
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2013                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Device-Independent Entanglement Quantification and Related Applications

Moroder, Tobias; Bancal, Jean-Daniel; Liang, Yeong Cherng; Hofmann, Martin; Gühne, Otfried

How to cite

MORODER, Tobias et al. Device-Independent Entanglement Quantification and Related Applications. In: 

Physical review letters, 2013, vol. 111, n° 3. doi: 10.1103/PhysRevLett.111.030501

This publication URL: https://archive-ouverte.unige.ch/unige:47341

Publication DOI: 10.1103/PhysRevLett.111.030501

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:47341
https://doi.org/10.1103/PhysRevLett.111.030501


Device-Independent Entanglement Quantification and Related Applications

Tobias Moroder,1 Jean-Daniel Bancal,2,3 Yeong-Cherng Liang,2 Martin Hofmann,1 and Otfried Gühne1

1Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany
2Group of Applied Physics, University of Geneva, CH-1211 Geneva, Switzerland

3Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
(Received 23 February 2013; published 15 July 2013)

We present a general method to quantify both bipartite and multipartite entanglement in a device-

independent manner, meaning that we put a lower bound on the amount of entanglement present in a

system based on the observed data only but independent of any quantum description of the employed

devices. Some of the bounds we obtain, such as for the Clauser-Horne-Shimony-Holt Bell inequality or

the Svetlichny inequality, are shown to be tight. Besides, device-independent entanglement quantification

can serve as a basis for numerous tasks. We show in particular that our method provides a rigorous way to

construct dimension witnesses, gives new insights into the question whether bound entangled states can

violate a Bell inequality, and can be used to construct device-independent entanglement witnesses

involving an arbitrary number of parties.

DOI: 10.1103/PhysRevLett.111.030501 PACS numbers: 03.67.Mn, 03.65.Ud

Introduction.—Entanglement, undoubtfully the most
precious resource of quantum mechanics, has been rou-
tinely quantified in many experiments. However, such
entanglement statements are generally only valid when a
precise quantum description of the employed equipment is
available [1]. In many contexts, such a quantum model is
not available, in particular for complex biological or con-
densed matter systems, where one still disputes about the
underlying quantum processes or is unsure about the appro-
priate description of measurements [2,3]. In this case, one
can still try to quantify entanglement exclusively from the
observed classical measurement data, thus independent of
any quantum functionality of the interested system. While
this may seem impossible at first sight, suchmethodology is
precisely the working principle behind the emergent field
of device-independent quantum information processing,
which started in quantum key distribution [4,5] and device
testing [6,7]. However, while it is long known that Bell
inequality violations [8] verify entanglement [9], no precise
bound on the amount of entanglement is known in the
device-independent setting, presumably because nonlocal-
ity and entanglement are different resources [10]. Evenwith
a qubit assumption, quantification has so far only been
achieved for the simplest experimental scenario [11,12].

In this Letter we present a general framework for various
device-independent tasks, notably the quantification of
bi- and multipartite entanglement using solely the observed
classical data. Incidentally, this provides further results on
seemingly unrelated questions in quantum information:
First it certifies a necessary minimal dimension of the
underlying quantum system and thus provides a rigorous
and systematic construction of dimension witnesses [13].
Second, using the negativity [14] as our primary entangle-
ment measure, we obtain new results for the long-standing
Peres conjecture [15], which states that no bound entangled

state can violate a Bell inequality. We show that a Bell
violation of any known bipartite bound entangled state,
or, more precisely, any entangled state with a positive
partial transpose (PPT), can at most be very small, if not
vanishing, for the simplest classes of Bell inequalities,
thus providing circumstantial evidence in favor of this
conjecture in the bipartite case. Finally, in the multipartite
case our framework additionally facilitates—without
resorting to the detection of genuine multipartite non-
locality [16]—the construction of device-independent
entanglement witnesses (DIEW) for genuine multipartite
entanglement [16–18].
Problem definition.—Let us start by considering a bipar-

