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Secure Composition

of
Insecure Components

Peter Sewell
Jan Vitek

Abstract

Software systems are becoming heterogeneous: instead of a small number of large pro-
grams from well-established sources, a user’s desktop may now consist of many smaller
components that interact in intricate ways. Some components will be downloaded from
the network from sources that are only partially trusted. A user would like to know that a
number of security properties hold, e.g. that personal data is not leaked to the net, but it
is typically infeasible to verify that such components are well-behaved. Instead, they must
be executed in a secure environment, or wrapper, that provides fine-grain control of the al-
lowable interactions between them, and between components and other system resources.

In this paper we study such wrappers, focusing on how they can be expressed in a way that
enables their security properties to be stated and proved rigorously. We introduce a model
programming language, the box-m calculus, that supports composition of software compo-
nents and the enforcement of security policies. Several example wrappers are expressed
using the calculus; we explore the delicate security properties they guarantee.

1 Introduction

Software systems are evolving. Increasingly, monolithic applications are being replaced with
assemblages of software components coming from different sources. Instead of a small number
of large programs from well-established suppliers, nowadays a user’s desktop is made up of
many smaller applications and software modules that interact in intricate ways to carry out a
variety of information processing tasks. Moreover, whereas it used to be that a software base
was fairly static and often controlled by a system administrator, it is now easy to download code
from the network; technologies such as Java even allow an application program to be extended
with new components while the program is running.

In such fluid operating environments, traditional security mechanisms and policies appear
almost irrelevant. While passwords and access control mechanisms are adequate to protect the
integrity of the computer system as whole, they utterly fail to address the issue of protecting
the user from downloaded code being run from her account [19, 13, 27]. Approaches such
as the Java sandbox that promise security by isolation are not satisfactory either: components
can interact freely or not at all [35, 14]. What is needed is much finer-grained protection

*An extended abstract will appear in the Proceedings of the 12th IEEE Computer Security Foundations
Workshop (CSFW-12), Mordano, Italy, June 28-30, 1999.
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mechanisms that take into account the interconnection of software components and the specific
security requirements of individual users.

We give a small motivating example (based on a true story) involving a fictional character,
Karen, performing some financial computation. To manage her accounts she downloads a soft-
ware package called Quickest from a company Q. Karen does not want any information about
her to be leaked without her consent, so she would like to run Quickest in an environment that
does not allow it access to the Internet (she has observed that it sometimes uploads information
— presumably for marketing purposes — to Q). On the other hand she often needs stock quotes,
for which she must allow net access. At present she runs two instances of Quickest, one on an
isolated PC, with her financial records, and one connected, used to obtain stock quotes. She
transfers data from the second to the first only on floppy disc, thereby manually ensuring that
no information flows in the converse direction.

Karen would like to dispose of the isolated PC, using a software solution to prevent her
personal data being leaked to the net. Now, Quickest is a large piece of commercial software
that was not programmed by Karen. The source code is not available to her and its internal be-
haviour is complex and inaccessible; ensuring the desired properties by program analysis will
not be feasible. Instead she must run the two copies of the package in secure software environ-
ments that allow control of the information flow between them and between each package and
the net.

More generally, she will wish to run many packages, each trusted in different ways, and
will want to be able to dynamically control the interactions between them and between these
packages and other resources — the net, regions of the local disc, the terminal, audio and video
capture devices etc. In some cases she will wish to log the data sent from one to another; in
others she will wish to limit the allowed bandwidth (e.g. to disallow audio and video chan-
nels). In general her notion of what data is to be considered “sensitive” is likely to be context
dependent. In a Web browser, she may choose to consider her e-mail address as a secret that
should be protected from broadcast to junk mail lists, while the same e-mail will not be treated
specially in her text editor.

While it is not feasible to analyse or modify large third-party software packages, it is pos-
sible to intercept the communications between a package and the other parts of the system,
interposing code at the boundaries of the different software components [20, 11, 7, 13]. Itis
thus possible to monitor or control the operations that these components are able to invoke, and
the data that is exchanged between them. We call a code fragment that encapsulates untrusted
components a security wrapper or wrapper for short.

Clearly the task of writing wrappers should not be left solely to the end-user. Rather we
envision wrappers as reusable software components, users should then only have to pick the
most appropriate wrappers, customize them with some parameters and install them. All of this
process should be dynamic: wrappers must be no harder to add to a running system than new
applications. A user will require a clear description of the security properties that a wrapper
guarantees. Moreover, wrappers should compose with a clear notion of which properties are
preserved.

The goal of this work is to study such secure environments, focusing on how they can be
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expressed in a way that enables their security properties to be stated and proved rigorously.
It appears that there is a wide range of rather delicate properties, making hard for designers
to develop sufficiently clear intuitions without such rigour. Moreover the wrappers, although
critical, may be rather small pieces of software, making it feasible to prove properties about
them, or about mild idealisations.

To express and reason about wrappers we require a small programming language, with a
well-defined semantics, that allows the composition of software components to be expressed
straightforwardly and also supports the enforcement of security policies. Such a language, the
box-m calculus, is introduced in §2. We begin with a simple example, a wrapper W, writ-
ten in the calculus. It encapsulates a single component and controls its interactions with the
environment, limiting them to two channels :n and out. W, is written as a unary context:

Wil € wa)( o]
[Vintyin'y
| Y out®y.out'y)

This creates a box with a new name q, installing in parallel with it two forwarders — one that
receives messages from the environment on channel in and sends them to the wrapped program,
and one that receives messages from the wrapped program on channel ouf and sends them to the
environment. An arbitrary program P (possibly malicious) can be wrapped to give W, [P]; the
design of the calculus and of W, ensures that no matter how P behaves the wrapped program
W\ [P] can only interact with its environment on the two channels in and out. This could
be achieved simply by forbidding a/l interaction between P and the outside world, a rather
unsatisfactory wrapper — W, is also honest, in that it faithfully forwards messages on in and
out. These informal properties are made precise in Propositions 2 and 5 below. We also discuss
the sense in which wrapping a well-behaved P has no effect on its behaviour. W is atypical in
that it has no behaviour except the forwarding of legitimate messages — other reasonable unary
wrappers may perform some kind of logging, or have a control interface for the wrapper. The
honesty property that should hold for any reasonable wrapper is therefore somewhat delicate;
fo state it (and our other security properties) we make extensive use of a labelled transition
semantics for the calculus.

The wrapper W, controls interaction between a single component and its environment. Our
second main example goes further towards solving Karen’s problem, allowing control of the
interaction between components. W, (defined in §3) is a binary wrapper that encapsulates two
components P and @ as W»[P, Q], allowing each to interact with the environment in a limited
way but also allowing information to flow from P to @ (but not vice versa) along a directed
communication channel. Making this precise is the subject of §5.

Both W; and W, are chosen to be as simple as possible, in particular with fixed interfaces
for components to interact with each other and with the environment. Generalising this to ar-

bitrary interfaces and to wrappers taking any number of components should be straightforward
but complicates the notation; other generalisations are discussed in the conclusion.

Overview We begin in the next section (§2) by introducing the calculus and giving its opera-
tional semantics. A number of wrappers are defined in §3, including one which logs traffic. The
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basic properties of honesty and well-behaviour are introduced in §4. Information flows between
wrapped components are studied in §5, then we conclude in §6 with discussion of related and
future work. This paper describes work in progress — Sections 4 and 5 contain a number of
conjectures which are yet to be proved, but which we hope will stimulate discussion. This tech-
nical report is an extended version of a paper appearing in the Computer Security Foundations
Workshop (CSFW-99).

2 A Boxed 7 Calculus

The language — known as the box-m calculus — that we use for studying encapsulation properties
must allow interacting components to be composed. The components will typically be execut-
ing concurrently, introducing nondeterminism. It is therefore natural to base the language on
a process calculus. The box-r caleulus lies in a large design space of distrbuted caleuli that
build on the w-calculus of Milner, Parrow and Walker [24]. Related calculi have been used by
a number of authors, e.g. in [2, 4, 6, 9, 10, 12, 17, 16, 28, 30, 31, 33, 34, 36, 37]. A brief
overview of the design space can be found in [32]; here we highlight the main design choices
for box-m, deferring comparison with related work to §6.

The calculus is based on asynchronous message passing, with components interacting only
by the exchange of unordered asynchronous messages. Box-m has an asynchronous 7-calculus
as a subcalculus — we build on a large body of work studying such calculi, notably [18, 8, 5].
They are known to be very expressive, supporting many programming idioms including func-
tions and objects, and are Turing-complete; a box-m process may therefore perform arbitrary
internal computation.

To m we must add primitives for constraining communication — in standard #-calculi, if one
process can send a message to another then the only way to prevent information flowing in
the reverse direction is to impose a type system, which (as observed above) is not appropriate
here. We therefore add a boxing primitive. Boxes may be nested, giving hierarchical protection
domains; communication across box boundaries is strictly limited. Underlying the calculus
design is the principle that each box should be able to control all interactions of its children,
both with the outside world and with each other [36]. Communication is therefore allowed only
between a box and its parent, or within the process running in a particular box. In particular,
two sibling boxes cannot interact without the assistance of their parent. To enable a box to
interact with a particular child, boxes are named, analogously to 7 channel names. The security
properties of our wrappers depend on the ability to create fresh box names.

Turning to the values that may be communicated, it is convenient to allow arbitrary tuples of
names (or other tuples). Note that we do not allow communication of process terms. Moreover,
no primitives for movement of boxes are provided. The calculus is therefore entirely first order,
which is important for the tractable theory of behaviour (the labelled transition semantics) that
we require to state and prove security properties. The calculus is also untyped — we wish to
consider the wrapping of ill-understood, probably buggy and possibly malicious programs.
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2.1 Syntax

The syntax of the calculus is as follows:

Names We take an infinite set A of names, ranged over by lower-case roman letters n, m, 7, y, 2
etc. (except i, 4, k, 0, p, u, v). Both boxes and communication channels are named; names also
play the role of variables, as in the 7-calculus.

Values and Patterns Processes will interact by communicating values which are decon-
structed by pattern-matching upon reception. Values u, v can be names or tuples, with patterns
p correspondingly tuple-structured:

UN = T name
(vy .. Vg) tuple (k > 0)
D ¥= . wildcard
T name pattern
(P1 .- D) tuple pattern (k£ > 0, no repeated names)

Processes The main syntactic category is that of processes, ranged over by P, Q). We intro-
duce the primitives in three groups.

Boxes A box n[P] has a name n, it can contain an arbitrary process P. Box names are
not necessarily unique — the process n[0] | n[0] consists of two distinct boxes named n, both
containing an empty process, in parallel.

P = nfP] box named n containing P
PP P and P’ in parallel
0 the nil process

Communication The standard asynchronous 7r-calculus communication primitives are Fv, in-
dicating an output of value v on the channel named z, and zp. P, a process that will receive a
value output on channel =, binding it to p in P. Here we refine these with a tag indicating the
direction of the communication in the box hierarchy. An input tag ¢ can be either , for input
within a box, 1, for input from the parent box, or a name n, for input from a sub-box named
n. An output tag o can be any of these, similarly. For technical reasons we must also allow
an output tag to be T, indicating an output received from the parent that has not yet interacted
with an input, or 77, indicating an output received from child n that has not yet interacted. The
communication primitives are then
P o=

T output v on channel z to o

zo.P input on channel z from ¢

tz'p.P replicated input
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The replicated input ! z*p. P behaves essentially as infinitely many copies of z‘p.P in parallel.
This gives computational power, allowing e.g. recursion to be encoded simply, while keeping
the theory simple. In z*p.P and ! 2*p. P the names occurring in the pattern p bind in P.

New name creation Both box and channel names can be created fresh, with the standard =-
calculus (v z) P operator. This declares any free instances of z within P to be instances of a
globally fresh name.

P = .
(vz)P new name creation

In (v z)P the z binds in P. We work up to alpha conversion of bound names throughout,
writing the free name function, defined in the obvious way for values, tags and processes, as
fn(_).

2.2 Reduction

The simplest semantic definition of the calculus is a reduction semantics, a one-step reduction
relation P — P’ indicating that P can perform one step of internal computation to become P’,
We first define the complement 7 of a tag + in the obvious way, with* = * and 7 = «. We define
a partial function {-/_}, taking a pattern and a value and giving, where it is defined, a partial
function from names to values.

=4
{/z} = {z—2}
{0t = "o} U...U{¥%/,} if these are defined and k& = ¥’
undefined, otherwise

The natural definition of the application of a substitution ¢ (from names to values) to a process
term P, written o P, is also a partial operation, as the syntax does not allow arbitrary values
in all the places where free names can occur. We write {*/,}P for the result of applying the
substitution {*/,} to P. This may be undefined either because {?/,} is undefined, or because
{"/»} is a substitution but the application of that substitution to P is undefined. Note that the
result {¥/; } P of applying a name-for-name substitution is always defined. We define structural
congruence = as the least congruence relation such that the axioms below hold. This allows
the parts of a redex to be brought syntactically adjacent.

