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Connection between Bell nonlocality and Bayesian
game theory

Nicolas Brunner2 & Noah Linden3

In 1964, Bell discovered that quantum mechanics is a nonlocal theory. Three years later, in a
seemingly unconnected development, Harsanyi introduced the concept of Bayesian games.
Here we show that, in fact, there is a deep connection between Bell nonlocality and Bayesian
games, and that the same concepts appear in both fields. This link offers interesting possi-
bilities for Bayesian games, namely of allowing the players to receive advice in the form of
nonlocal correlations, for instance using entangled quantum particles or more general no-
signalling boxes. This will lead to novel joint strategies, impossible to achieve classically. We
characterize games for which nonlocal resources offer a genuine advantage over classical
ones. Moreover, some of these strategies represent equilibrium points, leading to the notion
of quantum/no-signalling Nash equilibrium. Finally, we describe new types of question in the
study of nonlocality, namely the consideration of nonlocal advantage given a set of Bell
expressions.
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n several occasions in the history of science, different

areas of research, sharing a priori nothing in common

and sometimes belonging to completely different fields of
science, were shown to be closely related. In certain cases, these
links turned out to be spectacular and tremendously fruitful, such
as the connection between differential geometry and relativity. In
the present paper, we discuss such a link, albeit a much more
modest one, between Bell nonlocality and the theory of Bayesian
games—also referred to as games with incomplete information.

Nonlocality is arguably among the most dramatic and counter-
intuitive features of quantum mechanics. In a nutshell, quantum
theory is at odds with the principle of locality, which states that
an object is influenced directly only by its immediate surround-
ings, and not by remotely located objects. Two remote observers
sharing a pair of entangled quantum particles can establish
correlations that evade any possible explanation in classical
physics. On the one hand, a signal is excluded, as it would have to
travel faster than light. On the other hand, the correlated
behaviour is not the result of a pre-established strategy, as
demonstrated by Bell in 1964 (ref. 1). Notably, this phenomenon
of quantum nonlocality, confirmed experimentally? via the
violation of so-called Bell inequalities, turns out to be useful in
practice, in particular for information processing®™>. More
recently a theory of generalized nonlocal correlations has been
developed®’, which has direct impact on fundamental questions
in the foundations of quantum mechanics®°.

In a completely different area, but only 3 years after Bell’s
ground-breaking discovery, Harsanyi!? developed a framework
for games with incomplete information, that is, games in which
players have only partial information about the setting in which
the game is played. For instance, each player may have some
private information, such as his payoff, unknown to other players.
In general, players also have the possibility of using a common
piece of advice (originating, e.g., from an advisor), allowing for
correlated strategies. Harsanyi’s discovery marked the start of
Bayesian game theory, which now has a prominent role in game
theory and in economics, used in particular to model auctions.

Here we discuss a strong connection between Bayesian games
and Bell nonlocality, highlighting the fact that similar concepts
appear in both fields. First, the fact that in a Bayesian game
players have private information (a type) that is unknown to the
other players coincides precisely with the notion of locality in
physics. Second, the fact that the common advice does not allow a
player to obtain information about the private information of
other players is precisely the concept of no-signalling in physics.
In other words, the physical resources available to the advisor
must be non-signalling. These include local (i.e., classical)
resources, as well as nonlocal resources, such as entangled
quantum particles. Importantly, players having access to nonlocal
resources can outperform players having access to the most
general classical resources. From a more formal viewpoint, we will
see that the normal form of a Bayesian game can be reformulated
as a Bell test scenario. This will provide a general characterization
of games where nonlocal resources provide an advantage over
classical ones. These include for instances cases where the payoft
function of the players corresponds to a Bell inequality, as first
discussed by Cheon and Igbal'l, and further developed in
refs 12-17. However, we will see that there exist much more
general situations (in which none of the payoffs functions
corresponds to a Bell inequality) where nonlocal resources, e.g.,
entanglement, provide nevertheless an advantage over any
classical strategy. Notably, some of these nonlocal strategies
represent equilibrium points, termed quantum Nash equilibria or
non-signalling Nash equilibria. To illustrate these ideas, we
discuss several simple examples. Finally, we emphasize that, for
the class of games discussed here (i.e., Bayesian games), quantum
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mechanics provides a clear and indisputable advantage over
classical resources, in the most general sense. This is in contrast
with some previous approaches to quantum games!®, based on
non-Bayesian games (or complete games, such as Prisoner’s
dilemma), for which a quantum advantage is achieved only under
specific restrictions, the relevance of which has been much
debated!22,