tite Bell-type experiment where each party can employ
different measurement settings x, y with respective out-
comes a, b that are sampled from the conditional proba-
bility distribution Pða; bjx; yÞ. These data have a quantum
representation if there exists a quantum state �AB and local
measurement operatorsMajx,Mbjy such that Pða; bjx; yÞ ¼
trð�ABMajx �MbjyÞ. In the device-independent paradigm

one tries to draw conclusions about �AB directly from
Pða; bjx; yÞ without assuming any knowledge of the per-
formed measurements or of the dimension of the under-
lying state. In order to do so one needs a characterization at
the level of Pða; bjx; yÞ assuming that �AB satisfies certain
properties. If �AB is only required to be a quantum state,
we recover the original question leading to Tsirelson’s
bounds [19–23]. But one can demand �AB to fulfill extra
constraints, such as being PPT [24], or—with our primary
goal in mind—that its entanglement is bounded. This
characterization task generalizes naturally to the multipar-
tite case, e.g., to describe if the tripartite distribution
Pða; b; cjx; y; zÞ is quantum, biseparable [16,25], originates
from a PPT mixture [26], or has some bounded amount of
entanglement.
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Our method is a superset characterization, similar to the
converging hierarchy proposed by Navascués-Pironio-
Acı́n (NPA) [21–23]. For instance, in the bipartite case
we show that a distribution P ¼ Pða; bjx; yÞ can only
originate from a PPT state if a special matrix �½P; u�,
that linearly depends on P and on some unknowns u,
satisfies �½P; u� � 0 and �½P; u�TA � 0. If it is impossible
to find such parameters u, then P has no PPT quantum
representation. The novel observation which enables us to
go beyond NPA is that if one organizes the matrix entries of
NPA carefully, the resulting matrix � can be interpreted as
the result of local maps acting on the underlying quantum
state. Then this matrix has a clear bipartite structure.

We emphasize that in quantifying entanglement or in
characterizing correlations due to extra properties of the
quantum state, we need statements that hold for all possible
dimensions, measurements and states with the desired
property. However, since any measurement operator
corresponds to a projector in higher dimensions, we can
assume without loss of generality the projection property,
i.e., the relation MajxMa0jx ¼ �aa0Majx for the operators

Majx on system A for all x, a and a0. This follows from

Naimark’s extension [27] which preserves any entangle-
ment monotone. Also, we shall simultaneously employ the
notations Majx and Ai for measurement operators on sys-

tem A, likewise for other systems. The set fAig contains the
identity operator A0 ¼ 1 and all but one measurement
operator Majx for each setting. Hence, one has the afore-

mentioned projection property and an identity relation
AiA0 ¼ A0Ai ¼ Ai for all i.

Technique.—To solve to the desired characterization
problem, we employ results obtained in the studies of
matrix of moments for continuous variable systems
[28–32] and in the device-independent analysis [20–23].

Let us start with the matrix of moments for the bipartite
case and consider first the scenario where the state �AB and
the measurement operators Majx, Mbjy are known. To this

scenario we associate two completely positive (CP) local
maps �A, �B that we apply to the quantum state �½�� ¼
�½�AB� �A �B ¼ �A ��B½�AB�. Here �A and �B denote the
respective output spaces. Specifically, consider the local

map �A½�� ¼ P
Kn�K

y
n where the Kraus operators are

given by Kn ¼ P
ijii �AAhnjAi, and jniA, jii �A are orthogonal

basis states of H A and H �A, respectively. Using a similar
map for B one obtains

�½�� ¼ X

ijkl

jiji �A �Bhkljtr½�ABA
y
kAi � By

l Bj�: (1)

