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interaction of vascular damage 
and alzheimer dementia: Focal 
Damage and Disconnection1

Dementia is a major health and so-
cioeconomic problem with ever-
increasing prevalence due to the 

increasing age of the population (1). 
Alzheimer disease (AD) and vascular 
dementia are both common disorders 
in the elderly, and although they are 
commonly co-occurring, they are gen-
erally considered to be separate noso-
logic entities. Neuroimaging biomarkers 
have evolved considerably over the past 
decade and demonstrate new insights 
into disease mechanisms in dementia. 
Of particular interest is the evolving 
view of interaction between pathophys-
iological mechanisms in AD and vas-
cular dementia, as demonstrated with 
neuroimaging.

Imaging Biomarkers for “Pure” AD

Large-scale databases, such as the Al-
zheimer Dementia Neuroimaging Ini-
tiative (2), provide detailed and sophis-
ticated imaging biomarkers, including 
structural magnetic resonance (MR) 
imaging measures such as hippocampal 
volume, structural connectivity derived 
from diffusion-tensor imaging (DTI), 
functional connectivity derived from 
functional MR imaging, and perfusion 
from arterial spin labeling, as well as 
molecular imaging biomarkers such as 
amyloid and tau positron emission to-
mography. Many AD studies, notably 
the Alzheimer Dementia Neuroimag-
ing Initiative, have excluded patients 
with vascular pathology findings, which 
is a good choice if one wants to study 
disease mechanisms in patients with 
“pure” AD. However, since vascular 
pathologic processes are common in 
the elderly and increase with age, there 
is a concern that such studies in fact 
do not include “normal” control sub-
jects but rather “super-normal” control 
subjects and patients with “pure” AD 
rather than “typical” AD. One might 
therefore critically question how well 

these biomarkers perform in a real-
world scenario with mixed pathologic 
processes.

Common Risk Factors for AD and 
Vascular Dementia

There is increasing awareness that AD 
and vascular dementia share many risk 
factors—notably vascular risk factors 
(3). At the same time, considering 
the amyloid cascade hypothesis as the 
unique pathway to AD (4) is increas-
ingly being questioned (5,6). There is 
growing interest in the role of other 
contributing factors, such as nutrition, 
exercise, lifestyle, and—in particular—
traditional vascular risk factors, such 
as obesity, hypertension, or diabetes 
in dementia, on the basis of evidence 
from human clinical studies (7,8), post-
mortem human studies (9,10), and ani-
mal models (11). The presence of white 
matter hyperintensities on MR images, 
which reflects vascular damage, can be 
used to predict, for example, future 
cognitive decline and diagnosis of AD 
(12) and represents an early and in-
dependent predictor of AD risk (13). 
This suggests that vascular damage is 
an additional factor that contributes to 
the development of AD, either by accel-
erating amyloid deposition or by inde-
pendently invoking downstream events, 
such as formation of neurofibrillary tan-
gles and neuronal loss.

Existing Imaging Biomarkers for 
Vascular Dementia

As the interest in the vascular contri-
bution to dementia grows (1,14), there 
is also increasing need for imaging 
biomarkers for pathologic processes 
induced by vascular disease and risk 
factors. While, as discussed earlier, 
imaging biomarkers for neurodegener-
ative and in particular AD pathologic 
processes have become progressively 
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refined and sophisticated over the past 
decade, imaging biomarkers for vas-
cular damage have evolved less. Acute 
ischemic lesions can be visualized by 
using diffusion imaging, and chronic in-
farcts can be identified with standard 
MR imaging pulse sequences. The asso-
ciation between visible ischemic lesion 
burden and cognitive impairment, how-
ever, is only modest (15,16).

Many studies have focused on fo-
cal white matter hyperintensities on 
fluid-attenuated inversion-recovery, or 
FLAIR, MR images, often rated by us-
ing simple visual scales like the Faze-
kas score reported in 1987 (17) or the 
more refined Scheltens score described 
in 1993 (18). In clinical practice, both 
scores provide simple visual rating 
scores of the global white matter hyper-
intensity load on T2-weighted or FLAIR 
images, which correlates with global 
functional decline in elderly patients 
(19), dementia, stroke, and death (20). 
Since the brain has strict spatial orga-
nization, it is not surprising that such 
global white matter hyperintensity 
scores do not correlate well with spe-
cific neuropsychological deficits, as we 
may expect that specific neuropsycho-
logical deficits are related to lesions in 
specific anatomic locations. Moreover, 
histopathologic-radiologic correlation 
demonstrates that T2-weighted or 
FLAIR MR imaging may lead to overes-
timation of pathologic demyelination in 
the periventricular region but underes-
timation of demyelination in the deep 
white matter region, presumably owing 
to the higher local water concentration 
in the periventricular region and the 
increasing plasma leakage during aging 
(21). This is paralleled by higher clinical 
relevance of white matter hyperintensi-
ties in the deep white matter (22,23). 
Moreover, cortical microinfarcts are 
another manifestation of small-vessel 
disease and are increasingly visualized 
by using high-field and ultra–high-field 
MR imaging (24).