Results

From Bayesian games to Bell inequalities. Let us start with the
normal form representation of a game. At this stage, one needs to
specify the number of players, the set of possible strategies for each
player and the payoff function for each player. To model Bayesian
games, Harsanyi proposed to introduce Nature as an additional
player to the game. In particular, Nature assigns to each player a
type, chosen from a given set. The type of each player is generally
unknown to other players, and determines, for instance, his payoff
function. The set of possible types for each player is thus also part
of the definition of a Bayesian game. More formally, the normal
form representation of a Bayesian game is given by the following
ingredient523: (i) the number of players N, (ii) a set of states of
nature Q, with a prior u(Q), (iii) for each player i, a set of actions
A, (iv) for each player i, a set of types y;, (v) for each player i, a
mapping 1:Q—y; and (vi) for each player i, a payoff function
fiQx Ay x ... x Ay— R, determining the score of the player for
any possible combination of types and actions.

In the following, we shall focus on the case of two players, for
simplicity. The variable A;=0, 1, .. k; denotes the possible
actions of party 1, and X; =0, 1, ...m; denotes the possible types
of party 1 etc. We will also consider that the possible states of
Nature are simply the combination of all possible types (for all
players), that is Q=(y;, %2). To play the game, each player
should decide on a particular strategy to follow. A pure strategy
then consists in associating an action for every possible type, i.e., a
mapping s;:y;— A;. More generally, players may use a probabil-
istic strategy, hence it is convenient to define a probability of an
action given a type, ie., P(A}|X;). An important feature of the
game is then the average payoff function, or the average score, for
each player. For player i this is given by

Fi= Z,U(Xth)P(Al,Az | X1, X)fi(X1,X,5,A1,42) (1)

where the sum goes over all variables X;, X,, A;, A,. Note that if
the players use pure or independent strategies, then P(A;, A,|X;,
X,) = P(A|X1)P(A,|X,). However, in certain cases the players
may adapt their strategy depending on a piece of advice. The
latter is delivered to all players by an advisor. This opens the
possibility for the players to adopt correlated strategies, which can
outperform independent strategies. There are various forms that
advice can take. For example in the case of correlated classical
advice, the advice is represented by a classical variable, A, with
prior p(4). Each player can then choose a strategy depending on
his type and on /. In general for classical correlated strategies, we
have that

P(A1, Az | X1, X3) = 32 p(A)P(Ay | X1, A)P(Az | X3, 4)
# P(Aﬂl | X1)P(Az | X2)

An important point in what follows (and not just in the case of
classical advice) is that the advice must be independent of the
state of Nature, that is, the choice of types is unknown to the
advisor. This enforces the following condition

P(Ar | X1,X0) =Y P(A1, A | X1, X0) =P(Ar | 1) (3)
Ay

which states that the marginal of player 1 does not depend on the
type of player 2; a similar condition holds for the marginal of
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player 2. In the context of Bell nonlocality (as we shall see below),
the above condition plays a prominent role. It is referred to as the
‘no-signalling’ condition, which imposes that the correlations
P(A,, Ay)X,, X5) do not allow for player 2 to signal instanta-
neously to player 1, and thus respect causality and are not in
conflict with relativity. We note that in the context of games, the
situation in which the advice can depend on the types has been
considered?*; physically this situation is however not so relevant
for us, as it involves signalling.

To analyse games it is often useful to define the set of all
possible pairs of payoff functions {Fy,F,}, considering all possible
strategies. It is convenient to represent geometrically the space of
possible payoff functions??, i.e., here the set of points in R? with
coordinates (F;,F,). In case the players share classical advice (and
the number of possible strategies is finite), this space is a convex
polytope. The space can then be conveniently characterized with
a finite set of linear inequalities of the form

N=2
> BiF < By (4)
j=1

where f3; are real numbers. These inequalities define the facets of
this polytope.

