2

≤
∑

2≤l≤N

l2

(
l

eN

)l−2

≤ 8.65,

which can be checked numerically for small N , and the left-hand expression of
which is a decreasing function of N for large N , it immediately follows from
Theorem 2.4 that

∑
k �=0

k2
∑

2≤l≤N

ω−l‖Gk
1l‖1/2 ≤ 8.65µR

(
νM

ωR

)2

≤ Const ·R
(

M

ωR

)2

. (3.4)

The remaining bounds of Theorem 2.4 yield similar estimates also for Gk
2l ,

F1l , and F2l .

3.1. Initial Values for the Modulated Fourier Expansion

In this section we consider the function(
x̃1(t)

x̃2(t)

)
=

(
y1(t)

y2(t)

)
+

∑
k �=0

eikωt

(
zk

1(t)

zk
2(t)

)
, (3.5)

where yi (t) and zk
i (t) are solutions of the truncated system (3.1)–(3.2). The sum

over k is still infinite.
In the following we consider the differential equation (2.1) with initial values

x1(0) = x10, ẋ1(0) = ẋ10, x2(0) = x20, ẋ2(0) = ẋ20, and we assume that the
harmonic energy of these initial values is bounded by E independent of ω, see
(1.5). We first show that to these initial values there correspond (locally) unique
initial values for the system (3.1), such that x̃(0) = x(0) and ˙̃x(0) = ẋ(0). We
then show that the function (3.5), obtained with these initial values for y1, ẏ1, and
z2, has an exponentially small defect when it is inserted into (2.1).

Lemma 3.1. Consider the differential equation (2.1) with initial values x(0) =
(x10, x20), ẋ(0) = (ẋ10, ẋ20) satisfying (1.5). Assume that the nonlinearity g(x) is
analytic in a ball {(x1, x2) | ‖x1 − x10‖ ≤ 4R, ‖x2‖ ≤ 3R} and bounded by M ,
with M ≥ R. For sufficiently large ω (M/ωR ≤ γ , where γ does not depend on
ω) there exist (locally) unique initial values y1(0) = y10, ẏ1(0) = ẏ10, z2(0) = z20

for the system (3.1), such that

x(0) = x̃(0), ẋ(0) = ˙̃x(0), (3.6)

with x̃(t) from (3.5). These initial values satisfy

x10 = y10 +O(Rω−2), x20 = z20 + z̄20 +O(Rω−2),

ẋ10 = ẏ10 +O(Rω−1), ẋ20 = iωz20 − iωz̄20 +O(Rω−1),
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where the constant symbolizing theO(·) can depend on M/R and on the harmonic
energy E , but not on ω.

Proof. Using the truncated relations (3.2) and the Lie operatorLk , condition (3.6)
becomes

x10 = y10 +
∑
k �=0

∑
2≤l≤N

ω−l Gk
1l(y10, ẏ10, z20, z̄20),

x20 = z20 + z̄20 +
∑
|k|�=1

∑
2≤l≤N

ω−l Gk
2l(y10, ẏ10, z20, z̄20),

ẋ10 = ẏ10 +
∑
k �=0

∑
2≤l≤N

ω−l

(
(ikω)Gk

1l(y10, ẏ10, z20, z̄20)

+
∑

0≤s≤N

ω−s(Ls Gk
1l)(y10, ẏ10, z20, z20)

)
,

(iω)−1 ẋ20 = z20 − z̄20

+ (iω)−1
∑
|k|�=1

∑
2≤l≤N

ω−l

(
(ikω)Gk

2l(y10, ẏ10, z20, z̄20)

+
∑

0≤s≤N

ω−s(Ls Gk
2l)(y10, ẏ10, z20, z̄20)

)
.

Collecting the unknown variables into a vector Y0 = (y10, ẏ10, z20, z̄20), this sys-
tem can be readily brought to the form Y0 = F(Y0). Using Cauchy’s inequalities
and (3.4), we have ‖F ′(Y)‖ ≤ Const ·(M/ωR) < 1 if M/ωR is sufficiently small.
This implies, by the Mean Value Theorem, that F is a contraction on the closed
ball

B = {(y1, ẏ1, z2) | ‖y1 − x10‖ ≤ R/4, ‖ẏ1 − ẋ10‖ ≤ M/4, ‖z2‖ ≤ R/4}.
Furthermore, by (1.5), (3.4) and using the fact that M/ωR is sufficiently small,
we have F(B) ⊂ B. To conclude the proof, we apply the Banach Fixed Point
Theorem to solve the nonlinear system Y = F(Y).

