
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Thèse 2016 Open Access

This version of the publication is provided by the author(s) and made available in accordance with the

copyright holder(s).

Geometric routing over virtual coordinate systems: algorithms, protocols

and applications

Wijesiriwardana Samarasinghe, Kasun

How to cite

WIJESIRIWARDANA SAMARASINGHE, Kasun. Geometric routing over virtual coordinate systems:

algorithms, protocols and applications. Doctoral Thesis, 2016. doi: 10.13097/archive-

ouverte/unige:91697

This publication URL: https://archive-ouverte.unige.ch/unige:91697

Publication DOI: 10.13097/archive-ouverte/unige:91697

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:91697
https://doi.org/10.13097/archive-ouverte/unige:91697

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Département d’Informatique Professeur Pierre Leone

Geometric Routing over Virtual Coordinate Systems:

Algorithms, Protocols and Applications

THÈSE

présentée à la Faculté des sciences de l’Université de Genève
pour obtenir le grade de Docteur ès sciences, mention Sciences informatiques

par

Kasun WIJESIRIWARDANA SAMARASINGHE

de

Galle, Sri Lanka

Thèse No

GENÈVE

2016

To my parents. . .

Acknowledgements
I would like to thank Professor Pierre Leone, for his guidance and advices given through out

my thesis. He has given me the freedom to explore new things and ideas as well as given me the

directions whenever needed to make my work a success. Also I would like to thank Professor

Jose Rolim for giving me the opportunity to work with his team. I thank all my colleagues

and friends (past and present) in Theoretical Computer Science laboratory for helping me to

complete my thesis, as well as for making a friendly and productive environment to work. I

would also like to thank Professor Thiemo Voigt at Uppsala University, Sweden for introducing

me to the research community and providing me support through out my post graduate

studies. Last but not least, I am grateful for all my teachers and advisors at the University of

Colombo, School of Computing, Sri Lanka and Richmond College, Galle, Sri Lanka, for setting

me up the basis to pursue further studies in Computer Science

Geneva, 2016 Kasun Wijesiriwardana Samarasinghe

i

Abstract
Advancements in hardware development have given rise to a novel paradigm of computing

called ubiquitous computing. In ubiquitous computing, applications provide various services

across heterogeneous hardware platforms, over standard protocols. These hardware can range

from mobile devices to small devices with wireless communication capabilities, which can be

embedded into appliances utilized in daily life.

Wireless ad-hoc networks is an important ingredient in the deployment of ubiquitous com-

puting applications. It acts as the communication backbone, which enables the flexible

deployment of devices required by most of the ubiquitous applications. In general, wireless

ad-hoc networks do not have a pre-defined topology, hence form a mesh network over wireless

communication medium. Routing in wireless ad-hoc networks is a challenging task compared

to fixed infrastructure networks. It has to deal with the dynamics of the network topology, due

to the unpredictable wireless communication behavior.

Geographic routing is a routing paradigm, especially proposed for wireless ad-hoc networks.

In geometric routing, routing decisions are made based on the geometric position of the nodes.

Initially geometric routing tries to forward a packet to the closest node towards the destination,

namely greedy routing. If greedy routing fails, it explores the graph systematically to reach

the destination, namely face routing. As routing is based on the geometric coordinates of the

nodes, it avoids building and maintaining the routing tables as in classical routing protocols.

Hence, it provides scalability and robustness in networks with dynamic topologies.

Despite the ingenuity of seminal proposal in geometric routing, it has not thrive to become a

standard for wireless ad-hoc networks. This is mainly due to the unrealistic assumptions of

the algorithms. Also as geometric routing requires the nodes to be equipped with geometric

coordinates, an auxiliary location service has to be in place. Such a service can be expensive

and unrealistic in most of the wireless ad-hoc network deployments.

In this thesis, geometric routing is investigated on virtual coordinate systems. In the first

contribution of the thesis, an efficient coordinate system called virtual raw anchor coordinates

(VRAC) has been investigated and geometric routing algorithms are formulated on it. Further

more, it establishes results on the possibility of greedy routing with delivery guarantees on

VRAC. Second contribution of the thesis is the proposal of greedy zone routing protocol

considering the reliability and scalability aspects of large scale wireless ad-hoc networks.

iii

Abstract

Greedy zone routing protocol design not only free of unrealistic assumptions but also based

on simple techniques which can be applied in real network settings. In the third contribution,

an application layer framework is presented over existing routing protocols for wireless ad-hoc

networks. This framework is then applied to solve a smart building use case.

Key words: Geometric Routing, Planar Graphs, Greedy Embedding

iv

Résumé
Les progrès dans le développement de matériel ont donné lieu à un nouveau paradigme de

l’informatique appelé l’informatique omniprésente. Dans l’informatique omniprésente, les

applications offrent divers services à travers des plates-formes matérielles hétérogènes, sur

des protocoles standards. Ces matériels peuvent varier de dispositifs mobiles à petits appareils

dotés de capacités de communication sans fil, qui peuvent être intégrés dans des appareils

utilisés dans la vie quotidienne.

Les réseaux ad-hoc sans fil sont un ingrédient important dans le déploiement d’applications

informatiques omniprésentes. Ils agissent comme l’épine dorsale de communication, qui

permet le déploiement flexible des dispositifs requis par la plupart des applications omniprésentes.

D’une manière générale, les réseaux sans fil ad-hoc ne disposent pas d’une topologie prédéfinie,

par conséquent, forment un réseau maillé sur support de communication sans fil. Routage

dans les réseaux ad-hoc sans fil est une tâche difficile par rapport aux réseaux d’infrastructures

fixes. Il doit faire face à la dynamique de la topologie du réseau, en raison du comportement

de communication sans fil imprévisible.

Le routage géographique est un paradigme de routage, en particulier proposé pour les réseaux

ad-hoc sans fil. Dans le routage géométrique, les décisions de routage sont effectués en

fonction de la position géométrique des noeuds. Initialement, le routage géométrique tente

de transmettre un paquet au noeud le plus proche vers la destination, à savoir le routage

glouton. Si le routage glouton échoue, il explore le graphique systématiquement pour atteindre

la destination, le face routage. Que le routage soit basé sur les coordonnées géométriques

des noeuds, cela évite la construction et l’entretien des tables de routage, comme dans des

protocoles de routage classiques. Par conséquent, il offre une évolutivité et de robustesse dans

les réseaux avec des topologies dynamiques.

Malgré l’ingéniosité de la proposition séminal dans le routage géométrique, il n’a pas prospéré

pour devenir une norme pour les réseaux ad-hoc sans fil. Ceci est principalement dû aux

hypothèses irréalistes des algorithmes. Aussi comme le routage géométrique exige aux noeuds

d’être équipés avec des coordonnées géométriques, un service de localisation auxiliaire doit

être en place. Un tel service peut être coûteux et irréaliste dans la plupart des déploiements de

réseau sans fil ad-hoc.

Dans cette thèse, le routage géométrique est étudiée sur des systèmes virtuels de coordonnées.

v

Abstract

Dans la première contribution de la thèse, un système de coordonnées efficace appelé

coordonnées d’ancrage premières virtuels (VRAC) a été étudié et des algorithmes de routage

géométriques sont formulés à ce sujet. De plus, il établit les résultats sur la possibilité de

routage glouton avec des garanties de livraison sur VRAC. La deuxième contribution de la

thèse est la proposition de protocole glouton de routage par zones tenant compte des aspects

de fiabilité et d’évolutivité des réseaux ad-hoc sans fil à grande échelle. La conception de

ce protocole non seulement est libre d’hypothèses irréalistes, mais il est aussi basé sur des

techniques simples qui peuvent être appliquées dans les paramètres de réseaux réels. Dans la

troisième contribution, un cadre de la couche d’application est présenté sur les protocoles de

routage existants pour les réseaux ad-hoc sans fil. Ce cadre est ensuite appliqué pour résoudre

un cas d’utilisation d’un bâtiment intelligent.

Mots clefs : Geometric Routing, Planar Graphs, Greedy Embedding

vi

Contents

Acknowledgements i

Abstract iii

List of figures xi

List of tables xiii

1 Introduction 1

1.1 Thesis Overview . 3

2 Background 5

2.1 Routing in Communication Networks . 5

2.1.1 Communication graph models . 5

2.1.2 Algorithms for route computation . 8

3 Scalable Routing in Wireless Ad-hoc Networks 11

3.1 Routing in Wireless Ad-hoc Networks . 11

3.1.1 On-demand Routing . 12

3.1.2 Hierarchical Routing . 12

3.2 Local and Stateless Routing . 13

3.3 Geometric Routing . 14

3.3.1 Greedy Routing . 14

3.3.2 Face Routing . 15

3.4 Coordinate Systems for Geometric Routing . 16

3.4.1 Localization in wireless ad-hoc networks 16

3.4.2 Virtual Coordinate Systems . 17

3.4.3 Greedy Embeddings . 17

4 Geometric Routing on Virtual Raw Anchor Coordinates 21

4.1 Why another coordinate system? . 21

4.2 Virtual Raw Anchor Coordinate System . 22

vii

Contents

4.3 Graph planarization on virtual raw anchor coordinate system 24

4.4 Combined greedy face routing with delivery guarantees 25

4.4.1 Greedy routing primitives . 26

4.4.2 Face routing primitives: Combinatorial approach 28

4.4.3 Face switching . 35

4.5 Face routing primitives : Geometric approach . 37

4.5.1 Numerical Validation . 40

4.6 Greedy Routing over Virtual Raw Anchor Coordinates 42

4.6.1 Schnyder Characterization and Saturated Graph 42

4.6.2 Characterization of Greedy Paths . 43

4.6.3 Routing in Maximal Planar Graph . 47

4.7 Every Schnyder Drawing is a Greedy Embedding 47

4.7.1 Schnyder Drawing . 48

4.7.2 Schnyder drawings and saturated graphs 50

4.8 Conclusion . 50

5 Robust and Scalable Greedy Routing with Greedy Zone Routing 53

5.1 Robust and Scalable Greedy Routing . 53

5.1.1 Scalability . 54

5.1.2 Robustness . 54

5.1.3 Zone Level Geometry . 56

5.2 Greedy Zone Routing . 56

5.2.1 Overview of Greedy Zone Routing . 56

5.2.2 Greedy Zone Embedding . 57

5.2.3 Zone Neighborhood Discovery . 63

5.2.4 Routing over Greedy Zones . 63

5.3 Evaluation . 64

5.3.1 Routing Metrics . 64

5.3.2 Control Overhead . 66

5.4 Conclusion . 67

6 Internet of Things Framework over RPL Routing 69

6.1 Routing for low power lossy networks: RPL routing 69

6.2 A service oriented framework for Internet of Things: Syndesi 70

6.2.1 Architecture of Syndesi . 70

6.2.2 Layered overview of Syndesi . 71

6.3 Proof of Concept . 73

6.3.1 Description of the environment . 73

6.3.2 Description of scenarios . 74

viii

Contents

6.4 Conclusion . 74

7 Conclusion 77

A Some Notions from Graph Theory 79

A.1 Paths and Connectivity . 79

A.2 Some special graphs . 80

B Publications 81

Bibliography 87

ix

List of Figures

2.1 Drawing of a planar graph and the faces of the graph 7

2.2 Two phases of geometric routing . 7

2.3 Unit disk graph connectivity . 8

3.1 Two phases of geometric routing . 14

4.1 Two VRAC variants . 22

4.2 Empty regions around an edge (u, v) . 26

4.3 An illustration of the proof of Proposition 2 . 29

4.4 Illustration of implementation of right function 30

4.5 Illustration of two settings considered in left function 32

4.6 Possibilities for extended sector numbering, where sector s is further divided

into 0 and 6 . 34

4.7 There are 8 edges that can be traversed in both directions and, by choosing the

two possibility for source u and destination D there are 16 different configu-

rations lead to Face Switching. Note that only 5 edges are illustrated for the

clarity . 36

4.8 Angle comparison . 38

4.9 Routing stretch in hop distance and greedy success rate without obstacles . . . 40

4.10 Routing Stretch in hop distance and Greedy Success Rate with Obstacles 41

4.11 Routing Stretch in Euclidean Distance . 41

4.12 Two cases to consider in greedy path construction 45

4.13 Two cases to consider in greedy path construction 49

5.1 Coordinate length of PIE over the network size . 55

5.2 Pathological example of a greedy embedding when original spanning tree is

changed . 55

5.3 Overview of Greedy Zone Routing . 57

5.4 Assigning coordinates to nodes. Prefixes are in black and suffixes in red. 60

5.5 Stretch Factor . 65

5.6 Packet Reception Rate and Routing Table Size . 66

xi

List of Figures

5.7 Control overhead during the operation of protocols 67

6.1 A Layered view of Syndesi Framework . 71

6.2 Office Environment of implementation. The cross represents the electrical-

electronic interface and the "star" the sensors for monitoring the environment 74

xii

List of Tables

xiii

1 Introduction

Rapid development in hardware technologies has drastically changed the face of computing

in last couple of decades. Emergence of ubiquitous computing is an important realization of

these developments. In ubiquitous computing, applications provide services across heteroge-

neous hardware platforms, over standard protocols. This hardware can range from mobile

devices to small devices with wireless communication capabilities.

Internet of Things (IOT) is an important application domain in ubiquitous computing. It

allows various devices in our ambient environment to connect to the Internet via standard

protocols. These devices serve different purposes, such as sensing a particular phenomenon

or acting as an actuator to control the device. This enables various applications, which involve

collecting sensor data, processing them and control different appliances. For instance, a

smart building application would collect the data from the sensors deployed in a building and

process them. Based on the data, it controls the utilities in the building, such as heating and

lighting. In order to support these applications, a robust and scalable network infrastructure

has to be deployed. In such an infrastructure, data routing is an important service, which

enables the whole information exchange.

Routing in communication networks is the process of forwarding information between the

source of information and the intended destination. In a packet switched network like Internet,

data is transmitted in the form of data packets, which are chunks of data bundled according

to a certain protocol. For instance in TCP/IP networks, data is transmitted in the form of IP

packets. A routing protocol has to discover the route (or a path) in the form of a sequence of

intermediary nodes and then forward the packet to the next hop towards the destination. For

the purpose of computing the routes, a network can be mathematically abstracted by a graph

(referred to as the communication graph, see Section 2.1.2) with vertices representing network

nodes and edges representing communication links. Given that the complete topology of the

network is known (communication graph), a path can be computed by employing a classical

1

Chapter 1. Introduction

shortest path algorithm on the communication graph.

The design of routing protocols depends on the characteristics of the underlying networks.

For instance, wired links are more reliable and robust, compared to wireless links. Therefore,

routing protocols for wired networks can assume a network topology, which does not change

over time, whereas wireless network topology is highly dynamic. Moreover the size of the

network is also important, as protocols have to scale in large scale networks. For instance, in

local area networks (LAN), a spanning tree (see Section 2.1.1) of a communication graph is

constructed to perform routing between the nodes.

In an abstract view point, a fixed infrastructure network organizes itself into manageable sized

sub-networks. Routing within these sub-networks is performed by protocols local to these

networks. In order to route globally within the network, protocols are established depending

on the hierarchical relationships between the sub-networks. Due to its hierarchical nature,

such a scheme is highly scalable in terms of number of nodes.

Wireless ad-hoc networks are a viable candidate, which provides the required flexibility for

most of the ubiquitous computing scenarios. They comprise of devices that are capable

of communicating over wireless medium. These networks do not have a specific network

architecture or topology, rather forms a mesh network of devices.

Geometric routing is proposed as an alternative to the problem of scalable routing in wireless

ad-hoc networks. It avoids building routing tables, instead uses geometric coordinates of the

nodes to determine the routes. Most importantly, a node only requires the local neighborhood

information (geometric coordinates of the neighbors) and the geometric coordinates of the

destination. Hence, geometric routing is considered to be a local routing mechanism. This

is very important, because with the size of the network, it does not require to gather the

knowledge of the topology like in classical routing schemes.

Geometric routing has two main challenges, when it comes to the application in network

protocols. Firstly, an auxiliary location service has to be in place to provide the geometric

coordinates to the nodes. Depending on the network of interest, such a service can be ex-

pensive. For instance, one obvious choice is to equip the nodes with Global Position System

(GPS) devices, which can be quite expensive in terms of energy consumption and cost. Also

for indoors, GPS is not an option, therefore alternative localization mechanisms are required.

Secondly, assumptions made by geometric routing algorithms makes them inapplicable in real

world wireless ad-hoc network conditions. For instance, assumption of ideal radio conditions

(hence uniform communication range) is impractical in real networks, leads the algorithms to

fail in practice.

2

1.1. Thesis Overview

In order to make geometric routing practical, it is important to design algorithms without the

unrealistic assumptions. Furthermore, underlying coordinate system has to be computed in a

cost effective manner.

1.1 Thesis Overview

In chapter 2 a background on the problem of routing in wireless ad-hoc networks presented.

Chapter 3 presents a literature review on routing in ad-hoc networks, including a presentation

of the main contributions in geometric routing research. Chapter 4.2 introduces the Virtual

Raw Anchor Coordinate (VRAC) system and the first main contributions of the thesis. The

second main set of contributions are presented in chapter 5, where a scalable and robust

geometric routing protocol is introduced. From an application perspective, chapter 6 presents

an Internet of things application scenario. It illustrates a service oriented framework for IOT

applications over existing IPv6 routing protocol. This is followed by the summary of the thesis

and concluding remarks in chapter 7.

3

2 Background

In this chapter, we develop the required background in routing in wireless ad-hoc networks.

An overall introduction to the routing problem is presented in section 2.1. In section 2.1.1,

we introduce the concepts from graph theory to model networks as graphs. Finally, classical

algorithmic techniques for route discovery along with the communication complexity aspects

of them are briefed in section 2.1.2.

2.1 Routing in Communication Networks

Data routing in packet switched networks is a fundamental service in the network stack. In

a classical network setting, it is performed by special devices called routers. In a general

view point, a router has two components namely; control plane and forwarding plane1. The

control plane maintains the route information (the next device to which the packet must be

forwarded in order to reach a particular destination) in a routing table. In order to construct

and maintain the routing table, control plane employs various algorithms and protocols (See

section 2.1.1 and 2.1.2 for a general overview) depending on the network. The forwarding

plane uses the routing table and performs the packet forwarding. In order to construct and

maintain a routing table, control plane must gather information about the network topology.

This is usually done with message passing between the routers according to the protocol

employed.

2.1.1 Communication graph models

In network algorithm design, a network is mathematically abstracted as a graph.

Definition 1. A graph is a pair G = (V ,E) consists of a set of vertices V and a set of edges E, such

1Note that there are different naming conventions in the literature for the control plane and forwarding plane

5

Chapter 2. Background

that E ⊆V ×V .

According to the definition, a graph is a combinatorial object, which represents the formation

of the graph in terms of the sets of vertices and edges. As per the purpose of geometric routing

(as well as for various other applications), a graph has to be represented in a geometric surface.

Such a representation is often called as a greedy embedding or a greedy drawing of a graph. A

greedy embedding can be defined as follows.

Definition 2. Given a graph G(V ,E), an embedding of the graph onto a geometric surface Σ is a

function φ : V (G) →Σ.

In other words, the function φ maps every vertex into a geometric position on Σ, hence

assigning it a coordinate. For instance, Σ can be the Euclidean plane, where as non-euclidean

spaces are also studied in various different instances2.

The communication graph is the graph representation of the network connectivity. Therefore

a physical communication link between two nodes3 in the network is represented as an edge.

When a link is considered symmetric (both the nodes at the end points can communicate

with each other) it is represented by an undirected edge, where as for an asymmetric link is

represented as a directed edge. Note that in networks like wireless ad-hoc networks, there are

asymmetric links due to the wireless communication irregularities,

In this thesis, we consider several classes of graphs. It is possible to distinguish them as

geometric and non-geometric graphs, especially considering the overall problem of geometric

routing. Non-geometric graphs does not contain any geometric information, but the abstract

connectivity. Geometric graphs can be considered as graphs embedded on a geometric surface,

hence containing geometric information.

Planar graphs

Planar graphs is an important class of graphs encounters in geometric routing, which is

defined as below.

Definition 3 (Planar Graph). A planar graph is a graph, which can be drawn on the plane R2

without edge crossings.

A planar graph drawing introduces the notion of faces in the graph. A face is a bounded or

an unbounded region in a planar graph drawing. Bounded regions are called inner-faces,

2A graph with an embedding is referred to as an embedded graph in this thesis.
3In this thesis, node is referred to a physical node in the network, while a vertex is the graph theoretic represen-

tation of it.