A notion of particular importance in game theory is that of a
Nash equilibrium. In case the game features an advisor, there is a
more refined notion of correlated equilibrium?®. Players achieve a
correlated equilibrium for a given set of strategies if each player
has no incentive to change strategy, that is, his average payoff will
not increase by choosing any other possible strategy (keeping the
other player’s strategy fixed).

We shall see now that the above scenario is closely related
to that of a Bell test. For simplicity, we will focus on a Bell test
with two parties, although more parties can be considered. We
consider two separated observers, Alice and Bob, sharing a
physical resource distributed by a central source (see Fig. 1). Each
observer receives a question (chosen in a given set) to which she/
he is asked to give an answer. In more physical terms, these
questions should be understood as measurement settings, and the
corresponding answers as measurement outcomes. Importantly
each observers knows only his own question, and does not know
which question the other observers receive. To make the analogy
with a Bayesian game, the questions here correspond to the type
of each player, while the answers correspond to the actions.
Hence we will denote by X; and X, the questions of Alice and
Bob, respectively, and by A; and A, the corresponding answers.
After repeating the above operation a large number of times, the

Alice Bob

¥ ¥

) )

Figure 1| Bell inequality test scenario. A source distributes physical
resources to two distant players, Alice and Bob. Each player receives a
question, denoted X; for Alice and X, for Bob, and should then provide
an answer, denoted A, for Alice and A, for Bob. The experiment is
characterized by a joint probability distribution P(A;,A5|X;,X5). When the
distribution P(A;,A2|X7,X2) violates a Bell inequality, the observed
correlations are nonlocal.

statistics of the experiment can be computed, resulting in the joint
probability distribution

P(A1, A | X1,X,) (5)

which represents the probability of observing a pair of answers
Ay,A,, given a pair of questions X;,X,.

In a Bell test, the goal is loosely speaking to capture the strength
and the nature of the correlations observed in the experiment. In
general, this may depend on the kind of physical resource
distributed by the source to the observers. A case of particular
importance is that of a classical source (i.e., a source of classical
particles). In particular, the particles can be thought of as carrying
information about a common strategy, which will eventually lead
to a correlated behaviour in the experiment. The statistics of any
experiment involving a classical source can be written as

P(A1, Ay | X1, X,) = / dp(A)P(A; | X1, )P(Ar | X2, 2)  (6)

where the variable A (distributed according to the prior p(4), with
f dip(h)=1) represents the common strategy, that is, the
information distributed from the source to all the observers.
From the point of view of games, the variable . represents the
advice. Thus, the source models the advisor. Importantly, all
possible strategies for players receiving classical advice (i.e., from a
classical advisor) are of this form.

In his 1964 ground-breaking work, Bell discovered that the
correlations obtained in any experiment involving a classical
source are constrained. More formally, any statistics of the form
(6) satisfies a set of inequalities, now known as Bell inequalitiesl.
Generally, a Bell inequality is based on a linear expression of the
joint probabilities (5), of the form

S= Z 00X, X5.41,4, P(A1, Ay | X1, X3) (7)
X1,X3,A1,A2

where oy, x, 4,4, are real numbers. The maximum of S over all
possible strategies of the form (6) is called the local bound of the
inequality L. Putting all together, a Bell inequality then reads

S<L. (8)

Now we come to an important point. The average payoff
function (for a given player i) is essentially a Bell expression.
Indeed, equations (1) and (7) are exactly of the same form, with

(X1, X0)fi(X1, X2, Av, Az) = 0%, X,.41,45. 9)

Hence to any average payoff function F; can be associated a Bell
expression S;. Moreover, in the presence of a classical advisor, the
following condition must hold: F; <L, where L is the local bound
of the Bell expression associated with F;.

More generally, note that the above reasoning also applies to
any linear combination of the payoff functions. In particular, the
facets of the space of payoff functions, of the form (4), can also be
associated with a Bell expression S. Thus, in the case of a classical
advisor, the condition (4) can be seen as a Bell inequality, with
Bell expression S= 3 f;F; and local bound L = f,.