3.2. Estimation of the Defect

After having found suitable initial values for the differential equations (3.1), which
exist for ω ≥ ω0 with a sufficiently large ω0, we investigate the length of the time
interval such that the solution exists and remains in the ball

B = {(y1, ẏ1, z2) | ‖y1 − y10‖ ≤ R/2, ‖ẏ1 − ẏ10‖ ≤ M/2, ‖z2‖ ≤ R/2}.
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We assume that the nonlinearity g(x) satisfies (2.10) with M ≥ R and that ‖ẏ10‖ ≤
M (this assumption is essentially a definition of M and R). As with (3.4), the
estimates of Theorem 2.4 then yield∑

0≤l≤N

ω−l ‖F1l(y1, ẏ1, z2)‖1/2 ≤ Const ·M,

∑
1≤l≤N

ω−l ‖F2l(y1, ẏ1, z2)‖1/2 ≤ Const ·R
(

M

ωR

)
≤ Const ·M · ω−1, (3.7)

for (y1, ẏ1, z2) ∈ B. As long as the solution of (3.1) remains in B, we thus have
the estimates

‖y1(t)− y10‖ ≤ t‖ẏ10‖ + t2 M Const,

‖ẏ1(t)− ẏ10‖ ≤ t M Const, (3.8)

‖z2(t)− z20‖ ≤ t Mω−1 Const .

This proves the existence of a T > 0 such that (y1(t), ẏ1(y), z2(t)) ∈ B for
0 ≤ t ≤ T . As the generic constant Const, also T only depends on an upper bound
of M/R.

In the following we denote

y0(t) =
(

y1(t)

y2(t)

)
, yk(t) = eikωt

(
zk

1(t)

zk
2(t)

)
, (3.9)

where yi (t) and zk
i (t) are the solution of the system (3.1)–(3.2). The approximate

solution x̃(t) of (3.5) is thus equal to
∑

k yk(t). Without any truncation of the series
in (3.1)–(3.2), the functions yk(t) are formally a solution of

ÿk +�2 yk =
∑
m≥0

1

m!

∑
s(α)=k,αi �=0

g(m)(y0)(yα1 , . . . , yαm ), (3.10)

because they are obtained by comparing the coefficients of eikωt (see the proof of
Lemma 2.1). Let us study here the effect of the truncation.

Theorem 3.2. Consider the differential equation (2.1) with initial values x(0)
and ẋ(0) satisfying (1.5). Assume that the nonlinearity g(x) is analytic in the
complex ball {(x1, x2) | ‖x1− x1(0)‖ ≤ 4R, ‖x2‖ ≤ 4R} and bounded by M with
M ≥ R and let ‖ẏ10‖ ≤ M . Let the truncation index N in (3.1) and (3.2) be
determined by (3.3). Then, there exist γ > 0, T > 0 and ω0 > 0 such that the
defect

δk(t) = ÿk(t)+�2 yk(t)−
∑
m≥0

1

m!

∑
s(α)=k,αi �=0

g(m)(y0(t))(yα1(t), . . . , yαm (t))
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satisfies, for 0 ≤ t ≤ T and for ω ≥ ω0,∑
k∈Z
‖δk(t)‖ ≤ CMe−γω.

The constants C, γ, T, ω0 only depend on an upper bound of M/R but not on ω.

Proof. First we let N and ω be independent variables (for the time being not
related by (3.3)), and we consider the defect as a function of t, N , and ω−1, i.e.,
δk(t) = δk(t, N , ω−1). By the construction of the coefficient functions yk , the
defect δk is an analytic function of ζ = ω−1 in a neighborhood of the origin
and, moreover, δk = O(ω−N−1). Therefore, the following function is analytic in a
neighborhood of the origin:

F(ζ ) =
∑
|k|≤m

u∗k δk(t, N , ζ ) ζ−(N+1),

where m is an arbitrary integer and the uk are arbitrary vectors of unit norm. For
t ≤ T , with T sufficiently small (see (3.8)), the function F(ω−1) is well-defined
for |ω−1| ≤ εN , where

εN := R

2νMN
,

so that the Maximum Principle can be applied on this disk. For |ω−1| = εN ,
i.e., for |ω| and N related as in (3.3) but with 2 instead of e in the denominator,
the bounds (3.4) and (3.7) are still valid (except that the constant 8.65 increases
to 12.4).

For t ≤ T , we have ‖y0(t)− x(0)‖ ≤ R and Cauchy’s estimates yield

∑
k∈Z

∥∥∥∥∥
∑
m≥0

1

m!

∑
s(α)=k,αi �=0

g(m)(y0(t))(yα1(t), . . . , yαm (t))

∥∥∥∥∥
≤ M

∑
m≥0

1

m!

∑
αi �=0

· · ·
∑
αm �=0

m! (3R)−m‖yα1‖ · · · ‖yαm‖ ≤ Const ·M.

The last inequality is a consequence of (3.4) and (3.7), which yield∑
α �=0

‖yα‖ ≤ Const ·M · ω−1

which is smaller than 2R for ω ≥ ω0 (take ω0 greater if necessary). Again by (3.4)
and (3.7), we obtain∑

k∈Z
‖ÿk +�2 yk‖ =

∑
k∈Z
‖z̈k + 2ikωżk − k2ω2zk +�2zk‖ ≤ Const ·M.