P|0 = P (vo)(vy)P = (vy)(vz)P
P|Q = Q|P (vz)(P|Q) = P|(vz)Q z¢&m(P)
(PIQIR = P|Q|R)  (on[Pl = nlwa)P] a#n

The reduction relation is now the least relation over processes satisfying the axioms and rules
below. The (Red Comm) and (Red Repl) axioms are subject to the condition that {%/,} P is
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well-defined.

nz'v | Q] = 7 | n[Q) (Red Up)
™% | n[Q] — n[zTv | Q] (Red Down)
Ty | a'p.P — {*p} P (Red Comm)
T | z'p.P — 1 zp.P | {%} P (Red Repl)
P—>Q = P|R=Q|R (Red Par)
P-»Q = (vz)P— (v)Q (Red Res)
P—Q = n[P]-n[Q] (Red Box)
P=P 5Q=Q = P-Q (Red Struct)

The (Red Up) axiom allows an output to the parent of a box to cross the enclosing box boundary.
Similarly, the (Red Down) axiom allows an output to a child box n to cross the boundary of
n. The (Red Comm) axiom then allows synchronisation between a complementary output and
input within the same box. The (Red Repl) axiom is similar, but preserves the replicated input
in the resulting state.

Communications across box boundaries thus take two reduction steps, for example in the
following upwards and downwards communications.

n[zt] | z"p.P — n[0] | 7™ | 2"p.P
- nf0] | {*}P

7 | n[ztp.P] — n[ETv|z'p.P)
= n[{*}P]

This removes the need for 3-way synchronisations between a box, an output and an input (as in
[36]), simplifying both the semantics and the implementation model.

2.3 Labelled Transitions

The reduction semantics defines only the intemal computation of processes. The statements
of our security properties must involve the interactions of processes with their environments,
requiring more structure: a labelled transition relation characterising the potential inputs and
outputs of a process. We give a labelled semantics for box-7 in an explicitly-indexed early
style, defined inductively on process structure by an SOS. The /abels are

¢ == 7 internal action
T°v output action
z7v input action

where -y ranges over all output tags except T. The labelled transitions can be divided into those
involved in moving messages across box boundaries and those involved in communications
between outputs and inputs. The movement labels are
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T"v (sending to child n) z™v (box n receiving from its parent)
Z'v (sending to the parent)

Say mv(o) is true if o is of the form n or 1. The communication labels are

T*v (local output) z*v (local input)
E’_—‘v (output received from child n) ™y (input a message received from child n)
Z1u (output received from parent) z'v (input a message received from parent)

Labels will synchronise in the pairs given. The labelled transition relation has the form
AFP5Q

where A is a finite set of names and fn(P) C A4; it should be read as ‘in a state where the names
A may be known to P and its environment, process P can do £ to become @’. The relation is

. (Ouw) T, pyl U
v — 0 z'p.P = {*p} P
o (Repl)
lz'p.P == 1z'p.P | {¥/p} P
Ty
- — (Box-2) AP -— P (Box-1)
n[P] =3 n[z'v | P A n[P] = (vn(z,v) — A) (@™ | n[P])
P-Lp
L= P g3
nlP] o n[p] o
L ' Ty 27 ’
P|Q—P|Q AFP|Q— (vin(z,v) — A)(P'| Q')
AzrP-5H P Azr-pP IS p

(Res-1) (Res-2)

Ar (wz)P -5 (va)P' AF (vz)P % pr
¢ _
P-5P P'=P' (g
P-5pr

The (Res-1) rule is subject to z ¢ fn(¢€), the (Res-2) rule is subject to £ € fn(v) — fo(y, o) if
-mv (o) and to z € fn(y, v) — fn(o) otherwise. The indexing A - has beeen elided in rules where
it is not involved in any interesting way. In all rules with conclusion of the form A + P Ly Q
there is an implicit side condition fn(P) C A. In the (In) and (Repl) axioms there is an implicit
side condition that {"/,} P is well-defined. Symmetric versions of (Par) and (Comm) are elided.

Figure 1: Box-7 Labelled Transitions
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defined as the smallest relation satisfying the rules in Figure 1. We write A, z for AU{z} where
z is assumed not to be in A, and A, p for the union of A and the names occurring in the pattern
p, where these are assumed disjoint. For the subcalculus without new-binding the labelled
transition rules are straightforward — instances of the reduction rule (Red Up) correspond to
uses of (Box-1), (Out), and (Par); instances of (Red Down) correspond to uses of (Comm),
(Out), and (Box-2); instances of (Red Comm) correspond to uses of (Comm), (Out), and (In).
The derivations of the corresponding T-transitions can be found in the proof of Lemma 19.
The addition of new-binding introduces several subtleties, some inherited from the 7-calculus
and some related to scope extrusion and intrusion across box boundaries. We discuss the latter
briefly.

The (Red Down) rule involves synchronisation on the box name 7 but not on the channel
name z — there are reductions such as

(vz)T"2) | n0] — (vz)n[T'2]

in which a new-bound name enters a box boundary. To correctly match this with a T-transition
the side-condition for (Res-2) for labels with output tag n requires the bound name to occur
either in channel or value position, and the (Comm) rule reintroduces the z binder on the right

hand side.
Similarly, the (Red Up) rule allows new-bound names in channel position to exit a box
boundary, for example in

n[(vz)z'2] = (vz)@"z|n[0])
The (Res-2) condition for output tag 1 again requires the bound name to occur either in channel

or value position, here the (Box-1) rule reintroduces the z binder on the right hand side.

Reductions generated by (Red Comm) involve synchronisation both on the tags and on the
channel name. The (Res-2) condition for output tags +, T and 7 is analogous to the standard
w-calculus (Open) rule; requiring the bound name to occur in the value but not in the tag or
channel. The (Comm) rule for these output tags is analogous to the standard 7 rule — in
particular, here it is guaranteed that z € A (see Lemma 11).

Some auxiliary notation is useful. For a sequence of labels /; . . . £, we write
A &
AFP — ... Py

tomean 3Ps,..., P, . Vi € L.k . A; - P, =% Py, where A; = AU e, ;fn(f). I £ # 7

wewrite AF P=ts Pfor AF P 3" 473" Phif¢=rthen A+ P =% P'is defined as
AP Iy P
The two semantics coincide in the following sense.

Theorem 1 [ffn(P) C Athen A P -5 Q iff P — Q.

This give confidence that the labelled semantics carries enough information. The proofis some-
what delicate — it can be found in Appendix A.



266 Secure Composition

2.4 Bisimulation

The statements of some relationships between the behaviour of a wrapped and an un-
wrapped program require an operational equivalence relation. As box-7 is asynchronous, an
appropriate notion can be based on the weak asynchronous bisimulation of [5]. Consider a
family S of relations indexed by finite sets of names such that each Sy is a symmetric relation
over { P | fn(P) C A}. Say S is a weak asynchronous bisimulation if

e PS4 Q,AF P -4 P'and ¢ s an output or 7 transition imply 3Q’ . A F Q =% @' A
P’ Spum(ey @', and

e PSysQ A P % Pimplycither 3Q' . AF Q =3 Q' A P’ Sautagere) @ or
EQ’ LAE Q Bl Q’ AP SAUI'I!(I’V’D) (Q' ' _fy_'l)).

‘We write = for the union of all weak asynchronous bisimulations. (This definition has not been
thoroughly tested — in particular, it has not been proved to be a congruence.)

3 Security Wrappers

This section gives three example wrappers. The first encapsulates a single component, restrict-
ing its interactions with the outside world to communications obeying a certain protocol. The
second is similar, but also writes a log of all such communications. The third wrapper encap-
sulates two components, allowing each to interact with the outside world in a limited way but
also allowing information to flow from the first to the second (but not vice versa).

A wrapper design must be in the context of some fixed protocol which components should
use for communication with their environment and with each other. For the first two wrappers
we fix two channel names, in and out, for components to receive and send messages respec-
tively. Moreover, we assume that components will always be executed within some box and
should be communicating with the parent box. A trivial component that receives values v and
then copies pairs (v v) to the output would be written as

Vinty.out (yy)

A malicious component might also write data to another illicit output channel available in the
environment, e.g.

Vinty.(net'y | out'ty V)
or eavesdrop on communications between other parts of the system, e.g.
! c*y.(—@Tc | e*y)

We can express whether a component obeys the protocol in terms of the labelled transition
semantics — say P is well-behaved for a unary wrapper iff whenever A - P 4% O then the | i
are of the form in'v, out v, or .
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A Filtering Wrapper A filter is a wrapper that simply restricts the communication abilities
of a process. We consider a static filter that allows interaction on two channels in and out only.

will € wa)( al]
| tinty.in'y
|t out"y.my )
W, executes its component within a freshly-named box, installing forwarders to move legiti-
mate messages across the boundary. Note that this and further wrappers are non-binding con-
texts — equivalently, we assume wherever we apply W, to a process P that the new-bound a
does not occur free in P (in an implementation this could be ensured either probabilistically or
with a linear-time scan of P). Irrespective of the behaviour of P, W, [P] does obey the protocol
— this can be stated clearly using the labelled transition semantics:

Proposition 2 For any program P with a & fu(P), if A+ Wy [P] 2 Q then the l; are of the
formin'y, out v, or 7.

The proof is via an explicit characterisation of the states reachable by labelled transitions of
Wi [P]. A proof of this, and of the other properties of W, can be found in the Appendices. We
say a unary wrapper with this property is pure.

The Logging Wrapper The filter can be extended to maintain a log of all communications
of a process, sending copies on a channel log to the environment:

] € way o
| tin'y.(Tog'y | 7n"y)
| toutey.(log'y | out'y) )

A wrapped program L[P)] again can interact only in limited ways.

Proposition 3 For any program P with a & fn(P), if A F L[P] s Q then the l; are of the
form in'v, out'v, wTv, orT.

A Pipeline Wrapper A pipeline wrapper allows a controlled flow of information between
two components. We give a binary wrapper W, that takes two processes. In an execution
of W@, Q-] the two wrapped processes (; can interact with the environment as before, on
channels in; and out;. In addition, (), can send messages to (), on a channel mid. The pipeline
implemented here is unordered.

d
Wa[1, -2 ¥ (war,a2)( a1[] | az]-a)

| Vinytydng 'y

| Vingty.ing"y

| L out,“y.outy 'y

| Youts®2y.ouly 'y

| tmid*y.mid 'y )
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As before W is a non-binding context — we assume, wherever we apply it to two processes
Py, P, that {a;,a;} N fn(P, P;) = 0. Say a binary wrapper C is pure iff for any pro-
grams Py, P,, (satisfying the appropriate free name condition — for W, that with {a;,az} N
fn(Py, ;) = 0), if A - C[P,, P,) “% Q then the [; are of the form in; v, ouf; v, or 7.

Proposition 4 W, is pure.

For an example of a blocked attempt by the second process to send a value to the first, suppose
P, = mid v. We have

Wh[Py, mid'v] = (v a1, 62) (a1[P] | asfmid o] | R)
= (vay,a2) (a1[Py] | a2[0] | mid v | R)

where R is the parallel composition of forwarders. The output mid v in the final state cannot
interact further — not with the environment, as a, is restricted, and not with the forwarder

I mid“ y.mid "y, as a, # as.

These wrappers all assume a rather simple fixed protocol. It would be straightforward to
generalise to arbitrary sets of channels instead of in, out and mid. It would also be straight-
forward to allow n-ary wrappers, encapsulating many components and allowing information
to flow only on a given preorder between them. Other generalisations are discussed in the
conclusion.

4 Honesty and Composition

The properties of wrappers stated in the previous section are very weak. For example, the unary
wrapper

is also pure, but is useless. In this section we identify the class of honest wrappers that are guar-
anteed to forward legitimate messages. This gives the authors of components a clear statement
of (some of) the properties of the environment that can be relied upon.

An initial attempt might be to take W, as a specification, defining a unary wrapper C to be
honest iff for any program P the processes C[P] and W), [P] are operationally equivalent. This
is unsatisfactory — it rules out wrappers such as £, and it does not give a very clear statement
of the properties that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wrapper C is honest iff for any well-behaved
P the processes C[P] and P are operationally equivalent. This would be unsatisfactory in two
ways. Firstly, some intuitively sound wrappers have additional interactions with the environ-
ment — e.g. the logging outputs of £ — and so would not be considered honest by this definition.
Secondly, this definition would not constrain the behaviour of wrappers for non-well-behaved
P at all — if a component P attempted, in error, a single illicit communication then C[P] might
behave arbitrarily.
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To address these points we give explicit definitions of honesty, first for unary wrappers and
then for binary, in the style of weak asynchronous bisimulation. Consider a family R indexed
by finite sets of names such that each R is a relation over { P | fn(P) C A}. Say Ris an
h-bisimulation if, whenever C R, @ then:

1 ifAFC - O for=ut'v, 7 then A+ Q =5 @' 1 €' Ravparty @

2. if A+ C ™8 C' then either A - Q £ @ and C' Ravguginyy @ or AF Q => @ and
C' Rauvm(ing) @ | '

3. if A C -5 C' for any other label then C' Ry Q

together with symmetric versions of clauses 1 and 2. Say a unary wrapper C is honest if for any
program P (satisfying the appropriate free name condition) and any A D fn(C[P]) there is an
h-bisimulation R with C[P] R4 P.