6

2.1. Routing in Communication Networks

Figure 2.1 – Drawing of a planar graph and the faces of the graph

(a) Greedy Routing (b) Face Routing

Figure 2.2 – Two phases of geometric routing

while the unbounded region is called the outer-face. A special instance of a planar graph is a

maximal planar graph, where all the inner-faces of the graph are triangles. More formally, it

can be defined as follows.

Definition 4 (Maximal Planar Graph). A maximal planar graph (triangular graph), is a planar

graph, in which no more edges can be added such that the planarity is preserved.

Another special instance of a maximal planar graph is a maximal outer-planar graph which is

defined as follows.

Definition 5 (Maximal Outer-planar Graph). A maximal outer-planar graph is a maximal

planar graph, where all the nodes lie on the outer-face of the graph.

It is important to note that, even a geometric characterization is inherent in the definitions of

these graph classes, they can also be defined completely in a combinatorial form. In other

words, there are combinatorial conditions to be satisfied by planar graphs [Diestel, 1997],

without a reference to its embedding.

7

Chapter 2. Background

Figure 2.3 – Unit disk graph connectivity

Geometric Graphs

A geometric graph is a graph which is embedded on a geometric surface. In geometric routing,

routing decisions are based on geometric information of nodes, hence the underlying com-

munication graph has to be an embedded graph. As described before, connectivity in wireless

ad-hoc networks depends on various factors such as radio communication characteristics.

In order to design routing algorithms, simplified models of connectivity had been proposed,

isolating the complex radio communication characteristics.

Definition 6 (Unit Disk Graph). [Huson and Sen, 1995] A unit disk graph (UDG) is a graph

G = (V ,E), where two nodes in the network u and v are connected if the d(u, v) ≤ 1 (d(.) is the

metric function of the respective geometric space).

UDG model assumes a uniform radio communication range. Thus in a network embedded on

a plane, a node is connected to all the other nodes within a circular region around itself. This

assumption does not hold in practice, hence a more realistic model is proposed incorporating

a probabilistic element in the connectivity.

Definition 7. [Penrose, 2003] A random geometric graph (RGG) is a graph G = (V ,E), where the

nodes are distributed on R2 or R3 at random and two nodes are connected if d(u, v) ≤ R. (R is

the communication radius of a node)

This is considered to be a more realistic representation of a wireless ad-hoc network. The

associated geometric assumptions can be used in designing algorithms and protocols with

statistically motivated performance criteria.

2.1.2 Algorithms for route computation

Given a graph G(V ,E), problem of computation of a route between two nodes u and v is to

find a path (see Appendix A.1) between u and v on G(V ,E). A route is optimal if the path is

8

2.1. Routing in Communication Networks

the shortest path between u and v . In some instances, sub optimal routes are computed, for

which a quantity called route stretch is defined as follows.

Definition 8. Route stretch of a route r between u, v ∈ V is the quantity; lr
ls p , where lr is the

length of the path r and lsp is the length of the shortest path between u and v.

In a distributed setting to perform a route computation, every node needs to gather the infor-

mation on the topology. In other words, communication graph has to be globally known. It is

important to define a communication abstraction to study the complexity of such distributed

algorithms. A synchronous communication model assumes that the nodes are synchronized

in time and communication is performed in rounds (or time slots). In a given communica-

tion round, a node can send or receive messages of fixed length. This is an ideal model of

message passing, where realistic concerns such as message collisions are disregarded. Never-

theless based on this model, the communication complexity of a distributed algorithm can be

expressed in communication rounds required to terminate the algorithm.

Shortest path computation

Given a graph G(V ,E), to find a route between two nodes u, v ∈V , the classical shortest path

algorithm can be applied, where |V | = n. In protocols like OSPF and RIP, shortest path algo-

rithms like Dijkstra and Bellmon-Ford [Cormen et al., 2001] are applied. The communication

complexity of these algorithms depends on the cost of gathering the topology information.

In general to gather the complete topology information, it takes O (n) rounds as it is directly

proportional to the diameter of the graph. Moreover, once the routes are calculated, in these

protocols it takes O (n) memory.

Spanning trees and tree routing

Tree based routing is another important concept in routing. The spanning tree protocol (STP)

is a classical example of tree based routing, which is used in local area networks [Perlman,

1985]. The basic idea is to construct a tree structure rooted at an arbitrary node in a distributed

manner and route along the paths of the tree. A node keeps track of the parent and the

descendants in the tree structure. RPL is a protocol specifically designed for low power lossy

networks, which uses a similar structure. More precisely, it maintains a directed acyclic graph

(DAG).

To construct a tree in a network it takes O (n) communication rounds. Also every node has

to maintain the list of its descendants, hence a memory of O (n) is required. Even though the

worst case is as such, in practice, this requirement can be much less. Further more, route

stretch of a tree routing can be arbitrarily long, resulting in an unbounded route stretch.

9

Chapter 2. Background

Nevertheless, in a practical setting tree based routing has attracted lot of attention due to the

simplicity and efficiency.

10

3 Scalable Routing in Wireless Ad-hoc

Networks

In this chapter, a concise literature review is presented on routing in wireless ad-hoc networks.

After an introduction to the challenges of wireless ad-hoc network routing, classical protocols

are reviewed. Section 3.2 introduces the concept of local and stateless routing followed by a

review on related work on geometric routing in section 3.3. Section 3.4 presents more specific

developments in geometric routing, especially on providing geometric coordinates to the

nodes.

3.1 Routing in Wireless Ad-hoc Networks

Advancements in hardware technologies have made the communication and computation

more ubiquitous. Not only with widely available hand-held devices with high end processors

but also with various tiny artifacts with communication capabilities, have given rise to the

computing paradigm called ubiquitous computing. It opens up the possibility for plethora of

applications in various domains, ultimately enhancing the communication and computation

experience of the end users.

Wireless ad-hoc networks is a class of networks, which plays a major role in providing the

underlying communication infrastructure for ubiquitous systems. These networks are com-

prised of devices connected over the wireless medium, without a predefined infrastructure.

Devices within the wireless communication range of each other connect and establish a link

between them. Communication between two such devices are refereed to as single hop com-

munication. The overall network is the collection of these communication links, which forms

a wireless mesh between the devices. Communication between two devices which are not in

each one’s vicinity has to be done in multiple hops.

The connectivity of the network is subject to various different factors such as; wireless hard-

ware of the devices and the quality of wireless links between the devices. In turn, quality

11

Chapter 3. Scalable Routing in Wireless Ad-hoc Networks

of wireless links depends upon radio communication characteristics like, interference and

muli-path fading. As a result wireless links can be disrupted and re-established over time.

Hence not only the connectivity mesh is ad-hoc, but also it changes over time.

Typically the devices used in wireless ad-hoc networks are constrained by computation and

power supply. Thus the operating system as well as the applications have to consider these

limitations in their design. Despite the challenges posed by characteristics of wireless medium,

wireless ad-hoc networks offers a great flexibility in terms of the deployment. This very

reason lead various applications of wireless ad-hoc networks in various domains. A classical

example of a wireless ad-hoc network is environmental monitoring, where a set of wireless

devices with sensory capabilities are deployed to gather real time environmental data. Another

application is to augment the environment with devices to create smart environments with

certain capabilities to improve the quality of life of the inhabitants.

It is important to note that the success of fixed infrastructure networks is due to the extent

of human administration along with the hierarchical routing structure. In contrast, human

intervention in wireless ad-hoc network deployments has to be minimized. Therefore a

possible hierarchical routing structure in this context has to be self organizing. Cluster based

routing is a hierarchical routing scheme proposed in the general context of wireless ad-hoc

networks. It partitions the network into clusters and constructs a routing structure between

the clusters. Clustering is a well studied problem, where there are various schemes proposed

for different networking scenarios. Therefore with an efficient clustering scheme, a cluster

based routing can be realized.

3.1.1 On-demand Routing

One of the alternative paradigms for dynamic networks is on-demand routing. As the name

suggests, instead of pre-computing the routes they are discovered upon the routing request.

Ad-hoc On-Demand Vector routing (AODV) [Perkins and Royer, 1999] is a seminal work on

this line of research. In AODV, routes are discovered per routing request.

3.1.2 Hierarchical Routing

A generic cluster based routing scheme, works in two layers. In the bottom layer, routing can

be performed based on a tree-like structure, where all the nodes in the cluster include in a tree

rooted at the cluster head (can be arbitrary node). In the top level, a routing scheme has to be

maintained between the clusters to support inter cluster routing. A straight forward choice is

to perform a shortest path algorithm on between the cluster level and maintain a routing table.

This approach is proposed in [Haas, 1997], where they perform classical link state routing in

12

3.2. Local and Stateless Routing

cluster level. Link state protocol needs to acquire the complete network topology knowledge

by flooding the network between the clusters.

3.2 Local and Stateless Routing

In a routing algorithm, it is important to quantify the amount of knowledge on the com-

munication graph required by a routing algorithm. When the algorithm has the complete

knowledge of the communication graph, it is considered to be a global algorithm. More

formally, a routing decision is made at a given node based on θ(n) neighborhood. In another

perspective, it suggests to perform routing only by use of local neighborhood information,

namely a local algorithm. Accordingly, a local algorithm (or 1-local algorithm) executes by

only using the 1−hop neighborhood information of the network graph. Therefore algorithms

which require k-hop neighborhood information when k is a constant, can still be considered

as a local algorithm. Nevertheless, when k grows with the number of nodes in the network

(k = O(n)) it can no longer be called as a local algorithm. An important restriction on local

routing algorithms were presented in [Bose et al., 2013], which is summarized in Theorem 1.

Theorem 1. [Bose et al., 2013] For every k < bn/2c, every k-local routing algorithm fails on

some connected graph.

Therefore given an arbitrarily connected graph, it is not possible to route only with a constant

neighborhood information. Nevertheless, if the given graph is a geometric graph and certain

connectivity conditions are met, local routing algorithms exists (see Section 3.3).

Another important quantification of a routing algorithm is the routing state (information

stored in the memory) maintained by a routing algorithm. The routing state can be in two

forms, as the state stored at a node and the state maintained in the message header. At a

given node state can be maintained per routing request (like in AODV [Perkins and Royer,

1999], where details of routes are stored) or to maintain a distributed routing structure like

a spanning tree. For instance, in a classical routing protocol like RIP (see section 2.1.2), the

state maintained at a node is O (n). Since a message header is limited, ideally it should carry a

constant number of node information.

In terms of the scalability of a routing protocol, it is important to consider both locality and

the routing state maintained. In particular, for large scale ad-hoc networks a routing protocol

has to trade-off between these two quantities in order to achieve scalability.

13

Chapter 3. Scalable Routing in Wireless Ad-hoc Networks

(a) Greedy Routing (b) Face Routing

Figure 3.1 – Two phases of geometric routing

3.3 Geometric Routing

Geometric routing [Bose et al., 2001; Karp and Kung, 2000] is a routing paradigm, specially

designed for wireless ad-hoc networks. It avoids constructing and maintaining routing tables,

instead uses the geographic coordinates of nodes to make routing decisions. Nodes make the

routing decisions only using their neighborhood information (coordinates of the neighbors)

and the coordinates of the destination. Therefore it keeps the communication overheads

minimal, in turn saving energy consumption of the nodes. There are two phases in geometric

routing, namely greedy routing and face routing. It is important to note that, geometric routing

requires the nodes to be embedded in a geometric surface.

3.3.1 Greedy Routing

Greedy routing (also refereed to as greedy forwarding) is the simplest form of geometric

routing. It makes a local greedy decision, when forwarding a packet, simply choosing the

geographically closest neighbor towards the destination as the successor. Let S be the source

node and D be the destination node. At a given node u starting from S, it decides the next

node v to which the packet has to be forwarded according to the following criterion. Nv is

the set of 1-hop neighbors of v and d(.) is the underlying distance function in the geometric

surface.

v = argmin
v∈Nv

d(v,D) (3.1)

Depending on the graph embedding, distance function can be either Euclidean or non-

Euclidean. These distance function (or metrics) usually needs to follow the metric criteria.

14

3.3. Geometric Routing

Even more abstract conditions on a distance function for greedy routing was proposed in [Li

et al., 2010]. It showed that in order to form a greedy path, following conditions must be

satisfied by the distance function.

1. Transitivity: if node y is greedy for x and z is greedy for y then z is greedy for x

2. Anti-symmetry: if y is greedy for x then x is not for y

These properties can be used to form greedy routing algorithm, when metric functions are not

available (See section 4.6).

3.3.2 Face Routing

Greedy routing may stuck in a node, where greedy routing is no longer possible. Such nodes

are referred to as local minima or routing voids. Such void regions are unavoidable in wireless

ad-hoc network deployments. In order to recover the routing process from a local minimum,

GFG [Bose et al., 2001] and GPSR [Karp and Kung, 2000] introduced the concept of face routing.

Face routing is a systematic exploration of the graph, which guarantees either to reach a node

where greedy routing can be resumed or to reach the destination.

Face routing requires the underlying communication graph to be a planar graph. It uses the

classical maze solving strategy called left/right hand rule. Initially it applies that rule and

explores the current face, where greedy routing got stuck. Along the exploration, it performs a

face switching, which guarantees a progress towards the destination (see Figure 3.1(b)).

Face routing guarantees the delivery of a message. A comprehensive analysis of delivery

guarantees for different face switching strategies on different planar sub graphs are discussed

in [Frey and Stojmenovic, 2010]. The strategy used in GFG is guaranteed to be delivered in

arbitrary planar sub graph. Even though, face routing guarantees delivery, due to exhaus-

tive exploration of the faces of the graph, routing stretch can be arbitrarily high. A worst

case optimal face routing strategy was introduced in Kuhn et al. [2003] assuming a unit disk

communication graph model.

In a practical perspective, local planarization of the communication graph is challenging.

In GFG and GPSR they obtain a planar sub graph assuming an ideal radio communication

characteristics (unit disk graph). Each node drops disregard links in the routing process,

which could lead to crossing edges (hence non-planar) obtaining a planar sub graph. More

specifically, in GPSR nodes locally apply a condition for planarity introduced in [Gabriel and

Sokal, 1969]. Relative neighborhood graph [Toussaint, 1980] is also an alternative to gabrial

graph, where the properties of it can be used to extract a connected planar sub graph.

15

Chapter 3. Scalable Routing in Wireless Ad-hoc Networks

Nevertheless, by the time of this writing, there is no planarization algorithm (which is local)

known for arbitrarily connected graphs. An alternative proposal is to avoid the planariza-

tion [Leong et al., 2006], instead maintain a distributed data structure to cover the void region.

This data structure is then used to overcome the dead end in greedy forwarding. Since this

approach maintains a certain amount of state across some nodes in the network, it does not

meet the original goal of geographic routing.

3.4 Coordinate Systems for Geometric Routing

In a practical perspective, providing geometric coordinates to wireless network nodes is a

challenging problem. Especially with the energy constrains of the nodes, standard techniques

such as Global Position System (GPS) is both infeasible and expensive. This has driven the

wireless ad-hoc and sensor networks community to pursue viable localization protocols, not

only for geometric routing, but also for various other location aware applications.

3.4.1 Localization in wireless ad-hoc networks

An alternative solution for expensive localization techniques is to equip small number of

devices (so called anchor nodes) with location information (with GPS or other locating mecha-

nism), and let the rest of the nodes (non-anchor nodes) to derive their location [Bulusu et al.,

2000]. In order to calculate their position, non-anchor nodes have to measure the distances

from anchor nodes (from minimum of three anchors in a two dimensional surface) and utilize

basic geometric principles to arrive on their coordinates. This is called trilateration in the

literature, while measurements from more than three anchors are used to get more accurate

positions in the presence of erroneous range measures, which is called multilateration. This is

only feasible when it is possible to equip anchor nodes with location information, which may

be cumbersome in large scale deployments.

A localization algorithm takes a network deployment in two or three dimensional space as

the input. It assigns the absolute or relative set of coordinates to the nodes, depending on

the algorithm. For instance, if the nodes are equipped with GPS devices, they will get the

absolute geographic coordinates. It can also assign relative coordinates. In either case, coor-

dinate assignment must preserve the distances between nodes, if not it leads to localization

errors. Such errors can affect geometric routing, leading the nodes to make incorrect routing

decisions.

16

3.4. Coordinate Systems for Geometric Routing

3.4.2 Virtual Coordinate Systems

Dependencies to specific hardware and manual configuration of anchor nodes hinder the

practicality of most localization protocols [Bulusu et al., 2000; Leone et al., 2006]. An alternative

is to compute the coordinates given the communication graph and inter distance between the

nodes. This is a well studied problem called the metric embedding problem, which is proven

to be NP-complete [Aspnes et al., 2004]. It is similar to the graph embedding problem, with

the inter distance constraints. In geometric routing literature, such coordinate systems are

referred as virtual coordinate systems.

Rao et.al [Rao et al., 2003] introduced the idea of using virtual coordinates in geometric

routing in NoGeo protocol. NoGeo computes an embedding of the network on the Euclidean

space, starting from an initial coordinate assignment at each node. It models the coordinate

assignment problem as a mass-spring model and performs an iterative relaxation algorithm

to achieve an approximation of the optimum coordinate assignment. In each iteration of the

protocol, every node broadcast its coordinate to its neighboring nodes. Therefore in order to

Shang et.al have incorporated inter distances between nodes into the coordinate construction

problem, hence to compute an embedding of the network preserving the topological structure

of the network [Shang et al., 2003]. This solution was based on a technique borrowed from

psychometrics called multi dimensional scaling and based on an iterative approach. Initial

algorithm was a centralized algorithm, but later distributed versions were proposed more

applicable in real time network protocols [Shang and Ruml, 2004].

When considering a real time network protocol, most of the localization schemes proposed

are far from being applicable. Mainly this is due to the communication overheads involved

in computing the coordinates. An alternative direction on localization for geometric routing

proposed to use the raw distances from a set of pre-designated anchor nodes (also referred

to as beacons). Unlike in anchor based localization, these anchor nodes does not have any

location information, rather acts as reference points for the non-anchor nodes. GLIDER [Fang

et al., 2005], BVR [Fonseca et al., 2005] and VRAC [Huc et al., 2010] use this concept to localize

nodes merely for the purpose of geometric routing. Both GLIDER and BVR use the hop

distances from anchor nodes as the coordinates and define a heuristic distance function,

which is used to perform greedy forwarding. When greedy forwarding reaches a local minima,

both these protocols perform a scooped flooding to recover and reach the destination.

3.4.3 Greedy Embeddings

Constructing a greedy embedding is a solution to the problem of graph planarization. A greedy

embedding always finds a closer neighbor towards the destination. It was conjectured [Pa-

padimitriou and Ratajczak, 2004] and later proven that every 3-connected graph admits a

17

Chapter 3. Scalable Routing in Wireless Ad-hoc Networks

greedy embedding [Leighton and Moitra, 2010] on the Euclidean plane. This is not favorable

in real settings, where a communication graph can be simply connected. Further more, con-

struction of such an embedding in a distributed fashion is not trivial. Another proposal in

the spirit of greedy embedding was proposed in [], where they construct the embedding such

that holes in the communication graph are drawn such that the greedy forwarding guarantees

delivery. Despite the ingenuity in terms of the geometric construction, an implementation

would be impractical due to the communication it may require to perform the computation.

A greedy embedding is defined as follows.

Definition 9. A greedy embedding is an embedding of a graph on a respective geometric space

such that, greedy routing always succeeds. In other words, between every node pair u, v there is

another node w adjacent to u, such that d(u, v) > d(w, v), where d(.) is the underlying metric

on the geometric space.

Papadimitrou & Ratajczak [Papadimitriou and Ratajczak, 2004] were the first to study the

existence of greedy embeddings. In particular, they constructively proved the existence of

a greedy embedding of a 3-connected graph in R3. Moreover, it is conjectured that any 3-

connected planar graph admits a greedy embedding in R2.

Conjecture 1. [Papadimitriou and Ratajczak, 2004] Every 3-connected finite graph has a

greedy embedding in the Euclidean plane.

