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Abstract

This chapter provides an econometric methodology for inference in large-dimensional conditional

factor models in finance. Changes in the business cycle and asset characteristics induce time variation

in factor loadings and risk premia to be accounted for. The growing trend in the use of disaggregated

data for individual securities motivates our focus on methodologies for a large number of assets. The

beginning of the chapter outlines the concept of approximate factor structure in the presence of condi-

tional information, and develops an arbitrage pricing theory for large-dimensional factor models in this

framework. Then we distinguish between two different cases for inference depending on whether factors

are observable or not. We focus on diagnosing model specification, estimating conditional risk premia,

and testing asset pricing restrictions under increasing cross-sectional and time series dimensions. At the

end of the chapter, we review some of the empirical findings and contrast analysis based on individual

stocks and standard sets of portfolios. We also discuss the impact on computing time-varying cost of

equity for a firm, and summarize differences between results for developed and emerging markets in an

international setting.

JEL Classification: C12, C13, C23, C51, C52 , G12.

Keywords: large panel, factor model, conditional information, risk premium, asset pricing, emerging

markets.

aUniversità della Svizzera italiana (USI Lugano) and Swiss Finance Institute, b European Commission, Joint Research Centre,
cUniversity of Geneva and Swiss Finance Institute.
*Acknowledgements: This chapter is a working draft for eventual publication in the Handbook of Econometrics, Vol. 7. We gratefully acknowledge the financial support of

the Swiss National Science Foundation (Prodoc project PDFM11-114533, NCCR FINRISK and grant 105218-162633). We thank L. Barras, I. Chaieb, J. Fan, B. Kelly, H.

Langlois, Y. Liao, M. Pelger, S. Pruitt, and M. Weidner for helpful comments.*Disclaimer: The content of this article does not reflect the official opinion of the European

Commission. Responsibility for the information and views expressed therein lies entirely with the authors.

1



1 Introduction

The objective of this chapter is to provide an econometric methodology for inference in conditional factor

models in finance. We focus on diagnosing model specification, estimating conditional risk premia, and

testing asset pricing restrictions under increasing cross-sectional and time series dimensions.

Financial and macroeconomic variables influence the risk-return trade-off. Conditional linear factor

models aim at capturing their time-varying influence in a simple setting (see e.g. Shanken (1990), Cochrane

(1996), Ferson and Schadt (1996), Ferson and Harvey (1991, 1999), Lettau and Ludvigson (2001), Petkova

and Zhang (2005)). Time variation in risk biases time-invariant estimates of alphas and betas, and therefore

asset pricing test conclusions (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth et al.

(2011)). Ghysels (1998) discusses the pros and cons of modeling time-varying betas.

Risk premia measure financial compensation asked by investors for bearing systematic risk. The

workhorse to estimate equity risk premia in a linear multi-factor setting is the two-pass cross-sectional

regression method developed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973). A

series of papers address its large and finite sample properties for linear factor models with time-invariant co-

efficients, see e.g. Shanken (1985, 1992), Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan,

Robotti and Shanken (2013), and the review paper of Jagannathan, Skoulakis and Wang (2009). That early

literature did not formally address statistical inference for equity risk premia in conditional linear factor

models despite its empirical relevance.

In this chapter, we study how we can infer the time-varying behaviour of equity risk premia from large

stock returns databases under conditional linear factor models. Our approach is inspired by the recent trend

in macro-econometrics and forecasting methods trying to extract cross-sectional and time-series information

simultaneously from large panels (see e.g. Stock and Watson (2002a,b), Bai (2003, 2009), Bai and Ng

(2002, 2006), Forni, Hallin, Lippi and Reichlin (2000, 2004, 2005), Pesaran (2006)). Ludvigson and Ng

(2007, 2009) exemplify this promising route when studying bond risk premia. Connor, Hagmann, and

Linton (2012) show that large cross-sections exploit data more efficiently in a semiparametric characteristic-

based factor model of stock returns. The theoretical framework underlying the Arbitrage Pricing Theory

(APT) also inspires our approach relying on individual stocks returns. In this setting, approximate factor

structures with nondiagonal error covariance matrices (Chamberlain and Rothschild (1983)) answer the
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potential empirical mismatch of exact factor structures with diagonal error covariance matrices underlying

the original APT of Ross (1976). Under weak cross-sectional dependence among idiosyncratic error terms,

such approximate factor models generate no-arbitrage restrictions in large economies where the number of

assets grows to infinity. This chapter develops an econometric methodology tailored to the APT framework.

Indeed, we let the number of assets grow to infinity mimicking the large economies of financial theory.

As already mentioned, empirical work in asset pricing vastly relies on linear multi-factor models with

either time-invariant coefficients (unconditional models) or time-varying coefficients (conditional models).

The factor structure is often based on observable variables (empirical factors) and supposed to be rich enough

to extract systematic risks while idiosyncratic risk is left over to the error term. Linear factor models are

rooted in the Arbitrage Pricing Theory (Ross (1976), Chamberlain and Rothschild (1983)) or come from a

loglinearization of nonlinear consumption-based models (Campbell (1996)). A central and practical issue is

to determine whether there are one or more factors omitted in the chosen specification. If the set of observ-

able factors is correctly specified, the errors are weakly cross-sectionally correlated, namely the covariance

matrix of the error terms in the factor model has a fastly vanishing largest eigenvalue. If the set of observable

factors is not correctly specified, the no-arbitrage restrictions derived from APT do not hold, and the risk

premia estimated by the two-pass regression approach are meaningless. Even if the omitted factors are not

priced, i.e., their associated risk premia are nil, direct computations of the limits of first pass and second

pass estimators under misspecification show that second pass estimates do not converge to the risk premia

of the priced factors, and that biases on betas and risk premia do not compensate each other. Besides, since

the no arbitrage restrictions do not hold, we cannot simply say that the risk premia are the expected factor

returns for models with traded factors. Hence detecting an omitted factor is also important in that case to

produce correct expected excess returns from the no arbitrage restrictions. Given the large menu of factors

available in the literature (the factor zoo of Cochrane (2011), see also Harvey et al. (2016), Harvey and Liu

(2016)), we need a simple diagnostic criterion to decide whether we can feel comfortable with the chosen

set of observable factors before proceeding further in the empirical analysis of large cross sectional equity

data sets under the APT setting. For example, if the factor model passes the diagnostic, and we reject that

alphas are zero using a GRS-type statistic (Gibbons et al. (1989)), it will not be because of an omitted factor.

This chapter also aims at providing with such a diagnostic criterion.
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This outline of this chapter is as follows. In Section 2, we consider a general framework of conditional

linear factor model for asset returns in large economies. Section 3 presents inference in models with ob-

servable factors. Those two sections are largely inspired by Gagliardini, Ossola, Scaillet (2016, GOS) and

Gagliardini, Ossola, Scaillet (2019, GOS2). We focus on diagnosing model specification, estimating con-

ditional risk premia, and testing asset pricing restrictions under increasing cross-sectional and time series

dimensions. In Section 4, we investigate models with unobservable factors. We look at empirical findings

in Section 5. There we contrast analysis based on individual stocks and standard sets of portfolios. We

also summarize differences between results for developed and emerging markets in an international setting.

Section 5 gathers concluding remarks.

2 Large dimensional factor models

In this section, we consider a conditional linear factor model with time-varying coefficients. We work in

a multi-period economy (Hansen and Richard (1987)) under an approximate factor structure (Chamberlain

and Rothschild (1983)) with a continuum of assets as in GOS. Such a construction is close to the setting ad-

vocated by Al-Najjar (1995, 1998, 1999a) in a static framework with an exact factor structure. He discusses

several key advantages of using a continuum economy in arbitrage pricing and risk decomposition. A key

advantage is robustness of factor structures to asset repackaging (Al-Najjar (1999b); see GOS for a proof).

Let Ft, with t = 1, 2, ..., be the information available to investors. Without loss of generality, the

continuum of assets is represented by the interval [0, 1]. The excess returns Rt (γ) of asset γ ∈ [0, 1] at

dates t = 1, 2, ... satisfy the conditional linear factor model:

Rt(γ) = at(γ) + bt(γ)
′
ft + εt(γ), (1)

where vector ft gathers the values ofK factors at date t. The intercept at(γ) and factor sensitivities bt(γ) are

Ft−1-measurable. The error terms εt (γ) have mean zero and are uncorrelated with the factors conditionally

on informationFt−1, and satisfy a weak cross-sectional dependence condition in the form of an upper bound

on the largest eigenvalue of the error variance-covariance matrix (Assumption APR.3 in GOS). Moreover,

we exclude asymptotic arbitrage opportunities in the economy: there are no portfolios that approximate

arbitrage opportunities when the number of assets increases. In this setting, GOS show that the following
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asset pricing restriction holds:

at(γ) = bt(γ)′νt, for almost all γ ∈ [0, 1], (2)

almost surely in probability, where random vector νt ∈ RK is unique and is Ft−1-measurable. The asset

pricing restriction (2) is equivalent to E [Rt(γ)|Ft−1] = bt(γ)′λt, where λt = νt+E [ft|Ft−1] is the vector

of the conditional risk premia.

To have an empirically workable version of Equations (1) and (2), we define how the conditioning

information is generated and how the model coefficients depend on it via simple functional specifications.

The conditioning information Ft−1 contains Zt−1 and Zt−1(γ), for all γ ∈ [0, 1], where the vector of lagged

instruments Zt−1 ∈ Rp is common to all stocks, the vector of lagged instruments Zt−1(γ) ∈ Rq is specific

to stock γ, and Zt = {Zt, Zt−1, ...}. Vector Zt−1 may include the constant and past observations of the

factors and some additional variables such as macroeconomic variables. Vector Zt−1(γ) may include past

observations of firm characteristics and stock returns. To end up with a linear regression model, we assume

that: (i) the vector of factor loadings bt (γ) is a linear function of lagged instruments Zt−1 (Shanken (1990),

Ferson and Harvey (1991), Dumas and Solnik (1995)) and Zt−1 (γ) (Avramov and Chordia (2006)); (ii) the

vector of risk premia λt is a linear function of lagged instruments Zt−1 (Dumas and Solnik (1995), Cochrane

(1996), Jagannathan and Wang (1996)); (iii) the conditional expectation of ft given the information Ft−1

depends on Zt−1 only and is linear (as e.g. if Zt follows a Vector Autoregressive (VAR) model of order 1).

Hence:

bt(γ) = B(γ)Zt−1 + C(γ)Zt−1(γ), λt = ΛZt−1, E(ft|Ft−1) = FZt−1, (3)

for some unknown parameter matrices B(γ), C(γ), Λ and F .

To ensure that cross-sectional limits exist and are invariant to reordering of the assets, we introduce a

sampling scheme as in GOS. We formalize it so that observable assets are random draws from an underlying

population (Andrews (2005)). In particular, we rely on a sample of n assets by randomly drawing i.i.d.

indices γi from the population according to a probability distribution G on [0, 1]. For any n, T ∈ N,

the excess returns are Ri,t = Rt(γi). Similarly, let ai,t = at(γi) and bi,t = bt (γi) be the coefficients,

εi,t = εt(γi) be the error terms, and Zi,t = Zt(γi) be the stock specific instruments. By random sampling,

we get a random coefficient panel model (e.g. Hsiao (2003), Chapter 6). Such a formalisation is key to
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reconcile finance theory and econometric modelling. Without drawings, cross-sectional averages such as
1

n

∑
i

bi correspond to determinist sequences since the bis are then parameters. Working with the standard

arbitrage pricing theory with approximate factor models has three issues as discussed in GOS. First, cross-

sectional limits depend in general on the ordering of the financial assets, and there is no natural ordering

between assets (firms). Second, we cannot exploit either a law of large numbers to guarantee existence of

those limits, nor a central limit theorem to get distributional results. Third, the asset pricing restrictions

derived under no arbitrage are not testable, the so-called Shanken critique (Shanken (1982)).