To overcome the limitations of con-
ventional pulse sequences (and simple 
visual rating scales), there is a need 
for quantitative imaging biomarkers of 
vascular pathology findings beyond vis-
ible lesions to assess, in more detail, 

the effect of concomitant vascular and 
neurodegenerative pathology findings 
on cognitive decline. Other studies in-
dicate that DTI may demonstrate much 
more widespread damage in patients 
with vascular impairment (25,26).

White Matter Skeleton DTI: A New 
Imaging Biomarker of Subcortical 
Disconnection for Vascular Cognitive 
Disorder

In this issue of Radiology, Meng et 
al (27) studied the effect of vascular 
damage on cognition in patients with 
carotid stenosis and propose a novel 
imaging biomarker for vascular pathol-
ogy findings on the basis of DTI. The 
DTI data were processed by using the 
FSL (FMRIB [Functional MR Imaging 
of the Brain] Software Library; http://
fsl.fmrib.ox.ac.uk/fsl/) software pack-
age, and the mean diffusivity within 
the white matter skeleton was iden-
tified as the best-performing imaging 
biomarker to predict probable vas-
cular cognitive disorder (area under 
the receiver operating characteristic 
curve, 0.82; 95% confidence interval: 
0.75, 0.90). In contrast to manually 
outlining focal white matter hyperin-
tensity lesions (or more global Fazekas 
or Scheltens scores), this novel mean 
diffusivity white matter skeleton bio-
marker is an operator-independent 
biomarker that provides a continuous 
and absolute value, taking into account 
subcortical disconnection of structural 
neural networks, and clearly outper-
formed the classic lesion probability 
maps, indicating that damage is much 
more widespread than would appear to 
the naked eye. Of note, this novel bio-
marker was successful in the absence 
and the presence of presumed comor-
bid Alzheimer pathologic processes, 
assessed as presence of medial-tem-
poral lobe atrophy (no data available 
on amyloid status). This indicates that 
this novel vascular biomarker can be 
successfully applied even in the pres-
ence of comorbid neurodegenerative 
pathologic processes.

As illustrated in Figure 3 in the study 
of Meng et al (27), the global cognitive 
status correlated with diffuse mean 

diffusivity alterations that occurred 
across the entire white matter skeleton 
throughout the brain, while fluency—as 
an example of a specific cognitive func-
tion—was related to more localized 
mean diffusivity alterations in the for-
ceps minor and the anterior part of the 
corpus callosum. This indicates that the 
results of the study by Meng et al could 
be extended by generating multiple func-
tionally specific regional skeleton masks 
instead of one whole-brain skeleton—
for example, reflecting the established 
default mode network, working memory 
network, and executive control network. 
Such specific subskeletons would likely 
improve the specificity of the findings 
with regard to given neuropsychological 
tasks. Other extensions could be to de-
rive DTI-based graph measures in which 
the whole brain is treated as a network.

Toward Integrated Imaging Biomarkers 
of Vascular and Neurodegenerative 
Pathology Findings

The results of Meng et al (27) suggest 
again that concomitant vascular and 
primary neurodegenerative pathologic 
processes are independent; others have 
suggested they may even be supra-addi-
tive (28)—that is, the combined effect 
of both vascular and neurodegenera-
tive pathologic processes is more pro-
nounced than the simple linear addition 
of the two effects. This reinforces the 
notion that both vascular and neurode-
generative pathologic processes should 
be carefully assessed in cognitive de-
cline and that there is a need in par-
ticular for novel and more precise vas-
cular imaging biomarkers such as the 
DTI-derived skeleton mean diffusivity 
suggested by Meng et al (27), not only 
in vascular dementia but also in “typi-
cal AD,” which is likely to be affected 
by both vascular and neurodegerative 
pathologic processes. In fact, vascular 
damage may accelerate the AD patho-
logic process and therefore contribute 
to cognitive impairment directly and 
indirectly (1) and deserves more atten-
tion in the (secondary) prevention and 
treatment of patients with cognitive 
decline, including those with AD and 
those suspected of having AD.
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