The conjecture was proved affirmatively for different classes of graphs. In [Leighton and

Moitra, 2010] it is proved for 3-connected graphs, in [Bose and Morin, 2004] for Delaunay

triangulations, in [Chen et al., 2007] for graphs that satisfy conditions with respect to the power

diagram. In [Kleinberg, 2007], a greedy embedding in the hyperbolic plane of a connected finite

graphs is constructed. More related to our approach, in [Dhandapani, 2010] the conjecture

is proven for planar triangulations (maximal planar graphs), see also [Angelini et al., 2010;

He and Zhang, 2010, 2011]. Another direction of greedy embedding research considers the

efficient representation of coordinates. In [Eppstein and Goodrich, 2009] authors proposed a

greedy embedding on a hyperbolic space with O
(
log (n)

)
bit complexity. Such a coordinate

representation is called succinct, which is important for the design of scalable routing schemes.

In subsequent research, succinct greedy routing schemes are proposed in [Goodrich and

Strash, 2009; He and Zhang, 2010].

For arbitrarily connected graphs, existence of greedy embeddings on a non-Euclidean space is

proven in [Kleinberg, 2007].

Theorem 2. [Kleinberg, 2007] Every connected finite graph has a greedy embedding in the

hyperbolic plane.

18

3.4. Coordinate Systems for Geometric Routing

They extract a spanning tree of the network and embed it on a hyperbolic space such that

the tree distances are preserved. When considering the non-Euclidean greedy embedding

proposals, a common procedure can be observed. Initially, a spanning tree is extracted

and isometrically embedded onto the respective geometric space. An isometric embedding

preserves the graph distances on the tree.

Lemma 1. Let T (V ,E ′) be a spanning tree of G(V ,E). An isometric embedding of T (V ,E ′) is a

greedy embedding of G(V ,E).

Proof. Consider the R the root of the tree and an isometric embedding of the thee. Since there

is only one path in a tree between any two nodes, for any given node u, either its parent or one

of its descendants is closer to every node, hence a greedy embedding.

It is important to note that even though the embedding is based on a tree, greedy routing

strategy can consider all the edges of the network, when taking greedy forwarding decisions.

One drawback of tree-based greedy routing is the unbounded path stretch due to the underlying

tree structure: shorter paths may be ignored and longer paths on the tree given preference.

There are several attempts to overcome this by introducing multiple trees embedded instead of

a single spanning tree [Herzen et al., 2011]. This suggests a node to hold multiple coordinates,

corresponding to different spanning trees. Therefore a node has multiple choices to forward

the packet. If the spanning trees are extracted accordingly, this approach could lead to shorter

paths. Recently in [Houthooft et al., 2015] the authors propose the use of multiple spanning

tree based greedy embeddings and focus on load balancing aspects. Nevertheless, neither

of the two proposals provide guarantees on routing stretch. In contrast [Flury et al., 2009],

proposes the use of multiple tree embeddings, where a constant factor stretch bound is proven

for combinatorial unit disk graphs by computing a structure of trees which covers the graph

with constant stretch. This is the only case for which a stretch bound is known. For arbitrary

graphs no such bound is known.

19

4 Geometric Routing on Virtual Raw

Anchor Coordinates

In this chapter, geometric routing algorithms on a coordinate system called Virtual Raw Anchor

Coordinates(VRAC) is presented. VRAC is an efficient coordinate system devised for geometric

routing in wireless ad-hoc and sensor networks. It is important to emphasize that algorithms

presented are local algorithms, hence given a VRAC deployment no additional overhead is

incurred. In the first part of this chapter, construction of VRAC and related definitions are

presented. In section 4.4, a geometric routing algorithm is presented, where greedy and face

routing is combined to guarantee the delivery. In section 4.6 a greedy routing algorithm is

presented, when the graph connectivity follows certain conditions. Finally in section 4.7, a

generic result on greedy embeddings is presented.

4.1 Why another coordinate system?

Localization of nodes in wireless ad-hoc networks is not a trivial task. Hardware dependent

solutions, where a set of anchor nodes have to be designated, which requires human in-

tervention and incur higher initialization costs. Furthermore, such solutions only work in

outdoor environments, as the anchor nodes are equipped with GPS hardware. The alternative

paradigm of virtual coordinates are inherently computationally intensive, since most of these

mechanisms require iterative computations. As a result associated communication overheads

are overwhelming especially in large scale networks.

Identifying these discrepancies, GLIDER Fonseca et al. [2005] and BVR Fang et al. [2005] have

independently proposed an anchor based virtual coordinate scheme, specially for geometric

routing. Given a pre-designated set of anchor nodes, both these protocols assign coordinates

to the nodes, simply as a hop-count vector from the anchors. Therefore it does not require any

further computation or complicated communication between nodes.

Virtual Raw Anchor Coordinate (VRAC) system is a coordinate system specially defined for

21

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

A 1

A2
A3

S1
u

S2
u

S4
u

S5
u

S6
u

S3
u

d(A1,u)

d(A2,u) d(A3,u)

(a) Basic coordinate assignments with raw distances from
anchors

A 1

A 2 A 3

S1
u

S2
u

S4
u

S3
u S5

u

S6
u

x1

x2

x3

(b) Coordinate assignment with perpendicular distances
from edges of the triangles

Figure 4.1 – Two VRAC variants

geometric routing. Coordinate construction in VRAC is conceptually similar to GLIDER and

BVR, where it assigns raw distances from anchors as the coordinates. In contrast to GLIDER

and BVR, it uses the Euclidean distance from anchor nodes, instead of the hop distance.

4.2 Virtual Raw Anchor Coordinate System

In order to define the VRAC system, consider a network deployed along with three anchor

nodes A1, A2 and A3. If the nodes are distributed within the triangle formed by three anchorsáA1 A2 A3, coordinates are defined as follows.

Definition 10. A node u is assigned
(
u1,u2,u3

)= (
d(u, A1),d(u, A2),d(u, A3)

)
, where d(u, Ai)

is the Euclidean distance from the anchor Ai .

In this chapter, two versions of VRAC constructions are investigated. First version is the basic

construction of coordinates according to the definition 10 (see Figure 4.1(a)). On this version,

algorithms are based on the combinatorial structure of the coordinate system Samarasinghe

and Leone [2014], which is presented in section 4.4. In the second version, we further assume

that anchors can estimate the distances between them, hence the lengths of the sides of the

triangle áA1 A2 A3 are known to each node. This leads to a slightly different version of VRAC (see

Figure 4.1(b)), where perpendicular distances from triangle edges are assigned as coordinates.

Algorithms on this coordinate system is presented in section 4.5.

Virtual Raw Anchor Coordinate space by definition purely is a virtual coordinate system, which

does not correspond to the physical coordinates. Moreover, there is no metric associated

in this coordinate system, hence it is not possible to perform the geometric computations

22

4.2. Virtual Raw Anchor Coordinate System

required by geometric routing. This motivates us to explore combinatorial properties of VRAC

which can be used in geographic routing.

Inspired by Schnyder characterization of planar graphs Schnyder [1989], we can define three

order relations on the set of nodes V .

Definition 11. The three order relations <i , i = 1,2,3 on V ×V are defined by

∀u, v ∈V u <i v ⇐⇒ d(u, Ai) > d(v, Ai) ⇐⇒ ui > vi .

The three order relations are total1, hence it is possible to define the minimum of a set with

respect to the three orders. We will denote this by mini for i = 1,2,3.

These three orders permit the definition of sectors associated with a node u.

Definition 12. We define the following sectors associated to a node u ∈ V , see Figure 4.1(a).

Note that the reference node u does not belong to the sectors.

su
1 = {v | u <1 v, u >2 v, u >3 v} ∩ áA1 A2 A3.

su
2 = {v | u <1 v, u <2 v, u >3 v} ∩ áA1 A2 A3.

su
3 = {v | u >1 v, u <2 v, u >3 v} ∩ áA1 A2 A3.

su
4 = {v | u >1 v, u <2 v, u <3 v} ∩ áA1 A2 A3.

su
5 = {v | u >1 v, u >2 v, u <3 v} ∩ áA1 A2 A3.

su
6 = {v | u <1 v, u >2 v, u <3 v} ∩ áA1 A2 A3.

In the following, we refer to these sectors as sector number 1,2, . . . ,6 respectively, i.e. for instance,

su
4 is sector number 4 of u. Notice that the node in the network are assumed to belong to the

interior of the triangular region áA1 A2 A3, defined by the three anchors. This is necessary to the

application of Schnyder’s planarity criterion Schnyder [1989], that we use to extract a planar

subgraph of the communication graph (see conditions 4.1 and definition 14).

Definition 13. Given a node D, we also use the convenient notation su
D to denote the sector j of

u such that D ∈ su
j , i.e. D ∈ su

D .

1A total order is a binary relation which is valid for all the pairs in a set.

23

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

4.3 Graph planarization on virtual raw anchor coordinate system

For combined greedy face routing, a planar sub graph of the communication graph has to be

extracted. Given the VRAC coordinates, it is not possible to extract a gabriel graph [Gabriel

and Sokal, 1969] or relative neighborhood graph [Toussaint, 1980]. Nevertheless, with the

combinatorial properties available in VRAC, it is possible to use the classical Schnyder char-

acterization [Schnyder, 1989] defined below to formalize a planarization algorithm.Given

a planar graph G = (V ,E), it is proven in Schnyder [1989] that there exists three total order

relations on V ×V , denoted <1,<2,<3 such that;

a)
⋂

i=1,2,3 <i=;, and

b) ∀(x, y) ∈ E ,∀z 6∈ {x, y} ∃i ∈ {1,2,3}

s.t. x <i z and y <i z.

(4.1)

This is called a (3-dimensional) representation of a planar graph. Such representation of a

planar graph does not use a (planar) embedding and applies to an abstract graph. Based on

this characterization, Huc et al [Huc et al., 2012] defined a planar sub graph on the VRAC

system as follows, in order to formulate a local planarization algorithm.

Definition 14. Given a graph G(V ,E), a planar sub graph G̃(Ṽ , Ẽ) can be defined such as

1. Ṽ =V

2. Ẽ =
{

(u, v)
∣∣∣ v ∈ su

2k−1 and v = mink (su
2k−1) k = 1,2 or 3 and (u, v) ∈ E

}

According to the definition, if a node can locally determine the minimum edge with respect

to the order relation (in turn, with respect to the sector), it is possible to planarize the graph.

Huc et al [Huc et al., 2012] showed that it is possible, if the connectivity graph follows the unit

disk graph assumption. Thereby, they formulate a local planarization algorithm, where a node

keeps the minimum edge and ignore all the other edges, resulting in a planar sub graph.

However, a node u can have many neighboring nodes in the sectors v ∈ su
2 , su

4 or v ∈ su
6 . In [Huc

et al., 2012] we call the edges (u, v) with v in su
1 , su

3 , or su
5 outgoing edges. With this terminology,

a node has at most three outgoing edges and possibly many ingoing edges (and edge (u, v)

such that v ∈ su
2 , su

4 or v ∈ su
6). We emphasize that this is a useful denomination but the graph

G̃ is not oriented.

There are several important properties of the obtained planar graph following the definition 14,

which are used in the formulation of routing algorithms through out the rest of this chapter.

24

4.4. Combined greedy face routing with delivery guarantees

Property 1. A node u has at most one neighboring node in each of su
1 , su

3 , su
5 (the closest with

respect to the corresponding order relation).

This follows immediately from the definition 14. Indeed, if v ∈ su
1 , v ∈ su

3 , or v ∈ su
5 then u ∈ sv

4 ,

u ∈ sv
6 , or u ∈ sv

2 respectively and then, the only possibility for an edge (u, v) ∈ Ẽ is that v is

minimal with respect to <1,<3 or, <5 respectively. Due to the elimination of edges in the

planarization process, empty regions around an edge can be observed.

Property 2. Given that there is an edge between node u and v and v ∈ su
2i−1, then there are no

other nodes in the region defined by;

su
2i−1 ∩ {z | d(Ai , z) > d(Ai , v)}

Proof. By the construction of the planar graph, v is the minimal node in su
2i−1, with respect to

the order relation <i (defined by d(Ai , z)). Therefore to ensure planarity, by definition there is

no w ∈ su
2i−1 such that d(Ai , w) > d(Ai , v) or similarly w <i v (see figure 4.2(a)).

An immediate implication of property 2 is an even finer empty region illustrated in figure 4.2(b)

as presented in property 3.

Property 3. Given the nodes u and v such that (u, v) ∈ Ẽ , then the region defined by su
v ∩ sv

u =;

Proof. Without loss of generality we can assume that u >1 v,u >2 v,u <3 v , v ∈ su
5 (the proof

is the same if we permute the indices). Because u and v are connected it must be that

v = mi n3{z | u >1 z,u >2 z,u <3 z}. Then sector sv
u is defined by {z | z >1 v, z >2 v, z <3 v} and,

the intersection is su
v ∩ sv

u = {z | u >1 z >1 v,u >2 z >2 v,u >3 z <3 v} the last inequality shows

that if it were a node in the intersection u should be connected to that node instead of v .

As per these properties, if there is an edge (u, v) in Ẽ and v ∈ sk
2i−1, then there are no nodes

w ∈ su
2i−1 such that w <i v and (u, w) 6∈ E i.e., the node w should be connected to u to ensure

planarity. A local algorithm has to overcome a pathological situation which occurs due to the

radio communication irregularities, where as a node w exists but residing out of the range of

u. In such a situation u erroneously keeps a longer edge. Huc et al proved that this situation

can be overcome if the planarization algorithm has two hop neighborhood knowledge.

4.4 Combined greedy face routing with delivery guarantees

In this section, a combined greedy face routing algorithm on VRAC system is presented.

This algorithm is a variant of the combined greedy-face routing algorithm [Bose et al., 2001].

25

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

(a) Illustration of property 2 (b) Illustration of property 3

Figure 4.2 – Empty regions around an edge (u, v)

However, the main difference is that in VRAC it is not possible to compare the angles, hence it

is not possible to implement face routing independently of greedy routing (see Proposition 2).

In face routing, basic primitives are the implementation of the left or right hand traversal

rule to explore a face of the planar graph and, the detection of the intersection of an edge of

the path with the source destination line (see Section 3.3.2). Nevertheless, in VRAC it is not

possible to detect line segment intersection. Therefore it is required to consider a (greedy)

region that contains the source and destination nodes (see equation (4.10)) and to detect

when the routing path crosses this region. If the packet is reached a node in the greedy region,

it switches back to greedy routing (face routing is no longer implementable in this case, see

Proposition 2).

4.4.1 Greedy routing primitives

As mentioned earlier, VRAC does not have an underlying metric. Hence it is not possible to

decide the greedy neighbors as in the Euclidean space based on the distance function. Instead,

an abstract characterization of a greedy path [Li et al., 2010](see section 3.3.1 for details) is

used to define a greedy routing criteria. Accordingly, a greedy path on VRAC is defined as

below.

Definition 15. For destination node D, a path {ui }i=1,...,k is a greedy path if

ui+1 ∈ sui

D

⋂
sD

ui . (4.2)

The region defined by the intersection sui

D

⋂
sD

ui is considered to be the greedy region of the

26

4.4. Combined greedy face routing with delivery guarantees

node ui with respect to the destination D. Moreover, ui+1 is said to be greedy for ui with

respect to D . When considering a greedy path established according to the above definition, it

ensures the transitivity property described in section 3.3. This is presented in proposition 1,

which is then used to prove the convergence of a greedy path in corollary 1.

Proposition 1. (transitivity) If ui+1 is in the greedy region of u and ui+2 is in the greedy region

of ui+1, then ui+2 is in the greedy region of u.

Proof. What has to be proven is that, if ui+1 ∈ sui

D

⋂
sD

ui and ui+2 ∈ sui+1

D

⋂
sD

ui+1 then ui+2 ∈
sui

D

⋂
sD

ui For concreteness, we consider sui

D = sui

5 = {z | z <1 ui , z <2 ui , z >3 ui } and, then

sD
ui = {z | z >1 D, z >2 D, z <3 D} (we reverse the signs of the inequalities). The assumption

ui+1 ∈ sui

D

⋂
sD

ui leads to D <1 ui+1 <1 ui , D <2 ui+1 <2 ui , D >3 ui+1 >3 ui . We then conclude

that sui+1

D = {z | z <1 ui+1, z <2 ui+1, z >3 ui+1} ⊂ sui

D and that sD
ui = sD

ui+1 . This proves the

proposition.

Algorithm 1 contains a pseudo-code of the implementation of the greedy routing primitive.

Algorithm 1 Implementation of the routine greedy(u,D)

1: procedure GREEDY(u,D)
2: Determine the sector su

D
3: Determine the sector sD

u . by reversing the signs of the inequalities
4: if Nu ∩ su

D ∩ sD
u 6= ; then

5: select arbitrarily x in the set
6: return x
7: else
8: return No Greedy Neighbors
9: end if

10: end procedure

Lemma 1. Given a destination node D, a greedy path {ui } eventually reaches the destination D.

Proof. Applying proposition 1 inductively proves that sD
ui = sD

u j for all nodes in the greedy path

and that D ∈∩i=1...k sui

D . Because the area of this last intersection decreases, it must eventually

hold that the destination D is reached (there cannot be an infinite number of nodes in an

infinitesimally small surface).

Notice that this result follows directly from the results in [Li et al., 2010], since the paths satisfy

the required axioms. However, we provide a simple and independent proof on the convergence

of a greedy path in corollary 1.

27

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

4.4.2 Face routing primitives: Combinatorial approach

In this sub section, a face routing algorithm over VRAC is presented. This algorithm combined

with greedy routing leads to a geometric routing algorithm with guaranteed delivery. Let u be

the source and D the destination of a packet, then the routing algorithm at u switches to face

routing if Nu ∩ su
D ∩ sD

u =;. The face routing algorithm selects the node v such that v ∈Nu

and the edge (u, v) is the first edge encountered when the line uD is rotated counter-clockwise.

The face traversal stops if the path goes through a node belonging to su
D ∩ sD

u or, if an edge

(v, w) intersects this region. In the former case, greedy routing is restarted, while in the later

case it decides to switch the face accordingly (see section 4.4.3). As we implement only the

primitives for the left hand traversal rule (see Algorithms 5), face switching is done if the path

traverses the region (by selecting w as the next node) inverting the order of the nodes (v, w),

i.e. the node v continues the execution of the left hand traversal algorithm by assuming that

the data is received from node w .

Notice that our implementation is not an implementation of a classical algorithm like GFG or

GPSR [Bose et al., 2001] since it cannot be executed independently of greedy routing for the

reasons mentioned in the introduction and substantiated below. We implement the left hand

rule by determining the first edge encounter in the counter-clockwise direction from an edge

or the respective empty region (see Algorithm 5). Moreover, we use the face switching strategy

used in GFG, which guarantees delivery on an arbitrary planar graph [Frey and Stojmenovic,

2010].

However, our implementation follows the rule of GFG for face switching.

Given an edge (u, v), a first primitive to implement the face traversal is to rotate the edge

around u counter-clockwise and to determine the next edge (u, w) that we encounter (see

Algorithm 5). Actually, this amounts to find the edge (u, w) that makes the smaller angle with

(u, v) where the angle is measured counter-clockwise. In our coordinate system, we cannot

compute the angles since we only know the order relations defined by the three anchors.

Similar to greedy routing, face routing primitives are not straight forward to implement over

VRAC. In fact, given only the VRAC and initial sectoring, it is not possible to distinguish the

edge positions, as required by face routing. For instance, it is not possible to determine the

first edge encounters counter-clockwise direction from uD line, if there is no edge between u

and D , which is presented in Proposition 2.

Proposition 2. If the nodes v, w ∈ su
D and, D 6∈Nu while v, w ∈Nu it is not possible on VRAC to

determine which edge (u, v) or (u, w) is the next edge to the line uD.

Proof. Figure 4.3, shows two configurations where v, w,D ∈ su
4 and, where the same order

28

4.4. Combined greedy face routing with delivery guarantees

(a) Both edges in the same side of the uD line(b) Two edges in different sides of the uD line

Figure 4.3 – An illustration of the proof of Proposition 2

relations exist between the nodes, i.e. D <1 v, w <1 u, D >2 v, w >2 u and, D >3 v, w >3 u. In

figure 4.3(a) the edge (u, w) is next to the line uD while in figure 4.3(b) (u, v) is next to the line

uD. Notice that because of the order conditions u, v, w belong to the same sector of D and

D, v, w to the same sector of u, hence the impossibility.

We emphasize that this impossibility is to the fact that uD is not an edge in the graph, but

a hypothetical line between the destination and the current node (see figure 3.1(b)). If uD

corresponds to an edge, we could investigate the empty region properties (property 2 and

property 3) to determine the orientation of an edge around node. In fact, considering these

properties, we define an ordering scheme for edges around a given node. First a local ordering

criteria is derived within a sector (see proposition 3), which is used to build a global ordering

of edges around a node.