In available datasets, we do not observe asset returns for all firms at all dates due to entry and exit from

the panel. Thus, we account for the unbalanced nature of the panel through a collection of indicator variables

Ii,t, for any asset i at time t. We define Ii,t = 1 if the return of asset i is observable at date t, and 0 otherwise

(Connor and Korajczyk (1987)). In GOS and GOS2, we assume independence between the observability

and return generating processes conditionally on observed variables, which amounts to a missing-at-random

hypothesis (Rubin (1976)). A more general assumption would imply model nonlinearities.

Through appropriate redefinitions of the regressors and coefficients, GOS show that we can rewrite the

model for Equations (1) and (2) as a generic random coefficient panel model:

Ri,t = x′i,tβi + εi,t, (4)

where the regressor xi,t =
(
x′1,i,t, x

′
2,i,t

)′
has dimension d = d1 + d2 and includes vectors x1,i,t =(

vech [Xt]
′ , Z ′t−1 ⊗ Z ′i,t−1

)′
∈ Rd1 and x2,i,t =

(
f ′t ⊗ Z ′t−1, f

′
t ⊗ Z ′i,t−1

)′
∈ Rd2 with d1 = p(p+1)/2+

pq and d2 = K(p + q). In vector x2,i,t, the first components with common instruments take the interpreta-

tion of scaled factors (Cochrane (2005)), while the second components do not since they depend on i. The

symmetric matrix Xt = [Xt,k,l] ∈ Rp×p is such that Xt,k,l = Z2
t−1,k, if k = l, and Xt,k,l = 2Zt−1,kZt−1,l,

otherwise, k, l = 1, . . . , p, where Zt,k denotes the kth component of the vector Zt. The vector-half operator

vech [·] stacks the elements of the lower triangular part of a p × p matrix as a p (p+ 1) /2 × 1 vector (see

Chapter 2 in Magnus and Neudecker (2007) for properties of this matrix tool). The vector of coefficients βi

is a function of asset specific and common instrument parameters defining the dynamics of ai,t and bi,t in (2)

and (3). We give their explicit forms in Section 3.2 where we first need them. Those forms are compatible
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with restrictions from asymptotic no arbitrage. In matrix notation, for any asset i, we have

Ri = Xiβi + εi, (5)

where Ri and εi are T × 1 vectors. Regression (4) contains both explanatory variables that are common

across assets (scaled factors) and asset-specific regressors. It includes models with time-invariant coeffi-

cients as a particular case. In such a case, the regressor reduces to xt = (1, f ′t)
′ and is common across

assets, and the regression coefficient vector is βi = (ai, b
′
i)
′ of dimension d = K + 1.

3 Inference in models with observable factors

In Section 3.1, we first develop the diagnostic criterion for omitted factors before looking at the determi-

nation of the number of omitted factors. In Section 3.2, we discuss how to estimate risk premia via the

two-pass regression methodology. We dedicate Section 3.3 to testing asset pricing restrictions. Through-

out this chapter we assume a joint asymptotics in which the cross-sectional dimension n and time series

dimension T grow such that:

n, T →∞, n = O(T 1/γ), T = O(nγ̄), (6)

with 0 < γ ≤ γ̄ ≤ ∞. Our asymptotics accommodate, among others, schemes such that T is much smaller

than n (i.e., γ̄ < 1), or n and T are comparable (γ = γ̄ = 1). We omit technical details and refer the reader

to GOS and GOS2 which give all required assumptions and proofs.

3.1 Model diagnostic

In order to build the diagnostic criterion for the set of observable factors, we consider the following rival

models:

M1 : the linear regression model (4), where the errors (εi,t) are weakly cross-sectionally dependent,

and

M2 : the linear regression model (4), where the errors (εi,t) satisfy a factor structure.
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Under modelM1, the observable factors fully capture the systematic risk, and the error terms do not feature

pervasive forms of cross-sectional dependence (see GOS2 for a formal definition). This zero-factor case in

the error terms should hold when we choose factors and instruments in a time-varying setting to build the

variables xi,t, so that their explanatory power for excess returns achieves weak cross-sectional correlation

in the noise terms. Working with weak cross-sectional dependence, namely an approximate factor structure,

avoids the stronger assumption of zero cross-sectional correlations, namely an exact factor structure. Under

modelM2, the following error factor structure holds

εi,t = θ′iht + ui,t, (7)

where the m × 1 vector ht includes unobservable (i.e., latent or hidden) factors, and the ui,t are weakly

cross-sectionally correlated. The latent factors may include scaled factors to cover latent time-varying factor

loadings with common instruments. Such scaled factors may come from mispecification of the functional

form of the time-varying betas. Since the factors ht are unobservable by definition, we cannot tell from

the output of the diagnostic criterion whether they are pure or scaled factors. We cannot allow for latent

time-varying factor loadings with stock-specific instruments in our setting because of identification issues

in disentangling time-varying loadings and latent factors. This lack of identification means that we cannot

estimate a generic time-varying unobservable structure from the spectral properties of a covariance matrix

alone. A recent proposal in the direction of a functional specification for a time-varying θi,t is the Instru-

mented Principal Components Analysis (IPCA) of Kelly et al. (2017, 2019), which we review in Section

4 together with other inference approaches for latent factor models with time-varying betas. IPCA works

with linear loading specifications, with balanced panels, and without observable factors. The m × 1 vector

θi corresponds to the factor loadings, and the number m of common factors is assumed unknown. In vector

notation, we have:

εi = Hθi + ui, (8)

where H is the T × m matrix of unobservable factor values, and ui is a T × 1 vector. In Equation (7),

the θis and hts are also called interactive fixed effects in the panel literature (Pesaran (2006), Bai (2009),

Moon and Weidner (2015)). King et al. (1994) use them to capture the correlation between the unanticipated

innovations in observable descriptors of economic performance (e.g. industrial production, inflation, etc.)
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and stock returns. Gobillon and Magnac (2016) use them to get treatment effect estimates in regional policy

evaluation and characterize the generic bias induced by the popular difference-in-differences procedure. To

diagnose the absence of omitted interactive effects is clearly important when applying the difference-in-

differences procedure.

To compute the diagnostic criterion that checks whether the error terms are weakly cross-sectionally

correlated or share at least one common factor, we estimate the generic panel model (4) by OLS applied

asset by asset, and we get estimators

β̂i = Q̂−1
x,i

1

Ti

∑
t

Ii,txi,tRi,t, i = 1, ..., n, (9)

where Q̂x,i =
1

Ti

∑
t

Ii,txi,tx
′
i,t. We get the residuals ε̂i,t = Ri,t − x′i,tβ̂i, where ε̂i,t is observable only if

Ii,t = 1. In available panels, the random sample size Ti for asset i can be small, and the inversion of matrix

Q̂x,i can be numerically unstable. To avoid unreliable estimates of βi, we apply a trimming approach as in

GOS. We define 1χi = 1
{
CN

(
Q̂x,i

)
≤ χ1,T , τi,T ≤ χ2,T

}
, whereCN

(
Q̂x,i

)
=

√
µ1

(
Q̂x,i

)
/µd

(
Q̂x,i

)
is the condition number of the d× d matrix Q̂x,i, µ1

(
Q̂x,i

)
and µd

(
Q̂x,i

)
are its largest, resp. its smallest,

eigenvalue and τi,T = T/Ti. We assume that the two sequences χ1,T > 0 and χ2,T > 0 diverge asymp-

totically. The first trimming condition {CN
(
Q̂x,i

)
≤ χ1,T } keeps in the cross-section only assets for

which the time-series regression is not too badly conditioned. A too large value of CN
(
Q̂x,i

)
indicates

multicollinearity problems and ill-conditioning (Belsley et al. (2004), Greene (2008)). The second trimming

condition {τi,T ≤ χ2,T } keeps in the cross-section only assets for which the time series is not too short. We

also use both trimming conditions in the proofs of the asymptotic results.

We consider the following diagnostic criterion:

ξ = µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− g(n, T ), (10)

where the vector ε̄i of dimension T gathers the values ε̄i,t = Ii,tε̂i,t, the penalty g(n, T ) is such that

g(n, T ) → 0 and C2
n,T g(n, T ) → ∞, when n, T → ∞, for C2

n,T = min{n, T}. Bai and Ng (2002)

consider several simple potential candidates for the penalty g(n, T ). In vector ε̄i, the unavailable resid-

uals are replaced by zeros. Then we use the following model selection rule: we select M1 if ξ < 0,

and we select M2 if ξ > 0, since (a) Pr (ξ < 0 | M1) → 1, and (b) Pr (ξ > 0 | M2) → 1, when
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n, T → ∞ under the asymptotics (6) with γ̄ ≤ 1. This characterizes an asymptotically valid model selec-

tion rule, which treats both models symmetrically. The model selection rule is valid since (a) and (b) imply

Pr (M1|ξ < 0) =Pr (ξ < 0|M1)Pr (M1) [Pr (ξ < 0|M1)Pr (M1) + Pr (ξ < 0|M2)Pr (M2)]−1

→ 1, as n, T → ∞, by Bayes Theorem. Similarly, we have Pr (M2|ξ > 0)→ 1. The diagnostic crite-

rion (10) does not deliver a testing procedure since we do not use a critical region based on an asymptotic

distribution and a chosen significance level. The zero threshold corresponds to an implicit critical value

yielding a test size asymptotically equal to zero since Pr(ξ < 0|M1) → 1. The selection procedure is

conservative in diagnosing zero factor by construction. We do not allow type I error underM1 asymptot-

ically, and really want to ensure that there is no omitted factor as required in the APT setting. This also

means that we will not suffer from false discoveries related to a multiple testing problem (see e.g. Barras

et al. (2010), Harvey et al. (2016)) in our empirical application where we consider a large variety of factor

models on monthly and quarterly data. However, a possibility to achieve p-values is to use a randomisation

procedure as in Trapani (2018) (see Bandi and Corradi (2014) and Corradi and Swanson (2006) for recent

applications in econometrics). This type of procedure controls for an error of the first type, conditional on

the information provided by the sample and under a randomness induced by auxiliary experiments.

The proof of the validity of the selection rule in GOS2 shows that the largest eigenvalue in (10) vanishes

at a faster rate than the penalization term under M1 when n and T go to infinity. Under M1, we expect

a vanishing largest eigenvalue because of a lack of a common signal in the error terms. The negative

penalizing term −g(n, T ) dominates in (10), and this explains why we select the first model when ξ is

negative. On the contrary, the largest eigenvalue remains bounded from below away from zero underM2

when n and T go to infinity. UnderM2, we have at least one non vanishing eigenvalue because of a common

signal due to omitted factors. The largest eigenvalue dominates in (10), and this explains why we select the

second model when ξ is positive. We can interpret the criterion (10) as the adjusted gain in fit including a

single additional (unobservable) factor in modelM1. We can rewrite (10) as ξ = SS0 − SS1 − g (n, T ),

where SS0 =
1

nT

∑
i

∑
t

1χi ε̄
2
i,t is the sum of squared errors and SS1 = min

1

nT

∑
i

∑
t

1χi (ε̄i,t − θiht)2 ,

where the minimization is w.r.t. the vectors H ∈ RT of factor values and Θ = (θ1, ..., θn)′ ∈ Rn of

factor loadings in a one-factor model, subject to the normalization constraint
H ′H

T
= 1. Indeed, the largest
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eigenvalue µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
corresponds to the difference between SS0 and SS1. Furthermore, the

criterion ξ is equal to the difference of the penalized criteria for zero- and one-factor models defined in

Bai and Ng (2002) applied on the residuals. Indeed, ξ = PC (0)− PC (1) , where PC (0) = SS0, and

PC (1) = SS1 + g (n, T ) .