Loosely, clauses 1, 2 and the symmetric versions ensure that legitimate communications
and internal reductions must be weakly matched. Clause 3 ensures that if the wrapper performs
some additional communication then this does not affect the state as seen by the wrapped pro-
cess.

Proposition 5 The unary wrappers W, and L are honest.
We give some examples of dishonest wrappers. Take
d
¢l € (vaal]

i
This is not honest — a transition A - P %' P’ cannot be matched by C[P], violating the

symmetric version of clause 1. Now consider
def
¢l = -

This wrapper is also dishonest as C[P] can perform actions not in the protocol that essentially
affect the state of P. For example, take P = :z;'y.oru'_t*(). Suppose C[P] R4 P for an h-
bisimulation R. We have A + C[P] =% Gut'() so by clause 3 ut () R4 P, but then clause 1
cannot hold — the left hand side can perform an out' () transition that cannot be matched be the

right hand side.

Composition of Wrappers The protocol for communication between a component and a
unary wrapper is designed so that wrappers may be nested. We conjecture that the composition
of any honest unary wrappers is honest.

Conjecture 6 IfC, and C, are honest unary wrappers then C, o C, is honest.
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Analogous results for non-unary wrappers would require wrappers with more complex inter-
faces so that the input, output and mid channels could be connected correctly.

A desirable property of a pure wrapper is that it should not affect the behaviour of any
well-behaved component — one might expect for any pure and honest C and well-behaved P
that C[P] ~4 P (where A D fn(C[P])). Unfortunately this does not hold, even for W, as
the wrapper can make input transitions that cannot be matched. One can check W;[0] %4 0,
yet 0 is well-behaved. In practice one would expect the environment of a wrapper to not be
able to detect these inputs, but to make this precise would require an operational equivalence
relativised to such ‘well-behaved’ environments.

A simpler property would be that multiple wrappings have no effect. We conjecture that
Wi is idempotent, i.e. that Wi [W,[P]] and W [P] have the same behaviour (up to weak asyn-
chronous bisimulation):

Conjecture 7 For any program P with a ¢ fn(P) and A D fn(W\[P]) we have W\ [P] =,
Wi[Wi[P]).
4.1 Honesty for Binary Wrappers

The definition of honesty for binary wrappers must take into account the mid communication.
Consider a family R indexed by finite sets of names such that each R, is a relation between
terms and pairs of terms, all with free names contained in A. Say R is a binary h-bisimulation if,
whenever C R4 (Q1, Q2) the clauses below hold. The key difference with the unary definition
is clause 7; the other clauses are routine, albeit notationally complex.

§ U 'y ! 1 s
1. ifAFC = C'then A+ Q,’ == @, Ak Qa_i - Q3_,~ and C' RAUfn(u) (QI: Qz)

2. if A C ™ O then A+ Qs = Q4 and either A F Qs 2 Q) 1 C' Ravmngy
(@, Q) or AF Qi = Q! A C’ Ravmg) (@}, Q)), where Q= Q7 | in'v.
3. ifAFC-D>C'then AF Q= Q}, AF Qs = @, and C' Ry (Q), Q}).

4. if A+ C 5 C for any other label then C' Raua(ey (@1, Q)

5. ifAF Qi — Q! for £ = oufy v, T then A+ C =% €', and €' Ravsarey (@}, @), where
Qi = Qai.

6. if AF Q; ™% @ then cither A+ C 25 C" n €' Ravsa) (@4, @) 0r AF C =5 C'
C'|in'v Ravnage) (@), @), where Q5_; = Qs

—t .
7. if A Q™4 Q) then A - C => C' A C' Raum) (Q4, Q2 | mid v).

A binary wrapper C is honest if for all P,, P, (satisfying the appropriate free name condition)
and any A D fn(C[P,, P,]) there exists a binary h-bisimulation R with C[Py, P2] R4 (P, P,).

Conjecture 8 W, is honest.
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5 Constrained Interaction Between Components

In our motivating example Karen required fine-grain control over the information flows between
components — in the binary case, allowing unidirectional flow. By examining the code for W,
it is intuitively clear that it achieves this, preventing information flowing from @ to P within
W,[P, @]. When one comes to make this intuition precise, however, it becomes far from clear
exactly what behavioural properties W, guarantees that make it a satisfactory wrapper from the
user’s point of view (who should not have to examine the wrapper code). Honesty is one, but
it does not prohibit bad flows. In this section we give a number of candidate properties, stating
four precisely and the others informally. We conjecture that all are satisfied by W, but that
none are equivalent. None are entirely satisfactory; we hope to provoke discussion of exactly
what guarantees should be desired by users and by component designers. For simplicity, only
pure binary wrappers C are considered — recall that for a pure binary C the labelled transitions
of C[Py, P3] will only be of the forms in;'v, ouf; v and 7.

5.1 New-name directionality

As we are using a calculus with creation of new names, we can test a wrapper by supplying a
new name to the second component, on in,, and observing whether it can ever be output by the
first component on out;. Say C is directional for new names if whenever
; inatu £ ¥ B e
ARCIR B B, 2, ¥ p
with € fn(u), but z is new, i.e. z ¢ AU (¢ ...¢;), and z is not subsequently input to the
first component, i.e.

T ¢ U fn(v)

i€L.kAE=in) Ty

then z is not output by the first component, i.e. z ¢ fo(u’). This property does not prevent all
information flow, however — a variant of W, containing a reverse-forwarder that only forwards
particular values, such as

I'mid®y.if y € {0,1} then mid 'y

could still satisfy it. (Here 0 and 1 are free names, which must therefore be in A.)

Note that a binary wrapper C is intended only to limit information flow within C[Py, P,]. We
do not wish to place any constraint on the environment of the wrapper, for example forbidding
the environment to copy values received from oué to in;. Such a restriction could only be
imposed by draconian measures, e.g. by waiting for P; to terminate before starting P, that
would not be acceptable to the desktop user. Many programs are essentially non-terminating;
if they are executing concurrently then the user cannot be prevented from reading the output of
one and copying it to the other. In many circumstances this should be explicitly supported by
the desktop cut-and-paste, perhaps with a warning signal.
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5.2 Permutation

Our second property formalises the intuition that if no observable behaviour due to P; depends
on the behaviour of P; then in any trace it should be possible to move the actions associated
with P; before all actions associated with P,. Say C has the permutation property if whenever

ArCP, P .. 2P

with ¢; # T there exists a permutation 7 of {1,. .., k} such that

AFCIPL P28 .. 58 p.

and no iny or out; transition occurs after any in, or out, transition in £,y ... xx). For an
example wrapper without this property, consider

Clu2l € (vor,0)(amla] ] aal]
| !ingTy.%“’y | Ving Ty y)
| Yout,® y.out;'y
| ! outy® y.out;'y
| tmid®y.mid "y)

Here the in; messages are not forwarded until at least one in, input is received from the envi-
ronment. Nonetheless, in some sense there is still no information flow from the second compo-
nent to the first.

The new-name directionality and permutation properties are expressed purely in terms of
the externally observable behaviour of C[P, @] (in fact, they are properties of its trace set, a
very extensional semantics). Note, however, that the intuitive statement that information does
not flow from @ to P depends on an understanding of the internal computation of P and @ that
is not present in the reduction or labelled transition relations (given only that C[P, Q] —=* R
there is no way to associate subterms of R with an ‘origin’ in C, P or (). Our next two
properties involve a more intensional semantics in which output and input processes are tagged
with sets of colours. The semantics propagates colours in interaction steps, thereby tracking
the dependencies of reductions.

5.3 Coloured Reductions

Take a set col of colours (disjoint from N), and let ¢ and d range over subsets of col. We define
a coloured box-r calculus by annotating all outputs and inputs with sets of colours:
P = 3 | c:z'p.P | c:lz'p.P I
n[P] | 0| P|P' | (vz)P
If P is a coloured term we write | P| for the term of the original syntax obtained by erasing all

annotations. Conversely, for a term P of the original syntax c o P denotes the term with every
particle coloured by c. For a coloured P we write ce P for the coloured term which is as P
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but with ¢ unioned to every set of colours occurring in it. We write cd for the union ¢ U d. The
reduction relation now takes the form P —. @, where P and @ are coloured terms and c is a
set of colours indicating what this reduction depends upon. It is defined as follows, in which
structural congruence is defined by the same axioms as before.

n[c:zTv | Q] = c:T™ | n[Q)] (CRed Up)
¢:Z | n[Q] = n[c:TTv | Q] (C Red Down)
c:Tw | d:2'p.P —¢q cd o ({%p} P) (C Red Comm)
c:Z |d:!z'p.P =g d:1z'p. P | cdo({,} P) (C RedRepl)
P-5.Q = P|R—-.Q|R (C Red Par)
Po.Q = ()P - (vr)Q (C Red Res)
P—.Q = n[P]—n[Q) (C Red Box)
P=P—5.Q=Q = P—-.Q (C Red Struct)

The coloured calculus has the same essential behaviour as the original calculus:

Proposition 9 For any coloured P we have |P| — Q iff 3c, P' . P —. P' A |P'| = Q.

Mediation We can now capture the intuition that all interaction between wrapped compo-
nents should be mediated by the wrapper. We consider coloured reduction sequences of a
wrapper C and two components P, P, from an initial state in which each is coloured differ-
ently. Let gr, bl and rd be distinct singleton subsets {green}, {blue}, {red} of col. Suppose

(groC)[blo Py, rdo Py] |blofy [rdo Ly =, ... =3¢, @

where each I; is a parallel composition of messages on in;, i.e. of terms of the form . Say
C is mediating iff whenever red € c; and blue € c; then green € c;.

Colour flow The coloured semantics can also be used to express the property that no output
on out; should depend on the second wrapped component. Say C has the colour directionality
property if whenever there is a reduction sequence as above and Q@ = (v A)(c:ou—t,Tv | @)
then red ¢ c.

For an example wrapper that we conjecture has the permutation property but not the colour
directionality property, consider a version of WV that has an extra parallel component outs*? y.(WtzTy |
outl“ly.?ou_tlTy). This establishes an additional one-shot forwarder for out; after forwarding a
message on outs.

These statements of mediation and coloured directionality share a defect: the use of a re-
duction semantics makes it awkward to consider inputs of values containing new names that
have previously been output by the wrapped components. To address this one would need a
coloured labelled transition semantics, allowing e.g. a refined colour directionality property to
be stated as follows. Whenever

AF (groC)[blo Py, rdo B] g, ... B,
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if the inputs are properly coloured (i.e. for each i € 1..k we have §; = inly = ¢; = blue and
£ =inlv => ¢; = red), then for each i € 1..k the out, outputs should be properly coloured,
ie.

;= outlfv = red ¢

Causality A very strong directionality property that one might ask for — perhaps the strongest
— would be that in an execution of C[Py, P, no output on out; can be causally dependent on
any action of P,. Casual semantics for process calculi have been much studied, often under
the name ‘true concurrency semantics’ — see [40] for an overview. It would be interesting to
give a causal semantics to the box 7 calculus. There is a trade-off here, however — such a
semantics would be rather complex; it would have to be understood in order to understand
any property stated using it. The coloured reduction semantics can be considered as an more
tractable approximation to real causality.

Another point is that a causal property is sometimes too strong — a usable wrapper may have
to allow low-bandwidth communication in the reverse direction, perhaps not carrying any data
values, to permit acknowledgement messages. A causal property would then not hold, while a
modified colour flow property would.

6 Conclusion

The code base of modern systems is becoming increasingly diverse. Whereas previously a
typical system would involve a small number of monolithic applications, obtained from trusted
organisations, now users routinely download components from partially trusted or untrusted
sources. Downloaded or mobile code fragments are commonly run under the user’s authority
to grant access to system resources and permit interaction with other software components.
This presents obvious security risks for the secrecy and integrity of the user’s data.

In this paper we have developed a theory of security wrappers. These are small programs
that can regulate the interactions between untrusted software components, enforcing dynamic
and flexible security policies. We have presented a minimal concurrent programming language
for studying the problem, the box-w calculus, and proved a basic metatheoretic result: that a
reduction and labelled transition semantics coincide. We have expressed a number of security
wrappers in the calculus and begun an investigation of the security properties that wrappers
should provide.