Thus, the matrix �½�� is just a matrix of certain expectation
values. Since the local maps can also be defined using
higher moments, e.g., by choosing Kraus operators Kn ¼
P

i1;...;i‘
ji1; . . . ; i‘i �AAhnjAi1Ai2 . . .Ai‘ , we shall refer to � as a

moment matrix of level ‘ if it contains all ‘-fold products
of Ai. Since both sets fAig, fBjg contain the identity, the

trace of the underlying state is a matrix entry that we refer

to as �½��tr ¼ tr½��. Finally, note that by the structure of
these local maps we have a couple of important relations:
e.g., (i) if � � 0 then �½�� � 0, (ii) if �TA � 0 then
�½��T �A � 0, and (iii) if � separable then �½�� separable.
This matrix of moment approach can analogously be
defined in the multipartite case.
A device-independent characterization draws a conclu-

sion only from the observed correlations; hence, many of
the entries of � are unknown a priori. However, even
without this information the matrix �½�� has a certain
structure which follows from known relations that
hold independently of state and measurements: (i) Ai, Bj

are Hermitian operators, (ii) Ai, Bj satisfies the above

mentioned projection property and the identity relation,
and (iii) certain entries correspond to the observations
Pða; bjx; yÞ ¼ trð�ABMajx �MbjyÞ.
Via this partial information we can decompose without

loss of generality each matrix of moments �½�� as

�½�� ¼ �½P; u� ¼ �fixðPÞ þ �openðuÞ
¼ X

a;b;x;y

Pða; bjx; yÞFabxy þ
X

v

uvFv; (2)

i.e., into one fixed part that linearly depends on the
observed data �fixðPÞ ¼ P

Pða; bjx; yÞFabxy and into an

orthogonal, open part �openðuÞ ¼ P
vuvFv which would

be known only by the knowledge of state and measure-
ments. Here, all operators F ¼ Fy are Hermitian. Note that
the constraint �½��tr ¼ �½P; u�tr ¼ 1 is fulfilled automati-
cally if the probabilities P are normalized. We give an
example how the relations (1)–(3) provide the form given
by Eq. (2) in the Supplemental Material [33].
Connection with the NPA hierarchy.—At this point we

like to connect the present technique to that of NPA
[21,22], the best known method to characterize quantum
correlations. For their method, one can identify a likewise
construction�NPA½�� ¼ �½�AB�, but with� being a global
CP map which already ensures that if � � 0 then
�NPA½�� � 0. If one uses the operator-sum ansatz

�NPA½�� ¼ P
mLm�L

y
m where Lm ¼ P

sjsihmjOs with
jmi, jsi being respective basis states for the

in- and output Hilbert spaces, this leads to �NPA½�� ¼
P jsihtjtr½�ABO

y
t Os�. If this operator set fOsg consists of

all ‘-fold products of measurement operators, then impos-
ing the constraint �NPA½�� � 0 corresponds to the ‘NPA-th
step in their hierarchy.
Therefore, a bipartite moment matrix � of level ‘ as

defined above and a 2‘-step �NPA only differ in the order-
ing of the expectation values and in that certain moments of
�NPA are not included in �. These similarities are impor-
tant to relate results about the NPA method �NPA to the
modified moment matrix �. However, let us stress that
�NPA does not generally admit a bipartite structure.
Applications of technique.—Given the close connection

between the present technique and that of NPA, it is clear
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that ours can also be used to characterize the set of
quantum correlations and hence to compute Tsirelson
bounds, i.e., extremal quantum values of a Bell inequality.
For instance, for any fixed level ‘ and any given Bell
expression I � P ¼ P

IabxyPða; bjx; yÞ, an upper bound

to the Tsirelson bound can be obtained by solving
maxfI � Pj�½�� ¼ �½P; u� � 0g as a semidefinite program
[34]. Henceforth, let us focus on the novel applications that
stem from the current technique.

In comparison with NPA the advantage of the additional
bipartite structure � ¼ � �A �B is that one can now easily
incorporate further constraints. For instance, one could
ask for a similar Tsirelson bound if the underlying state
is PPT by including the constraint �½��T �A � 0,

max
P;u

I �P
s:t: �½��¼�½P;u�� 0; �½��T �A � 0; �½��tr ¼ 1:

(3)

By this method one obtains an upper bound to the true PPT
Tsirelson bound, which converges to the related commu-
tative bound in the limit of large levels ‘, see Supplemental
Material [33] for details.

Next, let us show how to estimate the negativity [14],
defined via the sum of negative eigenvalues �i of the

partially transposed state as N½�AB� ¼ P
�i<0j�ið�TA

ABÞj.
In the following we employ its variational form which

reads as N½�AB�¼minftr½���j�AB¼�þ���;�
TA� �0g.