To summarize, the payoff function of a Bayesian game is
basically a Bell expression, and is hence limited by Bell’s
inequality for any strategy involving a classical advisor. More
generally, this applies to linear combinations of payoff functions,
such as those corresponding to the facets of the space of payoff
functions. Next we shall move to quantum mechanics, for which
the situation turns out to be dramatically different!

Remarkably, in experiments involving a source of quantum
particles, Bell’s inequality (8) can be violated. This means that
there exist quantum experiments, the statistics of which cannot be
written in the form (6). This is quantum nonlocality, a
phenomenon repeatedly observed experimentally, which has
many applications in quantum information processing.
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A crucial feature of quantum correlations is that they satisfy
the no-signalling principle, represented by conditions of the form
(3). This is indeed fundamental, as it ensures that quantum
mechanics is compatible with relativity. It turns out, however,
that there exist correlations which are stronger than those allowed
in quantum mechanics, which nevertheless satisfy the no-
signalling principle. Such correlations, discovered by Popescu
and Rohrlich®, are often referred to as super-quantum
correlations or nonlocal boxes.

For Bayesian games, the possibility of having access to nonlocal
correlations, for instance using entanglement, has important
implications. First let us imagine that the players can share
quantum advice, that is, the advisor is able to produce entangled
particles and to send them to the players, who then perform local
measurements on their particles. As the statistics of such
measurements can in general not be reproduced by any classical
local model, the players now have access to strategies that would
be impossible in the case of a classical advisor. Thus, players
sharing quantum advice can outperform any classical players.
More formally, this means that the space of payoff functions for
players sharing quantum advice can become larger than the space
of payoff functions for classical players. In case the average payoff
function of one (or more) player corresponds to a Bell inequality,
then quantum resources give an advantage to the players.
Interestingly, however, even in the case none of the payoff
functions corresponds to a Bell inequality (i.e., the highest
possible payoff can be reached classically), it is still possible in
certain cases to obtain a quantum advantage.

Going beyond quantum mechanics, it is relevant to consider
general nonlocal resources in the context of Bayesian games. In
general, this allows for novel strategies, which can outperform
both classical and quantum strategies. Hence the space of payoffs
achievable with no-signalling strategies is in general larger than in
the case of quantum strategies.

Finally, allowing for quantum or super-quantum strategies also
provides novel correlated equilibrium points to the game. Such
points are referred to as quantum Nash equilibria and no-
signalling Nash equilibria.

Below we will illustrate these ideas by discussing a few simple
examples of Bayesian games featuring a quantum advantage and a
no-signalling advantage.

Game where payoff functions are Bell inequalities. We first
consider a simple game between two players, characterized as
follows. For each player there are only two possible types,
X;=0,1 for the player 1 (from now called Alice), and X, = 0,1 for
the player 2 (from now called Bob). The set of possible actions is
also composed of two elements only: actions A; =0,1 for Alice,
and A,=0,1 for Bob. There are thus four possible states of
Nature, and we will consider them equally likely: u(X;,X,) =1/4
fOr XI’XZ = 0,1.
Next we define the payoff function of Alice to be given by

lf Al @ A2 :X1X2
otherwise (10)

+4
fl(XbXZaAhAZ):{ 4

where @ designates addition modulo 2. Thus, the average payoff
function of Alice is given by

Fi=E(X; =X, =0)+E(X;=0,X,=1)

+EX,=1,X=0)—EX;=X,=1) (11)

where we have defined the correlation function
E(X1,X;)=P(A1=A | X1,X5) —P(A; # Ay | X1, X5)

We will consider the game to be symmetric, hence the payoff
function of Bob is the same as that of Alice, i.e., F; =F,.

4

Now it turns out that the function (11) is very well known in
quantum mechanics. It is the basis of the simplest Bell inequality,
derived in 1969 by Clauser-Horne-Shimony-Holt (CHSH)?Z®.
The CHSH Bell inequality reads F; <2. In quantum mechanics,
by performing judicious measurements on a singlet state, of the
form |y _)=(] 0),| 1)5 —| 1)4] 0)5)/V/2, it is possible to obtain
the following set of correlation functions:

By (6. = (=) s (12)

This leads to F; =2v/2 > 2, hence violating the CHSH
inequality. Therefore, the space of possible payoffs in the case
of quantum advice is clearly larger than in the classical case, as
there exist individual values of the payoft function which are not
attainable classically.

