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Short-term emotion assessment in a recall 
paradigm 

Guillaume Chanel*, Joep Kierkels, Mohammad Soleymani, Thierry Pun 
Computer Science Departement – University of Geneva 

Route de Drize 7 
CH - 1227 Carouge, Switzerland 

Abstract 
The work presented in this paper aims at assessing human emotions using 
peripheral as well as electroencephalographic (EEG) physiological signals on short-
time periods. Three specific areas of the valence-arousal emotional space are 
defined, corresponding to negatively excited, positively excited, and calm-neutral 
states. An acquisition protocol based on the recall of past emotional life episodes has 
been designed to acquire data from both peripheral and EEG signals. Pattern 
classification is used to distinguish between the three areas of the valence-arousal 
space. The performance of several classifiers has been evaluated on ten participants 
and different feature sets: peripheral features, EEG time-frequency features, EEG 
pairwise mutual information features. Comparison of results obtained using either 
peripheral or EEG signals confirms the interest of using EEG’s to assess valence and 
arousal in emotion recall conditions. The obtained accuracy for the three emotional 
classes is 63% using EEG time-frequency features which is better than the results 
obtained from previous studies using EEG and similar classes. Fusion of the different 
feature sets at the decision level using a summation rule also showed to improve 
accuracy to 70%. Furthermore, the rejection of non confident samples finally led to a 
classification accuracy of 80% for the three classes. 
Keywords: emotion assessment and classification, affective computing, signal 
processing. 

1 Introduction 
Emotions are part of any natural communication between humans, generally as non-
verbal cues. Until recently affective communication was not implemented in human 
computer interfaces. Nowadays researchers in human-computer interaction (HCI) 
have recognized the importance of emotional aspects and started to include them in 
the design of new interfaces using one of two possible approaches, either as 
evaluation indicators or as components to be inserted in the human-computer loop. 
The first approach consist in using emotion assessment as a tool for evaluating 
attractiveness, appreciation and user experience of software (Hazlett and Benedek, 
2007). Such an assessment can be done by using different self-report methods 
(Isomursu et al., 2007) or by inferring emotional states from others measures such as 
physiological signals (Mandryk et al., 2006; Picard and Daily, 2005). 
The second approach aims at bringing the machine closer to the human by including 
emotional content in the communication and is known as affective computing (Picard, 
1997). According to Picard, affective computing “proposes to give computers the 
ability to recognize [and] express […] emotions”. Synthetic expression of emotions 
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can be achieved by enabling avatars or simpler agents to have facial expressions, 
different tones of voice, and empathic behaviours (Brave et al., 2005; Xu et al., 
2006). Detection of human emotions can be realized by monitoring facial expressions 
(Cohen et al., 2003; Cowie et al., 2001; Fasel and Luettin, 2003), speech (Cowie, 
2000; Ververidis and Kotropoulos, 2006) , postures (Coulson, 2004; Kapoor et al., 
2007) and physiological signals (see Section 2). Fusion of these different modalities 
to improve the recognition accuracy has also been studied (Kapoor et al., 2007; Kim 
et al., 2005; Pantic and Rothkrantz, 2003; Zeng et al., 2008).The present work 
focuses on the emotion assessment aspect, especially from different physiological 
signals. 
Fig. 1 presents a framework describing how emotion assessment could be integrated 
in human-computer interfaces. As proposed by Norman (1990) the interaction with a 
machine, from the point of view of the user, can be decomposed in execution / 
evaluation cycles. After identifying his/her goals, the user starts an execution stage. It 
consists in formulating his intentions, specifying the necessary sequence of actions 
and executing those actions. Next, the computer executes the given commands and 
output results through the available modalities. The second stage is the evaluation 
which is realized by: perceiving computer outputs, interpreting them and evaluating 
the outcome (i.e. are the goals satisfied?). 

<Figure 1> 
According to the cognitive theory of emotions, emotions are issued from a cognitive 
process called appraisal that evaluates a stimulus according to several criteria such 
as goal relevance and consequences of the event (Cornelius, 1996; Sander et al., 
2005; Scherer, 2001). For this reason, an emotional evaluation step, corresponding 
to the appraisal process, was added in Fig. 1 at the evaluation stage. Elicitation of 
emotions is known to be related to changes in several components of the organism 
such as physiological, motor and behavioral components (Scherer, 2001). It is thus 
possible to consider those changes as emotional cues that can be used to 
automatically detect the elicited emotion after being recorded by the adequate 
sensors. For this purpose it is necessary to extract features of interest from the 
recorded signals and perform classification using previously trained models from data 
including the associated emotion. The detected emotion can then be used to adapt 
the interaction by modifying command execution. The information presented on the 
output modalities can also directly be influenced by the emotional adaptation, for 
instance by synthesizing an emotional response on screens and speakers. 
Several applications can be derived from this framework, some of them going beyond 
human-computer interfaces to reach human-machine interfaces in general and even 
human-human interfaces. In gaming, emotion assessment can be used for better 
understanding of the playing conditions that lead to emotional activation (Mandryk 
and Atkins, 2007) and for maintaining involvement of a player by adapting game 
difficulty or content (Chanel et al., 2008; Chen, 2007; Rani et al., 2005). Learning in a 
computer mediated environment can elicit various types of feeling that are currently 
not handled. Detection of frustration for instance, if followed by proper adaptation of 
the learning strategy (Choi et al., 2007; Kapoor et al., 2007), will certainly help to 
maintain learner’s interest. Identification of critical states, such as stress, panic, and 
boredom, can be very useful in situations such as driving or when performing 
dangerous operations (Benoit et al., 2006; Healey, 2000). Another possible 
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application is the use of emotion recognition to help severely disabled persons 
express their feeling. 
In addition to the cognitive theory, several theories of emotions have developed over 
the past century (Cornelius, 1996). These different views gave rise to different 
models of emotions. The most famous models are the basic emotions (Ekman et al., 
1987) and the valence-arousal space (Russell, 1980). Basic emotions are defined as 
the emotions that are common across cultures and selected by nature because of 
their high survival functions. The valence-arousal space allows for a continuous 
representation of emotions on two axes: valence, ranging from unpleasant to 
pleasant, and arousal, ranging from calm to excited. 
As stated before, there is extensive literature regarding emotion assessment from 
speech and facial expressions. However these two modalities suffer from several 
disadvantages. Firstly, they are not always available: the user may not look at the 
camera or speak all the time. Secondly, they do not always reflect the true emotional 
state of the user, since facial and voice expressions are often faked because of 
social rules or by deliberate choice. Finally, they should be regarded as the output of 
the emotional process, meaning that the emotion could have been elicited prior to the 
speech or expression. 
An alternative is to use physiological signals both from the central and peripheral 
system. The Jamesian theory (Cornelius, 1996) emphasizes the importance of 
peripheral signals as it suggests there is some specific pattern of physiology for each 
particular emotion. Even though this statement is often disputed in the psychology 
literature (Stemmler et al., 2001) and the cognitive theory suggest that physiological 
signals are also an output of the emotional process, several studies from human 
computer interaction have shown the usefulness of peripheral activity for emotion 
assessment in diverse conditions (see Section 2.1). Those studies mainly use signals 
duration of the order of the minute to obtain accurate emotion assessment, however 
shorter durations are necessary for real time applications. The cognitive theory 
stresses the importance of the central nervous system i.e. the brain. It has been 
shown that correlates of emotions can be observed from brain activity, especially in 
the pre-frontal cortex and the amygdala (Adolphs et al., 2003; Damasio et al., 2000; 
Davidson, 2003; Davidson et al., 2000; Rolls, 2000). Brain activity can be measured 
using several techniques such as Electroencephalography (EEG) and others. Since it 
is the least intrusive and comparatively cheap, EEG is certainly one of the most 
usable modality for real and everyday applications. Brain activity can also be useful 
for short term emotion assessment since activity related to an emotional stimulus 
should occur shortly after the stimulus onset. Despite of this, the few studies trying to 
use EEG signals for emotion assessment did not obtain convincing results. 
The objective of this study is to investigate the use of EEG modality, peripheral 
modality and fusion of these two for emotion assessment on short time periods. This 
work will thus focus on the red parts of Fig. 1. Previous studies related to emotion 
assessment from physiological signals and novelties of the present study are detailed 
in Section 2. A protocol based on the recall of past emotional episodes was used to 
reliably induce emotions from three areas of the valence-arousal space. This protocol 
was used instead of a real HCI framework because it allows for better control over 
when an emotional episode starts (timing) and over the strength and valence of the 
recalled emotion (content). The protocol, the signal acquisition system and the 
algorithms developed to extract different feature sets from the recorded signals are 
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presented in Section 3. To estimate underlying emotions from the computed feature 
sets, various pattern recognition techniques were applied (Section 4). Finally results 
are discussed in Section 5. 