Local ordering considers the counter-clockwise ordering and determines the right most node

within a sector (more precisely in sectors 2,4 and 6). Proposition 3 presents a procedure to

determine the right most edge among two nodes v and w with respect to u, which is denoted

as right(u,v,w),

Proposition 3. Given a node u, let v and w be two nodes such that (u, v), (u, w) ∈ Ẽ and

su
v = su

w = su
2i respectively, then the right most edge is determined by;

right(u, v, w) =
v if d(Ai , v) < d(Ai , w)

w otherwise
(4.3)

Proof. Lets assume that v, w ∈ su
4 (proofs for other sectors follow the same argument). Notice

that it is not possible that u and v belong to su
1 , su

3 or su
5 , as there can be only one edge in these

29

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

(a) Illustration of the impossibility in the proof of
Proposition 3, where it is impossible to have a v as
in the figure with the presence of w

(b) An illustration that the by comparing d(A3, v)
and d(A3, w) it is possible to determine the edge
that w is on the right of side of v

Figure 4.4 – Illustration of implementation of right function

sectors by Property 1. First we show that the impossibility of an unfavorable setting illustrated

in figure 4.4(a). In fact, if w were in the mentioned region then v ∈ sw
1 , like u. But, because

u >1 v >1 w then w would be connected to v instead of u, leading to a contradiction. In

order to prove the main result, it is following argument suffices. As there is an edge (u, w) the

node v cannot be in the region highlighted in red lines in figure 4.4(b) (see Property 3). As this

holds for v reciprocally, it is possible to determine the edge to the right by comparing d(A3, w)

and d(A3, v) accordingly.

An implementation of the procedure right(u,v,w) is presented in pseudo code in Algorithm 2.

Note that it compares the respective orders in sectors 2,4 and 6 accordingly.

Once the local ordering in each sector can be determined with the procedure right(u,v,w),

it can be used to define a global numbering. It comes as an extension to the initial sector

numbers (see definition 12). Extended numbering is a relative scheme, where numbers are

assigned to a sector relative to the sector s in two possible settings as follows.

1. s = su
D when (u,D) 6∈ Ẽ

2. s = su
v , when u receives a message from v

First setting corresponds to the scenario, where it switches from greedy routing to face routing

as illustrated in figure 4.5(a). In this setting, since there are no neighboring nodes in the greedy

region, we need to consider the first edge encounters in the counter-clockwise direction

from the greedy region. Second setting corresponds to the scenario where face routing is

30

4.4. Combined greedy face routing with delivery guarantees

Algorithm 2 Implementation of the routine right(u,v,w)

1: procedure RIGHT(u,v ,w) . v, w ∈Nu and v, w belong to the same sector of u
2: if w ∈ su

2 then
3: if d(A2, w) < d(A2, v) then return v
4: else return w
5: end if
6: end if
7: if w ∈ su

4 then
8: if d(A3, w) < d(A3, v) then return v
9: else return w

10: end if
11: end if
12: if w ∈ su

6 then
13: if d(A1, w) < d(A1, v) then return v ;
14: else return w ;
15: end if
16: end if
17: end procedure

continued as illustrated in figure 4.5(b). Hence, it has to consider the first edge encounters in

the counter-clockwise direction with respect to the incoming edge.

We need to define the global numbering such that it determines the first edge situated in the

counter-clockwise direction with respect to the above two cases. It is trivial to observe that the

initial sector numbers make sure such an ordering (coupled with local ordering), except for the

sector s. In sector s, it is possible to distinguish the edges, which are left to the uD line or (u, v)

edge due to the empty regions around an edge in the planarized graph (see Propositions 2

and Proposition 3). Following proposition determines (denoted as le f t(u, X , v)) if a given

edge (u, v) ∈ Ẽ is in the left (or right) of the line drawn between u and X . Note that this is a

generalization of the above two settings, hence (u, X) may or may not correspond to an edge.

In both these cases, the condition su
X ∩ sX

u =; holds. When the face routing starts this is true

as the greedy region is empty, where as on the other situation it holds due to the empty region

property 3 (see figure 4.5).

Proposition 4. Let u, X ∈ V (G) and j = su
X such that su

X ∩ sX
u =;, left returns true if uv is on

31

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

(a) Starting face routing when D ∈ su
i such that

i=1,3,5, i.e su
X ∩ sX

u =;, v is on the left of uX

(b) Starting or continuing face routing when either
D or v ∈ su

i such that i=2,4,6, v is on the left of uX

Figure 4.5 – Illustration of two settings considered in left function

the left of uX as below;

left(u, X , v) =



TRUE if (X <2 v & j = 1)

TRUE if (X >1 v & j = 2)

TRUE if (X <3 v & j = 3)

TRUE if (X >2 v & j = 4)

TRUE if (X <1 v & j = 5)

TRUE if (X >3 v & j = 6)

FALSE otherwise

(4.4)

Proof. Consider the empty regions imposed by the properties of the planar graph as illustrated

in figure 4.6. Let j=1, by observation it is clear that a node v to the left of uX follows X <2 v .

Similarly when j=2, a node v to the left of uX follows X >1 v and when j=3 it follows X <3 v .

Sectors 4,5 and 6 follows the opposite relation.

It is important to note that, left function is closer to the right function. Both are defined

based on the empty region property and uses a single coordinate to determine the node to the

left or right. It should be distinguished that right is only defined for even numbered sectors,

where as left is defined for all the sectors. Moreover, left function generalizes the computation,

such that it determines if an edge is on the left of a line between two nodes (subject to the

empty intersection property or an additional emptiness assumption). Nevertheless, in left

function, it is possible to use right function in even numbered sectors, but for the clarity of the

implementation we made them independent.

32

4.4. Combined greedy face routing with delivery guarantees

An implementation of procedure left(u, X , v) is presented in Algorithm 3. By utilizing left, now

we define the extended sector numbering, denoted as num(u, X , w) as follows.

Algorithm 3 Implementation of the routine left(u,X,v)

1: procedure LEFT(u,X ,v)
2: j = sX

u

3: if j = 1 & X <2 v then return TRUE

4: else return FALSE

5: end if
6: if j = 2 & X >1 v then return TRUE

7: else return FALSE

8: end if
9: if j = 3 & X <3 v then return TRUE

10: else return FALSE

11: end if
12: if j = 4 & X >2 v then return TRUE

13: else return FALSE

14: end if
15: if j = 5 & X <1 v then return TRUE

16: else return FALSE

17: end if
18: if j = 6 & X >3 v then return TRUE

19: else return FALSE

20: end if
21: end procedure

Definition 16. Let X be either the destination D or the node v of the incoming edge (see

Figure 4.6). Let k be the sector su
w of a given node w as defined in Definition 12 and j be

the sector number of su
X , such that su

X ∩ sX
u =;. Extended sector number of w is defined as;

num(u,X,w) =


(k +6− j) mod 6 if k 6= j

0 if k = j & left(u, X , w) = TRUE

6 if k = j & left(u, X , w) 6= TRUE

(4.5)

Implementation of this function is done by first determining the number k and j according to

the definition 12. Note that the nodes on the left of uX line is numbered as 0, while the node

on the right of the uX line is numbered as 6 (excluding the empty regions).

Algorithm 4 is then used to implement the next edge function, presented in Algorithm 5. In the

next edge procedure, extended numbering and local ordering of nodes within a sector is used

to determine the next edge. In fact, it has to compare each edge around in the neighborhood of

33

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

(a) When starting face routing consider the uD line (b) When continuing face routing consider the in-
coming edge (u, v)

Figure 4.6 – Possibilities for extended sector numbering, where sector s is further divided into
0 and 6

Algorithm 4 Implementation of the routine num(u,X,w)

1: procedure NUM(u,X ,w)
2: k = sw

u

3: j = sX
u

4: if k 6= j then
5: return (k +6− j) mod 6
6: else
7: if LEFT(u, X , w) = TRUE then
8: return 0
9: else

10: return 6
11: end if
12: end if
13: end procedure

34

4.4. Combined greedy face routing with delivery guarantees

a node in an iterative manner to determine the next edge. Algorithm 4 presents the complete

procedure for determining the next edge. Lemma 2, presents the correctness of the next

edge procedure. This procedure has to be incorporated into a combined greedy face routing

algorithm. Once it is possible to determine the next edge, it is possible to perform the right/left

hand rule to traverse around a face in the planar graph. This has to be combined with a face

switching strategy to formulate the complete greedy face routing algorithm.

Algorithm 5 Implementation of the routine nextedge(u,X)

1: procedure NEXTEDGE(u,X)
2: v = w ∈Nu . starts with an arbitrary node
3: for each w ′ in Nu \ v do
4: if NUM(u, v)=NUM(u, w ′) then
5: v=RIGHT(u, v, w ′)
6: else
7: if NUM(u, v)>NUM(u, w ′) then
8: v = w ′
9: end if

10: end if
11: end for
12: return v
13: end procedure

Lemma 2. Procedure nextedge in Algorithm 5 determines the edge (u, v) next to the line uD or

incoming edge uw.

Proof. The proof is followed by the correctness of sub routines introduced above. According

to the algorithm, it compares two edges at a time and determine which one is the next to

the line uX . It keeps the next edge out of the two and iteratively compare all the other edges.

Initially nexted g e is set arbitrarily from the neighborhood. In line 4, it checks if the two nodes

w and nexted g e for their extended numbering based on the NUM subroutine. If the numbers

are same, it uses the RIGHT subroutine to determine the right most edge. If the numbers are

not equal it assigns the nexted g e the edge with the least number. Following the proof of

the num(u, X , w) function, it returns the edge which is next to the uX line. Therefore, the

subroutine nextedge always returns the first edge to the counter-clockwise direction.

4.4.3 Face switching

In order to formulate the complete algorithm, it is required to determine when to switch the

face. According to the proof that GFG delivers data with certainty for any planar graph given in

[Bose et al., 2001], when an edge (v, w) of face routing cuts the source destination line uD , face

traversal must change the traversed face if the line wD is on the right of the edge (w, v). That

35

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

Figure 4.7 – There are 8 edges that can be traversed in both directions and, by choosing the
two possibility for source u and destination D there are 16 different configurations lead to
Face Switching. Note that only 5 edges are illustrated for the clarity

means that the angle between (w, v) and the line wD measured counter-clockwise is larger

than π, i.e. we need to rotate the line (w, v) for an angle larger than π to match the line uD .

In our case, we cannot detect the intersection of the line uD. What we detect is that the

edge (v, w) crosses the region su
D ∩ sD

u . By direct inspection and using the Property 2, we

conclude that a crossing that triggers a face switching occurs if and only if (the arrow →
indicates the direction of the data, and the number of the sectors are all mod 6, i.e.su

D +1

means su
D +1(mod 6)). Note that the sector numbering used here is the original sectoring, as

we do not need to use the extended numbering to detect crossing edges.

su
D +1 → su

D −1, or sD
u +1, or sD

u +2

sD
u −2 → su

D −1

su
D +2 → sD

u +1 (4.6)

sD
u −1 → sD

u +1, or su
D −1, or su

D −2

We represent on Figure 4.7 the edges that can cross the region su
D ∩sD

u . A full proof of this result

proceeds by inspection. Among all the edges that cross the sector su
D ∩ sD

u we exclude some of

them by using the Property 1 illustrated in Figure 4.1(a). The only edges that remain and that

lead to Face Switching following [Bose et al., 2001] are listed in Equation (4.6).

The guaranteed delivery routing algorithm that we present in Algorithm 6 combines greedy

and face routing in the spirit of classical greedy-face routing algorithm [Karp and Kung, 2000;

36

4.5. Face routing primitives : Geometric approach

Algorithm 6 Implementation of the routine Route(u,v,D,GREEDY)

procedure ROUTE(u,v ,D ,mode) . u current, v previous mode =GREEDY ,F AC E

if mode=GREEDY then
next=GREEDY(u,D)
if next = NU LL then

return NEXTEDGE(u,v)
else

return next
end if

end if

if mode=FACE then
next=GREEDY(u,D)
if next = NU LL then

return NEXTEDGE(u,v)
else

return next
end if

end if
end procedure

Bose et al., 2001] and, implements the switching face algorithm from [Bose et al., 2001].

4.5 Face routing primitives : Geometric approach

In this section we present a routing algorithm [Samarasinghe and Leone, 2012] which guar-

antees delivery on the second version of the VRAC system described in Section 4.2. This

approach uses geometric properties of the coordinate system to define the required geometric

constructs to perform geographic routing. In fact, unlike in the previous approach, in this

coordinate system we are able to perform rotation and detection of line segment intersection

as in Euclidean space. Here we summarize the basics of this approach while a complete

description of the algorithm can be found in [Samarasinghe and Leone, 2012]

As illustrated in Figure 4.1(b), a node divides the physical space into six sectors based on

its coordinate value. Sectors are numbered according to the Figure 4.1(b), and two of the

components of the coordinates happen to be the borders of the sector. Drawing a similar

analogy with the Euclidean space, we treat those two components as axes. Note that these

axes are relative to a given sector, but the geometric properties are same in all sectors due to

the symmetry. By observation, we derive some geometric properties useful for face routing,

which is presented as Proposition 5 summarizing the results in [Samarasinghe and Leone,

2012].

37

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

θ1
θ2

∆x1

∆x2
∆y1

∆y2

Figure 4.8 – Angle comparison

Consider any sector s of a given node u = (xu , yu , zu) and a neighboring nodes v = (xv , yv , zv)

and w = (xw , yw , zw) lying in the same sector. We observe that along a line segment in a sector,

at any point on the line it preserves the ratio between perpendicular distances from two sector

borders. Let θ1 and θ2 be the rising angles from one of the borders of the sector as in Figure 4.8

and ∆x1 = |xu − xv |, ∆y1 = |yu − yv |, ∆x2 = |xu − xw |, ∆y2 = |yu − yw | are the perpendicular

distances from respective borders to the nodes.

Proposition 5. If θ1 > θ2 then ∆x1
∆y1

> ∆x2
∆y2

.

Proof. We know that if θ1 > θ2 then tanθ1 > tanθ2 when 0 < θ1,θ2 < π
2 . With basic trigonomet-

ric relationships we can derive tanθ1 = ∆x1 sinα2

(∆y1+∆x1)cosα and tanθ2 = ∆x2 sinα2

(∆y2+∆x2)cosα , where α is the

angle of the sector. With a simple algebraic simplification it follows that ∆x1
∆y1

> ∆x2
∆y2

.

We use Proposition 5 to define a subroutine to decide the edge with smallest rising angle which

is illustrated in pseudo code.

Algorithm 7 Comparison of angles within a sector

procedure RIGHT(u,v ,w) . v, w ∈Nu

if ∆x1
∆y1

> ∆x2
∆y2

then
return v

else
return w

end if
end procedure

Using the subroutine 7 and sector numbers we define the Algorithm 8 to find the first edge

towards clockwise/counter-clockwise direction. It starts its search from a given sector and

finds the edge with smallest rising angle in that sector. If there are no edges in the sector,

it continues the search through the following sectors according to their numbering. Hence

apparently it searches the whole space around a given node.

38

4.5. Face routing primitives : Geometric approach

Algorithm 8 Rotation clockwise/counter-clockwise

procedure FACENEXTEDGE(u,D)
i = su

D
for i = 1 → 6 do

if N i
u 6= ; then .N i

u = Nu in sector i
r i g ht=RIGHT(v, w) . v, w ∈N i

u

for x ∈N i
u \ v, w do

r i g ht=RIGHT(x,r i g ht)
end for
return r i g ht

end if
end for

end procedure

Algorithm 9 Check if two points are in the same side against a line

procedure ISINSAMESIDE(u,v ,w ,x)
if N i

u 6= ; then
i = Sw

u

j = Sx
u

if (i 6= j)∨ (j 6= i +2) then
return (|i − j | >= 2)

end if
end if

end procedure

In order to perform face routing, we need to detect when a possible next edge intersects

with the line segment between two other points. Due to the geometric properties of lines,

it follows that two line segments get intersected, when the end points of the line segments

do not mutually locate in the same side of the other line segment. By inspection of sector

arrangement and the possibilities to satisfy this requirement, we define Algorithm 10 to check

intersection of two line segments. This algorithm essentially compares the sector positions of

two other points w, x compared to a selected point v with respective to point u. It repeats this

process for the other combination of points and check whether it satisfy the above mentioned

requirement.

Face traversal performed with the classical right/left hand rule, where a node rotates according

to the rule and finds the first neighbor clockwise or counter clockwise. In addition to the face

traversal, face changes should be performed accordingly. While there are several variants of

the face changing criteria, all of them checks whether whether the face traversal intersects with

the connecting line between current local-minima and the destination. We use the defined

geometric concepts to implement the face routing algorithm proposed in GFG, which is proven

its delivery grantees in an arbitrary graph. Face routing algorithm is illustrated in Algorithm

39

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

Algorithm 10 Check intersection based on the sector numbers and angle comparison

procedure ISINTERSECTING(u,v ,w ,x)
if ISINSAMESIDE(u, v, w, x) then

if ISINSAMESIDE(w, x,u, v) then
return TRUE

else
return FALSE

end if
elsereturn FALSE

end if
end procedure

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10

R
o
u
ti

n
g
 S

tr
et

ch

Degree

Routing Stretch

VRAC
GPSR

(a) Routing stretch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

G
re

ed
y
 s

u
cc

es
s

ra
te

Degree

Greedy Success Rate

VRAC
GPSR

(b) Greedy success rate

Figure 4.9 – Routing stretch in hop distance and greedy success rate without obstacles

4. It uses the rotation algorithm to search its neighbors clockwise or counter-clockwise and

check for intersections based on the Algorithm 3. If it detects an intersection, following the

GFG algorithm it changes the rotation direction accordingly.

4.5.1 Numerical Validation

We evaluate our geographic routing algorithm in comparison with GPSR protocol. Evaluation

is done in a simulation environment developed in Java, which purely focuses on routing

algorithms, while ideal radio characteristics and link layer complexities are abstracted. We

extract a planar sub graph of the communication graph according to the schnyder’s criteria

explained earlier. For GPSR, underlying planar subgraph is a gabrial graph [Gabriel and

Sokal, 1969]. We analyze the stretch factor and greedy success ratio, both in hop distance

and Euclidean distance by varying the average degree of a node. We simulate two settings

of networks, one with a random distribution of nodes and the other with random obstacles.

Nodes are distributed over a 1000 x 1000 square unit area, with 50 units of radio coverage.

40

4.5. Face routing primitives : Geometric approach

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

R
o
u
ti

n
g
 S

tr
et

ch

Degree

Routing Stretch

VRAC
GPSR

(a) Routing stretch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

G
re

ed
y
 s

u
cc

es
s

ra
te

Degree

Greedy Success Rate

VRAC
GPSR

(b) Greedy Success Rate

Figure 4.10 – Routing Stretch in hop distance and Greedy Success Rate with Obstacles

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

R
o
u
ti

n
g
 S

tr
et

ch

Degree

Routing Stretch

VRAC
GPSR

(a) Without Obstacles

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

R
o
u
ti

n
g
 S

tr
et

ch

Degree

Routing Stretch

VRAC
GPSR

(b) With Obstacles

Figure 4.11 – Routing Stretch in Euclidean Distance

According to the Figure 4.9(a), VRAC performs better in stretch, when the network is sparser

(degree 2). In this instance greedy success rate of GPSR reports the lowest compared to denser

instances. Thus it has to perform face routing more often, apparently resulting in higher

stretch. Comparatively, VRAC exhibits a poor greedy success (Figure 4.9(b)) even with denser

networks (roughly 8% to 22%), yet due to efficient face routing stretch is maintained lower

(below 2.3 in all instances).

When the obstacles are present, VRAC reports lower stretch even for denser networks(Figure 4.10(a)),

compared to GPSR. This is due to the poor greedy success of GPSR due to the obstacles, see

Figure 4.10(b) and comparatively inefficient face routing. Overall, when obstacles are present,

stretch performance are closer in both approaches. Finally we analyze the stretch factor in

terms of Euclidean distance, see Figures 4.11(a) and 4.11(b). More importantly, stretch in

both Euclidean and hop distances for VRAC exhibit a lower variance across sparser and denser

41

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

network instances. We emphasize that, VRAC does not perform costly computations, hence

reducing the localization overhead. This leads to an effective design trade-off for network

design.