Using the properties of the moment matrix, one can readily
optimize over a larger set: The constraint � ¼ �þ � �� is

relaxed by �½�� ¼ �½�þ� � �½���, while �TA� � 0 trans-
lates to �½���T �A � 0. If one observes a certain violation of
a Bell inequality I � P ¼ v, a lower bound on the negativity
of �AB compatible with this observation is given by

min
P;u;P�;u�

�½���tr
s:t: �½��¼�½P;u�¼�½�þ���½����0; �½��tr¼1;

�½���T �A¼�½P�;u��T �A�0; I�P¼v:

(4)

Furthermore, since the negativity of any Cd � CD state
is at most Nd

max ¼ ðd� 1Þ=2 (for d � D), a lower bound
on the negativity certifies also a minimal state space
dimension. The bound of a dimension witness [13],
i.e., the maximal value of a Bell inequality for states with
minimal local dimension upper bounded by d, can be
constructed by an optimization analogous to Eq. (4) but
with the expression I � P now appearing in the objective
function, while the dimension restriction is enforced by the
constraint �½���tr � Nd

max.
At this point we like to stress that these optimization

problems admit a natural generalization to the multipartite
scenario using PPT mixtures (which include biseparable
states) and the genuine negativity as a measure for genuine
multiparticle entanglement [26]. Further details and the
explicit programs are given in Supplemental Material [33].

Example I: CHSH.—Let us start with the Clauser-
Horne-Shimony-Holt (CHSH) inequality [35], where
each party has two possible settings x, y 2 f1; 2g yielding
binary outcomes a, b. Using correlation terms hXxYyi ¼
Pða ¼ bjx; yÞ � Pða � bjx; yÞ, the inequality ICHSH ¼
hX1Y1i þ hX1Y2i þ hX2Y1i � hX2Y2i � 2 holds for any
local hidden-variable model (LHV), while quantum

mechanics allows a maximum of Imax
CHSH ¼ 2

ffiffiffi
2

p
. Since

every separable state fulfills the LHV bound [9], any
violation ICHSH > 2 signals entanglement of the underlying
quantum state �AB. By solving Eq. (4) we can now provide
a quantitative statement in terms of the minimal negativity
that the underlying state �AB must possess. Specifically, the
numerical result leads to the sharp bound

N½�ABjICHSH ¼ v� � ðv� 2Þ=ð4 ffiffiffi
2

p � 4Þ: (5)

The resulting plot and a more detailed discussion, also about
the other examples, can be found in Supplemental Material
[33]. Note that this recovers the known result that PPT states
must necessarily satisfy the CHSH inequality [36].
Example II: Dimension witness.—As a second example,

we consider the Bell inequality I3322 � 0 [37,38], where
each party can perform three possible dichotomic mea-
surements as indicated by the subscripts. For a violation of
0 � v � 0:25, the numerical solution of Eq. (4) gives
N½�ABjI3322 ¼ v� � 2v and a two-qubit Bell state can
indeed reach a violation of I3322 ¼ 0:25 [38]. However,
the maximum possible quantum violation is given by
Imax
3322 & 0:25088 and there exist infinite-dimensional states

which can asymptotically reach this value [39]. From
Fig. 1, we see more closely that if I3322 > 0:25 the nega-
tivity bound satisfies N½�AB�> 1=2, which is achievable
only with local Hilbert space dimension d � 3. Hence,
I3322 � 0:25 serves as a dimension witness for qutrits.
In a similar way we investigated the very first Bell

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.2492  0.2494  0.2496  0.2498  0.25  0.2502  0.2504  0.2506  0.2508

M
in

im
al

 n
eg

at
iv

ity

Bell violation

Negativity bounds l3322

l=2
l=3

l=3+

FIG. 1 (color online). Negativity bounds for violations close to
the maximum of the Bell inequality I3322 [37,38] obtained by
solving Eq. (4) for different levels of the moment matrix.
Note that violations with v > 0:25 require a negativity of
N½�AB�> 1=2 and thus at least a two-qutrit state.
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inequality used as a dimension witness [13], namely,
I2233 � 0 [38,40,41], and confirm that violations larger

than v ¼ 1=
ffiffiffi
2

p � 1=2 � 0:2071 require at least qutrits—
this certifies the heuristic qubit bound of I2233 [13].

