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Abstract—Representing and fusing multimedia informa-
tion is a key issue to discover semantics in multimedia.
In this paper we address more specifically the problem
of multimedia content retrieval through the joint design
of an original multimodal information representation and
of a machine learning-based fusion algorithm. We first
define a novel preference-based representation particularly
adapted to the retrieval problem, and then, we investigate
the RankBoost algorithm to combine those preferences to
fullfill a user’s query. Interestingly, it ends up being a flexible
retrieval model that only manipulates ranking information
and is blind to the intrinsic properties of the multimodal
information input. The approach is tested on annotated
images and on the complete TRECVID 2005 corpus and
compared with SVM-based fusion strategies. The results
show that our approach equals SVM performance but,
contrary to SVM, is parameter free and faster.

I. INTRODUCTION

Determining semantic concepts by allowing users to
iteratively and interactively refine their queries is a key
issue in multimedia content-based retrieval. The Rele-
vance Feedback loop allows us to build complex queries
made out of documents marked as positive and negative
examples. From this training set, a learning process has
to create a model of the sought concept from a set of
data features to finally provide relevant documents to the
user. The success of this search strategy relies mainly
on the representation spaces where data is embedded
as well as on the learning algorithm operating in those
spaces. These two issues are also intrinsically related to
the problem of adequately fusing information arising from
different sources. Various aspects of these problems have
been studied with success for the last few years. This
includes works on machine learning strategies such as
active learning [1], imbalance classification algorithms
[2], automatic kernel setting [3] or automatic labelling
of training data [4]. Theoretical and experimental in-
vestigations have been achieved to determine optimal
strategies for multimodal fusion: Kittler et al and R. Duin
studied different rules for classifier combination [5], [6];
Wu et al propose the super-kernel fusion to determine
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optimal combination of features for video retrieval [7]. In
[8], Maximum Entropy, Boosting and SVM algorithms
are compared to fuse audio-visual features. Multi-graph
learning approaches [9] and latent semantic fusion [10]
have been proposed recently for image and video retrieval
and annotation. A number of further relevant references
may be found into the Lecture Notes series on Multiple
Classifier Systems [11].

The diversity of the features involved is a difficulty
when dealing with fusion and learning. The multimedia
descriptors may indeed be extracted from visual, audio
or transcript streams using various operators providing
outputs such as histograms, filter responses, statistical
measures or symbolic labels. This heterogeneity imposes
building complex learning setup that need to take into
account all the variety of the features’ mathematical and
semantic properties [12][13].

We advocate for the definition of an homogeneous
representation to store multimodal signals regardless their
intrasic dimensionality and scale. The fusion complexity
would be then dramatically alleviated since a unique
learning model can be indistinctly applied on multimodal
information to determine document’s semantic/relevance.
It would allow to setup fast and flexible multimedia
information retrieval systems. In our context, fast means
that on-line learning is possible and flexible means that the
system could handle any modalities blindly as far as they
can be embedded into the homogeneous representation.

A first attempt for designing an homogeneous represen-
tation is to index documents according to their similarities
(related to one or several features) to the other documents
rather than to a feature vector. Considering a collection of
documents, the similarity-based representation, stored in
(dis)similarity matrices or some distance-based indexing
structures [14], characterizes the content of an element
of the collection relatively to a part of or the whole
collection. Studies have been published for document
retrieval and collection browsing by using pre-computed
similarities. In [15], Boldareva et al proposed to index
elements relatively to their closest neighbors, i.e. those
who have the best probabilities to belong to the same
class. This provides them with a sparse association graph
structuring the multimedia collection and allowing fast
retrieval of data. In [16], the idea of nearest neighbor
networks is extended by creating edges for every combi-
nation of features. The resulting graph, called NNk, allows
to browse the data collection from various viewpoints
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corresponding to the multiple features. In [17], we design
a dissimilarity space [18] where elements are no longer
represented by their multimodal features but by their
relative dissimilarities with respect to a set of positive
prototypes provided by users. As pointed out by authors,
the similarity approach provides a convenient way for
multimodal data fusion, since adding new features simply
consists in adding new distances to the same representa-
tion framework. However, it still leaves open the problem
of how to properly scale the similarity values to make
them really comparable.