4.6 Greedy Routing over Virtual Raw Anchor Coordinates

While combined greedy face routing guarantees delivery, it is important to investigate the

conditions on VRAC, where greedy routing with delivery guarantees can be performed. In this

section, we study a special case of a schnyder graph, namely a saturated graph and formulate

a greedy routing algorithm.

4.6.1 Schnyder Characterization and Saturated Graph

Let G = (V ,E) represent the communication graph, where V ,E are the vertex and edge sets

respectively. We investigate a network in a standard VRAC setting, hence all the properties

are as described in the section 4.2. Considering a planar sub graph extracted according

to the schnyder properties, a node u has at most one edge (u, v) ∈ E such that v ∈ su
2i−1.

Moreover, such a node v satisfies that v <i z ∀z ∈ su
2i−1, i.e. v = mi ni {z | z ∈ su

2i−1}. To develop

the argument for a greedy algorithm, we rewrite the order relations in each sector as in

proposition 6.

Proposition 6.

If v ∈ su
1 , z 6= v we have

z <2 u

z <3 u

}
⇒ z >1 v. (4.7)

If v ∈ su
3 , z 6= v we have

z <1 u

z <3 u

}
⇒ z >2 v. (4.8)

If v ∈ su
5 , z 6= v we have

z <1 u

z <2 u

}
⇒ z >3 v. (4.9)

As described in section 4.3, it is possible to perform a local planarization algorithm to obtain a

planar sub graph of G(V ,E). An immediate saturation condition on such a planar sub graph,

leads to the following definition.

Definition 17. Saturated graph[Leone and Samarasinghe, 2016] A planar graph is saturated

if there exists exactly one edge in each sector su
2i−1, i = 1,2,3 for each node u.

The definition holds for planar graphs given in an abstract way. For instance, a maximal planar

graph drawn as a Schnyder drawing is a saturated graph (see section 4.7). Indeed, such a

42

4.6. Greedy Routing over Virtual Raw Anchor Coordinates

planar graph admits a Schnyder representation and the definition refers to this representation.

Our greedy routing algorithm is performed on this planar saturated graph and in the rest

of the text all references to the graph are implicitly to this graph. We propose a metric free

characterization of a greedy path2 and show that it guarantees delivery when the graph is

saturated. We use the combinatorial properties (partial orders) to reason on the delivery

guarantees of our algorithm. These combinatorial properties are derived from geometric

properties of a saturated graph, yet the greedy path construction is also valid if we assume that

the order relation <i are given in another (abstract) way. This is why in the rest of the paper

we avoid direct reference to VRAC coordinate system and make only use of the order relations.

If the (planarized) graph is saturated then each internal node u, has exactly one edge in each

sector su
1 , su

3 , su
5 and an indeterminate (0,1,2, . . .) number in the remaining sectors su

2 , su
4 , su

6 .

Since the representation is standard the sectors su
1 , su

3 and su
5 contain the nodes A1, A2 and A3

respectively and are not empty. The maximality assumption implies that if there is an option

of adding an edge and keeping the planarity property then the edge is present [Schnyder,

1989].

For routing from a node u to a destination D ∈ su
1 ∪ su

3 ∪ su
5 the natural option is to follow the

edge (u, v) such that v ∈ su
D (= su

1 or su
3 or su

5). Next, from v , if D ∈ sv
1 ∪ sv

3 ∪ sv
5 we repeat the

same strategy. However, it may happen that D 6∈ sv
1 ∪ sv

3 ∪ sv
5 , see Proposition 9. In this case

D ∈ sv
2 ∪ sv

4 ∪ sv
6 and the existence of an edge in the sector su

D is not provided by the Schnyder’s

characterization (4.1). Nevertheless, in Proposition 8 we show that saturation implies the

existence of an edge in the sector Su
D .

Common approach most of the greedy routing algorithms ([Dhandapani, 2010; He and Zhang,

2010]) follow is to compute the greedy embedding given a graph and to use the underlying

metric of the respective space to perform greedy routing. However, we avoid the computation

of the planar embedding, hence the usage of a metric function for greedy routing. For instance

[Angelini et al., 2010] presents an algorithm to compute the greedy embedding of planar

triangulations. We rely on the metric-free definition of greedy paths in [Li et al., 2010] without

embedding the graph. The coordinate system that we use differs from previous work ([He

and Zhang, 2013; Dhandapani, 2010]), that are based on Schnyder’s characterization of planar

graphs. They use Schnyder drawing as the coordinate system [Schnyder, 1989], which is more

complex to compute than VRAC.

4.6.2 Characterization of Greedy Paths

We characterize the greedy path as in section 4.4.1, following the transitivity and odd-symmetry

properties.

2Given two nodes u and v we don’t assume that we can compute the distance d(u, v).

43

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

Definition 18. For destination node D, a path {uk } is a greedy path if there exists i ∈ {1,2,3}

such that

∀k uk+1 <i uk , or ∀k uk+1 >i uk . (4.10)

For a greedy path there is a coordinate that changes monotonically.

It is important to distinguish this definition of a greedy path compared to the definition 15.

This is a generalized definition as it only considers the existence of a monotonically increasing

or decreasing coordinate along the path. In the following, we build greedy paths from u to

D such that u <i uk <i D the fact that D is an upper bound and the construction continues

while uk <i D implies the convergence of the sequence to D. In the proofs of Propositions 8

and 9 we use the assumption that the graph is saturated, to say that given a node u there exists

neighboring nodes in the sectors su
1 , su

3 , su
5 . Unfortunately we must proceed with caution if

the node u is one of the distinguished nodes A1, A2, A3 since these nodes may not have any

neighboring nodes in these sectors. Actually, these nodes do not cause any trouble because

there is a path from any internal nodes to them with increasing coordinate <i respectively.

They are also all connected with each other. For these reasons and in order to make our best

to simplify the exposition we no longer make any reference to these particular nodes in the

proofs.

In the proof of Proposition 8 we use following Proposition.

Proposition 7. If D ′ ∈ sD
i and D ′′ ∈ sD ′

i then D ′′ ∈ sD
i

Proof. This property follows directly from the transitivity of the inequalities in the definition

of the sectors (12).

Proposition 8. We assume that the graph G is saturated. Then provided that the destination

D belongs to su
2 (or su

4 , or su
6) then there is a path {ui } in G with u0 = u such that ui+1 ∈ sui

2

(ui+1 ∈ sui

4 or ui+1 ∈ sui

6 respectively), and the path converges to D.

Along the path, the order <3 (<1, <2) decreases monotonically if D ∈ su
2 (D ∈ su

4 , D ∈ su
6 respec-

tively).

Proof. For concreteness we consider D ∈ su
4 . If u is connected to D we define u1 = D and

the proposition is true. Otherwise, we prove below that there exists a neighboring node of

u, u1 such that D ∈ su1

4 and D <1 u1 <1 u. Hence, by applying the construction iteratively we

construct the sequence of points that satisfy ui+1 ∈ sui

4 , lower bounded by D and decreases

with respect to <1, i.e. D <1 ui+1 <1 ui . Such a sequence converges to D .

44

4.6. Greedy Routing over Virtual Raw Anchor Coordinates

(a) Destination D ∈ sv
2i or sw

2i (b) Destination D ∈ su
2i+1 and u ∈ sD

2i−2

Figure 4.12 – Two cases to consider in greedy path construction

Lets prove that given u such that D ∈ su
4 there exists x such that (u, v) ∈ E , D ∈ sx

4 and D <1

x <1 u. u is internal, by the assumption on saturation, there exists two neighboring nodes of u

such that v ∈ su
3 and w ∈ su

5 . we then have

D <1 u, D >2 u, D >3 u ⇔ D ∈ su
4 (4.11)

v <1 u, v >2 u, v <3 u ⇔ v ∈ su
3 (4.12)

w <1 u, w <2 u, w >3 u ⇔ w ∈ su
5 (4.13)

If v (or w) is such that D ∈ sv
4 (or D ∈ sw

4) the next point on the path is u1 = v (or u1 = w) and

(4.12) shows that v = u1 <1 u, and D ∈ sv
4 ⇒ v >1 D (or (4.13) shows that w = u1 <1 u , and

D ∈ sw
4 ⇒ w >1 D).

Otherwise, we have to prove that there exists a neighboring node of u in the sector su
4 that

satisfies the conditions. We have that D >2 u >2 w , and D >3 u >3 v (using (4.11,4.12,4.13))

and D 6∈ sv
4 and D 6∈ sw

4 imply

D 6∈ sv
4 ⇒ D >1 v D <2 v D >3 v or

D <1 v D <2 v D >3 v

}
⇒ D <2 v (4.14)

D 6∈ sw
4 ⇒ D >1 w D >2 w D <3 w or

D <1 w D >2 w D <3 w

}
⇒ D <3 w (4.15)

Next, because D ∈ su
4 ⇒ u ∈ sD

1 and the assumption of saturation, there exists an edge (D,D′)
with D′ ∈ sD

1 . If D′ = u we are done.

Otherwise, by the property (4.7) and u ∈ sD
1 we have that D′ <1 u .

45

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

By gathering the inequalities corresponding to u ∈ sD
1 with the ones deduced from (4.14),(4.15)

we obtain D <1 D′, v >2 D >2 D′, w >3 D >3 D′. Using D′ <1 u, D′ <2 v with property (4.8) we

obtain D′ >3 u .

Last from D′ <1 u, D′ <3 w and property (4.9) (with edge (u, w) instead of (u, v)) we obtain

D′ >2 u . Finally, we have proved that D′ ∈ su
4 with the boxes equations and D <1 D′ <1 u. The

node D′ plays the same role as D in the statement of the proposition but with an increasing

<1 order position. Because of the bound D ′ <1 u we see that by applying iteratively the

construction we obtain a sequence D′,D′′, . . . that converges to u and such that all the points

belong to su
4 . Moreover, along the sequence we have D′ ∈ sD

1 , D′′ ∈ sD′
1 ,... and Lemma 7 implies

that all the points in the sequence belong to sD
1 . In particular, for the point x that is connected

to u x ∈ sD
1 ⇔ D ∈ sx

4 . We have then proved the existence of a point x ∈ su
4 that satisfies D ∈ sx

4

and such that D <1 x <1 u.

Remark 1. Construction of the greedy path if D ∈ su
2i

In order to route from u to D ∈ su
2i the node u must first check whether for v ∈ su

2i+1 and w ∈ su
2i−1

one of the condition D ∈ sv
2i or D ∈ sw

2i is satisfied and if yes sends the message accordingly.

Otherwise, the message is forwarded to (the existing) neighboring node in x ∈ su
2i such that

D ∈ sx
2i . This routing scheme converges because the coordinate i decreases along the path and

the path doesn’t step over D, as all the points in the path are >1 D.

Proposition 9. Let us assume that (u, v) ∈ E and D, v ∈ su
1 (or su

3 or su
5). Then, D 6∈ sv

3 ∪ sv
4 ∪ sv

5

(or sv
1 ∪ sv

5 ∪ sv
6 or sv

1 ∪ sv
2 ∪ sv

3).

Proof. Let us consider v,D ∈u
1 the other cases are proved similarly by a permutation of the

indices. We have

v ∈ su
1 ⇔ u <1 v u >2 v u >3 v

D ∈ su
1 ⇔ u <1 D u >2 D u >3 D

Part b) of the Schnyder’s conditions (4.1) implies that D must be larger than u and v for

one order and we see on the two inequalities above that it can only be <1. The condition

D ∈ sv
3 ∪ sv

4 ∪ sv
5 implies that v >1 D and hence there is no i ∈ 1,2,3 such that u, v <i D and the

result in proved.

Remark 2. Construction of the greedy path if D ∈ su
2i−1

The practical implication of Proposition 9 for routing is to prove the existence of a greedy path

from u to D ∈ su
2i−1. We decompose the construction in two parts and for concreteness we

consider D ∈ su
1 .

46

4.7. Every Schnyder Drawing is a Greedy Embedding

Part 1. The maximality assumption implies the existence of a node v ∈ su
1 such that (u, v) ∈ E.

If v = D we are done. Else, u sends the message to v and the first coordinate <1 increases, the

second one <2 and the third one <3 decrease. If D ∈ sv
1 then v repeats the same procedure and

the coordinates continue to be updated monotonically and D >1 v because D ∈ sv
1 and this

implies that the first part of the construction converges to D or switches to the second part.

Part 2. If the path reaches a node v such that D 6∈ sv
1 the construction of the path continues

with this second part. In this case D ∈ sv
2 or D ∈ sv

6 must be satisfied because of Proposition

9. In both cases we have D >1 v and we can apply Proposition 8 that shows the existence of a

sequence of nodes v ′ with D ∈ sv ′
2 or D ∈ sv ′

6 respectively and this sequence eventually reaches

D. If D ∈ sv ′
2 then by Proposition 8 the coordinate <3 continues to decrease along the second

part of the construction. If D ∈ sv ′
6 the coordinate <2 continues to decrease. In both cases we

have shown that along the two parts of the construction one coordinate (<2 or <3) decreases

monotonically and the resulting path is then greedy.

4.6.3 Routing in Maximal Planar Graph

In [Dhandapani, 2010], it is proven that, using Schnyder’s characterization of planar graphs

(4.1), the existence of an embedding of the graph on the plane3 such that greedy routing is

successful (using the natural metric). In [He and Zhang, 2013] the authors define a similar

coordinate system and design a greedy routing algorithm. Both papers use a realizer as defined

in [Schnyder, 1989].

Theorem 3. 1. There is a greedy routing algorithm on every saturated planar graph. (satu-

rated version)

2. Every Schnyder drawing of a planar triangulation is a greedy embedding

Our results are summarized in the Theorem 3 in two similar forms, where the proof of the two

forms are apparent from the above sections. The pseudo-code of the algorithm is provided

in Algorithm 11 and the correctness of the algorithm is proved in the remarks 1 and 2 of the

construction of the path if D ∈ su
2i or D ∈ su

2i+1 that follow the Propositions 8 and 9.

4.7 Every Schnyder Drawing is a Greedy Embedding

In this section, we establish some results on the connection between a greedy embeddings

and a saturated graph (see section 4.6). We consider a maximal planar graph and its schnyder

drawing [Schnyder, 1990], which results in a saturated graph. Then we show that every

schnyder drawing admits a greedy embedding, based on the greedy routing algorithm we

formulated in section 4.6.
3Actually on the plane in R3 such that x + y + z = 1.

47

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

Algorithm 11 Pseudo-code of the greedy routing

1: INPUT Source u, Destination D
2: repeat
3: if D ∈Nu then u = D .Nu is the set of neighbors of u
4: else
5: if D ∈ su

2i−1 then
6: u = v ∈ su

2i−1 s.t. (u, v) ∈ E . v is unique

7: else .D ∈ su
2i consider v ∈ su

2i−1 and w ∈ su
2i+1 s.t. (u, v), (u, w) ∈ E

8: if D ∈ sv
2i then

9: u = v
10: else
11: if D ∈ sw

2i then
12: u = w
13: else
14: u = x ∈ su

2i s.t. D ∈ sx
2i .must exist by Proposition 8

15: end if
16: end if
17: end if
18: end if
19: until u=D

[Dhandapani, 2010] showed that every planar triangulated graph can be drawn on the plane as

a greedy embedding. They generalize the classical Schnyder drawing [Schnyder, 1990] leading

to a family of planar drawings, then they show that there exists a greedy drawing in this set of

drawings.

Following result proves that every Schnyder drawing is a greedy embedding. We emphasize

the use of a generalized definition of a greedy routing [Li et al., 2010], on which our algorithm

is based upon.

4.7.1 Schnyder Drawing

Given a planar triangular graph, a Schnyder drawing [Schnyder, 1990] is a straight line drawing

of the graph on the plane. In this article, we consider such a drawing on R3, such that the

external nodes A1, A2 and A3 are placed on (1,0,0), (0,1,0) and (0,0,1) respectively. Hence the

external face forms an equilateral triangle and the nodes are placed on the plane designated

by x + y + z = 1.

The Schnyder drawing is computed based on a combinatorial description of a planar triangular

graph, which is called a realizer, defined as follows.

Theorem 4. Realizer [Schnyder, 1990] Given a plane triangulation G(V ,E), there exist three

directed edge-disjoint trees, T1,T2 and T3, namely the realizer of G, such that for each inner

48

4.7. Every Schnyder Drawing is a Greedy Embedding

U

V
3

A
1

A
2

A
3

V
1

V
2

(a) Illustration of Lemma 3: There are exactly three edges
in the three regions

U

V
i

A
1

A
2

A
3

Empty region

(b) Gray region is empty of nodes; Enclosing triangle prop-
erty (Lemma 6) [Dhandapani, 2010]

Figure 4.13 – Two cases to consider in greedy path construction

vertex u;

1. u has an outgoing edge in each of T1,T2 and T3

2. the counter-clockwise order of the edges incident on v is as follows: leaving in T1, entering

in T3, leaving in T2, entering T1, leaving in T3, entering in T2

The Schnyder planar drawing algorithm [Schnyder, 1990], initially constructs a realizer in

linear time. A realizer, in turn leads to three paths from each node towards their root nodes in

each tree. These paths partition the nodes into three regions Ri such that i = 1,2,3. Let ni be

the total number of nodes in region Ri including the nodes in the two paths, those border the

region Ri . Now Schnyder algorithm places each node u on 1
n (n1,n2,n3) leading to a planar

drawing (see [Nishizeki and Rahman, 2004] for details) [Schnyder, 1990]. 4

We present two important properties of a Schnyder drawing in Lemma 3 and 4, which are

illustrated in Figures 4.13(a) and 4.13(b)5

Lemma 3. The Three Wedges Property (Lemma 4 [Dhandapani, 2010])

In every Schnyder drawing the three outgoing edges at an internal vertex v have slopes that fall

in the intervals P1 in [60o ,120o], P2 in [180o ,240o] and P3 in [300o ,360o], with exactly one edge

in each interval as shown in Figure 4.13(a)

Schnyder drawing leads to an important void region around and out-going edge as constitutes

in Lemma 4

4Note that the drawing we consider forms an equilateral triangle, while in [Nishizeki and Rahman, 2004] they
present an algorithm where the outer face does not form an equilateral triangle

5See [Dhandapani, 2010] for the proof

49

Chapter 4. Geometric Routing on Virtual Raw Anchor Coordinates

Lemma 4. The enclosing triangle property (Lemma 6 [Dhandapani, 2010])

Given a vertex u and an outgoing edge (u,v) belonging, without loss of generality to P1, the

equilateral triangle formed by drawing lines with slopes of 0o ,60o and 120o , as shown in

Figure 4.13(b) is free of any other vertices. This results holds for both regions P2 and P3.

In the following section, we introduce the definition of a saturated graph and show that every

Schnyder drawing implies a saturated graph.

4.7.2 Schnyder drawings and saturated graphs

A saturated graph is defined without a reference to an embedding. Our greedy routing al-

gorithm in section 4.6, uses the saturated graph property to prove the delivery guarantees.

Following lemma constitutes a straight forward connection between a Schnyder drawing and

a saturated graph.

Lemma 5. Every Schnyder drawing implies a saturated graph.

Proof. Due to the three wedge property of a Schnyder drawing (see Lemma 3), we know that

there is exactly one edge (u, vi) in sectors su
i where i = 1,3,5, which is a saturated graph by

definition.

In section 4.6, we devised a greedy routing algorithm which guarantees delivery, when the

graph is saturated. We consider a schnyder drawing of a maximal planar graph and construct

the second variant of the VRAC system (see figure 4.1(b)). This immediately results in a

saturated graph, such that each vi satisfies vi = mi ni {w ∈ su
2i−1}, due to the enclosing triangle

property. Therefore, the greedy routing algorithm formulated in section 4.6 can be applied.

Note that in this algorithm, we do not use a metric to define the greedy path, instead use a

generalized definition of a greedy path. Following lemma concludes the resulting connection

between greedy embeddings and a Schnyder drawing of a planar triangular graph.

Lemma 2. Every Schnyder drawing is a greedy embedding.

4.8 Conclusion

Geographic routing over virtual coordinate systems has studied extensively as an alternative

to real localization systems. Despite numerous proposals in theoretical perspective, they are

far from being practical in real network settings. Use of raw distance measures from a set of

anchors as the coordinate like in VRAC, posed to be promising mainly due to its simplicity

offered in wireless sensor network environments. VRAC does not inherit classical geometric

50

4.8. Conclusion

properties like in Euclidean coordinate system. Therefore greedy and face routing is not trivial

to perform on VRAC. In this chapter we present combinatorial and geometric approaches to

construct basic properties needed to perform both greedy and face routing. Further more

we prove that, based on those constructs it can perform delivery guaranteed face routing for

arbitrarily connected graphs. We evaluate our approach with GPSR, comparing routing stretch

and greedy success rate. Results suggest that VRAC leads to an effective design trade-off for

network design.

