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Abstract

This thesis focuses on the concept of predictive distributions and bias calibration. At first,
an extension of the concept of predictive distributions under contamination is studied in
the case of Generalized Linear Models. A sensitivity analysis of the impact of contami-
nation on the predictive distribution is studied making use of the class of M -estimators.
In a second step, based on the available literature on bias-calibrated estimation in lin-
ear regression, the bases to implement bias-calibration for predictive distributions are
studied and developed. This development is based on the finite-sample setting and an
important aspect of the reasoning behind this contribution is the distinction between
representative and non-representative outliers. As a result of this distinction, the use of
the bias-calibration approach allows to integrate information from representative outliers
within the predictive distribution.





Résumé

Cette thèse se concentre autour du concept de distributions prédictives et de la calibration
du biais. Dans un premier temps, le concept de distributions prédictives pour les Modèles
Linéaires Généralisés est étendu dans le cadre où les observations sont sujettes à contam-
ination. Une analyse de sensibilité de la contamination sur la distribution prédictive est
étudiée en utilisant la classe des M -estimateurs. Dans un deuxième temps, la calibration
du biais pour ces distributions prédictives est développée sur la base de la littérature
disponible dans le cas de la régression linéaire. Ce développement est basé sur le cadre
de l’échantillon fini et un aspect important du raisonnement derrière cette contribution
est la distinction entre les valeurs aberrantes représentatives et non représentatives. En
raison de cette distinction, l’utilisation de l’approche par étalonnage des biais permet
d’intégrer des informations provenant de valeurs aberrantes représentatives dans la dis-
tribution prédictive.
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Introduction 1

1 Some Basic Concepts of Robust Statistics and Prediction 5
1.1 General Overview of Robust Statistics . . . . . . . . . . . . . . . . . . . . 5
1.2 Prediction and Predictive Distribution . . . . . . . . . . . . . . . . . . . . 9

2 Sensitivity Analysis of the Predictive Distribution in (Generalized) Lin-
ear Models 11
2.1 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Robust Predictive Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Derivation of the Predictive Distribution under Contamination . . 13
2.3 Computation of the Predictive Distribution . . . . . . . . . . . . . . . . . . 15
2.4 Simulation Study for the Poisson GLM . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Results of the Simulation Study . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Robust Predictive Distribution and Bias-Calibration for Linear Models 27
3.1 The Bias-Calibration Estimator Applied to the Predictive Distribution . . 27
3.2 The Bias-Calibrated Estimator . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Properties of the Predictive Distribution . . . . . . . . . . . . . . . 28
3.2.2 Methods to Evaluate the Predictive Distribution . . . . . . . . . . . 30

3.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Selection of the Best Value of the Tuning Constant via MISE . . . . 31

3.4 Data Example: Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . 37

Conclusion 43

A Additional Material About Predictive Distribution and Robust GLM 45
A.1 Derivation of the Predictive Distribution . . . . . . . . . . . . . . . . . . . 45

B The Laplace Approximation 49
B.1 Laplace Approximation for Multiple Integrals . . . . . . . . . . . . . . . . 49
B.2 Numerical Evaluations of the Approximation . . . . . . . . . . . . . . . . . 51



viii Contents

C Additional Material for Chapter 3 53
C.1 Brief Overview of the Bias-Calibration in the Literature . . . . . . . . . . . 53
C.2 Variance of the Bias-calibrated Estimator . . . . . . . . . . . . . . . . . . . 55

References 61



To my family.





Introduction

Statistical analysis has different purposes that can non-exhaustively be summarized in
the tasks of description and prediction. While description aims at detecting patterns
and variables that significantly contribute to the explanation of particular phenomena,
prediction focuses on estimating and inferring on unobserved values of this phenomena
based on a chosen model. To date, prediction has focused mainly on point forecasting,
which, although accompanied by confidence intervals, is not able to offer the same level
of inference that is available for model parameter estimation. For this reason, we are
currently witnessing a change in the way predictions are obtained. In fact, the com-
mon approach based on point forecasting is being replaced by the so-called probabilistic
forecasting, where the entire distribution of the prediction is required in order to make
inference on predictions and forecasts; see Gneiting and Katzfuss [2014]. The distribu-
tion of the predictions is commonly known as “predictive distribution” and it is defined
as the distribution of a future random variable from the same model; see e.g. Geisser
[1971], Aitchison [1975], Harris [1989] and Basu and Harris [1994].

Within this growing field of statistical research, there is only a marginal level of at-
tention directed towards the impact that contaminated data can have on the predictive
distribution. Indeed, it is widely known that statistical models are at best an approxima-
tion of reality and that observations contain almost certainly an amount of data which
does not come from the distribution of the bulk of the data (i.e. contaminated data).
In terms of distribution, we can say that there is a small proportion of the data which
comes from an arbitrary distribution. In these situations, it is widely known that even a
small proportion of contaminated observations can considerably influence the estimation
procedure leading to biased parameter estimates and testing. It is reasonable to think
that a predictive distribution can also be influenced by contamination, thereby delivering
an inaccurate framework for inference on predictions.

The statistical field that focuses on these situations is robust statistics. A lot of
research has already been done in this branch of statistics. The seminal papers are Tukey
[1960], Huber [1964] and Hampel [1968]. Book-length presentations are Huber [1981]
(with the second edition by Huber and Ronchetti [2009]), and Hampel et al. [1986], where
the focus is centered on the methodology based on influence functions. Furthermore, an
overview of robustness in linear regression can be found in Maronna et al. [2006]. A more
recent book that covers a literature review of newly developed robust methods is Heritier
et al. [2009].

The concept of predictive distribution covered in this thesis follows the work of Harris
[1989] and Basu and Harris [1994] where the integral over the sampling distribution is
used to obtain the predictive distribution, i.e. they estimate the sampling distribution of
the parameters and use it in the formula for the predictive distribution. These authors
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estimate the parameters using different methods where, among others, they use a robust
estimator such as the Minimum Hellinger Distance Estimator. The analysis of these
particular cases was done for the Binomial, the Normal and the Poisson distributions in the
univariate case with the aim to compare the results obtained against the true distribution
by using the Kullback-Leibler divergence (see Kullback and Leibler [1951]). On the other
hand, Geisser [1971] suggests deriving the form of the predictive distribution of a future
observation using a Bayesian framework underlining the essential fact that a prediction
cannot be based only on plugging-in the estimated parameters in the estimated model or
by using the posterior distribution of the parameter set. The difference between Geisser’s
predictive approach and Harris [1989], consists in obtaining the predictive distribution
by taking the expectation of the distribution function of the observations over the prior
distribution of the parameters and not over the distribution of the estimator.

Overview of this Thesis

Nowadays, there is a high demand for statistical tools that are essential in forecasting.
The presence of distortion in the data can influence the results and induce unreliable
predictions that can consequently give inaccurate interpretations. That is why a tool to
treat and reduce the impact of this distortion is highly suitable in such situations and
robust statistics is used in this context. Robustness plays a key role in this and the focus on
it is fundamental to the end results. The main terminology and definitions of robustness
and predictive distribution are explained in Chapter 1 as these are prerequisites to the
subsequent chapters.

One of the purposes of the thesis is to further extend the predictive distribution de-
scribed by Aitchison [1975] and Harris [1989] where the predictive distribution has been
derived in the univariate setting. In this thesis, we extend the predictive distribution to
the general case of M -estimators and we generalize it to a multivariate setting for both
linear regression and Generalized Linear Models (GLM) class (see Nelder and Wedderburn
[1972] and McCullagh and Nelder [1989]) in the presence of an arbitrary contamination.
Therefore, it is necessary to investigate the robustness properties of the estimated predic-
tive distribution and to analyze the behavior of the predictive distribution in the presence
of deviations from the assumed model. To address robustness, we build on the results
presented in Cantoni and Ronchetti [2001], where the robust estimation and inference are
developed for the Generalized Linear Models settings. In the latter paper, M -estimators
are proposed for the entire GLM class and their properties are derived.

As mentioned, the first step is the derivation of the predictive distribution keeping a
general multivariate setting. We then perform a sensitivity analysis of the robust predic-
tive distribution for the specific case of GLM when the underlying distribution is contam-
inated. The goal is to understand the advantages and disadvantages of computing the
predictive distribution based on M -estimators that bound the impact of model deviations.
We build our predictive distribution based on the existing work for robust estimation in
this setting, see Cantoni and Ronchetti [2001], Lô and Ronchetti [2009] and Heritier et al.
[2009]. Furthermore, a focus on the numerical methods to solve the problem of multiple
integration when obtaining the final predictive distribution is also discussed and analyzed
in Chapter 2. The results show the high sensitivity of the classical methods in GLM.
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It is known that a robust estimator guarantees a bounded bias when there is a con-
tamination in the data. But, as underlined by Chambers [1986], the fact that there is
the presence of representative outliers can introduce a bias in the robust estimation, due
to the fact that these representative outliers are down-weighted. A representative out-
lier can be defined as an outlying observation relevant in the sample and that cannot be
considered as incorrect. Consequently, these observations are presumed to be important
to describe the data. That is why we apply in Chapter 3 a bias-corrected estimator for
the particular case of linear models, which was developed for the estimation of total pop-
ulation and quantile functions in survey for finite populations in Welsh and Ronchetti
[1998]. In fact, the main contribution of this thesis focuses on the bias-calibrated estima-
tor applied to the predictive distribution in the context of linear regression. The main
idea of bias-calibration comes from Chambers [1986] where the author introduces this
type of estimators and he focuses on the concept of representative and non-representative
outliers. In fact, it is based on the work of bias-calibration of Chambers [1986] that Welsh
and Ronchetti [1998] concentrate their work on sample survey containing outliers.

In this thesis, we develop a method to select the value of the calibration tuning constant
that allows to get a result that is less biased compared to the predictive distribution
based on the robust estimator and less variable with respect to an unbounded estimator
(minimization of the Mean Squared Error), such as the Maximum Likelihood estimator.

To summarize, in Chapter 1, a brief theoretical review of both robustness and predic-
tive distribution is covered. Chapter 2 presents the sensitivity analyses of the predictive
distribution in the GLM setting. In Chapter 3 we develop the Mean Squared Error of the
predictive distribution applied to the bias-calibrated estimator for linear regression.





Chapter 1

Some Basic Concepts of Robust
Statistics and Prediction

In this chapter, we first briefly introduce the main concepts of robustness that are pre-
sented in the literature in Section 1.1. The review of the theory covers the topics that
are important for this thesis, all other important concepts are available in the references
made. Secondly, in Section 1.2, a brief overview of the literature and the important con-
cept of predictive distributions is covered in order to introduce the main contribution of
this work.

1.1 General Overview of Robust Statistics
Robust statistics, as it is known nowadays, was mainly introduced and discussed in the
work of Tukey [1960], Huber [1964] and Hampel [1968]. The book by Huber [1981] cov-
ers the mathematical background behind the concept of robustness, where an updated
and expanded version can be found in Huber and Ronchetti [2009]. Since then many
authors have developed new methodological tools in this field. An important reference
that delivers a general overview can be found in Hampel et al. [1986] which covers robust
statistics based on the approach of the influence function. Other authors contributed to
the development of robust statistics in different fields and an example is given by Maronna
et al. [2006] where a wide description of the work in robustness applied to regression is
given. Another example is Heritier et al. [2009] where the topic of robust statistics is
tackled within the perspective of Biostatistics. In the latter book the authors give a gen-
eral overview of the work that has been developed in different fields such as Mixed Linear
Models and Generalized Linear Models.

Considering the wide extension of the literature about robust statistics, in the next
paragraphs we focus on basic concepts that will be used in this thesis. We give the
definition of some important concepts in robust statistics and, for this purpose, we follow
the notation in Heritier et al. [2009]. The underlying idea to robust statistics consists in the
assumption that the data is issued from a miss-specified model, e.g. some observations are
considered as coming from a different generating distribution. This concept is formalized
by assuming that the data generating process is

Fε,θ = (1− ε)Fθ + εH , (1.1)
where Fθ corresponds to the assumed model for the majority of the data, θ is a set
of parameters, ε is the amount of contamination and H is an unknown contaminating
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distribution. The goal is to make inference about Fθ, even though the sample comes from
Fε,θ. A special case is when the contaminating distribution H is a point mass distribution
at z̃. In this case, H = ∆z̃, and F̃ε,θ = (1 − ε)Fθ + ε∆z̃. where ∆z̃ is the point mass
distribution. The point mass distribution is relevant to introduce some important concepts
in robustness in the following paragraphs.

Key Concepts

There are different measures that are used to understand how a contamination influences
the estimation. A first measure is the so-called sensitivity curve (SC, Hampel et al. [1986]).
The SC allows to evaluate the robustness of an estimator by measuring the effect of an
observation z̃ on the estimator of interest, say Tn, in finite samples. The SC is defined as

SC(z̃; y1, . . . , yn−1, Tn) = n [Tn(y1, . . . , yn−1, z̃)− Tn−1(y1, . . . , yn−1)] ,

where yi are observations coming from the underlying distribution Fθ. In this way, it is
possible to show the impact of an extreme value on Tn.