2 Emotion assessment from physiological signals 

2.1 State of the art 
Over the last years, emotion recognition from physiological signals has received 
much interest. Table 1 provides a (non exhaustive) list of relevant studies. 
Unfortunately, it is difficult to make comparisons between these studies because they 
differ on several criterions. Six criteria are introduced below to help the reader gain 
insight into the current state of the art as well as to discuss important aspects of 
emotion assessment from physiological signals. 

<Table 1> 
I. Number of participants: in a study that includes a high number of participants the 

results can be regarded as more significant. Another point of importance is to know 
if the model obtained for emotion identification is user-specific or not. In the first 
case, a new model will have to be generated for each new user. 

II. Emotion elicitation: Picard et al. (2001) divided emotion elicitation approaches in 
two categories: subject-elicited and event-elicited. In the first category, emotions 
can be generated by asking the participant to act as if he/she was feeling a 
particular emotion (for instance by mimicking the facial expression of anger) or to 
remember past emotional episodes of his/her life. This method has been often used 
in facial expression recognition and it has been shown by Ekman et al. (1983) that 
this method is effective to induce specific peripheral activity. In the second 
category, it is possible to use images, sounds, video clips or any emotionally 
evocative stimuli. There already exist stimuli databases that have been designed 
for the purpose of emotion elicitation such as the International Affective Picture or 
Digitized Sound System (IAPS, IADS)(Lang et al., 2005). These databases are 
generally accompanied by affective evaluations from experts or average judgments 
of several people. However, Chanel et al. (2006) found that for the purpose of 
emotion assessment, even in the presence of predefined evaluation labels, it is 
important to use label based on self-assessments from the participant since the 
actually felt emotion can strongly differ from the expected one, depending on a 
subject’s past experience. Emotion elicitation is also influenced by the number and 
the complexity of the targeted emotions. 

III. Time: the duration of an affective phenomenon can be used to define time 
categories that range from the “full blown emotions”, lasting for some seconds or 
minutes, to the traits, lasting for years if not all the lifetime (Cowie et al., 2001). In 
between are categories such as moods or emotional disorders. In human computer 
interaction, most of the applications under consideration deal with what Cowie et al. 
(2001) define as “full blown emotions” thus managing phenomena that last from 
seconds to minutes. In an ideal affective interface, the emotion of the user should 
be detected as soon as possible (let’s say in few seconds) in order to take the 
proper decision that directly matches the user expectation and not one that was 
expected minutes before. Synchronization of the different modalities is also an 
issue since the activation of physiological outputs can occur at different times after 
the stimulus onset. For instance, a change in temperature of the skin is much 
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slower than a change in brain activity that occurs few milliseconds after emotion 
elicitation. 

IV. Sensors / modalities: various sensors can be used to measure physiological 
activity. Most of the devices used in modern research observe the peripheral 
nervous system activity by measuring sudation, blood pressure, heart rate, 
respiration and intensity of muscles contraction. Sudation can be inferred using 
GSR (Galvanic Skin Response), SCR (Skin Conductance Response) or EDR 
(ElectroDermal Response) sensors that measure the resistance (or the 
conductance) of the skin. There are two main ways to measure blood pressure: by 
using a plethysmograph (continuous relative value) or an inflatable cuff (discrete 
scaled value). Heart rate can also be computed from the continuous monitoring of 
blood pressure using plethysmography or by using an electrocardiogram (ECG). 
Respiration is generally measured using a respiration belt that measure thoracic 
expansion. It is also possible to use more complex apparatus to infer inspired and 
expired volume of air and CO2. Finally, electromyograms provide a way to measure 
muscle contractions.  
For usage in HCI applications, the activity of the central nervous system can be 
recorded by two main devices. EEGs are measured by electrodes that register the 
electrical potentials at the surface of the head skin due to neuronal activity. 
Functional Near-Infrared Spectroscopy (fNIRS) detects the light that travels through 
the cortex tissues and is used to monitor levels of oxygenated and deoxygenated 
blood that follow changes in brain activity. 
Sensors used for emotion assessment should be chosen carefully so that they do 
not disturb the user. Firstly, sensors should not be uncomfortable for the user in 
order to avoid undesired emotions such as pain and frustration. Secondly, they 
should not prevent the use of usual modalities, such as keyboards or mice, for 
instance by monopolizing the hands of the user. 
In our view, a modality can be defined as a form of communication, it thus involve 
both information transfer and interpretation of the information. When physiological 
sensors are used for affective computing they switch from the standard status of 
sensors, which only monitor and record a physiological activity, to the concept of 
modalities that interpret the physiological signals as an emotional information 
usable by the system for interaction. It is then necessary to merge these modalities 
to perform emotions assessment in a reliable way, taking into account redundant 
and complementary information such as the relation that exists between heart rate 
variability and respiration (Bailón et al., 2007; Pelzer et al., 1994). 

V. Emotion models / classes: frequently used models are sets of discrete emotions 
like Ekman’s six basic emotions (Ekman et al., 1987), and the valence-arousal 
space (Russell, 1980). Basic or discrete emotions have been widely used in 
literature, mainly because they are intuitive and are known to have a significant 
correlation with facial muscle activity. However, one can question the usability of 
some emotion labels depending on the task one wants to perform. For instance, the 
disgust state can be relevant to infer reactions from movies while it is generally 
useless in more classical human-machine interaction. Moreover, the emotion felt is 
often a mixture of several basic emotions yielding a more complex representation 
using probabilistic, fuzzy or multi-labels models (Devillers et al., 2005). As an 
alternative to discrete emotions, the valence-arousal model has the advantages of 
being continuous, which better represents the strength of an emotion, as well as 
more general in the sense that many applications can use the valence-arousal 
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space to keep the user away from negative emotional states and favor the 
inducement of positive feelings. It is also possible to project the more intuitive labels 
of emotion such as fear or joy to points or areas in this space. One drawback of this 
continuous model is that different labels of emotions are sometimes very close to 
each other when projected into the valence and arousal space. For instance, fear 
and anger are both negative-excited emotions. In this case it is possible to add a 
third dimension, generally called dominance (control over the situation) (Russell, 
1980), that helps to distinguish between these emotional states. 

VI. Methods: a wide range of methods has been used to infer affective states. Most of 
them are part of machine learning and pattern recognition fields. Classifiers like k-
Nearest Neighbors (KNN), Functional Discriminant Analysis (FDA), neural 
networks, Support Vector Machines (SVM’s), Relevance Vector Machines (RVM's) 
and others (Bishop, 2006) are useful to detect emotional classes of interest (Table 
1). Regression techniques can also be used to obtain continuous estimation of 
emotions (Soleymani et al., 2008). Prior to inferring emotional states it is important 
to define some physiological features of interest. It is very challenging to find with 
certainty some features in physiological signals that always correlate with affective 
status of users. Those variables frequently differ from one user to another and they 
are also very sensitive to day to day variations as well as to the context of the 
emotion induction. To perform this selection researchers generally apply feature 
selection or projection algorithms like Sequential Floating Forward Search (SFFS) 
(Pudil et al., 1994) or Fisher projection (Duda et al., 2001). 