We introduce the concept of a saturated graph with respect to the VRAC coordinate system

and investigate greedy routing over them. We establish that every schnyder drawing is a greedy

embedding based on a metric free greedy routing algorithm over the saturated graphs.

51

5 Robust and Scalable Greedy Routing

with Greedy Zone Routing

In this chapter, we introduce a scalable and robust geometric routing protocol called, Greedy

Zone Routing(GZR). GZR design is based upon the hypothesis that the geometry of a network

has to be in an abstract level (zone level) rather than in an individual node level. This ensures

resilience towards the dynamic nature of wireless ad-hoc network topologies. Moreover, GZR

reduces the length of coordinates, as they are assigned in the zone level.

In section 5.1, main motivation for GZR design is presented, highlighting the drawbacks of

state-of-the-art greedy routing protocols on dynamic topologies. Section 5.2 presents the

greedy zone routing protocol and its design rational. Section 5.3 presents a comprehensive

evaluation of the GZR protocol comparing with PIE [Herzen et al., 2011], a state-of-the-art

greedy routing protocol.

5.1 Robust and Scalable Greedy Routing

A key motivation in geometric routing is the scalability, especially to be resilient to network

topology changes while maintaining a negligible amount of resources. Despite numerous

proposals with sound theoretical background, geometric routing has not thrived to be imple-

mented as a standard protocol. In a more practical perspective, industrial and system research

community tend to rely on simpler techniques, when designing protocols. RPL [Winter et al.,

2012] is one such example, where a simple tree-based routing (in fact a Destination Oriented

Directed Acyclic Graph (DODAG)) is adapted into a standard protocol for routing in low power

lossy networks. Routing based on a tree structure is a classical approach for routing employed

in various routing protocols, such as in RPL and classical spanning tree protocol (STP). It

organizes the nodes into a tree structure whose edges are directed towards the root node,

hence each node designating a parent node. Additionally, every node has to learn the set of

descendants underneath. Once this information is gathered, a node can decide to route a

53

Chapter 5. Robust and Scalable Greedy Routing with Greedy Zone Routing

message upwards or downwards along the tree to reach the desired destination. As the con-

struction of the tree can be done based only on the neighborhood of a node in a distributed

fashion, this technique is practically appealing.

Tree-based routing is ubiquitous in standard networking protocols, such as Spanning Tree

Protocol and RPL. In this routing paradigm nodes have a list of descendants and the address of

their parents. If the desired destination is not among the descendants, the packet is forwarded

upwards towards the root. Maintaining a routing tree is efficient as it can be done in a com-

pletely decentralized manner. Especially in networks like wireless ad-hoc networks with highly

dynamic topologies, routing trees can be a feasible choice for protocol design. Nevertheless,

routing on a tree structure can be inefficient when the network size grows resulting in higher

routing stretch and bigger routing tables. In fact, a tree route could unnecessarily traverse

upwards the tree, while shorter paths exist towards the destination which are unknown to the

protocol. A heuristic based approach is proposed in [Duquennoy et al., 2013] to discover the

shorter paths in the RPL tree. Nonetheless, this mechanism still maintains a single tree across

the network, which could still lead to poor performance when the network size grows.

The practical applications of most of the geographic routing algorithms is hindered by various

unrealistic assumptions made in the design. In contrast, Kleinberg’s result on the existence

of greedy embedding [Kleinberg, 2007] was a major leap forward towards the integration

of greedy routing into protocols: not only it is free of unrealistic assumptions, but also it is

based on a spanning tree of the network, and hence applicable in arbitrarily connected graphs.

Provided its efficiency, tree routing can be incorporated to achieve scalable routing protocols.

It has to be used to cover a smaller area of the network, where comparatively higher routing

stretch can be traded-off with lower overheads

5.1.1 Scalability

In the context of routing in wireless ad-hoc networks, amount of resources such as memory

and communication overhead utilized by a protocol is a crucial factor. A scalable routing

protocol suppose to utilize a constant amount of resource, when the network size grows. In

other words, even if the network grows in size, resource requirement by the protocol should

not grow as rapid as the network growth1.

5.1.2 Robustness

In a greedy embedding, the geometry has to be constructed based on the connectivity of the

communication graph. In [Kleinberg, 2007; Herzen et al., 2011; Westphal and Pei, 2009], a

1This is one perspective of scalable routing, mostly from a local routing perspective

54

5.1. Robust and Scalable Greedy Routing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000

S
tr

et
ch

 F
ac

to
r

Network Size(Nodes)

Stretch factor vs Network size

GZR any to any
PIE any to any

Figure 5.1 – Coordinate length of PIE over the network size

(a) Network connectivity and spanning tree
used for embedding

(b) Failure of edge (S,U) introducing a local
minima

Figure 5.2 – Pathological example of a greedy embedding when original spanning tree is
changed

spanning tree of the network (in this case a sub set of the connectivity) is extracted and the

greedy embedding is constructed accordingly. Therefore, once the embedding is constructed,

changes in the underlying communication graph (hence the spanning tree) can disturb the

greedy properties, which is a major drawback in this approach. Obviously in a practical

deployment, coordinates have to be updated periodically. More specifically, the spanning

tree has to be reconstructed and coordinates accordingly updated. Figure 5.2, illustrates a

pathological example of a greedy embedding, where a local minimum results by the change

of the underlying communication graph. In Figure 5.2(a), an extracted spanning tree is

represented with thick lines, while other existing edges are represented in broken lines. As the

greedy embedding is a isometric tree embedding of the spanning tree distances considered

for greedy forwarding are similar to the hop distances in the tree. In this particular example,

distance between S and D is 3. When the failure of edge (S,U) is considered S no longer has a

closer neighbor towards D making S a local minimum. This phenomenon occurs irrespective

of the degree of a particular node, even at a node with higher number of neighbors.

Considering the state-of-the-art geometric routing proposals, we establish the hypothesis

that the geometry of the network has to be maintained as independent as possible from the

55

Chapter 5. Robust and Scalable Greedy Routing with Greedy Zone Routing

underlying communication graph. In this way, geometric coordinates can provide a consistent

address space as well as the advantages of geometric routing. Based on this hypothesis, we

propose to divide the routing process in two levels. The network is partitioned into zones of a

fixed diameter and tree-based routing is performed within the zones.

Provided its efficiency, tree routing can be incorporated to achieve scalable routing protocols.

It has to be used to cover a smaller area of the network, where comparatively higher routing

stretch can be traded-off with lower overheads.

5.1.3 Zone Level Geometry

In this subsection, we present our hypothesis that the geometry of a network has to be es-

tablished in an abstract level rather than in the individual node level. It allows to maintain a

static geometry which is resilient to the changes in the network topology. Such an approach

can reduce the expensive communications required to maintain the geometric coordinates

in the individual node level. Based on this hypothesis, our protocol divides the network into

zones and establish smaller trees spanning each zone, where size of the trees is limited by

the diameter of the zones, resulting in constant routing stretch for routes within zones. More

importantly, our protocol assigns geometric coordinates to zones, such that geographic greedy

routing can be performed between zones reducing the routing scope to a smaller virtual graph

whose nodes are zones. Intra-zone routing is done using the internal tree. Our protocol is

compared against PIE [Herzen et al., 2011], which is a simple an efficient protocol. It extracts a

spanning tree from the given graph and assigns geometric coordinates to the nodes starting

with the root. This protocol performs well as long as no frequent updates occur in the network.

In this case, the entire tree has to be reconstructed. In our case, the trees are circumscribed to

the zones and only trees have to be reconstructed only locally. Besides, the fact that we use no

global tree improves the stretching factor, which is an inherent problem in tree routing with

large trees.

5.2 Greedy Zone Routing

5.2.1 Overview of Greedy Zone Routing

Greedy Zone Routing (GZR) [Samarasinghe and Leone, 2015] is a two-level routing mechanism

over connected subnetworks referred to as zones. Every node belongs exactly to one zone.

Nodes having neighbors in a different zone are considered bordering nodes. A bordering node

maintains a routing tree within its zone advertising its neighboring zone. All nodes in the zone

join the routing tree (which is thus a spanning tree within the subnetwork) establishing routes

to reach the neighboring zone. This is shown in Figure 5.3.

56

5.2. Greedy Zone Routing

(a) Connectivity graph and the
spanning tree which is embedded
greedily

(b) Zone establishment with possi-
ble coordinate assignment

(c) Zone tree edges in thick lines
and bordering edges in blue

Figure 5.3 – Overview of Greedy Zone Routing

Greedy Zone Routing protocol initially constructs a spanning tree of the network. The set of

nodes is partitioned in zones according to a predefined hop distance. In the zone level the

network is a set of zones with adjacencies, making up a zone graph. Each zone is addressable

by its geometric coordinates. More important, zone coordinates correspond to a greedy

embedding (see below.) Routing is performed on two levels depending on the location of the

destination node. When the destination node is within the same zone, plain tree routing is

used. Otherwise, the message is passed on to the zone which is geometrically closest to the

destination.

5.2.2 Greedy Zone Embedding

Greedy Zone Embedding on R2

In this approach zone embedding is done on the Euclidean plane (R2) as a delaunay triangula-

tion.

Triangular graphs are a special class of graphs, where every bounded face is a triangle. Note

that here we consider the combinatorial description of graphs (vertices and edges), hence no

geometric information is present with the graph. A Delaunay realization of a triangular graph

is a coordinate assignment of nodes on the plane, such that the Voronoi diagram of the nodes

is the dual of the graph. We state the following property on Delaunay triangulation, which

makes it suitable for greedy routing.

Property 4. [Bose and Morin, 2004] Greedy routing always guarantees delivery on Delaunay

triangulations.

Accordingly, if a graph is realized as a Delaunay triangulation, greedy routing is guaranteed to

succeed. Although, arbitrary graph may not be Delaunay realizable [Lillis and Pemmaraju,

2008]. Even for realizable graphs, algorithms are iterative in nature and cannot be extended

to a distributed algorithm. Therefore we consider the use of a special triangular graph called

57

Chapter 5. Robust and Scalable Greedy Routing with Greedy Zone Routing

Algorithm 12 Greedy Embedding

1: Initialization:
2: if u.i d = 0 then . Root Node
3: ROOT.x← x0, ROOT.y← y0

4: Assign ∆(ROOT, v, w) as in Lemma 3 in [Dillencourt, 1990]
5: Send NOTIFY to v(x1, y1), w(x2, y2)
6: Send CONTROL to v
7: end if
8: Process:
9: On receive:NOTIFY(xi , yi)

10: Assign the coordinate received
11:

12: On receive: CONTROL at x from u
13: find w |∆(x,u, w)
14: Assign ∆(x,u, w) as in Lemma 3 in [Dillencourt, 1990]
15: Send NOTIFY to u, w
16: Send CONTROL to w

maxi mal outer pl anar graphs, which are Delaunay realizable [Dillencourt, 1990]. In a

maximal outer-planar graph, all the inner faces are triangles and every node lies on the outer

face. We reorganize the adjacencies of the zone graph as a maximal outer-planar graph

according to the Property 5. Note that this process can be performed in a distributed fashion

only with zone’s neighborhood information.

Property 5. Let V0,V1 and V2 be three mutually connected nodes. Starting from ∆ V0V1V2, an

iterative process of adding a new node Vi and adding two edges to two nodes in the outer-face of

the existing graph result in a maximal outer-planar graph.

Once the maximal outer-planar graph is constructed, greedy embedding algorithm is per-

formed. As illustrated in pseudo code in Algorithm 12, by assigning the root zone the coordi-

nate (0,0). Then execution follows as a simple graph traversal by message passing. When a

node receives the CONTROL message, it is suppose to assign the coordinates its neighboring

triangle. This coordinate assignment is based on the Lemma 3 in [Dillencourt, 1990] such that

the geometric constraints of a Delaunay triangulation are satisfied. This algorithm terminates

when the root node receives a control message and takes O(n2) message rounds.

Greedy Zone Embedding on Rk

Consider a connected graph G(V ,E) and a tree subgraph T (V ,E ′) where E ′ ⊆ E (i.e., T (V ,E ′) is a

spanning tree of G(V ,E).) Let dT (u, v) denote the tree distance between two nodes in hops. An

embedding of the tree T is a mapping φ : V → X , where X is the metric space of interest. This

metric space (X ,d) is associated with a metric d such as Euclidean metric. An isometric tree

58

5.2. Greedy Zone Routing

embedding is an embedding of a tree in a metric space X , such that dT (u, v) = d(φ(u),φ(v)).

In other words, it preserves the tree distances between nodes in the embedded space.

The first step is to extract a spanning tree T of the graph G(V ,E) and to assign greedy co-

ordinates to the nodes. Once the initial greedy embedding is completed, greedy zones are

established. This is accomplished by partitioning the nodes of the network into zones such

that each node belong to exactly one zone. Since the zones are subtrees of the spanning tree

T , the new graph (whose nodes are zones) has still a tree structure. After that, new border link

between zones are sought and the resulting structure is in general no longer a tree.

We use the isometric tree embedding scheme proposed in PIE [Herzen et al., 2011] to perform

the greedy zone embedding. Compared to the embedding on hyperbolic spaces, coordinate

computation in PIE is efficient and can be done in a distributed fashion. Initially, PIE extracts

a spanning tree of the network and embed it on Rk metric space. The metric function use in

this space is the standard l∞-norm defined as follows;

d(x, y) = ‖x − y‖∞ = maxi |xi − yi | for all xi ∈ x, yi ∈ y

The coordinate assignment of PIE [Herzen et al., 2011] starts by assigning 0 to the root node.

Then it recursively assigns the coordinates to the descendants of the tree as follows: the parent

node u enumerates its children and produces a binary map b of them. Each child v having

a position bi in the binary map is assigned a coordinate cv consisting of the concatenation

of (1) a prefix, which is the incremented coordinate of the parent, pre(cu), and (2) a suffix,

which is the incremented binary position suf(bi) of the child. The strings of bits are treated as

vectors. The deeper the tree, the higher the dimension of the space in which the coordinates is

embedded. The increments are done as follows.

pre(cu)[j] =
cu[j]+1 if cu[j] ≥ 0

pi [j]−1 otherwise

suf(bi)[j] =
−1 if bi [j] = 0

1 otherwise

It is practical to separate the digits of the coordinates, for instance with colons. As an example,

if the root has 5 children, the corresponding binary map is (000, 001, 010, 011, 100). Since

the root’s coordinate is 0, the children receive the prefix 1. Children get the suffixes (-1:-1:-1,

-1:-1:1, -1:1:-1, -1:1:1, 1:-1:-1) and the coordinates (1:-1:-1:-1), (1:-1:-1:1), (1:-1:1:-1), (1:-1:1:1),

and (1:1:-1:-1). The goal of this assignment is to ensure an isometric embedding. This is shown

in Fig. 5.4.

59

Chapter 5. Robust and Scalable Greedy Routing with Greedy Zone Routing

Figure 5.4 – Assigning coordinates to nodes. Prefixes are in black and suffixes in red.

Routing is carried out in two different levels. In the node level (intra-zone routing), tree routing

is performed. In the zone level (inter-zone routing) greedy routing is performed based on the

coordinates of the zones (zones are assigned the coordinate of the root of the corresponding

subtree.) We describe the process in more detail below.

Initial Greedy Coordinates Assignment

Embedding protocols based on spanning trees (as in [Herzen et al., 2011]) initially compute

the coordinates based on a particular instance of the network. This makes them sensitive to

changes in the topology. One of the main goals of greedy zone routing protocols is to minimize

the dependency on a specific topological configuration. Typically they perform embedding for

individual nodes and extend this embedding to the zone level. Zones have a better tolerance

to topology changes.

Initially we perform the isometric tree embedding explained above. The initial embedding is

done over the spanning tree (see Algorithm 1.) This embedding will be extended to the zone

level in the next phase. Notice that in practice spanning tree protocols consider several link

and MAC layer properties. We adopt here a naive approach.

The process is the following: a pre-defined node initiates the process by assigning itself

coordinate {0}. It invites its neighbors to join the spanning tree. If the node has no parent

assigned, it will accept the invitation. Once a node determines its parent node, it notifies its

membership to it. The process goes on recursively in a distributed way. The coordinates of

the spanning tree are embedded in Rk for some k ∈N. The algorithm completes in O(Diam)

synchronized rounds of communication where Diam is the diameter of the network. The

process is carried out by Algorithm 13.

60

5.2. Greedy Zone Routing

Algorithm 13 Initial Greedy Embedding

1: Initialization:
2: if u.i d = 0 then . Root Node
3: Assign coordinate 0 to ROOT

4: Broadcast (TREEAD(ROOT, HOPS=0))
5: end if

6: Process:
7: On receive: (TREEAD(ROOT, HOPS=0)) . Spanning tree construction
8: PARENT← FROM

9: unicast CHILDAD(u.i d) to PARENT

10: On receive: CHILDAD(v.i d)
11: {S[i]} ← v . Enumerate children
12: Broadcast CHILDENUM{S[i]} . Binary map

13: On receive: CHILDENUM{S[i]}
14: cu ← according to S[u] . Coordinate assignment

Greedy Zone Establishment

Once the initial greedy embedding of the network is computed, greedy zones are established.

The nodes are partitioned into disjoint zones such that each node belongs to exactly one zone.

Definition 19 (Zones). A zone Zi of a connected graph G(V ,E) is a connected subgraph of G

with a pre-defined diameter D in hop distance.

Since the original graph is a tree (the spanning tree T) it is always possible to partition it into

disjoint zones of diameter D. The zones will be subtrees of the original spanning tree. An

important concept in our approach is that of bordering nodes, defined next.

Definition 20 (Bordering nodes, adjacent zones). Let G(V ,E) be a connected graph partitioned

into n disjoint zones Zi , 1 ≤ i ≤ n such that any node of V belongs to a zone. A node u ∈ Zi is a

bordering node if there is a node v ∈ Z j with i 6= j and (u, v) ∈ E. In this case, we say that zones

Zi and Z j are adjacent.

Since zones are connected subgraph, any node within a zone may reach an adjacent zone

by first reaching the corresponding bordering node. We may think of zones as making up a

logical graph, as defined below.

Definition 21 (Zone tree). Let G(V ,E), Zi as before. The zone tree GZ (V ′,E ′) is a graph where

V ′ = {Zi }i and (Zi , Z j) ∈ E ′ if Zi and Z j are adjacent.

In the greedy zone establishment phase we extend the isometric tree embedding to the zone

level. The nodes form zones based on a pre-defined diameter D. Nodes situated at heights

61

Chapter 5. Robust and Scalable Greedy Routing with Greedy Zone Routing

Algorithm 14 Greedy Zone Embedding

1: Initialization:
2: Set D ← diameter of zone
3: if dT (ROOT = k(D

2 +1) then . Root nodes
4: Assign zcu ← cu . For root notes, c = zc
5: Broadcast(ZONEAD(zcu)) to all children
6: end if

7: Process:
8: On receive:ZONEAD(zcv)
9: if zcv < cu and dT (v,u) < D

2 then
10: Join zone zcv and assign zone coordinate zcu ← zcv

11: Broadcast(ZONEAD(zcu)) to all children
12: end if

k(D
2 +1) become the roots of the subtrees, which will inherit their coordinates. Each one of the

subtrees will end in a bordering node. This is achieved in Algorithm 14, where the coordinates

of a node u is denoted by cu and its corresponding zone coordinates by zcu

Making some key observations on the zone graph embedding, we present two results in the

following.

Proposition 10. The logical graph of zones has a tree structure.

Proof. A zone is a subtree of the spanning tree. We must show that between two zones there is

a single path. Assume there are two zones Zi and Z j such that there are two paths in GZ (V ′,E ′)
connecting them. Then, since zones are connected, any node of Zi may reach any node of Z j

by two different paths. This contradicts the the fact that T is a tree.

Proposition 11. The Zone tree GZ (V ′,E ′) admits a greedy embedding.

Proof. We start from a spanning tree T whose nodes have greedy coordinates (this means,

that for each two nodes u, v ∈ T , if u and v are not neighbors, there is a node w such that

dT (w, v) < dT (u, v). Since the structure is a tree, this property holds if we consider only the

roots of the subtrees: either two roots u and v are connected by a path consisting only of

non-root nodes or there is a root w in between, i.e., dT (u, v) < dT (w, v). Since the coordinates

of the roots of the subtrees are the coordinates of the zones, the zone tree admits a greedy

embedding.