The limitation of the SC is that it applies only to finite samples. In fact, Hampel
[1968] and Hampel [1974] introduced the concept of Influence Function (IF) to overcome
this difficulty. In the case of the IF we define the general functional as T . The IF
can be generally interpreted as the asymptotic version of the sensitivity curve, although
this is not necessarily always the case. The IF measures the impact of an infinitesimal
contamination at a point z̃ on the asymptotic bias. More specifically, it describes the
normalized influence on the estimation of an infinitesimal observation at z̃ and it gives
information about the robustness (stability) and efficiency properties of the functional T
under contamination, when the contaminated distribution is a point mass distribution
∆z̃. We can see the IF as the Gâteaux derivative of T at Fθ (in the direction of ∆z̃) that
is

IF(z̃;T, Fθ) = lim
ε→0

T ((1− ε)Fθ + ε∆z̃)− T (Fθ)
ε

,

or alternatively,

IF(z̃;T, Fθ) = ∂

∂ε
T ((1− ε)Fθ + ε∆z̃)

∣∣∣∣
ε=0

= ∂

∂ε
T (F̃ε,θ)

∣∣∣∣
ε=0

.

A bounded IF guarantees that an estimator is robust. Generally speaking, the IF measures
the asymptotic bias of T caused by an infinitesimal deviation from the postulated model:

bias(T, Fθ, ε) = sup
H
‖T ((1− ε)Fθ + εH)− T (Fθ)‖ ' εGES(T, Fθ) , (1.2)

where GES(T, Fθ) = supz̃ ‖ IF(z̃;T, Fθ)‖ is the gross-error sensitivity, sup is the supremum
and ‖ · ‖ is the Euclidean norm. From (1.2) we can say that when the IF is bounded,
consequently, the bias of the estimator is bounded.

The derivative of the (asymptotic) variance of an estimator, when considering the
point mass distribution as contamination, gives the so-called Change-of-Variance function
(CVF). The CVF measures how an amount of contamination at z̃ can influence the
asymptotic variance of the estimator. Its form is as follows:

∂

∂ε
V (T ; F̃ε,θ)

∣∣∣∣
ε=0

= CVF(z̃;T, Fθ) ,
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where V (T ; F̃ε,θ) is the (asymptotic) variance of an estimator.

The properties of the asymptotic variance of an estimator are measured by the change-
of-variance sensitivity, that is k? = supz̃ tr {CVF(z̃;T, Fθ)}/ tr {V (T ;Fθ)}, where k? mea-
sures the worst variability change under an infinitesimal contamination. We have that
an estimator is defined as V -robust if the value of k? is finite, meaning that the CVF
is bounded. The property of V -robustness for an estimator is stronger than that of B-
robustness (bias robust) that occurs when the IF is bounded (Hampel et al. [1986]).

Robust Estimation

In robust statistics, a general class of estimators that is widely used are the so-called
M -estimators. Let’s assume we have y1, . . . , yn i.i.d. observations coming from Fθ. The
definition of a M -estimator is a minimization problem, such as

min
θ

n∑
i=1

ρ(yi; θ) ,

or, alternatively, as the solution for θ of
n∑
i=1

Ψ(yi; θ) = 0 ,

for suitable ρ(·) and Ψ(·) functions where Ψ(yi; θ) = ∂ρ(yi; θ)/∂θ. As an example, if we
define ρ = − log(fθ) we get the particular case of the maximum likelihood estimator,
where fθ is the density function of Fθ. For a M -estimator, the functional is defined such
that

T (F ) : EF [Ψ(y;T (F ))] = 0 . (1.3)
which explicitly depends on the Ψ-function. Also, in the particular case of M -estimators,
the IF is given by

IF(z̃; Ψ, Fθ) = M(Ψ, Fθ)−1Ψ(z̃, T ) , (1.4)
where M(Ψ, Fθ) is a matrix of dimensions q × q defined as

M(Ψ, Fθ) = −
∫ ∂

∂t
Ψ(y; t)

∣∣∣∣
t=θ
dFθ(y) , (1.5)

where q is the dimension of the parameter vector θ ∈ Rq. From (1.4) we see that the IF
of M -estimators is proportional to the Ψ-function. Consequently, if Ψ is bounded, the IF
of the estimator will also be bounded.

We know that under some regularity conditions on Ψ (Huber [1981]), we get that θ̂ is
asymptotically normal, such that

√
n(θ̂ − θ)→ N

(
0, V (Ψ;Fθ)

)
,

where the asymptotic variance of M -estimators can be written as follows

V (Ψ, Fθ) = M−1(Ψ, Fθ)Q(Ψ, Fθ)M−>(Ψ, Fθ) , (1.6)

where M(Ψ, Fθ) is defined in (1.5) and Q(Ψ, Fθ) is defined as

Q(Ψ, Fθ) =
∫

Ψ(y; θ)Ψ(y; θ)>dFθ(y) . (1.7)
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For large n the distribution G(t;Fθ(y)) of M -estimator is given approximately by

N
(
T (Fθ),

1
n
V (Ψ;Fθ)

)
, (1.8)

with density function

g(t;Fθ(y)) = (2π)−
q
2

∣∣∣∣ 1nV (Ψ;Fθ)
∣∣∣∣− 1

2
exp

{
−n2 (t− T (Fθ))>V (Ψ;Fθ)−1(t− T (Fθ))

}
.

(1.9)

The weights that are explicitly or implicitly assigned to observations via the bounded
Ψ-function defining M -estimators can affect the true underlying distribution of the scores
(residuals) thereby introducing bias in the parameter estimation (for example when the
underlying distribution is asymmetric). A property which is therefore desirable for an M -
estimator is for it to be Fisher consistent such that, when applied to the true distribution,
the M -estimator will return the desired parameter value (see e.g. Huber [1967]). Indeed,
Fisher consistency is satisfied if ∫

Ψ(y; θ)dFθ(y) = 0 .

For example, a correction factor is often included in the Ψ-function for this purpose, as
in the case of most Generalized Linear Models.

We conclude this section by presenting two of the most common functions that have
been proposed and that are useful to obtain the Ψ function defined above. We show here
Huber’s and Tukey’s biweight ψ functions that are defined respectively as:

ψ[Hub](s; c) =
{
s for |s| ≤ c
c sign(s) for |s| > c

, (1.10)

and

ψ[bi](s; c) =


((

s
c

)2
− 1

)2
s for |s| ≤ c

0 for |s| > c
,

where c ∈ R+ is a tuning constant and s ∈ R and where ψ[Hub] (or ψ[bi]) will be used in
the Ψ function defined in Section 2.1, formula (2.1). The value of c defines the degree of
robustness of the estimator and consequently its efficiency. The lower the value of c, the
less efficient the estimator will be. The trade-off between robustness and efficiency is one
of the crucial points for this type of estimators.
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1.2 Prediction and Predictive Distribution
The concept of prediction is widely considered in modern statistics. The book by Hastie
et al. [2009], in particular in Chapters 2 and 3, provides an analysis of the concept of
prediction. Statistical forecasting is present in everyday life and precise prediction can
become fundamental in certain settings, e.g. meteorological forecasts and medical settings.
More technically, the prediction of a future observation is strongly based on the inference
on the collected data. Indeed, various types of model inference are present in the literature
and the corresponding prediction can be defined in two ways. The first one is called point
prediction which refers to the forecasts made based on inference coming from a model
estimated from the data thereby providing an estimated value for a future observation
and its confidence interval (see Gneiting [2011]).

The second type of prediction consists in probabilistic forecasting (or predictive distri-
bution). In this case the aim is to obtain the distribution of future observations. Further-
more, proceeding in this way, we are able to obtain a better idea of the entire distribution
form for a future set of data that we observe. In particular, it is possible to see how the
inference of the model influences the entire distribution, as opposed to influencing only a
single point, like in point forecasting.

Classical Methods of Estimation
The predictive density of a future random variable Z observed at z is

f ?θ (z) =
∫
ft(z)dG(t;Fθ(z)) , (1.11)

where ft is the density of the observation z and G is the distribution of the estimator θ̂.
Let’s suppose we have n observations y1, . . . , yn that are distributed yi ∼ Fθ with density
function fθ. As previously introduced, in this specific context we consider estimators
belonging to the family of M -estimators.

The definition of predictive distribution in (1.11) is based on the defintion of bootstrap
predictive distribution given in Harris [1989] and Basu and Harris [1994]. Indeed, in these
two papers the authors propose to estimate the predictive distribution by using three dif-
ferent approaches: estimative, bootstrap and Bayesian. The estimative approach consists
in estimating the unknown parameters based on the data via Maximum-Likelihood (ML)
estimation to then plug the estimator (and its asymptotic distribution) in the predictive
distribution. On the other hand, the bootstrap method that the authors develop consists
in obtaining the sampling distribution G as the distribution of the estimated parame-
ters where the latter is obtained via parametric bootstrap (based on which the predictive
distribution is successively obtained). As a result, this predictive distribution is called
the bootstrap predictive distribution that is represented in (1.11) and which represents
the starting point for this work. Furthermore, in the second paper, the authors compute
the predictive distribution by replacing the ML estimator with the Minimum Hellinger
Distance Estimator (MHDE) due to the fact that when outliers are present in the data,
the ML may perform poorly. In this case, the derivation of the predictive distribution is
obtained by replacing the parameter estimated via ML with the parameter estimated via
MHDE within G (and this can be done considering the asymptotic equivalence of the two
different estimations).
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The third approach consists in a Bayesian approach where prior information on the
unknown parameter θ would be used where, in this case, G would be considered as a cumu-
lative posterior distribution in order to obtain the predictive distribution. In fact, we can
also see equation (1.11) in a Bayesian framework, where f ? is the predictive distribution
obtained via Bayes theorem and where G is the cumulative posterior distribution.



Chapter 2

Sensitivity Analysis of the Predictive
Distribution in (Generalized) Linear
Models

In the first section of Chapter 2, we briefly define the GLM setting. We focus on the basic
terms that are necessary to build our final version of the predictive distribution adapted
to the specific case of GLM. For an overview we consider Heritier et al. [2009] and Cantoni
and Ronchetti [2001]. In the second section, we derive the predictive distribution in this
setting. Finally, we perform a simulation study to analyse the impact of the contamination
on the predictive distribution in the GLM (Poisson) setting.

2.1 Generalized Linear Models
Generalized Linear Models (GLM) are a class of models that go beyond normal response
variables, allowing for discrete and continuous distributions in the response variable. In-
deed, the need for a link function to link the predictors and the responses is fundamental
in this type of models.

GLM were introduced by Nelder and Wedderburn [1972] and a complete overview
is given by McCullagh and Nelder [1989]. Other interesting books on the subject are:
Dobson and Barnett [2008] who gives a detailed introduction to GLM and discusses the
most common distributions belonging to the exponential family; Faraway [2016] covers
some applications on real data using R.

The theory of GLM is built upon the exponential family which includes common
distributions such as Normal, Binomial, Poisson, Gamma and Exponential. Considering
n independent random variables, y1, . . . , yn are said to follow an exponential family if
their density or probability mass function can be written as

f(yi;xi, τi, φ) = exp
[
yiτi − b(τi)
di(φ) + j(yi, φ)

]
,

where di(·), b(·) and j(·) are some specific functions, τi is a function of µi (that depends on
xi that are the fixed covariates) called the natural parameter and φ ∈ R+ is an additional
scale (or dispersion) parameter. The expectation and the variance are denoted by

µi = E [yi] and Var(yi) = φυµi ,
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where υµi ∈ R+ depends on the distributional assumption on yi|xi.

In the GLM setting, the link function defines the relationship between the mean of
the response variable and the assumed linear predictor. The linear predictor is ηi = x>i β,
where x>i = (1, xi1, xi2, . . . , xiq̃) are q̃ explanatory variables for each individual i = 1, . . . , n
and β> = (β0, β1, . . . , βq̃) is a set of q = q̃+1 parameters. The link function l(µi) is defined
as

l(µi) = ηi = x>i β ,

which is a monotone function linking the random and the systematic components of the
model. Moreover, it defines the form of the relationship between the mean µi of the
response variable and ηi, the linear predictor. The natural link function directly relates
the natural parameter to the linear predictor,

τi = ηi = x>i β ,

and we can write that the expectation of yi as E[yi] = µi = l−1(x>i β).