As can be seen from Table 1 there are large differences in classification accuracy 
even for studies that employ the same number of classes. Although this can be partly 
explained by the factors detailed above, we believe that such variations mostly result 
from: the differences in emotion elicitation strategy, the type of physiological signals 
(modalities) used, and the chosen model of emotions (or emotional classes).  
For emotions elicited by an event the best results obtained on more than three 
classes are those presented in (Lisetti and Nasoz, 2004) and (Wagner et al., 2005). 
One interesting point is that even though they use different stimuli (film clip versus 
music) they both use a method to control for the validity of the elicited emotions. In 
(Lisetti and Nasoz, 2004), the film clips presented were chosen according to the 
results obtained in a pilot study. In this pilot study, several participants were asked to 
evaluate clips by stating the emotion they felt as well as its intensity. In (Wagner et 
al., 2005), who worked with the Augsburger Database of Biosignals (AuDB), the 
participants where asked to freely choose music that matches the desired emotions. 
Both of these methods ensure that emotions felt during the experiment are intense 
and correspond to the expected ones. The good results obtained in (Picard et al., 
2001) using a self induction protocol also tend to confirm the importance of reliable 
elicitation. In this study, the participant was the experimenter herself so that emotions 
to be induced were perfectly clear to her. Moreover, the participant remembered past 
emotional episodes for emotion elicitation; this implies a strong intensity since 
remembered episodes generally are those that have induced intense feelings. 
Diverse types of physiological activity measurements from both the peripheral and 
the central nervous system have been used to assess emotions. Up to now, most of 
the studies using EEG's have shown unconvincing results (Chanel et al., 2006; 
Sakata et al., 2007) to infer emotional states from brain activity. One could conclude 
that EEG signals in the present state of the art are not effective for emotion 
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assessment; the present work however will argue against this. Describing the state of 
the art for emotion recognition based on peripheral signals is a real challenge 
because most studies performed classification on feature sets that include features 
from many types of signals, thus preventing analysis for single modalities. However, 
there are signals that are employed in nearly all studies, like GSR and heart rate 
(extracted from ECG or plethysmography). These two signals are known to correlate 
well with affective states (Ekman et al., 1983; Lang et al., 1993; Sinha et al., 1992). In 
many results it can also be seen that EMG signals are usable for emotion 
assessment (Rainville et al., 2006; Rani et al., 2006; Sinha and Parsons, 1996; van 
den Broek et al., 2006; Wagner et al., 2005). Generally, EMG electrodes are 
positioned to measure facial muscle activity like the venter frontalis (raising of eye-
brows), zygomatic (smiling) and the corrugator supercili (frowning of eyebrows). As 
for facial expression analysis, measuring facial activity is strongly relevant; however 
placing those sensors on the face is strongly invasive which could hamper their 
usage in a concrete application. 
One of the most evident observations that can be made from Table 1 is that different 
models of emotions lead to different classification accuracies. This is especially clear 
when comparing the basic-emotions model, which generally includes more than three 
categories, to emotions in the valence-arousal space model, including two or three 
categories. Thanks to the works of Wagner et al. (2005) and Picard et al. (2001), it is 
possible to compare results on valence-arousal classes to those obtained on basic 
emotions classes in an intra-study framework. As can be observed from (Table 1) the 
accuracies reported with the valence-arousal representation are similar to those 
reported with basic emotions. However since the number of classes is higher for 
basic emotion (4 to 8) than for valence-arousal classes (2), basic emotions can be 
considered as being better classified. Moreover, identification of valence classes is 
generally harder than identification of arousal classes (Table 1), which supports the 
idea that peripheral activity is better correlated with arousal than valence (Lang et al., 
1993). No clear differences can be observed in the number of classes or labels name 
for basic emotions. 

2.2 Toward emotional assessment using EEG 
Fairly recent psychological studies regarding the relations between emotions and the 
brain are uncovering the strong implication of cognitive processes in emotions 
(Adolphs et al., 2003; Damasio et al., 2000; Davidson, 2003; Davidson et al., 2000; 
Rolls, 2000). From the state of the art, it can however be observed that up to now few 
studies have investigated the usefulness of EEG for emotion assessment. From 
those studies only one (Chanel et al., 2007) proposed a self-induction method for 
emotion elicitation: recall of past emotional episodes. Apart from the advantages of 
self-induction paradigms detailed in Section 2.1, this method has the advantage of 
activating many brain areas because cognitive processes related to memory retrieval 
are located throughout the brain (Damasio et al., 2000; Smith et al., 2006). All those 
factors make this elicitation method a good candidate for emotion assessment from 
EEG and peripheral signals. The current paper is a significant extension of (Chanel 
et al., 2007) which was a preliminary study promising enough to warrant further work. 
In the present article, the methodological approach is extended to investigate the 
fusion of peripheral and central signals. Also, the number of participants in the 
experimental study has increased from 1 to 10.  



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 
  8 

EEG was mostly used for BCI’s (Brain Computer Interfaces) (Vaughan et al., 2003) 
where the goal is to provide an interface for disabled persons who cannot use 
standard muscular paths to communicate their intentions. Notice that because of the 
sensitivity of EEG sensors to noise and the fact that they often require gel to be 
applied on the surface of the skin, some researchers have avoided using them for 
others HCI applications. However, the success of BCI’s led to impressive progress in 
the development of new EEG sensors. For instance, the use of active electrodes 
(MettingVanRijn et al., 1996) combined with properly designed algorithm (Kierkels et 
al., 2006; Romero et al., 2008) can greatly reduce noise effects. New easier to use 
caps and dry electrodes are also being developed. Currently some lightweight and 
potentially mass market EEG systems start appearing at a modest price 
(http://www.emotiv.com/, http://www.neurosky.com/). Although such devices only 
have few sensors, they demonstrate that the use of EEG is no longer the domain of 
physicians and scientists. For those reasons, it is now legitimate to address the 
problem of emotion assessment based on EEG signals analysis. 
Another aspect that should be emphasized relates to the temporal dimension. Some 
peripheral variables require quite a long time to stabilize. For instance, heart rate 
variability should not be computed on epochs of less than a minute (Berntson et al., 
1997). In (Salahuddin et al., 2007) the authors analyzed the usability of heart rate 
variability on different time periods and concluded that 50 s of signals are necessary 
to accurately monitor mental stress in real settings. Apart from (Haag et al., 2004) 
and (Leon et al., 2007) there are no studies that try to use short term monitoring of 
emotions using only peripheral signals (studies where the time of a trial is not 
specified can be assumed as lasting for minutes considering that stimuli are music or 
film clips). However being able to perform emotion identification in only a few 
seconds is certainly critical to allow for real-time applications.  
Having in mind the previous considerations, the present study aims at investigating 
the usefulness of EEG and peripheral signals in a self-induction paradigm on short 
time segments of 8 s. In order to be as much application independent as possible, we 
used the valence arousal space as a prior model to define three emotional classes of 
interest that are calm-neutral, positive-excited and negative-excited. 