The proof of the validity of the selection rule in GOS2 exploits an asymptotic upper bound on the largest

eigenvalue of a symmetric matrix based on similar arguments as in Geman (1980), Yin et al. (1988), and

Bai and Yin (1993) without exploiting distributional results from random matrix theory valid when n is

comparable with T . This exemplifies a key difference with the proportional asymptotics used in Onatski

(2010) or Ahn and Horenstein (2013) for balanced panel without observable factors. The asymptotic setting

in GOS2 accommodates the condition T/n = o (1) by having γ̄ < 1 in (6), which agrees with the “large n,

small T ” case that we face in empirical applications (for example, ten thousand individual stocks monitored

over forty-five years of either monthly, or quarterly, returns). Another key difference of GOS2 w.r.t. the

rest of the literature is the handling of unbalanced panels. We need to address explicitly the presence of the

observability indicators Ii,t and the trimming devices 1χi in the proofs of the asymptotic results.

The recent literature on the properties of the two-pass regressions for fixed n and large T shows that the

presence of useless factors (Kan and Zhang (1999a,b), Gospodinov et al. (2014)) or weak factor loadings

(Kleibergen (2009)) does not affect the asymptotic distributional properties of factor loading estimates, but

alters the ones of the risk premia estimates. Useless factors have zero loadings, and weak loadings drift to

zero at rate 1/
√
T . The vanishing rate of the largest eigenvalue of the empirical cross-sectional covariance

matrix of the residuals does not change if we face useless factors or weak factor loadings in the observable

factors underM1. The same remark applies underM2. Hence the selection rule remains the same since

the probability of taking the right decision still approaches 1. If we have a number of useless factors or

weak factor loadings strictly smaller than the number m of the omitted factors under M2, this does not

impact the asymptotic rate of the diagnostic criterion. If we only have useless factors in the omitted factors

under M2, we face an identification issue. We cannot distinguish such a specification from M1 since it

corresponds to a particular approximate factor structure. Again the selection rule remains the same since the

probability of taking the right decision still approaches 1. In a “large n, large T " setting, the estimates of

the risk premia are unchanged since we keep an approximate factor structure and risk remuneration is only
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attached to the strong factors in an APT framework. Here the presence of weak factors affects the pattern

of the weak cross-sectional dependence and this only impacts variance estimator obtained by thresholding

in the next section. On the contrary, if we have weak factors among the observable factors, Anatolyev and

Mikusheva (2018) show that the conventional two-pass estimation procedure delivers inconsistent estimates

of the risk premia. In the time-invariant case, they propose a modified procedure based on sample-splitting

instrumental variables estimation at the second pass, and examine its asymptotic distribution.

Several papers in the empirical asset pricing literature focus on distinguishing between useful, useless

and redundant factors starting from different points of view. Bryzgalova (2016) develops a shinkrage-based

estimator that identify the weak factors (i.e., factors that do not correlate with the assets) and ensure con-

sistent and normality to the estimates of the risk premia. Feng et al. (Forthcoming, 2019) propose a model-

selection method to evaluate the risk prices of observable factors. Freyberger et al. (Forthcoming, 2019)

propose a nonparametric method to determine which firm characteristics provide incremental information

for the cross section of expected returns. Kozak et al. (2018) use model selection techniques to identify

characteristics portfolios with a good explanatory power for returns. These papers do not deal with the

identification of systematic factors for which the errors are weakly cross-sectionally correlated. The model

selection procedure is not able to answer at our key question on the presence of omitted factors in the chosen

specification.

In the previous lines, we have studied a diagnostic criterion to check whether the error terms are weakly

cross-sectionally correlated or share at least one unobservable common factor. Hereafter we aim at answer-

ing: do we have one, two, or more omitted factors? The design of the diagnostic criterion to check whether

the error terms share exactly k unobservable common factors or share at least k + 1 unobservable common

factors follows the same mechanics. We consider the following rival models:

M1 (k) : the linear regression model (4), where the errors (εi,t) satisfy a factor structure

with exactly k unobservable factors,

and

M2(k) : the linear regression model (4), where the errors (εi,t) satisfy a factor structure

with at least k + 1 unobservable factors.
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The above definitions yield M1 = M1 (0) and M2 = M2 (0). The diagnostic criterion exploits the

(k + 1)th largest eigenvalue of the empirical cross-sectional covariance matrix of the residuals:

ξ(k) = µk+1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− g(n, T ). (11)

As discussed in Ahn and Horenstein (2013) (see also Onatski (2013)) for balanced panels, we can

rewrite (11) as ξ(k) = SSk − SSk+1 − g(n, T ) where SSk = min
1

nT

∑
i

∑
t

1χi
(
ε̄i,t − θ′iht

)2 and the

minimization is w.r.t.H ∈ RT×k and Θ = (θ1, ..., θn)′ ∈ Rn×k. The criterion ξ(k) is equal to the difference

of the penalized criteria for k and (k + 1)-factor models defined in Bai and Ng (2002) applied on the

residuals. Indeed, ξ(k) = PC(k) − PC(k + 1), where PC(k) = SSk + kg(n, T ) and PC(k + 1) =

SSk+1 + (k + 1)g(n, T ).

The following model selection rule extends the previous one. We select M1(k) if ξ(k) < 0, and we

selectM2(k) if ξ(k) > 0, since (a) Pr[ξ(k) < 0|M1(k)] → 1 and (b) Pr[ξ(k) > 0|M2(k)] → 1, when

n, T →∞.

The proof of the validity of that second selection rule in GOS2 is more complicated than the proof

of the first one. We need additional arguments to derive an asymptotic upper bound when we look at the

(k + 1)th eigenvalue of a symmetric matrix, and this further complexity explains why we have developed

the first selection rule as a special case. We rely on the Courant-Fischer min-max theorem and Courant-

Fischer formula which represent eigenvalues as solutions of constrained quadratic optimization problems.

We cannot directly exploit standard inequalities or bounds associated to a norm when we investigate the

asymptotic behavior of the spectrum beyond its largest element. We know that the largest eigenvalue µ1(A)

of a symmetric positive semi-definite matrix A is equal to its operator norm. There is no such useful norm

interpretation for the smaller eigenvalues µk(A), k ≥ 2. We cannot directly exploit standard inequalities or

bounds associated to a norm when we investigate the asymptotic behavior of the spectrum beyond its largest

element. We cannot either exploit distributional results from random matrix theory since we also allow for

T/n = o(1). The slow convergence rate
√
T for the individual estimates β̂i also complicates the proof. In

the presence of homogeneous regression coefficients βi = β for all i, the estimate β̂ in Bai (2009) and Moon

and Weidner (2015) has a fast convergence rate
√
nT . In that case, controlling for the estimation error in

ε̂i,t = εi,t + x′i,t(β − β̂) is straightforward due to the small asymptotic contribution of (β − β̂). Hence
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our results also apply to diagnose the absence of omitted interactive effects before applying a difference-in-

differences procedure to avoid bias. The approach of Onatski (2010) requires the convergence of the upper

edge of the spectrum (i.e., the first k largest eigenvalues of the covariance matrix, with k/T = o(1)) to

a constant, while the approach of Ahn and Horenstein (2013) requires an asymptotic lower bound on the

eigenvalues. Extending these approaches for residuals of an unbalanced panel when T/n = o(1) looks

challenging.

We can use the results of the selection rule in order to estimate the number of unobservable factors. It

suffices to choose the minimum k such that ξ(k) < 0. GOS2 state the consistency of that estimate even in

the presence of a degenerate distribution of the eigenvalues, and without needing to give conditions on the

growth rate of the maximum possible number kmax of factors as in Onatski (2010) and Ahn and Horenstein

(2013). We believe that this is a strong advantage since there are many possible choices for kmax and the

estimated number of factors is sometimes sensitive to the choice of kmax (see the simulation results in

those papers).

3.2 Estimation of conditional risk premia

In the linear regression (4), the coefficients associated to x1,i,t and x2,i,t are βi =
(
β′1,i, β

′
2,i

)′
such that

β1,i =
((
Np

[
(Λ− F )′ ⊗ Ip

]
vec

[
B′i
])′
,
([

(Λ− F )′ ⊗ Iq
]
vec

[
C ′i
])′)′

, Np =
1

2
D+
p (Wp + Ip2),

β2,i =
(
vec

[
B′i
]′
, vec

[
C ′i
]′)′

, (12)

where parameter matrices Bi = B(γi), Ci = C(γi), Λ and F are defined in (3). The vector operator vec [·]

stacks the elements of a m × n matrix as a mn × 1 vector. The matrix D+
p is the p(p + 1)/2 × p2 Moore-

Penrose inverse of the duplication matrix Dp, such that vech [A] = D+
p vec [A] for any matrix A ∈ Rp×p

(see Chapter 3 in Magnus and Neudecker (2007)). The commutation matrix Wp,q is such that vec[A′] =

Wp,qvec[A], for any matrix A ∈ Rp×q, and Wp := Wp,p. When Zt = 1 and Zi,t = 0, we have p = 1

and q = 0, and the model in (4) reduces to a factor model with time-invariant coefficients and regressor xt

common across assets (scaled factors).

In Equations (12), the d1×1 vector β1,i is a linear transformation of the d2×1 vector β2,i. This clarifies

that the asset pricing restriction (2) implies a constraint on the distribution of the random vector βi via its
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support. The coefficients of the linear transformation depend on matrix Λ−F . For the purpose of estimating

the loading coefficients of the risk premia in matrix Λ, we rewrite the parameter restrictions as:

β1,i = β3,iν, ν = vec
[
Λ′ − F ′

]
, β3,i =

([
Np

(
B′i ⊗ Ip

)]′
,
[
Wp,q

(
C ′i ⊗ Ip

)]′)′
. (13)

Furthermore, we can relate the d1 ×Kp matrix β3,i to the vector β2,i (see GOS):

vec
[
β′3,i
]

= Jaβ2,i, (14)

where the d1pK × d2 block-diagonal matrix of constants Ja is given by Ja =

 J1 0

0 J2


with diagonal blocks J1 = Wp(p+1)/2,pK (IK ⊗ [(Ip ⊗Np) (Wp ⊗ Ip) (Ip ⊗ vec [Ip])]) and

J2 = Wpq,pK (IK ⊗ [(Ip ⊗Wp,q) (Wp,q ⊗ Ip) (Iq ⊗ vec [Ip])]). The link (14) is instrumental in deriving

the asymptotic results. In the time-invariant setting, β1,i = ai, β2,i = β3,i = bi, and the matrix J is equal to

IK . Hence, Equations (13) and (14) in the time-varying case are the counterparts of restriction ai = b′iν in

the time-invariant case.

Let us now describe the two-pass approach to estimate the factor risk premia. The first pass consists

in computing time-series OLS estimators β̂i, and was described in the previous subsection (see Equation

(9)). The second pass consists in computing a cross-sectional estimator of ν by regressing the β̂1,i on

the β̂3,i keeping non-trimmed assets only. We use a multivariate WLS approach. The weights are esti-

mates of wi = (diag [vi])
−1, where the matrices vi are the asymptotic variances of the standardized errors

√
T
(
β̂1,i − β̂3,iν

)
in the cross-sectional regression for large T . We have vi = τiC

′
νQ
−1
x,iSiiQ

−1
x,iCν , where

Qx,i = E
[
xi,tx

′
i,t|γi

]
, Sii = plim

T→∞

1

T

∑
t

σii,txi,tx
′
i,t = E

[
ε2
i,txi,tx

′
i,t|γi

]
, τi = plim

T→∞
τi,T = E [Ii,t|γi]−1,

Cν =
(
E′1 −

(
Id1 ⊗ ν ′

)
JaE

′
2

)′, with E1 = (Id1 : 0d1×d2)′, E2 = (0d2×d1 : Id2)′. We use the

estimates v̂i = τi,TC
′
ν̂1Q̂

−1
x,i ŜiiQ̂

−1
x,iCν̂1 , where Ŝii =

1

Ti

∑
t

Ii,tε̂
2
i,txi,tx

′
i,t, ε̂i,t = Ri,t − β̂′ixi,t and

Cν̂1 =
(
E′1 −

(
Id1 ⊗ ν̂ ′1

)
JaE

′
2

)′. To estimate Cν , we use the multivariate OLS estimator

ν̂1 =

(∑
i

1χi β̂
′
3,iβ̂3,i

)−1∑
i

1χi β̂
′
3,iβ̂1,i, i.e., a first-step estimator with unit weights. The WLS estima-

tor is:

ν̂ = Q̂−1
β3

1

n

∑
i

β̂′3,iŵiβ̂1,i, (15)
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where Q̂β3 =
1

n

∑
i

β̂′3,iŵiβ̂3,i and ŵi = 1χi (diag [v̂i])
−1. Weighting accounts for the statistical precision

of the first-pass estimates and includes trimming. The final estimator of the risk premia is λ̂t = Λ̂Zt−1,

where we deduce Λ̂ from the relationship vec
[
Λ̂′
]

= ν̂ + vec
[
F̂ ′
]

with the estimator F̂ obtained by a SUR

regression of factors ft on lagged instruments Zt−1: F̂ =
∑
t

ftZ
′
t−1

(∑
t

Zt−1Z
′
t−1

)−1

.