Following the similarity-based representation idea, we
propose to simplify the similarity-based representation
by retaining only ordering information from the distance
measurements. The result is a preference space where
every item is indexed through its relative ranking posi-
tions to a set of prototypes. The scaling issue is thus
completely alleviated and we effectively obtain a unified
representation of multimodal content, but at the price of
losing an important amount of the initial information. In
the following we address more specifically the problem
of multimedia information retrieval using query by exam-
ple and relevance feedback search paradigms. Problem
position and terminologies are defined in section II).
In section III we consider three multimodal information
representations, namely feature space, dissimilarity space
and the proposed preference space. Retrieving items from
the preference space is then a ranking problem (section
IV) that can be addressed using the RankBoost algorithm
(section V). We end up with a multimedia search engine
that a) builds its retrieval model upon multimodal infor-
mation, b) is parameter free and c) is fast. Experiments on
artificial and real data (annotated images and videos, see
section VI) show that the preference space associated to
RankBoost competes with SVM-based approaches in term
of accuracy but speed up the retrieval by a factor greater
than 10. Moreover, contrary to the SVM, our approach
does not require to set query-sensitive parameters a priori.
It is therefore a valid approach for on-line retrieval of
multimedia information.

II. PROBLEM DEFINITION

A multimedia document is composed of multimodal
contents (for instance visual, audio and textual content)
and multimedia information retrieval will consist to de-
termine the relevance of each document relatively to a
given query. This relevance will reflect the adequation of
the multimodal content to the query.

In the following, we consider a collection X containing
l multimedia documents x. The terms item, element or
object are also used to refer to x. The query by example
search paradigm consists in gathering user’s judgements
indicating, for some objects, whether they are relevant
or irrelevant to the user request. This set, denoted Q, is
called the query and is composed of positive and negative
subsets, respectively

P = {x+
i }

p
i=1 and N = {x−

i }
n
i=1.

The query Q is then used to train a machine that will
produce a decision function ranking documents according
to their relevance to the query.

This paradigm might be embedded in the Relevance
Feedback (RF) strategy, where these two steps (user
judgement and ranking estimation) are iterated until the
search converges to a satisfactory result.

III. MULTIMODAL CONTENT REPRESENTATIONS

Expressing multimodal content involves first to extract
various descriptors from the multimedia objects. Ideally,
each descriptor depicts an appropriate aspect of the
multimodal features of the documents. Assuming such
descriptors are available, we discuss in the following
how efficient representations may be derived to store
descriptors and to facilitate their fusion.

A. Feature-based representation
Assuming m distinct descriptors are designed (and

extraction procedures implemented), the multimodal rep-
resention of an object x is the set of m feature vectors
{xk}m

k=1 living respectively in feature spaces {Fk}m
k=1.

The dimension of each feature space intrinsically depends
of the descriptor they express. The feature-based represen-
tation is rather straightforward, but not really convenient
since it mixes heterogeneous vectors of various dimen-
sions and scales. Fusion and ranking algorithms need to
manage the diversity of the representation, thus making
them more dependent on complex parameter setting pro-
cedures and less flexible to handle new descriptors.

To avoid this situation, modality-independent represen-
tations are desirable. For that purpose, (dis)similarity-
based representations have been recently proposed [15],
[17], [19], [20]. As pointed out by these authors, similari-
ties are convenient to manipulate multimodal information
since they form a homogeneous representation of the
content. Moreover, similarity representations are generally
made such as their dimensionality remain much lower
than their feature counterparts.