3 Data collection 

3.1 Acquisition protocol 
As can be seen from the state of the art, designing an adequate protocol for eliciting 
emotion and recording physiological signals is not an easy task. In (Picard et al., 
2001) five factors that can influence recordings were defined: subject-elicited vs. 
event-elicited, laboratory setting vs. real world, focus on expression vs. feeling of the 
emotion, openly-recorded vs. hidden recording and emotion-purpose vs. other-
purpose. The following protocol description addresses those five criterions as well as 
those emphasized in the precedent Section. 
In the present study a subject-elicited method, using recall of strong emotional 
episodes, is employed to elicit reliable and short time emotions. An episode is 
defined as a situation that lasted for a while and potentially containing several events 
and actions with the same emotional orientation. An example is the funeral of a 
relative including events such as moments of the ceremony and the burial. The 
elicited emotions are considered reliable because (i) thinking of the same episodes 
ought to produce similar reactions from one trial to another, (ii) emotional episodes 
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are often stored in memory because the emotions felt were quite intense,(iii) 
emotional recall is a cognitive task that induces EEG activity (Damasio et al., 2000; 
Smith et al., 2006) as well as modify peripheral activity (Rainville et al., 2006; Sinha 
et al., 1992). 
Compared to other studies (Lisetti and Nasoz, 2004; Picard et al., 2001; Wagner et 
al., 2005), where emotions are elicited and assessed over several minutes, the 
duration of an emotion epoch is merely 8 s. This epoch duration was chosen 
because it is the maximum duration that allows maintaining the total length of the 
protocol below one hour to avoid participant fatigue. Within the requirement of the 
one hour duration this epoch is maximized for three reasons. Firstly, some peripheral 
features need to be determined over a sufficiently long period of time in order to be 
reliably computed; this is for instance the case for statistical features extracted from 
heart rate. In general, an epoch of 8 s should suffice for this purpose if we exclude 
the very low frequency features such as low frequency heart rate variability (Berntson 
et al., 1997). Secondly, recalling past episodes and eliciting the corresponding 
emotions are difficult tasks and participants might need a few seconds to accomplish 
them. Thirdly, the reaction time of peripheral activity from the moment where the 
emotion is elicited is of several seconds, with the GSR being the slowest response 
with a lag around 3-4 seconds. 
The 11 participants (7 males, 4 females) who took part in the study were aged from 
26 to 40. One week before the recording, participants were told to retrieve from their 
memory one excited-positive and one excited-negative episode that had occurred in 
their life and that they consider as being most powerful. On the day of the 
experiment, each participant was given a consent form where the context, the goal 
and a short explanation of the experiment were provided. Participants had to sign this 
consent form to continue further and could stop the experiment whenever they 
wanted. After signing the consent form, sensors were attached to the participant who 
was seated in front of a computer screen. A precise description of the protocol was 
provided with a support demonstration. This corresponds to Picard’s criteria for an 
open-recording (participants knew they were recorded), emotion-purpose 
(participants new the objective of the study), and laboratory settings (participant are 
recorded in a controlled environment). 
The complete recording session was divided into trials. During each trial participants 
had to accomplish a particular task according to the visual cue displayed on the 
monitor after a random duration display of a dark screen (Fig. 2). This task could be 
to self-generate one of the two excited emotions by using the past emotional 
episodes of their life as a support, or to stay calm and relax in order to define a third 
emotional state called calm-neutral. A total of T = 300 trials (100 trials per emotional 
state) were performed in a random order. Since facial muscle artifacts can 
contaminate EEG signals, participants were encouraged not to express their feelings 
through facial expressions, not to blink, and not to close their eyes during the 8 s of 
recordings (despite this some involuntary facial expressions artifacts can still remain 
in the signals). Emphasis was thus put on the feeling of emotions rather than on the 
cognitive task of remembering and on the motor expressions of emotions. A resting 
period of unlimited duration to relax and stretch muscles was proposed to 
participants after each block of 30 trials. As can be seen from Fig. 2, the chosen 
emotional states do not cover all areas of the valence-arousal space, especially in 
the bottom half of the space. This choice was made because there are actually few 
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emotions that are calm-negative or calm-positive (Hanjalic and Xu, 2005; Lang et al., 
2005). 

<Figure 2> 
Data were recorded using the Biosemi Active II system (http//www.biosemi.com). 
EEG signals were recorded using 64 surface electrodes positioned according to the 
10-10 system. Plugged on the same system to simplify synchronization, other 
sensors were used to record peripheral activity: a GSR (Galvanic Skin Response) 
sensor to evaluate sudation, a respiration belt to record abdominal expansion and a 
plethysmograph to measure blood pressure. Both EEG and peripheral signals were 
sampled at 1024 Hz. GSR electrodes were positioned on the tops of the middle 
finger and index finger of the same hand, the respiration belt was tied around the 
participant abdomen and the plethysmograph was clipped on the thumb. Even if 
currently the placement of those sensors is quite invasive because they prohibit the 
use of one hand, the wireless and wearable sensors of the future will help increase 
user comfort. Moreover, since heart rate can be computed from the continuous 
monitoring of blood pressure, the use of a plethysmograph sensor avoids having to 
use an ECG sensor. 
After data acquisition, participants were asked to report on their experiences in an 
informal interview. Participants were not asked to provide a detailed description of 
the chosen episodes because we believe that for personal and ethical reasons a 
participant may hesitate to refer to his/her strongest emotional experiences. For this 
reason the differences in the cognitive tasks between different trials could not be fully 
controlled, however, as argued in (Damasio et al., 2000) the known effectiveness of 
mental imagery as an elicitator of powerful emotions can compensate this problem. 
The present protocol for off-line acquisition of physiological signals is very close to 
those encountered in the BCI community so that the conclusions drawn from this 
paper may also have some impact in this direction. An emotion elicitation task can 
then be regarded as a mental task that the user tries to perform in order to 
communicate his or her feelings. This can be useful for severely disabled people that 
cannot directly express their emotions. Current BCI paradigms (Kronegg et al., 2007; 
Lotte et al., 2007; Vaughan et al., 2003) aim to detect brain activity that corresponds 
to complex tasks (mental calculus, imagination of finger taping, etc.) not related to 
the objective of the user (moving a mouse cursor, choosing a letter, etc.). Generally 
the user needs training before using such systems. In case the objective of the user 
is to express an emotion, classical BCI tasks (e.g., imagination of finger tapping) 
seem to be really far from this objective and it is more appropriate to use tasks such 
as the remembering of a similar emotional episode. 

3.2 Features extraction 
This Section describes three feature sets computed to represent physiological 
activity; one for the peripheral signals and two others for EEG signals. Since emotion 
assessment will be performed for each participant separately no baseline was 
computed to normalize participant physiological signals. Each feature is computed for 
all trials and for all participants. 