GLM are usually estimated by ML. Here we also introduce the robust GLM estimators
of Cantoni and Ronchetti [2001] (see also Cantoni and Ronchetti [2006]) upon which we
will build our robust predictive distribution. The M -estimator is the solution of the
following estimating equations

n∑
i=1

Ψ(yi, xi; β, φ, c) = 0 ,

where β is a set of parameters, x>i are the covariates, φ is the dispersion parameter and
c is the robustness tuning constant. Furthermore,

Ψ(yi, xi; β, φ, c) = ψ(ri)√
φυµi

w(xi)µ′i − a(β) , (2.1)

where ri = (yi−µi)/
√
φυµi are the Pearson residuals and ψ(ri) refers to the type of function

that we want to apply to the residuals. In our case we refer to the Huber-function defined
in (1.10). Furthermore,

a(β) = 1
n

n∑
i=1

EFβ

 ψ(ri)√
φυµi

w(xi)µ′i , (2.2)

is the correction factor to ensure Fisher consistency and the expectation is taken over
the conditional distribution of yi|xi. The term w(xi) represents the weights on the design
matrix X that here are considered equal to 1 due to the fact that we do not consider
outliers in the x-space. The design matrix X (of dimension n× q) is

X =


x>1
x>2
...
x>n

 .

Nevertheless, if we do not consider contamination in the x-space the weights are put equal
to 1. Moreover, µi = µi(β) = l−1(x>i β) and µ′i = ∂

∂β
µi.
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2.2 Robust Predictive Distribution

We derive the predictive distribution under contamination. We start by defining all the
elements necessary to obtain its final derivation. Afterwards, we tackle in detail all the
computations and derivations that are useful to understand all the steps.

2.2.1 Derivation of the Predictive Distribution under Contam-
ination

The predictive distribution of a random variable Z is defined in (1.11), where z is a
realization of Z. In the following, we consider the predictive distribution of Z that depends
also on the covariates x, such that we have f ?θ (z, x), evaluated in (z, x). Furtermore, let us
suppose that the assumed model is contaminated, as presented in (1.1). In the context of
this definition, here we assume that H is absolutely continuous w.r.t. Lebesgue measure
and Radon-Nikodym derivative h, meaning that the class of contamination is restricted.
In this new case, the predictive distribution becomes

f ?ε,θ(z, x) =
∫
fε,t(z, x)dG(t;Fε,θ(z, x))

=
∫ [

(1− ε)ft(z, x) + εh(z, x)
]
g(t;Fε,θ(z, x))dt . (2.3)

From the latter expression, we notice that the predictive distribution depends on Fε,θ,
and consequently on h. An approximation to f ?ε,θ(z, x) by Taylor expansion around ε = 0
gives:

f ?ε,θ(z, x) ∼= f ?θ (z, x) + ε
∂

∂ε
f ?ε,θ(z, x)

∣∣∣∣
ε=0

. (2.4)

From the latter expression, we see that the predictive distribution depends on the non-
contaminated predictive distribution according to the distribution of the postulated model
(first term on the right hand side of equation (2.4)) and on the level of the contamination
(through the second term in the right hand side of equation (2.4)). The level of the
contamination is defined as the percentage of the contaminated data points. We see below
the details of this second term, by analyzing each element, to understand its impact on
equation (2.4) and consequently on the predictive distribution.

From expression (2.4) we develop the derivative of f ?ε,θ(z, x) w.r.t to ε evaluated at 0.
Therefore, we rewrite the second term of equation (2.4) as

∂

∂ε
f ?ε,θ(z, x)

∣∣∣∣
ε=0

= ∂

∂ε

[∫
((1− ε)ft(z, x) + εh(z, x)) g(t;Fε,θ(z, x))dt

]
ε=0

, (2.5)

where the density g(t;Fε,θ(z, x)) is given by equation (1.9) with Fθ replaced by Fε,θ(z, x).

The analysis of expression (2.5) will provide insights on the robustness properties of
the predictive distribution. More specifically, we want to identify the elements that can
influence the predictive distribution in order to reduce the impact of the observations pre-
sumably coming from the unknown distribution H. We will study the approximation (2.4)
including (2.5).
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To study expression (2.5), we divide the integral in the following way

∂

∂ε
(1− ε)

∣∣∣∣
ε=0

∫
ft(z, x)g(t;Fθ(z, x))dt+

∫
ft(z, x) ∂

∂ε
g(t;Fε,θ(z, x))dt

∣∣∣∣
ε=0

+

+ ∂

∂ε
ε

∣∣∣∣
ε=0
h(z, x)

∫
g(t;Fθ(z, x))dt . (2.6)

According to expression (2.6), we rewrite the complete form of the predictive distribution
as

f ?ε,θ(z, x) ∼= f ?θ (z, x) + (2.7)

+ε
−f ?θ (z, x) +

∫
ft(z, x) ∂

∂ε
g(t;Fε,θ(z, x))

∣∣∣∣∣
ε=0
dt+ h(z, x)

.
In expression (2.7) we need to compute the derivative of g(t;Fε,θ(z, x)) w.r.t ε, evaluated
at ε = 0, which is:

∂

∂ε
g(t;Fε,θ(z, x))

∣∣∣∣∣
ε=0

=
(2π
n

)− q2 ∂

∂ε

[
p1(ε) exp{p2(ε)}

]
ε=0

. (2.8)

where

p1(ε) =
∣∣∣∣V (Ψ;Fε,θ)

∣∣∣∣− 1
2

and p2(ε) = −n2 (t− T (Fε,θ))>V (Ψ;Fε,θ)−1(t− T (Fε,θ)) ,

such that,

∂

∂ε
g(t;Fε,θ(z, x))

∣∣∣∣∣
ε=0

= − n
q
2

2(2π) q2

∣∣∣∣V (Ψ;Fθ)
∣∣∣∣− 3

2
[

tr
(

adj(V (Ψ;Fθ))
∂

∂ε
V (Ψ;Fε,θ)

∣∣∣∣
ε=0

)]

exp
{
−n2 (t− T (Fθ))>V (Ψ;Fθ)−1(t− T (Fθ))

}
+

− n1+ q
2

2(2π) q2

∣∣∣∣V (Ψ;Fθ)
∣∣∣∣− 1

2

− 2 ∂
∂ε
T (Fε,θ)>

∣∣∣∣
ε=0
V (Ψ;Fθ)−1(t− T (Fθ)) +

−(t− T (Fθ))>
[
V (Ψ;Fθ)−1 ∂

∂ε
V (Ψ;Fε,θ)

∣∣∣∣
ε=0
V (Ψ;Fθ)−1

]
(t− T (Fθ))


exp

{
−n2 (t− T (Fθ))>V (Ψ;Fθ)−1(t− T (Fθ))

}
. (2.9)

The details of the derivation of expression (2.8) and (2.9) are shown in Appendix A.1.

We finally summarize the result of the predictive distribution in (2.7). To obtain it, we
need to consider f ?θ (z, x), h(z, x) and the derivative of the density of the M-estimator, that
can be found in equation (2.9). From equation (2.7) we can notice how the contamination
ε influences the predictive distribution by multiplying the second part of the expression
on the right hand side of (2.7). In particular, the derivatives of the functional and the
variance of the estimator play an important role (see definitions of IF and CVF in Section
1.1), as seen in (2.9).
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Considering the predictive distribution function in further detail, we notice from ex-
pression (2.7) that an important impact of the contamination is coming from the term

∫
ft(z, x) ∂

∂ε
g(t;Fε,θ(z, x))

∣∣∣∣∣
ε=0
dt , (2.10)

that is the derivative of the density function of the M -estimator.

The stability and robustness of the predictive distribution highly depend on the deriva-
tive of the functional and the derivative of the variance thereby suggesting that an estima-
tor with bounded Ψ-function and bounded CVF is needed to obtain a robust predictive
distribution.

Special Case when H(z, x) = ∆(z̃,x̃)(z, x)
Until now we have assumed that contamination is delivered by an unknown distribution
H(z, x). However, we could consider a special case where this distribution can be defined
as a point mass function such that we have H(z, x) = ∆(z̃,x̃), where ∆(z̃,x̃) is the point
mass in (z̃, x̃) (point mass distribution).

The IF is defined as the derivative of the general functional T when using the point
mass distribution (see Chapter 1). On the other hand, the derivative of the variance,
given in the Appendix A.1, when plugging-in H(z, x) = ∆(z̃,x̃)(z, x) gives us the so-
called Change-of-Variance Function. The definition of the CVF has been introduced in
Chapter 1. Here, we refer to the CVF that has been derived in Ferrari and La Vecchia
[2012], in Section 3.2 p. 240-241, and also a special case is covered in Zhelonkin et al.
[2012], on p. 729. In both cases - IF and CVF-, the integral over the distribution H
becomes a point evaluated at z̃, that is∫ ∂

∂t
Ψ(z; t)

∣∣∣∣
t=T (Fθ)

dH(z) = ∂

∂t
Ψ(z̃; t)

∣∣∣∣
t=T (Fθ)

. (2.11)

When H(z, x) = ∆(z̃,x̃)(z, x), the form of the predictive distribution becomes

f ?ε,θ(z, x; z̃, x̃) ∼= f ?θ (z, x) +

+ε
−f ?θ (z, x) +

∫
ft(z, x) ∂

∂ε
g(t; F̃ε,θ(z, x))

∣∣∣∣∣
ε=0
dt+ ∆(z̃,x̃)(z, x)

.
2.3 Computation of the Predictive Distribution
To implement the results obtained on the predictive distribution, we will use the statistical
software R. The main package to carry out robust GLM estimation is robustbase. One
difficulty in computing the predictive distribution in equation (2.7) is the computation
of multiple integrals. From the form of the expression of the predictive distribution in
expression (2.7) we see that it is possible to apply a Laplace approximation to compute
this type of multiple integrals. In fact, the Laplace approximation is

Ĩ =
∫ ∞
−∞

. . .
∫ ∞
−∞︸ ︷︷ ︸

q−times

e−ξm(t)dt ≈ e−ξm(t̂)
(

2π
ξ

)q/2
|Σ|1/2 , (2.12)
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where

Σ =
(
∂2m(t̂)
∂t2

)−1

,

with q the dimension of t, the element to be integrated, ξ being the sample size (e.g.
see Shun and McCullagh [1995]) and m(t) a twice-differentiable function. Knowing that
our predictive distribution is based on distributions coming from the exponential family,
we remark that it is possible to use the Laplace approximation expressed in (2.12). The
closed form expression to be minimized by Newton-Raphson and used in the Laplace
approximation for the Poisson GLM can be found in Appendix B.1. The Laplace ap-
proximation obtained in equation (2.12) will be used as a term of comparison with other
approaches in the simulation study.

In order to find a faster implementation we used the package called TMB also made
available in the R-environment. This package implements efficiently a Laplace approxima-
tion by automatic differentiation to compute multiple integrals. The TMB package details
can be found in Kristensen et al. [2015]. In the simulation study, we will consider the
three different numerical solutions mentioned which we can compare in order to obtain
the robust predictive distribution.

A second alternative to compute multiple integrals consists in applying the Monte
Carlo approximation. The main issue concerning the Monte Carlo approximation re-
gards the large number of repetitions that are necessary to get the numerical results. A
comparison between the three approaches is presented in Appendix B.2

2.4 Simulation Study for the Poisson GLM
In this section, we present a simulation study in which we analyze the behavior of the
predictive distribution under contamination. We first introduce the setting of the Poisson
GLM, that is our distribution of interest for this study. The goal is twofold: show whether
and how a robust estimator coupled with the predictive distribution gives a more reliable
result of the forecasting distribution for a future observation and, concurrently, study the
impact of different levels of contamination.

For a Poisson GLM we have the observations yi ∼ P (µi) and the probability mass
function fβ is

fβ(yi, xi) = f̄β(yi|xi)kn(xi) = e−µiµyii
yi!

kn(xi) .

In this case, our parameter of interest is θ = β. We have E[yi] = Var[yi] = µi for
i = 1, . . . , n, where β ∈ Rq is the vector of parameters, xi ∈ Rq, and l(µi) is the log-link
function. Finally, in this context, we denote the distribution of the covariates x (defined
as K(x)) as the empirical distribution Kn(x), with kn(xi) being its empirical density
function. In the following paragraphs, we assume that the joint distribution Fθ(y, x) of
(Y ,x) can be rewritten as F̄θ(y|x)K(x).

We consider the following data generating mechanism in the simulations

fε,β(y, x) = (1− ε)fβ(y, x) + εh(y, x) = (1− ε)e
−µµy

y! kn(x) + ε
e−µ̃µ̃y

y! kn(x) ,
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where µ̃ is the parameter of the contaminating distribution (Poisson). The choice of the
robust M -estimator was introduced in Section 2.1 and we use the Huber ψ-function.