In the time-invariant case, the estimator of the risk premia vector simplifies to

λ̂ = ν̂ +
1

T

∑
t

ft, ν̂ = Q̂−1
b

1

n

∑
i

ŵib̂iâi, (16)

where Q̂b =
1

n

∑
i

ŵib̂ib̂
′
i and (âi, b̂

′
i)
′ = Q̂−1

x,i

1

Ti

∑
t

Ii,txtRi,t. Hence, we estimate the model coefficients

ai and bi by time series OLS regression, and the risk premium by cross-sectional WLS regression of the âis

on the b̂is augmented by the factor mean. Moreover, under conditional homoskedasticity σii,t = σii and a

balanced panel τi,T = 1, we have vi = c′νQ
−1
x cνσii, where cν = (1,−ν ′)′ and Qx = E[xtx

′
t]. Then, vi

is directly proportional to σii, and we can simply pick the weights as ŵi = σ̂−1
ii , where σ̂ii =

1

T

∑
t

ε̂2
i,t

(Shanken (1992)). In the time-invariant case, we can avoid the trimming on the condition number if we

substitute Q̂x =
1

T

∑
t

xtxt for Q̂x,i in the first-pass estimator definition. However, this increases the

asymptotic variance of the bias corrected estimator of ν, and does not extend to the time-varying case.

Starting from the asset pricing restriction E[Ri,t] = b′iλ in the time-invariant case, another estimator of λ is

λ̄ = Q̂−1
b

1

n

∑
i

ŵib̂iR̄i, where R̄i =
1

Ti

∑
t

Ii,tRi,t. This estimator is numerically equivalent to λ̂ in the bal-

anced case, where Ii,t = 1 for all i and t. In the unbalanced case, it is equal to λ̄ = ν̂ + Q̂−1
b

1

n

∑
i

ŵib̂ib̂
′
if̄i,

where f̄i =
1

Ti

∑
t

Ii,tft. Estimator λ̄ is often studied by the literature (see, e.g., Shanken (1992), Kandel

and Stambaugh (1995), Jagannathan and Wang (1998)), and is also consistent. Estimating E [ft] with a

simple average of the observed factor instead of a weighted average based on estimated betas simplifies the

form of the asymptotic distribution in the unbalanced case. This explains our preference for λ̂ over λ̄.

GOS show consistency and asymptotic normality of ν̂ and Λ̂ under the asymptotics in (6) with 1/γ < 3.

The estimator ν̂ has a fast convergence rate
√
nT and features an asymptotic bias term:

√
nT
(
ν̂ − ν − B̂ν/T

)
⇒ N(0,Σν). Both β̂1,i and β̂3,i in the definition of ν̂ contain an estimation er-

ror; for β̂3,i, this is the well-known Error-In-Variable (EIV) problem. The EIV problem does not impede
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consistency since we let T grow to infinity. However, it induces a bias term B̂ν/T which centers the

asymptotic distribution of ν̂ (see GOS for details). Ang, Liu, and Schwarz (2010) look at a maximum like-

lihood analysis with a single asymptotic treatment (large T , n fixed) and balanced panel under a particular

approximate Gaussian factor structure (block diagonal covariance matrix of residuals) and time-invariant

coefficients. Their setting further assumes that the factors have zero mean. Such an assumption gives λ̂ = ν̂

in a time-invariant setting. Under a zero mean (or a known mean, i.e., not to be estimated), the asymptotic

variance of λ̂ corresponds to the asymptotic variance Σν of ν̂ and the rate of convergence is
√
nT . On the

contrary, if we do not know the mean of the factor and need to estimate it, we have λ̂ = ν̂ +
1

T

∑
ft. The

asymptotic variance of λ̂ corresponds to the asymptotic variance Σf of the sample average of the factors,

and the rate of convergence is
√
T . Jagannathan and Wang (2002) is an early reference on the impact of

knowing or not the mean of the factors for asymptotic analysis. With an unknown mean, only the variability

of the factor drives the asymptotic distribution of λ̂, since the estimation error Op
(

1/
√
T
)

of the sample

average
1

T

∑
t

ft dominates the estimation errorOp
(

1/
√
nT + 1/T

)
of ν̂. This result is an oracle property

for λ̂, namely that its asymptotic distribution is the same irrespective of the knowledge of ν. This property

is in sharp difference with the single asymptotics with a fixed n and T → ∞. In the balanced case and

with homoskedastic errors for the time-invariant case, Theorem 1 of Shanken (1992) shows that the rate of

convergence of λ̂ is
√
T and that its asymptotic variance is Σλ,n = Σf +

1

n
Σν,n, for fixed n and T → ∞.

The two components in Σλ,n come from estimation of E[ft] and ν, respectively (see also Theorem 1 in Ja-

gannathan and Wang (1998), or Theorem 3.2 in Jagannathan, Skoulakis, and Wang (2009)). Letting n→∞

gives Σf under weak cross-sectional dependence. Thus, exploiting the full cross-section of assets improves

efficiency asymptotically, and the positive definite matrix Σλ,n−Σf corresponds to the efficiency gain. Us-

ing a large number of assets instead of a small number of portfolios does help to eliminate the contribution

coming from estimation of ν.

GOS suggest exploiting the analytical bias correction B̂ν/T and using estimator ν̂B = ν̂ − 1

T
B̂ν in-

stead of ν̂. In the time-invariant setting, λ̂B = ν̂B +
1

T

∑
t

ft delivers a bias-free estimator of λ at or-

der 1/T , which shares the same root-T asymptotic distribution as λ̂. We can relate that suggestion to

bias-corrected estimation accounting for the well-known incidental parameter problem (Neyman and Scott

(1948)) in the panel literature (see Lancaster (2000) for a review). To highlight the main idea, let us focus
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on the model with time-invariant coefficients. We can write the factor model under restriction ai = b′iν as

Ri,t = b′i(ft + ν) + εi,t. In the likelihood setting of Hahn and Newey (2004) (see also Hahn and Kuer-

steiner (2002)), the bis correspond to the individual fixed effects and ν to the common parameter of interest.

Available results on the fixed-effect approach tell us: (i) the ML estimator of ν is inconsistent if n goes to

infinity while T is held fixed, (ii) the ML estimator of ν is asymptotically biased even if T grows at the same

rate as n, (iii) an analytical bias correction may yield an estimator of ν that is root-(nT ) asymptotically

normal and centered at the truth if T grows faster than n1/3. The two-pass estimators ν̂ and ν̂B exhibit the

properties (i)-(iii) as expected by analogy with unbiased estimation in large panels. This clear link with

the incidental parameter literature highlights another advantage of working with ν in the second-pass re-

gression. Chamberlain (1992) considers a general random coefficient model nesting the factor model with

time-invariant coefficients. He establishes asymptotic normality of an estimator of ν for fixed T and bal-

anced panel data. His estimator does not admit a closed-form and requires a numerical optimization. This

leads to computational difficulties in the conditional setting. This also makes the study of his estimator under

double asymptotics and cross-sectional dependence challenging. Recent advances on the incidental param-

eter problem in random coefficient models for fixed T are Arellano and Bonhomme (2012) and Bonhomme

(2012).

Finally, let us discuss confidence intervals. Their construction for components of Λ̂ to achieve valid

asymptotic coverage is straightforward through the use of standard HAC estimators such as in Newey and

West (1994) or Andrews and Monahan (1992). The construction of confidence intervals for the components

of ν̂ is more difficult. Indeed, the asymptotic variance involves a limiting double cross-sectional sum scaled

by n and not n2. A naive approach consists in replacing unknown quantities by any consistent estimator,

but this does not work here. To handle this, GOS rely on recent proposals in the statistical literature on

consistent estimation of large-dimensional sparse covariance matrices by hard thresholding (Bickel and

Levina (2008), El Karoui (2008)). Fan, Liao, and Mincheva (2011) focus on the estimation of the variance-

covariance matrix of the errors in large balanced panel with nonrandom time-invariant coefficients and i.i.d.

disturbances.
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3.3 Testing asset pricing restrictions

From (13), the null hypothesis underlying the asset pricing restriction (2) is

H0 : there exists ν ∈ RpK such that β1(γ) = β3(γ)ν, for almost all γ ∈ [0, 1],

where β1 (γ) and β3 (γ) are defined as β1,i and β3,i in Equations (12) and (13) replacingB (γ) andC (γ) for

Bi and Ci. This null hypothesis is written on the continuum of assets. Under H0, we have

E
[
(β1,i − β3,iν)′ (β1,i − β3,iν)

]
= 0. Since we estimate ν via the WLS cross-sectional regression of the

estimates β̂1,i on the estimates β̂3,i, GOS suggest a test based on the weighted sum of squared residuals SSR

of the cross-sectional regression. The weighted SSR is Q̂e =
1

n

∑
i

ê′iŵiêi, with êi = β̂1,i − β̂3,iν̂ = C ′ν̂ β̂i,

which is an empirical counterpart of E
[
(β1,i − β3,iν)′wi (β1,i − β3,iν)

]
. Let us now introduce the fol-

lowing statistic ξ̂nT = T
√
n

(
Q̂e −

1

T
B̂ξ

)
, where the recentering term simplifies to B̂ξ = d1 thanks to

the weighting scheme. Under the null hypothesis H0 and asymptotics (6) with 1/γ < 2, GOS prove

ξ̂nT ⇒ N (0,Σξ), and show how to get a feasible testing procedure by exploiting a consistent estimate of

the asymptotic variance Σξ.

Finally, GOS derive a test for the null hypothesis when the factors come from tradable assets, i.e., are

portfolio excess returns:

H0 : β1(γ) = 0 for almost all γ ∈ [0, 1],

against the alternative hypothesis

H1 : E
[
β′1,iβ1,i

]
> 0.

We only have to substitute Q̂a =
1

n

∑
i

β̂′1,iŵiβ̂1,i for Q̂e. Since the constrained form of β1,i in (13) comes

from (2), we take directly into account the no-arbitrage restrictions imposed by the model specification. This

gives an extension of Gibbons, Ross and Shanken (1989) to the conditional case with double asymptotics.

Implementing the original GRS test, which uses a weighting matrix corresponding to an inverted estimated

large variance-covariance matrix, becomes quickly problematic. We face a large number nd1 of restrictions;

each β1,i is of dimension d1 × 1, and the estimated covariance matrix to invert is of dimension nd1 × nd1.

We expect to compensate the potential loss of power induced by a diagonal weighting via the larger number

of restrictions since we use a large number n of assets. Monte Carlo simulations in GOS show that the
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test exhibits good power properties against both risk-based and non risk-based alternatives (e.g. MacKinlay

(1995)) already for a thousand assets with a time series dimension similar to the one in the empirical analysis.

Fan et al. (2015) discuss power enhancement in high dimensional cross-sectional tests.