3.2.1 Peripheral features 
Several features extracted from physiological signals have been shown to be related 
to emotional activity (Lisetti and Nasoz, 2004) and their effectiveness is now fully 
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demonstrated as explained in Section 2.1. The current study used the following 
peripheral signals: GSR, blood pressure and chest cavity expansion. All signals were 
first filtered by a moving average filter to remove noise. For this purpose we used 
filters of length 512 samples for GSR, 128 for blood pressure, and 256 for respiration. 
Those different lengths were chosen to remove high frequencies without corrupting 
oscillations of interest in the different signals. 
GSR provides a measure of the resistance of the skin (electrodermal activity) by 
positioning two electrodes on the tops of two fingers. The resistance decreases due 
to an increase of activity in sweat glands, which usually occurs when one is 
experiencing emotions such as stress or surprise. The resistance then slowly returns 
to its baseline level. This decrease in resistance generally occurs 3 to 4 s after 
stimulus onset and can be characterized by its amplitude and its duration. In (Lang et 
al., 1993) the authors also discovered that the mean value of the GSR is related to 
the level of arousal. The features extracted from electrodermal activity are presented 
in Table 2 and were designed to represents the characteristics of the GSR activity. 
A plethysmograph is a device that uses infrared light to measure tissues blood 
volume, thus providing a continuous monitoring of relative blood pressure. Since 
heart pulses expand and contract the microvasculature, it is also possible to compute 
the heart rate from the plethysmograph signal. A method to determine heart rate from 
a blood volume pressure signal is proposed in (Aboy et al., 2005). However this 
method is based on a complex analysis that requires recordings of long duration. 
Since in this study the duration of a trial is 8 s, an alternative approach is proposed. 
Heart peaks were assumed to be the local maxima of the signal which were obtained 
by finding samples were the derivative is zero and the amplitude is switching from an 
increase to a decrease. If two peaks fall in the same interval of 0.5 s then only the 
peak with the highest amplitude is kept. This interval is chosen based on the 
assumption that the heart rate will not exceed 120 beats per minutes (BPM) which is 
somehow reasonable since the participant is sitting in front of a computer screen 
without performing significant physical activity. Blood pressure and heart rate 
variability are variables that have significant correlation with defensive reactions 
(Healey, 2000) and pleasantness of stimuli (Lang et al., 1993). Sinha et al. (1992) 
refers to the increase of blood pressure during fear and anger as one of the most 
consistent findings in emotion research from autonomic activity. Rainville et al. (2006) 
observed an increase in heart rate for many basic emotions. The features used to 
represent heart rate and blood pressure signals are listed in Table 2. 
The respiration signal is obtained by a belt that measures the expansion of the 
abdomen related to the quantity of inspired and expired air. Respiration rate ranges 
from 0.1Hz to 0.35 Hz at rest, while it can reach 0.7Hz during exercise, but in the 
case of measuring respiration with a belt, irregular respiration leads to appearance of 
energy in higher frequencies. Slow respiration is linked to relaxation while irregular 
rhythm, quick variations, and cessation of respiration correspond to more aroused 
emotions like anger or fear (Kim, 2004; Rainville et al., 2006). Laughing is known to 
affect the respiration pattern by introducing high-frequency fluctuations of the 
recorded signal. To capture those fluctuations, features from both the frequency and 
time domain are therefore used. Features of the frequency domain are obtained by 
computing the Fast Fourier Transform (FFT) of the original signal and of a selection 
of frequency bands of interest. A list of both temporal and frequency features can be 
found in Table 2. 
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<Table 2> 

3.2.2 EEG features 
As explained in Section 1, the cognitive theory of emotions provides a strong 
motivation to go toward emotion assessment using signals from the central nervous 
system. Several researchers have shown the implication of brain structures in 
emotional processes by analyzing emotional impairment after a brain traumatism and 
brain activity in controlled conditions. The two main areas of the brain that relate to 
emotional activity are the pre-frontal cortex and the amygdala (Davidson et al., 2000). 
From the study of pre-frontal EEG alpha waves Davidson (2003) demonstrated the 
lateralization of this area, with a higher brain activity in the right hemisphere for 
negative or withdrawal stimuli and the opposite pattern for positive or approach 
stimuli. Amygdala activation seems to be more related to negative emotions, such as 
fear. There is currently no consensus about a possible lateralization of the amygdala 
and its involvement in positive emotions. These brain regions are certainly not the 
only ones involved in emotional processes. For instance, Aftanas et al. (2004) 
reported differences in Event Related Desynchronization / Synchronization 
(ERD/ERS) during the visualization of more or less arousing images. Those 
differences were observed in theta bands for the parietal and occipital areas, alpha 
bands for the frontal areas and gamma bands for the complete scalp. Concerning the 
particular case of the recall paradigm, Smith et al. (2006) showed an augmentation of 
activity in the connections between the hippocampus and the amygdala during the 
recollection of negative events compared to neutral events, while Damasio et al. 
(2000) found activation of many cortical areas during the feeling of self-generated 
emotions. 
For the current study, it is hard to predict which brain areas are supposed to be 
activated since this strongly depends on the memories the participant used to relive 
the emotion. For instance, memories of a rather auditory nature will activate the 
auditory cortex while visual memories will activate the occipital cortex. Moreover, as 
the structures involved in recollection of events are deep in the brain and hard to 
precisely capture using EEG electrodes, two widely applicable feature extractions 
methods were chosen. One assisted in the computation of power features for all 
electrodes within limited frequency bands, while the other focused on the common 
information contained in each pair of electrodes. Prior to extracting these features 
from EEG data, noise needs to be removed by pre-processing the signals. 
Environment noise and drifts were removed by applying a 4-45Hz bandpass filter 
while other noises were considered as non-significant. The second step was to re-
reference all electrode signals to a Laplacian reference. 
Once EEG signals were pre-processed, the first set of EEG features was extracted 
by computing the Short-Time Fourier Transform (STFT) for each electrode with a 
sliding window of 512 samples and 50% overlap between two consecutive windows. 
For each of the 64 spectrograms (one per electrode), we selected 9 frequency bands 
ranging from 4Hz to 22Hz (�f = 2Hz); this was done according to psycho-
physiological literature (Aftanas et al., 2004; Davidson, 2003). The total number of 
features extracted by this method is 16704 (64 electrodes x 9 frequency bands x 29 
time frames). 
For the second set of features, mutual information (MI) between pairs of electrodes is 
proposed as a measure of statistical dependencies between different areas of the 
brain. This set of features was motivated by studies that demonstrated 
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synchronization of brains areas in emotional processes (Ansari-Asl et al., 2007; 
Grandjean et al., 2008). With the assumption that the signal of electrode i for a given 
trial is a stochastic process with probability mass function P(Xi) then the mutual 
information between electrodes i and j for this trial is expressed as: 
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where H(Xi) and H(Xi | Xj) are respectively the entropy and conditional entropy of 
random variables Xi and Xj. Mutual information was computed using Moddemeijer’s 
matlab toolbox (Moddemeijer, 1989)(available at http://www.cs.rug.nl/~rudy/matlab/) 
that estimates the different distributions based on histograms and automatically 
determines the appropriate bin size. The MI feature vector MIf  of this trial is then 
constructed by concatenation of mutual informations between each pairs of 
electrodes: 
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The total number of features of a trial for M=64 electrodes is then:
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4 Methods 
This section presents the methods used to assess emotions from the recorded 
physiological signals, to fuse the different set of features and to improve on the 
classification accuracy by rejecting samples having low confidence value. 

4.1 Classification 
Since each recorded trial corresponds to a particular emotional state, it is easy to 
formulate a classification task (called CPN for "calm", "positive", "negative") where 
the three ground-truth classes �c, �p, �n correspond to calm-neutral, positive-excited 
and negative-excited patterns. A target class vector YCPN = [y1…,yi,…,yT]T is 
constructed, where yi � { �c, �p, �n } represents the class of the trial i. We also 
address other classification tasks by constructing different target vectors to 
distinguish between the following emotional states: negative excited vs. positive-
excited (NP), calm-neutral vs. positive-excited (CP), calm-neutral vs. negative excited 
(CN), calm vs. excited (CE) by regrouping samples of the positive-excited and 
negative-excited states.  
As summarized in Fig. 3, there are three sets of features, FPeriph

, FSTFT and FMI that 
contain respectively peripheral features, STFT EEG features and MI EEG features 
for all trials. Those feature sets are associated with the class vectors YCPN, YNP, YCP, 
YCN and YCE, depending on the classification task to address. Notice that FSTFT and 
FMI are high-dimensional features spaces which is a problem for real applications 
where time and storage issues are of importance. However, the current study 
focuses on the improvement of the classification accuracy. The issue of reducing the 
dimensionality of the problem was addressed in (Chanel et al., 2007) where it was 
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shown that feature selection does not clearly improve results of the best classifier. 
Only linear classifiers are applied on those two feature sets since there is always a 
linear boundary that can completely separate training samples of the different 
classes and linear classifiers solutions are well regularized so that they give better 
generalized solutions. 