2.4.1 Simulation Setting
To show the impact of the contamination on the predictive distribution and to compare the
different choices of tuning constants a simulation study is set up as follows: the response
vector of size n = 1000 is simulated from a Poisson distribution with mean parameter
µi = exp(x>i β) where β = [1.2,−0.6, 0.4,−0.7, 0.3], for i = 1, . . . , n. The matrix of the
explanatory variables is defined as follows: xi1 is 1, xi2 ∼ Bin(2, 0.5), xi3 ∼ N(0, 1),
xi4 ∼ Gamma(1) and xi5 ∼ Bin(2, 0.1). The values of β and x are chosen such that we
get the overall mean close to µ = 1.4. Finally, we fix a vector x = [1, 2, 1, 0.5, 1] for the
future observation z. The mean of the contaminated distribution is fixed to µ̃ = 6, chosen
to be about four times the mean of µ. The results are generated over 200 replications.
The variables that we use and analyze in different scenarios during the simulation study
are the following:

• The amount of the contamination ε. We analyze different amounts of contamination
to study the impact of the distortion on the predictive distribution.

• We use two values of the tuning constant c to determine the degree of robustness.
In our case, we compare a robust M -estimator (c = 1.345, chosen to deliver a
reasonable level of efficiency) versus a non-robust M-estimator (c = 10).

• A further element is the sample size. We briefly mention the differences when the
sample size is larger, in particular focusing on the impact that the sample size has
on the computation time of the predictive distribution.

• We also consider different values of the dimension q (the number of explanatory
variables). The aim is to observe if there is a difference when q is changing.

• The last comparison performed is between the three different approaches of esti-
mation: the two approaches using the Laplace approximation and the Monte Carlo
approximation (with 1e6 replications).

2.4.2 Results of the Simulation Study
In this section, we present the results of the simulations. Different schemes are analyzed,
in which we study the behavior of the robust predictive distribution for Poisson GLM.

We begin the sequence of results by considering q = 5. In this study, we analyze the
impact of the contamination and the difference when using the robust M -estimator versus
the MLE (or non-robust M-estimator). Two graphs are presented here (see Figure 2.1 and
Figure 2.2) to show the results of the simulation when the level of the contamination is
ε = 0.05. Successively, the results of other schemes with different levels of contamination
are shown in two tables (Table 2.1 and Table 2.2). In Table 2.1 we study the predictive
distributions, while in Table 2.2, the results of the Kullback-Leibler divergence (K-L) are
analyzed.

In Figure 2.1, we see how the contamination causes a distortion on the predictive
distribution of a future observation z compared to f ?β(z, x). We notice how the predictive
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Figure 2.1: Estimation of the predictive distribution f ?
ε,β̂

(z, x) for ε = 0.05. The dashed-
line (green) is the predictive distribution when using the true set of parameters β and ε =
0. The continuous line (blue) represents the median of 200 replications of the estimated
predictive distribution when using the estimated parameters with c = 1.345. Finally, the
dotted line (red) represents the median of 200 replications of the estimated predictive
distribution when using c = 10. The sample size is n = 1000.
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Figure 2.2: Boxplots for z = 0, . . . , 7 of 200 replications of f ?
ε,β̂

(z, x) obtained with a
robust M -estimator with c = 1.345 (in blue) and a non-robust M -estimator with c = 10
(in red). The dashed line represents the predictive distribution when using the true set
of parameters β and ε = 0. The simulation setting is: ε = 0.05 and n = 1000.
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distribution based on the robust M -estimator (blue) gives a less distorted curve with
respect to the reference (green-dashed line), compared to the MLE. This fact confirms
the importance of using a robust M -estimator with a bounded Ψ-function. Moreover, we
see that the estimated predictive distribution based on M -estimators is closer to f ?β(z, x)
when c is smaller. In Figure 2.2, we have the results of the 200 replications of f ?

ε,β̂
(z, x)

for ε = 0.05 and for the two M -estimators. Generally, we remark the difference between
the two levels of c. Furthermore, the variability when c = 10 is higher, in particular for
the values of z = 4, 5, 6. We notice that the curves tend to shift towards the right, having
lower probability values for z < 2 and higher for z ≥ 2 for c increasing.

We now analyze three different levels of contamination, ε = 0, 0.05, 0.1 for the two
M -estimators, robust and non-robust. In Table 2.1, we see the relationship between the
results of the predictive distribution, the level of the contamination and the level of c. In
fact, the predictive distribution is strongly dependent on the value of c, i.e. the degree of
robustness of the M -estimator. Thus, the more robust the estimator, the less distorted
the results. In addition, the results in Table 2.1 are confirmed by those in Table 2.2.

z f ?β f ?0,β̂1.345
f ?0,β̂10

f ?0.05,β̂1.345
f ?0.05,β̂10

f ?0.1,β̂1.345
f ?0.1,β̂10

0 24.19 24.11 23.89 20.49 17.05 17.52 11.10
1 34.33 34.15 34.08 31.41 29.26 28.86 23.35
2 24.36 24.33 24.43 24.34 25.35 24.13 24.78
3 11.52 11.63 11.73 12.88 14.94 13.95 18.06
4 4.09 4.19 4.25 5.49 6.96 6.71 10.39
5 1.16 1.22 1.24 2.29 2.98 3.31 5.39
6 0.27 0.30 0.30 1.16 1.41 1.98 2.87
7 0.06 0.06 0.06 0.75 0.82 1.38 1.69
8 0.01 0.01 0.01 0.51 0.53 0.97 1.06

Table 2.1: Comparison of f ?
ε,β̂

(z, x) for different values of c and ε. The first column rep-
resents the value of z. The second column shows the values of the predictive distribution
when β is known and ε = 0. The third, fifth and seventh columns represent the results
when c = 1.345 and respectively ε = 0, 0.05 and 0.10. The fourth, sixth and eighth
columns represent the results for c = 10. The sample size is n = 1000 and the values
represented are the medians of 200 replications and are multiplied by 100.

ε = 0 ε = 0.05 ε = 0.1
c = 1.345 0.00 8.53 19.75
c = 10 0.00 11.94 35.04

Table 2.2: Kullback-Leibler divergence comparison between f ?
ε,β̂

(z, x) and f ?β(z, x) for
different combinations of c and ε and sample size n = 1000. The values are multiplied by
100.

Briefly, we comment on the sample size: the smaller the sample size, the higher the
variability of the M -estimators and, consequently, of the predictive distribution. On the
other hand, when using a bigger sample size, more time is necessary to perform the
simulation.
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Analysis of the Predictive Distribution
We hereby present a study in which we observe the impact of the contamination in detail.
The study shows that the main difference between f ?β(z, x) and f ?

ε,β̂
(z, x) results primarily

from the amount of contamination ε, rather than the size of the sample, where β̂ is
estimated considering the non-robust estimation. The setting of the simulation is the
same as introduced before. This section is structured in three different parts, divided as
follows:

1. In the first part we focus on the general form of the predictive distribution f ?
ε,β̂

(z, x),
and we look at f ?

ε,β̂
(z, x)− f ?β(z, x).

2. The second term of the analysis is the difference between f ?
ε,β̂

(z, x)− f ?ε,β(z, x). The
focus is on the impact that n and ε have on the estimation of the parameters and
consequently, on the predictive distribution.

3. The last result concerns the difference between f ?ε,β(z, x)− f ?β(z, x), where the only
element of interest is the effect of ε on the predictive distribution.

The first part is the sum of the other two. This decomposition is useful to analyze the
different effects (of ε and n) in the predictive distribution.

Part I

In this part we focus on f ?
ε,β̂

(z, x)− f ?β(z, x). In Figure 2.3 we notice a clear trend caused
by the contamination: when increasing the contamination, the differences increase. To
further explain, the estimated predictive distribution for z = 0, 1, 2 has an under estima-
tion compared to f ?β(z, x), while the successive values increase (over estimation). Table 2.3
and Table 2.4 represent the numerical results of the medians, summarizing the results in
the graph. Considering that the graphs and tables for the sample size n = 100 show the
same effect as n = 1000, we show in this Chapter only the results of n = 1000.

Size ε = 0 ε = 0.05 ε = 0.10
n = 100 0.19 10.36 27.36
n = 1000 0.01 9.29 25.20

Table 2.3: Kullback-Leibler divergence comparison between the median of 200 replications
of f ?

ε,β̂
(z, x)− f ?β(z, x) for three different values of contamination, ε = 0, 0.05, 0.1, and two

sample sizes, n = 100, 1000. The values are multiplied by 100.

Part II

The second part concentrates on f ?
ε,β̂

(z, x)−f ?ε,β(z, x). The results are shown in Figure 2.4
and in Table 2.5.

Part III

The third part focuses on the difference f ?ε,β(z, x)− f ?β(z, x), and the results are shown in
Table 2.6 and Table 2.7.
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Figure 2.3: Boxplots of the differences between the estimated predictive distribution
f ?
ε,β̂

(z, x) and f ?β(z, x) for three different levels of contamination and values of z between
0 and 7. The first boxplots (in green) correspond to f ?

ε,β̂
(z, x) when ε = 0. The second

boxplots (in pink) correspond to ε = 0.05 and finally the last ε = 0.1. The sample size is
n = 1000 and the replications are 200.
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z ε = 0 ε=0.05 ε=0.1
0 -0.15 -6.9 -11.32
1 -0.2 -4.81 -9.07
2 0.01 1.06 0.65
3 0.13 3.35 5.53
4 0.12 2.79 5.18
5 0.06 1.77 3.51
6 0.02 1.12 2.26
7 0.01 0.76 1.51

Table 2.4: Median of 200 replications of f ?
ε,β̂

(z, x) − f ?β(z, x) for each point z between 0
and 7 with sample size of n = 1000. The values are multiplied by 100.

Size ε = 0 ε = 0.05 ε = 0.10
n = 100 0.19 2.40 6.77
n = 1000 0.01 2.31 6.62

Table 2.5: Kullback-Leibler divergence comparison between the median of 200 replications
of f ?

ε,β̂
(z, x) − f ?ε,β(z, x) for two different levels of contamination, ε = 0.05, 0.1, and two

sample sizes, n = 100, 1000. The values are multiplied by 100.

Figure 2.4: Boxplots of f ?
ε,β̂

(z, x)− f ?ε,β(z, x) for ε = 0.05, n = 1000 and 200 replications.
The (blue) crosses represent the median of f ?ε,β(z, x)− f ?β(z, x).

The comparison between Part II and Part III shows that the impact on the predictive
distribution of ε is relevant on the predictive distribution itself (i.e. Part III) and is



24
Chapter 2. Sensitivity Analysis of the Predictive Distribution in (Generalized) Linear

Models

ε = 0 ε = 0.05 ε = 0.10
K-L 0.00 5.04 12.24

Table 2.6: Kullback-Leibler divergence comparison between the median of 200 replications
of f ?ε,β(z, x) − f ?β(z, x) for two levels of contamination, ε = 0.05, 0.1. The values in the
table are multiplied by 100.

z ε = 0 ε = 0.05 ε = 0.1
0 0.05 -1.01 -1.97
1 -0.12 -1.54 -2.85
2 -0.08 -0.92 -1.70
3 0.03 -0.05 -0.12
4 0.06 0.52 0.94
5 0.04 0.75 1.41
6 0.02 0.77 1.46
7 0 0.66 1.26

Table 2.7: Median of 200 replications of f ?ε,β(z, x) − f ?β(z, x) for each point z between 0
and 7. The values in the table are multiplied by 100.

even more important when it also affects the estimation of the M -estimators (i.e. Part
II, joint impact of n and ε). The contamination causes a distortion on the predictive
distribution (see (2.7)) and the estimator, while the impact of n is relevant concerning the
variability of the M -estimators. Indeed, when using a small number of observations, the
predictive distribution is affected by the high variability of the results of the estimation.
In Figure 2.4, we notice the difference in the tail of the distribution that is coming entirely
from ε. The numerical results are shown in Table 2.5-2.7.
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2.4.3 Discussion
The main conclusion that we draw from this sensitivity study is that the impact of the
M -estimator is crucial on the result of the predictive distribution. We see that when using
a robust M -estimator the predictive distribution is less distorted, compared to the non-
robust M -estimator and consequently, closer to the distribution of the assumed model
f (see Section 2.4.2). In this work, we have defined the general form of the predictive
distribution and we applied it, as an example, to GLM and we have looked at the particular
instance of Huber-function applied to the Poisson GLM. Further work to compare different
distributions and/or different estimators can be attained by modifying these formulas for
any specific context.





Chapter 3

Robust Predictive Distribution and
Bias-Calibration for Linear Models

In Chapter 2 we performed the sensitivity analysis of the predictive distribution for M -
estimators in the particular case of GLMs. Based on this we observed that robust M -
estimators can down-weight the influence of outliers in order to reduce their influence
on the resulting estimated predictive distribution. Nevertheless, this down-weighting
procedure can deliver bias if (some) outliers can be considered as “representative” outliers.
This phenomenon has been underlined by Chambers [1986] where, for this reason, a
bias-calibrated estimator was developed to reduce the bias of the robust estimator by
calibrating on the importance of the representative outliers. In Welsh and Ronchetti [1998]
the bias-calibrated estimator was used to estimate the quantile and the total population
in finite survey samples for linear models. In this chapter, based on the results of the
sensitivity analysis in the previous chapter, the objective is to to obtain a predictive
distribution by making use of this bias-calibrated estimator. In this thesis, considering
the technicality and complexity of the development of the predictive distribution and the
notion of bias-calibration, the development of the predictive distribution is based on the
bias-calibrated estimator in the particular case of linear models. This development will
allow us to set the basis for future work in the direction of predictive distributions based
on bias-calibrated estimators in the GLM case.