6.1 Related Work

There is an extensive literature on information flow properties of various kinds. Much of it is
in the context of multi-level security, in which one has a fixed lattice of security levels and is
concerned with properties which state that a component (expressed purely semantically, e.g.
as a set of traces) respects the levels. The theory could be applied during the design of the
components of a large multi-user system (with a relatively static security policy) by proving that
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the components obey particular properties. A concise introduction can be found in the survey
of McLean [23].: The problem of designing and understanding wrappers appears to be rather
different — we have focussed on the protection required by a single user executing a variety
of partially-trusted components obtained from third parties. This requires flexible protection
mechanisms — a static assignment of security levels would be inadequate — and cannot depend
on static analysis of the components. Related work on dynamic enforcement of policies has
been presented by Schneider [29].

Other recent work has studied type systems that ensure security properties, e.g. the type
systems of Volpano, Irvine and Smith [38, 39], the SLam calculus of Heintze and Riecke [15],
the systems allowing declassification of Myers and Liskov [26, 25], the type systems of Riely
and Hennessy [17, 16, 28], and work on proof-carrying code [27]. If the producers of compo-
nents that one uses all adopt such systems then they may become very effective. Until then,
however, and until type systems can provide the flexible policies required, partially trusted code
will in practice either be run dangerously or be wrapped.

In this paper we have made extensive use of techniques from process calculi and operational
semantics. These are beginning to provide fruitful ways of studying problems in security and
distributed systems, including the analysis of security protocols, for example in [3, 1, 22], and
more general secure language design, including work on the Ambient calculus [9, 10], the
Secure Join calculus (2], the mobile agent calculi in [17, 16, 28, 30, 31, 33, 34], and the Seal
calculus of [36, 37]. These works have studied several different problems, using a variety of
calculi designed for the purpose. Common to all is the use of a reduction or labelled-transition
operational semantics, providing clear rigorous semantics to the rather high-level constructs
involved. One distinguishing feature of the present work is that we do not consider any mobility
primitives, allowing us to use a tractable early labelled transition system. This appears to be
important for the statement of the delicate security properties of wrappers.

6.2 Future Directions

This paper opens up a number of directions that we would like to pursue. Most immediately,
it gives several conjectures that should be proved or refuted, and we would like a better under-
standing of the properties of binary wrappers. There are then extensions for typing, to richer
interfaces, and with mobility primitives.

Typing We are primarily interested in components for which it is infeasible to statically de-
termine whether they are well-behaved. Nonetheless, for simple components one could conser-
vatively ensure well-behaviour with a standard type system, most simply taking types

T == box | T1.Tw | 1T

where [T is the type of channel names that can be used to communicate values of type T,
together with the obvious inference rules. If P is well-typed with respect to a typing context
in:1 8, out:3T fortypes S and T containing no instances of J then one would expect P to be
well-behaved for unary wrappers.



276 Secure Composition

Richer interfaces The wrappers of §3 allowed the encapsulated components to interact only
on very simple interfaces. Ultimately, we would like to understand wrappers with more re-
alistic interfaces. For example, in a mild extension of box-7 one can express a wrapper that
encapsulates & components, allows internal flow along an arbitrary preorder, and permits each
component to open and close windows for character IO. Suppose py, . . ., Pk is a list of distinct
names, and > is a preorder over them giving the allowable information flow. Define a k-ary
wrapper as follows.

Clay-r] € @p1,.-,06)( pala] |5 | peoi]
| ! fwd™n zy).if m > n then z*y else 0
| BWINDOW)

where

BWmpow < !openwindow('")(sz).
openwindotw (s 7)
| 2" (getc putc close).
Z™(getc putc close)
| ! getc™y.(getc'y | y'e.g™c)
| 1 putc™cy).(pute (cy) | y*.7™)
| 1 close™y.(close'y | yt.7™)

This uses an additional input tag — a process z™p.P will input from any child box, binding
the name of the box to n in P. The BWINDOW part of C receives requests for a new window
from the encapsulated components and forwards them to the OS. It then receives the interface
for the new window from the OS, forwarding it down to the component and also setting up
forwarders for the interface channels. Making the security properties of C precise is at present
a challenging problem. One would like to extend C further by adding an interface allowing the
user to dynamically add and remove pairs from >.

Covert channels It should be noted that none of the semantic models that we use for the box-
« calculus make any commitment to the precise details of scheduling processes. The properties
expressed using these semantics therefore cannot address timing-based covert channels such as
those mentioned by Lampson [21]. Certain other covert channels, in particular those involving
system IO and disc access, could be addressed by expressing models of the IO and disc systems
in the calculus, further enriching the wrapper interfaces.

Mobility The original motivation for this work involved downloadable or mobile code and
mobile agents. To explicitly model the dynamic configuration of wrappers and applications the
calculus must be extended with mobility primitives, while keeping both a tractable semantics
and the principle that each box controls the interactions and movements of its contents [36].

Acknowledgements Sewell was supported by EPSRC grant GR/L 62290 Calculi for Inter-
active Systems: Theory and Experiment. The authors would like to thank Ciaran Bryce for his
comments,
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A Coincidence of the Two Semantics

This appendix contains the proof of equivalence of the labelled transition semantics and the
reduction semantics. It is divided into three parts, the first giving basic properties of the labelled
transition system, the second showing that any reduction can be matched by a 7-transition and
the third showing the converse.

Basic Properties of the LTS

Lemma 10 [f P = Q then fn(P) = fn(Q).

Proof Routine induction on derivationof P = Q. O

Lemma 11 [fAF P -—t—>chen

1 fm(P)CA

2. f(Q) C fu(P, )

3. ift =T thenfn(f) N A C fn(P)

4. if ¢ = T° then fu(o) C fn(P)

5. if £ =7°v and ~mv(o) then = € fn(P)
6. if ¢ = zv then fu(y) C fo(P).

7. iff = v and y # 7 then z € fo(P).

Proof By induction on the derivation of A - P = 1 Q. Part 1 is immediate in all cases by
the implicit condition. For the other parts:

(Trans Out) By the condition fn(7°v) C A.

(Trans In) For Part 2, fn({",}P) C (fo(P) —fn(p)) Ufn(v) C fo(z'p.P) Ufn(z'v). For Parts
6 and 7, fn(z,¢) C fo(z‘p.P). All other parts do not apply.

(Trans Repl) For Part 2, fn(!z*p.P | {V}P) C fo(z*p.P) U (fu(P) — fu(p)) U fn(v) C
fn(! zp.P) U fu(z'v). For Part 6 and 7. fu(z,:) C fn(!z‘p.P). All other parts do not
apply.
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(Trans Box-1) We have ¢ = 7. For Part 2:
fa((u fa(z, v) — 4) (@ | n[P))
(fo(z™v) U {n} U (P")) — (fn(z,v) — 4) (by definition of fin)

C (fo(z™) U {n} U fn(P) U in(z™)) — (fn(z,v) — A) (byind. hyp., part 2)
€ (fa(z™) U fn(n[P])) - (fn(z,v) — A)
C fn(n[P]) (by ind. hyp., part 3)
= fn(n[P],T)

All other parts do not apply.

(Trans Box-2) We have £ = ™. For Part 2: fn(n[z'v | P]) = f(n[P]) U fu(TTw) C
fn(n[P]) U fo(z™v). For Part 6 note that n € fn(n[P]). All other parts do not apply.

(Trans Box-3) For Part 2, by the induction hypothesis fn(P’) C fn(P) so fa(n[P']) C fa(n[P)).
All other parts do not apply.

(Trans Par) By the induction hypothesis.

(Trans Comm) Dart 2 i3 by parts 2, 4 and 6 of the induction hypothesis. All other parts do
not apply.

(Trans Res-1) By the induction hypothesis.

(Trans Res-2) For Part 2, by Part 2 of the induction hypothesis fn(P') C fn(P) U fn(7°v).
As g € fo(7°v) we have fu(P') C fn((vz)P) U fu(7°v). For Part 3, by the induction
hypothesis fn(7°v) N (4,z) C (P) so fn(7?v) N A C fn((v z)P). For Part 4, by
the induction hypothesis fn(o) € fn(P) and by the side condition z # o so fn(o) C
fn((v z)P). For Part 5, if -mv(0) then by the induction hypothesis y € fn(P) and by the
side condition z # y so y € fu((vz)P). All other parts do not apply.

(Trans Struct Right) By the induction hypothesis and Lemma 10.

O

Lemma 12 (Strengthening) [fA, B+ P - P'and BNfn(P,£) = then AF P -5 P/,
Proof Induction on derivations of transitions.
(Out), (In), (Repl), (Box-2) All immediate.
(Box-3),(Par),(Struct Right) Straightforward use of the induction hypothesis.
(Comm) We have a rule instance of the form
ABFPZY P ABFQZ(Q
A,B+P|Q -5 (vin(z,v) — (4,B))(P'| Q)

By Lemma 11.3 fn(z7v) N (4, B) C fn(P) and by assumption B N fa(P) = 0 so
fn(z7v) N B = (. By the induction hypothesis and (Comm) we thenhave A - P | Q ——»
(vfn(z,v) — A)(P' | @), but fn(z,v) — A = fn(z,v) — (4,B),s0 AF P|Q =
(v fn(z,v) — (A4, B))(P' | Q') as required.

(Comm)
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(Box-1) Similar to (Comm). In detail: we have a rule instance of the form

ABFPZ% pr
A, B+ n[P] =5 (v fn(z,v) ~ (4, B))(@" | n[P]))

(Box-1)

By Lemma 11.3 fn(z™) N (4, B) C fn(P) and by assumption B N fa(P) = 0 so
fn(zTv) N B = (. By the induction hypothesis and (Box-1) we then have A I n[P]
(v fn(z,v) — (4))(@™ | n[P']) but fn(z,v) — A = fn(z,v) — (4, B),s0 A+ n[P]
(v n(z,v) — (A, B))(T™ | n[P']) as required.

(Res-1) We have a rule instance of the form

AB,z+P-5 P
ABF (vz)P -5 (vz)P

(Res-1)

with z ¢ fn(¢). By A, B,z well-formed we have z ¢ B, so BN fo((vz)P) = 0
implies B N fn(P) = @. By the induction hypothesis 4,z - P £ P 50 by (Res-1)
AF(vz)P -5 (wa)P.

(Res-2) Similar to (Res-1), noting that the sidecondition is a predicate on z and the label only.

(m]

Léemma 13 (Injective Substitution) [fA + P 4, P and f:A—Bandg:(fn(¢)—A) »(N—
B) are injective, then B+ fP il (f+g)P".

Proof Induction on derivations of transitions.

(Out),(Box-1) immediate.
(Box-3),(Par),(Struct Right) Straightforward uses of the induction hypothesis.

(In) Consider A - 2p.P =% {%p} P. We have fn(z*p.P) C A and {¥/,} P well defined. Take
some j and P such that z'p.P = zp.P and_n(f:) N(AUBU (fn(f) — A) Uran(g)) = 0,
then f(2'p.P) = f(a*p.P) = f(z)"p.f(P) and fn(f(2)/“'p.f (P)) C B.
We have {%/;} P defined, hence {%/;}(fP) is defined (as n(p) N (dom(f) Uran(f)) = 0),
hence {{/+9)9/;}(f P) is defined (as (f + g)v and v are the same shape).
By () B F f(z)/"p.f(B) "4 (s £,
Now fn(P) € AUn(5) so fn(P)Ndom(g) = B, so fP = (f+g)P. Hence {491/} fP =
{Uf)(f +9)P = (F + ({}P) = (f + ) ({h}P), 0 B+ f(ap.P) V225*
(f + 9){*/}P).

(Repl) Similar to (In), using in addition that f(! z‘p.P) = (f + g)(! z'p.P).
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(Comm) fn(r) = 0, so we have f: A— B and g:0 —+(N — B). Take some §:(fn(Z7v) —
A) =(N — B) injective. By the induction hypothesis and (Comm) we have

B+ P P8V (14 9P B £Q TS (14 g)
BFf(P1Q) — wh((f+3)s,(F+3)w) — B((f +9)(P'| Q)

Now by Lemma 11.(4,1) n(§) C A, so dom(§) = fo(z,v) — A and ran(g) = fn((f +
9)z,(f + §)v) — B, so B - f(P|Q) — (vran(g))((f+9)(P'|Q')). We have
f((vdom(9))(P' | Q) = ((wran(@))(f + 3)(P' | @)), s0 B + f(P|Q) —
f((vfo(z,v) — A)(P' | Q).

(Box-1) Again similar to (Comm). fn(r) = (), so we have f: A— B and g: ) —(N — B). Take
some §:(fn(7'v) — A) —(N — B) injective. By the induction hypothesis and (Box-1) we
have

(Comm)

B P9 (54 5P

BF [mIP] 5 Wil + 902 + 90) - BT + D@ [alP])
using f(n) = (f+§)(n). It follows that B I f(n[P]) — f((vfo(z,v) — A)(F"v | n[P"])).