As a final remark for this section, note that the length of the addresses in our coordinate assign-

ment is inΩ(log(n)). In fact the coordinate size grows poly-logarithmically, hence not possible

62

5.2. Greedy Zone Routing

Algorithm 15 Neighboring Zone Discovery

1: Initialization:
2: Set Lu ← list of neighbors v of u with zcu 6= zcv . Bordering nodes
3: if Lu 6= nil then
4: Broadcast (JOINTREE(u,Lu))
5: end if

6: Process:
7: On receive:JOINTREE(v,Lw)
8: if zcu = zcv) and not already joined then
9: Append (v,Lw) ro routing table

10: Broadcast (JOINTREE(u,Lw))
11: end if

to guarantee succinct coordinates. On the contrary, such expense can be compromised by the

efficiency of coordinate computation in a distributed fashion.

5.2.3 Zone Neighborhood Discovery

The zone neighborhood discovery protocol is used to discover the connectivity of the zone

graph. This protocol is initiated by the bordering nodes as follows. Let (u, v) be a bordering

edge, i.e., zcu 6= zcv . Both u and v start to broadcast the coordinates of the neighboring zones

in a zone neighborhood notification message inviting the other nodes to join a spanning tree

across their respective zones. Nodes in a different zone ignore the broadcast, hence restricting

the broadcast to the zone of the initiating node. Upon reception of zone neighborhood

notification, nodes update their routing tables with the route to reach the corresponding

neighboring zone. The message is rebroadcast so that all the nodes in the zone get the routing

information. This process creates a routing tree with a depth of D hops in a distributed fashion.

This process is shown in Algorithm 15. Observe that now we are no longer using the spanning

tree T but the whole graph.

5.2.4 Routing over Greedy Zones

Routing over greedy zones is done in two levels. Routing between two zones (inter-zone) is

done by greedily forwarding the message to the closest zone. Let Cs and Cd be the coordinates

of source and destination zones. As mentioned earlier distance function used to compare

the closest neighbor is standard lp norm. Note that these coordinates can have different

lengths, but only the common coordinates will be considered. For instance distance between

coordinates 2 : −2 : 1 : −1 and 3 : 1 : −1 is max|(2−3) : (−2−1) : (−1− (−1))|, resulting 3. Once

the closest zone towards the destination zone is determined, a node looks up its routing table

and forward the message along the respective route towards the zone (this will follow the tree

63

Chapter 5. Robust and Scalable Greedy Routing with Greedy Zone Routing

structure rooted at a bordering node).

Once the message reached the destination zone, routing is done based on the routing trees

within the zone. Since these trees are spanning over smaller regions, tree routing is compara-

tively efficient. Also as there are multiple trees spanning a given zone, it can tolerate failures

and network dynamics.

Another important aspect of greedy zone routing is the spatial diversity gained by the par-

titioning of the network. Assume node s in zone Zi wants to send a message to node t in

zone Z j . Since s knows its neighboring zones and their coordinates, it has the opportunity of

routing the message to one of the closer zones Zk towards the destination zone Z j (obviously

assuming there are multiple zones which are closer towards Z j). Furthermore, as there can

be multiple routing trees towards Zk , makes further choices for routing. This diversity can be

used to device further optimized routing mechanisms, in terms of traffic or energy concerns.

We emphasize the distinction of GZR to a classical cluster based routing scheme. GZR benefits

the freedom of greedy routing in the zone level without maintaining routing tables. Whereas

in cluster based routing, a costly procedure is required to maintain routing tables to route

between clusters.

5.3 Evaluation

In this section, we present a comprehensive evaluation of greedy zone routing. Greedy Zone

Routing protocol is implemented in OMNET++ discrete event based network simulator. We

generate random geometric graph graphs of different sizes and GZR is performed. Compara-

tive analysis is carried out against reference implementations of classical tree routing protocol

and PIE.

We carry out experiments to validate the hypothesis we established in Section 5.1.2, which was

the main design rational of GZR. First, we evaluate classical routing metrics, like stretch factor

and packet reception rate for simulated traffic flows. In order to analyze the scalability of

the network, network size is varied and metrics are observed. Most importantly, the protocol

overhead in terms of control message exchanged per node is evaluated for dynamic network

topologies.

5.3.1 Routing Metrics

Stretch Factor

Stretch factor is the ratio between length of the routing path and the shortest path. It is an

important metric, especially to analyze the scalability of routing protocols. We analyze the

64

5.3. Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000

S
tr

et
ch

 F
ac

to
r

Network Size(Nodes)

Stretch factor vs Network size

GZR any to any
PIE any to any

(a) Stretch Factor vs Network Size For Upward Traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000

S
tr

et
ch

 F
ac

to
r

Network Size(Nodes)

Stretch factor vs Network size

GZR any to any
PIE any to any

(b) Stretch Factor vs Network Size For Uni-cast Traffic

Figure 5.5 – Stretch Factor

routing stretch for two traffic patterns, namely converge-cast and unicast. In converge-cast

one designated node is considered as the sink and other nodes generate traffic towards it.

For the converge-cast (upwards routing) scenario, routing tree performs the best as it construct

a shortest path towards the sink node. Comparatively both PIE and GZR demonstrate compar-

atively low routing stretch as illustrated in Figure 5.5(a). It is important to emphasize that tree

routing achieves optimum stretch in the expense of very large routing tables (see Figure 5.6(b)).

Also in a request response traffic scenario, where both downstream and upstream traffic is

operating, tree routing can lead to congestion. This is due to the bottleneck possibly created

by following the same route for many nodes. We also performed routing stretch comparison

for routing between arbitrary nodes(uni-cast) in the network (Figure 5.5(b)). In this scenario,

GZR and PIE both perform exceedingly better compared to tree routing, obviously due to the

use of maximum connectivity possible in the greedy route decision making compared to the

routing tree (Figure 5.5(b)). GZR performs slightly better as in the zone level routing trees are

optimal. Most importantly, routing stretch in both GZR and PIE are almost bounded when the

network size grows.

Packet Reception Rate

In the presence of network dynamics, packet reception rate provides a more realistic metric

for routing protocols. We simulate uni-cast traffic pattern and analyze its behavior, emulating

network topology changing over time. Probabilistic link failures are emulated and protocol

update intervals are varied to analyze the behavior. It is obvious that higher communication

overheads lead to more reliable packet delivery. Our simulation scenario varies the update

interval from 5 to 45 simulation time units and estimated the packet reception in a random any

to any traffic scenario. As in Figure 5.6(a), GZR outperforms PIE, yet in PIE also a reasonable

65

Chapter 5. Robust and Scalable Greedy Routing with Greedy Zone Routing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

P
ac

k
et

 R
ec

ep
ti

o
n
 R

at
e

Update Interval(seconds)

Packet Reception Rate

GZR
PIE

(a) Packet Reception Rate

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

A
v
er

ag
e

R
o
u
ti

n
g
 T

ab
le

 S
iz

e

Network Size(Nodes)

Routing table size

GZR
Tree Routing

(b) Routing Table Size

Figure 5.6 – Packet Reception Rate and Routing Table Size

packet reception is maintained. As GZR does not recompute the coordinates, packet loss

could only occur due to zone level routing unavailabilities, whereas in PIE packets can be

dropped by reaching a local-minimum. Even more appropriate analysis would be to compare

the packet reception rate against the overhead, which is omitted due to space limitations.

Routing Table Size

Greedy Zone Routing maintains a routing table for zone level routing, which is based on

spanning trees within zones. Let zone Zi has d neighboring zones and since GZR maintains

m trees to reach a given zone, m.d routing entries occupy the routing table. Compared

to tree routing (more specifically the average routing table size of a node) this number is

order of magnitude lower (see Figure 5.6(b)). However, in PIE routing table size is even

smaller compared to GZR, since it only carries the neighboring nodes and their coordinates.

Nevertheless, limiting the routing tree scope to zone level has drastically reduced the routing

table size. In fact, Figure 5.6(b) shows an almost constant routing table sizes for different sizes

of networks.

5.3.2 Control Overhead

The key distinction of GZR with other proposals including PIE [Herzen et al., 2011; Houthooft

et al., 2015] is that, GZR does not require to recompute the coordinates periodically in order

to maintain the greedy embedding. Even if some minor changes in the underlying spanning

tree occurred, as there is no way to detect this in a distributed setting, whole computation

phase has to be executed. Message complexity of tree construction grows with the number

of nodes (at least as linearly). Once the zones are established in GZR, trees are spanned only

66

5.4. Conclusion

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800

C
o
n
tr

o
l

O
v
er

h
ea

d

Simulation Time

Control Overhead during the operation of protocols

GZR
PIE

Mean GZR
Mean PIE

Figure 5.7 – Control overhead during the operation of protocols

within zones with fixed diameter(in hop distance). Therefore, message complexity does not

grow with the size of the network. This is the key distinction of GZR as opposed to PIE, which

results in the scalability of GZR.

This aspect is very important in practice as this could result in a lot of overhead during the

operation of protocol. In order to analyze this behavior in PIE, we introduce a periodic update

of coordinate computation and analyzed the control overhead. More specifically, a network of

100 nodes simulated with an update interval of 30 simulation time units. Aggregated number

of control packets processed by each individual node within a given time is counted.

Figure 5.7 shows the comparison of control overhead between GZR and PIE. On average a GZR

node processes 33 control packets while, PIE processes 89 packets. In the initialization phase

of GZR, overhead is similar to PIE as both performs the initial embedding. Once the zones are

established, as scope of routing trees are limited within the zone, hence overhead is reduced.

5.4 Conclusion

In this chapter, we propose a new routing protocol for wireless ad-hoc networks called Greedy

Zone Routing(GZR), especially focusing on robustness and scalability. The design rational is to

use geographic greedy routing in an abstract level, instead of in individual node level. In other

words, GZR assigns geographic coordinates to a collection of nodes in a network called a zone.

Further more, GZR utilizes classical tree based routing to route messages within zones. Nodes

laying closer to zone borders establish paths for other nodes in the zone to reach neighboring

zones. Geographic coordinates of zones are assigned such that, greedy forwarding of messages

between zones guaranteeing delivery to destination zones.

Greedy Zone Routing overcomes the cumbersome re-computation of greedy coordinates

in dynamic network topologies. It assigns the coordinate once to the zones and there after

67

Chapter 5. Robust and Scalable Greedy Routing with Greedy Zone Routing

maintains zone level routing trees, greatly reducing the control overhead of the protocol. We

evaluate GZR comparing with a state-of-the-art greedy routing protocol and demonstrate

that it provides a lower routing stretch and smaller routing table sizes, while maintaining the

overheads 50% lower. Future work would investigate the advantage of flexibility offered by the

geometric zones in the context of opportunistic routing. Also it is also important to consider

greedy zone establishments such that quality of service requirements are achieved.

68

6 Internet of Things Framework over

RPL Routing

In this chapter, we present an application scenario for scalable wireless ad-hoc network rout-

ing. We use a state-of-the-art routing protocol for low power lossy networks and develop a

service oriented framework, over which Internet of things applications can be developed. This

framework is a service oriented framework, which enables various wireless devices to be con-

nected to Internet and expose their services over standard protocols for the web. These web

services are implemented over an application layer protocol for energy constrained devices,

called constrained object access protocol (COAP) [Shelby et al., 2014]. COAP follows the princi-

ples of REST web services [Dunkels et al., 2009], where the devices are characterized based on

the resources they expose. For instance, a sensor can have a resources such as temperature and

humidity. Syndesi framework connects various different devices over different physical layer

protocols and amalgamate them in a service oriented fashion. Based on syndesi, applications

such as smart environments and crowd sensing scenarios can be implemented. We present a

personalized smart office scenario in section 6.3 based on the syndesi framework.

6.1 Routing for low power lossy networks: RPL routing

Network protocols tend to adapt simplest mechanisms as possible in their execution. Handful

of examples of simple designs can be observed in standardized protocols, which are success-

fully deployed in real networking settings; Ethernet is one such example. Similarly for wireless

ad-hoc networks, simple techniques have adapted when defining protocols. RPL is one such

standard protocol for routing in wireless ad-hoc networks, which is based on a simple tree

based routing mechanism.

69

Chapter 6. Internet of Things Framework over RPL Routing

6.2 A service oriented framework for Internet of Things: Syndesi

The aim of the Syndesi framework [Evangelatos et al., 2013] is to connect various devices

over different technologies into a service oriented framework. Syndesi uses the RPL routing

protocol in the IP layer, which is implemented on an embedded operating system named

Contiki. RPL is an IPv6 routing protocol, defined for low power lossy networks. RPL construct

a tree like structure of the network with a pre-designated root node. In fact, the structure

is a direction oriented directed acyclic graph (DODAG), which is not a tree, but directed

towards the root node. The root node is connected over to an IPv4/IPv6 network, hence the

RPL instance connects to the Internet. IPv6 has evaluated to be efficient for such a scenario

in [Evangelatos et al., 2012].

Application protocol deploys on the devices is COAP, which is a REST style application layer

protocol designed for low power devices. Syndesi defines all the auxiliary services in COAP to

control and monitor devices, which are connected over wireless medium. Also syndesi works

as a proxy, enabling COAP services on the devices to be accessed over REST services. In other

words, syndesi mediates between COAP and REST services.

6.2.1 Architecture of Syndesi

There are two main components of the Following we describe each component of the frame-

work in detail.

Backbone WSN

The Backbone WSN comprises the sensors which are responsible for the monitoring and

control of the smart environment. These sensors are capable of communicating over the

wireless medium. For the backbone WSN, TelosB sensor nodes are used. The TelosB node

is an open source platform designed to enable cutting-edge experimentation. These nodes

form a wireless sensor network based on the 6LoWPAN protocol implementation available in

the Contiki operating system. Therefore, the network is IPv6 addressable with optimized IP

services such as routing for low power wireless links. Some of the WSN’s motes are used as

actuators taking part also in the Electrical-Electronic Interface which is connected to electrical

and electronic appliances.

Gateway

The gateway of the Syndesi framework is interconnected with the Backbone WSN, the WSN for

Occupants’ Identification and the Web. It contains the two base-stations of the two different

70

6.2. A service oriented framework for Internet of Things: Syndesi

CoAP

IPv6

6LowPAN

CoAP

IP

6LowPAN

Application Services Control Services Proxy servicesMaintenance Services

GatewayBackbone WSN

Figure 6.1 – A Layered view of Syndesi Framework

WSNs so as to provide connectivity with them. On the other side it provides a proxy server in

order to make the whole framework accessible to the Web connecting both CoAP and HTTP

enabled systems.

6.2.2 Layered overview of Syndesi

Interconnection of heterogeneous networks has to be handled by standard messaging and

communication protocols. As our framework comprises two different wireless networking

technologies (Zigbee and 6LoWPAN), a service oriented architecture can be used to unify

the different components. In other words, we define REST style services using COAP in the

embedded domain, and mediate them with HTTP services using the proxy service. This

mediation takes place in the gateway, which eventually connects both WSN with the web.

Therefore it leads to an easy application integration of the framework. We use the light weight

JavaScript Object Notation (JSON) as the message format, since it is preferred over XML,

especially for the embedded domain applications. Figure 6.1 illustrates the layered overview

of our framework across its components. The set of gray boxes illustrates the main services

provided by the framework, which are described below.

Actuator Service

Sensors and actuators available in the sensor platform act as an interface between the phys-

ical environment and the framework. Such sensors provide readings of the environment

71

Chapter 6. Internet of Things Framework over RPL Routing

parameters via the system software available in the Contiki operating system. Similarly we

implemented actuator drivers in Contiki. Services can use these actuator drivers to make

them available to the framework.

Control services for the backbone WSN

Control services provide auxiliary services to facilitate the control and monitoring of the

application services. For example, these can be services defined to ensure the quality of

service requirements of the framework. We define these services in such a way that the

overhead added by them is compensated with the quality of service they provide to the system.

Application Services Application services are the services required by specific applications

intended to be built upon the framework. In general, these application services expose sensors

as services, which are inputs to the framework or expose actuators as services, which control

objects of the system. These individual services are combined to perform useful application

tasks.

Localized Service Mapping Most of the algorithms performed in smart environment appli-

cations need to have a knowledge of the physical locations of the sensors and actuators (nodes

of the WSN). Moreover, such algorithms need to be aware of the physical correspondence of

the nodes within a context of the considered space. In a smart building scenario nodes have to

be mapped with the floor plan of the building. By contrast, IP networks do not maintain any

knowledge of the nodes in the network. Therefore, to compensate the fact that IP addressing is

location independent, there should be a service discovery mechanism based on the location.

This ideally should maintain a mapping between the physical location of a node with its IP

address and the services provided.

Due to the lack of low cost and accurate localization protocols implemented in practical

settings, we implemented a centralized location mapping service. In other words, we assume

a sensor is bound to a specific location and identified by a unique location identifier. We label

the nodes of the network with this location identifier when deploying the individual nodes.

These labels form a logical tree structure which is rooted at the base station connected to the

gateway. The framework maintains a centralized registry of these labels, essentially a tree

structure of labels.Maintaining a tree topology is natural mainly since the objects needed to

be considered in a smart infrastructure system can be modeled as a hierarchical structure.

Especially in a scenario like a smart building system, whole system can be hierarchically

modeled as a tree with the root being the central coordinator of the system.

72

6.3. Proof of Concept

Maintenance Services As most of the smart environment systems are time and safety critical,

there must be provisions to ensure such demands. Therefore, we designed additional services

to ease the management and monitor the health of the system. We first define a periodic status

update service which sends sensor readings and the status of a node to the central registry. In

addition, each node exposes a service which can be invoked to check the presence of a node

(namely, a "heartbeat" service). Furthermore a node maintains a state of itself and changes its

state accordingly.

Proxy Service Both application and framework services are COAP services, which are not

possible to invoke over standard Web protocols. Therefore, to expose these services to the Web,

we implemented a proxy service, which supports RESTfull interaction over HTTP with COAP

service. We define RESTfull services interfaces to utilize both application and framework

services, which can be used to develop required applications based on our framework. Due to

its compliance with standard Web protocols, these applications are easily portable across all

the platforms and devices.

6.3 Proof of Concept

For the proof of concept of Syndesi framework, we implemented transform an office en-

vironment into a smart personalized environment. The objectives of the application are

personalization, improved comfort, safety and energy efficiency.

6.3.1 Description of the environment

The implementation took part in two rooms of an office, where 8 people work. We connected

to our framework the existing electrical and electronic devices which are used every day. As

it is shown in the 3D representation of our office (Figure 6.2) the electrical and electronic

devices connected to the framework are marked with a cross, and the sensors for monitoring

the environment with a "star". Following we present the devices connected to our framework

in more detail. We connected the 8 personal desk lamps placed on each desk. There are

six floor lamps that are placed in between of the desks which produce enough light to cover

with sufficient working light the two desks next to it and sufficient ambient light for the area

around them. We have placed a fan and a heater in each room to maintain comfortable room

temperatures in the office as our infrastructure is old and it has insufficient HVAC system. On

top of one of the windows we placed a roll-curtain which we connected to an electrical motor

for raising and lowering it. On the inside part of the doors we installed electric locks while on

the top of the doors we installed a siren alarm together with an emergency red light.

73

Chapter 6. Internet of Things Framework over RPL Routing

Figure 6.2 – Office Environment of implementation. The cross represents the electrical-
electronic interface and the "star" the sensors for monitoring the environment

6.3.2 Description of scenarios

The implemented scenario involved all the 8 person who work in these two rooms. For each

person was created a profile account in a database which contains basic personal information

about him/her such as: Name, Age, Sex, Profession, Desk Location, preferable Temperature

and Lighting condition. Consider now an ordinary day when "Bob" is arriving to his office;

he touches with his personal and unique NFC-tag the NFC-sensor on his office door.Then

the system identifies his unique ID in the database and it disengages the electrical door lock.

At the same time, if the luminosity inside the room is below the default threshold then the

system raises the curtains. In the case when the outside light is still below his preferences, then

his desk lamp will switch on. The same algorithms apply for the personalized temperature,

heating and ventilation control. The above scenario represents an example of a centralized

behavior of the framework.

On the other hand, the distributed behavior of the framework is presented in the following

scenario: people are working at the office when suddenly a fire breaks out in a lamp in a room.

The system then recognizing the extreme high temperature due to the fire, automatically

cuts off the power to this lamp and triggers immediately the alarm system. In that case the

messages generated by the sensor are transmitted directly to the actuators and afterwards the

gateway will be updated concerning the status of the environment.