Finally, let us mention that Ma et al. (forthcoming, 2019) has recently developed a test of the nullity of

the alphas when the alphas and betas are taken as smooth functions of time in a “large n, large T " setting

(see Li and Yang (2011) and Ang and Kristensen (2012) for the “small n, large T " case).

4 Inference in models with unobservable factors

In this section, we review methodologies for inference in large-dimensional conditional factor models when

the factor values are unobserved by the econometrician. In this setting, we cannot use standard Principal

Component Analysis (PCA) to extract the factor space since PCA assumes either constant factor loadings

(Stock and Watson (2002a,b), Bai (2003, 2009), Bai and Ng (2002, 2006)) or at most small instabilities in

the factors loadings (Bates et al. (2013)). Intuitively, invalidity of standard PCA in a conditional framework

comes from a factor with time-varying loading being potentially confused with multiple static factors.

The model specification is:

Ri,t = ai,t + b′i,tft + εi,t, (17)

where ft is the K-dimensional vector of the unobservable factor values. Several estimation approaches are

based on assuming that the intercepts ai,t and the factor loadings bi,t are either parametric or nonparametric

functions of lagged time-varying observable variables, with or without imposing the no arbitrage restrictions.

Among the parametric approaches, Kelly et al. (2017, 2019) model the coefficients as linear functions of

characteristics plus some noise term:

ai,t = A′Zi,t−1 + νi,t, (18)

bi,t = B′Zi,t−1 + ηi,t, (19)

where Zi,t is a vector of observed characteristics, A andB are a vector and a matrix of unknown parameters,

and νi,t and ηi,t are unobservable noise terms. By plugging (18) and (19) into (17), we getRi,t = Z ′i,t−1A+

Z ′i,t−1Bft + ε∗i,t, where the composite error term is ε∗i,t = εi,t + νi,t + η′i,tft. The Instrumented Principal

20



Component Analysis (IPCA) estimator of Kelly et al. (2017, 2019) is obtained by minimizing a LS criterion

w.r.t. parameter matrices A, B and the factor values ft, t = 1, ..., T , i.e., min
α,B,ft,t=1,...,T

n∑
i=1

T∑
t=1

(Ri,t −

Z ′i,t−1A − Z ′i,t−1Bft)
2 subject to the static normalization restrictions that the matrix BB′ is diagonal, and

1

T

T∑
t=1

ft = 0,
1

T

T∑
t=1

ftf
′
t = IK . They propose an iterative numerical procedure to perform the optimization.

In the nonparametric setting, an early contribution is provided by an extension of the model considered

by Connor and Linton (2007) and Connor et al. (2012), in which the factor loadings are functions of observed

covariates:

Ri,t =
K∑
k=1

bk(Zk,i,t−1)fk,t + εi,t, (20)

where bk(·) is an unknown smooth function of observable variable Zk,i,t−1, for k = 1, ...,K (see Connor

et al. (2012) p. 728 for a short discussion of this extension; their base model assumes that the covariates

are time-invariant). The identification scheme requires that the characteristics differ across factors. Indeed,

Connor et al. (2012) estimate model (20) by deploying the property that it corresponds to an additive non-

parametric regression at each date t. They propose an iterative procedure that alternates at each step the

cross-sectional estimation of (i) the loadings functions via the backfitting projection algorithm, and (ii) the

factor values by least-square regression, subject to normalization restrictions. They obtain the final estimates

of the loadings functions bk(·) by averaging across time the cross-sectional estimates. Fan et al. (2016b) ex-

tend the characteristic-based modeling in Connor and Linton (2007) and Connor et al. (2012) by allowing the

betas bk(Zi) + γi,k to include unknown asset-specific additive constants (see Liao and Yang (2018) for the

continuous-time case under infill asymptotics for high frequency data). They propose a so-called Projected

PCA method to estimate this specification with time-invariant loadings. It is an open question whether we

can extend this estimation approach to accommodate time-variation in the characteristics. Pelger and Xiong

(2019) instead let the factor loadings be functions of an observable state variable. They consider the model:

Ri,t =

K∑
k=1

bi,k(Zt−1)fk,t + εi,t, (21)

where the bi,k(·) are smooth functions andZt is a vector of observed variables, common across assets. Pelger

and Xiong (2019) estimate model (21) by minimizing a local version of the Least-Squares criterion under-

lying PCA, where localization is implemented by kernel smoothing. In practice, the number of conditioning
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variables, which we can accommodate, is small.

Among the nonparametric approaches, some recent work takes advantage of machine learning methods

to achieve greater flexibility in the modeling of time-varying betas and accommodate the large dimension-

ality of the set of potential characteristics and state variables. Gu et al. (2019) consider the setting where the

loadings are a nonparametric function of a large-dimensional vector of characteristics: bi,t = b(Zi,t−1), and

use an autoencoder to estimate this relationship. Autoencoder is a class of universal approximators in the

realm of Artificial Neural Networks (see Gu et al. (2019) and references therein). Using Lb hidden layers

and an activator function g, each component of the loadings vector is approximated as:

bi,t,k(θb) = Gk(Zi,t−1, Lb, g, θb) := Ak +B′kZ
(L)
i,t−1,

Z
(`)
i,t−1,j = g

(
A

(`−1)
j +B

(`−1)′
j Z

(`−1)
i,t−1

)
, ` = 1, ..., L,

Z
(0)
i,t−1 = Zi,t−1,

where the parameter vector θb includes the Ak, Bk, A(`−1)
j , B(`−1)

j for all k, j, `. Gu et al. (2019) approxi-

mate the factor values also with an autoencoder as ft,k(θf ) = Gk(x̂t, Lf , g, θf ) using as input the standard-

ized cross-sectional averages x̂t =

(
1

n

∑
i

Zi,t−1Z
′
i,t−1

)−1
1

n

∑
i

Zi,t−1Ri,t, i.e., characteristics-based

portfolio returns. They minimize the penalized criterion min
θ

∑
i

∑
t

(
Ri,t − bi,t(θb)′ft(θf )

)2
+ λ‖θ‖1,

where ‖θ‖1 is the L1 norm of the parameter vector θ = (θ′b, θ
′
f )′. The inferential theory for this estimator is

unknown.

In the rest of this section, we review a recent proposal for inference in time-varying statistical factor mod-

els developed by Gagliardini and Ma (2019). As the focus of these authors is on the problem of conducting

inference on the conditional factor space, including its dimension, the adopted nonparametric framework

is general regarding the beta dynamics and encompasses the linear and nonlinear beta specifications of e.g.

Kelly et al. (2017, 2019), and Gu et al. (2019). The framework allows for time-variation in the number of

conditional factors as an effect of the changing macroeconomic environment. The main idea is to see the

estimation of factor values as a cross-sectional Instrumental Variable (IV) problem and deploy a well-chosen

(conditional) normalization of the factor vector to accommodate an essentially unspecified beta dynamics.

Here we review the main results in the simpler framework with constant number of conditional factors, and

refer the reader to Gagliardini and Ma (2019) for the more general setting, the regularity conditions, and the
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derivation of the results.

After imposing the no arbitrage restrictions ai,t = b′i,tνt (see Equation (2)), model (17) becomes:

Ri,t = b′i,tgt + εi,t, where gt = ft + νt. Gagliardini and Ma (2019) assume that the m-dimensional

lagged instruments Zi,t−1 are cross-sectionally uncorrelated with errors and correlated with betas under a

full rank condition:

plim
n→∞

1

n

∑
i

Zi,t−1εi,t = 0,

plim
n→∞

1

n

∑
i

Zi,t−1b
′
i,t =: Γt is a full column-rank matrix, (22)

for all t, which implies the order condition m ≥ K. Being the limit of a cross-sectional average of prede-

termined variables, the matrix Γt is measurable w.r.t. the information set Gt−1 of aggregate shocks at time

t− 1, i.e., the non-diversifiable shocks (see Gagliardini and Ma (2019) for more details). It is assumed that

Gt is generated by the vector process Zt, and that the econometrician observes Zt. Under (22), it holds:

ξt := plim
n→∞

1

n

∑
i

Zi,t−1Ri,t = Γtgt. (23)

Process ξt is identifiable from population moments. Its conditional variance given Gt−1 is V [ξt|Gt−1] =

ΓtV [gt|Gt−1]Γ′t. Thus, the number of non-zero eigenvalues of V [ξt|Gt−1] equals the number of factors

K, and the associated eigenvectors span the column space of matrix Γt. This allows to identify gt from

(23) up to a non-singular transformation matrix which is Gt−1-measurable. In fact, the conditional factor

space in model (17) is identifiable up to transformations ft → ct−1 + At−1ft, where ct−1 and At−1 are

Gt−1-measurable. Gagliardini and Ma (2019) show how to choose a convenient normalization of the factor

space in order to get a closed form expression for gt. Specifically, Gagliardini and Ma (2019) normalize

the latent factors such that E[ft|Gt−1] = 0, and Γt = Jt, where Jt is the matrix whose columns are the K

normalized eigenvectors of V [ξt|Gt−1] associated with the non-zero eigenvalues. Under this normalization,

it follows gt = (J ′tΩtJt)
−1J ′tΩtξt, where Ωt is any m ×m positive definite matrix measurable w.r.t. Gt−1,

and ft = gt − E[gt|Gt−1].

In a setting with n, T → ∞, Gagliardini and Ma (2019) define consistent estimators for the condi-

tional factor space and for its dimension by replacing population (cross-sectional, or conditional) expec-

tations with sample analogues. They get ĝt = (Ĵ ′tΩtĴt)
−1Ĵ ′tΩtξ̂t, and f̂t = ĝt − Ê[ĝt|Gt−1], where
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ξ̂t =
1

n

∑
i

Zi,t−1Ri,t. Here, Ĵt is the matrix of the standardized eigenvectors to the K largest eigen-

values of V̂ [ξ̂t|Gt−1], and Ê[·|Gt−1] and V̂ [·|Gt−1] are nonparametric estimators for the conditional expec-

tation given Zt−1. Given the potentially large dimension of vector Zt, Gagliardini and Ma (2019) consider

estimators based on post-Lasso and Artificial Neural Networks (ANN). The estimator of the conditional

factor space is in closed form up to the nonparametric regression given Zt−1. The estimator of the number

of factors is K̂ = mode
{
k̂t, t ≥ 1

}
, and k̂t = arg max

1≤k≤kmax

µk+1(V̂ [ξ̂t|Gt−1])

µk(V̂ [ξ̂t|Gt−1])
, where µk(·) denotes the k

largest eigenvalue of a symmetric matrix. Estimator k̂t exploits the idea of the eigenvalue ratio test but

in a different context than Ahn and Horenstein (2013), since V̂ [ξ̂t|Gt−1] is not a large-dimensional sample

variance-covariance matrix.

In the framework of Kelly et al. (2017, 2019), Equation (19) yields Γt = QZ,t−1B, where QZ,t−1 =

plim
n→∞

1

n

∑
i

Zi,t−1Z
′
i,t−1, which implies a constraint on the time variation of Γt. In Gu et al. (2019), we have

xt := plim
n→∞

x̂t = Q−1
Z,t−1ξt = Q−1

Z,t−1Γtgt. Hence, for large n, the autoencoder mapping for the latent factor

essentially amounts to fixing a normalization of the latent factor such that some k × k block of Q−1
Z,t−1Γt

is time-invariant, so that we can write gt as a time-invariant function of xt. This function is linear. The

methodology of Gagliardini and Ma (2019) does not impose constraints on the dynamics of Γt and deploys

the structural linear link between ξt and gt conditional on Gt−1.

Among the possible extensions of the model setting, we can further impose a group structure on the

latent factor space in order to accommodate the presence of both common pervasive factors and group-

specific pervasive factors. The former affect all series in the panel while the latter have an impact on

subgroups of assets. The subgroups can correspond to e.g. economic sectors, asset classes, markets or

countries. Andreou et al. (2019) develop inference procedures in a “large n, large T " setting for estimating

the common and group-specific numbers of factors and the corresponding spanned factor spaces.