1

(Res-1) Take some £ ¢ B Uran(g) and define f (A, z) =(B,z) by
f@ = &
f(z) = f(2),forz e A.
By the induction hypothesis B, 3 - fP T8¢ ( 4 g)P'. By Res-1) B+ (v 3)fP {9
wa)(f +9)P,s0 BF f((w2)P) B (5 + g)wo)P.

(Res-2) Define f:(4,2) (B, (<)) and § as f + (z ~> g(z)) and g | (fa(7°) — (4,2))
respectively. By the induction hypothesis B, g(z) + fP Uiy (f + §)P', soby (Res-2)
B\ (vg(z))fP e (f +§)P',soas f+9 = f+jwehave B - f((vz)P) V225"
(f +9)P".

Lemma 14 (Weakening and Strengthening) (A + P L Pz ¢ AUfn(l)) iff (A4,z +
P-4 P' nz & in(P,0)).

Proof Theright-to-left implication follows from the well-formedness of A, z and from Lemma 12.
The left-to-right implication follows from the condition fn(P) C A in the definition of the tran-
sition rules and from Lemma 13, taking f to be the inclusion from A to A, z and g the identity
onfn(¢) - A. O

Lemma 15 (Shifting)
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1L (AFPZS P Az ef(v)— A if(4,z+PZ% P az e fo(v) — fu(P)).

2 (AFP 3 P ag e fa(z,v) — A) iff(A,z - P 25 Pz € fa(z,v) — fa(P))

Proof Each part is by two inductions on derivations of transitions. For the first:
(Out),(Box-1),(Box-2),(Box-3),(Comm),(Res-2) vacuous.
(Par),(Struct Right) Straightforward uses of the induction hypothesis.

(In),(Repl) Straightforward.
(Res-1) Consider

2 oy 2 oy
AF@yP = (vy)P Az (vy)P 25 (vy)P'
y & fn(z'v) y & fn(z'v)
z € fo(v) — A z € fn(v) — fn((v y) P))

For the left-to-right implication, note that z € fn(v) — (4, y), so by the induction hypoth-
esis A,y,z - P 2% Plandz € fn(v) — fn(P). For the right-to-left implication, note
that as A, 1, y is well-formed we have z € fn{v) — fo(P), so by the induction hypothesis
Ayt PZ% Pandz € fu(v) — (4,y).

For the second part:
(Out),(In),(Repl),(Box-1),(Box-3),(Comm),(Res-2) vacuous.
(Par),(Struct Right) Straightforward uses of the induction hypothesis.
(Box-2) Straightforward.

(Res-1) Similar to the (Res-1) case of the first part.

]

As we are working up to alpha conversion a little care is required when analysing transi-
tions. We need the following lemma (of which only the input and restriction cases are at all
interesting).

Lemma 16
1. Az -5 Qifffa(z°) C A =T vand Q = 0.

2. Ak z'p.P 55 Q iff there exists v such that fn(z*p.P) C A, £ = z*v, {*p} P is defined
and Q = {%,}P.
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3. Ab 1z'p.P 55 Q iff there exists v such that fu(lz'p.P) C A £ = ztv, {Yp}P is
defined and Q = 'z'p.P | {*/p}P.

4. A+ n[P] -5 Q iff one of the following hold.
(a) there exist x, v, and P such thatn € A, £ =1, A+ P ﬂ) P, and Q =
(v fn(z,v) — A)(T™ | n[P)).
(b) there exist = and v such that fa(n[P]) C A, £ = z™v and Q = n[ZTv | P).
(c) there exists P suchthatn € A, £=1, AF P 5 P, and Q = n[P).

5. AP | Q-5 Riffeither

(a) there exists P such thatfn(Q) C A, AP s Pand R=P | Q.

(b) there exists x, v, v, P andQ suchthat{ =1, A+ P —fﬁ) P AFQ L Q and
R=(vin(z,v) A)N(P|Q).

or symmelric cases.
6. A (vz)P -5 Q iffcither

(@) there exists & ¢ AUn(€) U (fa(P) — z) and Q such that A, 5 & {¥/,}P - Q and
Q= wi)Q.

(b) there exists y, 0, v, Q and & ¢ AU fn(y,0) U (fu(P) — z) such that £ = 7,
Ag+ {#3P T%Q, £ € f(v), ~mv(o) and Q = §.

(c) there exists y, 0, v, Q and & ¢ AU fn(o) U (fo(P) — z) such that £ = T°v, A, & +
{3P L% §, 2 € fn(y, v), mv(0) and Q = Q.

Proof The right-to-left implications are all shown using a single transition rule together with
(Trans Struct Right). The left-to-right implications are shown by induction on derivations of
transitions. Only the input, replicated input and restriction cases are at all interesting; we give
just the restriction case.

Case 6a, (<) By Lemma 11, fn({#.}P) C A,%, so we have fn((v #){*/.}P) C A. By
(Trans Res-1), A - (v #){#,}P -5 (v£)Q. By £ ¢ fn(P) — = we have (v £){%/,}P =
(v z)P. By (Trans Struct Right), A - (v z)P -5 Q.

Case 6b, («<=) Again by Proposition 11, fn({#*/.} P) C A, #, so we have fn((v £){%/,}P) C A.
By (Trans Res-2-nmv), A F (2){#:}P L5 Q. Againby & ¢ fo(P) — 7, we have
(v #){#}P = (v 7)P so by (Trans Struct Right) A F (v z)P - Q.

Case 6¢, (=) Again by Proposition 11 fn({*4}P) C A, %, so fo((v 3){¥,}P) C A. By

(Trans Res-2-mv) A & (v 3){%/:} P Fy Q. Againby & ¢ fn(P)—z wehave (v ){#/,} P =
(v 2) P s0 by (Trans Struct Right) A F (v z)P -5 Q.
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Case6, (=) Let 8(A, R, £,Q) € R= wz)P = (a) v (b) v (c). We show & is closed
under the rules defining labelled transitions.

(Trans Res-1) An instance of (Trans Res-1) with conclusion A + (v z)P it Q@ must
be of the form

— i & fn(¢) (Traons Res-1)

for some 2, P, Q with (v &)P = (vz)P, w£)Q = Q and fn((v £)P) C A. By
A, # defined and & ¢ fn(£) we have & ¢ AU fn(£). By (v 2)P = (v z)P we have
& ¢ in(P) —zand P = {3} P,s0 A, & - {¥,}P -+ Q. By reflexivity of =, we
have Q = (v £)Q. So clause 6a holds.

(Trans Res-2-nmv) An instance of (Trans Res-2-nmv) with the conclusion A - (v z) P L
@ must be of the form

Az P XY

———————— —mv(0) A Z € fn(v) — fn(y, 0) (Trans Res-2-nmv)
AP35 Q

for some z, P, y, 0, v with (v )P = (vz)P, 7°v = £ and fo((v #)P) C A. As
before & ¢ AU (fn(P) — z) and P = {#/,} P, so taking Q = Q clause 6b holds.

(Trans Res-2-mv) An instance of (Trans Res-2-mv) with the conclusion 4 + (v )P —
@ must be of the form

AP IS Q

— mv(o) A £ € fn(y,v) — fn(o) (Trans Res-2-mv)
AFw)P L5 Q

for some 2, P, y, 0, v with (v £)P = (vz)P, 7°v = £ and fo((v &)P) C A. As
before & € AU (fn(P) — z) and P = {#/,} P, so taking Q = Q clause 6¢ holds.

(Trans Struct Right) An instance of (Trans Struct Right) with conclusion A + (v z) P Ly
(Q must be of the form
Arwz)P-5H @ @=Q
A+ (vz)P 55 Q

(Trans Struct Right)

for some @’ with fn((v z)P) C A. By ®(A4, (v z)P, £, Q') either

Case 6a there exists & ¢ AUfn(£)U(fn(P)—z) and Q such that 4, 7 F {#/,} P -
Q and Q' = (v 2)Q. By = an equivalence we have Q = (v Z)Q, so clause 6a
holds.

Case 6b there exists y, 0, v, Q and & ¢ AUfn(y, 0)U(fu(P)—xz) such that £ = 7°v,
A {%}Pn—y—.ﬁ) Q, & € fa(v), -mv(0) and Q' = . By = an equivalence
we have ) = @, so clause 6b holds.
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Case 6¢ there exists y, 0, v, Q and & ¢ AU fn(0) U (fo(P) — x) such that £ = 7°v,
A i+ {#}P % Q, & € fu(y, v), mv(o) and Q' = Q. By = an equivalence
we have Q = O, so clause 6¢ holds.

The cases for all other rules are vacuous.

Reductions Imply Transitions

Take the size of a derivation of a structural congruence to be number of instances of infer-
ence rules contained in it.

Lemma 17 If P' = P and {%/,} P is defined then {"/,} P' is defined and {*[,}P' = {“/,} P.
Moreover, for any derivation of P' = P there is a derivation of the same size of {*/,}P' =

{"h}P.

Proof Obvious. O

Proposition 18 IfP' = P then A+ P’ £y QifArP —i)Q.

Proof Induction on the size of derivation of P’ = P. In symmetric cases we show only the
right-to-left direction of the conclusion.

(Struct Cong Refl) By the reflexivity of iff.
(Struct Cong Sym) By the symmetry of iff.
(Struct Cong Tran) By the induction hypothesis and transitivity of iff.

(Struct Cong Input) Consider P’ = P and A - z'p.P . 1% Q. By Lemma 16.2, there exists v
such that fn(z‘p.P) C A, £ = z'v, {¥/p} P is defined and Q = {"/,} P. Using Lemma 10,
fn(z‘p.P") = fn(z‘p.P). By Lemma 17, {¥/,}P' is defined and {",}P’ = {*/,} P, so
Q = {¥,} P". Finally by Lemma 16.2, A  z'p.P' - Q.

(Struct Cong Repl) Consider P’ = Pand A - !z'p.P Ly Q. By Lemma 16.3 there exists v
such that fn(! z°p.P) C A, ¢ = z*v, {¥/,} P is defined and Q@ = !'2*p.P | {*/,}P. Using
Lemma 10, fn(! 2*p.P’) = fn(! z*p.P). By Lemma 17, {¥/,} P’ is defined and {*/,} P' =
{*"fo}P,50Q = !2*p.P' | {*/,}P". Finally by Lemma 16.3, A+ z*p.P' -5 Q.

(Struct Cong Box) Consider P’ = P and A + n[P] %4 Q. By Lemma 16.4 one of the
following hold:
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Case 16.4a there exist z, v, and P such thatn € A, £ =7, AF P =5 P, and
Q = (vin(z,v) — A)(T™ v | n[P]). By the inductive hypothesis A - P' % P. By
Lemma 16.4 A + n[P'] 4589

Case 16.4b there exist  and v such that fo(n[P]) C 4, ¢ = z™v and Q = 11[':571: | P].
Using Lemma 10, fn(n[P']) = fu(n[P]). Clearly n[z'v | P] = n[z'v | P'], so
Q = n[z'v | P']. Finally by Lemma 16.4, 4 - n[P'] - Q.

Case 16.4c there exists P suchthatn € A,£ =7, A+ P -5 P, and Q = n[P]. By the
inductive hypothesis A - P' % P, so by Lemma 16.4, A - n[P'] -5 Q.

(Struct Cong Par) Consider P’ = P,Q'=Qand A+ P |Q 4R By Lemma 16.5 one of
the following holds.

Case 16.5a there exists P such that in(Q) C A, A P - Pand R= P | @. By
Lemma 10, fn(Q’) = fn(Q). By the inductive hypothesis A - P' — P and clearly
P|Q=P|Q,sobyLemmal6.5,A+ P' | @ 4R

Case 16.5b there exists z, -y, v, Pa.ndQ suchthat!{ =7, AF P f—i') P, AFQ 2% 0,
and R = (v fn(z, v) — A)(P | Q). By the induction hypothesis A - P’ =% P and
AFQ =% Q.ByLemmal6.5, A P'| Q' -5 R.

or symmetric cases.

(Struct Cong Res) Consider P = Pand A + (v )P = Q. By Lemma 16.6 one of the
following holds.

Case 16.6a there exists & ¢ AUfn(¢)U(fn(P)—z) and Q such that 4, % F {#:}P —+ Q
and Q = (v2)Q. By Lemma 17 {¥/,}P' = {#/,}P (with a derivation of the
same size). By the induction hypothesis 4, - {#,}P' <+ Q. By Lemma 16.6
Ak (wo)P 5 Q.

Case 16.6b there exists y,0,v,Qand Z ¢ AUfn(y,0)U (fu(P) — z) such that £ = 7°v,
Az F {%,: }P % @, € fu(v), ~mv(o) and Q = Q. By Lemma 17 {#/,} P' =
{¥/:} P, wﬂh a derivation of the same size. By the induction hypothesis A,z
{#.}P' Z% Q. By Lemma 10 (P) = fa(P), 0% & AUfa(y, 0) U (a(P) ).
By Lemma 16.6, A - (v z)P' =& Q.