<Figure 3> 
In the present study, different classifiers were trained on the three feature sets to 
recover the ground truth classes. Then the best classifier was chosen for each 
feature set for later fusion (see Section 4.2). To evaluate the accuracy of each 
classifier, a leave-one-out strategy was chosen. This involves using each feature 
vector in turn as the test set and the remaining ones as the learning set. At each 
step, a classifier is trained from the learning set and then applied to the test sample. 
This leave-one-out strategy was chosen since it provides the maximum possible size 
of the learning set. This is preferable in this problem because the number of samples 
(T=300) is very low compared to the size of the EEG feature spaces. 

4.1.1 Discriminant analysis 
Two discriminant analysis methods, namely the linear discriminant analysis (LDA) 
and the Quadratic discriminant analysis (QDA) are used in this paper. Both are 
based on the Bayes rule to find the class with the highest posterior probability P(�i | f) 
(Duda et al., 2001). Under the assumption that the conditional distributions P(f | �i) 
are Gaussians with different means μi and covariance matrices �i this rule 
automatically defines a quadratic decision boundary (hence the name QDA for the 
associated classifier ):  

1 1

( | ). ( ) . ( )( | )
( | ). ( ) . ( )

i i i i
i C C

i i i i
i i

P P PP
P P P

ω ω ωω
ω ω ω

= =

= =
� �

f f � �f
f f � �

i

i

( | , )

( | , )

N
N

 

Vectors μi and matrices �i are computed from the learning set. In the case where 
,i j i j= ∀ ≠� �  the boundary becomes linear, yielding an LDA classifier. With the 

LDA it is sufficient to compute a single covariance matrix � from the complete 
learning set without distinction between classes. 
Here the prior probability P(�i) was defined as 1/K where K is the number of classes. 
Due to the high number of EEG features and low number of samples, discriminant 
analysis can fall in the singularity problem. In this case we used the diagonalized 
version where covariance matrices are assumed to be diagonal, containing the 
variances of all features. The Matlab statistics toolbox (v. 5.0.1) implementation of 
those algorithms was used in this study. 

4.1.2 Support Vector Machines (SVM’s) 
A SVM is a two class maximum margin classifiers that tries to maximize the distance 
between the decision surface and the nearest point to this surface as well as to 
minimize the error on the training set. SVM's minimize an upper bound on the 
expected risk rather than only the error on the training data, thus enabling good 
generalization as well as interesting performance in high dimensional feature spaces 
(Chanel et al., 2007; Hua et al., 2005). Here, both linear and radial basis function 
(RBF) kernels are used. In the case of RBF kernels, the size of the kernel is chosen 
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based on the results of 5-fold cross-validation procedures with values ranging from 
5.10-3 to 0.5 with step 5.10-3. The C parameter that regulates the tradeoff between 
error minimization and margin maximization is empirically set to 1. 
There are two drawbacks to the use of SVM’s as classifiers: they are intrinsically only 
two-class classifiers and their output is uncalibrated so that it is not directly usable as 
a confidence value in the case one wants to combine outputs of different classifiers 
or modalities. In this study the first point was addressed by using the one versus all 
approach where N classifiers are trained for each class and the final choice is done 
by majority voting. For the second point, Platt (2000) proposes to model the 
probability of being in one of the two classes knowing the output value of the SVM by 
using a sigmoid fit, while Wu et al. (2004) proposes a solution to extend this idea to 
multiple classes. The libSVM (Chang and Lin, 2001) Matlab toolbox was used as an 
implementation of these algorithms. 

4.1.3 Relevance Vector Machines (RVM’s) 
RVM’s (Tipping, 2001) are algorithms that have the same functional form as SVM's 
but embedded in a Bayesian learning framework. They have shown to provide results 
similar to SVM's with generally sparser solutions. They have the advantage that they 
directly give an estimation of the posterior probability of having class �i. 
RVM’s try to maximize the likelihood function of the training set using a linear model 
including kernels. The main difference with more classical probabilistic discriminative 
models is that a different prior is applied on each weight thus leading to sparse 
solutions that should generalize well. In this paper, the multiclass RVM version 
presented in (Zhang and Malik, 2005) was used. 

4.2 Fusion and ambiguity rejection 
The interest of fusing peripheral and EEG features for emotion assessment was 
shown in (Chanel et al., 2006) through a simple concatenation of feature sets. The 
fusion of different EEG features is also known to improve results for EEG signals 
classification (Blankertz et al., 2003; Lotte et al., 2007). In a classification problem, 
fusion can be applied at the sensor level to raw acquired data, at the feature level, at 
the classifier level, and at the decision level by combining the output of classifiers 
(Sanderson and Paliwal, 2004). 
This paper focuses on the fusion at the decision level. More specifically, accuracies 
of several classifiers are evaluated on the feature sets FPeriph, FSTFT and FMI. For each 
of those feature sets, the classifier with the best accuracy is selected so that we 
obtain three best classifiers named qPeriph, qSTFT and qMI. The final decision is then 
made by combining the decisions of two or all of those classifiers. 
If the classifiers output some confidence measures on their decision, combining 
decisions of classifiers can be done using summation rules and product rules. In this 
work, the probabilistic outputs of classifiers are used as a measure of confidence. 
The sum rule is thus defined as follow for a given trial: 
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where Q is the ensemble of the classifiers chosen for fusion, |Q| the number of such 
classifiers and Pq(�i | f) is the posterior probability of having class �i according to 
classifier q. The final choice is done by selecting the class �i with the highest gi. It 
can be observed that gi can also be viewed as a confidence measure on the class 
given by the fusion of classifiers. 
As a final step, rejection of trials that have a confidence value gi below a threshold � 
was performed to improve classification accuracy. When a sample is rejected 
because the confidence value is not sufficiently high, the sample is not classified and 
the classification accuracy is computed only on the samples with high confidence. 
The percentage of rejected samples as well as the accuracy computed on the 
remaining samples thus become of function of the � threshold. A good value for � 
would be one that provides a compromise between accuracy maximization and 
rejection rate minimization. The proper value for this parameter will be discussed in 
Section 5.2.2. 

5 Results and discussion 
This chapter reports and discusses the classification accuracies obtained for emotion 
assessment. Section 5.1 details participants’ reports and explains why the protocol is 
considered to be successful in eliciting emotions. Section 5.2 reports the accuracies 
obtained for each combination of classifier and feature set. Those results are then 
used to associate the optimal classifier to each feature set for later fusion. Finally, 
Section 5.3 shows the positive effects of fusion and rejection of samples having a low 
confidence value. 

5.1 Participants reports and protocol validation 
Out of the 11 recorded participants 10 reported a successful elicitation of the 
emotions by recalling emotional episodes. As can be seen from Fig. 6, which 
represents the average accuracies obtained from the 10 participant cited above, the 
peripheral activity is useful to distinguish between different classes of emotions. This 
implies that different patterns of physiological activity where induced for each 
emotional task and thus supports the idea that emotions were successfully elicited. 
However, all participants reported that it was really difficult to stay concentrated 
throughout the entire recording. A recurring observation was also that switching from 
one emotion to another very quickly was sometimes confusing and hard to 
accomplish. The effects of such observations can be missing trials where the 
participants did not accomplish the requested task, the elicitation of the undesired 
boredom emotion which can interfere with positive and negative excited trials, and 
noisy EEG signals due to fatigue. 
In the protocol presented in Section 3.1 brain activity can be induced by two cognitive 
components: the actual events of the episode (for instance thinking of someone 
crying) and the emotion elicitation following the event. Since our aim is to detect 
emotions, it is important to control that the events used to induce emotions were not 
always the same to ensure that what is detected from brain signals is the emotion 
and not the cognitive task related to the event (for instance mental imagery of the act 
of crying). Since participants did not report about the episodes they used to induce 
emotions it is difficult to control for this, however the following remarks lead us to 
assume the protocol is valid: 
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- two participants reported that they thought of different episodes within the same 
category (ie. positive-excited and negative-excited). The classification accuracy 
obtained from the signals of one of those two participants actually corresponds to 
the best results across the 10 participants. The other one obtained average 
accuracies; 

- one participant reported that he thought to the episodes without concentrating on 
the feeling of emotions which resulted in a weak emotion elicitation. All the 
accuracies computed from the signals of this participant are at the random level; 

- since an episode was defined as including several emotional events of the same 
category, it is unlikely that the participants always thought of the same event to 
elicit one of the emotions; 

- the participants were explicitly told to focus on the feeling of emotions and 
emotions were successfully elicited as stated above. 