B. Dissimilarity-based representation
In [17], we proposed a Query-based Dissimilarity

Space (QDS), derived from the dissimilarity spaces intro-
duced by Pekalska et al [21]. For a given feature space
Fk, the corresponding QDS, denoted Dk

P , is defined rela-
tively to the positive set P by the mapping dk(x,P) ∈ Rp

dk(x,P) = [dk(x, x+
1 ), dk(x, x+

2 ), . . . dk(x, x+
p )]T , (1)

where dk(x, x+
i ) ∈ R+ is the dissimilarity from any

object x ∈ X to the prototype x+
i when the measure is

done in Fk. Using QDS, an object x is thus represented
with a set of m dissimilarity vectors {dk}m

k=1 living in
p-dimensional dissimilarity spaces {Dk

P}m
k=1,

Dk
P =











dk(x1, x
+
1 ) dk(x2, x

+
1 ) . . . dk(xl, x

+
1 )

dk(x1, x
+
2 ) dk(x2, x

+
2 ) . . . dk(xl, x

+
2 )

...
dk(x1, x

+
p ) dk(x2, x

+
p ) . . . dk(xl, x

+
p )











.

(2)
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The QDS presents two decisive advantages relatively to
feature spaces: 1) It provides a unified representation of
multimodal information channels, and 2) is particularly
adapted to the class asymmetry typically exhibited by
the positive and negative classes. This asymmetry corre-
sponds to a (1 + x) class setup where the one class, pre-
sumably well-clustered in the feature space, encompasses
the sought documents (positive class), while an unknown
number x of classes, partially represented by negative
examples, is supposed to model all irrelevant documents.
Classical learning approaches, by applying a symmetric
treatment to all classes are not really efficient for such a
setup. Learning the negative classes, while being feasible
using traditional non-linear learning machines, becomes
challenging when only few samples are available. Never-
theless, we show in [17] how a built-in property of DP
is to transform the asymmetric classification setup such
that it becomes linearly separable.

However, the issue of how properly scaling dissimilar-
ity spaces so that modalities become easily comparable
still remains. This problem might be left out to the fusion
and ranking algorithms [17], but a more elegant solution
would be to end up with a fully homogeneous multimodal
representation.

C. Preference-based representation

We propose to simplify the QDS representation by
replacing the dissimilarity components dk(x, x+

i ) with
the ranking position πk(x, x+

i ) ∈ N of an object x with
respect to the prototype x+

i according to the dissimilarity
measure dk and the collection X ,

πk(x, x+
i ) =

∑

xj∈X

[[dk(xj , x
+
i ) ≤ dk(x, x+

i )]]. (3)

The notation [[κ]] is defined to be 1 if predicate κ holds and
0 otherwise. Considering the p positive prototypes and the
m dissimilarity measures, the multimodal representation
of an object x may be represented as a unique (p ∗ m)-
dimensional vector of preferences

π(x) = [π1(x, x+
1 ), π2

1(x, x+
1 ) . . . , πm(x, x+

1 ),

π1(x, x+
2 ), π2

1(x, x+
2 ) . . . , πm(x, x+

2 ),

...

π1(x, x+
p ), π2

1(x, x+
p ), . . . .πm(x, x+

p )]T .

For the sake of readability, the notation πk(·, x+
i ) is

simplified to πj(·), j = k + m ∗ (i − 1), j ∈ [1, p ∗ m],
with i iterating over all objects x+

i ∈ P and k over the m
modalities. The multimodal preference space embedding
all objects x ∈ X is therefore

ΠP =











π1(x1) π1(x2) . . . π1(xl)
π2(x1) π2(x2) . . . π2(xl)

. . .
πpm(x1) πpm(x2) . . . πpm(xl)











. (4)

It consists in a unique pm-dimensional natural number
space providing a fully homogeneous representation of

multimodal information. Reading ΠP column-wise gives
the preference vectors π(x) of every object x ∈ X , while
reading row-wise yields the complete ordering of X rela-
tively to a given positive example x+

i and a given modality
k (i and j are given by the relation j = k + m ∗ (i− 1)).
Similarly to the QDS approach, ΠP represents the two
classes P and N asymmetrically since every element is
evaluated relatively to the positive instances only.