3.1 The Bias-Calibration Estimator Applied to the
Predictive Distribution

As introduced at the beginning of this thesis, the idea is to apply the bias-calibration es-
timator to the predictive distribution in linear regression. This comes from the fact that
we would like to correct the bias of the robust estimator that performs better compared to
a non-robust estimator, but it is biased in the context of sample survey containing repre-
sentative outliers that are relevant observations and not errors (as described by Chambers
[1986]). Furthermore, an overview of the most important points about bias-calibration is
given in Appendix C.1.

For the linear regression model, when considering the Normal distribution, the param-
eter θ corresponds to the set of parameters (β, σ). In our case, to derive the predictive
distribution in Section 3.2.1, we consider σ as known and we write f ?ε,θ(z, x) = f ?ε,β(z, x).
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3.2 The Bias-Calibrated Estimator
To derive the bias-calibrated estimator we consider the regression model

Yi = Xiβ + σei, i = 1, . . . , N , (3.1)

where ei are iid random variables, β unknown parameters, σ a known parameter (re-
placed by the value of σ̂R) and we consider the errors with expectation 0 and variance σ2

e .
The bias-calibration estimator for linear regression (see Chambers [1986] and Welsh and
Ronchetti [1998]) takes the following form:

β̂cal(c2) = β̂R +
 n∑
i=1

xix
>
i

−1
n∑
i=1

σ̂Rψc2{(yi − x>i β̂R)/σ̂R}xi , (3.2)

where β̂R is a robust M -estimator of β. The function ψc2 is a Huber-function defined by
the constant c2 greater than the constant used to obtain β̂R. Considering that with the
calibration the aim is to include more information coming from the outliers, the value of
c2 is set to be greater than the constant to obtain β̂R, called c1, because it should not put
a weight on the calibration that is stronger than the weight given by the M -estimator.
Finally, the value of σ̂R is obtained using the MAD (Median Absolute Deviation, see Huber
and Ronchetti [2009]) in order to bound the impact of the outliers also in the estimation
of σ̂R.

3.2.1 Properties of the Predictive Distribution
In this section, we focus on the properties of the predictive distribution in order to study
the impact of the bias-calibrated estimator. In this way, we show that depending on the
contamination, a different value of c2 can be selected in order to obtain the best trade-off
between variability and bias. To do the latter, we first compute the variance and the bias
of the predictive distribution. When computing the MSE of the predictive distribution,
we consider the value of σ as known. In practice, we plug-in the value of σ̂R for σ.

Computation of the MSE of the Predictive Distribution
The predictive distribution for a future observation is

f ?β(z, x) =
∫ ∞
−∞

. . .
∫ ∞
−∞

ft(z, x)g(t;Fβ(z, x))dt , (3.3)

where
ft(z, x) = 1

σ
√

2π
exp

(
− 1

2σ2 (z − x>t)2
)
,

is the distribution of the response, and

g(t;Fβ(z, x)) = 1
(2π)q/2

∣∣∣∣ 1nV (Ψ;Fβ)
∣∣∣∣−1/2

exp
(
− n

2 (t− T (Fβ))>V (Ψ;Fβ)−1(t− T (Fβ))
)
,

is the asymptotic density function of the M -estimator, where T (Fβ) and V (Ψ;Fβ) are
defined in Chapter 1, in (1.3) and (1.6) respectively.
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We have seen in Chapter 2 (see section 2.3) that a way to approximate the multiple
integration in f ?β(z, x) is to use the Laplace approximation. Therefore, we apply the same
approach presented in Appendix B.1 for the Poisson GLM. Its form is

f ?β(z, x) ≈ 1
σ
√

2π

∣∣∣∣V (Ψ;Fβ)
∣∣∣∣−1/2

∣∣∣∣∣
[ 1
nσ2xx

> + V (Ψ;Fβ)−1
]−1

∣∣∣∣∣
1/2

(3.4)

exp
(
− n

[ 1
2nσ2 (z − x>t̂)2 + 1

2(t̂− T (Fβ))>V (Ψ;Fβ)−1(t̂− T (Fβ))︸ ︷︷ ︸
m(t̂)

])
,

where t̂ = argmintm(t). In order to compute the MSE of the predictive distribution, we
first find the variance, which is given by the following approximation

Varβ̂(f ?β(z, x)) ≈
∂f ?β(z, x)
∂t̂>

V (Ψ;Fβ)
∂f ?β(z, x)

∂t̂
, (3.5)

where V (Ψ;F ) is the variance of the corresponding estimator β̂cal and

∂f ?β(z, x)
∂t̂>

= 1
σ
√

2π

∣∣∣∣V (Ψ;Fβ)
∣∣∣∣−1/2

∣∣∣∣∣
[ 1
nσ2xx

> + V (Ψ;Fβ)−1
]−1

∣∣∣∣∣
1/2

([ 1
σ2 (z − x>t̂)x> − n(t̂− T (Fβ))>V (Ψ;Fβ)−1

])
(3.6)

exp
(
− n

[ 1
2nσ2 (z − x>t̂)2 + 1

2(t̂− T (Fβ))>V (Ψ;Fβ)−1(t̂− T (Fβ))
])

.

The expected value of the predictive distribution with respect to the distribution of the
M -estimator is given by the following approximation

Eβ̂

[
f ?β(z, x)

]
≈ Eβ̂

 1
σ
√

2π

∣∣∣∣V (Ψ;Fβ)
∣∣∣∣−1/2

∣∣∣∣∣
[ 1
nσ2xx

> + V (Ψ;Fβ)−1
]−1

∣∣∣∣∣
1/2

exp
(
− n

[ 1
2nσ2 (z − x>t̂)2 + 1

2(t̂− T (Fβ))>V (Ψ;Fβ)−1(t̂− T (Fβ))
])

=
∫ ∞
−∞

. . .
∫ ∞
−∞

1
σ
√

2π

∣∣∣∣V (Ψ;Fβ)
∣∣∣∣−1/2

∣∣∣∣∣
[ 1
nσ2xx

> + V (Ψ;Fβ)−1
]−1

∣∣∣∣∣
1/2

exp
(
− n

[ 1
2nσ2 (z − x>tE)2 + 1

2(tE − T (Fβ))>V (Ψ;Fβ)−1(tE − T (Fβ))
])

1
(2π)q/2

∣∣∣∣ 1nV (Ψ;Fβ)
∣∣∣∣−1/2

exp
(
− n

2 (tE − T (Fβ))>V (Ψ;Fβ)−1(tE − T (Fβ))
)
dtE

=
∫ ∞
−∞

. . .
∫ ∞
−∞

1
σ
√

2π

∣∣∣∣V (Ψ;Fβ)
∣∣∣∣−1/2

∣∣∣∣∣
[ 1
nσ2xx

> + V (Ψ;Fβ)−1
]−1

∣∣∣∣∣
1/2 1

(2π)q/2∣∣∣∣ 1nV (Ψ;Fβ)
∣∣∣∣−1/2

exp
([
− 1

2σ2 (z − x>tE)2− n(tE − T (Fβ))>V (Ψ;Fβ)−1(tE − T (Fβ))
])
dtE.

To find an analytic approximation of the expectation of the predictive distribution we
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apply again the Laplace method, that leads to the following approximation

Eβ̂

[
f ?β(z, x)

]
≈ 1
σ2
√

2π

∣∣∣∣V (Ψ;Fβ)
∣∣∣∣−1
∣∣∣∣∣
[ 1
nσ2xx

> + V (Ψ;Fβ)−1
]−1

∣∣∣∣∣
1/2

∣∣∣∣∣
[ 1
nσ2xx

> + 2V (Ψ;Fβ)−1
]−1

∣∣∣∣∣
1/2

(3.7)

exp
(
−n

[ 1
2nσ2 (z − x>t̂E)2 + (t̂E − T (Fβ))>V (Ψ;Fβ)−1(t̂E − T (Fβ))

]
︸ ︷︷ ︸

m̃(t̂E)

)
,

where t̂E = argmintE m̃(tE) and m̃ is the m function derived from the second Laplace
approximation. Finally, the bias is:

bias(f ?β(z, x)) := Eβ̂

[
f ?β(z, x)

]
− fβ(z, x) , (3.8)

where fβ(z, x) is the distribution of the responses. Considering that the Laplace approx-
imation is of order O(n−1) for fixed values of q (or under the condition that q is smaller
than n with a certain rate (see Shun and McCullagh [1995])) the application of a second
Laplace approximation would give a composition of approximations of order O(n−1). Con-
sidering the fact that the constant terms can be ignored, we end up having approximately
the same rate of convergence as the first Laplace approximation, considering fixed q and
increasing n. Furthermore, the approximations obtained by Laplace have been compared
with the Monte Carlo simulation to evaluate their accuracy. As found in Chapter 2, the
difference between the two different methods is at level of 1e-5, comparing the results
either with the Kullback-Leibler divergence or obtaining the maximum difference in ab-
solute value. In order to compute the total MSE of the predictive distribution, we need
to integrate the MSE over z, such that we can get the MISE (Mean Integrated Squared
Error), that is

MISE(f ?) =
∫ ∞
−∞

[
Varβ̂(f ?β(z, x)) + bias(f ?β(z, x))2

]
dz . (3.9)

In the simulation study, we focus on this theoretical result about the MISE of the predic-
tive distribution. But, in order to derive the variance of the predictive distribution (3.5),
we need to obtain the variance of the bias-calibrated estimator in (3.2). The details of the
derivation of the variance of the bias-calibrated estimator can be found in Appendix C.2.

3.2.2 Methods to Evaluate the Predictive Distribution
There are different measures that can be used to analyze the influence of the bias-
calibrated estimator on the predictive distribution. As a first example, if we want to
concentrate on the predictive distribution forecasting as close as possible the distribution
of the bulk of the data (as discussed in Chapter 2) we would use the Kullback-Leibler
divergence.

Instead, it could be possible to use the functional boxplots of Sun and Genton [2011]
that give a summary of all the predictive distributions that are obtained. In this way,
it is obtained the band of the central 50% of the curves (like the IQR in the boxplot)
and the curves of the outlying densities. Besides, these functional boxplots could give a



3.3. Simulation Study 31

better idea about the sharpness (that can be seen as the width of the bands) of the overall
predictive distribution of each level of calibration applied to the robust M -estimator.

Moreover, in this chapter we derived the MISE of the predictive distribution. In this
way, we can analyze the trade-off between the bias of the predictive distribution and its
variability. The aim of the simulation study is to consider the analysis of the theoretical
MISE. Thus, we can use the MISE as measure of selection, so that we choose the value
of c2 that minimizes the MISE.

3.3 Simulation Study
In this section, we analyze the selection of the value of c2 that minimizes the MISE. We
obtain the MISE considering the trade-off between variability and bias, but keeping in
mind the fact that in applied data sets we do not know the value of ε, the distribution H
and the true parameter β.

3.3.1 Selection of the Best Value of the Tuning Constant via
MISE

We consider the set of observations Y = (y1, . . . , y100) generated as follows:

yi = x>i β + ei, i = 1, . . . , 100 ,

where
β = [1.1,−2.2, 1.5,−1.6, 2]> ,

and x is the vector of the explanatory variables. The elements of the matrix of the
explanatory variables are defined as follows: xi1 is 1, xi2 ∼ N(2, 0.7), xi3 ∼ U [1, 4],
xi4 ∼ U [0, 3], xi5 ∼ N(1, 0.5). Moreover, the distribution of ei is:

ei ∼ (1− ε)N(0, 32) + εH ,

whereH is the contaminating distribution defined for three scenarios asN(9, 32), N(12, 32)
and N(15, 32) and ε = 5% is the level of the contamination present in the data. The es-
timation is defined by using a M -estimator β̂R computed via function rlm in R using the
Huber-function with tuning constant c1 = 1.345. The value of σ̂R is estimated via MAD
and obtained from rlm when estimating β̂R. β̂cal is obtained via equation (3.2). The esti-
mation of the MISE is obtained via equations: MISE formulation (3.9), with variance (3.5)
and bias (3.8). The x’s values of the future observations are set to: x = [1, 2, 2, 1, 0.95],
for a value in the center of the data, x = [1, 1.3, 1, 1,−0.1] and x = [1,−0.5, 1.5, 2, 1.5],
for two observations in the tail, in order to observe possible differences between the three
points.