Notice that the participant who did not concentrate on the feeling of emotions was 
removed for further analysis since he did not follow the protocol properly. 

5.2 Single modality results 
Figs. 4, 5, 6 respectively present the mean accuracy across participants for the STFT 
EEG features, the MI features and the peripheral features. The accuracies of 
different modalities and classifiers are compared below to answer the following 
questions: what is the effectiveness of EEG and peripheral features to assess 
emotions according to the different classification schemes and which classifiers 
should be used for latter fusion of feature sets. 

<Figure 4> 
<Figure 5> 
<Figure 6> 

STFT EEG features provided interesting results with a mean classification accuracy 
of 63% for three classes and a SVM classifier (the random level is at 33% accuracy). 
The best average accuracy for two classes is obtained from the CP classification task 
with nearly 80% of well classified trials (random level at 50%), followed by the CE 
and NP classification tasks with respectively 78% and 74% of accuracy. For all 
participants and all classification tasks, the results are higher than the random levels 
(33% for three classes and 50% for two classes). MI features seem to be a bit less 
suitable for emotion classification than STFT features with an approximate decrease 
of well classified trials of 2% to 4%, except for the NP classification task where a 
slight performance increase was noted. It is hard to compare those results to the 
state of the art because there are only few studies using EEG. In (Chanel et al., 
2006) the best accuracy on two and three arousal classes was respectively of 72% 
and 58%. In this study the highest accuracies for the CE and CPN classification tasks 
are respectively of 88% and 86.3%. The best result for a two class task is obtained 
on the NP task with 96% of accuracy. In (Sakata et al., 2007) an accuracy of 29% 
was obtained for 6 different emotional classes while the accuracy was of 42% for 
identification of 5 emotional states in (Takahashi, 2004). Our results are thus superior 
to the previous studies using the EEG modality for detecting emotions expressed in 
the valence-arousal space and in alignment with results obtained on emotional 
labels. 
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To check for the usability of this emotional protocol as a new BCI paradigm our 
results were compared to BCI accuracies. In (Guger et al., 2003) the authors showed 
that around 75% of the 99 untrained participants that took part in a two class BCI 
paradigm without feedback obtained accuracies between 60% and 79%. The 
distributions of the accuracies for our recall paradigm are similar; however more 
participants should be recorded to validate this statement. Our results are also far 
from those of more recent BCI studies where the accuracy can reach more than 90% 
for two classes for many untrained participants (Kronegg et al., 2007). This can be 
due to the definition of mental task that are chosen to activate well separated areas 
of the brain, contrary to the task definition used in this study. 
If the three Figs. 4, 5 and 6 are compared, it is obvious that the EEG features lead to 
better accuracy than peripheral features for all classification schemes. For peripheral 
features the LDA classifier is the best with an average accuracy of 51% for three 
classes and around 66% for two classes (except for the NP classification task with 
accuracy around 61%). Results ranged from nearly the random level up to around 
80% for two class formulations and from 37% up to 75% for three classes, showing 
the importance of this modality for at least one participant. However there is an 
exception, the CE classification task, where the LDA does not have the best 
accuracy. In this task the sparse kernel machines have better accuracies but they 
were sensitive to the unbalanced nature of this configuration with 200 samples 
belonging to the excited class and 100 samples belonging to the calm class. As can 
be seen from the confusion matrices of Table 3, sparse kernel machines tend to 
always assign the excited class to test samples. Those results where thus 
considered as irrelevant and the LDA classifier chosen as the most relevant classifier 
for fusion. 

<Table 3> 
Compared to the state of the art of emotion assessment from peripheral signals and 
time segments of similar duration our results are under those reported. In (Haag et 
al., 2004) 90% and 97% of accuracy was obtained using time windows of 2 s for 
valence and arousal assessment respectively. However the accuracy they report 
represents the number of samples from which the output of a neural network 
regressor falls in a 20% interval of the target value. Thus this accuracy cannot be 
directly compared to classification tasks. In (Leon et al., 2007) the classification 
strategy discriminated three emotional states (neutral, positive and negative) with an 
accuracy of 71% from 6 s signals. However this accuracy was obtained on only one 
participant after training the algorithm on 8 participants. To give an example of the 
variability of results that can be obtained from a participant to another, in our study 
results ranged from 40% for the worst participant to 81% for the best considering only 
the best classifier. However, the classification strategy used in (Leon et al., 2007) 
included a detection of signals corruption, which demonstrates the importance of 
such a procedure for correct emotion assessment. 
The large differences in accuracy between the EEG and peripheral features can be 
explained by two factors. Firstly, the protocol is based on a cognitive elicitation of 
emotions where participants are asked to remember past emotional episodes which 
ensures strong brain activities. Moreover, the emphasis was put on the internal 
feeling of emotions rather than on the expression of emotion that can help to induce 
peripheral reactions (Ekman et al., 1983). Secondly, the 8 s length of trials may be 
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too short for a complete activation of peripheral signals while it may be sufficient for 
EEG signals. 
For both EEG and peripheral features there is always high variability of results across 
the participants. For instance the accuracies ranged from 48% to 92% to classify 
emotions in three classes. This variability can be explained by the fact that the 
participants had more or less difficulty in accomplishing the requested tasks as 
reported during the interview. Another remark that holds for all feature sets is that the 
detection of arousal states is more accurate than the detection of valence sates. This 
is not surprising for peripheral activity since it is known to better correlate with the 
arousal axis than with the valence axis (Lang et al., 1993), and sheds some new light 
on the usability of EEG for the detection of arousal and valence. Notice that the 
standard deviation is lower for arousal identification then for all other combination of 
emotional states showing that arousal states are detected with more stability across 
participants. 
This study also allows comparing the performances of the different classifiers in the 
three feature spaces. For the peripheral feature set (Fig. 6), the classifiers have 
relatively similar accuracies except for the QDA which performs poorly compared to 
the others. Since this algorithm needs to compute a covariance matrix for each class, 
the low number of samples that are available for learning (around 100 per class) 
explains this result. The RBF SVM does not perform as well as the other classifiers 
for the two classes formulations, suggesting that those problems are linear by nature. 
For the high dimensional spaces of EEG features the LDA accuracy is always about 
10% below the results obtained by SVM classification. This confirms the 
effectiveness of SVM’s in high dimensional spaces (Hua et al., 2005). One of the 
goals of the present work was also to determine which of the RVM and probabilistic 
SVM would have the best accuracies in order to use the best algorithm for the 
purpose of fusion. As can be seen from Figs. 4 and 5, the probabilistic SVM performs 
as well as the standard SVM demonstrating the interest of such a classifier to 
perform fusion on the basis of standardized scores. The RVM classifier outperforms 
the LDA, showing its adequacy for high dimensional spaces but does not outperform 
the SVM. An explanation could be that RVM’s generally used less support vectors 
than SVM’s which is not desirable in those undersampled classification tasks where 
good generalization is hard to obtain. 