Moreover, the quantum setting provides here a new equili-
brium point. Indeed, it turns out that the value of F; =F, = 2V2
is in fact the maximum that is achievable in quantum
mechanics?’. Therefore, the point F :F2:2\/§ represents a
quantum correlated equilibrium point, as it is impossible for Alice
or Bob to obtain a larger payoff by adopting any other strategy.

Next, let us consider super-quantum correlations. It turns out
that such correlations can give rise to maximal violation of the
CHSH inequality, reaching CHSH = 4. Thus, players sharing such
super-quantum correlations can outperform quantum players in the
above game, and reach F, = F, =4, achieving the highest possible
average payoff. In particular, this is achieved using no-signalling
correlations known as the Popescu-Rohrlich (PR) box, character-
ized by Epr(X1,X3) =(— 1)%X2, Indeed, the point Fj=F,=4is a
no-signalling Nash equilibrium, as no higher payoffs are possible.

Game where none of the payoff functions is a Bell inequality.
Let us now consider an asymmetric variation of the above game.
We take again u(X;,X;) =1/4 for X;,X, =0,1. The payoff func-
tions for Alice and Bob will now be different:

[ a1-X) ifA B A=XX
fl(Xth,AhAz)*{ —4(1-X;) otherwise
44X A B A=XX
f(X1, X, AL Ay) = { —4X, otherwise

Hence, we obtain the following average payoffs

F]:E(X1:X2:O)+E(X1:O,X2:1) (13)
B=EX;=1,X,=0)—EX, =X, =1)

It is straightforward to see that F;<2 and F,<2 for any
possible strategy (classical and quantum). However, in the case of
classical advice, it holds that F; +F,<2, which is simply the
CHSH Bell inequality. Note that this inequality is a facet of the
space of payoffs. Using quantum advice, in particular the optimal
CHSH strategy given in (12), one has that F; =F, = V2 < 2, but
F1 +F, =2v/2 > 2. Thus, we obtain a set of average payoffs
which cannot be obtained classically, although each payoff is
individually compatible with a classical model (see Fig. 2).

Note that the space of payoff functions in the case of quantum
advice is not a polytope in general. Here it can be checked that all
points satisfying F? +F2=4 can be attained by performing
judicious measurements on a singlet state.

Finally, considering advice based on super-quantum correla-
tions leads to even better strategies. Again, the PR box allows both
players to reach the optimal payoff, i.e., achieving F,=F,=2.
This point is a no-signalling Nash equilibrium.

A more realistic example. In our final example, the players are
two companies, both interested in buying jointly some pieces of

land, potentially rich in a certain resource. Company A has
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Payoff Bob F,

-2 -1 0 1 2
Payoff Alice F;

Figure 2 | Space of possible average payoffs functions. The pairs of
payoffs achievable with classical advice are represented by the back
polytope (square). Players sharing quantum advice have access to a strictly
larger set of possible payoff function (blue circle), and hence have an
advantage over classical players. The red star represents the particular
quantum strategy mentioned in the main text. Players having access to
super-quantum advice can reach all points, in particular the point
Fi=F,=2, a no-signalling Nash equilibrium.

Table 1 | Payoffs for the more realistic example.

Low supply High supply
No bid Bid No bid Bid

Low cost

No bid 0, 0) 4, 4 0, 0 2, 2)

Bid 4, 4) 2, 2) 2,2 a,n
High cost

No bid 0, 0 2, 2) (0, ® (-2, -2)

Bid 2,2 a,mn (-2, -2) (=2, -2)

Two companies are interested in buying jointly some pieces of land, potentially rich in some
resource. Company A (vertically) will extract the resource, and the production cost can be low
or high. Company B (horizontally) will sell the product, and the supply on the market can be low
or high. During the sale, both companies must bid simultaneously. A piece of land is sold to
them when at least one of the companies places a bid. The table gives all pairs of payoffs, (fa, fs)
for all possible types and strategies of the players.

expertise in extracting this resource, while company B has
expertise in selling and distributing it. Hence an association is
potentially profitable for both companies, which would then share
the net profit equally.