Case 16.6¢ there exists y, 0, v, Q and & ¢ A U fn(o) U (fo(P) — z) such that £ = 7°v,
Az {&.)P Tuvd,2¢e fn(y, v), mv(o) and Q = Q. By Lemma 17 {¥/,}P' =
{#/.} P (with a derivation of the same size). By the induction hypothesis A, %
{#.}P' L% Q. By Lemma 10 fa(P') = fu(P), so & ¢ AU fn(o) U (fa(P') — z).
By Lemma 16.6 A - (vz)P' -5 Q.

(Struct Par Nil), (Struct Par Comm), (Struct Par Assoc), (Struct Res Res) These should be
straightforward. We check the other two axioms in detail.
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(Struct Res Par) (wz)(P | Q) = P | (vz)Q where z € fn(P). In the following, we
use the fact {¥/,}P = P since z ¢ fn(P), and the fact that (v z)Q = (v %){#.}Q
when £ € fn(Q) — z. The proofs in the first part will yield results of the form A +
P|(w#){*}Q - R with R = R, thusweget A+ P|(rz)Q - Rbyan
application of (Trans Struct Right).

Consider A - (v z)(P | Q) = R. By Lemma 16.6 this holds iff one of the following
holds:

Case 16.6a (Trans Res-1) there exists & ¢ A U fo(£) U (fu((P | Q)) — z) and R such
that A, + {#,}(P | Q) = R and R = (v 2)R. By Lemma 16.5 this transition
holds iff one of the following holds:

Case 16.5a (Trans Par)[Left] there exists P such that fn({#/,}Q) C A, &, A, +
{#}P X Pand R = P | {¥,}Q. It follows that A,% - P - P. By
Lemma 14, A - P L5 P. By (Trans Par), we get A - P | (v ){¥/,}Q -
P | (v#){%.}Q. ByLemma 11 Z ¢ fn(P). By (Trans Struct Right), we obtain
Ak P | 8){%:}Q 5 (8)(P | {#:}Q).

Case 16.5a' (Trans Par)[Right] there exists () such that fn({%/,}P) C 4,%, A,z
{%3.}Q 4 QadR =0 | {¥/z}P. By (Trans Res-1) and the fact that
Z & fn(£), we get A + (v £){%,}Q 2y (v #)Q. By (Trans Par)[Right], we
get A+ P|(va&){#.}Q —> P|(v2)). By the fact that # ¢ fo(P) and
(Trans Struct Right), we get A - P | (v £){#.}Q -5 (v2)(P | Q).

Case 16.5b (Trans Comm) there exists z, 7, v, Pand Q suchthat £ = 7, A,% +
{Lp = P Az k {3}Q Z5 Q, and R = (vin(z,v) — A,2)(P |
Q). By i ¢ fn({¥}P) and Lemma 11.3, & ¢ fn(Z7v). By # ¢ fn(z"v)
and (Trans Res-1), A F (v2){¥#:}Q =% (v#)Q. By the fact that & ¢
fn(P,z7v) and Lemma 14, we get A - P 2% P, By (Trans Comm), A
P|(w#){*:}Q — (vfn(z,v) — A)(P | (¥2)Q). By Lemma 112 ¢ ¢
fn(P), so we may caleulate (v fn(z,v) — A)(P | (v2)Q) = (vn(z,v) —
Az)(vz)(P|Q) =R o

Case 16.5b" (Trans Comm) there exists 2, v, v, Q and P such that £ = 7, A,
#:3Q 25 Q, A5 F {#:}P Z% P,and R = (vin(z,v) — 4,2)(Q | P).
There are some cases to consider:

Case y =1 By Lemma 11.(6,7) £ & fn(z, 7).

Case 5 ¢ f(v) ByLemmal4 A P Z% P. By Res-1) A+ (v £){%:}Q 7%
(v £)Q.
By (Comm) wehave A - P | (v #){%:}@ — (vfu(z,v) - A)(P | (v £)Q).
By Lemma 11.2 & ¢ fu(P), so (v fn(z,v) — A)(P | (v £)Q) =
(v&)(vin(z,v) — 4,2)(P | Q).

Case i € fn(v) ByLemmal15.1 A+ P £% P ByRes-2) A+ (v8){%)Q 5
Q. By (Comm) we have

AR P|(w2){%:}Q = (vfu(z,v) ~ A)(P | Q).
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Clearly (v fo(z,v) — A)(P | Q) = (v 2)(v fu(z,v) — A,2)(P | Q).
Case y =7 ByLemma 11.6 £ & fn(y).
Case £ ¢ fn(z,v) Exactly as the £ ¢ fn(v) case above.
Casef € fn(z,v) By Lemma 152 A - P £% P. By (Res2) A +
(v #){%:1Q 8.8 By (Comm) we have

AF P | (w2){%}Q - (viu(z,v) — A)(P | Q).

Clearly (v fa(z,v) — A)(P | Q) = (v &) (v in(z,v) — 4,8)(P | Q).
Case 16.6b (Trans Res-2-nmv) there exists y, o, v, Rand # ¢ A U fn(y,0) U (fa((P |
Q)) — z) such that £ = 7%, A, 2 F {#}(P | Q) <5 R, & € fa(v), ~mv(0) and
R = R. By Lemma 16.5 either one of the following holds:
Case 16.5a there exists P such that fn({¥,}Q) C A, %, 4,4 F {#/,}P L% P and
R = P | {#.}Q. This leads to a contradiction, as by Lemma 11 z € fo(P).
Case 16.5a' there exists  such that n({2/,}P) C A, 2, 4, F {#,}Q L% @ and
R = Q| {#.} P. We apply (Trans Res-2-nmv) to get A - (v £){#.}Q > Q.
By # ¢ fn(P), we can apply (Trans Par)[Right] to obtain A - P | (v £){#,}Q L%
P|Q=R.
Case 16.6¢ (Trans Res-2-mv) there exists y, 0, v, Rand & ¢ AUfn(o)U(fo((P | Q))—=)
such that £ = 7°v, A, F {#.}(P | Q) L% R, # € fn(y,v), mv(o) and R = R.
By Lemma 16.5 either one of the following holds:

Case 16.5a there exists P such that fn({%/,}Q) C 4, %, A, & - {#/,}P L% P and
R = P | {#,}Q. This leads to a contradiction, as by Lemma 11 z € fn(P).

Case 16.5a" there exists Q such that fn({%/,}P) C A, %, A, & F {#,}Q L3 Q and
R = Q| {#.}P. By (Trans Res-2-mv) and the facts that # € fn(y,v) — fn(o)
and mv(o), we get A F (v2){#:}Q L3 Q. By (Trans Par)[Right], we get
AFP|wd){#}Q T8 P|Q.

Now consider A - P | (v z)Q —3 R. By Lemma 16.5 this transition holds iff one of
the following holds.

Case 16.5a (Trans Par)[Left] there exists P such that fn((vz)Q) C A, A+ P =%
and R = P | (v2)Q. Take z such that z ¢ AU fn(¢) U (fa(P,Q) — z). By & ¢
AUfn(¢) and Lemma 14, A, & P -5 P. By (Trans Par), A, 2 - P | {#,}Q -
P | {3:}Q. By ¢ £and (TransRes-1), A F (v &)(P | {#:}Q) —= (v &)(P | {%:}Q).
Since & ¢ fn(P), (v2)(P | {%:}Q) = R.

Case 16.52" (Trans Par)[Right] there exists § such that fn(P) C A, A+ (v2)Q —= Q
and R = Q | P. By Lemma 16.6 this transition holds iff one of the following holds.

Case 16.6a (Trans Res-1) there exists £ ¢ AU fn(f) U (fn(Q) — z) and é such
that 4,3 F {#,}Q - Q and Q = (v%)Q. By (Trans Par)[Right], we
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have A,3 - P | {3,}Q - P| é By & ¢ fn(¢) and (Trans Res-1), we get
Ar wa)(P|{%}Q) — (v#)(P|Q). By £ ¢ fn(P) and (Trans Struct
Right), we obtain 4 - (v £)(P | {#.}Q) - P | (v2)Q.

Case 16.6b (Trans Res-2-nmv) there exists y, o, v, Q and £ ¢ AU fn(y,o) U
(fn(Q) — z) such that £ = §°v, A, 2 - {f/,}Q Q, S fn(v) -mv(o) and
Q = Q. By (Trans Par)[Right], we have A, + P | {#,.}Q - P | Q. By
-mv(e), & € fu(v) — fn(y, 0) and (Trans Res-2-nmv), we get
Ar (v 2)(P | {#:}Q) -5 P| Q.

Case 16.6¢ (Trans Res-2-mv) there exists y, 0,7, Q and 2 ¢ AU (0)U(fn(Q)—z)
such that £ = 3°v, A, & F {¥.}Q e Q, z € fn(y,v), mv(ol and Q = Q.
By (Trans Par)[Right], we have A,% + P | {/.}Q 4 P|Q. By mv(o),
& € fn(y, v) — fn(o) and (Trans Res-2-mv), we get A I (v £)(P | {#:1Q) %
P|Q.

Case 16.5b (Trans Comm) there exists z, 7, v, P and O such that £ = 7, A+ P 2% P,
AF (vz)Q =5 Q,and R = (v fn(2,v) — A)(P | Q). By Lemma 16.6 there exists
& ¢ AUfn(270) U (fa(Q) — =) and é such that A, £ - {#/,}Q 2% é and Q =
(v 5:)62 By Lemma 14 and £ ¢ A U fn(z7v), we get A, t-P L% ) By (Trans
Comm), 4,% + P | {#:}Q = (vfn(z,v) — A,3)(P| é) By (Tran Res-1) and
% & fn(z,v), we obtain A - (V.’I: (P {*:)Q) = (u z)(u fo(z,v) — A)(P | Q)
hence A - (v 2)(P | {#.}Q) - (win(z,v) — A)(P | Q).

Case 16.5b (Trans Comm) there exists 2, 7, v, Q@ and P such that £ = 7, A F
wz)Q 230, A+ P % P, and R = (v fn(z,v) — A)(Q | P). By Lemma 16.6
the (v z)Q transition holds iff one of the following holds.

Case 16.6a (Trans Res-1) there exists & ¢ AU fn(z7v) U (fn(Q) — =) and Q such
that A, F {£,}Q =% QandQ (v#)Q. By Lemma 14and 2 ¢ AU

fn(z"v) we have A, & - P 2% p. By (Trans Comm), A, F P | {#,}Q -5
(vfa(z,v) — 4,3)(P | Q). By (Tran Res-1) and & ¢ fn(2,v), we obtain A +
(w2)(P | {#:}Q) = (v &)(vfa(z,0) — A)(P | Q).

Case 16.6b (Trans Res-2-nmv) there exists z, 7, v, Q and £ ¢ AUfn(z,5) U
((Q) — z) such that 27w = Z7v, 4,3 F {%:}Q it Q, # € fn(v), ~mv(7)
and Q = Q. By Lemma 15.1 and y # 7, A,% Phﬂ+ P. By (Trans
Comm), 4,2 - P | {#:}Q — (vfn(2,v) — 4,%)(P | Q). By (Tran Res-1)
we obtain A - (v £)(P | {#:}Q) - (v #)(v fu(2,v) — 4,2)(P | Q), hence
88 € (o) Ak 8P| {#:}Q) 2 (win(z0) - A)(P| Q)

Case 16.6¢ (Trans Res-2-mv) there exists z, > Vs Q and Z ¢ AU (¥ )U(fn(Q)—a:)
such that 7o = 270, A, % + {¥:}Q Tdsc fn(2,v), mv(7y) and Q=0Q.
By mv(7) we have y = 7 for some n. By Lemma 152 4,3 - P 2% P. By
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Ov

(Trans Comm), 4,% - P | {#,}Q - (vfu(z,v) — A4,2)(P | Q). By (Tran
Res-1) A+ (v)(P| {#:}Q) = (v&)(v fu(z,v) — A z)(P | Q), hence as
3 efn(z,v) AF (WE)(P | {#.}Q) — (win(z,v) — A)(P | Q).

3>

(Struct Res Box) (v z)n[P] = n[(v z)P] where z # n. Consider A - (v z)n[P) 45 Q.By
Lemma 16.6 this holds iff one of the following holds.