6.4 Conclusion

In this chapter, we present a service oriented framework for Internet of Things applications. It

allows various devices to connect over standard protocols like REST and COAP and provide a

unified framework to access and control. In the IP layer, a protocol called RPL is employed,

which is a standardized protocol for low power lossy networks. We demonstrate an IOT

scenario implementation over syndesi. Further work on this direction would investigate

the scalability of such applications over RPL routing. An ideal extension is to implement a

74

6.4. Conclusion

geometric routing scheme like greedy zone routing [Samarasinghe and Leone, 2015] such that

the network is partitioned into zone.

75

7 Conclusion

Geometric routing is a promising approach for routing in wireless ad-hoc networks. It avoids

building routing tables, instead uses the geometric coordinates to perform routing. Hence it

is considered to be a scalable routing scheme for networks with dynamic topologies. Never-

theless, geometric routing has not been deployed in real networks, due to two main practical

challenges. Firstly, it requires the nodes to be equipped with geometric coordinates. Secondly,

the fundamental algorithms (Face routing) require to have a planar sub graph of the under-

lying connectivity graph. But by the time of this writing, there is no algorithm to perform

the localization, unless ideal radio communication range is assumed. These challenges have

hindered the deployment of various proposed geometric routing algorithms.

Towards the applicability of algorithms on VRAC

In this thesis, we investigated a efficient localization scheme; namely VRAC, which provides

the nodes coordinates in a simple manner. VRAC is an anchor based localization scheme,

where anchors are places across the network, In chapter 4.2, we proposed a several geometric

routing algorithms over VRAC, considering different configurations and conditions in the

node distribution in the network. Chapter 4.4 presents a combined greedy face routing

algorithm, which provides delivery guarantees on UDG connectivity graphs. In chapter 4.7,

we investigated the criterion where greedy routing can be performed on VRAC. Finally we

establish a connection between a greedy embedding and a Schnyder drawing.

Algorithms, we designed have to rely on the Schnyder planar graph, which can only be com-

puted given an underlying UDG connectivity. Nevertheless, we emphasize the effectiveness

of VRAC compared to the most of the other proposals in the literature, where distributed

computations of coordinates are required. Therefore we believe that VRAC is an effective

solution to the problem of coordinates in geometric routing and further work on algorithms

77

Chapter 7. Conclusion

will lead to a practical deployment.

Applying greedy zone routing in practice

In chapter 5.2, we propose a scalable and robust greedy routing algorithm. This protocol relies

on the hypothesis that the geometry of a graph has to be in an abstract level, rather than in an

individual node level. It leads to more robust greedy embedding, where individual link failures

does not disturb the greedy routing. We base this protocol on a tree based greedy embedding

protocol, which is one of the most practical greedy routing protocols proposed [Herzen et al.,

2011]. We show that this scheme become impractical when the network is large, due to the

length of the coordinate.

Possible future work is to implement the greedy zone routing in a realistic setting, perhaps to

support IP routing. This can be compared with a RPL instance and investigate the scalability.

For instance, an IOT scenario such as Syndesi [Evangelatos et al., 2013] can be considered,

where a platform to control and monitor IOT devices over an IP network. A crucial question

to answer in this direction of research is, up to which number of nodes, RPL can provide the

required quality of service.

78

A Some Notions from Graph Theory

We consider a graph G(V ,E) with the set of vertices V and set of edges E , such that (u, v) ∈ E

such that u, v ∈V . In general, G(V ,E) is normally considered as an undirected graph, where

the direction of the edge is not insignificant. Subsequently, directed graphs are graphs where

the edge set consists of ordered pairs of vertices.

A.1 Paths and Connectivity

A path in a graph is an essential concept for routing in networks.

Definition 22 (Path). A path between two vertices u0 and uk−1 in a graph G(V ,E) is a sequence

of vertices < u0,u1, ...,uk−1 > such that (ui ,ui+1) ∈ E.

The length of the path is the number of edges in the path < u0,u1, ...,uk−1 >, which can also

be refered to as the distance between the nodes u0 and uk−1, which is denoted as d(u0,uk−1).

A path contains a cycle if it repeatedly contains a node.

Definition 23 (Shortest Path). A path between two vertices s and t in a graph G(V ,E) is the

shortest path if and only if, there is no other path between s and t such that d(s, t) is shorter.

Definition 24 (Diameter). Diameter D of a graph is the longest shortest path in a graph.

Connectivity is an important concept in graph theory, defined as below. A connected graph is a

graph where, between every pair of nodes there exists a simple path.

Definition 25. A graph is k-connected, if and only if the graph does not get disconnected after

removing k nodes.

A connected graph, can be referred to as 1− connected .

79

Appendix A. Some Notions from Graph Theory

A.2 Some special graphs

There are important classes of graphs, which are frequently used in modelling networks.

Definition 26 (Tree). T (V ,E) is a graph, where for each pair of nodes (u,v), there exist a unique

path between them.

In a tree, there is a unique node referred to as the root of the tree. With respect to the root of

the tree, all the other nodes are referred to as child nodes. The distance from the root node to a

given node is the depth of that node.

Definition 27 (Spanning tree). T (V ,E ′) of a graph G(V ,E) is a spanning tree of G, if it contains

all the nodes and E ′ ⊆ E.

Definition 28 (Directed acyclic graph). G(V ,E) is a graph, where there are no directed cycles

in it.

Another important class of graphs is triangulations (or maximal planar graphs). In a combina-

torial view point, a triangular graph can be defined as follows.

Definition 29 (Directed acyclic graph). G(V ,E) is a graph, where every bounded face is a

triangle

Note that an embedding of such a graph, can be drawn on the plane as a triangular drawing.

80

B Publications

Conferences and Workshops

1. Samarasinghe, K., Leone, P.: Geometric Routing with Minimal Local Geometry, In IEEE

International Conference on Parallel and Distributed Systems ICPADS 2012

2. Samarasinghe, K., Leone, P.: Combinatorial approach for geographic routing with

delivery guarantees, In International Conference on Sensor Networks SENSORNETS

2014

3. Leone, P, Samarasinghe, K.: Greedy Routing on Virtual Raw Anchor Coordinate (VRAC)

System, In IEEE International Conference on Distributed Computing in Sensor Systems

DCOSS 2016

4. Leone, P, Samarasinghe, K.: Every Schnyder Drawing is a Greedy Embedding,

arXiv:1609.04173v1

5. Samarasinghe, K. and Leone, P. Greedy Zone Routing: Scalable Routing in Large Scale

Wireless Ad-hoc Networks, In IEEE International Conference on Sensing, Communication

and Networking 2015 SECON 2015

6. Samarasinghe, K. and Leone, P. Greedy Zone Routing: Robust and Scalable Routing in

Wireless Ad-hoc Networks, In IEEE International Conference on Advanced Information

Networking and Applications AINA 2016

7. O. Evangelatos, K. Samarasinghe, J. Rolim: Syndesi: A Framework for Creating Per-

sonalized Smart Environments Using Wireless Sensor Networks, In IEEE International

Conference on Distributed Computing in Sensor Systems DCOSS 2013

8. O. Evangelatos, K. Samarasinghe, J. Rolim: Evaluating design approaches for smart

building systems, IEEE International Conference on Mobile Ad hoc and Sensor Systems

MASS 2013

Journals
1. Leone, P., Samarasinghe, K.: Geographic Routing on Virtual Raw Anchor Coordinate

Systems, Theoretical computer science ’15, Elsevier 2015

81

Bibliography

Patrizio Angelini, Fabrizio Frati, and Luca Grilli. An algorithm to construct greedy drawings of

triangulations. Journal of Graph Algorithms and Applications, 14(1):19–51, 2010.

James Aspnes, David Goldenberg, and Yang Yang. On the computational complexity of sensor

network localization. Algorithmic Aspects of Wireless Sensor Networks, pages 32–44, 2004.

Prosenjit Bose and Pat Morin. Online routing in triangulations. SIAM journal on computing,

33(4):937–951, 2004.

Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with guaranteed

delivery in ad hoc wireless networks. Wireless networks, 7(6):609–616, 2001.

Prosenjit Bose, Paz Carmi, and Stephane Durocher. Bounding the locality of distributed

routing algorithms. Distributed computing, 26(1):39–58, 2013.

Nirupama Bulusu, John Heidemann, and Deborah Estrin. Gps-less low-cost outdoor localiza-

tion for very small devices. IEEE personal communications, 7(5):28–34, 2000.

Mirela Ben Chen, Craig Gotsman, and Camille Wormser. Distributed computation of virtual

coordinates. In Proceedings of the twenty-third annual symposium on Computational

geometry, SCG’07, pages 210–219. ACM, 2007.

Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein. Introduction

to algorithms, volume 6. MIT press Cambridge, 2001.

Raghavan Dhandapani. Greedy drawings of triangulations. Discrete & Computational Geome-

try, 43(2):375–392, 2010.

Reinhard Diestel. Graph theory. Graduate texts in mathematics. Springer, New York, Berlin,

Paris, 1997. ISBN 0-387-98210-8.

Michael B Dillencourt. Realizability of delaunay triangulations. Information Processing Letters,

33(6):283–287, 1990.

83

Bibliography

Adam Dunkels et al. Efficient application integration in ip-based sensor networks. In Pro-

ceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in

Buildings, pages 43–48. ACM, 2009.

Simon Duquennoy, Olaf Landsiedel, and Thiemo Voigt. Let the tree bloom: scalable op-

portunistic routing with orpl. In Proceedings of the 11th ACM Conference on Embedded

Networked Sensor Systems, SENSYS’13, pages 2:1–2:14. ACM, 2013.

David Eppstein and Michael T Goodrich. Succinct greedy graph drawing in the hyperbolic

plane. In Graph Drawing, pages 14–25. Springer, 2009.

Orestis Evangelatos, Kasun Samarasinghe, and Jose Rolim. Evaluating design approaches for

smart building systems. In IEEE International Conference on Mobile Ad-Hoc and Sensor

Systems, MASS’12, pages 1–7. IEEE, 2012.

Orestis Evangelatos, Kasun Samarasinghe, and Jose Rolim. Syndesi: A framework for creating

personalized smart environments using wireless sensor networks. In IEEE International

Conference on Distributed Computing in Sensor Systems, DCOSS’13, pages 325–330. IEEE,

2013.

Qing Fang, Jie Gao, Leonidas J Guibas, Vin De Silva, and Li Zhang. Glider: Gradient landmark-

based distributed routing for sensor networks. In IEEE International Conference on Com-

puter Communications, INFOCOM’05, pages 339–350. IEEE, 2005.

Roland Flury, Sriram V Pemmaraju, and Roger Wattenhofer. Greedy routing with bounded

stretch. In IEEE Conference on Computer Communications, INFOCOM’09, pages 1737–1745.

IEEE, 2009.

Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien Ee, David Culler, Scott Shenker, and

Ion Stoica. Beacon vector routing: Scalable point-to-point routing in wireless sensornets. In

NSDI 2005. 2nd conference on Symposium on Networked Systems Design & Implementation-

Volume 2, NSDI’05, pages 329–342. USENIX Association, 2005.

Hannes Frey and Ivan Stojmenovic. On delivery guarantees and worst-case forwarding bounds

of elementary face routing components in ad hoc and sensor networks. Computers, IEEE

Transactions on, 59(9):1224–1238, 2010.

K Ruben Gabriel and Robert R Sokal. A new statistical approach to geographic variation

analysis. Systematic Biology, 18(3):259–278, 1969.

Michael T Goodrich and Darren Strash. Succinct greedy geometric routing in the euclidean

plane. In Algorithms and Computation, pages 781–791. Springer, 2009.

84

Bibliography

Zygmunt J Haas. A new routing protocol for the reconfigurable wireless networks. In Universal

Personal Communications Record, 1997. Conference Record., 1997 IEEE 6th International

Conference on, volume 2, pages 562–566. IEEE, 1997.

Xin He and Huaming Zhang. Schnyder greedy routing algorithm. In Theory and Applications

of Models of Computation, pages 271–283. Springer, 2010.

Xin He and Huaming Zhang. On succinct convex greedy drawing of 3-connected plane graphs.

In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms,

SODA’11, pages 1477–1486. SIAM, 2011.

Xin He and Huaming Zhang. A simple routing algorithm based on schnyder coordinates.

Theoretical Computer Science, 494:112–121, 2013.

Julien Herzen, Cedric Westphal, and Patrick Thiran. Scalable routing easy as pie: A practical

isometric embedding protocol. In 19th International Conference on Network Protocols, IEEE,

ICNP’09, pages 49–58. IEEE, 2011.

Rein Houthooft, Sahel Sahhaf, Wouter Tavernier, Filip De Turck, Didier Colle, and Mario

Pickavet. Robust geometric forest routing with tunable load balancing. In IEEE Conference

on Computer Communications, INFOCOM’15, pages 1382–1390. IEEE, 2015.

Florian Huc, Aubin Jarry, Pierre Leone, and José Rolim. Virtual raw anchor coordinates: a new

localization paradigm. In Algorithms for Sensor Systems, pages 161–175. Springer, 2010.

Florian Huc, Aubin Jarry, Pierre Leone, and Jose Rolim. Efficient graph planarization in sensor

networks and local routing algorithm. In IEEE International Conference on Distributed

Computing in Sensor Systems, DCOSS’12, pages 140–149. IEEE, 2012.

Mark L Huson and Arunabha Sen. Broadcast scheduling algorithms for radio networks. In

IEEE Military Communications Conference, volume 2 of MILCOM’95, pages 647–651. IEEE,

1995.

Brad Karp and Hsiang-Tsung Kung. Gpsr: Greedy perimeter stateless routing for wireless

networks. In Proceedings of the 6th annual international conference on Mobile computing

and networking, MOBICOM’00, pages 243–254. ACM, 2000.

Robert Kleinberg. Geographic routing using hyperbolic space. In IEEE International Conference

on Computer Communications, INFOCOM’07, pages 1902–1909. IEEE, 2007.

Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Worst-case optimal and average-case

efficient geometric ad-hoc routing. In Proceedings of the 4th ACM international symposium

on Mobile ad hoc networking & computing, pages 267–278. ACM, 2003.

85

Bibliography

Tom Leighton and Ankur Moitra. Some results on greedy embeddings in metric spaces. Discrete

& Computational Geometry, 44(3):686–705, 2010.

Pierre Leone and Kasun Samarasinghe. Greedy routing on virtual raw anchor coordinate (vrac)

system. In International Conference on Distributed Computing in Sensor Systems, DCOSS’16,

pages 52–58. IEEE, 2016.

Pierre Leone, Luminita Moraru, Olivier Powell, and Jose Rolim. Localization algorithm for

wireless ad-hoc sensor networks with traffic overhead minimization by emission inhibition.

In International Symposium on Algorithms and Experiments for Sensor Systems, Wireless

Networks and Distributed Robotics, ALGOSENSOR’06, pages 119–129. Springer, 2006.

Ben Leong, Barbara Liskov, and Robert Morris. Geographic routing without planarization. In

3rd Conference on Networked Systems Design & Implementation-Volume 3, NSDI’06, pages

25–25. USENIX Association, 2006.

Yujun Li, Yaling Yang, and Xianliang Lu. Rules of designing routing metrics for greedy, face,

and combined greedy-face routing. Mobile Computing, IEEE Transactions on, 9(4):582–595,

2010.

Kevin M Lillis and Sriram V Pemmaraju. On the efficiency of a local iterative algorithm to

compute delaunay realizations. In International Workshop on Experimental and Efficient

Algorithms, pages 69–86. Springer, 2008.

Takao Nishizeki and Md Saidur Rahman. Planar graph drawing, volume 12. World Scientific,

2004.

Christos H Papadimitriou and David Ratajczak. On a conjecture related to geometric routing.

In Algorithmic Aspects of Wireless Sensor Networks, pages 9–17. Springer, 2004.

Mathew Penrose. Random geometric graphs. Number 5. Oxford University Press, 2003.

Charles E Perkins and Elizabeth M Royer. Ad-hoc on-demand distance vector routing. In

Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications,

page 90. IEEE Computer Society, 1999.

Radia Perlman. An algorithm for distributed computation of a spanningtree in an extended

lan. In ACM SIGCOMM Computer Communication Review, volume 15, pages 44–53. ACM,

1985.

Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and Ion Stoica. Geo-

graphic routing without location information. In Proceedings of the 9th annual international

conference on Mobile computing and networking, MOBICOM’03, pages 96–108. ACM, 2003.

86

Bibliography

Kasun Samarasinghe and Pierre Leone. Geographic routing with minimal local geometry.

In IEEE International Conference on Parallel and Distributed Systems, ICPADS’12, pages

901–906. IEEE, 2012.

Kasun Samarasinghe and Pierre Leone. Combinatorial approach for geographic routing with

delivery guarantees. In International Conference on Sensor Networks, SENSORNETS’14,

pages 195–204, 2014.

Kasun Samarasinghe and Pierre Leone. Greedy zone routing: Scalable routing in large scale

wireless ad-hoc networks. In IEEE International Conference on Sensing, Communication,

and Networking, SECON’15, pages 172–174. IEEE, 2015.

Walter Schnyder. Planar graphs and poset dimension. Order, 5(4):323–343, 1989.

Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the First Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, pages 138–148, 1990.

Yi Shang and Wheeler Ruml. Improved mds-based localization. In IEEE International Con-

ference on Computer Communications, volume 4 of INFOCOM’04, pages 2640–2651. IEEE,

2004.

Yi Shang, Wheeler Ruml, Ying Zhang, and Markus PJ Fromherz. Localization from mere

connectivity. In Proceedings of the 4th ACM international symposium on Mobile ad hoc

networking & computing, pages 201–212. ACM, 2003.

Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained application protocol

(coap). Technical report, 2014.

Godfried T Toussaint. The relative neighbourhood graph of a finite planar set. Pattern

recognition, 12(4):261–268, 1980.

Cedric Westphal and Guanhong Pei. Scalable routing via greedy embedding. In IEEE Confer-

ence on Computer Communications, INFOCOM’09, pages 2826–2830. IEEE, 2009.

T. Winter, A. B. P. Thubert, T. Clausen, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, and J. Vasseur.

RPL: IPv6 Routing Protocol for Low Power and Lossy Networks,(RFC 6550). IETF ROLL WG,

Tech. Rep, 2012.

87

	Acknowledgements
	Abstract
	List of figures
	List of tables
	Introduction
	Thesis Overview

	Background
	Routing in Communication Networks
	Communication graph models
	Algorithms for route computation

	Scalable Routing in Wireless Ad-hoc Networks
	Routing in Wireless Ad-hoc Networks
	On-demand Routing
	Hierarchical Routing

	Local and Stateless Routing
	Geometric Routing
	Greedy Routing
	Face Routing

	Coordinate Systems for Geometric Routing
	Localization in wireless ad-hoc networks
	Virtual Coordinate Systems
	Greedy Embeddings

	Geometric Routing on Virtual Raw Anchor Coordinates
	Why another coordinate system?
	Virtual Raw Anchor Coordinate System
	Graph planarization on virtual raw anchor coordinate system
	Combined greedy face routing with delivery guarantees
	Greedy routing primitives
	Face routing primitives: Combinatorial approach
	Face switching

	Face routing primitives : Geometric approach
	Numerical Validation

	Greedy Routing over Virtual Raw Anchor Coordinates
	Schnyder Characterization and Saturated Graph
	Characterization of Greedy Paths
	Routing in Maximal Planar Graph

	Every Schnyder Drawing is a Greedy Embedding
	Schnyder Drawing
	Schnyder drawings and saturated graphs

	Conclusion

	Robust and Scalable Greedy Routing with Greedy Zone Routing
	Robust and Scalable Greedy Routing
	Scalability
	Robustness
	Zone Level Geometry

	Greedy Zone Routing
	Overview of Greedy Zone Routing
	Greedy Zone Embedding
	Zone Neighborhood Discovery
	Routing over Greedy Zones

	Evaluation
	Routing Metrics
	Control Overhead

	Conclusion

	Internet of Things Framework over RPL Routing
	Routing for low power lossy networks: RPL routing
	A service oriented framework for Internet of Things: Syndesi
	Architecture of Syndesi
	Layered overview of Syndesi

	Proof of Concept
	Description of the environment
	Description of scenarios

	Conclusion

	Conclusion
	Some Notions from Graph Theory
	Paths and Connectivity
	Some special graphs

	Publications
	Bibliography