Example III: PPT Tsirelson bound.—As a third example
of the application of our techniques, we have computed
upper bound on the PPT Tsirelson bound for the above
Bell inequalities and 175 facet-defining Bell inequalities
involving four dichotomic measurement settings per party
[42–44]. Interestingly, our results show that for the major-
ity of these inequalities, the maximal quantum violation
allowed by all PPT entangled states is vanishing within
numerical precision, and, hence, unable to provide a coun-
terexample to the bipartite Peres conjecture; cf. Table I and
Supplemental Material [33] for details.

Multipartite case.—We also considered examples
involving more than two parties, where one is typically
interested to verify genuine multipartite entanglement.
This strongest form of multiparticle entanglement can be
detected from observed correlations alone by violating a
DIEW [16]. For device-independent entanglement quanti-
fication, we investigated—by a method analogous to the
bipartite case—the minimal amount of genuine negativity
[26] needed to violate the DIEWs I32 and I33, where each
party has respectively two or three dichotomic measure-
ments [16,45]. Since I32 is the Svetlichny inequality [46],
its violation also demonstrates genuine multipartite
nonlocality. From the bounds we computed, again tight
for the Svetlichny case (see Supplemental Material [33]),
we can also obtain information about the type of entangle-
ment responsible for given violations, in similar spirit to
Ref. [47]. For instance, since the genuine negativity of any

state of the three-qubit W-class [48] is bounded by
ffiffiffi
2

p
=3,

one verifies that violations close to the maximum of these
DIEWs can never be achieved by such type of entangle-
ment. Moreover, our bounds show that these DIEWs can
never be violated by states which are PPT mixtures [26].
Using similar arguments as presented in Ref. [18], this

result can even be extended to the n-partite witnesses In2
and In3. This suggests that, apart from a quantification, the
generalization of PPT Tsirelson bounds to the multipartite
case provides a tractable way to approximate the set of
biseparable quantum correlations in the presence of more
than three parties [16]. Indeed, this approximation not only
works well for the two families of n-partite DIEWs In2, In3,
but also for a large number of symmetric 4-partite DIEWs
involving two dichotomic measurements [49].
Finally, there are also other questions for the multipartite

case. At last we computed the maximal violation of the
tripartite Bell inequality IS5 � 3 [37] for states which
are PPT for all bipartitions. We find that it is bounded
by 3.0187, which shows that the example of Ref. [50],
optimally violates the tripartite Peres conjecture via this
inequality, cf. Table I.
Conclusion.—We have presented a versatile tool to

quantify entanglement in the bi- and multipartite case
directly from the observed measurement results, thus irre-
spective of any quantum functionality of the employed
devices. This framework offers great practical benefit in
experiments since its statements are robust against any
kind of systematic errors in the assumed quantum model
and involves minimal assumptions. Moreover such a quan-
tification provides additional applications: It yields infor-
mation about the underlying state space dimension or the
type of entanglement involved in the multipartite case.
Furthermore, our tool allows for a systematic investigation
into the long-standing Peres conjecture, and the computa-
tion of device-independent entanglement witness for
genuine multipartite entanglement.
For future work, we believe that our method can be

extended to bound, in a device-independent manner, other
entanglement measures. Clearly, it will also be interesting
to investigate how our technique can be used in conjunc-
tion with other separability criteria, or applied in the
closely related steering [51] (with the partial information
step only applied to one-side) or sequential measurement
scenarios [52].
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and V. Scarani, Phys. Rev. Lett. 100, 210503 (2008).
[14] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314

(2002).
[15] A. Peres, Found. Phys. 29, 589 (1999).
[16] J.-D. Bancal, N. Gisin, Y.-C. Liang, and S. Pironio, Phys.

Rev. Lett. 106, 250404 (2011).
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