Case 16.6a (Trans Res-1) there exists # ¢ A U fn(¢) U (fa(n[P]) — z) and Q such that
A+ {#}n[P] % Q and Q = (v £)Q. By z # n we have {¥/,}n = n, so we
have A, 2 + n[{%/,}P] —£4 §. By Lemma 16.4 this transition exists iff one of the
following hold:

Case 16.4a (Trans Box-1) there exist z, v, and P such that n € Azl =
A,i+ (%3P 2% P,and Q = (v fu(z,v) - A, 8)(z" | n[P]). There are two
cases to consider:

Case £ ¢ fn(z'v) By (Trans Res-1) and the fact that £ ¢ fn(z'v), we ob-
tain A - (v3){%,}P =% (v2)P. By (Trans Box-1), we obtain A
n[(v 2){%:}P] = (v1u(2,v) — A)(E | n[(v 3)P)). Since & ¢ fn(z™)
we have (v fn(z,v)—A)(Z™ | n[(v 2)P]) = (v 5)(v fn(z,v)-A, £)(Z™ |
n[P]).

Case £ € fo(z'v) By (Trans Res-2), mv(1), and £ € fn(z,v) — (1), we
obtain A - (v3){#,}P =5 P. By (Trans Box-1), we obtain A I
n[(v 2){¥:}P] — (vfn(z,v) — A)(Z | n[P)). Since £ € fn(z,v) -4,
we get (v fn(z,v)—A)(Z™ | n[P]) = (v £)(v fn(z,v)—A, £)(Z | n[P]).

Case 16.4b (Trans Box-2) there exist z and v such that fn(n[{#*.}P]) C 4,3,
€= 2" and Q = nfzTv | {#:}P]. By (Trans Box-2), 4 F (v #){#,}P] %
nfz'v | (v £){*/}P]. Since & ¢ fn(z™), we have n[z'v | (v 2){*:}P] =
(v E)nfz'v | {%:}P].

Case 16.4c (Trans Box-3) there exists P such thatn € A, %, ¢ = 7, A3
{#:}P - P, and Q = n[P]. By (Trans Res-1), A - (v2){#.}P =

(v £)P. By (Trans Box-3), (Trans Struct Right), and  # n, A b n[(v &){¥.} P] =

(v #)n[P).
Case 16.6b (Trans Res-2-nmv) there exists , o, v Qand ¢ AUfn(y, 0)U (fa(n[P])—
z) such that £ = 7%, A, F {#:}n[P] L3 @, £ € f(v), ~mv(0) and Q = Q.
This leads to a contradiction as no such term has any output transitions.
Case 16.6¢ (Trans Res-2-mv) there exists y, 0, v, Q and Z ¢ AUfn(0) U (fn(n[P]) — z)
such that £ = §°v, A, & + {#}n[P] L% §, 2 € fa(y, v), mv(o) and Q = . This
leads to a contradiction as no such term has any output transitions.

Now consider A F n[(v z)P) —£4 Q. By Lemma 16.4 this holds iff one of the following
hold:
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Case 16.4a (Trans Box-1) there exist 2z, v, and Psuchthatn € A, 6 =1, A+
(wz)P 25 P, and Q = (vfa(z,0) — A)(Z% | n[P]). By Lemma 16.6 this
transition holds iff one of the following holds:

Case 16.6a (Trans Res-1) there exists # ¢ AU fo(z'w) U (fn(P) — ) and @ such
that A, & + {*/}P 4 Qand P = (v#)Q. By (Trans Box-1), we have
A, & F n[{#.}P] = (vfa(z,v) = A,&)(Z% | n[Q)]). By (Trans Res-1), A -
(v #)n[{#:}P] = (v 2)(vn(z,v) — A, #)(Z% | n[Q]). Since 2 ¢ fn(z'v)
and # # n, we obtain (v 2)(v fn(z,v) — A,2)(Z" | n[Q)) = (vfn(z,v) —
A)(Z | n[(v £)Q)). )

Case 16.6b (Trans Res-2-nmv) there exists 2, 1, v, Q and 2 ¢ AUfn(z,T) U
(fa(P) — z) such that Z'v = Z'v, A, % b {%:}P 4 9, £ € fa(v), ~mv(})
and P = (. This cannot hold, as mv(1).

Case 16.6¢ (Trans Res-2-mv) there exists z, 1,v,Qand % ¢ AUfn(T)U(fn(P) —z)
such that z'v = z'v, 4,2 {*/,}P 25 0, € fn(z,v), mv(t) and P = Q.
By (Trans Box-1), A, & F n|{¥:}P| - (vin(z,v) — 4,2)(z" | n[Q]). By
(Tran Res-1), A - (v #)n[{#:}P] — (v &)(vn(z,v) — A, %)(Z | 1_1[(:2}).
Since # € fn(z,v) — A we obtain (v )(vfa(z,v) — 4,%)(Fv | n[Q]) =
(vfn(z,v) — 4)(Z | n[Q)).

Case 16.4b (Trans Box-2) there exist z and v such that fa(n[(v ) P]) C 4, £ = z"v and
Q =n[z'v | (v2z)P). Take & & AUfn(z"v), then by (Tran Box-2), we obtain A, Z -
n[{#2}P) 23 n[zv | {#/:}P). By (Trans Res-1), we get A - (v #)n[{#:}P] 5
(v &)nfz'v | {¥:}P). By (Trans Struct Right) and £ ¢ fn(n,Z"v), we obtain A +
(v )n[{?}P] =5 izt | (v 2){%:}P). )

Case 16.4c (Trans Box-3) there exists Qsuchthatn € A, £=7,AF (wz)P 5 Q,
and Q = n[Q). By Lemma 16.6 there exists & ¢ AU (fa(P) — z) and P such that
A2+ {#.}P -+ P and Q = (v #)P. By (Trans Box-3), 4, % F n[{#.}P] =
n[P]. By (Trans Res-1), A + (v&)n[{#,}P] — (v #)n[P]. By (Trans Struct
Right) and « # n, we obtain A - (v £)n[{#,}P] - n[(v £)P).

Lemma 19 Iffn(P) C Aand P - Qthen AF P - Q.

Proof Induction on derivations of P — Q. For the base cases we construct derivations of 7
transitions:

(Red Up)
—————— (Trans Ow)
Azt —-:—) 0 (Trans Par)
Az |Q 250 Q
At [zt | Q] = (vifn(z,v) — A) (@™ | n[0 | Q))

(Trans Box-1)




P. Sewell and J. Vitek 291

By the premise fu(n[z'v | Q]) C A we have fn(z,v) C A, so using (Trans Struct Right)
we have A - n[z'v | Q] — ™ | n[Q), the right hand side of which is exactly the right
hand side of (Red Up).

(Red Down)

—————— (Trans Out) z S 4 = (Trans Box-2)
AFTW =0 AL n[Q] =3 nfztv | Q]

AF T | n[Q] 5 (vfa(v) — A)(0 | nlz'v | Q))

(Trans Comm)

By the premise fn(z"v | n[Q]) C A we have z € A and also fn(v) C A, so using (Trans
Struct Right) we have A - Z"v | n[Q] — n[zTv | Q], the right hand side of which is
exactly the right hand side of (Red Down).

(Red Comm)

—_— (Trans Out) - (Trans In)
ATy =50 Al z'p.P =5 (Y} P

At T | z'p.P - (vin(v) — A)(0 | {*} P)

The side condition {¥/,} P defined for (Trans In) is ensured by the same condition for
(Red Comm). By the premise fn(Z*v | z'p.P) C A we have fn(v) C A, so using (Trans
Struct Right) we have A I Z% | 2'p.P —— {Y/,} P, the right hand side of which is
exactly the right hand side of (Red Comm).

(Trans Comm)

(Red Repl)

— (Trans Out) s (Trans Repl)
AFTv—0 lzp.P — Ya'p.P | {*,} P

AT |lap.P T (win(v) — A)(0 | (*='p.P | {*}}P))

The side condition {¥/, }P defined for (Trans Repl) is ensured by the same condition for
(Red Repl). By the premise fu(Z%v | ! z‘p.P) C A we have fn(v) C A, so using (Trans
Struct Right) we have A + ' | ! z'p.P - !z'p.P | {*/,} P, the right hand side of
which is exactly the right hand side of (Red Repl).

(Trans Comm)

(Red Par), (Red Res) and (Red Box) require straightforward uses of induction hypothesis,
using (Trauns Par), (Trans Res-1) and (Trans Box-3).

(Red Struct) By Lemma 10, fn(P') C A. By the inductive hypothesis, A - P’ —— @'. By
Proposition 18, A - P - @'. By (Tran-Struct-Right), A - P — Q.
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Transitions Imply Reductions

Lemma 20 IfA+ P =% P' then P = (vfn(z,v) — A)(Z°v | P')
Proof Induction on derivationof A - P =% P!,

(Trans Out) Obvious.
(Trans Par) By the induction hypothesis, P = (v fu(z,v) — 4)(Z°v | P'), so

PIQ = ((win(z,v) - A)(v | P)) | Q

(vfn(z,v) — A)(z° | P'| Q) (asby fu(P | Q) C A we have fn(Q) C A)

(Irans Res-1) By the inductlon hypothesis P = (v fn(z,v) — (4, 2))(z% | F'), so

(vo)P = (vz)(vin(z,v) - (4,2))(z | P)

(vfn(z,v) — A)(Z°v | (v 2)P') (as z & fn(z°v))

n

(Trans Res-2-nmv) By the induction hypothesis P = (v fn(z,v) — (4, z))(z°v | P'), so

(vz)P (vz)(vin(z,v) — (4,2)) (@ | P')

(vfn(z,v) — A)(Z°v | P') (as z € fn(v) — fn(z, 0))

(Trans Res-2-mv) By the induction hypothesis P = (v fn(z, v) — (4, z))(Z° | P'), so

(vz)P (vz)(vin(z,v) — (4, z)) (@ | P)

= (vfn(z,v) — A)(z°v | P)

(Trans Struct-Right) By the induction hypothesis.

All other cases are vacuous.
O
Lemma 21 IfA+ Q =% Q' then there exist B, p, Q1 and Qs such that BN(AUfn(z')) = {}
and either Q = (v B)(z'p.Q1 | Q2) and Q' = (v B)({*,}Q1 | Q2) or @ = (v B)(2'p.Q1 |
Q2) and Q' = (v B)({*/p}@1 | 12'p.Q1 | Q2)-

Proof Induction on derivation of A+ Q Lo} Q.

(Trans In), (Trans Repl) Obvious.
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(Trans Par) Consider A-Q | P &y @' | P. By the induction hypothesis there exist B, p, Q;
and @, such that B N (A U fn(z*v)) = {} and either @ = (v B)(z'p.Q) | Q.) and
= (vB)({"%}@: | @) or Q@ = (vB)(12p.Q) | Q) and Q' = (v B)({%p} Q1 |
Yz'p.Q1 | Q2)
Consider the first disjunct (the second is similar). Taking Q, = Q, | P we have

QP (v B)(z'p.Q1 | Q2) | P
(v B)(z'p-Q1 | Q2)

QP ¥ B){*p}Q1 | Q2) | P
(v B){"}Q1 | Q2)

(Trans Res-1) Consider A (v 2)@ = (v 2)Q" with z ¢ AU fn(z'v). By the induction
hypothesis there exist B, p, @; and @ such that B N (4, z U fn(z*v)) = {} and either
= (v B)(a'p.Q1 | Q) and Q' = (v B)({p}Q1 | Q2) or Q@ = (v B)(!2*p.Q1 | Q2)
and Q' = (v B)({"p}Q1 | 12'p.Q1 | Q2).
Consider the first disjunct (the second is similar). Taking B = B, z we have

v2)Q = (v2)(vB)(z'p.Q1 | Q2)
= (vB)(z'p.Q:1| Qo)
(v2)Q = (w2)(vB)({"}@Q1|Q2)

(v BY{"}@:1 | Q2)
(Trans Struct Right) By the induction hypothesis.

All other cases are vacuous.

(]

Lemma22 I[fAF Q —"’ﬁ—u) Q' then there exist B, Q1 and Q, such that BN (AUfn(z™v)) = {},
= (v B)(n[@:] | @2) and Q' = (v B)(n[(zTv | @1)] | Q2).

Proof Induction on derivationof A - @ . Q.
(Trans Box-2) Obvious.

(Trans Par) Consider A - Q | P 2 @' | P. By the induction hypothesis there exist B,
Q1 and @, such that BN (AU fn(z™)) = {}, @ = (v B)(n[Q1] | @) and Q' =
(vB)(n[(Z' | Q1)] | Q2).

Take Q5 = Q, | P. We have

(v B)(nl(z'v | Q)] | Q2 | P) (asfu(P) € A)
(¥ B)(nlE™ | Q)] | @2)

QP = (¥B)n[Q]| Q) | P
= (vB)(n[@] ] Qz | P) (as fn(P) C A)
= (vB)(n[Q] | @)

QP = (wB)n[E'v|Q)]|Q) | P
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(Trans Res-1) Consider A - (v2)Q 23 (v2)Q with z ¢ AU fu(z™). By the induc-
tion hypothesis there exist B, Q; and Q; such that B N (4,z U fn(z™)) = {}, Q@ =
(v B)(n[@1] | Q2) and @' = (v B)(n[(Z'v | Q1)] | Q2).
Let B = B, 2. We have

v9Q = (v2)¥B)nQi]] Q)
= (vB)(nl@ | Q)
wAQ = () B)(AlE | Q)] Q)

(w B)(n[(z' | Q1)] | Q2)
(Trans Struct Right) By the induction hypothesis.