For company A, the price of production may vary, depending
on various parameters, which represent the type of company A.
Here the extraction cost can be either low or high (with equal
probability), which an expert of company A can evaluate. For
company B, the type is the supply on the market, which can be
either low or high (with equal probability), evaluated by an expert
of company B. Note that the type of each company is private, as
each company is reluctant to let the other know about how much
benefit it could potentially make.

The sale is organized as follows. Both companies will be asked
simultaneously, to bid or not on a particular piece of land. If at
least one company bids, the piece of land is sold. All money that
is bid is retained, hence if both companies bid, their profit is lower
than if only one of them bids. If both the extraction cost and
supply on the market are low, the profit will be high. If the
extraction cost is low but the supply is high (or conversely) the

profit is medium. If both the extraction cost and supply are high,
the companies go bankrupt if they bid. The payoff functions for
this Bayesian game are given in Table 1.

It is not difficult to see that, in the case the companies have
access to classical advice, the largest possible average payoff for
each company is F4 = 3/2. However, having access to quantum
advice, the companies can achieve F4p =~ 1.5365 > 3/2. This
is achieved by performing suitably chosen local measurements
on a singlet state. Moreover, this point represents a quantum
correlated Nash equilibrium, as no better score can be achieved.

Discussion

We have discussed a strong connection between Bell nonlocality
and Bayesian games, showing that similar concepts appear in both
fields. This led us to characterize games for which players sharing
advice based on nonlocal correlations, for instance using quantum
entanglement, can outperform players sharing (any possible)
classical advice. Considering the quantum case, it is important to
emphasize that the advantage provided by quantum resources is

here fully general. Hence it does not rely on any specific

restrictions, contrary to previous agfroaches to quantum gamesls,

which then lead to controversy!®~??. The main point is that these

approaches focused on games with complete information (such as
Prisoner’s dilemma), where the notion of type is not present, in
contrast to Bayesian games. This is perhaps expressed even more
clearly from the point of view of nonlocality: a Bell test can
separate quantum from classical predictions only if each observer
can choose between several possible measurements to perform.
Finally, we believe that the connection presented here may also
benefit nonlocality. Besides providing new potential applications
for quantum nonlocality, along with quantum communications*
and communication complexity, it also raises interesting issues, in
particular the possibility of detecting nonlocal correlations via a set
of Bell type inequalities, rather than from a single Bell parameter.

References

1. Bell, J. S. Speakable and Unspeakable in Quantum Mechanics (Cambridge
University Press, 1987).

2. Aspect, A. Bell’s inequality test: more ideal than ever. Nature 398, 189-190 (1999).

3. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.
67, 661-663 (1991).

4. Acin, A. et al. Device-independent security of quantum cryptography against
collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

5. Buhrman, H., Cleve, R., Massar, S. & de Wolf, R. Nonlocality and
communication complexity. Rev. Mod. Phys. 82, 665-698 (2010).

6. Popescu, S. & Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 24,
379-385 (1994).

7. Barrett, J. et al. Nonlocal correlations as an information-theoretic resource.
Phys. Rev. A 71, 022101 (2005).

8. Popescu, S. Quantum mechanics: Why isn’t nature more non-local? Nat. Phys.
2, 507-508 (2006).

9. Pawlowski, M. et al. Information causality as a physical principle. Nature 461,
1101-1104 (2009).

10. Harsanyi, J. C. Games with incomplete information played by Bayesian players.
Manage. Sci. 14, 159-183 (Part I): 14 (5) 320-334 (Part II), 14 (7): 486-502
(Part III), (1967).

11. Cheon, T. & Igbal, A. Bayesian Nash equilibria and Bell inequalities. J. Phys.
Soc. Jpn 77, 024801 (2008).

12. Igbal, A., Cheon, T. & Abbott, D. Probabilistic analysis of three-player
symmetric quantum games played using the Einstein-Podolsky-Rosen-Bohm
setting. Phys. Lett. A 372, 6564-6577 (2008).