It is worth noting however that we obtain this modality-
independent representation at the price of losing most
information about the initial feature distributions; only
ordering information is actually preserved. Our objective
now is to define a machine learning effectively able to
learn from preferences as efficiently as learning directly
in feature spaces or in dissimilarity spaces.

IV. THE RANKING PROBLEM

The ranking problem could be formulated as fol-
lows: For each item x ∈ X , it exists ranking features
π1, . . . , πpm, where each πj defines a linear ordering of
the instances x ∈ X . In our formulation, πj ∈ N and
πj(x1) < πj(x0) means x1 preferred to x0.

Additionally to the ranking features, there exists a
feedback function Φ : X × X which provides to the
learner the desired form of the final ranking. Formally
Φ(x1, x0) > 0 means that x1 should be ranked above x0

while Φ(x1, x0) < 0 means the opposite. Φ(x1, x0) = 0
means no preferences between x0 and x1 and the mag-
nitude of |Φ(x1, x0)| indicates how important is to rank
x1 above or below x0. The bipartite feedback function
is special but common case in document retrieval: the
function is said bipartite if there exists two disjoint set X1

and X0 such that Φ ranks all instances x1 of X1 above
instances x0 of X0. These subsets are respectively the
positive and negative subsets P and N we defined in
section II.

Learning such a feedback function implies estimating
a ranking H : X → R through the optimization of a
ranking loss function penalizing every miss-ordered pair
of items. We consider the loss proposed in [22]

∑

x− ∈ N
x+ ∈ P

Φ(x+, x−)
[

H(x+) − H(x−)
]

. (5)

The function H(x) is a ranking of items x stating that x+

is ranked higher than x− whenever H(x+) > H(x−).
Interestingly, in case of bipartite feedback, the problem
becomes separable and the ranking loss simplifies to [22]

∑

x∈Q
w(x)s(x)H(x), (6)

where the user feedback is carried by both

s(x) =

{

+1 if x ∈ P
−1 if x ∈ N , (7)

and w(x) a weight giving the importance of the rank of
the item x.
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Given two disjoint subsets P and N and labels s(x)
over P ∪N as defined in (7)
Initialize

w1(x) =

{

1/p if x ∈ P
1/n if x ∈ N

For t = 1, . . . , T

– Train weak learner using wt

– Get weak ranking ht : X → R
– Compute r =

∑

x wt(x)s(x)ht(x)
– Choose αt ∈ R
– Update

wt+1(x) = 1
Zt

wt(x)e−αts(x)ht(x)

where Zt is a normalization factor
Output the final ranking H(x) =

∑T
t=1 αtht(x)

Fig. 1. The RankBoost algorithm for bipartite feedback

V. RANKBOOST

Following the boosting principle, the final ranking H
results from a weighted sum of weak rankings ht : X →
R

H(x) =
T

∑

t=1

αtht(x), (8)

which is estimated through an Adaboost-like algorithm,
namely RankBoost [22] (see Figure 1). This greedy
coordinate-wise search algorithm aims at iteratively min-
imizing the normalization factor Zt by choosing at each
round an appropriate pair {αt, ht}. For a given weak
hypothesis ht ∈ [−1, 1], it has been shown [23] that Zt

is minimized for

αt =
1

2
ln

1 + rt

1 − rt
, (9)

where r is the weighted classification rate

rt =
∑

x∈Q

wt(x)s(x)ht(x). (10)

The algorithm is run over a number T of iterations
which is predefined or may depend on the training error.
In our implementation, the loop is stopped whenever the
training error is equal to 0, with a maximum of 2pm
iterations.