Finally, let us mention that there is also work on inference for large-dimensional models with unobserv-

able factors with high frequency data (Fan et al. (2016a), Ait-Sahalia and Xiu (2017), Pelger (2019a,b)), but

extensions to the conditional case with instruments still need to be developed there. Fan and Kim (2018)

discuss how to robustify such methods and Kim and Fan (2019) how to impose a dynamic parametric struc-

ture based on a factor GARCH-Itô process for prediction. Li et al. (2019) develop tests for deciding whether
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a large cross-section of asset prices obey an exact factor structure at the times of factor jumps with infill

asymptotics.

Besides, if we face a short time series panel (for example a 5-year window) without the availability

of high-frequency data, asymptotics with fixed T and large n are better suited. Keeping T fixed impedes

consistent estimation of the risk premia, and inference has to focus on ex-post risk premia (Shanken (1992)).

Examples of work in that direction are Zaffaroni (2019) for inferential theory with unobservable factors and

Kim and Skoulakis (2018), Raponi et al. (Forthcoming, 2019) with observable factors.

5 Empirical findings

In this section, we provide some empirical findings based on a large number of financial factor models. We

provide contrast analysis based on monthly returns of individual stocks and standard sets of portfolios.

5.1 Data description and factor models

Our dataset includes monthly excess returns of stocks data from CRSP database. We proxy the risk free rate

with the monthly 30-day T-bill beginning-of-month yield. We exclude financial firms (Standard Industrial

Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after matching

CRSP and Compustat contents comprises n = 10, 827 stocks, and covers the period from July 1963 to

December 2017 with T = 654 months. Table 1 provides the distribution of asset returns of stocks w.r.t. Ti

the number of observations available for each asset. About half of the stocks in the panel have more than

120 monthly return observations. We observe the complete time series of observations for only 2% of the

stocks. Table 2 provides the distribution of stocks w.r.t. the classification of industry in Ferson and Harvey

(1999). The two most frequent industry categories are Professional Services (2282) and Healthcare (1194),

while the two less frequent ones are Aerospace (64) and Paper (129).

For comparison purposes with a standard methodology for small n, we consider i) the 25 Fama-French

(FF) portfolios and ii) the 44 industry (Indu.) portfolios excluding four financial sectors (banking, insurance,

real estate, and trading) as base assets.

We consider several linear factor models that involve financial variables (see GOS2 for models with

25



macroeconomic variables). Table 3 lists the financial models, the factors, the number of parameters to esti-

mate, and the trimmed cross-sectional dimensions nχ considering time-invariant and time-varying spec-

ifications. The three factors of Fama and French (1993) are the monthly excess return rm,t on CRSP

NYSE/AMEX/Nasdaq value-weighted market portfolio over the risk free rate, and the monthly returns

on zero-investment factor-mimicking portfolios for size and book-to-market, denoted by rsmb,t and rhml,t.

We denote the monthly returns on portfolio for momentum by rmom,t (Carhart (1997)). The two operative

profitability factors of Fama and French (2015) are the difference between monthly returns on diversified

portfolios with robust and weak profitability and investments, and with low and high investment stocks,

denoted by rrmw,t and rcma,t. We have downloaded the time series of these factors from the website of

Kenneth French. We also consider a model with long-only factors, that should be more immune to market

imperfections (e.g., transaction costs). We build the long-only factors from the six FF research portfolios

available on the website of Ken French. The excess return of the "Small" factor (denoted by rs,t) is the

average excess return of the three small portfolios, and the excess return of the "Value" factor (denoted by

rh,t) is the average excess return of the two value portfolios. Furthermore, we include quality minus junk

(qmjt) and bet against beta (babt) factors as described in Asness et al. (2019) and Frazzini and Pedersen

(2014). The factor return qmjt is the average return on the two high quality portfolios minus the average

return on the two low quality (junk) portfolios. The bet against beta factor is a portfolio that is long low-beta

securities and short high-beta securities. We have downloaded these data from the website of AQR. As

additional specifications, from the website of Kenneth French, we consider the two reversal factors which

are monthly returns on portfolios for short-term and long-term reversals, denoted by rstrev,t and rltrev,t.

To account for time-varying alphas, betas and risk premia, we use a conditional specification based

on one common variable and a firm-level variable. We take the instruments Zt−1 = (1, divYt−1)′, where

divYt−1 is the lagged dividend yield and the asset specific instrument bmi,t−1 corresponds to the lagged

book-to-market equity of firm i. We compute the book-to-market equity of firm i as defined in logarithmic

terms by Fama and French (2008). We compute the firm characteristics from Compustat as in the appendix of

Fama and French (2008). We consider all the assets for which the book-to-market equity is always positive

over the sample period, as in Fama and French (2008). The number of assets reduces to n = 8, 570 for

the estimation of the time-varying specifications. We refer to Avramov and Chordia (2006) for convincing
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theoretical and empirical arguments in favor of the chosen conditional specification. In Table 3, the vector

xi,t has maximum dimension d = 23 (CAR and REV model), and parsimony explains why we have not

included e.g. the size of firm i as an additional stock specific instrument. We have downloaded time series

of portfolio characteristics from the website of Kenneth French.

5.2 Time-invariant specifications

Let us first focus on the time-invariant specifications (i.e. Zt = 1 and Zi,t = 0) in order to benchmark the

results of the next section for the time-varying specifications. We use χ1,T = 15 as advocated by Greene

(2008), together with χ2,T = 546/60. The number of assets whose condition number is below 15 is 7, 754

for each model specification.

First, we compute the diagnostic criterion and the number k of omitted factors. Table 4 reports the

contribution in percentage of the first eigenvalue µ1 with respect to the variance of normalized residuals
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i, that is equal to one by construction under our variance scaling for each time series of

residuals. We also report the selected number of omitted factors k, the contribution of the first k eigenvalues,

i.e.,
k∑
j=1

µj , and the incremental contribution of the (k + 1)-th eigenvalue µk+1. For each model, we also

specify the numerical value of the penalisation function g (nχ, T ), as defined in GOS2. The number k of

omitted factors is larger than one for the most popular financial models, e.g., the CAPM (Sharpe (1964))

and the three-factor Fama-French model (FF). On the contrary, for the the four-factor Carhart (1997) model

(CAR), the five-factor Fama-French model (5FF), quality minus junk (QMJ), and models involving the

reversal factors, we find no omitted latent factor. We observe that adding observable factors helps to reduce

the contribution of the first eigenvalue µ1 to the variance of residuals. However, when we face latent factors,

the omitted systematic contribution
k∑
j=1

µj only accounts for a small proportion of the residual variance. For

instance, we find k = 1 omitted factors in the CAPM. That latent factor only contributes to µ1 = 2.39%

of the residual variance. Figures 1, 3, 5 summarize this information graphically by displaying the penalized

scree plots and the plots of cumulated eigenvalues for the CAPM, the three Fama-French factors model and

the four-factor CAR model. For instance, µ2 = 1.54% lies below the horizontal line g (nχ, T ) = 1.55%

in Panel A for the time-invariant CAPM, so that k = 1. In Panel B for the time-invariant CAPM, the
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vertical bar µ1 + µ2 = 3.93% is divided into the contribution of µ1 = 2.39% (light grey area) and that

of µ2 = 1.54% (dark grey area). Figure 2 Panel A displays the scree plots of squared eigenvalues for

the CAPM and the square g2 (nχ, T ) of the penalisation function relative to the squared Frobenius norm
T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
. By construction, the conclusion of the number of omitted factor is the same

as for the scree plot shown in Figure 1. For example, we get that the sum of the square of the two first

eigenvalues accounts for 21.45% of the square of the Frobenius norm for the time-invariant CAPM. Thus,

the two latent factors are much more representative of the off-diagonal components. We conclude similarly

for the time-invariant FF model (see Figure 4), even if the correlation explanation provided by the single

omitted factor is lower.

Tables 5-8 gather the estimated annual risk premia and the estimates of the components of ν, with the

corresponding confidence intervals at 95% level, for the ten time-invariant models listed in Table 3. For

individual stocks, we use bias-corrected estimates for λ and ν. In order to build the confidence intervals, we

use the HAC estimators Σ̂f defined as in Newey and West (1994) and Σ̃ν defined in GOS. When we consider

the 25 FF and 44 Indu. portfolios as base assets, we use asymptotics for fixed n and T →∞. In particular,

we compute the estimates of the variance-covariance matrices Σλ,n and Σν,n defined in GOS. The estimated

risk premia for the market factor are of the same magnitude and all positive across the three universes

of assets and all financial models. In Table 7, for the four-factor CAR model and the individual stocks,

the size factor is positively remunerated (3.5430%) and it is significantly different from zero. The value

factor commands a significant negative reward (-4.9265%). The momentum factor is largely remunerated

(8.0947%) and significantly different from zero. For the 25 FF portfolios, we observe that the size factor

is not significantly positively remunerated while the value factor is significantly positively remunerated

(2.5028% and 4.1996%). The momentum factor bears a significant positive reward (34.6689%). For λm,

λsmb, λhml, we obtain similar inferential results when we consider the Fama-French model in Table 8. Our

point estimates of λm, λsmb, and λhml for large n agree with Ang et al. (2010). Our point estimates and

confidence intervals for λm, λsmb, and λhml agree with the results reported by Shanken and Zhou (2007)

for the 25 FF portfolios. The large, but imprecise, estimate for the momentum premium when n = 25

comes from the estimate for νmom (26.7559%) that is much larger and less accurate than the estimates for

νm, νsmb, and νhml (0.9447%, -0.0225%, -0.3662%). Moreover, while the estimates of νm, νsmb, and νhml
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are statistically not significant for the 25 FF portfolios, the estimates of νm, νsmb, and νhml are statistically

different from zero for individual stocks. In particular, the estimate of νhml is large and negative. This

explains the negative estimate on the value premium for individual stocks displayed in Table 7, despite the

positive time average of the value factor. Phalippou (2007) obtained a similar growth premium for portfolios

built on stocks with a high institutional ownership. The results with the 44 Indu. portfolios sharply differ

from those with the 25 FF portfolios. The former are more like the results for individual stocks; in particular,

they yield negative estimates of coefficient νhml and value premium λhml (albeit the latter not statistically

significant). In Table 6, the 5FF model also exhibits large differences between estimated risk premia on

individual stocks, FF and Indu. portfolios. For example, we get a significant λrmw = 5.3198% for the

FF portfolios and an insignificant λrmw = 0.8911% for individual stocks. On the contrary, we get an

insignificant λcma = 0.8787% for the FF portfolios (with a large confidence interval) and a significant

λcma = −3.2867% for individual stocks. The estimated risk premia on the Indu. portfolios exhibit large

confidence intervals. For example, we get insignificant λrmw = 2.3817% and λcma = −0.3614%.

The size, value, and momentum factors are tradable in theory. In practice, their implementation faces

transaction costs due to rebalancing and short selling. A nonzero ν might capture these market imperfections

(Cremers et al. (2012)). In Table 8, we also get zero estimates with the FF portfolios except for value, and

nonzero estimates with the Indu. portfolios and the individual stocks for market and value, when we use

a time-invariant model with long-only factors derived from the FF methodology. Market imperfections are

probably not the key drivers here (see Frazzini et al. (2012)) for empirical support based on live trading data

from a large institutional money manager).

A potential explanation of the discrepancies revealed in Tables 5-8 between individual stocks and the

FF portfolios is the much larger heterogeneity of the factor loadings for the former. As already discussed

in Lewellen et al. (2010), the FF portfolio betas are all concentrated in the middle of the cross-sectional

distribution obtained from the individual stocks. Creating portfolios with an ad hoc methodology distorts

information by shrinking the dispersion of betas. The estimation results for the momentum factor on the FF

portfolios exemplify the problems related to a small number of portfolios exhibiting a tight factor structure.