The algorithm is the following:

• At each replication (called k) we generate Xk and Yk, and estimate β̂kR and σ̂kR. In
order to minimize the MISE, we compute β̂c

k
2
cal = β̂

ck2
cal(β̂kR, σ̂kR) for each chosen value

of c2. At each iteration, we select the value ĉk2 that minimizes the MISE for a specific
value of x.
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• The grid of values of c2 is: c2 = 0 and c2 = 1.6, . . . , 7 with steps of 0.3. The
starting value of c2 = 1.6 is chosen to avoid a too strong shrinkage of the variance
of the bias-calibrated estimator and to allow a small difference from the value of
c1 = 1.345.

• Repeat the procedure for k = 1, . . . , 100, the three contamination schemes and the
three different values of x.

Figure 3.1 shows that the selected value of c2 is influenced by the type of contamination
present in the data. In fact, we notice that the more the distortion in the data, the greater
the selection of a higher value of c2. In particular, when the contamination does not have
an important influence, the calibration does not improve the results compared to the
robust estimator, and the value of c2 tends to be the smallest calibrating value or the
robust estimator itself (i.e c2 = 0 or c2 = 1.6). With the increasing size of the introduced
outliers, the chances to select a higher value of c2 increase as well.

Figure 3.1: Results of the selected values of c2 when minimizing the MISE of the predictive
distribution for three different contamination. The size of the sample is n = 100 and the
future observation is x = [1, 2, 2, 1, 0.95].
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Based on the graphical results in Figure 3.1 we choose to display four different estima-
tors that are respectively the robust estimator β̂R and three examples of bias-calibrated
estimators, with c2 = 2.2, 4,∞. The choice of the first two values is to show intermediary
points in the scale of c2, the first one close to the best choice of c2 when the contami-
nation is low (first and second boxplot on the left), and c2 = 4 is the median value of
c2 when the contamination is higher. Additionally, a further result corresponds to the
results when selecting the best value of c2 (i.e. the value that minimizes the MISE in
each replication). Table 3.1 shows an example of numerical results of the median of 100
replications of the MISE of the predictive distribution for the three different scenarios of
contamination for x = [1, 2, 2.5, 1.5, 0.95]. We notice that the choice of the value of c2
that minimizes the MISE gives a relevant difference with respect to the other values of c2.
Moreover, in Table 3.2-3.4 we have further results to understand the behavior of the MISE
for three different x’s (chosen to be in the middle of the distribution and in the tails). We
can notice that decomposing the MISE into the variance and the bias squared, we attain
that the variance has a greater impact on the MISE than the bias squared, but also that
the value of the bias is increasing when the contamination is increasing (Table 3.2). In
addition, we have similar results when minimizing the MISE selecting the best value of c2
predicting the distribution for an observation in the tails (Table 3.3 and Table 3.4). The
main difference, as it would have been expected, is that in these situations the variance
has even a stronger impact than an observation in the center of the data and the values
are around 10 times bigger than in Table 3.2.

contamination Robust c2 = 2.2 c2 = 4 c2 =∞ min c2
N(9, 32) 0.136 0.129 0.130 0.132 0.106
N(12, 32) 0.150 0.142 0.146 0.146 0.097
N(15, 32) 0.229 0.196 0.170 0.180 0.122

Table 3.1: Median of the MISE of the predictive distribution over 100 replications for
three different scenarios for x = [1, 2, 2, 1, 0.95]. The values are multiplied by 100.

contamination Robust c2 = 2.2 c2 = 4 c2 =∞ min c2
Var N(9, 32) 0.097 0.086 0.089 0.089 0.079

bias2 N(9, 32) 0.049 0.048 0.043 0.045 0.031
Var N(12, 32) 0.096 0.085 0.087 0.089 0.081

bias2 N(12, 32) 0.058 0.054 0.053 0.052 0.015
Var N(15, 32) 0.121 0.118 0.113 0.117 0.112

bias2 N(15, 32) 0.104 0.079 0.053 0.063 0.005

Table 3.2: Median of the variance and bias squared of the predictive distribution over
100 replications for three different contamination for x = [1, 2, 2, 1, 0.95]. The values are
multiplied by 100.



34 Chapter 3. Robust Predictive Distribution and Bias-Calibration for Linear Models

contamination Robust c2 = 2.2 c2 = 4 c2 =∞ min c2
MISE N(12, 32) 1.867 1.859 1.777 1.866 1.457
Var N(12, 32) 1.357 1.172 1.162 1.161 1.050

bias2 N(12, 32) 0.477 0.434 0.561 0.526 0.219

Table 3.3: Median of the MISE, the variance and the bias squared of the predictive
distribution over 100 replications for x = [1, 1.3, 1, 1,−0.1]. The values are multiplied by
100.

contamination Robust c2 = 2.2 c2 = 4 c2 =∞ min c2
MISE N(12, 32) 3.972 3.711 4.198 4.406 3.082
Var N(12, 32) 3.233 3.140 3.430 3.460 2.612

bias2 N(12, 32) 0.586 0.572 0.552 0.543 0.568

Table 3.4: Median of the MISE, the variance and the bias squared of the predictive
distribution over 100 replications for x = [1,−0.5, 1.5, 2, 1.5]. The values are multiplied
by 100.

Additionally, we want to show the behavior of the predictive distribution by using the
functional boxplots, where the predictive distribution is obtained via the TMB package.
The functional boxplots of the 100 replications of the simulation study are presented in
Figure 3.2 and in Figure 3.3 we represent the difference between the predictive distribution
and the true distribution. The (green) vertical line represents the mean of the future
observation with covariates corresponding to x (computation of (1− ε)x>β + εµ̃). In the
graphs representing the functional boxplots, the black curve is the median and the dashed
(yellow) lines represent the distributions that are considered as outlier candidates detected
by 1.5 times the 50%. Moreover, the thick (blue) lines are the limits of the intervals of
the distributions (50% of central region, and minimum and maximum of the range of
non-outlying curves) and the filled (green) area is the indication of the 50% spread of the
central curves.

In Figure 3.2 and Figure 3.3 we show an example when considering an observation in
the tail. We can remark the high variability of the results and consequently the shape of
the functional boxplot is not smooth. Furthermore, the green areas are consistently wide
for this case and there are bumps in the middle of the limiting (blue) lines. Due to the
high variability of the predictive distributions, the shift of the curves towards the direction
of the contamination is less evident as it would be in the case of an observation centered
in 0. Furthermore, for these type of observations (i.e. in the tail of the distribution), we
select more often lower values of c2 (in order to avoid a too strong effect of the outliers).
Generally, we can conclude that for observations in the tail the results are too variable
and not easy to distinguish the differences, as it could have been expected. Finally, in
Figure 3.3 it is slightly clearer how the variability of the predictive distributions is lower
when selecting the best value of c2 that minimizes the MISE.
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Figure 3.2: Functional boxplots of the 100 replications to compute the predictive dis-
tribution f ?

β̂
(z, x) considering a robust estimator, three different calibrated estimators

c2 = 4,∞ and the minimum of c2 selected at each replication. The value of the future
observation is x = [1, 1.3, 1, 1,−0.1]. The contaminating distribution is N(12, 32).
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Figure 3.3: Functional boxplots of the 100 replications of the predictive distribution
f ?
β̂
(z, x) minus the true distribution when considering a robust estimator, three different

calibrated estimators c2 = 4,∞ and the minimum of c2 selected at each replication. The
value of the future observation is x = [1, 1.3, 1, 1,−0.1]. The contaminating distribution
is N(12, 32).
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3.4 Data Example: Prostate Cancer
To conclude this chapter, we apply our approach to a real data set. The aim of this exam-
ple is to present how the predictive distribution can be used in practical situations. The
chosen data are available on the R package Brq, the reference is a study done by Stamey
et al. [1989], and this dataset has been also used in the book Hastie et al. [2009]. The
data set consists of 97 observations about the correlation between the level of prostate
specific antigen (PSA) and a number of clinical measures. The goal of the study was
to predict the value of PSA based on different measurements, such as: prostate weight,
age, benign prostatic hyperplasia amount, semina vesicle invasion, capsular penetration,
Gleason score and percent of Gleason scores 4 or 5. Table 3.5 and Table 3.6 include the
description of the variable and their summary statistics.

Name Description
cavol Cancer volume
weight Prostate weight
age Age
bph Amount of benign prostatic hyperplasia
svi Seminal vesicle invasion
cp Capsular penetration
gleason Gleason score
pgg45 Percentage Gleason scores 4 or 5
psa Value of prostate-specific antigen (response variable)

Table 3.5: Variable’s description.

Variable N Mean St. Dev. Min Max
cavol 97 7.001 7.885 0.260 45.650
weight 97 45.478 45.610 10.750 449.250
age 97 63.866 7.445 41 79
bph 97 2.645 2.937 0.250 10.240
svi 97 0.216 0.414 0 1
cp 97 2.362 3.720 0.250 18.250
gleason 97 6.753 0.722 6 9
pgg45 97 24.381 28.204 0 100
psa 97 23.740 40.825 0.650 265.850

Table 3.6: Variable’s statistic.

We visualize the response through a boxplot in Figure 3.4. We remark that the
response variable contains observations that can be considered as contamination (i.e.
outliers). The amount of the observations that can be detected as outliers is about 8-
10%, there are 9 observations (9.3%) that have a value of PSA greater than 50. This
fact, and considering the results in the simulation study, could mean that the median
value of the selected calibrating constant is around 4 and 5. Figure 3.4 shows the boxplot
of the response variable and the density of the standardized residuals obtained from the
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regression model estimated via robust M -estimator with tuning constant c = 1.345 and
with c = ∞ as an example, where we can see the difference between the robust and
classical residuals. Comparing the graphical results in Figure 3.4 and the estimations in
Table 3.7, we can see the differences between the robust and the ML estimation and more
in particular how the ML is influenced by the presence of outliers in the data.

Figure 3.4: The graph on the left shows the boxplot of the response variable. The graph
on the right shows the density of the standardized robust residuals (short-dashed line),
the density following a N(0, 1) (dashed-line) and the standardized residuals (continuous
line) for the MLE.
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robust coefficient (SD) ML coefficient (SD
cavol 1.970∗∗∗ 2.235∗∗∗

(0.186) (0.584)

weight 0.016 −0.007
(0.024) (0.075)

age −0.240 −0.280
(0.156) (0.489)

bph 0.835∗∗ 1.427
(0.400) (1.252)

svi 15.772∗∗∗ 21.774∗
(3.560) (11.147)

cp −1.463∗∗∗ 1.741
(0.450) (1.410)

gleason −1.018 −4.933
(2.195) (6.873)

pgg45 0.079 −0.015
(0.060) (0.188)

Constant 22.237 47.340
(15.940) (49.906)

Observations 97 97
Residual Std. Error 9.250 (df = 88) 31.479 (df = 88)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.7: Summary of the robust regression using rlm with Huber-function and tuning
constant c = 1.345 and the estimation of Residual Std. Error via MAD.

In order to predict the distribution of PSA for future patients, to perform our ana-
lysis, we would like to use the bias-calibrated approach and find the best value of c2 by
minimizing the value of the MISE of the predictive distribution as performed in the sim-
ulation study on the available data. For this purpose, we regress the model via robust
M -estimator applying the Huber-function with tuning constant c = 1.345 via function
rlm and we obtain the value of σ̂R as our value of σ (using the MAD method).

Table 3.7 shows the result of the full estimated robust model and the coefficients give
us the values of β̂R, while the value of the residual standard error is our σ̂R. This table
gives us the idea about the influence that each variable has on the response. In our case,
we consider β̂R with the explanatory variables that are significant in the regression model.
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The variables are selected via robust variable selection, such that we take into account the
relevant information from the data to compute the MISE of the predictive distribution.

As an example and in order to apply our selection of the value of c2 that minimizes
the MISE, we use an algorithm considering the leave-one-out Cross-Validation (LOOCV,
or Jackknife). The idea is to repeat the selection of the best value of c2 for N times,
dividing the sample in the training data set and the testing data set. The training data
set corresponds to all the observations except one and the observation left out represents
the testing observation. This means, that at each iteration we compute the value of β̂[−i]

R

and σ̂[−i]
R that correspond to the estimation of β and σ without the i-th observation. Con-

sequently, we compute the MISE of the predictive distribution considering the observation
left out of the sample as the future observation, and we perform the predictive based on
the information given by the training data. The possible values of c2 go from 1.6 until 8
with steps of 0.3 and the value of 0 for the robust M -estimator.

Alternatively, we can apply our selection of the value of c2 that minimizes the MISE,
performing the analysis only once on the available dataset and we choose an arbitrary
observation as future observation to be predicted (choosing new values such as the mean
or median in the descriptive statistics). Consequently, we compute the MISE of the
predictive distribution considering the arbitrary future observation, and we perform the
predictive based on the information given by the full data set.

Figure 3.5: Boxplot of the selected value of c2 using the LOOCV approach.