A. Weak ranking

The weak ranking ht is produced through a weak
learner. It has to provide a new ranking from ranking
features πi conforming the best to the bipartite feedback.
For example, the weak learner proposed in [22] selects
at each iteration the ranking feature πi minimizing the
training error. The output preserves only relative-ordering
information so as to be independent of specific preference
values,

h(x) =

{

+1 if πi(x) < θ
−1 if πi(x) ≥ θ

. (11)

As illustrated in Figure 2, this weak learner consists in
fitting a step function to the user feedbacks {s(xj)}q

j=1

1

−1

θ

s(x)

πi(x)

Fig. 2. Binary weak ranking. The πi(x)’s are ordered in increasing
order.

−1

0

1

πi(x)

s(x)

θ

Fig. 3. Soft weak ranking. The πi(x)’s are ordered increasing order.

sorted by increasing order of πi(xj). The best weak
ranking is the one maximizing equation (10) over the q
candidate weak rankings for the pm preferences πi. The
evaluation of all candidates is done in O(qpm).

As defined in (11), the function h(x) provides at each
iteration a binary ranking. The final ranking H (eq.
(8)) is thus an injection on X whose image has as at
most cardinality 2T , ie H(x) : X → {v1, . . . , v2T }.
Typically when the training set is small or when the
ranking problem is simple, RankBoost converges in a few
iterations (T small) and consequently provides a coarse
ranking partitioning the collection X in few blocks. To
get a finer ranking, we propose to use the a soft ranking
function,

h(x) = 2e−γπ2

i (x) − 1. (12)

Learning this weak ranking consists of choosing the pair
(πi, γ) that maximize the classification rate rt (10). Given
a ranking feature πi, a grid search on γ is achieved rather
than a time-consuming non-linear regression. The grid
vertices are positioned at the middle of the q ranking
intervals (see Figure 3). With this approximation, the
weak learner complexity remains O(qpm).

VI. EXPERIMENTS

The behavior and performance of ranking data in
the three representation spaces (feature, dissimilarity and
preference) are studied here. As stated before, RankBoost
(soft and binary weak ranking) will be used to learn
preferences. As far as feature and dissimilarity spaces are
concerned, ranking are produced with the SVM algorithm
as it is considered as an effective and standart technique
for multimedia retrieval [24], [25], [26]. Depending of
experiment, linear or non-linear (eg using RBF kernel)
SVM is used.
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RankBoost (smooth weak ranking)

(a)

RankBoost (binary weak ranking)

(b)

QDS, linear SVM

(c)

Feature space, rbf kernel

(d)

Fig. 4. Cross toy example

A. Toy examples

Artificial data allows us to concretely illustrate how
rankings are learned in the various representation spaces.
The following toy examples are made so as to be rep-
resentative of the class asymmetry we generally meet
in real applications. For every learning technique, the
learned ranking is superimposed to the items; white areas
correspond to top ranks and black areas to the last rank.
Moreover, prototypes selected by Rankboost are indicated
with the * marker.

The first example (Figure 4) corresponds to an ideal
separable case, where all the positive instances (cross
marker) belong to the same cluster, while the negative
samples are distributed around (circle marker). The cor-
responding dissimilarity space is built using pairwise
Euclidean distances while the preference space is derived
by ordering dissimilarities. Linear SVM is used to learn
in QDS while a RBF-SVM with an appropriate scale
parameter operates in feature space.

In each case (preferences, dissimilarities and features,
respectively in Figure 4.a, b, c and d), a perfect ranking
has been estimated. As the class setup is simple, only
one weak ranking (indicated by the selected prototype)
is necessary for RankBoost (Figure 4.a and b). It implies
that the final ranking is binary when using the binary
weak ranking function, while learning with the soft weak
ranking provides us with a more convenient continuous
ranking. As mention in section III-B, a linear function is
also enough to catch the positive class within dissimilarity
space, while a non-linear RBF-based ranking function is
needed in feature space.

The second example (Figure 5) depicts a less obvious
problem, the XOR configuration. The classes are no
longer linearly separable neither in preference space nor
in dissimilarity space. In that case, the linear SVM used
in QDS failed in estimating the ranking. On contrary,
RankBoost succeeds in finding the two positive clusters
and selects one prototype per cluster.