5.3 Fusion and rejection results 

5.3.1 Fusion 
Fusion of classifier decisions is done according to the explanation given in Section 
4.2. According to the obtained results, fusion was performed choosing probabilistic 
SVM as the classifiers for EEG features sets (qSTFT and qMI ), and the LDA as the 
classifier for the peripheral feature set (qPeriph ). 
Results from the fusion of MI and STFT EEG features as well as fusion of all EEG 
and peripheral features are presented in Fig. 7. As can be seen, combining EEG 
feature sets increased the best average accuracy by 2% to 4% while combining the 
three feature sets increased it by 3% to 7%. In all the present cases combining 
feature sets leads to an increase in average accuracy, even when fusing modalities 
with low accuracies such as the peripheral signals. This demonstrates the 
importance of combining multiple sources of information from both the central en 
peripheral nervous system in emotion detection from physiological signals. There are 
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two studies that tried to fuse peripheral and EEG information, both at the feature level 
(Chanel et al., 2006; Takahashi, 2004). In (Takahashi, 2004) the authors found that 
the fusion did not improve accuracy compared to EEG classification while in (Chanel 
et al., 2006) an increase was reported only for some classifiers and sets of classes. 
Fusion of the different modalities at the feature level was performed in the present 
work but the results are not reported because no increase of accuracy was found. 
This emphasizes the importance of fusion at the decision level for emotion 
assessment. 

<Figure 7> 

5.3.2 Rejection 
Finally, samples with low confidence values are rejected using the method described 
in Section 4.2 and the corresponding increase in accuracy is analyzed in Fig. 8. This 
was done for the CPN, NP and CE classification task because they are the most 
relevant for HCI applications. In Fig. 8, only the results of the CPN configuration are 
presented for the trials of all 10 participants (3000 trials) and different values of the � 
threshold. Since the label of each trial is already determined after fusion, it is possible 
to compare the number of badly classified trials that are rejected to the correctly 
classified ones. As can be seen from Fig. 8, no samples are rejected until � reach the 
value of 33%, which is normal since max ii

g cannot be inferior to 33% (there is the 

constraint 
1

1
K

i
i

g
=

=� ). The number of rejected samples that are badly classified is 

higher than the number of correctly classified samples until � becomes higher than 
47%. We choose this value to stop rejecting samples since most of the badly 
classified samples are rejected at this point.  
This value corresponds to a mean accuracy across participants of 80%, thus 
increasing it by about 10%. This is to be compared with the 70% accuracy when 
performing fusion without rejection, but at the cost of rejecting 40% of the samples. 
Such high rejection rate could seem problematic for a real application, but is however 
compensated by the short recording period needed to perform classification and give 
a decision. For instance if two consecutive trials are rejected, and the third one 
correctly classified the whole process would still be completed within 25 s. Using the 
same value of 40%, the percentage of rejected samples for the NP and the CE 
classification task, the increase of accuracy was respectively of 11% and 10%, 
resulting in an accuracy of 89% and 92%. This shows the interest of rejecting 
samples to improve classification accuracy for other classification tasks. 

<Figure 8> 

6 Conclusions and future work 
This paper proposes an approach to classify emotions in the three main areas of the 
valence-arousal space by using physiological signals from both the peripheral 
nervous system and the central nervous system. A protocol based on the recall of 
past emotional episodes was designed to acquire short-term emotional data from 11 
participants. From the data of 10 participants we extracted three feature sets, two for 
EEG signals and one for peripheral signals. Using the different feature sets, the 
accuracy of several classifiers was compared on the discrimination of the different 
combinations of three emotional states. The fusion of the three feature sets at the 
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classifiers decision level, by combining the probabilistic outputs of classifiers, was 
analyzed. Finally, rejection of trials where the confidence of the resulting 
classification is low was performed. In the case the trials with low confidence are 
those that are misclassified such rejection should lead to an increase of accuracy. 
Results showed the importance of EEG signals for emotion assessment by 
classification as they had better accuracy than peripheral signals on the 8 s of 
recorded signal. Classification of time-frequency features derived from the EEG 
signals provided an average accuracy of 63% for three emotional classes and 
between 73% and 80% for two classes. However, peripheral features were shown to 
increase accuracy when fused with EEG features. Fusion of different EEG feature 
sets also increased the performance of the emotion assessment to obtain 70% of 
accuracy on three classes by fusing the three physiological feature sets. Finally, the 
rejection of 40% of samples having a low confidence value increased the accuracy to 
up to 80%. 
Since following the stimulus onset emotional processes in brain and peripheral 
signals are expected to be observable at different times, the exploration of different 
time resolutions is needed to determine the time scales favorable to emotional 
assessment from EEG and peripheral activity. For this purpose a protocol where the 
exact time of the emotion elicitation is known should be designed. The high number 
of electrodes used in this study is also an issue since it leads to a high dimensional 
space where classification is difficult and it forbids the use of this system for real 
applications. Our study (Ansari-Asl et al., 2007), based on the data from the same 
protocol, is a first step in this direction. 
Analysis of EEG in other elicitation contexts should also be performed to confirm the 
efficiency of EEG features for emotional assessment in less cognitive tasks, as well 
as when interacting with computer interfaces. For HCI, the described work can also 
be used as a guideline to decide which classification strategy to use. Finally, while 
the rejection of non-reliable trials has been shown to improve accuracy, the 
percentage of rejected samples is high and further analysis should be conducted to 
confirm that this rejection can improve the information transfer rate. 
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List of captions 
 
Table 1: List of publications on emotion assessment from physiological signals. 
Signals acronyms are: Electromyography (EMG), Electrocardiogram (ECG), Galvanic 
Skin Response (GSR), Electroencephalography (EEG), Blood Volume Pulse 
(BVP).Classification acronyms are : Sequential Floating Forward Search (SFFS), 
Linear discriminant analysis (LDA), Mean Square Error (MSE), Multi Layer 
Paerceptron (MLP), K-Nearest Neighbors (KNN). 
 
Table 2: features extracted from peripheral signals. 
 
Table 3: Average confusion matrices across participants for peripheral features and 
different classifiers: LDA (a), Linear SVM (b), RBF SVM(c) and Linear RVM (d). 
 
Figure 1: Emotion assessment in human computer interfaces, adapted from the 
execution / evaluation model (Norman, 1990). 
 
Figure 2: (left) Different emotional classes in the valence-arousal space and their 
associated image; (right) schedule of the protocol and detail of a trial. 
 
Figure 3: Complete process of trial acquisition, classification, fusion and rejection. 
Classification tasks acronyms are Calm Positive Negative (CPN), Calm Excited (CE), 
Negative Positive (NP), Calm Negative (NP) and Calm Positive (CP). 
 
Figure 4: Mean classifier accuracy across participants for EEG STFT features and 
the different classification schemes. The bars on top of each column represents the 
standard deviation across participants. Classification tasks acronyms are Calm 
Positive Negative (CPN), Calm Excited (CE), Negative Positive (NP), Calm Negative 
(NP) and Calm Positive (CP). 
 
Figure 5: Mean classifier accuracy across participants for EEG MI features and the 
different classification schemes. The bars on top of each column represents the 
standard deviation across participants. Classification tasks acronyms are Calm 
Positive Negative (CPN), Calm Excited (CE), Negative Positive (NP), Calm Negative 
(NP) and Calm Positive (CP). 
 
Figure 6: Mean classifier accuracy across participants for peripheral features and the 
different classification schemes. The bars on top of each column represents the 
standard deviation across participants. Classification tasks acronyms are Calm 
Positive Negative (CPN), Calm Excited (CE), Negative Positive (NP), Calm Negative 
(NP) and Calm Positive (CP). 
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Figure 7: Mean classifier accuracy across participants for different modalities and 
their associated classifiers, as well as for fusion of the two EEG and the three 
physiological modalities. Classification tasks acronyms are Calm Positive Negative 
(CPN), Calm Excited (CE), Negative Positive (NP), Calm Negative (NP) and Calm 
Positive (CP). 
 
Figure 8: Relation between the � threshold value, classification accuracy and the 
amount of eliminated samples for the CPN (Calm Positive Negative) classification 
task. 
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