Figure 3.5 and Table 3.8 show the results of the analysis of the MISE, obtained in
section 3.2.1. From Table 3.8 we see that the best value of c2 that minimizes the MISE
is around 4-4.5. In particular, we can see the gain in terms of MISE compared to the
robust M -estimator without any calibration. This result confirms what we have seen in
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Robust c2 = 1.9 c2 = 2.8 c2 = 3.7 c2 = 4.6 c2 = 8 min c2
Mean 6.780 5.479 4.564 3.723 3.538 4.164 1.963

Median 6.830 4.954 2.669 1.147 1.169 2.716 0.321

Table 3.8: Mean and median of the MISE of the predictive distribution using the LOOCV
approach.

the simulation study that in the presence of a contamination the best value of the selected
c2 depends on the amount of contaminated data and tends to be higher when the presence
of the contamination is more important. In this data set, the predictive distribution of
the value of PSA gives a lower MISE most of the times for values in the range 3.5 − 5.
The robust estimator happens to be selected mostly for the values that are in the tails,
as we have remarked in the simulation study.

Furthermore, in Figure 3.6 we present an example of predictive distribution comparing
the robust and a non-robust estimators used to obtain the predictive distribution. From
Figure 3.6 we can see how in this case the estimation of the predictive distribution based
on a non-robust estimator are different and for this observation taken from the sample is
more influenced by the presence of a contamination in the data. The vertical line represent
the mean of the response variable that is also shown in Table 3.6.

Figure 3.6: Eample of the predictive distributions for an observation from the sample
considering the robust estimator a calibrated estimators and a non-robust estimator c2 =
∞.

In this case, the predictive distribution could be used to predict and estimate the
distribution of values of PSA for patients based on their characteristics or different groups
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(e.g. different age or weight classes). Therefore they can be compared to the estimated
value or the known distribution of the data from medical practices. Additionally it can
be very useful when the value of PSA might be missing as outcome in a clinical trial due
to lost to follow-up or other reasons and this value needs to be imputed via statistical
methods. In this specific case, the use of the predictive distribution is appropriate.

Generally speaking, the use of a calibrated predictive distribution can help in per-
forming more precise prediction of the value of PSA compared to the robust estimator
itself that would give too conservative results and ignore the effect of outliers (e.g. miss
some patients that have a level of PSA that might be on the borderline and be miss-
classified). The use of the MLE estimator would give more ”high PSA level” predictions
and increase medical costs because more patients would need more specific analysis to
detect the cancer.



Conclusion

The work in this thesis has been mainly developed around the concepts of predictive dis-
tribution, bias-calibration and robustness. It is known that when using robust estimators
in predictive distribution, the variability of the latter is lower compared to a predictive
distribution based on non-robust estimators. Nevertheless, in the case of distorted data
where there is the presence of representative outliers, the robust estimator has the dis-
advantage to be biased with respect to these representative outliers because they are
down-weighted. In fact, most of the times the outliers are considered as representative for
the sample or population and not to be down-weighted too heavily. Therefore, the overall
objective was to correct the robust estimator bias and to improve the trade-off between
variability and bias of the predictive distribution in linear regression. This peculiarity
allows to adapt the prediction, reducing the robustness of the classic robust estimators,
while keeping a good efficiency in terms of variability of the bias-calibrated estimator and
consequently of the predictive distribution itself.

The field of predictive distribution and bias-calibration can be further developed with
new methods that are partially mentioned or not yet covered in the literature. The concept
of bias-calibration, based on the work in this thesis, can be extended into the GLM setting
that would give a wide range of distributions. A first step in this direction would be the
derivation of this bias-calibrated estimator for GLM following the same concept of the
bias-calibration used in linear models.

The challenges of the development of this bias-calibrated estimator for the GLM ap-
plied to the predictive distribution lay mainly in the derivation of the variance of the
bias-calibrated estimator. In fact, as it was done in this thesis for the linear regression
case, the derivation of the variance can be cumbersome. The presence of the correction
term in the GLM estimators increases the difficulty in obtaining a precise result of the
variance of the bias-calibrated estimator. Not only the derivation would require a long
and demanding process, but, in particular, the implementation of the variance in the
software would drive the results to probable rounding and numerical problems due to the
complexity of the analytic result of the variance. This is why more work for future re-
search should be done in this direction to find an appropriate approximation and solution
that could solve this problem.





Appendix A

Additional Material About
Predictive Distribution and Robust
GLM

A.1 Derivation of the Predictive Distribution
We give here the details of the computation of the predictive distribution presented in
Chapter 2.

Recalling from Chapter 2

p1(ε) =
∣∣∣∣V (Ψ;Fε,θ)
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2
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where adj is the adjugate matrix, that is the transpose of the cofactor matrix. In the
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The details to complete the derivation of expression (2.9) are explained below. The
derivative of. T (Fε,θ) is
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and to obtain the derivative of the variance of the estimator, defined in (1.6), we use the
differentiation w.r.t. ε, at ε = 0, of
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Subsequently we need to compute the derivative ofM(Ψ, Fε,θ)−1. Its expression is obtained
following the same approach as the case for the variance in (A.5), for which we need the
derivative of the matrix M(Ψ, Fε,θ) itself. To compute the derivative of this matrix we de-
fine
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Appendix B

The Laplace Approximation

B.1 Laplace Approximation for Multiple Integrals
In this Appendix, we explain in details the steps necessary to compute the robust predic-
tive distribution. An approach to tackle this problem is to use the Laplace approximation
defined in (2.12).

The first integral we want to approximate is∫ ∞
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To find the solution of t̂ we use the Newton-Raphson method.
We tackle now the second term of the predictive distribution in (2.7) that is∫ ∞
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From (B.4) we can divide the integral in two different parts, such that
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We see that these two integrals have a similar form as in (B.1). For equation (B.5) only
the term not depending on t is different (the constant term outside the integral). For (B.6)
we have an additional term depending on t changing the function m(t), that in this case,
is
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The last term to compute is the second part of (B.4). In this case it is necessary to
take the logarithm of the term not present in exponential form. Consequently, a condition
to make the Laplace approximation works is that the element in the logarithm should not
be negative. In this case, we have
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The first two derivatives of (B.7) are
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In order to obtain the value of t such that equation (B.8) is equal to 0, we use a Newton-
Raphson method. Knowing that the value in the logarithm might be negative, when
computing the minimization of (B.8) it might be necessary to introduce a constraint that
P > 0. Also in this case, by simulation, we get that t̂ tends to T (Fθ). Applying this, the
result of (B.7) tends to −∞ because P → 0.

B.2 Numerical Evaluations of the Approximation
Table B.1 reports the comparison between the three different approaches discussed in Sec-
tion 2.3 to compute the multiple integrals (Laplace approximation via TMB, Monte Carlo
approximation and analytic Laplace approximation). We notice that the results are rather
similar and the order of magnitude of the difference is around 1e-4. Furthermore, the
number of the covariates does not have a relevant impact on the accuracy of the predictive
distribution. We conclude that TMB is the best approach that most efficiently satisfies the
trade-off between accuracy of the results and computational effort via simulation. The
setting used to perform this comparison refers to Section 2.4 for q = 5. For q = 10 and
q = 20 the same distributions have been considered with different parameters, that for
simplicity we do not specify here. The MC method is considered as the benchmark.
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# variables TMB vs MC TMB vs Laplace Laplace vs MC
q = 5 5.2 4.1 13.3
q = 10 1.1 0.4 0.8
q = 20 3.6 1.7 0.8

Table B.1: Kullback-Leibler divergence between three approaches used to approximate the
multiple integration: TMB package (TMB), Monte Carlo approximation (MC) and analytic
Laplace approximation (Laplace). The value of q represents the number of covariates. The
values represented are multiplied by 1e4.



Appendix C

Additional Material for Chapter 3

C.1 Brief Overview of the Bias-Calibration in the
Literature

The concept of bias-calibration is mainly used in sample survey theory. The main idea
behind it comes from Chambers [1986] where the author introduces this type of estima-
tors and he focuses on the concept of representative and non-representative outliers. A
representative outlier can be defined as an outlying observation relevant in the sample and
that cannot be considered as incorrect. Consequently, these observations are presumed
to be important to describe the finite population. In fact, it is based on the work of bias-
calibration of Chambers [1986] that Welsh and Ronchetti [1998] concentrate their work
on sample survey containing outliers. The main focus in this introduction is to briefly
review the existing bias-calibrated estimators in the literature.

The finite population cumulative distribution function is defined as

F (t) = N−1
N∑
i=1

I(Yi ≤ t) t ∈ R ,

where Y1, . . . , YN are the population values and I(·) is the indicator function. The finite
population total

T = N
∫ ∞
−∞

t dF (t) ,

the finite population mean T/N , and the finite population quantile

Q(α) = F−1(α) , 0 ≤ α ≤ 1 ,

where α is the quantile to estimate, are statistical properties of the finite population
distribution.

The approach in Welsh and Ronchetti [1998] is model-based and it first needs to define
the super-population model for the conditional distribution of Y given X, where X is the
matrix of the explanatory variables. The model is defined as:

Yi = Xiβ + σv1/2(Xi)ei, i = 1, . . . , N , (C.1)

where ei are iid random variables, β and σ unknown parameters and v(·) a non-negative
function that accounts for heteroskedasticity. The approach to estimate the population
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distribution function consists in first obtaining the fit of the model in (C.1) by using an
M-estimator β̂R of β with a robust function and a chosen tuning constant c1.

An important class of estimators of T under model (C.1) can be written as

T̂ = T1 + β̂
N∑

i=n+1
Xi , (C.2)

where T1 = ∑n
i=1 Yi is the sample total and β̂ is the estimator of β. The bias-calibrated

estimator from Chambers [1986] is defined as

T̂cal(c2) = T1 + β̂R
N∑

i=n+1
Xi + B̂(c2) ,

where

B̂(c2)=
( N∑
i=n+1

Xi

){ n∑
j=1

X2
j /v(Xj)

}−1 n∑
j=1

σ̂c2{Xj/v(Xj)1/2}ψc2{(Yj−β̂RXj)/σ̂c2v(Xj)1/2} .

with ψc2 the Huber function and β̂R is the bi-weight estimator introduced above. Finally,
the estimator in Chambers [1986] (the bias-calibrated estimator) can be written in the
form (C.2) as

β̂cal(c2) = β̂R +
{ n∑
j=1

X2
j /v(Xj)

}−1 n∑
j=1

σ̂c2{Xj/v(Xj)1/2}ψc2{(Yj − β̂RXj)/σ̂c2v(Xj)1/2} .

Regarding the choice of the robust estimator of β̂R, σ̂R and the ψ-function we refer
to Welsh and Ronchetti [1998]. However, the choice of the ψ-function is far-reaching.
In fact, it is necessary to consider that the more linear is the ψ-function the lower the
bias of T̂cal and the more bounded β̂R the lower the variance of T̂cal.

Finally, it is required to estimate the population distribution function F by using the
bias-calibrated estimator. The form of the estimated population function is

F̂ (t, c2) = N−1
{ n∑
i=1

I(Yi ≤ t) + (N − n)F̂2(t, c2)
}

t ∈ R ,

where

F̂2(t, c2) = n−1(N−n)−1
N∑

j=n+1

n∑
i=1

I[β̂RXj+v1/2(Xj)σ̂c2ψc2{(Yi−β̂RXi)/σ̂c2v
1/2(Xi)} ≤ t] ,

To conclude, the aim in Welsh and Ronchetti [1998] was to represent the quantile
functions and the total population. In order to do this, they consider different levels
of the tuning constant c2 for the different quantile. As an example, they consider the
following scheme of choice for c2

c2(α) =



0 0 ≤ α ≤ 0.6
6 0.6 < α ≤ 0.85

10 0.85 < α ≤ 0.90
15 0.90 < α ≤ 0.95
∞ 0.95 < α ≤ 1

.

As mentioned in the latter paper, the values are chosen arbitrary and more research into
the choice of them is required. Nevertheless, the choice of the different values of c will
depend on the structure of the data and the amount of representative outliers that are
included in the sample.
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C.2 Variance of the Bias-calibrated Estimator
Considering σ as known, the variance of (3.2) is

Var(β̂cal) = Var
β̂R +

 n∑
i=1

xix
>
i

−1
n∑
i=1

σψc2{(yi − x>i β̂R)/σ}xi

 (C.3)

= Var
(
β̂R
)

+ Var
 n∑

i=1
xix
>
i

−1
n∑
i=1

σψc2{(yi − x>i β̂R)/σ}xi

+

+2 Cov
β̂R,

 n∑
i=1

xix
>
i

−1
n∑
i=1

σψc2{(yi − x>i β̂R)/σ}xi

> .