RankBoost (smooth weak ranking)

(a)

RankBoost (binary weak ranking)

(b)

QDS, linear SVM

(c)

Feature space, rbf kernel

(d)

Fig. 5. XOR toy example

B. Real data

1) Corel image collection: The studied image col-
lection is a subset of the Corel collection. It contains
1159 images annotated with 1 to 10 keywords per image
(including some non-sense descriptions). The images are
categorized into 49 classes. Textual and visual features
are considered for fusing experiments: The vector space
model F text containing tf-idf weights is built from key-
words (2035 terms). The color space F color contains 166
bins HSV histograms and the texture space F texture is
made of Gabor filter bank outputs (120 dimensions).
Cosine distance is considered for textual features, while
Euclidean is used in visual feature spaces.

Fusion is operated in feature space, dissimilarity space
and preference space. In feature and dissimilarity space
we have considered a state-of-the-art hierarchical fusion
scheme [17], [7]. At the first level, base classifiers are
trained in each monomodal space. At the second level,
a super classifier is used to fuse soft-outputs of all base
classifiers. Base classifiers and super classifier are RBF
SVM. Optimal classifier parameters have been determined
through a leave-one-out cross validation.

Retrieval performance is given in terms of Mean Aver-
age Precision (MAP). Average Precision (AP) is the sum
of the precision at each relevant hit in the retrieved list,
divided by the minimum between the number of relevant
documents in the collection and the length of the list.
The MAP is simply the AP averaged over several classes.
Additionally to the algorithm performance, a baseline
consisting in retrieving randomly documents is always
provided. All results are displayed in Figure 6.

Multimodal retrieval (Figure 6.b) and text-only search
(Figure 6.a) are studied. In both cases we observe that
for RankBoost, soft ranking outperforms largely binary
ranking. Moreover, the soft ranking performs similarly
to the SVM approaches whereas it uses only a degraded
version of the original features. The second observation
we can make is that the multimodal retrieval outperforms
only very slightly the keyword-only search, whatever
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(b)

Fig. 6. Image retrieval results with a) multimodal fusion and b) keywords-only search

the approach considered. This result seems to indicate
that keywords bring much of the category information,
and that color or texture low-level information are of
little help in that case. This observation is confirmed by
analyzing the ranking features selected by RankBoost to
build retrieval models: among all retrieval instances, text
information is used for 93% of them, while color and
texture features are only used for respectively 36% and
17% of the cases.

Concerning the computational time on this particular
example (Table I), we observe that soft ranking is slightly
faster than binary ranking. It is also interesting to note that
RankBoost is around 20 times faster than the hierarchical
SVM approaches.

2) TRECVID video corpus: We now consider the
TRECVID 2005 benchmark. In our setup, videos are
segmented into around 89’500 segments using the com-
mon shot reference [27]. These shots are considered as
individual and independent documents. This means that
no contextual information is taken into account and that
shot description is restricted to its audiovisual content (eg

TABLE I
COMPUTATIONAL TIME
(IN SECOND, INTEL XEON 2.80GHZ)

p+n SVM in F SVM in DP binary rkg soft rkg
20 0.46 0.36 0.009 0.01
30 0.80 0.68 0.028 0.024
60 2.95 2.75 0.17 0.12
100 9.43 9.23 0.56 0.52

visual, audio and speech1 information).
The Search Task, as defined in TRECVID-05, consists

in retrieving shots that are relevant to some predefined
queries (called topics). There are 24 topics concerning
people (person-X queries), objects (specific or generic),
locations, sports and combinations of the former. For
each topic, keywords, pictures and several video shots
(4-10) are provided as positive examples. Further details
about the Search Task may be found in [28]. During the
experiments, we only considered video shots as positive
examples. The positive examples are completed with ten

1the speech transcripts extracted by Automatic Speech Recognition
(ASR) are also available.
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negative examples randomly selected within the test set.
Starting with this initial query, a relevance feedback loop
is initiated by adding to the query up to 10 new positive
and negative examples returned in the 1000-entries hit-
list. The process is repeated ten times. Following the
TRECVID evaluation protocol, the performance was mea-
sured at each iteration by MAP at 1000. Additionally
to the algorithm performance, a baseline consisting of
retrieving randomly documents is always provided.