Another potential explanation of the discrepancy revealed in Tables 5-8 is the effect of model misspecifica-

tion on the risk premia because of omitted factors as observed in Table 4 for the three-factor FF model.
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5.3 Time-varying specifications

We use χ1,T = 15 and χ2,T = 546/60. The number of assets whose condition number is below 15 is often

between 2,000 and 3,000, for instance 2,578 for the four-factor CAR model.

For the time-varying specifications of Table 3, we still find one omitted factor for the CAPM and the

4-factor MOM and REV model in Table 4. The other time-varying models passes the diagnostic criterion.

As already discussed in the Introduction, this diagnostic step is crucial to decide whether we can feel com-

fortable with the chosen set of observable factors before proceeding further in an empirical analysis of a

large cross sectional equity data set under the APT setting. The time-varying specification is more parsi-

monious for the factor space in the conditional sense, but less parsimonious for the parameter space. From

an econometric point of view, it is not clear which parsimony we should favor to decide between the time-

invariant specification (more factors, less parameters) and the time-varying specification (less factors, more

parameters). For investment purposes, the first one is better suited for static (unconditional) decisions while

the second one is better suited for dynamic (conditional) decisions. The choice between the two models

should meet the investor needs or answer the empirical research question at hand.

Figure 7 plots the estimated time-varying paths of the four risk premia estimated assuming the four-

factor CAR model and using the individual stocks (see GOS for a formal test of time-variation based on

the estimated coefficients F̂ and ν̂). For comparison purpose, we also plot the time-invariant estimates

and the average lambdas over time. A well-known bias coming from market-timing and volatility-timing

(Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth et al. (2011)) explains the discrepancy

between the time-invariant estimate and the average over time. After trimming, we compute the risk premia

on nχ = 2, 549 individual assets in the four-factor CAR model. The observed discrepancy w.r.t. the average

over time is only marginally explained by the larger size of the stock universe used for the time-invariant

estimates. The risk premia for the factors feature a counter-cyclical pattern most of the time. Indeed,

these risk premia increase during economic contractions and decrease during economic booms. Gomes

et al. (2003) and Zhang (2005) constructed equilibrium models exhibiting a counter-cyclical behavior in

size and book-to-market effects. Furthermore, time-varying estimates of the value premium are negative

and might take positive values because of the large confidence intervals around recessions. Growth firms

are riskier in boom times because of their in-the-money growth options; value firms are riskier in recession
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times because of default risk. However, empirical evidence for such an interpretation is mixed. Some

papers find that distress is related to size and book-to-market effects (Griffin and Lemmon (2002), Vassalou

and Xing (2004)) while other papers find the opposite (Dichev (1998), Campbell et al. (2008)). Chava and

Purnanandam (2010) find support for a positive relation and argued that conclusions regarding the risk return

trade-off can change significantly depending on how the expected return is measured. Gomes and Schmid

(2010) and Garlappi and Yan (2011) argue that financial leverage provides a rationale for a positive relation.

The time-varying estimates of the size premium are most of the time slightly positive.

Figure 8 plots the estimated time-varying path of the four risk premia from the 25 FF portfolios. We

also plot the time-invariant estimates and the average lambdas over time. The discrepancy between the

time-invariant estimates and the averages over time is also observed for n = 25. The time-varying point

estimates for λmom,t are typically smaller than the time-invariant estimate in Table 7, but both estimates are

rather inaccurate. Finally, by comparing Figures 7 and 8, we observe that the patterns of risk premia look

similar in terms of cyclicality except for the book-to-market factor. Indeed, the risk premium for the value

effect estimated from the 25 portfolios is pro-cyclical, contradicting the counter-cyclical behavior predicted

by finance theory. The paths of risk premia in the Fama-French model estimated from the 25 FF portfolios

look similar to the corresponding estimates for the four-factor CAR model in Figure 8. The time-varying

paths of risk premia for the 44 Indu. portfolios look similar to the corresponding estimates on individual

stocks. This similarity, also observed in Section 5.2 with time-invariant models, is likely linked with the

relative stability of the time-varying portfolio weights for the 44 Indu. portfolios compared to the weights of

the 25 FF portfolios.

5.4 Asset pricing restriction tests

As already discussed in Lewellen et al. (2010), the 25 FF portfolios have four-factor CAR market and

momentum betas close to 1 and zero, respectively. As depicted in Figure 1 by Lewellen, Nagel, and Shanken

(2010), this empirical concentration implies that it is easy to get artificially large estimates ρ̂2 of the cross-

sectional R2 for three-factor FF and four-factor CAR models. On the contrary, the observed heterogeneity

in the betas coming from the individual stocks impedes this. This suggests that it is much less easy to find

factors that explain the cross-sectional variation of expected excess returns on individual stocks than on
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portfolios. Reporting large ρ̂2, or small SSR Q̂e, when n is large, is much more impressive than when n is

small.

Tables 9 and 10 gather the results for the tests of the asset pricing restrictions in factor models with

time-invariant coefficients. When n is large, we prefer working with test statistics based on the SSR Q̂e

instead of ρ̂2 since the population R2 is not well-defined with tradable factors under the null hypothesis (its

denominator is zero). For the individual stocks, we compute the feasible test statistics based on Q̂e and

Q̂a and hard thresholding to get consistent estimates Σ̃ξ of covariance matrices, as well as their associated

one-sided p-value. Our Monte Carlo simulations show that we need to set a stronger trimming level χ2,T to

compute the test statistic than to estimate the risk premium. We use χ2,T = 546/240. For the 25 and 44 Indu.

portfolios, we compute weighted test statistics (Gibbons et al. (1989)) as well as their associated p-values.

For individual stocks, the test statistics reject both null hypotheses H0 : a(γ) = b(γ)′ν and H0 : a(γ) = 0

for all specifications at 1% level. Similar conclusions are obtained when using the 25 FF portfolios as base

assets. For the 44 Indu. portfolios, we do not reject the null hypothesis H0 : a(γ) = b(γ)′ν, but we reject

H0 : a(γ) = 0.

Tables 11 and 12 gather the results for tests of the asset pricing restrictions in time-varying specifications.

We do not report results for the FF long-only model since multicollinearity problems prevent us to estimate

and test that model. Contrary to the time-invariant case, we do not report the values of the weighted test

statistics (Gibbons et al. (1989)) computed for portfolios because of the numerical instability in the inversion

of the covariance matrix. Instead, we report the values of the test statistics TQ̂e and TQ̂a. For individual

stocks, the test statistics reject both null hypotheses H0 : a(γ) = b(γ)′ν and H0 : a(γ) = 0 for all

specifications at 1% level.

In addition, we compare the cross-sectional distributions of β̂′1,iβ̂1,i, the idiosyncratic risk (square root

of residual variance), and the estimated time-series coefficient of determination ρ̂2
i (ratio of explained vari-

ance and total variance) for the time-varying specifications assuming the four-factor CAR model for the

excess returns. We can view those estimates as measures of limits-to-arbitrage and missing factor im-

pact (Pontiff (2006), Lam and Wei (2011), Ang et al. (2009)). For each asset (either stock, or portfolio)

i, we compute four measures: (i) the estimated time-series coefficient of determination ρ̂2
i =

ESSi
TSSi

, where

ESSi =
∑
t

Ii,t

(
R̂i,t − ¯̂

Ri

)2
, with R̂i,t = β̂′ixi,t and ¯̂

Ri =
1

Ti

∑
t

Ii,tR̂i,t, and TSSi =
∑
t

Ii,t
(
Ri,t − R̄i

)2,
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with R̄i =
1

Ti

∑
t

Ii,tRi,t; (ii) the estimated adjusted R2 defined by ρ̂2
ad,i = 1− (Ti − 1)

(Ti − d)

(
1− ρ̂2

i

)
; (iii) the

idiosyncratic risk IdiV oli =

√
RSSi
Ti

, withRSSi =
∑
t

Ii,tε̂
2
i,t; (iv) the systematic risk SysRiski =

√
ESSi
Ti

.

Figures 13 and 14 compare the cross-sectional distributions of the four measures (i)-(iv) computed on

the time-invariant and time-varying four-factor CAR models using the individual stocks, 25 FF and 44 Indu.

portfolios as base assets. The boxplots provided by the statistical software do not take into account the

presence of estimation noise, i.e, of the EIV issue coming from using estimates instead of true quantities.

Barras et al. (2019) explain how to correct for the EIV bias and to modify standard deviations and confidence

intervals of estimates of p.d.f., c.d.f., quantiles, and moments computed from estimated quantities such as

estimated regression coefficients in a “large n, large T " setting. For comparison purposes, the cross-sectional

distributions for individual stocks in both figures refer to the nχ = 2, 549 stocks used in the estimation of

the time-varying specification after trimming. The time-series (adjusted) ρ̂2
i of the 25 FF portfolios are all

larger than 0.80. The estimates ρ̂2
i of the individual stocks are typically much smaller, with a median below

0.30. As expected, the excess returns of individual stocks also have larger idiosyncratic volatilities. The

time-series adjusted ρ̂2
i of individual stocks tend to be a bit larger in the time-varying model than in the

time-invariant one, as a result of the explanatory power that we gain by allowing for beta dynamics. Figures

13 and 14 show that the use of the FF portfolios also shrinks the dispersion of ρ̂2
i , IdiV oli, and SysRiski,

by a large amount. The distributions for the individual stocks and the 44 Indu. portfolios are comparable

and share a wide support. Figure 15 plots the cross-sectional distributions of β̂′1,iβ̂1,i for the three universes

of assets. We observe a huge heterogeneity in β̂′1,iβ̂1,i for the individual stocks in Figure 15, similar to the

one observed on IdiV oli in Figure 14. We may face the presence of limits-to-arbitrage and missing factors

in that case. On the contrary, the estimates β̂′1,iβ̂1,i are concentrated close to zero for the 25 FF and 44

Indu. portfolios. The 25 FF portfolios exhibit small β̂′1,iβ̂1,i, small idiosyncratic risks, and large estimates

ρ̂i compared to individual stocks as expected from the previous empirical results. Unreported preliminary

results based on linear quantile regressions reveal that stocks with small size tend to yield large β̂′1,iβ̂1,i,

large idiosyncratic risks, and small estimates ρ̂i. We also find that firms with short observation periods tend

to be associated with large values of both idiosyncratic and systematic risks (with a larger proportion of

systematic risk to total risk), as well as small market capitalization.
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5.5 Time-varying cost of equity

We can use the results in Section 3.2 for estimation and inference on the cost of equity in conditional factor

models. We can estimate the time-varying cost of equity CEi,t = rf,t + b′i,tλt of firm i with ĈEi,t =

rf,t + b̂′i,tλ̂t, where rf,t is the risk-free rate. We have

√
T
(
ĈEi,t − CEi,t

)
= ψ′i,tE

′
2

√
T
(
β̂i − βi

)
+
(
Z ′t−1 ⊗ b′i,t

)
Wp,K

√
Tvec

[
Λ̂′ − Λ′

]
+ op (1) , (24)

where ψi,t =
(
λ′t ⊗ Z ′t−1, λ

′
t ⊗ Z ′i,t−1

)′
. Standard results on OLS imply that estimator β̂i is asymptoti-

cally normal,
√
T
(
β̂i − βi

)
⇒ N

(
0, τiQ

−1
x,iSiiQ

−1
x,i

)
, and independent of estimator Λ̂. Then, from the

asymptotic normality results for the estimator Λ̂, we deduce that
√
T
(
ĈEi,t − CEi,t

)
⇒ N

(
0,ΣCEi,t

)
,

conditionally on Zt−1, where

ΣCEi,t = τiψ
′
i,tE

′
2Q
−1
x,iSiiQ

−1
x,iE2ψi,t +

(
Z ′t−1 ⊗ b′i,t

)
Wp,KΣΛWK,p (Zt−1 ⊗ bi,t) .

Figure 16 plots the path of the estimated annualized costs of equity for Microsoft Corp, Apple, Disney

Walt, and Sony. We use the time-varying four-factor CAR model estimated on individual stocks. For the

last twenty years, the cost of equity rose substantially during the subprime crisis, but came back to much

lower levels in the recent years.