From (C.3), we need to compute the variance of the ψ-function and the covariance between
the M -estimator and the ψ-function. To do this, we linearize β̂R and ψc2 using the IF
from Hampel et al. [1986]. To simplify the notation of the following computations, we
define r̂i = (yi − x>i β̂R)/σ, ri = (yi − x>i β)/σ=ei/σ and ∑n

i=1 xix
>
i = X>X.

We define β̂R as
β̂R ∼= β + 1

n

n∑
k=1

IF(xk, yk; β̂R, Fβ) ,

where
IF(xk, yk; β̂R, F ) = 1

E
[
ψ′c1

](X>X)−1σψc1(rk)xk , (C.4)

with c1 representing the tuning constant used to obtain β̂R. The ψ-function depending
on c2 can be approximated by

ψc2(r̂i) ∼= ψc2(ri) + 1
n

n∑
k=1

IF(xk, yk;ψc2(r̂i), Fβ) .

where

IF(yk, xk;ψc2(r̂i), F ) = ∂ψc2(ri)
∂β

IF(yk, xk; β̂R, Fβ) (C.5)

= − 1
σ
ψ′c2(ri)x>i IF(yk, xk; β̂R, Fβ) = − 1

E
[
ψ′c1

]ψ′c2(ri)ψc1(rk)x>i (X>X)−1xk .

The subsequent step is to tackle the elements of the variance of the bias-calibrated esti-
mator in (C.3).

The first element of expression (C.3) is defined in (1.6). Hence, the second term
of (C.3) is

Var
(

(X>X)−1
n∑
i=1

σψc2(r̂i)xi
)

= σ2(X>X)−1Var
( n∑
i=1

ψc2(r̂i)xi
)

(X>X)−1 ,

where the variance is

Var
( n∑
i=1

ψc2(r̂i)xi
)
∼= Var

( n∑
i=1

[
ψc2(ri)−

1
nE[ψ′c1 ]

n∑
k=1

ψ′c2(ri)ψc1(rk)x>i (X>X)−1xk︸ ︷︷ ︸
ai

]
xi

)

=
n∑
i=1

Var(aixi) +
∑
i 6=j

Cov(aixi, ajx>j ) =
n∑
i=1

Var(ai)xix>i +
∑
i 6=j

Cov(ai, aj)xix>j .

(C.6)
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Thereby, we extend the two terms in expression (C.6). Firstly we have

Var(ai) = Var
(
ψc2(ri)−

1
nE[ψ′c1 ]

n∑
k=1

ψ′c2(ri)ψc1(rk)x>i (X>X)−1xk

)

= Var
(
ψc2(ri)

)
+ 1
n2 E[ψ′c1 ]2 Var

( n∑
k=1

ψ′c2(ri)ψc1(rk)x>i (X>X)−1xk

)
+

− 2
nE[ψ′c1 ] Cov

(
ψc2(ri),

( n∑
k=1

ψ′c2(ri)ψc1(rk)x>i (X>X)−1xk

)>)
, (C.7)

where

Var
(
ψc2(ri)

)
= E

[
ψc2(ri)2

]
= 2Φ(c2)− 1− 2c2φ(c2) + 2c2

2(1− Φ(c2)) ∀i , (C.8)

due to the fact that the expectation of ψc2(ri) is zero. The details about the solution of
the expectation are shown in Appendix C. Afterwards, we have the variance of the second
term in (C.7).

1
n2 E[ψ′c1 ]2 Var

( n∑
k=1

ψ′c2(ri)ψc1(rk)x>i (X>X)−1xk

)

= 1
n2E[ψ′c1 ]2

n∑
k=1

x>i (X>X)−1xkVar
(
ψ′c2(ri)ψc1(rk)

)
x>k (X>X)−1xi . (C.9)

We can verify that the expectation of expression (C.5) (and expression (C.4)) is zero, for
the reason that the expectation of the Huber function is zero. Therefore, the variance
in (C.9) is

Var
(
ψ′c2(ri)ψc1(rk)

)
= E

[
ψ′c2(ri)2ψc1(rk)2

]
.

Thereupon, when i = k,

E
[
ψ′c2(rk)2ψc1(rk)2

]
= 2c2

1

[
Φ(c2)− Φ(c1)

]
+ 2Φ(c1)− 1− 2c1φ(c1) , (C.10)

and when i 6= k

E
[
ψ′c2(ri)2

]
E
[
ψc1(rk)2

]
=
[
2Φ(c2)− 1

][
2c2

1

[
1−Φ(c1)

]
+ 2Φ(c1)− 1− 2c1φ(c1)

]
, (C.11)

where Φ(·) and φ(·) represent the cumulative distribution function and the density func-
tion of a standard normal distribution, respectively, and E[ψ′c1 ] = 2Φ(c1)− 1. The third
term in (C.7) is describable as

− 2
nE[ψ′c1 ]

n∑
k=1

Cov
(
ψc2(ri), ψ′c2(ri)ψc1(rk)

)
x>k (X>X)−1xi ,

where
Cov

(
ψc2(ri), ψ′c2(ri)ψc1(rk)

)
= E

[
ψc2(ri)ψ′c2(ri)ψc1(rk)

]
,

for which the expectation is different from zero only when i = k, that is

E
[
ψc2(ri)ψ′c2(ri)ψc1(ri)

]
= −2c1

[
φ(c1)− φ(c2)

]
+ 2Φ(c1)− 1− 2cφ(c1) . (C.12)
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Afterwards, we expand the covariance of the second term in (C.6), that is

Cov
(
ψc2(ri)︸ ︷︷ ︸

bi

− 1
nE[ψ′c1 ]

n∑
k=1

ψ′c2(ri)ψc1(rk)x>i (X>X)−1xk︸ ︷︷ ︸
di(k)

,

ψc2(rj)︸ ︷︷ ︸
bj

− 1
nE[ψ′c1 ]

n∑
l=1

ψ′c2(rj)ψc1(rl)x>l (X>X)−1xi︸ ︷︷ ︸
dj(l)

)
. (C.13)

Consequently, we need to obtain bi, bj, di(k) and dj(l) in (C.13). Due to the independence of
the residuals and i 6= j, the covariance of the combination bibj is equal to zero. The second
term can be rewritten as the expectation of bidj(l) and as mentioned the expectation of
these terms individually are zero. Thus, we have

E
[
ψc2(ri)

(
− 1
nE[ψ′c1 ]

n∑
l=1

ψ′c2(rj)ψc1(rl)x>l (X>X)−1xj

)]

= − 1
nE[ψ′c1 ]

n∑
l=1

E
[
ψc2(ri)ψ′c2(rj)ψc1(rl)

]
x>l (X>X)−1xj ,

where the latter expectation is different from zero only when i = l and knowing that i 6= j
we obtain

E
[
ψc2(ri)ψ′c2(rj)ψc1(ri)

]
= (C.14)

=
[
2c2c1

[
1− Φ(c2)

]
− 2c1

(
φ(c1)− φ(c2)

)
+ 2Φ(c1)− 1− 2c1φ(c1)

][
2Φ(c2)− 1

]
.

Lastly, we consider di(k)dj(l). The latter element can be written as

E
[
− 1
nE[ψ′c1 ]

n∑
k=1

ψ′c2(ri)ψc1(rk)x>i (X>X)−1xk(
− 1
nE[ψ′c1 ]

n∑
l=1

ψ′c2(rj)ψc1(rl)x>l (X>X)−1xj

)]

= 1
n2 E[ψ′c1 ]2

n∑
k=1

E
[
ψ′c2(ri)ψc1(rk)2ψ′c2(rj)

]
x>i (X>X)−1xkx

>
k (X>X)−1xj ,

and the expectation when i = k 6= j and j = k 6= i is

E
[
ψ′c2(ri)ψc1(ri)2

]
E
[
ψ′c2(rj)

]
(C.15)

=
[
2c2

1

[
Φ(c2)− Φ(c1)

]
+ 2Φ(c1)− 1− 2c1φ(c1)

][
2Φ(c2)− 1

]
.

The last case occurs when we have i 6= k 6= j, that is

E
[
ψ′c2(ri)

]
E
[
ψc1(rk)2

]
E
[
ψ′c2(rj)

]
=
[
2c2

1

[
1−Φ(c1)

]
+2Φ(c1)−1−2c1φ(c1)

][
2Φ(c2)−1

]2
.
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Finally, we need to compute the third element of expression (C.3), that is

2 Cov
(
β̂R,

(
(X>X)−1

n∑
i=1

σψc2(r̂i)xi
)>)

∼= (C.16)

= 2σCov
β + 1

nE[ψ′c1 ]

n∑
k=1

(X>X)−1σψc1(rk)xk,

n∑
i=1

((
ψc2(ri)−

1
nE[ψ′c1 ]

n∑
l=1

ψ′c2(ri)ψc1(rl)x>i (X>X)−1xl

)
xi

)>(X>X)−1 .

Due to the fact that β is a constant, the covariances where β is involved are zero. Con-
sequently, we expand the first non-zero covariance that is

2σCov
( 1
nE[ψ′c1 ]

n∑
k=1

(X>X)−1σψc1(rk)xk,
n∑
i=1

ψc2(ri)x>i
)

(X>X)−1

= 2σ2

nE[ψ′c1 ] (X
>X)−1

( n∑
k=1

xk Cov
(
ψc1(rk), ψc2(rk)

)
x>k

)
(X>X)−1 ,

where

Cov
(
ψc1(rk), ψc2(rk)

)
= 2c2c1

[
1− Φ(c2)

]
− 2c1

[
φ(c1)− φ(c2)

]
+ 2Φ(c1)− 1− 2c1φ(c1) .

Conclusively, the last term is

2σCov
 1
nE[ψ′c1 ]

n∑
k=1

(X>X)−1σψc1(rk)xk,

(
− 1
nE[ψ′c1 ]

n∑
i=1

( n∑
l=1

ψc2(ri)ψc1(rl)xi(XTX)−1xl

)
xi

)>(X>X)−1

= 2σ2

n2 E[ψ′c1 ]2 (X>X)−1

 n∑
k

xk Cov
(
ψc1(rk), ψ′c2(rk)ψc1(rk)

)
x>k (X>X)−1xkx

>
k +

+
n∑

k=l 6=i
xk Cov

(
ψc1(rk), ψ′c2(ri)ψc1(rk)

)
x>k (X>X)−1xix

>
i

(X>X)−1 ,

where

Cov
(
ψc1(rk), ψ′c2(rk)ψc1(rk)

)
= 2c2

1

[
Φ(c2)− Φ(c1)

]
+ 2Φ(c1)− 1− 2c1φ(c1) ,

and

Cov
(
ψc1(rk), ψ′c2(ri)ψc1(rk)

)
=
[
2c2

1

[
1− Φ(c1)

]
+ 2Φ(c1)− 1− 2c1φ(c1)

][
2Φ(c2)− 1

]
.

(C.17)

Summarizing, in the simulation study we will apply the MISE from expression (3.9)
obtained computing the elements (3.5) and (3.7), where the variance for the bias-calibrated
estimator has been computed in expressions (C.3)-(C.17).
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We describe here some more details of the expectation of the ψ-function obtained
above. The first result refers to the expectation of ψ2

c2 in (C.8), that is

E
[
ψc2(ri)2

]
=
∫ −c2

−∞
(−c2)2dr +

∫ c2

−c2
r2dr +

∫ ∞
c2

c2
2dr (C.18)

Furthermore, we show the result in (C.10), that is

E
[
ψ′c2(rk)2ψc1(rk)2

]
=
∫ −c2

−∞
0(−c1)dr +

∫ −c1

−c2
(−c1)dr +

∫ c1

c1
1r2dr

and in (C.11) we need to obtain the first term that is

E
[
ψ′c2(rk)2

]
=
∫ −c2

−∞
0dr +

∫ c2

−c2
1dr +

∫ ∞
c2

0dr , (C.19)

while the second term is the same as (C.18) but for c1. Furthermore, in (C.12) we have
the following result

E
[
ψc2(ri)ψ′c2(ri)ψc1(ri)

]
=
∫ −c2

−∞
0(−c1)(−c2)dr +

∫ −c1

−c2
r(−c1)dr +

∫ c1

c1
1r2dr+

+
∫ c2

c1
1 r c1dr +

∫ ∞
c2

0 c1c2dr .

The two expectations in (C.14) are

E
[
ψc2(ri)ψc1(ri)

]
=
∫ −c2

−∞
(−c1)(−c2)dr +

∫ −c1

−c2
r(−c1)dr +

∫ c1

c1
r2dr+

+
∫ c2

c1
r c1dr +

∫ ∞
c2

c1c2dr .

and the result of the second term is the same as (C.19). A last element that we need to
define is the first element in (C.15), that is

E
[
ψ′c2(ri)ψc1(ri)2

]
=
∫ −c2

−∞
0 (−c1)2dr +

∫ −c1

−c2
1 (−c1)2dr +

∫ c1

c1
1 r2dr+

+
∫ c2

c1
1 c2

1dr +
∫ ∞
c2

0 c2
1dr .
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