The multimodal features are derived from the six
following text and audiovisual descriptors:

- Color histogram, 4 × 4 × 4 bins in YCbCr space
- Motion vector histogram, 66 bins quantization of the

MPEG block motion vectors [29]
- Local features, SIFT descriptors extracted around the

Lowe salient points [30],
- Face detection [31],
- Word occurrence histogram (vector space model)

computed from ASR,
- Dominant audio features [32] extracted from the

audio stream.
The distance measures used are Euclidean for color and
motion histograms. An approximation of the minimal
matching distance is applied on local features to de-
termine partial similarities [33]. Euclidean distance in
the 30-dimensional eigenface space gives the similarity
between the detected faces. Cosine distance is used for
the vector space model and finally the audio similarity
measure proposed in [32] is used for audio features.

The fusion strategies remain the hierarchical RBF SVM
approach in feature spaces and dissimilarity spaces. For
feature space however, we adapt the RBF-kernel to the
distances used, kd(x, y) = e−

d(x,y)

2σ2 (it is worth noting
that kd is strictly a RBF-kernel when d is an Euclidean
distance). Optimal classifier parameters have been cross-
validated using the TRECVID development set.

MAP results are given in Figure 7.a. We compare
multimodal retrieval techniques with the best monomodal
search (hierarchical SVM in DASR

P ). The overall Rank-
Boost performance remains very close to the best retrieval
result provided by the hierarchical SVM in dissimilarity
space. Soft ranking and binary ranking have now similar
performance and the latter is even slightly better when
the training set becomes large. However in that case, the
soft ranking is around three times faster than the binary
ranking and ten times faster the SVM learning2 (Figure
7.b). This rapidity is explained by the fact that soft ranking
systematically selects less features than binary ranking to
produce the final ranking (Figure 7.c) and thus converges
faster and provides simpler retrieval models. In all cases,
the retrieval accuracy benefits from multimodal fusion and
largely outperforms the ASR-only search. On the contrary
to the Corel experiment, we observe now that the retrieval
models produced by RankBoost (soft ranking) are fully
multimodal. As shown in Figure 8, the modality usage,

2The computational complexity to learn the SVM in F and in DP is
equivalent. Only the computational time for SVM in DP is thus reported
in Figure 7.b

ie the frequency of the selection of each descriptor to
build the final ranking over the 24 queries, is almost
100% for every modality. This indicate that all multimodal
information sources are needed to fulfil the semantic level
required by the TRECVID queries.

VII. CONCLUSION

The preference space we introduced in this paper is
a degraded but lightweight representation of the original
feature space where all information relative to multimedia
content is stored. The preferences have the strong ad-
vantage to completely abstract multimodal content from
dimensionality and scaling issues, and thus to facilitate
fusion of heterogeneous descriptors. The challenge is
then how to implement retrieval algorithms in prefer-
ence space that are as effective as techniques based on
more traditional representations (eg feature space). The
RankBoost algorithm offers us a very convenient solution,
especially when considering the soft ranking function as
a weak ranking. The performance is very close to state of
the art SVM-based fusion algorithm operating in feature
or dissimilarity spaces. The algorithm is parameter free
and thus avoid any lengthy and hazardous parameters
estimation. Finally, RankBoost is really fast compared to
SVM-based approaches which is a crucial argument for
online retrieval systems.
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Fig. 7. Multimodal video retrieval using a Relevance Feedback strategy with a) Mean Average Precision, b) Computational time for Hard ranking
and soft ranking, c) percentage of ranking features selected by RankBoost, and d) modality usage for the 24 queries.
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