All other cases are vacuous.

0

Lemma23 [fA+-P -5 Qthen P — Q.
Proof Induction on derivationsof A+ P - Q
(Trans Box-1) By Lemma 20 P = (v fn(z,v) — A)(Z'v | P'), so

n[P] n|(v fn(z,v) — A)(zM | P')]
(vfn(z,v) — A)(n[z'v | PY) (by fu(n[P]) C A wehaven € A)

(v fn(z,v) — A)(@™ | n[P"]) (by (Red Up))

3o

(Trans Box-3) By the induction hypothesis and (Red Box).
(Trans Par) By the induction hypothesis and (Red Par).

(Trans Comm) By Lemma 20 P = (v fn(z,v) — A)(Z'v | P'). By Lemma 11 z € A so
P = (vin(w) — A)(Tv | P).
Case v = ¢. By Lemma 21 there exist B, p, @, and @, such that B N (A U fn(z*v)) =
{} and either @ = (v B)(z'p.Q1 | Q2) ad Q' = (WB)({*}CQ1 | @) or Q =
(¥B)('z'p.Q:1 | Q2) and Q' = (vB)({%}Q1 | '2*p.Q1 | Q2). Consider the first
disjunct. We have

PiQ (vn(v) — A)(37v | P') | (v B)(z'p.Q1 | Qo)

(v fn(v) — A)(F™ | P' | (v B)(z'p.Q1 | Q2)) (as fn(Q) € 4)

(vin(v) — A)(w B)(@v | P' | 2'p.Q1 | @2) (as (AUIn(v)) N B ={})
(v fn(v) — A)(v B)({*p}@1 | P’ | @2) (by Red Comm)

(vin(v) — A)(P' | (v B)({"/p}@1 | @2)) (as (AU (v)) N B = {})
(vin(v) — A)(P'| Q)

The second disjunct is similar.

{1 1 1
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Case v = 7. By Lemma 22 there exist B, @, and Q) such that BN (AU fn(z™)) = {},
Q= (v B)(n[@:] | Q2) and @' = (v B)(n[(Z™v | @1)] | Q2)- We have

PlQ (vfn(v) — A)(z" | P) | (v B)(n[Qu] | Qo)

(vin(v) — A)(Z" | P’ | (v B)(n[Q:] | Q1)) (as fn(Q) € A)

(v fn(v) — A)(v B)(Z"v | P' | n[Q1] | Q:) (as (AUfa(v)) N B = {})
(vin(v) — A)(v B)(P' | n[z"v | Q1] | Q2) (by Red Down)

(vin(v) — A)(P' | (v B)(n[(@"v | @1)] | Q2)) (as (AU fn(v)) N B = {})
(vfo(v) — A)(P'| Q)

m o douemeow

(Trans Res-1) By the induction hypothesis and (Red Res).
(Trans Struct Right) By the induction hypothesis and (Red Struct).

All other cases are vacuous.

O

Proof (of Theorem 1) We must show that if fn(P) C A then A+ P - Q iff P — Q. This
is immediate from Lemmas 19 and 23 above. O
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B Other Proofs

We first give another transition-analysis lemma. This allows us to rename extruded names in a
label instead of in the source process term.

Lemma24 IfAF (vN)P L5 Q, £ =7, and A, N and M are pairwise disjoint finite sets
of names then there exists a partition Ny, N, of N, a process P', and

h:(fo(€) — A) =N — (4, N2, M)
injective such that
AN p U2 pr

AR (NP W NP = (14 + h)Q
Ny =N —fo((14 + h)8)

Proof Inductionon N. For N = Q wehave A - P -5 Q. Take any h:(fn(f) —
A)=(N — (4, M)) injective. By Lemma 13 4  1,P "4 (1, 4 h)Q. Now consider
AbF (vz)(v N)P £, Q with 4, (N,z), and M pairwise disjoint. By Lemma 16.6 one of the
following cases hold.

Case 6a there exists & ¢ AUn(¢)U(fo((v N)P)-z) and Qsuchthat 4, 2 - {#,}(v N)P -
O and Q = (v3)Q.
Take some

f:AE—>Ax
g:(fa(f) — A, £) 3N — (A, z, M)

injective with f the identity on A. By Lemma 13
Azk (NP LY (5490
By the induction hypothesis there exists a partition IV], N3 of N, a process P', and
K :(E((f +9)) — (4,2)) >N — (4,2, N3, M)
injective such that

A,z, N+ p Gttt by
Azk (N)P M= () NP = (1, + B (f + 9)0
Now £ ¢ fnl, soz & fn((f + g)£), so z & fu((Laz + 2')(f + g)¢), so by (Res-1)
At wa) @ NP B (00 NP = (v 2)(Lae + K)(F + 9)Q

Take N; = N!, N, = N}, z and h = h'g.
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Case 6¢ there exists y, o, v Q and £ ¢ AU n(o) U (fo((w N)P) — z) such that £ = v,
A i {#}w NP L5 Q, i e fo(y,v), mv(o) and Q = Q.

Similarly, take some

f:A - Az
g'(fn(e) - A1"i:) _)N—' (A,.’L‘, M)

injective with f the identity on A. By Lemma 13
A,z (wN)P g (F+9)@Q
By the induction hypothesis there exists a partition N7, N3 of N, a process P’, and
K :(fa((f + 9)0) — (A, 2)) (N — (4,3, N;, M))

injective such that

Az, N p A=t p
Ak (wN)P ‘1""*"—)§’ W NP = (Lae + H)(f +9)Q

Now here & € fn, so z € fn((f + g)€), so z € fa((1az + 1')(f + g)€), so by (Res-2)

AF (wo)(w N)P M= () NP = (1,4, + B)(F +9)0

Take Ny = Nj,z, No = N} and h = {z/%} + H'g.

(]

Explicit Characterisation

The simple security properties are proved using an explicit characterisation of the states and
labelled transitions of W;[P]. If N is a finite set of names, a is a name and A and @ are
processes define

N;A4Q] ¥ wNufa))( A
| a[@]
| Vin'y.in® Y
| ! outey.out'y )

Say the 4-tuple a, N, A, Q is good if N, {a}, and {in, out} are pairwise disjoint, .4 is a parallel
composition of outputs of the forms

out'v, out'v, in'v, T where z & {out,a}

with a &€ fn(v) in each case, and Q is a process with a & fn(Q). Say a process P is good if
P = [a; N; A, Q] for some good a, N, A, Q.
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Lemma 25 Ifa & fn(P) then W [P] = [a; §; 0; P], hence W\ [P] is good.

Proof Straightforward. O
We define a transition relation A - P & @ as the least satisfying the following rules.

# AF[a N A4Q1 ™ o N A | %% Q] fa(v) N (VU {a}) = 0
ty AF[aN; A% Q] = [o;N;4Q | @n'v]
ity . -
ty A NatbQ— Q' AF [a;N;A;Q] = [a; N, fn(v) — (4, N, a); A | out™v; Q']
ts A NaFQZ%¢ AF [ N; A; Q] 2 [a; N, fa(z, ) — (4, N, a); A | 7%0; Q']
te AI—|[a;N;A|EEIu;Q] BN I[a;N;.AlmTv;Q]
tr AF [0 N3 A | 00 Q% [a; N — fa(o); 4 Q]
ts ANaFQ-5@Q At [a;N;A4;Q] 5 [a; N; A Q]

Arpip p=pr
A-p L pr

For rule 5, we have a side condition that z # out. For all rules we have a sidecondition that
the 4-tuple in the left hand side of the conclusion is good. For all rules we have a sidecondition
that the free names of the process on the left hand side of the conclusion are contained in A.

Lemma 26 I[fA+ P L P then P' is good.

Proof By inspection of the transition axioms, checking that the 4-tuple on the right hand
side is good in each case, and noting that the definition of P good is preserved by struc-
tural congruence. For t; by the condition fn([a; N;A; Q]) € A we have {in, out} C A so
{in, out} N (fn(v) — (A, N,e)) = 0. By Lemma 11.3 a ¢ fu(v) By Lemma 11.2 ¢ & fn(Q’).
For tg by the condition fn([a; N; A; Q]) C A wehave {in, out} C A so {in, out}N(fn(z,v)—
(A,N,a)) = 0. By Lemma 11.3 ¢ ¢ fn(z,v) By Lemma 11.2 a ¢ fn(Q'). For t3 by
Lemma 11.2 a ¢ fn(Q"). The other cases are straightforward. O

Lemma 27 For all good P we have A+ P -4 P'iff A+ P 5 P

Proof We firstshow that A - P -5 P/ implies A - P L p , by induction on derivations of
the former. The converse direction is by a case analysis of the possible transition derivations. O

Purity

Proof (of Proposition 2) We show by induction on k that ) is good and that the conclusion
holds. The k = 0 case is by Lemma 25. The inductive step uses Lemmas 26 and 27. O

Proof (of Proposition 3) Similar to that of Proposition 2; we omit the details. O
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Proof (of Proposition 4) Similar to that of Proposition 2; we omit the details. O

Honesty

Proof (of Proposition 5) We check that the unary wrapper W, is honest (the proof for £
should be similar). If N is a finite set of names, a is a name and A and @ are processes define

(N A4Q) Z Q )
|out'v e A}

| v
| Ty |outve A}
| |Z% € Az # out [}
|{ v | ved}
(@ N4 Q) Z (v N)(a; N; A4 Q)
Note that if a; N; A; Q is good then a ¢ fn({a; N; A; Q). Now take the family of relations
below.

2

i

g

{
{
{

L

Ry = =of[a;N;A;Ql, (a; N; A; Q) | a; N; A; Q good and fn([a; N; A;Q]) C Ao =

We must check that for any P with a & fo(P) and A D fn(W4[P]) we have W,[P] R4 P and
that R is an h-bisimulation. The former follows from Lemma 25 and the fact {(a; 0; 0; P)) = P.
For the latter there are a number of cases to check, as below. We give only the most interesting
in detail.

Consider C R4 D. We know there exist good a; N; .A; Q such that C = [a; N; A4;Q],
D = {(a;N; A;Q)), and fn(C) C A. Without loss of generality suppose A and N, q are
disjoint. Note that by Proposition 18 if A - C £, C'then 4 - [a; N; 4; Q] - ', and
similarly for transitions of D.

"
Clause 1’ Suppose A - (a; N; 4; Q) 23 U.
By Lemma 24 there exists a partition Ny, IV, of N, a process U’, and

h:(fn(v) — A) = (N — (4, Ny, a))

injective such that
out’
A, N+ ({a; N; A; Q) v
outly
AF (G N; 4Q) ™3 (v N))U' = (14 + R)U
Ny =N —fn(v')
where v' = (14 + h)v. There are three cases.

(@) ducto A, N F Q™Y @ with U = ((a; N5 A; Q).
By Lemma 14 A, N,a - Q =¥ @
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By t4,t6,t7 and Lemmas 26,27

AF 18 N;4Q) S5 [N — fa); 4Q1
By Lemma 13

out'y

Al [a;N; 4 Q] "= (1a+h ™ Y[a; N — fu(v); 4; Q]
Now a; N — fn(v'); A; Q' is good, hence
[a; N — f(v"); A; Q] Ravmewry (o N — fn(v'); A;Q),
and R is closed under injective renamings that preserve {in, out}, so
(1a+h e N — in(v'); 4; Q] Raveaes) (La + A7) {a; N — fu(v); 4, Q) =U

(b) due to an gud n € A. Match using t6,47.

(c) dueto an out v € A. Match using 7.

Suppose A - {(a; N; A; Q)
(a) dueto A, N F @ —+ Q'. Match using t8.
(b) dueto A, N+ Q ™% ¢ and in"v € A. Match using t2,18.
Clause 2' Suppose A - {(a; N; 4; Q) ' This must be due to ANEFQ iy Q'. Match using
t1,t2,t8.

e
Clause 1 Suppose A I [a; N; A; Q] 2 { . This must be by t7; it can be matched directly.

Suppose A F [a; N; A; Q] — . This must be by one of the following rules.

t2 Match with zero T steps.

t4 Using Lemma 20 the output particle is present in ). The transition can then be
matched with zero 7 steps.

t5 Similar to t4.
t6 Match with zero 7 steps.
t8 Match with one 7 step.

Clause 2 Suppose A - [a; N; A; Q] 'Y This must be by t1. It can be matched with zero T steps,
using the second part of Clause 2 of the definition of h-bisimulation.

Clause 3 Suppose A - [a; N; A; Q] —£4 for another label £. Vacuous.

O
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