13. Flitney, A. P. et al. Equivalence between Bell inequalities and quantum Minority
game. Phys. Lett. A 373, 521-524 (2009).

14. Igbal, A. & Abbott, D. Constructing quantum games from a system of Bell’s
inequalities. Phys. Lett. A 374, 3155-3163 (2010).

15. Hill, C. D,, Flitney, A. P. & Menicucci, N. C. A competitive game whose
maximal Nash-equilibrium payoff requires quantum resources for its
achievement. Phys. Lett. A 374, 3619-3624 (2010).

16. Schmid, C. et al. Experimental implementation of a four-player quantum game.
New J. Phys. 12, 063031 (2010).

17. Chappell, J. M., Igbal, A. & Abbott, D. Analyzing three-player quantum games
in an EPR type setup. PLoS ONE 7, €36404 (2012).

| 4:2057 | DOI: 10.1038/ncomms3057 | www.nature.com/naturecommunications 5

© 2013 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

1

el

19.

2

j=1

22.

2

W

25.

2

[=2)

2

]

. Eisert, J., Wilkens, M. & Lewenstein, M. Quantum Games and Quantum

Strategies. Phy. Rev. Lett. 83, 3077-3080 (1999).
Benjamin, S. C. & Hayden, P. M. Comment on Quantum Games and Quantum
Strategies. Phys. Rev. Lett. 87, 069801 (2001).

. Eisert, J., Wilkens, M. & Lewenstein, M. Reply. Phys. Rev. Lett. 87, 069802 (2001).
21.

van Enk, S. J. & Pike, R. Classical rules in quantum games. Phys. Rev. A 66,
024306 (2002).

Aharon, N. & Vaidman, L. Quantum advantages in classically defined tasks.
Phys. Rev. A 77, 052310 (2008).

. Osborne, M. J. An Introduction to Game Theory (Oxford University Press, 2002).
24.

Forges, F. Correlated equilibrium in games with incomplete information
revisited. Theory Decis. 61, 329-344 (2006).

Aumann, R. Subjectivity and correlation in randomized strategies. J. Math.
Econ. 1, 67-96 (1974).

. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. Proposed experiment to

test local hidden-variable theories. Phys. Rev. Lett. 23, 880-884 (1969).

. Tsirelson, B. S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys.

4, 93-100 (1980).

Acknowledgements

We are very grateful for illuminating discussions with David Leslie and John
McNamara. We acknowledge financial support from the UK EPSRC, the EU DIQIP,
the Swiss National Science Foundation (grant PPO0P2_138917) and the Templeton
Foundation.

Author contributions
N.B. and N.L. performed the theoretical analysis and wrote the paper.

Additional information
Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Brunner, N. and Linden, N. Connection between Bell nonlocality
and Bayesian game theory. Nat. Commun. 4:2057 doi: 10.1038/ncomms3057 (2013).

| 4:2057 | DOI: 10.1038/ncomms3057 | www.nature.com/naturecommunications

© 2013 Macmillan Publishers Limited. All rights reserved.


http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	title_link
	Results
	From Bayesian games to Bell inequalities

	Figure™1Bell inequality test scenario.A source distributes physical resources to two distant players, Alice and Bob. Each player receives a question, denoted X1 for Alice and X2 for Bob, and should then provide an answer, denoted A1 for Alice and A2 for B
	Game where payoff functions are Bell inequalities
	Game where none of the payoff functions is a Bell inequality
	A more realistic example

	Discussion
	BellJ. S.Speakable and Unspeakable in Quantum MechanicsCambridge University Press1987AspectA.BellCloseCurlyQuotes inequality test: more ideal than everNature3981891901999EkertA. K.Quantum cryptography based on BellCloseCurlyQuotes theoremPhys. Rev. Lett.6
	Figure™2Space of possible average payoffs functions.The pairs of payoffs achievable with classical advice are represented by the back polytope (square). Players sharing quantum advice have access to a strictly larger set of possible payoff function (blue 
	Table 1 
	We are very grateful for illuminating discussions with David Leslie and John McNamara. We acknowledge financial support from the UK EPSRC, the EU DIQIP, the Swiss National Science Foundation (grant PP00P2138917) and the Templeton Foundation.Author contrib
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information