5.6 International equity data sets

All of the empirical findings on factor structure, asset pricing restrictions tests, risk premia estimation and

cost of equity discussed so far are based on evidence from a large cross-sectional equity data set for the

U.S. market. It is interesting to examine these important issues in a global context. Market integration and

currency risk are two main factors that distinguish international financing and investment decisions from

domestic ones.

A recent paper by Chaieb, Langlois and Scaillet (2018, CLS hereafter) applies the GOS methodology

to international equity returns. The sample includes more than 62,000 stocks from 22 Developed Mar-

kets (DMs) and 24 Emerging Markets (EMs). GOS methodology is particularly suitable to model USD-

denominated international equity returns as it can handle the correlation implications of denominating all
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returns in a common currency. CLS explicitly consider the impact of currency conversion on correlations

across stocks since they do not impose a priori an exact factor structure. Using this framework, CLS docu-

ment several new empirical results based on individual stocks.

First, a CAPM model with a world market factor and a country-excess market factor - defined as the

spread between the country market and the world market - can capture the factor structure in several markets

after allowing for time-varying exposures to the two global and local market risk factors. Specifically, GOS2

diagnostic criterion shows no omitted factors in the model errors in 33 of 46 countries. Further augmenting

this model with non-market global factors such as size, value, momentum, profitability and investment fully

captures the factor structure in all DMs and most EMs. CLS obtain a factor model specification close to

a block diagonal structure for the error covariance matrix with blocks corresponding to countries. Such

a sparse matrix is compatible with the notion of weak cross-sectional dependence. Therefore, the leading

Fama and French (2012, 2017) four-factor and five-factor international models and Hou et al. (2015) q-factor

model (when applied using global factors) should allow factor exposures to vary over time and should add

a country excess market factor to capture the factor structure of international individual equity returns for

both DMs and EMs.

Second, CLS do not reject the asset pricing restrictions implied by these conditional asset pricing models

in a large proportion of countries. That finding is not coming from lack of power or misspecification.

Third, CLS estimate the dynamics of the various risk premia across time and countries. They find

heterogeneity in the level and volatility of risk premia across countries and across time. Specifically, value

and momentum have more volatile risk premia than profitability and investment. More importantly, the

magnitude and dynamics of factor non-tradability differ substantially between DMs and EMs.

6 Concluding remarks

This chapter has reviewed recent advances in econometrics for conditional factor models estimated on data

sets with “large n, large T " in finance. The tools studied above are simple to implement and often similar

to the ones used in a “small n, large T " setting. The asymptotic treatment however differs substantially.

We believe that extracting information directly from disaggregated data in finance will become increasing

popular in the upcoming years. The current big data trend favours the development of new econometric
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tools, the collection of data sets at the individual level, and the improvement of computation/storage powers.

Table 1: Distribution of individual stocks w.r.t. Ti
Ti Frequency

1 ≤ 12 18

13 ≤ 24 607

25 ≤ 60 2514

61 ≤ 120 2444

121 ≤ 240 2861

241 ≤ 360 1351

361 ≤ 480 557

481 ≤ 600 286

601 ≤ 654 189

We report the frequency counts of the individual stocks w.r.t. their buckets of sample size Ti.
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Table 2: Distribution of individual stocks w.r.t. industry

Industry Frequency

Aerospace 64

Transportation 152

Building Materials 147

Chemicals/Plastics 276

Construction 177

Entertainment 375

Food/Beverage 314

Healthcare 1194

Industrial Machinery 322

Metals 198

Mining 364

Motor Vehicles 155

Paper 129

Petroleum 869

Printing/Publishing 194

Professional Services 2282

Retailing 577

Semiconductors 861

Telecommunications 901

Textiles/Apparel 200

Utilities 437

Wholesaling 639

We report the frequency counts of the individual stocks w.r.t. their industry category.
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Table 3: Financial linear factor models.

Model Observable Factors time-invariant time-varying

K nχ d nχ

CAPM rm,t 1 7,754 8 3,215

FF rm,t, rsmb,t, rhml,t 3 7,754 14 2,877

FF long-only rm,t, rs,t, rh,t 3 7,754 14 825

CAR rm,t, rsmb,t, rhml,t, rmom,t 4 7,754 17 2,549

FF and QMJ rm,t, rsmb,t, rhml,t, rqmj,t 4 7,754 17 2,251

FF and BAB rm,t, rsmb,t, rhml,t, rbab,t 4 7,754 17 2,471

MOM and REV rm,t, rmom,t, rstrev,t, rltrev,t 4 7,754 17 2,569

5FF rm,t, rsmb,t, rhml,t, rrmw,t, rcma,t 5 7,754 20 1,928

FF and REV rm,t, rsmb,t, rhml,t, rstrev,t, rltrev,t 5 7,754 20 2,460

CAR and REV rm,t, rsmb,t, rhml,t, rmom,t, rstrev,t, rltrev,t 6 7,754 23 2,019

For each financial model, we report the list of observable factors and the trimmed cross-sectional dimension

nχ for estimation from monthly data. We use χ1,T = 15 and χ2,T = 546/60. For the time-invariant

specifications, we report the number of observable factors K. The number of parameters to estimate is

d = K + 1. For the time-varying specifications, we give the dimension d of vector xi,t using Zt−1 =

(1, divYt−1)′ and Zi,t−1 = bmi,t−1.
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Table 4: Number of omitted factors.

Model µ1 k
∑k

j=1 µj µk+1 Penalty µ1 k
∑k

j=1 µj µk+1 Penalty

Panel A: time-invariant models Panel B: time-varying models

CAPM 2.39 1 2.39 1.54 1.55 2.17 1 2.17 1.65 1.66

FF 1.55 1 1.55 1.18 1.19 1.46 0 0 1.46 1.60

FF long-only 1.57 1 1.57 1.22 1.25 1.48 0 0 1.48 1.60

CAR 1.28 0 0.00 1.28 1.52 1.27 0 0 1.27 1.60

FF and QMJ 1.50 0 0.00 1.50 1.52 1.43 0 0 1.43 1.60

FF and BAB 1.54 1 1.54 1.13 1.16 1.45 0 0 1.45 1.60

MOM and REV 2.22 1 2.22 1.28 1.31 2.03 1 2.03 1.33 1.35

5FF 1.47 0 0.00 1.47 1.52 1.39 0 0 1.39 1.60

FF and REV 1.42 0 0.00 1.42 1.52 1.37 0 0 1.37 1.60

CAR and REV 1.24 0 0.00 1.24 1.52 1.24 0 0 1.24 1.60

The table shows the contribution of the first eigenvalue µ1 to the variance of normalised residuals, the num-

ber of omitted factors k, the contributions of the first k, and of the (k + 1)-th eigenvalues, and the penalty

term. Panel A and B report the results for time-invariant and time-varying specifications, respectively.
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Figure 1: Number of omitted factors and cumulated eigenvalues for the time-invariant CAPM

model. Panel A plots the scree-plot of the values of the first five eigenvalues in percentage, i.e.,

µj

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
with j = 1, ..., 5. The horizonal line corresponds to the penalty function

g (nχ, T ). Panel B plots the cumulated eigenvalues in percentage. The light grey area corresponds to
j−1∑
l=1

µl

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
, the dark grey area is the contribution of the j-th eigenvalue in percentage.
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Figure 2: Number of omitted factors and cumulated squared eigenvalues for the time-invariant CAPM

model. Panel A plots the scree-plot of the values of the first five squared eigenvalues in percentage, i.e.,

µ2
j

(
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
/

T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
with j = 1, ..., 5. The horizonal line corresponds to the

penalty function g (nχ, T )2 /

T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
. Panel B plots the cumulated squared eigenvalues

in percentage. The light grey area corresponds to
j−1∑
l=1

µ2
l

(
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
/

T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
,

the dark grey area is the contribution of the j-th squared eigenvalue in percentage.
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Figure 3: Number of omitted factors and cumulated eigenvalues for the time-invariant three-factor

Fama-French model. Panel A plots the scree-plot of the values of the first five eigenvalues in percent-

age, i.e., µj

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
with j = 1, ..., 5. The horizonal line corresponds to the penalty function

g (nχ, T ). Panel B plots the cumulated eigenvalues in percentage. The light grey area corresponds to
j−1∑
l=1

µl

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
, the dark grey area is the contribution of the j-th eigenvalue in percentage.
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Figure 4: Number of omitted factors and cumulated squared eigenvalues for the time-invariant

three-factor Fama-French model. Panel A plots the scree-plot of the values of the first five

squared eigenvalues in percentage, i.e., µ2
j

(
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
/

T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
with j =

1, ..., 5. The horizonal line corresponds to the penalty function g (nχ, T )2 /
T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
.

Panel B plots the cumulated squared eigenvalues in percentage. The light grey area corresponds to
j−1∑
l=1

µ2
l

(
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
/

T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
, the dark grey area is the contribution of the j-th

squared eigenvalue in percentage.
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Figure 5: Number of omitted factors and cumulated eigenvalues for the time-invariant four-factor

CAR model. Panel A plots the scree-plot of the values of the first five eigenvalues in percentage,

i.e., µj

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
with j = 1, ..., 5. The horizonal line corresponds to the penalty function

g (nχ, T ). Panel B plots the cumulated eigenvalues in percentage. The light grey area corresponds to
j−1∑
l=1

µl

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
, the dark grey area is the contribution of the j-th eigenvalue in percentage.
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Figure 6: Number of omitted factors and cumulated squared eigenvalues for the time-invariant

four-factor CAR model. Panel A plots the scree-plot of the values of the first five squared

eigenvalues in percentage, i.e., µ2
j

(
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
/

T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
with j = 1, ..., 5.

The horizonal line corresponds to the penalty function g (nχ, T )2 /
T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
. Panel

B plots the cumulated squared eigenvalues in percentage. The light grey area corresponds to
j−1∑
l=1

µ2
l

(
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
/

T∑
l=1

µ2
l

(
1

nT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
, the dark grey area is the contribution of the j-th

squared eigenvalue in percentage.
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Figure 13: Cross-sectional distributions of ρ̂2
i , ρ̂2

ad,i, IdiV oli, and SysRiski for the time-invariant

four-factor CAR model

The figure displays the cross-sectional distributions of (i) the estimated coefficients of determination ρ̂2
i , (ii)

the estimated adjusted coefficients of determination ρ̂2
ad,i, (iii) the idiosyncratic risks IdiV oli, and (iv) the

systematic risks SysRiski for the individual stocks (box-plots), the 25 FF portfolios (red triangles) and the

44 Indu. portfolios (blue stars). Estimates are for the time-invariant four-factor CAR model. For comparison

purposes, the cross-sectional distribution for individual stocks refers to the nχ = 2, 549 stocks that are used

in the estimation of the time-varying model after trimming.
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Figure 14: Cross-sectional distributions of ρ̂2
i , ρ̂2

ad,i, IdiV oli, and SysRiski for the time-varying four-

factor CAR model

The figure displays the cross-sectional distributions of (i) the estimated coefficients of determination ρ̂2
i ,

(ii) the estimated adjusted coefficients of determination ρ̂2
ad,i, (iii) the idiosyncratic risks IdiV oli, and (iv)

the systematic risks SysRiski for the nχ = 2, 549 individual stocks (box-plots), the 25 FF portfolios (red

triangles) and the 44 Indu. portfolios (blue stars). Estimates are for the time-varying four-factor CAR model.
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Figure 15: Cross-sectional distributions of β̂′1,iβ̂1,i for the time-varying four-factor CAR model

The figure plots the cross-sectional distributions of β̂′1,iβ̂1,i for the nχ = 2, 549 individual stocks (box-

plot), the 25 FF portfolios (red triangles) and the 44 Indu. portfolios (blue stars). Estimated β̂1,i are for the

time-varying four-factor CAR model.
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