Putting this together, we obtain the bound∑
k∈Z
‖δk(t, N , ζ )‖ ≤ Const ·M for |ζ | = εN .
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With the Maximum Principle, this gives, for |ω−1| ≤ εN ,

|F(ω−1)| ≤ max
|ζ |=εN

|F(ζ )|

≤ max
|ζ |=εN

∑
k∈Z
‖δk(t, N , ζ )‖ · ε−(N+1)

N ≤ Const ·M · ε−(N+1)
N .

Choosing now uk = δk(t, N , ω−1)/‖δk(t, N , ω−1)‖ in the definition of F(ζ ) and
letting m →∞ gives∑

k∈Z
‖δk(t, N , ω−1)‖ ≤ Const ·M · (ωεN )

−(N+1).

Forω and N related by (3.3) we have (ωεN )
−1 ≤ 2/e = e−α withα = 1−ln 2 > 0,

so that, in this case,∑
k∈Z
‖δk(t)‖ ≤ Const ·M · e−α(N+1) ≤ Const ·M · e−γω

holds with the exponent γ = αR/νMe.

4. The Hamiltonian Case

Sections 2 and 3 treated general second-order differential equations with rapid
oscillations. Our main interest is in Hamiltonian systems, where g(x) = −∇U (x)
and U (x) is an analytic potential. The Hamiltonian H(x, ẋ) of the system (2.1) is
then given by (1.2).

4.1. Hamiltonian of the Modulated Fourier Expansion

It is interesting to note that the Hamiltonian structure passes over to the differential
equation for the coefficients of the modulated Fourier expansion. To see this,
we let

y = (. . . , y−2, y−1, y0, y1, y2, . . .)

be a two-sided infinite sequence and we define

U(y) = U (y0)+
∑
m≥0

1

m!

∑
s(α)=0,αi �=0

U (m)(y0)(yα1 , . . . , yαm ). (4.1)

This function is well-defined as long as
∑

k �=0 ‖yk‖ ≤ R. The system (3.10) then
becomes

ÿk +�2 yk = −∇y−kU(y) (4.2)

and is Hamiltonian with

H(y, ẏ) = 1

2

∑
k∈Z
((ẏ−k)T ẏk + (y−k)T�2 yk)+ U(y). (4.3)
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4.2. An Almost-Invariant Close to the Oscillatory Energy

It turns out that, besides the Hamiltonian H(y, ẏ) (see [6]), the system (4.2)
also has

I(y, ẏ) = −iω
∑
k �=0

k(y−k)T ẏk (4.4)

as a conserved quantity. This series converges if
∑

k �=0 |k| ‖yk‖ < ∞ and
maxk �=0 ‖ẏk‖ < ∞. For the functions yk(t) of (3.9), where yi (t) and zk

i (t) are
the solution of the truncated system (3.1)–(3.2), this is a consequence of (3.4).

We shall prove here that the expression I(y(t), ẏ(t)) is conserved up to expo-
nentially small terms. Moreover, it turns out that this expression is close to the
oscillatory energy

I (x, ẋ) = 1

2
‖ẋ2‖2 + ω

2

2
‖x2‖2 (4.5)

of the system (2.1) with g(x) = −∇U (x).

Theorem 4.1. Let y(t) be the infinite vector with components yk(t) given by (3.9)
and corresponding to initial values given by Lemma 3.1. Under the assumption of
Theorem 3.2 we then have

I(y(t), ẏ(t)) = I(y(0), ẏ(0))+O(e−γω),
I(y(t), ẏ(t)) = I (x(t), ẋ(t))+O(ω−1),

for 0 ≤ t ≤ T and ω ≥ ω0, where the constants symbolizing the O(·) depend on
E , M , and R, but not on ω.

Proof. We use the algebraic identity∑
k �=0

ik(yk)T∇Uyk (y) = 0, (4.6)

which holds for
∑

k �=0 |k| ‖yk‖ < ∞. For a proof we refer to [6] and [7,
Sect. XIII.6.2].

We then compute the time derivative of I(y(t), ẏ(t)) with y(t) of (3.9):

d

dt
I(y(t), ẏ(t)) = −iω

∑
k �=0

kẏ−k(t)T ẏk(t)− iω
∑
k �=0

ky−k(t)T ÿk(t)

= −iω
∑
k �=0

ky−k(t)T (ÿk(t)+�2 yk(t)+ ∇Uy−k (y(t)))

= −iω
∑
k �=0

ky−k(t)T δk(t).
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We have used that the terms k(ẏ−k)T ẏk , as well as k(y−k)T�2 yk , cancel with the
corresponding terms for −k. Furthermore, we have added the expression (4.6)
to make appear the defect in the right-hand expression. The first statement now
follows from Theorem 3.2 and by an integration on the interval [0, t].

The second statement is obtained as in the proof of Theorem 4.3 in [6].

4.3. Proof of Theorem 1.1

To prove the main theorem of this paper, which states that (4.5) is nearly conserved
over exponentially long time, we only have to use Theorem 4.1 and change the
O(ω−N ) remainders by O(e−γω) in the proof of Corollary 4.4 in [6].
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